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Intervertebral disc degeneration (IVDD) is one of the leading causes of lower back

pain. Although IVDD cannot directly cause death, it can cause pain, psychological

burdens, and economic burdens to patients. Current conservative treatments for

IVDD can relieve pain but cannot reverse the disease. Patients who cannot tolerate

pain usually resort to a strategy of surgical resection of the degenerated disc.

However, the surgical removal of IVDD can affect the stability of adjacent discs.

Furthermore, the probability of the reherniation of the intervertebral disc (IVD) after

surgery is as high as 21.2%. Strategies based on tissue engineering to deliver stem

cells for the regeneration of nucleus purposes (NP) and annulus fibrosus (AF) have

been extensively studied. The developed biomaterials not only locally withstand

the pressure of the IVD but also lay the foundation for the survival of stem cells.

However, the structure of IVDs does not provide sufficient nutrients for delivered

stem cells. The role of immune mechanisms in IVDD has recently become clear. In

IVDD, the IVD that was originally in immune privilege prevents the attack of

immune cells (mainly effector T cells and macrophages) and aggravates the

disease. Immune regulatory and inflammatory factors released by effector T

cells, macrophages, and the IVD further aggravate IVDD. Reversing IVDD by

regulating the inflammatory microenvironment is a potential approach for the

treatment of the disease. However, the biological factors modulating the

inflammatory microenvironment easily degrade in vivo. It makes it possible for

different biomaterials to modulate the inflammatory microenvironment to repair

IVDD. In this review, we have discussed the structures of IVDs and the immune

mechanisms underlying IVDD. We have described the immune mechanisms

elicited by different biological factors, including tumor necrosis factors,

interleukins, transforming growth factors, hypoxia-inducible factors, and reactive

oxygen species in IVDs. Finally, we have discussed the biomaterials used to

modulate the inflammatory microenvironment to repair IVDD and

their development.

KEYWORDS

intervertebral disc degeneration, lower back pain, nucleus pulposus, annulus
fibrosus, biomaterials
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1 Introduction

Intervertebral disc degeneration (IVDD) is a common clinical

form of spinal degeneration. Inflammation, oxidative stress, and

mechanical stimulation may lead to an imbalance of the anabolic

and catabolic processes in the extracellular matrix (ECM) of

intervertebral discs (IVDs) and loss of nucleus pulposus (NP),

leading to IVD dysfunction and structural damage (1, 2). IVDD

leads to the partial or complete rupture of annulus fibrosus (AF). The

NP protrudes backward from the ruptures, irritating or compressing

the nerve root and causing low back and leg pain (3). IVDD is one of

the leading causes of chronic low back pain (LBP) in patients (4).

Clinically, approximately 40% of LBP cases are due to discogenic

causes (5). Although IVDD does not have a fatal impact on patients in

the short term, it is a significant cause of disability and socioeconomic

stress (6). In the U.S. alone, for example, indirect and direct costs of

LBP costs over $100 billion (7).

IVDs are the fundamental motor units of the spine. They have

high compressive and tensile strengths, which can maintain the axial

pressure of the spine and ensure the axial flexibility of the body (8).

IVDD is an abnormal, cell-mediated response to progressive

structural damage (9). The decreased height of the degenerative

IVDs changes the stress-bearing spine segment and accelerates the

degeneration of other adjacent segments. The late stage of IVDD

causes the chronic instability of spinal segments, which seriously

affects the quality of life of patients (10). The prevalence of IVDD is

rising owing to risk factors such as aging, obesity, chronic stress, and

smoking (7). Currently, the leading conservative treatment methods

for IVDD are anti-inflammatory analgesia and physical therapy (11).

Conservative treatments can only delay degeneration, slow down the

rate of IVD degradation, and temporarily relieve pain, but cannot

reverse IVDD (12). Patients with advanced IVDD can undergo

surgical decompression and disc replacement (13). However,

surgical resections of IVDs can still lead to re-protrusion. In a 2015

meta-analysis, the reherniation rate after lumbar disc herniation was

found to be as high as 21.2% (14). Surgical treatments aim for

symptomatic relief but increase the pressure and risk of injury to

discs adjacent to the affected IVD (15).

Current regenerative IVD technologies based on tissue

engineering have achieved encouraging results (16). For example,

biomaterials for the repair of NP and AF have regenerated IVDs in

animals by carrying mesenchymal stem cells (MSCs) like bone

marrow-derived mesenchymal stem cells (BMSCs), adipose-derived

mesenchymal stem cells (ADSCs) and induced pluripotent stem cells

(iPSCs) (17–23). Cartilage endplate-derived stem cells (CESCs),

annulus fibrosus-derived stem cells (AFSCs), and nucleus pulposus-

derived stem cells (NPSCs) can also replace the IVD (21, 24–26).

IVDD can also secrete Stromal cell-derived factor-1a (SDF-1a) to
induce the chemotaxis of NPSCs to the NPs center for in situ

regeneration (27). IVD regeneration is mainly achieved by inducing

the differentiation of MSCs into NPCs or AFCs (28–30). Although

MSCs have achieved good results in bone and cartilage regeneration,

similar effects cannot currently be exerted in IVDD, even if the MSCs

were delivered to IVDs, due to the lack of vascular systems in the discs

(31). This is because MSCs cannot absorb sufficient nutrients during
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IVDD. The harsh environment of IVDD is unsuitable for NPSCs and

MSCs to proliferate and repair NPs. Although current cell

transplantation technologies can regenerate IVDs, cel l

transplantation strategies remain insufficient, and the regeneration

of IVDs cannot be completed in a time-efficient manner (32).

Studies have shown that when IVDs degenerate, NP that initially

maintained immune tolerance become targets of immune system

attacks (33, 34). T cells, macrophages, and inflammatory factors like

interleukin (IL)-1b, tumor necrosis factor (TNF)-a) are recruited

around NP. The inflammatory response caused by IL-1b, TNF-a, and
reactive oxygen species (ROS) further amplifies the inflammatory

response locally and accelerates IVDD (35). Impaired AF and

prominent NP cause IVD to lose its physical barrier, and IVD is

fully exposed to the immune system. While removing cellular debris

and foreign bodies, T cells and macrophages destroy normal AF and

NP, further exacerbating damage to IVD. Macrophages are divided

into two types according to their role: M1 type and M2 type. M1

macrophages are pro-inflammatory cells, and M2 macrophages are

anti-inflammatory cells. While M1 macrophages have the effect of

phagocytosing necrotic matter in the early stages of inflammation,

excessive inflammation can exacerbate the progression of IVDD. M2

macrophages are mainly manifested as promoting tissue repair (33).

Therefore, the inhibition of IVDD by regulating the inflammatory

microenvironment is feasible. However, biological factors that

regulate immunity (such as growth and inflammatory factors and

chemokines) are easily degraded in vivo and cannot meet the long-

term requirements for IVDD repair (5, 36). Furthermore, IVDs do

not have a vascular system and cannot transport biological factors

through systemic administration. A feasible way to repair IVDD is to

inject biological factors into IVDs by designing biomaterials.

Biomaterials based on chitosan and alginate have good

biocompatibility and can not only treat IVDD by regulating the

inflammatory microenvironment but also by carrying immune

regulators (34, 37). In this review, we have discussed the structures

of IVDs, the immune mechanisms of IVDD, and the effects of

inflammatory immune factors such as IL-1b and TNF-a on IVDD.

Finally, we have discussed the various biomaterials that regulate

IVDD repair in the inflammatory microenvironment (Figure 1;

Table 1) and their development.
2 Intervertebral discs and their
mechanisms in inflammatory-immunity

IVDs are the connecting parts and are the most fundamental

functional units of the spine. IVDs consist of three tissue types: the

central gelatinous NP, surrounding AF tissue, and upper and lower

cartilage endplates (CEPs). The IVD cartilaginous tissue in the spine

acts as a shock absorber, assists in the movement of vertebral bones,

and holds the vertebrae together to coordinate the direction of the

spine (57). The IVD has been identified as an immune privilege organ

(34). As the IVD aging process or traumatic injury occurs, immune

and inflammatory cells infiltrate the IVDs. These cells and cytokines

produce pro-inflammatory substances while clearing necrotic cells,

leading to disturbances in the inflammatory microenvironment and
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aggravating IVDD (58). Therefore, understanding the connection

between the structure of IVDs and the immune system is crucial in

elucidating the mechanisms of IVDD.
2.1 Nucleus pulposus

NP consists of water, type II collagen, chondrocyte-like cells, and

proteoglycans. These structures make NP elastic to resist pressure on

the spine and transmit the pressure to AF and surrounding CEPs (59).

The absence of nerve cells or blood vessels within NP allows NP to

become an immune-privileged organ (33). Recently, an increasing

number of studies have shown that maintaining immune privilege

requires using various molecular biology techniques. For example, NP

can express the Fas ligand (FasL) to induce the apoptosis of T cells

and macrophages to maintain their immune tolerance (60). In

addition, FasL expressed by NP can also lead to the apoptosis of

vascular endothelial cells. AF and CEPs tightly surround NP to isolate

NP from the host immune system (34). These main mechanisms

make normal NP immune to attacks by the immune system and

contribute significantly to maintaining IVD stability.

As IVDD progresses, AF ruptures, and NP protrudes, so the

barrier between the IVD and the immune system is broken. The

damage exposes the NP that was originally immune-privileged to the
FIGURE 1

Biomaterials regulate cytokine repair of intervertebral disc
degeneration. GAG, glycosaminoglycan; MMP, matrix
metalloproteinase; HIF-1a, hypoxia inducible factor-1a; IL-1ra,
Interleukin -1 receptor antagonist; TNF, tumor necrosis factor; ROS,
reactive oxygen species.
TABLE 1 Biomaterials regulate the inflammatory microenvironment to repair degenerated intervertebral discs.

Regulator Biomaterial Production
Method

Therapeutic
components

Target Result Reference

TGF Fibrin
hydrogels

Fibrinogen CCL5 AF Fibrin hydrogels release CCL5 for the chemotaxis homing
effect of AF cells, but do not promote AF cell repair in sheep.

(38)

TGF pullulan
microbeads

Fitc-pullulan was
dissolved in 20 mL of
distilled water under
magnetic stirring and
lyophilized after the
addition of a cross-
linking agent. Pullulan
microbeads (PMBs)
and 500 u of LCCL5
and TGF-b1 were
magnetically stirred for
24 h.

CCL-5
TGF-b1

ECM PMBs were loaded with CCL5/TGF-b1/GDF-5 continuously
and sustainably released growth factors and maintained their
biological activities in vitro. Increased distance that ASCs can
migrate to NP.

(39)

TGF Collagen-
Polyurethane
scaffold

Polyurethane (PU) was
dissolved in N,N-
dimethylformamide
solution, and the PU
film was formed after
evaporating the
solvent. Type I
collagen fibers were
used as cell carriers to
encapsulate AF cells
and TGF-b1 on PU
membranes to make
collagen-PU scaffolds.

AF cells
TGF-b1

AF
ECM

The TGF-b1 treatment of collagen hydrogels further promotes
cell proliferation and matrix production in AF cells in vitro.

(40)

chitosan
(CH)-
based scaffold

Mixing chitosan with
porcine gelatin at a
ratio of 3:2 can further
increase the biological

Link ECM LN increased GAG production in degenerative media to the
same level as that of TGF-b. The addition of 1% gelatin to the
CH hydrogel further increased GAG production in vitro.

(41)

(Continued)
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TABLE 1 Continued

Regulator Biomaterial Production
Method

Therapeutic
components

Target Result Reference

response of
encapsulated cells by
adding gelatin and
Link N (a peptide
present in IVDs).

TGF-b3@PDA
NPs

PDA NP were
prepared through
chemical oxidative
polymerization using
dopamine (DA) and
tris-(hydroxymethyl)-
aminomethane (Tris).
TGF-b3 was loaded
onto the surface of
PDA nanoparticles in a
covalent binding
manner.

TGF-b3 AF
NP

The released GFs could induce the differentiation of BSMCs
into myeloid and annulus-like cells and maintain high activity.
Finally, in vivo experiments confirmed that the reconstituted
IVD scaffolds exhibited region-specific stromal phenotypes
with histological and immunological features.

(42)

Genipin Fibrin
Gel

Genipin and fibrinogen
in a humidified
incubator for 3–4 h for
polymerization and
cross-linking.

TGF-b3 ECM Fibrin increases integrin binding sites and prevents partially
encapsulated cells from undergoing apoptosis, allowing
encapsulated cells to increase ECM synthesis in vitro.

(43)

gelatin-
hyaluronic
acid
methacrylate
(GelHA)
hydrogel

Methacrylic anhydride
(MA) was added to the
gelatin solution and
allowed to react for 1
h. The resulting
solution was dialyzed
for 3 days and
lyophilized.
Photoinitiators and
integrins were added,
and photocrosslinking
was performed under
UV light irradiation
for 2 min.

integrin ECM The combination of photocrosslinked GelHA hydrogel and
ASC can enable ASC to undergo NP-like differentiation and
enhance the efficacy of ASC for IVD repair by activating the
integrin avb6-TGF-b1 pathway in vitro.

(44)

IL-a HA-pNIPAM Gelatin was combined
with EGCG, mixed
with water, and stirred
at 40°C for 4–6 h.
Poly-N-
isopropylacrylamide
was directly grafted
onto HA. Gelatin was
directly applied to
(HA-pNIPAM).

EGCG ECM EGCG microparticles combined with a suitable carrier can
modulate the activity/release of EGCG in the IVD in vitro.

(45)

IL HMw-HA Gel HMw sodium
hyaluronate was
dissolved in 1 mL of
distilled water and
mixed with PGE-
amine to induce cross-
linking to obtain
spherical hydrogels.

– ECM The hydrogels inhibited the expression of the inflammatory
receptors IL-1R1 and MyD88, downregulated NGF and BDNF
gene expression, and upregulated CD44 receptor expression in
vitro.

(46)

IL PLGA
Microspheres

After mixing IL-1ra
with 1 mL of 75:25
PLGA and sonicating
the mixture, 1%
polyvinyl alcohol
(PVA) magnetic stir
bar was added and
mixed for 3 h.

IL-1ra NP IL-1ra delivered from PLGA microspheres effectively
attenuated IL-1b-mediated inflammatory changes in
engineered NP constructs in vitro.

(47)

(Continued)
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TABLE 1 Continued

Regulator Biomaterial Production
Method

Therapeutic
components

Target Result Reference

IL Chitosan/Poly-
g-glutamic
acid
nanoparticles

Chitosan/Poly-g-
glutamic acid was
mixed at a molar ratio
of 1:1.5 to prepare
nanoparticles by the
co-coagulation
method. Diclofenac
(Df) was added to the
nanoparticles and
stirred at a constant
speed.

Df ECM The intradiscal injection of Ch/Df/g-PGA NPs reduced pro-
inflammatory mediators, downregulated MMP 1 and 3
expression, and upregulated Col II and Agg production in a
pro-inflammatory/degenerative IVD organ culture model in
vitro.

(48)

TNF ELP-curcumin
conjugates

Elastin-like polypeptide
(ELP) is a
thermoresponsive
biopolymer composed
of Val-Pro-Gly Xaa-
Gly pentapeptide
repeating units.
Curcumin is
chemically modified
and coupled with ELP.

Curcumin ECM The ELP-curcumin conjugate rapidly forms a depot after
physiological administration and slowly releases bioactive
curcumin in the perineural space to treat neuroinflammation
in vitro.

(49)

pNIPAAM
MgFe-LDH
Gel

N-isopropylacrylamide
forms a pNIPAAM
polymer via free
radical polymerization.
Polymers with MgFe
layered double
hydroxide (LDH)
nanoparticles and CXB
were dissolved in
water.

CXB ECM The controlled release of CXB from this hydrogel resulted in
the inhibition of PGE 2 in a mice model of spontaneous IVD
degeneration.

(50)

HIF Small leucine-
rich
proteoglycans

– – ECM Biglycan can bind and (TGF-b) to activate the MAPK pathway
to enhance HIF-1a translation in vitro.

(51)

Chitosan-
alginate gel
scaffold

Chitosan was dissolved
in acetic acid, and after
filtering the solution,
the pH was adjusted to
8.5 with 0.1 mol/L
NaOH. The sterile
alginate solution was
then mixed with the
chitosan solution at a
ratio of 1:1.

ADSC NP
ECM

ADSCs grew well in the C/A gel scaffolds, differentiated into
NP-like cells under certain induction conditions, produced the
sameECM as NP cells, and were promoted under hypoxia in
vitro.

(52)

Nanofibrous
spongy
microspheres

Development of poly
(L-lactic acid) grafted
poly(hydroxyethyl
methacrylate) (PLLA-
g-PHEMA)
nanoparticles using the
phase separation
method. miR-199a was
encapsulated in
nanoparticles using the
double emulsion
technique.

miR-199a NP Sustained release of in situ anti-miR-199a inhibits miR-199a,
which in turn enhances HIF-1a and Sox-9 activity, thereby
inhibiting calcification and promoting NP regeneration in
mice.

(53)

Polymer
capsule

Calcium carbonate was
used as a sacrificial
template to fabricate
catalase-loaded
polymer capsules
functionalized with an
outer layer of tannic

Catalase ECM ROS-responsive polymer capsules reduce the potential for
oxidative stress and downregulate MMP expression in the
ECM.

(54)

(Continued)
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immune system so that they become targets for immune system

attacks (33). Nerve root compression and the autoimmune response

to NP are the critical causes of radicular pain in the late stage of IVDD

(58). A large number of macrophages, T cells, B cells, and natural

killer (NK) cells and cytokines (such as fibroblast growth factors, IL

family members, and TNFs) are recruited around nerve roots, causing

nerve root immune stress pain (13, 34, 61). The infiltration of

inflammatory cells removes necrotic cells. At the same time,

excessive inflammatory cells also remove non-necrotic cells, which

aggravates the destruction of IVD by the immune system (62). Studies

have shown that macrophages are the inflammatory cells that

infiltrate IVDs and are associated with IVDD progression (63). This

is due to the upregulation and activation of p38 in IVDD. The

activation of p38 in NP induces macrophage polarization and the

expression of the catabolic enzyme matrix metalloproteinase-13

(MMP-13). Overexpressed MMPs destroy the ECM, thereby

aggravating the degenerative process (63). The difference in

macrophage phenotypes between degenerated and normal IVDs

may be a novel target for therapies.
2.2 Annulus fibrosus

AF is highly fibrotic tissue that surrounds the exterior of the NP.

AF mainly contains type I collagen produced by fibroblasts and

contain type II collagen produced by fibrochondrocytes (64). This

unique structure provides AF with good mechanical properties. AF

tightly protect NP in the inner layer and provides a foundation for

maintaining the structure of IVD (34). There are various stem cells

present around AF. These stem cells contribute to maintaining the

turnover of AF (65). With increasing age, the numbers of stem cells
Frontiers in Immunology 06
gradually decrease and become insufficient to repair damaged AF

promptly, which is the main reason for the impaired healing of AF

(66). After AF is damaged, T cells and macrophages are activated to

clear the damaged tissue and debris. Intercellular adhesion molecule 1

(ICAM1) is an inducible surface glycoprotein that induces the

adhesion, migration, and invasion of lymphocytes to sites of

degeneration during immune responses (67). Studies have shown

that chemokine ligand CCL-2 can differentiate monocytes into

macrophages and that macrophage infiltration is a significant cause

of IVDD-induced radicular pain (68). Although T cells and

macrophages are recruited to clear damaged AF, T cells and

macrophages also aggravate AF damage (66). This balance is

difficult to grasp, but modulating it to tilt it in the desired direction

may be a new target for IVDD immunotherapy.
2.3 Cartilage endplates

CEPs are thin layers of hyaline cartilage that separate IVDs from

the upper and lower vertebral bodies. IVDs, composed of CEPs, NP,

and AF, protect the bones of the vertebral body from mechanical

damage and maintain the normal physiological movement of the

spine. Unlike NP and AF, CEPs have a vascular system. The nutrient

metabolism of IVDs is mainly dependent on the vascular system

within CEPs (69). CEPs are composed of hyaluronic acid (HA), type

II collagen, and PECM secreted by chondrocytes (70). The ECM is

rich in stem cells, which are advantageous not only in osteogenesis

and chondrogenesis (71) but also in replacing AF and NP. Studies

have shown that HIF-1a is highly expressed in NP owing to hypoxia

(72). HIF-1a induces the differentiation of cartilage endplate stem

cells (ECSCs) into NP (73, 74). CEP-derived exosomes (N-Exos)
TABLE 1 Continued

Regulator Biomaterial Production
Method

Therapeutic
components

Target Result Reference

acid (TA) by a layer-
by-layer approach.

ROS Rapamycin
hydrogel

The ROS-labile linker
was synthesized via the
quaternization reaction
of tetramethylpropane-
1,3-diamine with an
excess of 4-
(bromomethyl)
phenylboronic acid.
Cross-linking of the
ROS-labile linker with
poly(vinyl alcohol)
(PVA) to form ROS-
scavenging hydrogels
for loading rapamycin.

Rapamycin ECM ROS-responsive hydrogel scaffolds and rapamycin can reduce
ROS levels and promote macrophage polarization to M2 type
in vitro.

(55)

Alginate
scaffold

The sodium alginate
solution was diluted
with sterile saline, then
the
Perfluorotributylamine
emulsion was added
and sonicated.

– NP
ECM

Perfluorotributylamine -enriched alginate scaffolds promote NP
cell survival and proliferation in vitro. Furthermore,
Perfluorotributylamine can modulate ECM expression to
generate disc-like tissue grafts in mice.

(56)
f

GAG, glycosaminoglycan; MMP, matrix metalloproteinase; HIF-1a, hypoxia inducible factor-1a; IL-1ra, Interleukin -1 receptor antagonist; TNF, tumor necrosis factor; ROS, reactive oxygen
species; ECM, extracellular matrix; CCL-5, chemokine (C–C motif) ligand; ELP, elastin-like polypeptide; CXB, celecoxib; NGF, nerve growth factors.
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reduce apoptosis of CEP by activating the phosphoinositide 3 kinase/

protein kinase B (PI3K/AKT) signaling pathway (74). The

mechanisms play an essential role in maintaining the structure

of IVDs.

IVDD is associated with inflammation, immune cell infiltration,

and neovascularization (2). These processes facilitate tissue repair in

normal tissues. In the inflammatory microenvironment of IVDD,

however, they exacerbate pain (75). Although the mechanisms by

which T cells and macrophages are involved in the progression of

IVDD are unclear, the passage of the disease may be due to the

immune privilege of IVDs (62). The involvement of inflammatory

factors and cytokines (such as IL-6, IL-1b, VEGF, and TNF-a) in the

degeneration process can aggravate degeneration and cause pain (13).

Therefore, reducing radicular pain and reversing the progression of

IVDD by modulating the inflammatory microenvironment may be an

effective treatment for IVDD.
3 Regulation of the inflammatory
microenvironment
Protruding NP-secreted cytokines can worsen radicular pain and

IVDD (33). Since there are no immune cell populations in the early

stages of IVDD, the clearance of necrotic cells cannot be completed in

a timely manner (13). Cells with phagocyte function are beneficial

early in injury. Therefore, we hypothesize that infiltrating cells may

perform specialized tasks in the healing processes of IVDs, whereas

local phagocytosis-related cells fail to manifest at sufficient levels or at

the right time (76). Therefore, the artificial intervention of cytokine

release and induction of T cells and macrophages may be potential

therapeutic strategies for IVDD.
3.1 Promotes the upregulation of anti-
inflammatory factors

Transforming growth factor-b (TGF-b) is a multifunctional

cytokine closely related to cell differentiation, apoptosis, and the

maintenance of cell stability (77, 78). Many cells in the body, such

as epithelial cells, tumor cells, immune cells, and stromal fibroblasts,

can differentiate into inactive TGF-b complexes, which proteolytically

leak TGF-b entities (79). There are three main isoforms of TGF-b
(TGF-b1, -b2, and -b3) that cause different physiological responses

after binding to their corresponding receptors (80). TGF-b receptors

have many co-receptors in addition to the type I and II superfamily

receptors (81). These receptors are widely present on the surfaces of

body tissues and cells, making the body responses caused by TGF-b
diverse (81). For example, TGF-b is a potent immunosuppressant and

is closely related to the escape of cancer cells from immune system

attacks (82). Studies have shown that TGF-b1 increases the

contractility of myofibroblasts during wound healing, inhibits

proteolytic enzymes in the ECM, and plays a crucial role in tissue

remodeling (83). TGF-b1 further blocks IVDD by inhibiting the

expression of chemokine (C–C motif) ligand 4 (CCL4) through

extracellular signal-regulated kinase signaling (84). The inhibition

of CCL4 by TGF-b1 occurs time- and dose-dependent. TGF-b1 can
Frontiers in Immunology 07
further inhibit the expression of IL-1b and TNF-a, thereby inhibiting
the inflammatory response of IVDD (85, 86). The resolution of

inflammation may therefore relieve the radicular pain caused by

disc degeneration (87).

Systemic CCL5 is associated with discogenic back pain and

moderate/severe IVDD. CCL5 can therefore be considered a

biomarker for the diagnosis and monitoring of IVDD (88). Studies

have confirmed that prominent NP can release CCL5 to induce MSCs

to migrate into degenerated IVDs and promote their regeneration

(89). Therefore, it is plausible that targeting CCL5 in IVDD could

benefit disc repair. Zhou et al. used fibrin gel to target CCL5 around

degenerated IVDs for their regeneration (38). CCL5 within fibrin gel

is released around NF in a dose-dependent manner. Although CCL5

has a chemotaxis-homing effect on AF in vitro experiments, it does

not promote IVDD regeneration in sheep IVDD models. This may

have been because fibrin gel does not effectively encourage the

movement of cell (38). In another study, Frapin et al. labeled

pullulan with fluorescein isothiocyanate isomer I (FITC) (39).

FITC-pullulan was stirred with NaOH solution and sodium

trimetaphosphate to make pullulan microbeads (PMBs) carrying

CCL5 to the degeneration sites. The PMBs adsorbed CCL5 and

released 99% of it around the IVDs sustainably within 21 days. A

significant increase in the migration distance of PMB-induced ADSCs

to NPs and the number of ADSCs was observed on day 21 in

vitro (39).

Since CCL5 cannot effectively induce TGF-b, the direct regulation
of TGF-b may be beneficial to induce AF cells to differentiate and

repair IVDs. Zhi et al. dissolved a prepared polyurethane (PU) fiber

scaffold in an N, N-dimethylformamide solution and evaporated the

solvent to form a PU film (40). The synthesis methods of the materials

are shown in Table 1. Type I collagen fibers was used as cell carriers to

encapsulate AF cells pretreated with TGF-b1 on PU membranes to

create collagen-PU scaffolds. The advantage of PU scaffold is the

continuous release of TGF and type I collagen to maintain the AF

phenotype. In vitro experiments, the gene and protein expressions of

AF cells were enhanced after induction by TGF-b1. It seems to

indicate that AF cells pretreated with TGF-b1 may be a suitable cell

source for the repair of AF ruptures (40). However, PU scaffolds have

low porosity and are insufficient to carry a sufficient amount of TGF-b
to maintain long-term effects. In addition, no animal experiments

have proven this claim. Lerouge et al. mixed chitosan and porcine

gelatin at a ratio of 3:2 to prepare chitosan hydrogels for loading NP

cells (41). The peptide Link N (a peptide present in IVDs) outside the

IVDs was further encapsulated in the hydrogels. The addition of Link

polypeptide increased the NP encapsulation rate in hydrogels and

increased NP deposition in a degenerative environment. Compared to

the control group, the chitosan hydrogels induced more

glycosaminoglycan (GAG) release from NP cells at 14 days in vitro.

The increase in the number of GAGs was caused by the enhancement

of NP cell activity. This increase in GAG release was nearly identical

to that induced by TGF-b. This indicates that both induced AF and

NP can repair IVDs. However, this is limited to early IVDD (90). In

addition, most of these studies were conducted in vitro. It is, therefore,

not yet known whether the effects in vivo are similar.

Connective tissue growth factor (CTGF) plays an essential role in

extracellular matrix synthesis, especially in IVD (91). CTGF injections

have been shown to promote the increased synthesis of human NP
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cells and induce decreased anti-inflammatory cytokines (92).Sun et al.

fabricated PDA-NP scaffolds with dopamine and polycaprolactone

(PCL) using 3D printing technology (Figure 2) (42). The synthesis

methods of the materials are shown in Table 1. TGF-b3 and CTGF

were loaded onto the surface of PDA-NP through covalent binding,

forming a 3D-printed scaffold that could release dual growth factors

for the reconstruction of NP and AF. CTGF is a cysteine-rich stromal

cell protein involved in cell proliferation, differentiation, and

connective tissue differentiation (93). PCL, which is widely used in

3D printing, was selected as the mechanical support for IVD scaffolds

because of its good biodegradability and biocompatibility (94). PDA

NPs have a diameter of 324.2 ± 13.9 nm. The loading efficiencies of

CTGF and TGF-b3 for PDA NPs were 70.04 ± 0.94% and 72.34 ±

1.06%, respectively. PDA-NP released CTGF and TGF-b3 slowly and
continuously (Figure 2B) and induced bone marrow stromal cells to

differentiate into fibrocartilage-like cells (main components in the

area around AF) and hyaline chondroid cells (main components in
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the area around NP). After 3 months of in vivo experiments, it was

found that PDA-NP could effectively promote the expression of type I

collagen, aggrecan (Figure 2C), and GAG in the AF and NP regions

without causing apparent inflammation (Figure 2D) (42). However,

not all fibrin types are good cellular carriers. For example, genipin-

crosslinked fibrin (FibGen) is a viscous, high-modulus biomaterial

that matches the properties of AF and exhibits low risk of hernias

(95). FibGen is cytotoxic and induces the apoptosis of AF cells. In one

study, the acute cytotoxicity of FibGen was reduced by modifying the

binding sites of integrins to FibGen (43). The synthesis methods of

the materials are shown in Table 1. The advantage of FibGen hydrogel

is that the addition of integrins reverses apoptosis and increases TGF-

b encapsulation (44, 96). The improved FibGen hydrogel carried

TGF-b3 to repair AF in vitro. However, the toxicity of FibGen to

normal AF still needs to be noted.

Although biomaterials loaded with TGF-b have achieved the

ability to promote the reconstitution of NP and AF in vivo, this has
A B
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C

FIGURE 2

(A) Stereomicroscope images of the intermediate and surface structures of the 3D-printed scaffolds. (B) Release behavior of CTGF and TGF-b3 in the IVD
scaffolds. (C) Expression of the type I collagen and aggrecan genes after inducing differentiation in different groups. (D) Histological staining of the
intermediate layers of three IVD scaffolds with AB and PR dyes. Magnified images at low and high magnification. AB and PR dyes specifically stained GAG
(blue) and type I collagen (red), respectively. Reproduced with permission from (42). *Indicates significant difference at a 99 %confidence level.
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only been verified inmice and not in large animals. Furthermore, TGF-

b induces the differentiation of ADSCs into AF and NP cells only at the

early stage of degeneration. As we have learned, IVDD is challenging to

detect in the early stages, and most patients are diagnosed in the late

stage when they have radicular pain. Therefore, whether TGF-b can

reverse advanced IVDD remains unknown.
3.2 Inhibits the expression of inflammatory
factors

3.2.1 Interleukins inhibits
IL-1b is the most widely studied inflammatory factor in IVDD

and is associated with inflammatory radiculopathy (13). IL-1b
accelerates IVDD mainly by inducing the expression of MMPs in

the ECM (35, 97). This process primarily depends on wingless-related

integration site (Wnt)/b-catenin signaling (98). Studies have shown

that the expression of Wnt1 and b-catenin in the NP of patients with

lumbar disc herniation is significantly higher than that in regular

patients. The activation of Wnt signaling induces senescence in NPC

cells. Furthermore, the activation of Wnt/b-catenin signaling induces

MMP expression, leading to increased ECM breakdown and IDD

progression (99). Studies have confirmed that inhibiting Wnt/b-
catenin signaling slows IVDD (100). As inflammatory factors can

induce accelerated IVDD, the downregulation of local inflammation

may restore IVDD.

Epigallocatechin 3-gallate (EGCG) exhibits anti-inflammatory,

anti-catabolic, and antioxidant activities in IVD cells (101). EGCG

interferes with the pro-inflammatory IL-1b cascade by reducing the

activity of IRAK1–NF-kB/JNK/p38 signaling (101). However, oral

EGCG does not increase intra-IVD EGCG concentrations, and high

doses of EGCG increase hepatotoxicity and nephrotoxicity (102).

Loepfe et al. used electrospray technology to encapsulate EGCG in

porcine gelatin to produce gelatin microparticles (45).

Electrospraying is a mild electrohydrodynamic encapsulation

method that produces solid particles without needing high

temperatures or toxic solvents. The average diameter of the gelatin

microparticles was 661 ± 120 nm. The drug loading of gelatin

microparticles reached 5.42 wt% and sustained the release of EGCG

(80%) within 7 days. In vitro experiments confirmed that the gelatin

microparticles significantly inhibited the expression of IL-1b.
However, it has not been confirmed whether the gelatin

microparticles have anti-inflammatory effects in the IVDD

environment in vivo. A recent study further showed that IL-1b
induces the mRNA expression of nerve growth factors (NGFs) and

brain-derived neurotrophic factors (BDNFs) in degenerative NP cells

(103). These neurotrophic factors have been shown to induce neural

growth in IVDs (104). A normal IVD has no nerve tissue, and

neuropathic pain occurs when neurotrophic factors induce nerve

ingrowth into the IVD. Pandit et al. cross-linked high molecular

weight (HMw)HA and 1-ethyl-3-(3-(dimethylamino)propyl)

carbodiimide (EDC) to develop the cross-linked HA hydrogel

system (Figure 3) (46). The synthesis methods of the materials are

shown in Table 1. This study confirmed that the cross-linked HA

hydrogel system with different doses of HA did not cause NP cell

death in vivo (Figure 3B). The cross-linked HA hydrogel system could

bind to the CD44 receptor on the surface of NPc and interfere with
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the binding of the CD44 receptor to IL-1b. After blocking the binding
of IL-1b to CD44, the downregulation of NGF and BNGF mRNA

expression provided a protective mechanism for inflammation-

related pain (Figure 3C). However, the cross-linked HA hydrogel

system only relieved neuropathic pain. It did not treat the underlying

degeneration or restore the natural function of IVDs. This

phenomenon may be caused by HA competing with IL-1b for its

receptors. But this effect is weak enough to inhibit IL-1b completely.

To increase the long-term inhibitory effect on IL1-b, Smith et al.

mixed poly(lactic-co-glycolic acid) (PLGA) and IL-1 receptor

antagonist (IL-1ra) to produce PLGA microparticles (47). The

synthesis methods of the materials are shown in Table 1. In vitro

experiments showed that PLGA microparticles could release IL-1ra

continuously for 35 days. However, in vivo experiments demonstrated

that PLGA microparticles effectively inhibited IL-1b for 7 days and

that the effect of IL-1ra beyond 7 days was to reduce GAG loss. This

difference is not due to insufficient IL-1ra but to a lower pH at the

release site due to PLGA degradation. Therefore, the degradation

properties of biomaterials are essential, and we must develop

biomaterials that are more suitable for substance delivery.

Chitosan is a natural, biocompatibile, and biodegradable

polysaccharide that is mainly used in drug delivery systems and

tissue engineering (105). The chitosan surface polarizes macrophages

into the M2 phenotype without causing significant T cell

proliferation. Goncalves et al. prepared nanoparticles using a

combination of chitosan and poly g-glutamic acid (g-PGA) for the
coacervation method (48). Diclofenac (Df) was added to the

nanoparticles to form Ch/Df/g-PGA NP. The diameter of the

nanoparticles was 175 ± 32 nm. The Df reduces the local

inflammatory response and the production of pro-inflammatory

cytokines (IL-1b and IL-6) by inhibiting the cyclooxygenase

(COX)-2 pathway. In addition, down-regulation of MMPs

expression in ECM was detected 7 days after NP injection, and

IVDD was remodeled in vitro. The Ch/Df/g-PGA NP has

promising prospects for development. However, animal

experiments were not performed in this study, and it is not yet

known whether Ch/Df/g-PGA NP was advantageous in IVD anti-

inflammatory activity and the remodeling of IVDD.

Acid-sensing ion channels (ASICs) are expressed in the nervous

system and are mainly activated by extracellular acid regulation (106).

ASIC3 is mainly expressed in the peripheral nervous system and, to a

lesser extent, in the central nervous system (CNS) (107).

Hyperact ivat ion of ASIC-3 induces the express ion of

proinflammatory cytokines in the NPs. APETx2 is an antagonist of

ASIC3. Blocking ASIC3 reduces local inflammation and reduces

inflammatory pain (107). Bian et al. designed a “peptide-cell-

hydrogel” GelMA microsphere for the control of intervertebral disc

inflammation (108) (Figure 4A). The carboxyl on the microsphere

surface was activated by EDC/NHS, followed by being covalently

linked to the amino residue on the APETx2 to form APETx2-GelMA

microsphere (GA) (Figure 4B). NP cells were premixed with GA to

make a “peptide-cell-hydrogel” GelMA microsphere (GNA). The

hydrogel has an elastic modulus of 25.23 ± 2.58 kPa, which can

protect NP cells from shear damage. Detected at week 8 after GNA

infusion into degenerate discs in mice, GNA downregulated ASIC-3

expression, decreased peripheral IL-1b expression, increased

proliferative activity, and enhanced ECM deposition
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1051606
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xia et al. 10.3389/fimmu.2023.1051606
IL-17 is a crucial characteristic cytokine of T-helper 17 (Th17)

cells. Th17 is the primary source of IL-17. The innate immune system

can further secrete IL-17 (109). IL-17 is associated with inflammation,

and increasing evidence has shown that IL-17 is involved in the

occurrence and progression of IVDD (110–112). There is no IL-17 in

normal AF and NP, and elevations of IL-17 can be detected in

degenerative structures (113). Importantly, the expression of IL-17

in IVD tissues has been found to increase with the severity of IVDD.

Therefore, IL-17 levels may be associated with the extent of IVDD

(112). IVDD exposure to TNF-a stimulates the production of IL-17,

which promotes the degradation of the ECM mainly through the IL-

17A receptor-nuclear factor kappa B (NF-kB) pathway (114). IL-17A
receptors are mainly distributed on the surfaces of NP cells; therefore,

the inhibition of IL-17A receptors can attenuate ECM degradation

and delay IVDD. This approach has not been reported so far, but we

speculate it may be a new target for slowing IVDD.

Biomaterials for the treatment of IL-regulated IVDD have also

been reported. However, the studies were primarily performed in
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vitro with cellular experiments to verify its role in IVDD. There are a

few reports of 3D-printed biomaterials that simulate IVDD in mice,

and this scaffold has been confirmed to have good support and

regulation. However, this phenomenon has not been previously

reported in large animals. The developed nanoparticles are anti-

inflammatory to IVDD and promote ECM regeneration in vitro.

However, most of these nanoparticles require local injections. The

high pressure inside NP makes NP cells unable to withstand the

pressure of the nanoparticle injection. Therefore, our future research

direction is not only toward finding new targets but also toward

developing new biomaterials to repair IVDD.

3.2.2 Tumor necrosis factors
Similar to IL-1b, TNF-a is a pro-inflammatory cytokine that

belongs to the TNF ligand superfamily (115). TNF-a can trigger

inflammatory responses in vivo and induce the expression of IL-1b,
IL-6, IL-8, and IL-17 (116). IL-17 has been linked to the severity of

IVDD (112). Prominent NP can release CCL5 to induce MSC
A

B

C

FIGURE 3

(A) Schematic diagram of the synthesis of the cross-linked HA hydrogel system. (B) Stained NP cell morphology by the LIVE/DEAD assay after 3 days of
culture in the presence of hydrogels containing different doses of HA. Live cells are green (calcein staining) and dead cells are red (ethidium bromide
staining). (C) Fold changes of NGF and BNDF downregulated in IL-1b-induced inflammation and normal NP cells treated with cross-linked HA hydrogels
for 7 days. Reproduced with permission from (46). *Indicates significant difference at a 99 %confidence level.
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migration into IVDD to promote IVD regeneration (89). However,

studies have shown that TNF-a can recruit more inflammatory

factors by inducing CCL5 differentiation (117). In addition to

promoting inflammatory cells, TNF-a can increase MMP

expression through the NF-kB/MAPK signaling pathway to degrade

the ECM (118). Recently, it has been shown that the secretion of TNF-

a by degenerated IVDs induces senescence in NP cells that induce

senescence in healthy cells by inhibiting Stat3 phosphorylation

through paracrine effects (119). Similar to IL-1b, TNF-a can

accelerate IVDD. Therefore, the inhibition of TNF-a may delay

neuropathic pain.

Curcumin is derived from the rhizomes of natural herbs and has

anticancer, antibacterial, and anti-inflammatory properties (120).

Studies have shown that curcumin inhibits TNF-induced NF-kB
activation and downregulates the release of pro-inflammatory

factors (121). However, the low solubility of curcumin and its poor

absorption into systemic circulation limit its clinical applications

(122). Setton et al. modified curcumin with carbamate and coupled
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it with an elastin-like polypeptide (ELP) to obtain a biodegradable

ELP-curcumin conjugate (49). The synthesis methods of the materials

are shown in Table 1. ELP-curcumin conjugates have a high drug

load, rapidly releasing curcumin in vitro and maintaining its

biological activity. In an in vitro study, curcumin was continuously

removed from the conjugate. After 96 h, 55% of the loaded curcumin

had been released. The curcumin content around the nerve was

detected at 48 h, and the amount of curcumin released in the

conjugate was five times that of free curcumin. This suggests that

the conjugate could reduce the adverse factors of the poor systemic

absorption of curcumin and effectively deliver curcumin to the

periphery of nerves to alleviate peripheral inflammatory responses.

Further studies have shown that TNF-a can upregulate the expression

of prostaglandin E 2 (PGE2) in NP cells. PGE2 inhibits proteoglycan

synthesis, thereby degrading the ECM (123). Willems et al. loaded

celecoxib (CXB) into a poly-N-isopropylacrylamide (pNIPAAM)

polymer (Figure 5) (50). The synthesis methods of the materials

are shown in Table 1. CXB is a COX-2 inhibitor that can specifically
A

B

FIGURE 4

(A) Schematic diagram of the synthesis of the GelMA microsphere. (B) The carboxyl on the microsphere surface was activated by EDC/NHS, followed by
being covalently linked to the amino residue on the APETx2 to form APETx2-GelMA microsphere (GA). Reproduced with permission from (108).
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block the production of PGE2. CXB-containing hydrogels effectively

released CXB and continuously inhibited PGE2 (52%) in vitro.

Twenty-eight days after the mice were injected with the hydrogel,

the pNIPAAM polymer formed a denser fibrous structure than the

blank control group (Figure 5B). Reductions in spinal reflexes

were detected on the day after the infusion of the CXB-filled

hydrogels into dogs. The hydrogel with CXB spontaneously formed

a solid at 37°C without leakage after the injection (Figure 5C). The

pNIPAAM polymer significantly reduced PGE2 in NP compared to

AP (Figure 5D). This was consistent with the results of previous

studies (123). Interestingly, this was one of the few in vivo

experiments conducted in large animals to demonstrate the efficacy

of hydrogels. However, similar to IL, the reduction of inflammatory

responses by inhibiting TNF-a to modulate the microenvironment

remains limited to early IVDD. There have been no reports relating to

late IVDD.
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3.3 Oxidative stress correlated factors

3.3.1 Hypoxia-inducible factors
HIF is a transcription factor expressed in cells in response

to hypoxia. HIF-1 consists of a constitutively expressed subunit,

HIF-1b, and another subunit, HIF-1a, which is regulated by

cellular O concentration (124). HIFs have strong anti-apoptotic

effects and are involved in regulating cellular responses to oxidative

stress (125). NP cells have been reported to express HIF-1a to

maintain cellular energy and ECM metabolism independent of

oxygen tension (126). Endoplasmic reticulum oxidative stress in

IVDD can accelerate IVDD progression, and HIF can reduce

endoplasmic reticulum oxidative stress in IVDD (127). Studies

have shown that the knockout of the HIF-1a gene in mouse NP

cells results in massive death and the loss of HIF-1a results in reduced

collagen II and proteoglycan protein expression in IVDs (128, 129).
A
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FIGURE 5

(A) Schematic diagram of the synthesis of the pNIPAAM hydrogel. (B) Histological staining (hematoxylin and eosin staining) of the hydrogel and control
group after 28 days in mice. The epidermis and flesh lipid membranes are indicated by the arrows. (C) One month after the intradiscal injections, the
pNIPAAM hydrogel (white arrow) was visible in the NP. (D) The DNA level in PGE 2NP was significantly lower than that in AF in all treatments.
Reproduced with permission from (50). *Indicates significant difference at a 99 % confidence level P ≤ 0.05. **Indicates significant difference at a 99 %
confidence level P ≤ 0.01.
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Therefore, HIF-1a is expressed by NP cells and has a protective effect

on IVDs.

Cells with degenerated NP or AF have multi-differentiation

potential and can be stimulated to repair IVDs (130). However, NP

cell-derived disc progenitor cells (DPCs) are sensitive to hypoxia and

fail to upregulate HIF to undergo apoptosis under hypoxia (125).

Huang et al. used small leucine-rich proteoglycans (SLRPs) and

biglycan to provide growth substrates for DPCs (51). SLRPs can

bind and regulate TGF-b to activate the MAPK pathway, and TGF-b
can enhance HIF-1a expression through TGF-b receptor (ALK5)

kinase activity. It has been further confirmed that IVDD can be

repaired by adjusting HIF in vitro. However, there are currently no

studies showing the effects on animals. Chitosan itself can reduce the

apoptosis of NP owing to oxidative stress (131, 132). Studies have

shown that the enhancement of the PI3K/Akt pathway by chitosan

protects cells against apoptosis (131). Zhang et al. mixed chitosan and

alginate at a ratio of 1:1. The mixture was phacoemulsified to obtain a

C/A gel scaffold (52). Alginate is also a safe biodegradable

polysaccharide material with biocompatibility, solubility, porosity,

and tunability of viscosity and concentration (133). The C/A gel

scaffold has a porosity of 80.57%, which can effectively load ADSCs

and provide a good framework for their growth. Morphological

changes can occur during gel scaffold degradation, such as

shrinkage, increased transparency, and 3D morphology. The

advantage of the C/A gel scaffold is that it can provide ADSCs with

a hypoxic environment similar to NP cells during in vitro

degradations. This hypoxic environment favors the differentiation

of ADSCs into NPs. After 21 days of culture in vitro, the C/A gel

scaffold induced a significantly higher mRNA expression of HIF-1a
than the normoxia-induced group. It increased the number of type II

collagen fibers in the ECM. C/A gel scaffolds can generate the same

functional ECM as standard NP, providing a basis for the active

recovery of IVDD.

Calcification is frequently associated with IVDD, a condition of

osteophyte growth at the peripheries of endplates, and vertebral

margins (125). This is mainly due to the deposition of calcium-

containing substances in the ECM outside the IVD. Studies have

shown that HIF-1a can inhibit the secretion of inorganic

pyrophosphate by NP and reduce the calcification of IVDs (134).

Calcification can aggravate IVDD. miR-199a is an endogenous small

non-coding RNA that directly targets HIF-1a and downregulates

HIF-1a expression (135). Thus, anti-miR-199a delivery specifically

inhibited endogenous miR-199a and enhanced Hif-1a expression to

inhibit the calcification of IVDs. Feng Ganjun et al. developed poly (L-

lactic acid) graft poly(hydroxyethyl methacrylate) (PLLA-g-PHEMA)

nanoparticles using a phase separation method (53). The synthesis

methods of the materials are shown in Table 1. The diameter of the

nanoparticles was between 30 and 60 mm. Nanoparticles as non-viral

vectors for miRNA delivery can efficiently deliver miRNAs into cells

and bone marrow MSCs (BMMSCs) together in the ECM. BMMSCs

promote the regeneration of aging NP. The detection of nanoparticles

at week 12 in mice reduced calcification of ECM and enhanced HIF-

1a-induced BMMSCs to promote mouse NP cell regeneration.

3.3.2 Reactive oxygen species
In addition to inflammatory cells, oxidative stress caused by high

levels of ROS is a hallmark of chronic inflammation (136). Oxidative
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stress damages vital cellular structures, leading to apoptosis and

senescence (54). The exposure of NP to ROS releases IL-1b,
triggering a cascade of reactions that exacerbate IVD damage (137).

High levels of ROS also inhibited HIF-a expression. ROS is regulated

by glutathione, superoxide dismutase, and catalase (138). Therefore,

blocking ROS production may be beneficial for the repair of IVDD.

An ROS-labile linker was synthesized via the quaternization reaction

of N1,N1,N3,N3-tetramethylpropane-1,3-diamine with an excess of

4-(bromomethyl) phenylboronic acid (Figure 6) (55). The synthesis

methods of the materials are shown in Table 1. The ROS-labile linker

was cross-linked with vinyl alcohol (PVA) to form a ROS-scavenging

hydrogel for loading rapamycin. In a ROS-rich environment, the

ROS-scavenging hydrogel was degraded by the consumption of ROS

to release rapamycin. Rapamycin has immunosuppressive effects and

induces apoptosis. Rapamycin hydrogel clears ROS and promotes

macrophage polarization to M2, reducing inflammatory responses in

vitro. At week 12 of the in vivo IVDD model, rapamycin hydrogels

downregulated MMP-13 in the ECM and upregulated type II

collagen (Figure 6B).

Pandit et al. prepared calcium carbonate, poly (allylamine

hydrochloride) (PAH), and tannic acid (TA) into polymer capsules

using a layer-by-layer approach (54). TA is a natural polyphenol that

has shown a considerable capacity to scavenge a wide variety of free

radicals and pro-oxidant molecules owing to its redox properties

(139). Calcium carbonate was used as the core of the polymer capsule

to load catalase. TA accelerated the release of catalase while

scavenging ROS on the surface. The TA-functionalized polymer

capsules promoted the release of hydrogen peroxide more

effectively than the non-TA-functionalized capsules. The study

confirmed that the encapsulation rate of hydrogen peroxide in the

polymer capsule was 97.8%, which was five times higher than that of

physical adsorption. Compared with 67% of oxidative stress-positive

NP cells in the blank group, this double ROS-scavenging polymer

capsule reduced oxidative stress-positive NP cells to 3% in vitro. In

addition, polymer capsules can downregulate the expression of MMPs

in the ECM. Although the polymer capsules exhibited the ability to

induce the regeneration of IVDs in vitro, it has not been verified

whether a similar effect occurs in vivo.

IVDs are non-neurovascular structures, and the growth of NP

cells is adapted to the hypoxic state. However, studies have

demonstrated that hypoxia in NP cells may exacerbate IVDD (140,

141). A particular concentration of oxygen appears to be beneficial to

NP cells. Perfluorotributylamine (PFTBA) belongs to the

perfluorocarbon family with high oxygen solubility and can

modulate the oxygen tension of IVDs (142). Zhen et al. used

PFTBA to prepare scaffolds to load alginate. Alginate, a widely used

scaffold for the regeneration of IVDs, has shown better ECM

deposition than other materials (56). The synthesis methods of the

materials are shown in Table 1. The PFTBA concentration in the

scaffolds was proportional to the oxygen concentration in the ECM.

This study confirmed that the addition of PFTBA (2.5–10%) under

hypoxic conditions significantly reduced the rate of cell death in NP

cells in vitro. When simulating IVDD in mice, it was found that 2.5%

of the PFTBA scaffolds induced more type II collagen and

proteoglycans in the ECM at 6 weeks compared with other

concentrations of the PFTBA scaffolds. Another advantage of the

PFTBA-alginate scaffolds was that their stability did not change as
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PFTBA degraded. However, the study did not measure the oxygen

levels in vivo. Furthermore, IVDD in mice results from spontaneous

terminal calcification, the mechanism of which remains unclear.

Therefore, it is necessary to investigate further whether regulating

the oxygen content of NP cells in animals is beneficial for the repair

of IVDD.
4 Discussion

Normal IVDs are immune-privileged tissue structures.

Degeneration occurs when IVDs are stimulated by inflammation,

oxidative stress, and stress. IVDD recruits T cells and macrophages to

clear necrotic tissues and cellular debris. Furthermore, the average NP

and AF cells of IVDD become targets of immune system attacks,

thereby aggravating IVDD. We found that repairing IVDD by

modulating the inflammatory microenvironment is a viable

therapeutic modality. However, owing to the lack of vascular

structures in IVDs, the biological factors that regulate immunity

cannot effectively reach the sites of IVDD. In addition, the lack of

blood vessels in IVDs means that natural characteristics cannot

obtain the nutrients they need to repair degenerated IVDs.

Therefore, spontaneous repair of IVDD seems impossible. In recent

years, biomaterials that regulate the inflammatory microenvironment

to improve IVDD have been reported. For example, chitosan,

curcumin, and alginate can protect NP cells and the ECM and act
Frontiers in Immunology 14
in gels to carry biological regulators to repair IVDD. Engineered nano

scaffolds can also delay IVDD while preserving the survival of

bioregulators by delivering them around IVDs. These biomaterials

have shown advantages in inducing stem cell differentiation and

reducing the inflammatory cascade induced by IL-1b and TNF-a.
Still, they have also downregulated the inflammatory response by

scavenging ROS in the ECM. The biomaterials can also reduce MMP

expression and provide a favorable environment for IVD repair.

These advantages indicate that regulating the inflammatory

microenvironment by biomaterials to repair IVDD may be helpful

in clinical treatments.

Although it seems possible that biomaterials regulate

inflammation-immune environment repair IVDD, there are two

significant problems worth noting. First, most of the studies on

IVDD were performed under conditions that mimicked IVDD in

vitro. In line with the studies conducted on mice and dogs,

biomaterials can adapt to in vivo stress and histocompatibility and

play a positive role in the repair of IVDs. However, there are few

studies on regulating IVDD repair in the inflammatory

microenvironment in vivo. Further validation is needed to confirm

the strategies involving biomaterials to modulate the inflammatory

microenvironment in vivo, especially in large animals. Second, the use

of biomaterials in regulating the inflammatory microenvironment to

repair IVDD is only significant in the early stage of the disease.

However, most cases of IVDD are challenging to detect early on when

the patients are asymptomatic. However, it is unknown whether
A

B

FIGURE 6

(A) Schematic representation of Rapa-loaded ROS-responsive hydrogels. (B) Immunohistochemical staining for collagen type II (COL2), matrix
metalloproteinase 13 (MMP13), and CD206 at week 12. Immunohistochemical staining showed that COL2 expression was upregulated, MMP13
expression was downregulated, and CD206 expression was upregulated in the rapamycin-treated group compared with the degenerative control group.
Reproduced with permission from (55).
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biomaterials modulate the inflammatory microenvironment to repair

IVDD in patients with advanced IVDD.
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