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extract on growth and
antioxidant properties of
mustard (Brassica juncea)
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Premkumar Saganti2, Aruna Weerasooriya1 and Elisha Peace1

1Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States,
2Department of Chemistry and Physics, College of Arts and Sciences, Prairie View A&M University,
Prairie View, TX, United States, 3Department of Chemical Engineering, College of Engineering, Prairie
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Background: The sustainability of crop production is impacted by climate change

and land degradation, and the advanced application of nanotechnology is of

paramount importance to overcome this challenge. The development of

nanomaterials based on essential nutrients like zinc could serve as a basis for

nanofertilizers and nanocomposite synthesis for broader agricultural applications

and quality human nutrition. Therefore, this study aimed to synthesize zinc oxide

nanoparticles (ZnO NPs) using pecan (Carya illinoinensis) leaf extract and

investigate their effect on the growth, physiology, nutrient content, and

antioxidant properties of mustard (Brassica juncea).

Methods: The ZnO NPs were characterized by UV-Vis spectrophotometry,

Dynamic Light Scattering (DLS), X-ray diffractometer (XRD), Scanning Electron

Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). Mustard

plants were subjected to different concentrations of ZnONPs (0, 20, 40, 60, 80,

100 and 200 mg L-1) during the vegetative growth stage.

Results: The UV-Vis spectra of ZnO NPs revealed the absorption maxima at 362

nm and FTIR identified numerous functional groups that are responsible for

capping and stabilizing ZnO NPs. DLS analysis presented monodispersed ZnO

NPs of 84.5 nm size and highly negative zeta potential (-22.4 mV). Overall, the

application of ZnO NPs enhanced the growth, chlorophyll content (by 53 %),

relative water content (by 46 %), shoot biomass, membrane stability (by 54 %) and

net photosynthesis significantly in a dose-dependent manner. In addition, the

supplement of the ZnO NPs augmented K, Fe, Zn and flavonoid contents as well as

overcome the effect of reactive oxygen species by increasing antioxidant capacity

in mustard leaves up to 97 %.
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Conclusions: In conclusion, ZnO NPs can be potentially used as a plant growth

stimulant and as a novel soil amendment for enhancing crop yields. Besides, the

biofortification of B. juncea plants with ZnO NPs helps to improve the nutritional

quality of the crop and perhaps potentiates its pharmaceutical effects.
KEYWORDS
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1 Introduction

Globally, the sustainability of crop production is impacted by

several factors including climate change and land degradation (Webb

et al., 2017; Jiang et al., 2021). To maintain sustainable agriculture and

food production, the advanced application of nanotechnology is of

paramount importance (Fraceto et al., 2016; Wang et al., 2018; Neme

et al., 2021). Its application improves agricultural production by

reducing losses and enhancing the efficiency of inputs (Manjunatha

et al., 2016; Shang et al., 2019; Neme et al., 2021) and crop yields and

productivity (Noohpisheh et al., 2021). Nanoparticles are

nanomaterials with peculiar physicochemical characteristics

including enhanced reactivity, typical surface structure, and high

surface-to-volume ratio (Noohpisheh et al., 2021; Badawy et al.,

2021). Owing to these attributes, NPs are used as nanofertilizers

(Jiang et al., 2021; Noohpisheh et al., 2021; Awan et al., 2021) and

reduce nutrient deficiency (Etienne et al., 2018). Thus, supplying

controlled and targeted mineral nutrient release to plants (Salama

et al., 2019) and then resulting in increased crop growth and

development (Wang et al., 2018; Rajput et al., 2021; Srivastava

et al., 2021). However, recent studies have revealed that NPs may

show both positive or negative impact on plants which mainly

depends on the chemical structure, size, reactivity, and dose

(Elizabeth et al., 2017; Salama et al., 2019) that vary according to

plant species (Rastogi et al., 2017; Regni et al., 2022).

Plants face uninterrupted fluxes of environmental conditions and

are frequently subjected to associated abiotic stresses such as drought,

salinity, heavy metals, waterlogging, extreme temperatures, and

oxygen deprivation, which influence plant growth, and

development, ultimately impacting yield and quality (Kapoor et al.,

2020; Zulfiqar and Ashraf, 2022a). Plants exposed to abiotic stress,

singularly or in combination, produce excess reactive oxygen species

(ROS) which leads to oxidative stress and impaired redox

homeostasis. (Noctor et al., 2018; Hasanuzzaman et al., 2020;

Zulfiqar and Ashraf, 2021). In addition to their negative impact,

ROS play a significant function as secondary messengers or signaling

molecules in different cellular mechanisms to increase tolerance

against various abiotic stresses (Singh et al., 2019; Hasanuzzaman

et al., 2020), specifically during the acclimation processes (Antoniou

et al., 2016). The balance between ROS generation and the antioxidant

defense system protects plants from the impact of stress. However, to

withstand oxidative stress caused by ROS over-accumulation, plants

activate their endogenous antioxidant defense mechanisms, either
02
enzymatically or non-enzymatically (Hasanuzzaman et al., 2020;

Lukacova et al., 2021). The enzymatic antioxidants defense involves

the production of diverse enzymes such as superoxide dismutase,

cata lase , ascorbate peroxidase , g lutathione reductase ,

monodehydroascorbate reductase, dehydroascorbate reductase,

glutathione peroxidase, glutathione, peroxiredoxins, ferritin,

thioredoxins and glutaredoxin (Gill and Tuteja, 2010; Kaur et al.,

2019). Whereas the nonenzymatic antioxidant mechanism

encompasses the production of ascorbic acid, glutathione, phenolic

acids, alkaloids, flavonoids, carotenoids, alpha-tocopherol,

nonprotein amino acids, etc. (Gill and Tuteja, 2010; Zulfiqar and

Ashraf, 2022a). To overcome oxidative stress, plants have also

employed osmolyte accumulation like proline as endogenous

strategies (Zulfiqar and Ashraf, 2022b). Proline can scavenge free

radicals generated through osmoprotection, osmoregulation, ROS

quenching, metal chelation, and buffering of cellular redox potential

of plants under various stressors (Zulfiqar and Ashraf, 2022b).

Zulfiqar et al. (2019) have also highlighted the role of

osmoprotectants such as amino acids, polyamines, quaternary

ammonium compounds and sugars in mitigating the negative effect

of abiotic stress by scavenging ROS, acting as metabolic signals and

stabilizing cellular structures and enzymes. Moreover, a recent study

has also shown that foliar application of ascorbic acid mitigates the

adverse effects of salinity on lettuce (Lactuca sativa) by reducing

oxidative injury (Naz et al., 2022). Different plants have varied

capacities to tolerate oxidative stress that depends on the ability of

their antioxidant machinery. Research towards increasing the

antioxidant defense in plants is vital. These days, the applications of

metallic NPs are thought to be sound solutions for ameliorating

different stresses through increasing antioxidant enzymes (Faizan and

Hayat, 2019; Hasanuzzaman et al., 2020; Alabdallah and

Alzahrani, 2020).

Zinc is an essential micronutrient required for a broader range of

plants’ key functions such as improving water use efficiency,

photosynthesis, protein synthesis, regulation of reactive oxygen species,

antioxidant function, maintenance of membranes integrity, growth

regulation, and gene expression (Bagci et al., 2007; Wang et al., 2018;

Noohpisheh et al., 2021). In addition to these functions, from the

consumer perspective considering the basic benefits of Zn in human

health, the bio-fortification of cropswith such essential nutrients through

the application of nanomaterials has recently gained attention (Iziy et al.,

2019; Salama et al., 2019). To comply with the zinc demands of plants,

ZnONPs have been reported as the smartest delivery tools that substitute
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https://doi.org/10.3389/fpls.2023.1108186
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Geremew et al. 10.3389/fpls.2023.1108186
the zinc conventional fertilizer and increase the availability of Zn for

plants (Rajput et al., 2021; Awan et al., 2021).

ZnO NPs application has enhanced plants growth, photosynthesis

and development of corn, onion, tomato, olive, capsicum, cucumber,

wheat, and zucchini (Stampoulis et al., 2009; Zhao et al., 2013; Munir

et al., 2018; Wang et al., 2018; Neto et al., 2020; Awan et al., 2021;

Regni et al., 2022) in a dose-dependent manner. Nevertheless, the

response of plants to ZnO NPs application is a function of genotypes,

the stage of the plant, and the concentration of nanoparticles provided

(Salama et al., 2019). On the other hand, the application of chemically

synthesized ZnO NPs has been criticized compared to the

biosynthesized counters (Rai et al., 2018; Jamkhande et al., 2019).

In fact, the latter is regarded as environmentally friendly, safer and

potentially more efficiently obtained using plant extracts (Jamkhande

et al., 2019; Jangannanavar et al., 2021; Regni et al., 2022). However,

the use of biologically synthesized ZnO NPs as nanofertilizers to

enhance zinc content and improve morpho-physiological traits and

antioxidant properties of leafy vegetables at early vegetative stages is

limited (Iziy et al., 2019; Salama et al., 2019; Regni et al., 2022).

Mustard (Brassica juncea (L.) Czern) belongs to the Brassicaceae

family. The green vegetables and seeds of mustard are economically

valuable and widely consumed by humans due to their astonishing

provision of several health-promoting metabolites and nutrients

(Sharma et al., 2018; Majdoub et al., 2020; Geremew et al., 2021).

Overall, studies have shown that high consumption of mustard is

linked with the prevention of several cancers (Kwak et al., 2016),

antioxidant activities and inhibition of fat increase (Kim et al., 2003).

Despite these economic and health benefits, poor soil fertility during its

vital stages such as seed germination, growth, flowering, and pod filling

severely impacts crop yield (Geremew et al., 2021). Owing to these dietary

and economic values, mustard plants need special interest to boost their

production and their nutritional value under limited soil fertility.

To fulfill this ever-increasing need for nutrients, only soil is not

adequate, the micronutrients and macronutrients should be

supplemented in the soil in very small quantities (Iris et al., 2018)

in the form of nanoparticles (Iziy et al., 2019). Therefore, in the

present study, we synthesized ZnO NPs using pecan (Carya

illinoinensis) leaf extract and investigated their effect on the growth,

physiology, nutrient content, and antioxidant properties of mustard

(B. juncea). Specifically, we asked the following questions: (i) Do ZnO

NPs affect the morpho-physiological traits of mustard plants? (ii) Do

ZnO NPs enhance the macro- and micronutrient contents of mustard

leaves in a concentration-dependent manner? (iii) How ZnO NPs

affect the antioxidant properties of mustard plants?
2 Materials and methods

2.1 Chemicals used

All chemicals used were of analytical grades. Zinc nitrate

hexahydrate (99%), methanol, DPPH (99%), acetone, ethanol,

ascorbic acid (99%), sodium hydroxide (99%), aluminum trichloride,

potassium acetate and quercetin were purchased from Sigma Aldrich

(Burlington, MA). MitoSOX™ Mitochondrial Superoxide Indicators

(Invitrogen™, M36008), and Propidium iodide in 1mg/ml aqueous

solution (Thermo Scientific™, J66584.AB) were used.
Frontiers in Plant Science 03
2.2 Plant sample collection and extraction

Green leaves of pecan (Carya illinoinensis (Wangenh). K. Koch)

were collected from the Bill and Vara Daniel Farm and Ranch located

at Prairie View A&M University (PVAMU) and the sample was

identified and the voucher specimen was stored at the Cooperative

Agricultural Research Center (CARC) at Prairie View A&M

University. The collected leaves were cleaned by rinsing in distilled

water several times to remove debris. Subsequently, the leaves were

freeze-dried using BenchTop Pro with Omnitronics™ freeze dryer

(BTP-8ZL00W, SP Scientific, PA, USA) and grounded manually

using mortar and pestle. Next, the fine leave powder (15 g) was

added to 400 mL deionized water and shaken with an orbital shaker

(IKA Basic Variable-Speed Digital Orbital Shaker, model, 115 V) at

200 rpm at 30°C for 48 hrs. The extract solution was filtered using

Stericup® Quick Release Vacuum driven disposable filter (integrated

with Millipore Express® Plus 0.22 µm PES System (Sigma Aldrich).

The filtrate was kept at 4°C pending the synthesis of ZnO NPs.
2.3 Biosynthesis of ZnO nanoparticles

ZnO NPs were synthesized using a modified method suggested by

Jayachandran et al. (2021). Zinc nitrate hexahydrate (Zn (NO3)

2.6H2O) was used as a precursor for the synthesis of the ZnO NPs.

Ninety (90) mL of 1 mM Zn (NO3)2.6H2O was poured into 10 mL of

pecan leaf extract in a 200 mL flask. The mixture was stirred at 65°C

for 25 min until light yellow colloidal suspension formed. This

colloidal suspension was further centrifuged at 10,000 RPM for 10

min twice. The pellet was retained and washed with ethanol to remove

the remaining organic matter and centrifuged again at the same

speed. The pellet was completely dried and calcinated at 600°C for 2

hrs under furnace (Thermo Fisher). We further removed organic

matter (ash) from calcination by washing the powder in ethanol and

centrifuging at 10,000 RPM for 10 min. Pending the characterization

of the nanoparticles, the collected pellet was dried, crushed and stored

in dark glass under a desiccator.
2.4 Characterization of ZnO NPs

The sample of ZnO NPs (6 mg) was dissolved in 10 mL of double

distilled water for characterization. To measure the optical

parameters, the synthesized ZnO NPs were dispersed in deionized

water. The absorption spectrum of the ZnO NPs was determined

using UV-VIS Spectrophotometer (SpectraMax® PLUS 384,

England) in a spectrum range between 200-800 nm. Deionized

water was used as a reference. The surface chemistry of functional

groups and biomolecules attached to the ZnO NPs was analyzed by

FTIR spectrometer (JASCO/FTIR-6300, Japan) with a resolution of 4

cm-1 at a frequency of 4,000-500 cm-1. The particle size distribution

and zeta potential of the samples were obtained through dynamic

light scattering (DLS) procedure operated using Litesizer™ 500

(Anton Paar, Austria) coupled with a 10 mW He-Ne laser (633

nm) running at an angle of 90° and temperature of 25°C. Water was

used as a dispersant to measure the zeta potential. In addition, the

evaluation of the morphology of ZnO NPs was performed using
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scanning electron microscopy (SEM) coupled with an energy-

dispersive x-ray spectroscopy (EDX) system (JOEL JSM-6010LA,

Japan). The EDX spectrometry particularly was run to identify and

quantify the elemental composition of the nanoparticles. X-ray

diffractometer (XRD-7000, Shimadzu, Japan) run at 40 kV and 30

mA was used to examine the surface morphology, size and crystalline

nature of ZnO NPs. The diffraction pattern was recorded by CuKa
radiation with a wavelength of l = 1.541 Å. The scanning was carried

out in 2q value range of 10° to 80° at 0.02 min-1 and 1 second time

constant. Scherrer’s equation was used to compute the average

crystalline size of synthesized ZnO NPs as:

Dp = 0:9l=bCosq (1)

Where Dp represents the average crystallite size, l stands for the

wavelength (1.5406 Å for Cu Ka), b designates the full width at half

maximum (FWHM) of main intensity peak after subtraction of the

equipment broadening and q is used as a diffraction angle in radians.
2.5 Plant material and growth conditions

The experiment was carried out in a plant growth chamber at

CARC, PVAMU, Texas, USA during the Summer of 2022. Seeds of

the Indian mustard (Brassica juncea (L.) Czern) were acquired from

Twilley seed company (Hodges, SC, USA). Ten seeds were sown in

plastic pots (8-inch size) containing 2 kg of sieved clay soil, electrical

conductivity, and pH of 0.7925 dS m−1, and 7.65, respectively. After

germination, seven seedlings were thinned to ensure that every pot

comprised three plants of the same vigor. Pots with mustard seedlings

thoroughly received 200 mL suspensions of 0 (deionized water), 20,

40, 60, 80, 100, and 200 mg L-1 ZnO NPs directly on the soil after 20

and 40 days of germination. A completely randomized design with

four replications of each treatment was applied. All pots were

irrigated with distilled water twice a week. The time and list of

measurements carried out are summarized in Supporting Figure 1.
2.6 Morpho-physiological variables

2.6.1 Measurement of growth
Plant height was measured from the stem base of mustard plant to

the tips of its shoot using a meter 45 days after treatment. Forty-five

days after germination leaf area (LA) was determined from

measurements of leaf length and width using the equation:

LA = 0:72 x length x width (2)

where 0.72 is the correction factor for leaf area in mustard plants adopted

from Ramil and Sulaiman (2021). Individual plants that were separated

into roots and shoots and leaves and were dried in an oven at 70°C until

their constant weight acquired 60 days after germination. These dried

weights were their respective biomass values (below-ground biomass and

above ground biomass, respectively).

2.6.2 Membrane stability index
Membrane stability index (MSI) was determined 45 days after

germination following the method suggested by Sairam (1994). One
Frontiers in Plant Science 04
gram of sample containing 5 leaf portions, 4 cm long each, was

immersed in a test tube with 15 mL of distilled water. The

submersed samples were incubated for 24 hrs at 20 °C. Subsequently,

the electrical conductivity of the water (C1) was measured using

conductivity meter HI198129 (Hanna Instruments Inc., Woonsocket,

Rhode Island). Then, we boiled the samples at 100 °C for 10 min and

conductance was noted (C2). Membrane stability was computed as:

MSI ¼ 1 −
c1
c2

� �� �
*100 (3)
2.6.3 Relative water content
Relativewater content (RWC)was quantified by applying themethod

of Barrs and Weatherley (1962). Healthy and fully expanded leaves were

collected from individual plants 45 days after germination and cut into 6 x

6 mm2 discs. Fresh weight (FW) of these discs was measured and then

immersed in distilled water for 12 hrs. Afterward, the exterior of the discs

was dried using tissue paper and then turgid weight (SW) was recorded.

Thereafter, the discs were dried in an oven at 70°C for 24 hrs and dry

weight (DW) was recorded. RWC in percent was then calculated as:

RWC =
FW − DW
SW − DW

� �
 X 100 (4)
2.6.4 Photosynthetic pigments content
The overall chlorophyll contents in the intact leaves of mustard

plants weremeasured using Chlorophyllmeter, SPAD-502 (MinoltaCo.,

Ltd., Osaka, Japan). The SPAD values were taken at the leaf lamina and

towards the tip. The observations were made early in the morning

between 10:00 and 11.00 a.m. To further analyze the various components

of photosynthetic pigments, 200 mg mustard leaves of ZnO NPs treated

and untreated plants were extracted in 20 mL of chilled acetone: ethanol

(1:1, v/v) and kept in dark for 24 hrs under room temperature. This

extract was centrifuged at 8,000 RPM for 10 min, and the supernatant

was collected. After centrifugation, the absorbance of the supernatant

was taken at 663, 645 and 480 nm. Chlorophyll a, chlorophyll b, and

carotenoid contents were estimated inmg, per g of freshweight following

methods by Ulhassan et al. (2019).

2.6.5 Photosynthetic pigments content
Net photosynthetic rate (Pn), leaf stomatal conductance (gs),

intercellular CO2 concentration (Ci), and transpiration rate (E) of the

second young and fully expanded three mustard leaves were recorded

using a portable photosynthesis system (Li-Cor 6400XT, Lincoln, NE,

USA). The measurements were conducted under the conditions of

photosynthetically active radiation of 1000 mmol m-2 s-1, an ambient

CO2 concentration of 360 ± 10 mmol mol-1, air temperature of 22°C, and

relative humidity of 50%. Three leaves per pot were measured two times

per leaf.
2.7 Determination of macro-
and micronutrients

Young leaves of the mustard plant were obtained for macro- and

micronutrient analysis after 60 days of treatment application. The leaves
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were freeze-dried using BenchTop Pro with Omnitronics™ freeze dryer

(BTP-8ZL00W, SP Scientific, PA,USA) for 12 hrs to constantweight and

were ground manually using mortar and pestle. For microwave

digestion, about 250 mg of each mustard leaves sample were directly

placed into a microwave closed vessel. Then, 2 mL of 30% H2O2 and 7.0

mL of 65% (m/m) HNO3 solutions were poured into each vessel.

Digestion was run with a high-pressure microwave oven (Milestone

Ethos UP 1600, Sorisole, Italy) at a frequency of 2450 Hz. The digested

samples were filtered through a 0.45 µm nylon membrane (Millipore

Sigma™Millex™-GP Sterile Syringe Filters, Burlington,Massachusetts).

The concentration of P, K, Ca, Cu, Mg, Fe, Mn, Na, and Zn in each

sample were analyzed using radial view of Inductive Coupled Plasma

Optical Emission Spectrometer (ICP-OES, Agilent ICP-5100) equipped

with Agilent SP4 autosampler.
2.8 SEM analysis of Zn accumulation in
the leaves

The leaves obtained after 60 days after treatment were also subjected

to SEM to detect the accumulation of ZnO NPs in the leaf. Briefly, the

freeze-dried leaf samples (24 hrs at 50°C) were sectioned and sputter-

coated with carbon and affixed on an aluminum stub. Then the samples

were then imaged with SEM with EDX on a JEOL JSM-6610 (Oxford

Instruments). Percent zinc and other nutrients were calculated.
2.9 Reactive oxygen species analysis

The leaves were first cut in 1 in square and dissected into a small slice

under a stereomicrosopy (Motic SMZ-168 Series; Motic, Hong-Kong,

China). The slide was put on glass slide. For superoxide analysis, samples

were incubated in 5 mM MitoSOX Red in darkness for 30 min at room

temperature. After three washes, the plant tissues were immediately

imaged with a Leica SP8 confocal laser-scanning microscope (SP8) with

the excitation/emission at 405/516-580 nm (Leica Microsystems,

Wetzlar, Germany) equipped with an HC PL CS2 20×/0.75.
2.10 Total flavonoids content in the leaves

The total flavonoid content in B. juncea leaves was determined by

the colorimetric method of aluminum trichloride as described by

Chang et al. (2002). A 0.5 mL aliquot of the ethanol extract of B.

juncea leaves was mixed with 2.8 mL of water, 1.5 mL of 95% ethanol,

0.1 mL of 10% aluminum trichloride and 0.1 mL of potassium acetate

(1 M). The mixture was vortexed and allowed to stand for 30 min. The

absorbance was measured with a UV-Vis spectrophotometer

(SpectraMax® PLUS 384) at 424 nm. Quercetin was used as a

standard solution. The total flavonoid content was expressed as

quercetin equivalents (mg QE g-1 dry leaf).
2.11 Antioxidant activity

To assess the effect of ZnO NPs treatment on the antioxidant

potentials of mustard plants the radical 2, 2-diphenyl-1-
Frontiers in Plant Science 05
picrylhydrazyl (DPPH) assay was performed with a modification of

Choi et al. (2002). Fifty (50) mL of each ZnO NPs treated mustard

plant leaf methanolic extracts were mixed with DPPH radical solution

in methanol (0.1 mM, 150 mL) in 150 mL flasks. Each flask was

covered with aluminum foil and incubated at room temperature in

the dark for 30 min. Then the absorbance was recorded at 517 nm

using a UV-Vis spectrophotometer (SpectraMax® PLUS 384). DPPH

methanol reagent without the leave extract was used as control and

percentage radical scavenging activity was determined as:

Radical Scanging activity( % ) =
A0-A1

A0

� �
 * 100 (5)

where A0 and A1 represent the OD of the ascorbic acid and the

ZnO NPs treated leaf extracts, respectively.
2.12 Statistical analysis

The experiment was carried out in four replicates and the data

was subjected to one-way analysis of variance (ANOVA) using R v 3.5

(http://www.R-project.org) and the agricolae package (Mendiburu,

2013) and expressed as mean values ± standard error. Tukey multiple

comparison test (significance level 5%) was used to calculate the

differences between each concentration level of ZnO NPs. Sigma Plot

Software (Version 14.5) was used for graphical presentation.
3 Results and discussion

3.1 Zinc oxide nanoparticles characteristics

The focus of the present study was to test the hypothesis if the

biologically synthesized ZnO NPs using pecan (C. illinoinensis) leaf

extract could be used as an environmentally friendly alternative

nanofertilizer or growth stimulating agent for enhanced

physiological performance, nutrient content, and antioxidant

properties of mustard (B. juncea). While the reaction between Zn

(NO3)2.6H2O and pecan extract progressed, the color transformation

of the reaction mixture from light green to creamy yellow after the

incubation period indicated the biosynthesis of ZnO NPs. The optical

absorption band of ZnO NPs was analyzed by UV-vis spectrometer to

monitor and confirm the formation and stability of the nanoparticles

(Figure 1). The absorption spectra of the green synthesized ZnO NPs

showed a maximum optical absorption peak at 362 nm. The peak

recorded between 320 and 380 nm could also be associated with

phenolic compounds (Ozsoy et al., 2008), which are involved in the

reduction and stabilization of ZnO NPs. The peak pattern observed

matches the typical characteristic of ZnO NPs (Sharmila et al., 2018).

Despite the surface plasmon resistance (SPR) is a function of the

diameter, shape and size distribution of ZnO NPs (Narayana et al.,

2020) other studies also reported plasmon peak appears between 320

to 380 nm (Zare et al., 2017; Salama et al., 2019). Similarly, free

electrons present SPR.

FTIR analysis was carried out to analyze the composition, the

nature of the functional groups, and the purity as well as identify the

potential mechanism of the ZnO NPs synthesis. The observed FTIR

spectrum for ZnO NPs showed peaks at 3742, 3215, 2765, 1641, 1251
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and 704 cm-1 (Figure 2). Pecan leaf extract exhibited various

functional group stretches between 3511 cm-1 and 652 cm-1.

However, the peaks detected in the extract were observed to shift in

the ZnO NPs inferring the role of different functional groups in the

bioreduction and stabilization of ZnO NPs (Geremew et al., 2022).

The ZnO NPs exhibited strong transmittance spectra at 3742 cm-1

representing the N-H stretch strong amines group (Umamaheswari

et al., 2021; Geremew et al., 2022), 3215 cm-1 associated with the

hydroxyl group stretching vibration of phenol or flavonoids (Adil

et al., 2019). In addition, the 1641 cm-1, 2765 cm-1 and 1251 cm- 1

bands linked to a carbonyl group (C=O) (Rastogi et al., 2011), alkyl

methylene group (C=H) and C-O group bonded with strong alcohols,

respectively. Furthermore, 1377 cm-1 representing C=C strong stretch

assigned to aromatic group and 712 cm-1 for C-H bond assigned to

strong mono-substituted aromatic benzene group (Geremew

et al., 2022).

The purity, crystalline nature and size of the fabricated ZnO NPs

were measured by XRD analysis in the scanning angle (2q).
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According to the XRD pattern, ZnO NPs displayed sharp peaks at

2q values of 31.61°, 33.92°, 36.74°, 47.61°, 56.67°, 62.95°, 68.03°, and

71.65° (Figure 3). These peaks, respectively, correspond to the

diffraction planes 100, 002, 101, 102, 110, 103, 112 and 201, which

confirmed the hexagonal wurtzite ZnO NPs structure (Bala et al.,

2015). These values of ZnO NPs were in good agreement with the

standard value (JCPDS No. 36-1415) (Jabeen et al., 2017), reflecting

the phase purity of ZnO NPs. All peaks were appropriated to the ZnO

NPs structure reported by Chen et al. (2008) and by Archana et al.

(2016). The crystallite size was about 53.2 nm as computed by the

Scherrer formula.

DLS technique was applied to determine the hydrodynamic

diameter of ZnO NPs in the aqueous suspension. The particle

diameter distribution showed a stable colloidal suspension of ZnO

NPs with a mean size of 84.5 nm (Figure 4A). This size is relatively

larger than the theoretical size of the ZnO NPs computed using XRD,

indicating the agglomeration of the nanoparticles attributable to the

presence of ions and phytochemicals such as capping and stabilizing

agents attached to surfaces of ZnO NPs in aqueous suspension

(Jamdagni et al., 2018). However, the polydispersity index (PDI) of

0.37 in the present study exhibited monodispersion and homogeneity

of the NPs in the medium. As a proxy of the stability of biologically

synthesized ZnO NPs, negative zeta potential of -22.4 mV was

recorded (Figure 4B), ascertaining the efficacy of phytochemicals in

pecan leaf extract as capping agents in the stabilization of the

particles. The negative zeta potential value of ZnO NPs could be

ascribed to negatively charged capping agents attached to the surface

of nanoparticles (Wei et al., 2020). Conventionally, the zeta potential

values between + 25 and − 25 mV mark a stable suspension of

nanoparticles (Kuznetsova and Rempela, 2015; Murali et al., 2017),

which validates the high stability (−22.4 mV) of synthesized ZnO NPs

colloidal suspension in this study.

Additionally, the shape and surface morphology of pecan leaf

extract-mediated ZnO NPs were assessed by SEM. SEM images of

ZnO NPs at different magnifications are shown in Figures 5A, B. The

SEM analysis depicted star-shaped ZnO NPs with slight

agglomeration and regular morphology. The elemental composition

and chemical purity of ZnO NPs were studied by EDX Spectroscopy.

EDX analysis revealed that zinc is the primary constituent (45%) with

strong peaks at 1, 8.6 and 9.6 keV due to the SPR effect of ZnO NPs
FIGURE 2

Comparison of the FTIR spectra of the pecan leaf extract and ZnO
NPs. Each peak in the ZnO NPs indicates the functional group of the
phytochemical involved in nanoparticle synthesis.
FIGURE 3

X-ray diffractometer patterns for biosynthesized ZnO NPs using pecan
leaf extract.
FIGURE 1

UV-Vis absorbance spectra of ZnO NPs synthesized using pecan leaf
extracts.
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B

A

FIGURE 4

Size distribution (A) and zeta potential (B) of ZnO NPs obtained using aqueous extracts of pecan leaves.
B

C

A

FIGURE 5

SEM micrographs 1102X (A) and 2340X (B) and, EDX spectra (C) of synthesized ZnO NPs using pecan leaf extract as a reducing agent. The inset bar plot
of the EDX showed the percent weight of the proportion of Zn, Al, O, C, Na and Mg.
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(Figure 5C). In addition, carbon, oxygen, sodium and magnesium

were detected as elemental components that might be associated with

the pecan leaf extract used for the synthesis of the nanoparticles.

Aluminum was detected as a major element due to the grid used.
3.2 Effect of ZnO NPs on mustard
plant growth

Understanding the effect of nanoparticles synthesized on plant

growth and development is a significant metric of toxicity and

evaluation tool prior to agricultural application at a large scale.

Plant growth traits such as height, leaf area and biomass are

extensively used as biomarkers for phytotoxicity (Ali et al., 2015).

In the present study B. juncea plants exposed to the different

concentrations of ZnO NPs (20, 40, 60, 80, 100 or 200 mg L-1),

enhanced the values for all the growth traits such as an increase in

height, leaf area, and shoot dry weight compared to the control

(distilled water) at early vegetative stage (Table 1). Phytotoxicity test

on mustard percent seed germination is provided in Supplementary

Figures 2 A-C. Maximum leaf area (85.5 cm2), height (77.4 cm), and

shoot dry weight (46.5 g) were found to be 52%, 45% and 78%,

respectively, higher than the control (40.91 cm2, 42.91 cm and 10.32

g) in plants treated with 200 mg L_1 ZnO NPs (Table 1). At 100 and

200 mg L-1 these traits were significantly higher than plants in the

control (P < 0.05). However, a significant reduction in root dry weight

at higher concentrations (100 and 200 mg L-1 ZnO NPs) was

recorded. Though the function of nanoparticles depends on their

properties and methods of synthesis (Liu et al., 2020), with the

application of chemically synthesized ZnO NPs Rao and Shekhawat

(2014) reported a dose-dependent significant reduction in shoot

length of B. juncea under higher concentrations (1000 and 1500 mg

L-1). Similarly, other research showed that the addition of ZnO NPs

enhanced the growth of Lolium perenne (Lin and Xing, 2007), Allium

cepa (Laware and Raskar, 2014), Olea europaea (Micheli et al., 2018),

Brassica nigra (Zafar et al., 2016), Cicer arietinum (Burman et al.,

2013), Capsicum annuum (Deore et al., 2010), Capsicum annuum

(Datir et al., 2012), Zea mays (Neto et al., 2020), Gossypium hirsutum

(Venkatachalam et al., 2017), Triticum aestivum (Munir et al., 2018),

Brassica oleracea (Awan et al., 2021) and Cucumis sativus (Zaho et al.,

2013). In contrast, Chen et al. (2018) and Wang et al. (2018) found
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that growth of the Oryza sativa and Solanum lycopersicum plants,

respectively, significantly decreased at 100 and 200 ppm of ZnO NPs

treatment. This suggests that the effect of ZnO NPs on plant growth

may strongly depend on the plant species (Garcıá-Gómez et al., 2017)

and its dose.

The increase in plant height and leaf area observed in response to

the nanoparticles might be associated with nutritional behavior of

particles or dissociated ions as well as the intricate function of Zn on

crucial processes such as plant growth and development (Mukherjee

et al., 2016). Studies have also highlighted that the increase in

vegetative growth is linked to the role of zinc in controlling

enzymes, protein synthesis, cell elongation, structural stability of

cell membrane (Cakmak, 2008; Boonchuay et al., 2013) and

speeding up metabolism (Singh et al., 2013). Overall, our results

support the growth-promoting potential of ZnO NPs (Dimkpa et al.,

2017; Neto et al., 2020) due to dissociated Zn+2 which can play a

prominent role in the synthesis of tryptophan a precursor for the

biosynthesis of auxin a plant growth hormone (Brennan, 2005; Faizan

and Hayat, 2019; Srivastava et al., 2021). Furthermore, the observed

improved mustard plant growth could emanate from the positive

effect of ZnO NPs on photosynthesis (Xu et al., 2018).
3.3 Effects of ZnO NPs on physiological
traits of B. juncea

Several studies have shown that nanoparticle exposure

significantly altered the total chlorophyl l content and

photosynthetic performance in various plants in concentration

gradients (Baskar et al., 2018; Wang et al., 2018). Contrastingly, in

our study, the treatment of mustard plants with ZnO NPs revealed an

increase in the total chlorophyll content and their response was

concentration-dependent (Table 1; Figure 6). The augment in the

SPAD values significantly varied between concentrations (P < 0.05).

Among the different tested concentrations of ZnO NPs, the

application of 200 mg L-1 of ZnO NPs proved to be most effective

and increased the SPAD by 53% over the control. Spectrometric

analysis was applied to further examine the effect of ZnO NPs on the

different photosynthetic pigments content (chlorophyll a, chlorophyll

b, and carotenoid). The data showed an overall significant increase in

chlorophyll a, chlorophyll b, and carotenoids (P < 0.05) in the
TABLE 1 Effects of ZnO NPs application on morpho-physiological traits of B. juncea.

Treatment
(mg L-1)

Height
(cm)

LAI
(cm2)

RWC
(%)

MSI
(%)

SPAD SDW
(g)

RDW
(g)

Pn (µmol (CO2)
m-2s-1)

E (mmol
m−2 s−1)

gs (mmol
m−2 s−1)

Ci
(ppm)

Control (0) 42.91d 40.91de 51.82e 40.59d 35.75e 10.32e 35.33a 16.64d 0.57c 115.74e 455.6de

20 41.25d 39.54e 49.01e 37.37d 38.19e 12.25e 24.28b 14.38d 0.52c 120.47e 378.3e

40 43.37d 45.29de 50.44e 40.92cd 41.95de 13.51de 20.48b 18.57d 0.73b 125.11e 470.4d

60 52.45 c 48.97d 64.31d 50.82c 46.68d 16.25d 19.12c 20.33cd 0.96ab 144.86d 488.2cd

80 54.41 c 58.58c 76.75c 60.84bc 52.26c 25.71c 18.59c 21.35c 1.01a 180.82c 502.4c

100 61.47 b 68.62b 83.03b 70.21b 60.87b 33.45b 7.73d 30.22b 1.33a 203.68b 602.2b

200 77.44 a 85.46a 97.18a 89.88a 76.66a 46.53a 4.92d 39.21a 1.38a 288.2a 1089.4a
front
Different letters denote significant differences (p ≤ 0.05) among ZnO NPs concentrations. RWC, relative water content; LAI, leaf area Index; MSI, membrane stability index; SDW= shoot dry weight;
RDW= root dry weight; Pn, net photosynthesis; E, transpiration rate; gs, stomatal conductance and Ci, internal carbon dioxide concentration.
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mustard plant along with an increased ZnO NPs concentration than

the control (Figure 6). The maximum increase in chlorophyll a,

chlorophyll b, and carotenoids contents (51%, 46% and 56%,

respectively) were recorded in the mustard plants treated with 200

mg L−1 ZnO NPs (p < 0.05). The present results corroborate with the

findings of Prasad et al. (2012); Raliya et al. (2015); Venkatachalam

et al. (2017); Samreen et al. (2017) and Narendhran et al. (2016) who

studied the effect of ZnO NPs on the content of photosynthetic

pigments in cotton, peanut, tomato, mung bean and sesame,

respectively. This increase in photosynthetic pigments can be

rationalized based on the contribution of zinc in chlorophyll

synthesis and development and protochlorophyllide biosynthesis

(Faizan and Hayat, 2019). Also, this might be due to metal

nanoparticles being powerful amplifiers of photosynthetic

effectiveness that in parallel can cause light absorption by

chlorophyll, as it causes the transfer of energy from chlorophyll to

nanoparticles (Mohsenzadeh and Moosavian, 2017). The addition of

ZnO NPs leads to more nitrogen uptake and subtly stimulates

nitrogen metabolism invaluable for chlorophyll molecules synthesis

(Dimkpa et al., 2019). The underlining mechanism in the increased

chlorophyll content as well could be linked to the role of Zn as a vital

nutrient in the biosynthesis of chlorophyll (Faizan and Hayat, 2019).

Furthermore, progress in the translation of chlorophyll biosynthetic

genes, rate of chlorophyll aging, and associated proteins in the

photosystem antenna complex could be ascribed to the rise in

chlorophyll content with the addition of ZnO NPs (Bajguz and

Asami, 2005; Sadeghi and Shekafandeh, 2014; Faizan et al., 2021).

In contrast, Wang et al. (2016) have shown a decrease in the

expression of chlorophyll biosynthesis and photosystem-associated

genes that eventually reduced chlorophyll a and b in Arabidopsis

plants that received ZnO NPs.

ZnO NPs amplify the photosynthetic efficiency by increasing the

chlorophyll capacity to absorb light through energy transfer from

ZnO NPs to chlorophyll molecules, in turn, triggers the boost in

photosynthetic pigment contents (Faizan and Hayat, 2019). In the

present study, consistent with an increase in chlorophyll content,

measures of gas exchange parameters such as net photosynthetic rate

(PN), stomatal conductance (gs), internal CO2 concentration (Ci),

and transpiration rate (E) were increased significantly (P < 0.05) in
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mustard plants treated with ZnO NPs (Table 1). The mustard plants

that received ZnO NPs (200 mg L–1) revealed the highest values of Pn

(58%), gs (60%), Ci (58%), and E (59%) in comparison with control

plants. In contrast to our results, Faizan and Hayat (2019) have

reported the maximum decrease in photosynthetic parameters even at

200 ppm of ZnO NPs. The improvement in photosynthetic traits

following the exposure to ZnO NPs may be due to the boost in light

acquisition that further helps to shield the chloroplast from aging and

eventually leads to enhanced photosynthesis (Yang et al., 2006; Xu

et al., 2018). Metallic oxide nanoparticles can stimulate the net

photosynthesis rate in photosynthetic systems either directly or

indirectly affecting photosynthetic machinery in plants (Govorov

and Carmeli, 2007). ZnO NPs improve stability and photosynthetic

efficiency by enhancing antioxidant systems and boosting proline

accumulation (Faizan et al., 2018). It is claimed that enhanced

photosynthetic efficiency after the application of ZnO NPs could be

caused by the improved activity of the water-splitting system during

the light reaction, photochemical extinction, non-photosynthetic

quenching, maximum PSII efficiency, and heightened rubisco

activity (Yu et al., 2004; Siddiqui et al., 2018). High records of

transpiration rate following exposure to ZnO NPs can be related to

increased stomatal conductance (Table 1).

In addition to the effect of ZnO NPs on gas exchange measures,

effects on membrane stability index (MSI) and leaf relative water

content (RWC) were determined. Provision of 200 mg L-1 ZnO NPs

overall increased MSI and RWC significantly by 55% and 47%,

respectively, followed by 42% and 38% correspondingly with 100

mg L-1 (P < 0.05; Table 1) over the control. The increase in MSI could

be explained by the fundamental roles of zinc in the maintenance of

membranes integrity and in reducing the effect of lipid peroxidation

due to the accumulation of reactive oxygen species (Bagci et al., 2007;

Wang et al., 2018; Rai-Kalal and Jajoo, 2021; Noohpisheh et al., 2021).

Similarly, the addition of ZnO NPs improved membrane stability and

plant water status of eggplant (Semida et al., 2021). On the other

hand, the augment in RWC might be associated with water potential

adjustment owing to the increased uptake of water and macro- and

micro-nutrients (Semida et al., 2021), particularly Fe, K, and Zn

accumulation in the presence of ZnO NPs (Table 2). Furthermore,

higher RWC in ZnO NPs treated mustard plants might be due to

improved acquisition of osmolytes as supported by the increased MSI

(Geremew et al., 2021).
3.4 Flavonoid content and total
antioxidant capacity

Total flavonoid contents (TFC) in response to all six ZnO NPs

concentrations are shown in Figure 7. This study indicated that the

application of ZnONPs significantly induced total flavonoid synthesis

in B. juncea leaves in a concentration-dependent pattern compared to

the control (P < 0.05). To overcome oxidative stress due to the

metallic nanoparticles, plants activate their antioxidant defense

system encompassing phenols and flavonoids which serve as metal

chelators (through electron donation) and natural scavengers of ROS

(Ilboudo et al., 2012; Gupta and Pandey, 2020; Hussain et al., 2021).

In the current study, maximum TFC in mustard leaves (58 µg g-1) was

recorded at the 200 mg L-1 ZnO NPs treatment followed by a 100 mg
FIGURE 6

Variation in photosynthetic pigments content of mustard leaves under
different concentrations of ZnO NPs. Values are mean standard error.
Different letters denote significant differences (p ≤ 0.05) among
concentrations for each pigment.
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L-1 with TFC of 43 µg g-1 (Figure 7). In support of our results, Zafar

et al. (2016) have also reported increase in TFC in one of the closely

related species of B. juncea, namely B. nigra seedlings treated with

ZnO NPs. Comparably, the ZnO NPs treatment was shown to

increase the contents of TFC in Glycyrrhiza glabra seedlings

(Oloumi et al., 2015), Persicaria hydropiper (Hussain et al., 2021)

Raphanus sativus (Mahmoud et al., 2019) and Vicia faba (Mogazy

and Hanafy, 2022) plants. The use of nanoparticles as oxidative stress

producers resulted in the production of secondary metabolites like

flavonoids and phenols that function as ROS scavengers (Javed et al.,

2017; Vela´zquez-Gamboa et al., 2021; Mogazy and Hanafy, 2022).

The antioxidant potential was measured using DPPH free radical

scavenging assay in the B. juncea leaves under the different ZnO NPs

treatments. Amendment of B. juncea plants using ZnO NPs revealed

that antioxidant activity in leaves was significantly boosted from 54%

(in 20 mg L-1 of ZnO NPs) to 97% (in 200 mg L-1 of ZnO NPs) relative

to the control (35%) (Figure 8). These results corroborated previous
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findings (Ushahra et al., 2014; Singh et al., 2018; Iziy et al., 2019) that

reported a positive impact of ZnO NPs on antioxidant activities of

different plant species. The antioxidant activity in the mustard leaves

of plants provided with different concentrations of biosynthesized

ZnO NPs confirms that the addition of ZnO NPs promotes the

biosynthesis of compounds with antioxidant activity like flavonoids

and phenols. Nevertheless, the augment or decline of antioxidant

activity is a function of the balance between the antioxidant activity of

metabolites and the degree of oxidative stress (Baskar et al., 2018;

Srivastava et al., 2021). On the other hand, our results contradict the

findings of Javed et al. (2017) who studied the effect of ZnO NPs on

the TFC of Stevia rebaudiana and demonstrated a reduction in the

TFC of the plants treated with 100 and 1,000 mg L−1 of ZnO NPs,

compared to the control plants. Zhu et al. (2013) highlighted that the

antioxidant capacity could be affected by the levels of metals like zinc,

which function as cofactors for enzymes, signaling molecules and

transcription factors. Overall, the application of ZnO NPs resulted in
FIGURE 8

The antioxidant activity of ZnO NPs measured using DPPH radical
scavenging assay. AA indicates ascorbic acid. Different letters denote
significant differences (p ≤ 0.05) across different concentrations for a
particular antioxidant. Values are mean standard error.
FIGURE 7

Total flavonoid contents of mustard leaves under different
concentrations of ZnO NPs. Values are mean standard error. Different
letters denote significant differences (p ≤ 0.05) in total flavonoid
content among ZnO NPs concentrations.
TABLE 2 Effects of ZnO NPs application on macro- and micronutrients of B. juncea leaves.

Treatment (mg/
L)

Macronutrients (ppm) Micronutrients (ppm)

Ca K Mg Na P B Cu Fe Mn Zn

Control (0) 25221 ± 11 21302.0 ± 47
2777.7 ±

11 7761.7 ± 9.21 12491.5 ± 2 53.1 ± 0.4
6.9 ±
0.2 65.4 ± 0.34

15.93 ±
0.1 58.5 ± 0.4

20
23054.9 ±

26 23769.7 ± 38.4 2842 ± 4.8 7665 ± 14.7 8787.8 ± 18 51.3 ± 0.4
5.2 ±
0.4

69.92 ±
0.66 15.7 ± 0.2 76.1 ± 0.2

40 22564.43+7
24474.6 ±
26.26

2470.7 ±
3.1

7336.75 ±
5.11

10008.1 ±
15 41.2± 0.2

4.6 ±
0.1

75.66 ±
0.66 10.4 ± 0.1 93.8 ± 0.3

60
21889.6 ±

26 25426.5 ± 44.3
2363.1 ±

4.9
6790.2 ±
10.88

9613 ±
21.74 47.6 ± 0.4

5.5 ±
0.1 88.1 ± 0.6 16.7 ± 0.3 101 ± 0.5

80
21810.4 ±

25
26684.6 ±
34.34

2576.71 ±
3

6529.2 ±
13.22 9139.1 ± 33 39.8 ± 0.2

4.8 ±
0.3 89.5 ± 0.4

11.56 ±
0.3

149.9 ±
0.3

100
21790.8 ±

25
30652.8 ±
26.26

2537.58 ±
7 5459.5 ± 4.99

9411.5 ±
17.4 41.1 ± 0.4

5.9 ±
0.3 115.3+0.9

13.04 ±
0.1

247.5 ±
1.3

200 18927 ± 19
32145.9 ±
54.54

2305.7 ±
3.7

4364 ±
7.1111

7549.6 ±
12.3

40.23 ±
0.1

3.9 ±
0.1

152.7 ±
0.88 11.7 ± 0.1

338.9 ±
0.4
fro
Values are mean ± standard error.
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the enrichment of Zn2+ which could increase the nutritional quality

and antioxidant activity for human consumption as a functional food.
3.5 Macro and micro-nutrient content

An ICP-OES analysis was carried out to measure the amount of P,

K, Ca, B, Cu, Mg, Fe, Mn, Na, and Zn content in ZnO NPs exposed

mustard plant leaf samples. The application of ZnO NPs did

significantly affect the mustard green concentration of some

essential and beneficial nutrients both positively and negatively

including Zn (Table 2). The application of ZnO NPs had

significantly increased the K, Fe and Zn accumulation and in

contrast, significantly decreased Ca and Na content following dose-

dependent (P < 0.05). Besides, the ZnO NPs had no significant effect

on Mg, P, Cu, B and Mn (P > 0.05). The K, Fe and Zn accumulation in

plants subjected to 200 mg L-1 ZnO NPs was 34%, 17% and 83%

higher than that of the control group, respectively. Compared with

the control, the content of Ca and Na significantly decreased by 33%

and 67%, respectively, in mustard plants exposed to the highest

concentration of the nanoparticles (200 mg L-1). The lowest P

content was observed under the highest ZnO NPs concentration

(200 mg L-1). This could be due to the toxic effect of the nanoparticles

on P-solubilizing microorganisms and decreased enzyme activity and

consequently impacting P uptake of plants (Chai et al., 2015; Raliya

et al., 2016). In agreement with the present study, the application of

ZnO NPs increased K, Fe and Zn in different plants (Dimkpa et al.,

2019; Grangah et al., 2020; Semida et al., 2021). Therefore,

amendment with Zn ONPs improved the nutritional status of

B. juncea.

Though the mechanisms of how ZnO NPs affect the content of

other nutrients have not been clearly established Haynes (1980) and

Dimkpa et al. (2019) suggested that divalent metal ions (Zn2+) in the

root change potential across the cell membrane thus enabling the

uptake of monovalent cations such as K. Alternatively, the influence

of Zn from the nanoparticles on the content of particular nutrients

may be linked to synergistic or antagonistic interactions and which

varies strongly with nutrient ratios (Dimkpa et al., 2017; Rietra et al.,

2017; Dimkpa et al., 2019; Geremew et al., 2021).
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3.6 Zn accumulation and ROS in
mustard leaves

Mustard leaves were examined under SEM to detect the

bioaccumulation of ZnO NPs in the leaves. In support of the ICP

analysis, the SEM coupled with the EDX analysis revealed that Zn

content in B. juncea leaf increased with a dose of ZnO NPs

supplemented from 3% to 65% weight (Figure 9). However, the

amounts of Zn detected at the low concentrations of nanoparticles

were not significant (P > 0.05). On the other hand, the maximum Zn

accumulation (65%) was observed in 200 mg L-1 ZnO NPs treated

mustard leaves. The aggregation of ZnO NPs in the leaves was evident

in several spots of Zn in the SEM images. The high accumulation of

Zn has also been reported in plant tissues by various recent findings

performed with Zn-based NPs (Singh and Kumar, 2016; Zoufan et al.,

2020; Alsuwayyid et al., 2022). The SEM images also provide

supporting evidence on how ZnO NPs can improve the nutritional

status or zinc content of mustard plants by strengthening the vascular

system (Pejam et al., 2021) and enhancing nutrient uptake efficiency

by regulating nanoscale plant pores (Abd El-Aziz et al., 2019;

Srivastava et al., 2021).

Considering the discrepancy in magnitude of Zn content between

the ICP and SEM analyses as well as the size of the ZnO NPs used

(84.5 nm), the dissolution of ZnO NPs to preferentially absorbed Zn

ions or directly adsorbed ZnO NPs could result in the higher Zn

content in plant leaves (Xu et al., 2018; Pejam et al., 2020). Despite the

mechanism of absorption and translocation of nanoparticles from the

soil to the different plant tissues are still the subject of research. The

absorption and translocation of metallic and metallic oxide

nanoparticles counterparts occur in a similar way as micro and

micronutrients (Fraceto et al., 2016). It has been thought that

nanoparticles are assimilated by the root hairs and further proceed

through cellular pores following either the symplastic or apoplastic or

a combination of both pathways (Rico et al., 2011; Lambreva et al.,

2015; Rajput et al., 2018; Usman et al., 2020). It is apparent from

recent studies that Zn may be accumulated in plant tissues and

cellular and sub-cellular organelles and regulate cellular

organizations (Bradfield et al., 2017; Wang et al., 2018; Radi et al.,

2018). The uptake of NPs by several plants led to their accretion in
FIGURE 9

SEM analysis showing Zn accumulation in mustard leaves from plants treated with different ZnO NPs concentrations. The bar plot from EDX shows the
percent weight of Zn detected from each leaf.
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subcellular locations (Schwab et al., 2016; Faizan et al., 2018), Overall,

the uptake of the nanoparticles relies on the plant anatomy and shape,

composition and size of NPs (Wang et al., 2018).

The major forms of reactive oxygen species (ROS) includes

hydrogen peroxide (H2O2), superoxide (O2
.-
), singlet oxygen (1O2)

and the hydroxyl radical (HO-), mainly produced in the chloroplast,

mitochondria and peroxisomes during environmental stress in plants

(Das and Roychoudhury, 2014; Faizan et al., 2021). ROS signaling

from plant stomata plays a critical role in innate immunity and

defense mechanism (Castro et al., 2021; Mittler et al., 2022). In

stomatal closure, NADPH oxidase catalyzes the transfer of electrons

from NADPH to 1O2 form O2
.-, then to H2O2 (Sierla et al., 2016).

Mitosox staining for superoxide showed that ROS are accumulated in

stomata (Figure 10A). When treated with 200 mg L-1, the level of ROS

is slightly enhanced. ROS is also accumulated on the leaf midrib and

minor lamina veins (Figure 10B). Fluorescent microscopy images

showed the ROS in the leaf vein coil structure of plants treated with

ZnO NPs. However, their effect on the disruption of physiological

processes such as chlorophyll content and photosynthesis were not

observed. Like other plant species, B. juncea might overcome such

effects of ROS with an intricate non-enzymatic and enzymatic

antioxidant system (Ali et al., 2008; Faizan et al., 2018; Faizan and

Hayat, 2019). According to Faizan and Hayat (2019) exogenous

application of ZnO NPs elevated the enzymatic defense

mechanisms by increasing the synthesis of catalase, peroxidase and

superoxide dismutase. On the other hand, zinc ions from the ZnO

NPs benefit in raising the expression of antioxidant genes in plants by

supporting non-enzymatic antioxidant production and eventually

overcoming the influence of ROS (Hassan et al., 2020; Adhikari
Frontiers in Plant Science 12
et al., 2020; Aazami et al., 2021). Phenols and flavonoid

accumulation recorded in this study is part of the adaptive response

acting as ROS scavengers either in conjunction with or individually of

antioxidative enzymes (Mogazy and Hanafy, 2022). Despite the

accumulation of Zn in plant tissue that results in ROS increase, the

enhanced production of flavonoids with radical scavenging potential,

overall, in this current study indicated that no ZnO NPs toxicity was

noted in the mustard plants in terms of growth and physiological

performance. This suggests that ZnO NPs stimulate ROS signaling to

enhance the defense mechanism in mustard plants.
4 Conclusions

This study highlights the effect of biosynthesized ZnO-NPs using

pecan leaves at different concentrations on B. juncea (mustard) plant

growth, chlorophyll content, relative water contents, membrane

stability, and net photosynthesis rate. Application of ZnO NPs up

to 200 mg L-1 enhances nutrient accumulation including Zn, Fe and

K, flavonoids and antioxidant potentials in mustard leaves and then

reduces the effect of ROS. Therefore, ZnO NPs can be potentially used

as a plant growth stimulant and as a novel soil amendment for

enhancing crop yields. Besides, the biofortification of B. juncea plants

with ZnONPs helps to improve the nutritional quality of the crop and

perhaps potentiates its pharmaceutical effects. Moreover, further

investigations are required to examine the effect of ZnO NPs on

different secondary metabolites and the mechanisms at a molecular

level for extensible applications as nanofertilizers and the synthesis

of nanocomposites.
B

A

FIGURE 10

Increase in reactive oxygen species (superoxide) in mustard leaves treated with ZnO NPs and stained with Mitosox. (A) Confocal images of the structure
of chloroplast and stomata. The boxed region represents the magnified region. (B) Bright field fluorescent images of the leaf veins. The intensity of the
dye represents the high accumulation of superoxide in the leaf veins.
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