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Purpose: To evaluate the diagnostic performance of radiomics model based on

fully automatic segmentation of pancreatic tumors from non-enhanced magnetic

resonance imaging (MRI) for differentiating pancreatic adenosquamous carcinoma

(PASC) from pancreatic ductal adenocarcinoma (PDAC).

Materials and methods: In this retrospective study, patients with surgically

resected histopathologically confirmed PASC and PDAC who underwent MRI

scans between January 2011 and December 2020 were included in the study.

Multivariable logistic regression analysis was conducted to develop a clinical and

radiomics model based on non-enhanced T1-weighted and T2-weighted images.

The model performances were determined based on their discrimination and

clinical utility. Kaplan-Meier and log-rank tests were used for survival analysis.

Results: A total of 510 consecutive patients including 387 patients (age: 61 ± 9

years; range: 28–86 years; 250 males) with PDAC and 123 patients (age: 62 ± 10

years; range: 36–84 years; 78 males) with PASC were included in the study. All

patients were split into training (n=382) and validation (n=128) sets according to

time. The radiomics model showed good discrimination in the validation (AUC,

0.87) set and outperformed the MRI model (validation set AUC, 0.80) and the ring-

enhancement (validation set AUC, 0.74).

Conclusions: The radiomics model based on non-enhanced MRI outperformed

the MRI model and ring-enhancement to differentiate PASC from PDAC; it can,

thus, provide important information for decision-making towards precise

management and treatment of PASC.
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Introduction

Pancreatic adenosquamous carcinoma (PASC) and pancreatic

ductal adenocarcinoma (PDAC) are two subtypes of pancreatic

cancer (PC). PASC is rarer than PDAC, which accounts for only 1–

4% of exocrine pancreatic malignancies (1). Pathologically, PASC is

defined as PC with more than 30% malignant squamous cell

carcinoma mixed with ductal adenocarcinoma (2). Recently, several

studies have reported that adding cisplatin or oxaliplatin to traditional

chemotherapy improves the overall survival of patients with PASC

(3–5). Furthermore, increasing evidence indicates the sensitive

potential of immunotherapy on PASC (5–7). However, the identical

symptoms, manifestation (8), and similar imaging characteristics to

PDAC pose challenges to preoperative discrimination of PASC from

PDAC. At the moment, endoscopic ultrasonography-guided fine

−needle aspiration is the only preoperative tool enabling tissue

acquisition. However, it is an invasive, operator−dependent

procedure that is unavailable in many centers (9). Therefore, there

is an urgent need to non-invasively discriminate between PASC

and PDAC.

Computed tomography (CT) and magnetic resonance imaging

(MRI) are widely used for PC diagnosis and preoperative evaluation

(10). Previous studies showed that the discrimination of PASC from

PDAC using conventional imaging characteristics is helpful (11–14),

especially in the ring-enhancement [ring-like enhancement with a

relatively hypo-vascular central area on contrast-enhanced images

(11)]. However, ring-enhancement was not ideal as it had a sensitivity

of only 65.2% (11). Recently, CT radiomics has been used for

diagnosing PASC and has shown good discrimination with an AUC

of 0.98 using enhanced CT (15) and 0.80 using unenhanced CT (16).

However, to the best of our knowledge, MRI radiomics models have

not been reported to differentiate PASC from PDAC preoperatively
Frontiers in Oncology 02
(17). Moreover, the segmentation of pancreatic tumors of CT scans

needed manual delineation, which was not only a laborious task but

also a difficult task to achieve because of unavoidable interobserver

variability in a previous study (18).

Therefore, this study aimed to develop and validate a fully

automatic radiomics model (i.e., automatic rather than manual

segmentation) from non-enhanced MRI to differentiate PASC

from PDAC.
Materials and methods

Patients

This retrospective study was approved by the Biomedical

Research Ethics Committee of our institution, and the need to

obtain informed consent from patients was waived. Data were

collected on consecutive patients with histopathologically diagnosed

PASC and PDAC between January 2011 and December 2020. A total

of 544 patients diagnosed with PASC and PDAC met the inclusion

criteria, which were (1): histopathologically confirmed PDAC and

PASC and (2) having undergone enhanced MRI examination within

30 days of surgery. The exclusion criteria were as follows: (1) a history

of squamous cell carcinoma in other organs and (2) having

undergone neoadjuvant chemotherapy before imaging examination.

The inclusion and exclusion criteria are presented in Figure 1. This

study fundamentally followed the guidelines in the transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis (TRIPOD) consensus (19). It should be

noted that this study included the patients who all underwent

enhanced MRI, because the performance of ring-enhancement was

compared with the radiomics model.
FIGURE 1

Flow chart illustrating patient selection process.
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MR protocols

All patients in this study underwent contrast-enhanced MRI of

the pancreas using a 3.0-T system (Signa HDxt MR750 3.0-T, GE

Healthcare, Milwaukee, USA; Skyra 3.0-T, Siemens, Erlangen,

Germany). All patients were positioned supine, with a phased-array

receiver coil covering the upper abdomen. The breath-hold single-

shot fast-spin echo cross-sectional T2W sequence (repetition time/

echo time [TR/TE], 6316/87 ms; field of view [FOV], 360 × 420 mm2;

matrix, 224 × 270; slice thickness, 5 mm; slice gap, 1 mm) and

unenhanced cross-sectional T1-weighted(T1W) fat-suppressed

sequence (TR/TE = 2.58/1.18 ms; FOV = 440 × 440 mm2; matrix =

224 × 270; slice thickness = 5 mm; no slice gap) were used. Dynamic

contrast-enhanced images, including the arterial phase (15 s),

pancreatic parenchymal phase (20 s), and portal venous phase (40

s) images, were obtained using a fat-suppressed sequence (volumetric

interpolated breath-hold examination; TR/TE=3.0/1.3 ms; FOV = 440

× 440 mm2; slice thickness = 5 mm; matrix = 224 × 270) after

intravenous injection of gadopentetate dimeglumine (Magnevist and

Gadovist, Bayer Schering Pharma, Berlin, Germany). A contrast agent

dose of 0.2 mL/kg was administered intravenously at a flow rate of 2

mL/s, followed by 20 mL of normal saline (to flush the tube).
Imaging analysis

Cross-sectional T1WI, T2WI and dynamic contrast-enhanced

images were used for analysis. All images were analyzed by two

abdominal radiologists (YB and QL, with 20 and 10 years of

experience, respectively) blinded to the clinical and pathological

details. Notably, the discordance between the two radiologists was

resolved by consensus.

On the basis of a comprehensive literature research and our local

experience on PASC and PDAC, the following characteristics were

assessed (1): MRI-reported tumor size (the maximum cross-sectional

diameter of the tumor (20)); (2) tumor location (head/uncinate or

body/tail (21)); (3) pancreatitis (peripancreatic fluid (22)); (4)

diameter of main pancreatic duct (MPD); (5) common bile duct

(CBD) cutoff and dilation (> 10 mm (23)); (6) cyst (presence of

pseudocysts and retention cysts with high signal intensity on T2-

weighted (T2W) image (24)); (7) contour abnormality (bulging

contours or loss of normal lobulation (25)); (8) parenchymal

atrophy (anteroposterior body diameter less than 20 mm (23)); (9)

MRI-reported lymph node (LN) metastasis (LN short-axis diameter >

10 mm (21)); and (10) ring-enhancement (26).
Tumor annotation and segmentation

The MRIs of all patients were loaded into three-dimensional (3D)

Slicer version 4.8.1 (an open-source software; https://www.slicer.org/),

and regions of interest were manually drawn slice-by-slice on T1WI

and T2WI (QL). A senior radiologist (YB) delineated all patients. We

trained an automatic tumor segmentation model in the training set.

Then this automatic segmentation model was applied in the validation

set. The mask of the automatic segmentations was compared with the
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mask delineated by the senior radiologist using dice similarity

coefficients (DSCs) in the validation set.

Moreover, 50 randomly selected patients including 25 patients

with PDAC and 25 patients with PASC were used for delineation

studies of pancreatic tumors (QL and WBL) for interobserver and

intraobserver DSCs. Specifically, delineation was conducted two

weeks apart in the intraobserver study.

The segmentation network of pancreatic tumors using nnU-Net,

a robust adaptive framework based on 2D U-Net and 3D U-Net, was

used for pixel-level semantic segmentation of NII data. In addition,

nnU-Net automatically generated network structures and

hyperparameters according to the characteristics of the data. The

input patch size was 64 × 192 × 192, with a batch size of two. A total of

five downsampling operations was performed, which resulted in a

feature map size of 2 × 6 × 6 in the bottleneck. The initial number of

convolutional kernels was set to 32, which was doubled with each

down-sampling to a maximum of 320. The number of kernels in the

decoder mirrors was in the encoder. Leaky rectified linear units (leaky

ReLUs) were used as the nonlinear activation functions. Instance

normalization was used for the feature map normalization. The

training objective was the sum of the dice and cross-entropy losses.

L = Ldice + Lce

Where P is the predicted segmentation result, and T is the labeled

segmentation result.

Ldice =   1 −  
2 P ∧Tj j
Pj j + Tj j

yi indicates the label value, and y0i  indicates the predictive value

Lce = −o
n

i=1
yilogy

0
i

Loss operated in one class, which labels the pancreatic tumor. The

nnU-Net used stochastic gradient descent with an initial learning rate

of 0.01 and a Nesterov momentum of 0.99. Training runs were

conducted for 1000 epochs, where one epoch was defined as 250

iterations. The learning rate decayed using a polynomial schedule.

Subsequently, training patches were cropped from randomly selected

training cases.

The network was fully trained using labeled MR images (382 for

T1WI and T2WI). We tested the performance of the segmented

network on the validation set (the same patients as the above-

mentioned validation set). The nnU-Net is a free and open-source

out-of-the-box segmentation tool, and the source code is publicly

available on GitHub (https://github.com/MRCWirtz/nnUNet-1,

accessed on April 12, 2022). The software requires only a set of

annotated MRIs as input data and a mainstream computer with a

powerful GPU.
Radiomics feature extraction

Feature extraction
A total of three preprocessing steps were applied to the MRIs

before the feature extraction. First, the image was resampled to

0.625 mm × 0.625 mm × 1 mm spacing to eliminate differences in
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revolution and slice thickness. Second, the bias field was corrected to

compensate for inhomogeneous artifacts across the MRI volume by

using low-pass bias filtering. Finally, intensity standardization was

used to align the MRI signal intensity distributions across all the

patient sets.

Next, radiomics features were extracted using the open-source

Python package PyRadiomics on python3.7 (version 3.0). First, the

processed images were converted into various transformed images

using different methods, comprising square roots, squares,

logarithms, gradients, and wavelet filters. Subsequently, the features

of the first-order statistics, gray-level co-occurrence matrix, gray-level

run-length matrix, gray-level size zone matrix, gray-level dependence

matrix, and neighboring gray-tone difference matrix were extracted

from each of the transformed images.

Feature and model selection
The following three feature selection steps reduced overfitting:

variance analysis, Spearman correlation analysis, and the least

absolute shrinkage and selection operator (LASSO) logistic

regression algorithm, as have been demonstrated in previous

radiomic studies (27). The sequential Bonferroni correction method

was applied to adjust the baseline significance level (a = 0.05) for

multiple testing biases (28, 29). Finally, a radiomics score (rad-score)

was calculated for each patient using a linear combination of selected

features weighted by their respective coefficients. Figure 2 shows the

flow diagram of this study.
Frontiers in Oncology 04
Statistical analysis

Normal distribution and variance homogeneity tests were

performed for all the continuous variables. The Student’s t-test

(normal distribution), Kruskal–Wallis H test (skewed distribution),

and chi-square test (categorical variables) were used to compare the

differences between the two groups. The interobserver DSCs between

the automatic segmentation and manual delineation of tumors were

reported. Interobserver agreement was quantified using the k statistic

for categorical variables, which was graded as 0–0.20, poor agreement;

0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80,

good agreement; and 0.81–1.00, excellent agreement, and the intraclass

correlation coefficient (ICC) for continuous variables, which was

graded as 0–0.49, poor agreement; 0.50–0.75, moderate agreement;

0.76–0.90, good agreement; 0.91–1.00, excellent agreement. Deaths

were defined as events, and deaths attributed to other causes were set

as censored observations. Overall survival (OS) was calculated from

the surgery date to the time of death or the end of the follow-up period.

Furthermore, univariate logistic regression analysis was used to

select the significant clinical and radiomic characteristics (p< 0.05). A

multivariable logistic regression analysis was conducted to develop a

model for the differential diagnosis of PASC and PDAC, and a

nomogram was constructed. We constructed a multivariable model

using a stepwise regression method based on the Akaike information

criterion to determine the best-fitting model (30). Subsequently, the

discrimination of the model was evaluated using a receiver operating
FIGURE 2

The workflow of the two models.
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characteristic (ROC) curve, and the area under the ROC curve (AUC)

was calculated concurrently. ROC curves were compared using the

DeLong test. Additionally, the sensitivity, specificity and accuracy of

the models were reported.

In this study, we developed two prediction models as follows: MRI

and radiomics models. The MRI model was developed using

conventional MRI characteristics, whereas the radiomics model was

developed using conventional MRI characteristics and rad-score. The

clinical usefulness of the models was tested using decision curve

analysis (DCA) by quantifying the net benefit at different threshold

probabilities. Finally, Kaplan–Meier estimates were applied to graph the

survival curves and the log-rank test was used to analyze the differences

between the predicted PASC group and the predicted PDAC group.

Statistical significance was defined as a two-tailed p-value< 0.05.

All analyses were performed using the R software (version 3.3.3, R

Foundation for Statistical Computing).
Results

Clinical and MRI characteristics

A tatal of 510 patinets were included in this study. Of the 510

included patients, 387 consecutive patients (age: 61 ± 9 years; range:

28–86 years; 250 males) had PDAC and 123 consecutive patients (age:

62 ± 10 years; range: 36–84 years; 78 males) had PASC. All patients

were divided into training and validation sets according TRIPOD

guidelines (19). The prediction model was developed on the training

set of 382 consecutive patients (age: 61 ± 9.9 years; range: 28–85 years;

239 males), enrolled between January 2011 and February 2018. Thus,

the validation set consisted of 128 consecutive patients (age: 60 ± 10

years; range: 35–83 years; 89 males), enrolled between March 2018

and December 2020. Interobserver agreements between two

radiologists for MRI characteristics were excellent, and k statistic

ranged from 0.91 to 0.93. The interobserver ICCs of MRI-reported

tumor size were also good, ranging from 0.82 to 0.88. Significant

differences were observed in tumor location, MRI-reported tumor

size, CBD cutoff and dilation, diameter of MPD, and ring-

enhancement in the training and validation sets. The BMI and MRI

reported that LN status was significantly different in the training set.

Table 1 presents the summary of patient characteristics.
Agreement between manual and
automatic segmentation

The intraobserver and interobserver DSCs for manual

segmentation were both moderate, ranging from 0.73 to 0.80 and

0.71 to 0.76, respectively, in the T1WI and T2WI sequences.

Additionally, the DSCs between the manual segmentation and

automatic segmentation were moderate, ranging from 0.77 to 0.81

in the two sequences for the validation set.
Radiomics analysis

We excluded radiomics features with non-significant differences

between the groups or non-significant correlations between the two
Frontiers in Oncology 05
types of PC. Subsequently, the radiomics features were reduced to

328. Finally, the radiomics features were reduced to five by LASSO

regression, and the LASSO formula was used to obtain the rad-score

(Table 2). Figure 3 shows the LASSO results for optimal features.
Performance of ring-enhancement

The AUC, sensitivity, specificity, and accuracy of the ring-

enhancement were 0.80 (95% confidence interval [CI]: 0.74–0.85),

75.51%, 83.80%, and 81.68%, respectively, in the training set and 0.74

(95% CI: 0.62–0.86), 60.00%, 87.38%, and 82.03%, respectively in the

validation set.
MRI model

Multivariable logistic regression analysis included MRI-reported

tumor size, tumor location, diameter of MPD, and CBD cutoff and

dilation. Consequently, MRI-reported tumor size (p< 0.001),

diameter of MPD (p = 0.037), and CBD cutoff and dilation (p =

0.014) were selected for the MRI model (Table 3). In the MRI model,

the AUC, sensitivity, specificity, and accuracy were 0.71 (95% CI:

0.65–0.77), 67.35%, 69.01%, and 68.59%, respectively, in the training

set and 0.80 (95% CI: 0.70–0.89), 84.00%, 64.08%, and 67.97%,

respectively, in the validation set.
Radiomics model

A total of 195 patients were accurately identified among 284

patients (69%, 195 of 284) in the PDAC group, whereas 88 patients

(90%, 88 of 98) were accurately identified among 98 patients in the

PASC group using the radiomics model in the training set

(Figure 4A). In contrast, 87 patients were accurately predicted

among 103 patients (84%, 87 of 103) in the PDAC group, and 20

patients (80%, 20 of 25) were accurately identified among 25 patients

in the PASC group using the radiomics model in the validation set.

(Figure 4B). The median follow-up duration was 18.7 months (IQR,

9.4–34.4 months) in the PDAC group and 13.7 months (IQR, 7.2–

21.9 months) in the PASC group. During the observation period, 283

and 85 patients in the PDAC and 85 in the PASC groups died,

respectively. A log-rank test revealed a longer survival duration in the

predicted PDAC group than that in the predicted PASC group

(training set: p = 0.018, validation set: p = 0.001) (Figure 4C, D).

Furthermore, the multivariable logistic regression analysis

included MRI-reported tumor size, tumor location, MPD diameter,

CBD cutoff and dilation, and rad-score. Consequently, MRI-reported

tumor size (p = 0.007), diameter of MPD (p = 0.035), CBD cutoff and

dilation (p = 0.057), and rad-score (p< 0.0001) were selected for the

radiomics model. In the radiomics model, the AUC, sensitivity,

specificity, and accuracy were 0.86 (95% CI: 0.82–0.90), 89.80%,

68.66%, and 74.08% in the training set and 0.87 (95% CI: 0.79–

0.96), 80.00%, 84.47%, and 83.59% in the validation set (Figure 4A, B).

There was a significant difference in AUCs between the MRI model

and radiomics model (p< 0.001) according to the DeLong test in the

training and validation sets. The results of the two multivariable
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logistic regression models are shown in Table 3. Figure 5 shows the

two cases using the two nomograms. The performances of all

prediction models are shown in Table 4 and Figure 6A, B.
Clinical utility

The DCA showed that if the threshold probability were 0.05–0.81

and 0.02–0.78 in the training and the validation sets, respectively,

using the radiomics model to distinguish PASC from PDAC was
Frontiers in Oncology 06
more beneficial than the treat-all-patients as a PASC scheme or the

treat-all-patients as a PDAC scheme (Figure 6C, D).
Discussion

To our knowledge, this is the first study to combine conventional

MRI characteristics and radiomic features using non-enhanced MRI

to develop a prediction model for the discrimination of PASC from
TABLE 1 Baseline characteristics of patients with PDAC and PASC.

Characteristics
Training set Validation set

PDAC (n=284) PASC (n=98) P value PDAC (n=103) PASC (n=25) P value

Sex, n (%) 0.94 0.85

Male 178 (62.68) 61 (62.24) 72 (69.90) 17 (68.00)

Female 106 (37.32) 37 (37.76) 31 (30.09) 8 (32.00)

Age, years (mean±SD) 61.93±9.4 61.68±9.7 0.60 59.82±9.54 63.2±10.41 0.92

BMI, kg/m2 (mean±SD) 22.85±2.87 22.65±3.49 0.03 23.04±3.08 22.79±2.88 0.79

Tumor location, n (%) 0.001 < 0.001

Head and neck 187 (65.85) 46 (46.94) 81 (78.64) 10 (40.00)

Body and tail 97 (34.15) 52 (53.06) 22 (22.36) 15 (60.00)

MRI-reported tumor size, cm (mean±SD) 2.94±1.23 3.77±1.49 0.003 2.81±0.92 4.24±1.76 < 0.001

Pancreatitis, n (%) 0.74 0.61

No 271 (95.42) 92 (93.88) 93 (90.29) 24 (96.00)

Yes 13 (4.58) 6 (6.12) 10 (9.71) 1 (4.00)

Dimeter of MPD, cm (mean±SD) 0.47±0.28 0.37±0.26 0.006 0.52±0.28 0.34±0.21 0.047

CBD cutoff and dilation, n (%) < 0.001 0.006

No 157 (55.28) 77 (78.57) 47 (45.63) 19 (76.00)

Yes 127 (44.72) 21 (21.43) 56 (54.37) 6 (24.00)

Cyst, n (%) 0.76 0.51

No 264 (92.96) 92 (93.88) 95 (92.23) 24 (96.00)

Yes 20 (7.04) 6 (6.12) 8 (7.77) 1 (4.00)

Contour abnormity, n (%) 0.32 0.95

No 50 (17.61) 13 (13.27) 17 (16.50) 4 (16.00)

Yes 234 (82.39) 85 (86.73) 86 (83.50) 21 (84.00)

Parenchymal atrophy, n (%) 0.40 0.099

No 128 (40.07) 49 (50.00) 47 (45.63) 16 (64.00)

Yes 156 (54.93) 49 (50.00) 56 (54.37) 9 (36.00)

MRI-reported LN status, n (%) 0.017 0.38

No 158 (55.63) 68 (69.39) 56 (54.37) 16 (64)

Yes 126 (44.37) 30 (30.61) 47 (45.63) 9 (36)

Ring-enhancement pattern < 0.001 < 0.001

No 238 (83.80) 24 (24.49) 90 (87.38) 10 (40.00)

Yes 46 (16.20) 74 (75.51) 13 (12.62) 15 (60.00)
fron
PDAC, pancreatic ductal adenocarcinoma; PASC, pancreatic adenosquamous carcinoma; SD, standard deviation; BMI, body mass index; MPD, main pancreatic duct; CBD, common bile duct; LN,
lymph node.
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PDAC in patients with PC. Additionally, in the present study, the

fully automatic segmentation of pancreatic tumors was more in line

with real-world clinical application scenarios.

Previous studies have summarized the radiologic characteristics

distinguishing PASC from PDAC, including ring-enhancement,

exophytic tendency, ill-defined boundary, mild MPD dilatation, and

large tumor size (11–13, 31). The most vital sign was the ring-

enhancement, the diagnostic sensitivity, specificity for the diagnosis
Frontiers in Oncology 07
of PASC (65.2% and 89.6% respectively) (11). In this study, the

diagnostic sensitivity, specificity of the ring-enhancement for the

diagnosis of PASC were 75.51% and 83.80% for the training set,

respectively, and 60.00% and 87.38% for the validation set,

respectively. This result showed that the diagnostic performance of

the ring-enhancement was not ideal. Furthermore, previous studies

were based on contrast imaging, and the widespread use of

gadolinium-based contrast agents has resulted in safety concerns,
TABLE 2 The radiomics features selected by the least absolute shrinkage and selection operator logistic regression algorithm.

b Radiomics features

0.11 log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformity (T1WI)

0.01 log-sigma-4-0-mm-3D_glszm_SizeZoneNonUniformity (T1WI)

0.30 log-sigma-4-0-mm-3D_glszm_ZoneEntropy (T1WI)

0.05 log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformity (T2WI)

0.39 log-sigma-4-0-mm-3D_glszm_ZoneEntropy (T2WI)
Radiomics score =-1.28+ 0.10701* log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformity (T1WI)
+ 0.01 × log-sigma-4-0-mm-3D_glszm_SizeZoneNonUniformity (T1WI)
+ 0.30 × log-sigma-4-0-mm-3D_glszm_ZoneEntropy (T1WI)
+0.05 × log-sigma-4-0-mm-3D_glszm_GrayLevelNonUniformity (T2WI)
+ 0.39 × log-sigma-4-0-mm-3D_glszm_ZoneEntropy (T2WI)
A B

C

FIGURE 3

Radiomics feature selection using the parametric method, the least absolute shrinkage and selection operator (LASSO). (A) Selection of the tuning
parameter (l) in the LASSO model via 10-fold cross-validation based on minimum criteria. Binomial deviances from the LASSO regression cross-
validation procedure were plotted as a function of log(l). The y-axis indicates binomial deviances. The lower x-axis indicates the log(l). Numbers along
the upper x-axis represent the average number of predictors. Red dots indicate the average deviance values for each model with a given l, and vertical
bars through the red dots show the upper and lower values of the deviances. The vertical black lines define the optimal values of l, where the model
provides its best fit for the data. The optimal l value of 0.08 with log(l) = -2.48 was selected. (B) LASSO coefficient profiles of the 328 features. The
dotted vertical line was plotted at the selected value using 10-fold cross-validation. The five resulting features with nonzero coefficients are indicated in
the plot. (C) The error-bar chart of the five radiomics features and radiomics score.
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such as nephrogenic systemic fibrosis (32) and deposition and

retention of gadolinium in the brain and other organs (33).

Therefore, we only incorporated all the significant MRI

characteristics from non-enhanced T1WI and T2WI to develop the

MRI model. The MRI model yielded an AUC of 0.71 and 0.80 in the

training and validation sets, respectively, indicating limited diagnostic

efficiency. Given the limitations of diagnostic efficiency in

differentiating PASC from PDAC, additional tools are required to

solve this dilemma.
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To improve diagnostic efficacy, we added radiomics signatures

from non-enhanced T1WI and T2WI to the MRI model to develop

the radiomics model. Radiomics, offering better disease

characterization by extracting high-dimensional features beyond

visual assessment (34), has been a promising method to evaluate

the infiltration levels of CD8+ T-cells in patients with PDAC (35), the

differential diagnosis of mass-forming pancreatitis from PDAC (36),

and the grade of nonfunctioning pancreatic neuroendocrine tumors

(37). Pathologically, the squamous component of PASC has been
TABLE 3 Multivariable logistic regression model distinguishing PASC from PDAC.

Variable
MRI model Radiomics Model

OR (95% CI) P value OR (95% CI) P value

Tumor size, mm 1.04 (1.02, 1.06) < 0.001 0.96 (0.93, 0.99) 0.007

Dimeter of MPD, mm 0.90 (0.81, 0.99) 0.037 0.89 (0.79, 0.99) 0.035

CBD cutoff and dilation 0.49 (0.28, 0.86) 0.014 0.53 (0.27, 1.02) 0.057

Rad-score NA NA 12.04 (6.35, 22.80) < 0.001
fron
PDAC, pancreatic ductal adenocarcinoma; PASC, pancreatic adenosquamous carcinoma; MRI, magnetic resonance imaging; OR, odds ratio; MPD, main pancreatic duct; CBD, common bile duct; NA,
not available.
A B

DC

FIGURE 4

The classification and survival prediction of the radiomics model. (A) The mosaic plot of the training set. (B) The mosaic plot of the validation set. (C) The
survival prediction of the radiomics model significantly shows longer survival for patients in the pancreatic ductal adenocarcinoma (PDAC) group than
those in the pancreatic adenosquamous carcinoma (PASC) group in the training set. (D) The survival prediction of the radiomics model shows longer
survival for patients in the PDAC group than those in the PASC group in the validation set significantly.
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shown to express TP63, TP40, and CK5/6 and present with dense and

eosinophilic cytoplasm, clear cell boundaries (38). Finally, five

radiomics features from the gray-level size zone matrix (GLSZM)

were selected for the radiomics model. As a second-order feature,

GLSZM reflects the size and intensity of voxel clusters in a region of

interest, which has proven useful when the main feature is

heterogenous (35). The radiomics model outperformed the MRI

model and yielded an AUC of 0.86 and 0.87 in the training and

validation sets, respectively. Additionally, we observed that, in our

radiomics model, the OS was significantly associated between the two

types of patients predicted by the radiomics model. Therefore, the

radiomics model improved the discrimination of PASC from PDAC,

helping to improve clinical outcomes and predict the prognosis

of patients.

Furthermore, the strength of this study was the fully automatic

pipeline for pancreatic tumor segmentation using nnU-Net, which

achieved a promising performance with satisfactory DSCs on T1WI

and T2WI. Automatic segmentation of tumor has the potential to

decrease interobserver and intraobserver inconsistencies and reduce
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the time taken for and labor involved in delineating tumors. In this

study, the range of interobserver and intraobserver DSCs of the tumor

were only between 0.71 and 0.80. These DSCs were lower than the

DSCs of the tumor (DSCs, 0.77–0.81) between the automatic and

manual segmentation, indicating that our automated segmentation

model has a reproducibility similar to that of a radiologist. Finally, a

fully automatic pipeline for pancreatic tumor segmentation is better

suited to the real world than manual segmentation.
Limitations

Our study had some limitations. First, this was a retrospective and

single-center study with potential for bias. Second, an independent

external validation dataset for another center will be needed in future

study. Third, although our study only included sequences from non-

enhanced MRI, the diffusion-weighted imaging and apparent

diffusion coefficient should be investigated in the future to improve

our model. Lastly, the postoperative information in many cases was
FIGURE 5

The two models accurately differentiate pancreatic adenosquamous carcinoma (PASC) from PDAC. Case 1: a 69-year-old woman with pathologically
confirmed pancreatic ductal adenocarcinoma (PDAC). (A) Axial T1W image shows a hypoattenuated mass with an MRI-reported tumor size of 27 mm
located at the pancreatic head (white arrow). (B). Axial T2W image shows common bile duct (CBD) cutoff and dilation (white arrow). Case 2: a 54-year-
old man with pathologically confirmed PASC. (C) Axial T1W image shows a hypoattenuated mass with an MRI-reported tumor size of 39 mm located at
the pancreatic head (white arrow). (D). The axial T2W image shows the typical CBD (white arrow). (E) According to the MRI model, the prediction
probabilities of PASC are 0.12 (red arrow) and 0.34 (blue arrow) in cases 1 and 2, respectively. (F) According to the radiomics model, the prediction
probabilities of PASC are 0.09 (red arrow) and 0.75 (blue arrow) in cases 1 and 2, respectively.
TABLE 4 The Performance of the Prediction Models.

Performance
The ring-enhancement The MRI model The radiomics model

Training set Validation set Training set Validation set Training set Validation set

AUC* 0.80(0.74,0.85) 0.74(0.62,0.86) 0.71(0.65,0.77) 0.80(0.70,0.89) 0.86(0.82,0.90) 0.87(0.79,0.96)

Sensitivity (%) † 75.51 60.00 67.35 84.00 89.80 80.00

Specificity (%) † 83.80 87.38 69.01 64.08 68.66 84.47

Accuracy (%) † 81.67 82.03 68.59 67.97 74.08 83.59
Performance is presented as the area under the receiver operating characteristic curve (AUC), with 95% CIs and sensitivity and specificity values according to the optimal selected cutoff.
*Data in parentheses are AUCs, with 95% CIs in brackets.
†Data in parentheses are numbers of participants.
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unavailable, leaving potential room for bias, because patients were

often followed up by the local oncologists.
Conclusion

The radiomics model based on non-enhanced MRI outperformed

the MRI model and ring-enhancement to differentiate PASC from

PDAC and provided important decision-making information for

precise management and treatment of PASC.
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FIGURE 6

Receiver operating characteristic (ROC) and decision curve analysis (DCA) curves. (A) ROC curves in the training set. (B) ROC curves of the validation set.
(C) The DCA curves of the training set. The y-axis represents the net benefit. The red line represents the radiomics model. The blue line represents the
MRI model. The black line represents the hypothesis that all patients had pancreatic adenosquamous carcinoma (PASC). The gray line represents the
hypothesis that all patients had pancreatic ductal adenocarcinoma (PDAC). The decision curves show that with a threshold probability between 0.05 and
0.81, using the radiomics model to predict PASC in the training set added more benefit than the treat-all-patients as a PDAC scheme or the treat-none
as a PASC scheme. (D) The DCA curves show that with a threshold probability between 0.02 and 0.78, using the radiomics model to predict PASC in the
validation set provided more benefits than the treat-all-patients as a PDAC scheme or the treat-none as a PASC scheme.
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