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The Ras superfamily of small guanosine triphosphatases (GTPases) are a large

group of small GTP-binding proteins, which play crucial roles in basic cellular

processes in all eukaryotes. In this study, by analyzing the gene structure, temporal

and spatial expression patterns, a total of 108 Ras superfamily genes were identified

in the genome of the Pacific white shrimp Litopenaeus vannamei. We found these

genes included not only the classical Ras GTPase superfamily members, but also

some unconventional and novel Ras GTPase proteins, which have unknown

functions and unique expression patterns. All Ras superfamily genes of

L. vannamei were highly conserved within the core G domain and closely related

in phylogeny, but they might have two different evolutionary origins. In addition,

different Ras GTPase genes exhibited distinct expression patterns in different

tissues, development/molting stages and WSSV infection samples of

L. vannamei, suggesting that they may have a high functional specialization, and

play important roles in regulating the biological processes of cell differentiation,

growth and development, immune response, etc. This study provides important

clues for the structure, classification, evolution and function of Ras superfamily

in shrimp.

KEYWORDS
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1 Introduction

The Ras superfamily, also known as small guanosine triphosphatases (GTPases), or small

G proteins, is a group of monomeric protein family with GTPase hydrolytic activity. They are

low molecular weight (20–30 kDa) and similar to the a-subunit of G-proteins and regulate

many biological processes as molecular switches, alternating between an active GTP-bound

state and an inactive GDP-bound state (Phillips et al., 2008). Ras was the first members of the
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superfamily to be discovered, and then Ran, Rho, Rab, Arf and other

families (Marcus and Mattos, 2020). They control different signal

transduction pathways in cells , including proliferation,

differentiation, morphology, polarity, adhesion, migration, survival,

apoptosis, etc. (Goitre et al., 2014).

Ras superfamily proteins are universal components of signaling

pathways in eukaryotic organisms, including vertebrates,

invertebrates, yeasts and plants (Cetkovic et al., 2007). In human,

using a somewhat broader definition of sequence similarity reveals an

extended superfamily of more than 170 Ras superfamily members

(Colicelli, 2004). Drosophila melanogaster has 68 members: 13 Ras

proteins, 7 Rhos, 30 Rabs, 17 Arfs, and 1 Ran (Rojas et al., 2012). The

budding yeast Saccharomyces cerevisiae contains 29 members: 1 Sar

and 1 SRb, 6 Arfs, 10 Rabs, 6 Rhos, 4 Ras, and 2 Rans (Garcia-Ranea

and Valencia, 1998). Studies have shown that the proteins of each

family appeared very early in the evolution of eukaryotes, and then

expanded to varying degrees in various species (Colicelli, 2004; Jiang

and Ramachandran, 2006).

At present, there are limited studies on Ras GTPases in crustaceans,

which mainly focused on their function in immunity of shrimp. In

Kuruma shrimpMarsupenaeus japonicus, Ras, Ran and Rab genes have

been found, they all play important roles in resistance to virus

(Ménasché et al., 2000). In Chinese shrimp Fenneropenaeus chinensis,

the expression of Rap gene was up-regulated in bothVibrio harveyi and

white spot syndrome virus (WSSV) infection (Ren et al., 2012).

Another study showed that after WSSV infection, the expression of

FcRas was significantly up-regulated in muscle of F. chinensis, while it

was significantly down-regulated in hepatopancreas (Li et al., 2020).

These results suggest that different Ras superfamily members may

participate in the process of anti-bacterial and viral immunity in

different ways in shrimp.

Ras GTPases participate in various biological processes, and many

studies have confirmed that they play an important role in growth

(Sato et al., 2008; Geng et al., 2016; Liu et al., 2021). In the Pacific

white shrimp Litopenaeus vannamei, the most economically valuable

aquaculture shrimp in the world, through genome wide association

study (GWAS) analysis, we found several genomic markers related to

body weight and body length were mapped to Rap-2a, which is a

member of the Ras superfamily (Yu et al., 2019). Rap-2a, as part of

several signaling cascades, may regulate cytoskeletal rearrangement,

cell migration, and cell diffusion (Taira et al., 2004). Through RT-

qPCR analysis, Rap-2a was found to have high expression in

lymphatic organ, hepatopancrea, intestine and stomach, it was

negatively regulated by NF-kB and contributed to growth (Yu et al.,

2019; Wang et al., 2022). Additionally, another shrimp growth trait

candidate gene, MMD2, was identified by our group (Wang et al.,

2020); and studies showed that MMD2 can enhance the retention and

activation of Ras protein in Golgi complex, and subsequently lead to

the enhancement of ERK (extracellular signal-regulated kinase) signal

(Huang et al., 2012). These studies suggest that the Ras superfamily

may play key roles in shrimp growth.

In this study, through the analyses of genome and transcriptome

data, we found that L. vannamei has a large number of Ras superfamily

genes. In this study, we identified 108 Ras superfamily genes, and
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analyzed their gene structure, classification and expression patterns.

These studies have provided an important basis for further explore the

structure, evolution and function of the Ras superfamily in shrimp.
2 Materials and methods

2.1 Experimental animals

The experimental shrimp were cultured in the laboratory of the

Institute of Oceanology, Chinese Academy of Sciences (Qingdao,

Shandong, China), at a temperature of 25 ± 1°C, salinity of 30%, and

pH of 7.5 ± 0.1, the photoperiod was maintained at 12L:12D. The

aquaculture seawater was filtered, sterilized, and continuously

oxygenated. All shrimp were fed three times per day at 9:00 a.m.,

2:00 p.m., and 7:00 p.m. with equal weights of commercial food pellets

(Dale Feed Company, Yantai, China). The average weight of the

shrimp was 4.0 ± 0.8g (7.5 ± 0.5cm). The animal study was reviewed

and approved by the ethics committee of the Institute of Oceanology,

Chinese Academy of Sciences. We declare that all animal experiments

in this study were conducted in accordance with the guidelines of UK

Animals Act, 1986 and EU Directive 2010/63/EU. In these

experiments, no any endangered or protected species were used.
2.2 Identification of Ras superfamily
gene members

We collected all genes annotated as Ras superfamily or small G

protein genes from the L. vannamei genome database (http://www.

shrimpbase.net). At the same time, we screened all Ras superfamily

genes in the previous RNA-Seq data from different developmental

stages, molting stages, different adult tissues, and WSSV infection of

the shrimp (Wei et al., 2014; Gao et al., 2015; Wang et al., 2019; Zhang

et al., 2019). After comparing all the obtained sequences, eliminating

redundant sequences, merging overlapping fragments and connecting

broken genes, all non-redundant candidate sequences were initially

identified and compared by blastx (https://blast.ncbi.nlm.nih.gov/

Blast.cgi) and SMART (https://smart.embl.de/) to confirm the gene

members of Ras superfamily.
2.3 Phylogenetic analysis of Ras superfamily
of L. vannamei

In order to determine evolutionary relationships of the Ras

superfamily members in L. vannamei, all identified Ras GTPase

homologous sequences of this species and a number of

representative sequences of other animals, fungi, protists and plants

were aligned by ClustalW in MEGA X (www.megasoftware.net/), and

phylogenetic trees were constructed using the maximum likelihood

(ML) method of MEGA X with 1000 bootstrap repeats (Whelan and

Goldman, 2001; Kumar et al., 2018). The phylogenetic trees were then

visualized using iTOL (Letunic and Bork, 2007).
frontiersin.org

http://www.shrimpbase.net
http://www.shrimpbase.net
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://smart.embl.de/
http://www.megasoftware.net/
https://doi.org/10.3389/fmars.2023.1063857
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Si et al. 10.3389/fmars.2023.1063857
2.4 Gene structure and conservative motif

In order to illustrate the gene structure of the Ras GTPases of L.

vannamei, the gene location, gene length, open reading frame (ORF),

exon number and deduced amino acid number of all the obtained

genes were analyzed in detail. ExPASy (http://web.expasy.org/

protparam/) was used for protein molecular weight, isoelectric

point analysis. Using the gene structure display server (GSDS)

program (Hu et al., 2015), the coding sequence (CDS) of each gene

was compared with the genome sequence of L. vannamei, and the

intron and exon arrangement diagram of each gene was obtained. The

gene structure of Ras GTPase proteins was drawn by TBools software

(Chen et al., 2020), and the conservative domains analysis was carried

out according to the amino acid sequences. In order to better analyze

the conserved motifs in Ras superfamily, a conserved motif map using

the Multiple EM for Motif Elicitation (MEME, https://meme-suite.

org/meme/tools/meme) program was constructed to provide more

detailed evidence for clarifying the structural characteristics between

different categories of Ras superfamily numbers.
2.5 Gene expression analyses

According to the previous RNA-Seq data at different

developmental stages, molting stages, different adult tissues and

WSSV infection of L. vannamei (Wei et al., 2014; Gao et al., 2015;

Zhang et al., 2019), the RPKM (Reads per kilo base per million

mapped reads) value of each unigene or transcript were obtained. The

expression heatmaps of Ras GTPase genes in different transcriptomes

were constructed and a part of representative genes were verified and

analyzed using RT-qPCR subsequently.
2.6 RNA isolation and cDNA synthesis

The healthy WSSV-free shrimp L. vannamei (9 ± 1g) were

collected from laboratory culture tanks for WSSV infection study,

each shrimp was injected into 1000 copies of live WSSV particles

suspended in 10ml sterile phosphate-buffered saline (PBS) in vivo

WSSV challenge group, the control group shrimps were injected into

the same volume of PBS. A total of 15 individuals were randomly

assigned in each group and equally divided into three parallel

subgroups as biological replicates. At 6 hpi, same size shrimp were

picked, sacrificed and dissected. A total of 3 tissues, hemocyte,

lymphoid (Oka) organ, hepatopancreas were sampled and frozen in

liquid nitrogen and stored at -80 °C for total RNA extraction.

About 4.0 ± 0.8g (7.5 ± 0.5cm) untreated shrimp were picked,

sacrificed and dissected. A total of 12 tissues, hemocyte, muscle,

intestines, stomach, lymphoid organ, gill, hepatopancreas, eye stalk,

brain, ventral nerve, epidermis and heart, were sampled and frozen in

liquid nitrogen and stored at -80 °C for total RNA extraction.

According to the manufacturer’s instructions, RNAiso Plusreagent

(TaKaRa, Japan) was used to isolate total RNA from these tissues.

Then, the quality and the concentration of RNA were detected using

1% agarose gel electrophoresis and Nanodrop 2000 (Thermo Fisher

Scientific, United States). The first-strand cDNA was synthesized with
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the PrimeScript First Strand cDNA Synthesis Kit (TaKaRa, Japan)

using 1.5 µg RNA as template. The specific cDNA synthesis were as

follows: the first step was to remove genomic DNA, 5×genomic DNA

eraser buffer was added to the template at 42°C for 5 min, and then

moving on to step 2 immediately, at 37°C for 1 h and 85°C for 5 s.

Finally, the cDNA was stored at -80°C until use.
2.7 Real-time quantitative PCR

The 18S rRNA gene was selected as the internal reference gene.

Primer3Plus (http://www.primer3plus) was used to design thirteen

pairs of primers of the selected Ras superfamily genes. All primer

sequences used in this study are shown in Supplementary Table S1.

Then, an Eppendorf Mastercycler ep realplex (Eppendorf, Hamburg,

Germany) was used to perform the RT-qPCR. The SuperReal PreMix

Plus (SYBR Green) (TIANGEN, Beijing, China), template, primers,

and DEPC-treated water were mixed in a certain proportion

(Supplementary Table S2); each sample includes four technical

replicates. After qPCR, melting temperature (Tm) analysis showed

a single peak and a single PCR band was identified, indicating that

both primers were suitable for further experiments. The qPCR steps

were as follows: 94°C for 2 min, 40 cycles of 94°C for 20 s, 62°C or 55°

C for 20 s (the annealing temperature of rtRas superfamily genes-F/R

and rt18S-F/R were 62 and 55°C, respectively), and 72°C for 20 s.

Eventually, relative expression levels were analyzed by the 2-△△Ct

method (Livak and Schmittgen, 2001).
2.8 Statistical analyses

The different groups were subjected to one-way ANOVA tests

using SPSS (https://www.ibm.com/cn-zh/analytics/spss-statistics-

software) (version 20).
3 Results

3.1 Identification and classification of the
Ras superfamily genes

In this study, a total of 108 Ras superfamily genes of L. vannamei

were screened and identified from genome and transcriptome data.

The identified genes were classified and analyzed according to gene

homology, conserved domain, gene annotation and evolutionary

relationship. Using the SMART tool, the domains of 50 sequences

were identified as the classical domains of the Ras superfamily: Ras,

Rab, Arf (Sar), Rho respectively, and 49 sequences contained a small-

GTPase domain, which have similar GTP binding conserved motifs to

the classical Ras superfamily domains (Table 1), all them shared a set

of conserved G box GDP/GTP-binding motif elements (Figure 1).

Among the small-GTPase domain containing sequences, five have

large molecular weight, they have not only a small-GTPase domain,

but also other domains, such as BTB, FF, EFh, and RPT1 (Table 1).

The remaining 9 sequences do not have the classical Ras superfamily

domains or the small-GTPase domain, but they all have GTPase-
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TABLE 1 Basic information of the Ras superfamily members in L. vannamei genome.

Proposed
name Gene_id Genome

position Position Exon Length
(aa) Domain pI Predicted

MW (KD) NCBI_id

LvRas1 LVAN10661 LVANscaffold_1774 616354-616965(-) 1 203 RAS 9.25 22.5 ROT75450.1

LvRas2 LVAN00103 LVANscaffold_77 13355-24063(-) 4 193 RAS 6.21 21.9 XP_027206906.1

LvRas3 LVAN06862 LVANscaffold_1264 1151303-1155602(-) 3 173 RAS 5.13 19.5 XP_027233334.1

LvRas4 LVAN12623 LVANscaffold_2024 396324-398769(+) 3 186 RAS 6.37 20.1 XP_027216805.1

LvRas5 LVAN24533 LVANscaffold_4064 359946-366495(-) 5 182 RAS 5.67 20.5 XP_027235111.1

LvRas6 LVAN21358 LVANscaffold_3190 91647-99055(-) 6 185 RAS 5.96 21.2 ROT64798.1

LvRas7 LVAN23009 LVANscaffold_3481 297108-307390(+) NA 345 RAS 9.74 39.0 ROT63158.1

LvRas8 LVAN07607 LVANscaffold_1371 296593-307664(+) 3 110 pfamRas 10.87 12.5 XP_027209547.1

LvRas9 LVAN21643 LVANscaffold_3244 538288-547990(-) 6 263 SmallGTPase 8.69 29.1 ROT64508.1

LvRas10 LVAN12750 LVANscaffold_2031 142221-145529(-) 2 123 SmallGTPase 9.65 14.5 QBA57436.1

LvRas11 LVAN22364 LVANscaffold_3378 325461-325907(+) 1 148 SmallGTPase 5.28 17.3 ROT63798.1

LvRas12 LVAN00405 LVANscaffold_207 728705-729996(+) 3 250 SmallGTPase 8.10 27.5 XP_027217457.1

LvRas13 LVAN25101 LVANscaffold_4396 28904-29844(-) 3 231 SmallGTPase 7.64 25.9 XP_027236068.1

LvRas14 LVAN01975 LVANscaffold_591 25670-28817(+) NA 302 SmallGTPase 10.9 31.8 ROT84101.1

LvRas15 LVAN01445 LVANscaffold_514 389157-389615(-) 1 152 SmallGTPase 6.64 17.0 ROT84676.1

LvRas16 LVAN07913 LVANscaffold_1417 189305-202140(-) NA 593 SmallGTPase 10.03 64.7 ROT78217.1

LvRas17 LVAN20599 LVANscaffold_3071 80071-83245(-) 3 190 SmallGTPase 9.34 21.4 XP_027228024.1

LvRas18 LVAN07484 LVANscaffold_1351 39073-51286(+) NA 345 SmallGTPase 8.91 37.3 ROT78630.1

LvRas19 LVAN07483 LVANscaffold_1351 28496-34926(-) NA 412 SmallGTPase 10.29 45.8 ROT78629.1

LvRas20 LVAN18345 LVANscaffold_2759 299702-311847(+) 5 157 SmallGTPase 4.82 17.2 ROT67801.1

LvRas21 LVAN09982 LVANscaffold_1688 287125-292722(+) 3 100 SmallGTPase 9.44 11.2 ROT76149.1

LvRas22 LVAN24642 LVANscaffold_4124 510279-523240(+) 7 405 RAS 9.51 43.8 ROT61531.1

LvRas23 LVAN02724 LVANscaffold_694 49272-57249(+) 3 178 SmallGTPase 7.69 20.3 ROT83387.1

LvRas24 LVAN15227 LVANscaffold_2371 387067-396008(+) 3 196 SmallGTPase 9.25 22.0 ROT70918.1

LvRab1 LVAN22146 LVANscaffold_3340 1162103-1162573(+) 2 81 pfamRas 4.49 9.2 KAG7176781.1

LvRab2 LVAN22145 LVANscaffold_3340 1130781-1131492(+) NA 82 SmallGTPase 4.48 9.2 ROT64023.1

LvRab3 LVAN21354 LVANscaffold_3190 10914-11931(-) 3 133 SmallGTPase 6.29 14.6 ROT64794.1

LvRab4 LVAN21137 LVANscaffold_3156 515327-518808(-) 2 105 SmallGTPase 4.82 12.1 ROT65026.1

LvRab5 LVAN07945 LVANscaffold_1421 131603-134012(+) 3 139 SmallGTPase 8.44 15.5 ROT78183.1

LvRab6 LVAN08022 LVANscaffold_1431 386949-389496(-) 4 142 SmallGTPase 9.24 16.3 ROT78100.1

LvRab7 LVAN15167 LVANscaffold_2365 1060966-1065462(+) 4 201 SmallGTPase 5.69 22.2 XP_027220508.1

LvRab8 LVAN11009 LVANscaffold_1811 15772-16133(+) 2 78 SmallGTPase 7.95 8.9 ROT75118.1

LvRab9 LVAN21138 LVANscaffold_3156 519598-523474(-) 2 66 SmallGTPase 9.59 7.1 ROT65027.1

LvRab10 LVAN05619 LVANscaffold_1114 1435106-1455690(+) 5 249 SmallGTPase 9.21 27.6 XP_027215650.1

LvRab11 LVAN06487 LVANscaffold_1213 337968-340688(-) 3 114 SmallGTPase 8.66 13.0 ROT79637.1

LvRab12 LVAN03293 LVANscaffold_773 452339-455136(+) 3 206 SmallGTPase 5.21 23.1 XP_027206950.1

LvRab13 LVAN18392 LVANscaffold_2765 222508-228145(+) 5 224 SmallGTPase 6.97 24.5 XP_027224884.1

LvRab14 LVAN17383 LVANscaffold_2637 892303-910421(+) 6 194 RAB 5.05 22.1 ROT68780.1

LvRab15 LVAN17826 LVANscaffold_2691 268423-311239(-) NA 384 RAB 6.67 42.1 ROT68336.1

(Continued)
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TABLE 1 Continued

Proposed
name Gene_id Genome

position Position Exon Length
(aa) Domain pI Predicted

MW (KD) NCBI_id

LvRab16 LVAN01202 LVANscaffold_474 391941-401150(+) 6 217 RAB 5.79 24.7 XP_027237208.1

LvRab17 LVAN23564 LVANscaffold_3614 106113-109647(+) NA 219 RAB 6.12 25.1 XP_027233441.1

LvRab18 LVAN06823 LVANscaffold_1261 385184-391030(+) 6 206 RAB 5.27 22.8 XP_027232796.1

LvRab19 LVAN19404 LVANscaffold_2894 247281-268433(-) 6 204 RAB 8.28 23.0 XP_027226368.1

LvRab20 LVAN13572 LVANscaffold_2136 305166-308307(-) 4 206 RAB 7.8 22.5 XP_027218190.1

LvRab21 LVAN17219 LVANscaffold_2622 284408-287130(+) 4 363 RAB 9.04 40.7 ROT68938.1

LvRab22 LVAN21341 LVANscaffold_3181 573342-580823(+) 5 189 RAB 6.62 20.8 ROT64825.1

LvRab23 LVAN19840 LVANscaffold_2961 234638-240111(+) 6 212 RAB 5.81 23.3 XP_027226949.1

LvRab24 LVAN08561 LVANscaffold_1512 344592-359247(-) 5 234 RAB 5.39 27.2 XP_027210828.1

LvRab25 LVAN23562 LVANscaffold_3604 336239-338604(-) 4 262 RAB 8.83 29.4 ROT62609.1

LvRab26 LVAN02399 LVANscaffold_643 203945-213216(-) 5 197 RAB 6.18 22.6 ROT83704.1

LvRab27 LVAN20526 LVANscaffold_3065 313188-320729(-) 5 179 RAB 5.24 19.9 ROT65648.1

LvRab28 LVAN23177 LVANscaffold_3512 57445-60789(-) 5 183 RAB 9.32 20.1 ROT62985.1

LvRab29 LVAN23755 LVANscaffold_3698 81369-130338(-) 8 211 RAB 5.61 23.7 XP_027233704.1

LvRab30 LVAN17622 LVANscaffold_2661 481957-494370(+) 7 381 RAB 5.67 42.3 ROT68514.1

LvRab31 LVAN25515 LVANscaffold_4650 206670-210018(+) 3 167 RAB 5.56 18.3 ROT60664.1

LvRab32 LVAN24208 LVANscaffold_3904 466888-469532(+) 5 233 RAB 7.13 26.6 XP_027234523.1

LvRab33 LVAN06435 LVANscaffold_1204 472272-477666(+) 6 315 RAB 9.91 36.0 ROT79683.1

LvRab34 LVAN16310 LVANscaffold_2515 307052-319306(+) NA 619 PfamRAS 4.58 66.8 ROT69842.1

LvRab35 LVAN19904 LVANscaffold_2967 1290009-1299116(-) 6 208 SmallGTPase 5.6 24.1 XP_027227050.1

LvRho1 LVAN13930 LVANscaffold_2195 90058-90238(+) 1 60 SmallGTPase 4.41 6.8 XP_022196088.1

LvRho2 LVAN14373 LVANscaffold_2254 134051-138120(-) 4 183 Rho 8.64 20.2 XP_027219355.1

LvRho3 LVAN12953 LVANscaffold_2058 134518-135800(-) 3 192 Rho 6.00 21.6 XP_027217324.1

LvRho4 LVAN20900 LVANscaffold_3111 404322-409551(+) NA 335 Rho 8.4 37.9 ROT65265.1

LvRho5 LVAN09834 LVANscaffold_1676 687493-691897(+) 4 191 Rho 6.16 21.4 XP_027212701.1

LvRho6 LVAN04453 LVANscaffold_939 26591-30653(-) 3 135 Rho 8.93 15.0 ROT81660.1

LvRho7 LVAN19782 LVANscaffold_2947 161137-195305(-) NA 875
SmallGTPase, EFh,
Pfam_EF_assoc_2,

RPT1
6.07 99.0 ROT66379.1

LvRho8 LVAN22095 LVANscaffold_3334 511668-520107(-) 14 763 SmallGTPase, BTB 8.7 87.5 XP_027230767.1

LvRho9 LVAN22094 LVANscaffold_3334 491137-499763(-) 15 733 SmallGTPase, BTB 8.63 84.1 ROT64065.1

LvRho10 LVAN21019 LVANscaffold_3135 598754-667877(-) NA 1312 SmallGTPase, FF 5.42 148.1 ROT65153.1

LvArf1 LVAN23222 LVANscaffold_3522 439556-440887(+) NA 141 SmallGTPase 10.27 15.6 ROT62941.1

LvArf2 LVAN07698 LVANscaffold_1383 60984-74708(-) NA 476 SmallGTPase 7.62 52.2 XP_027209663.1

LvArf3 LVAN20888 LVANscaffold_3109 392595-396458(+) 3 175 SmallGTPase 8.96 20.1 XP_027228467.1

LvArf4 LVAN22103 LVANscaffold_3334 726975-728151(-) 5 249 SmallGTPase 7.86 28.0 ROT64074.1

LvArf5 LVAN13735 LVANscaffold_2161 981884-984055(+) 4 390 SmallGTPase 9.65 43.1 ROT72413.1

LvArf6 LVAN02781 LVANscaffold_700 574778-595351(-) 4 185 SmallGTPase 7.63 20.9 ROT83323.1

LvArf7 LVAN06381 LVANscaffold_1197 212280-220139(-) 5 202 ARF 5.15 22.7 XP_027226427.1

LvArf8 LVAN25495 LVANscaffold_4639 182954-184883(-) 3 191 ARF 7.89 21.7 XP_027236976.1

(Continued)
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related domains, and all the residues are perfectly conserved with Ras

GTPases, mainly G1 and G3 motif (Figure 2A, corresponding to motif

symbol 1 and 2).

From the perspective of gene location, these Ras superfamily

genes were distributed in 98 scaffolds, Ras, Rho, Rab and Arf families

each had 1-2 two-gene clusters, and Arfs also had a three-gene cluster

(LvArf4, LvArf14, and LvArf15) (Table 1).
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In order to distinguish these Ras superfamily members, we

compared identity as assayed by smartblast and blastp, and

found that most of them were classical Ras GTPases, such

as Ras, Rab, Arf, Rho, Ran, named LvRas1-24, LvRab1-35,

LvArf1-20, LvRho1-10, LvRan. A small number (18) are

unconventional or newly discovered members of the Ras

superfamily, named LvRbj, LvRGK1-3, LvGPN1-3, LvREM,
TABLE 1 Continued

Proposed
name Gene_id Genome

position Position Exon Length
(aa) Domain pI Predicted

MW (KD) NCBI_id

LvArf9 LVAN07222 LVANscaffold_1316 619788-624265(+) 4 182 ARF 9.48 20.5 XP_027238771.1

LvArf10 LVAN21095 LVANscaffold_3150 128335-137020(+) 4 186 ARF 7.64 21.2 XP_027228934.1

LvArf11 LVAN02780 LVANscaffold_700 507639-508457(-) 2 257 ARF 9.68 28.2 XP_027239458.1

LvArf12 LVAN14933 LVANscaffold_2332 332905-338395(-) 5 249 ARF 9.84 28.2 XP_027220166.1

LvArf13 LVAN04965 LVANscaffold_1012 28249-30524(-) NA 295 ARF 9.68 32.8 ROT81146.1

LvArf14 LVAN22101 LVANscaffold_3334 713171-715382(+) NA 359 ARF 9.71 39.7 ROT64072.1

LvArf15 LVAN22102 LVANscaffold_3334 721812-724398(-) NA 349 ARF 9.9 37.3 ROT64073.1

LvArf16 LVAN05779 LVANscaffold_1129 397116-421186(+) 4 180 ARF 6.61 20.5 ROT80345.1

LvArf17 LVAN01006 LVANscaffold_447 452224-459676(+) 5 188 ARF 5.56 21.5 XP_027236265.1

LvArf18 LVAN00936 LVANscaffold_413 460488-464478(+) 4 159 ARF 6.08 18.0 ROT85182.1

LvArf19 LVAN10426 LVANscaffold_1745 96079-98495(+) 5 207 SAR 7.8 23.5 ROT63200.1

LvArf20 LVAN22995 LVANscaffold_3478 971535-973975(+) 5 207 SAR 7.8 23.5 ROT63200.1

LvRan LVAN25465 LVANscaffold_4616 23557-26360(-) 4 261 SmallGTPase 8.76 29.7 ROT60705.1

LvRbj LVAN22098 LVANscaffold_3334 618311-624575(+) 6 273 SmallGTPase, DNAJ 8.63 30.3 XP_027230770.1

LvRGK1 LVAN00207 LVANscaffold_157 9522-19442(+) NA 269 SmallGTPase 9.62 29.7 ROT85896.1

LvRGK2 LVAN15533 LVANscaffold_2408 915535-917586(-) 2 170 SmallGTPase 9.82 19.3 ROT70608.1

LvRGK3 LVAN13377 LVANscaffold_2115 313476-324918(+) 8 310 SmallGTPase 6.16 34.1 ROT72725.1

LvGPN1 LVAN02036 LVANscaffold_597 208499-213319(+) 6 283
GPN-loop GTPase 3-

like
4.33 32.3 XP_027238371.1

LvGPN2 LVAN10675 LVANscaffold_1774 818255-823119(+) 6 316
GPN-loop GTPase 2-

like
4.72 35.3 XP_027213967.1

LvGPN3 LVAN14725 LVANscaffold_2302 140684-144789(-) NA 402
GPN-loop GTPase 1-

like
4.68 46.0 XP_027219880.1

LvREM LVAN10561 LVANscaffold_1758 117850-120070(-) 5 228 SmallGTPase 7.65 25.6 XP_027213765.1

LvIFT1 LVAN15495 LVANscaffold_2403 622328-630954(+) 6 189 SmallGTPase 7.72 21.5 XP_027220942.1

LvIFT2 LVAN16277 LVANscaffold_2510 134322-139941(+) 4 186 PfamROC 5.37 20.7 XP_027222074.1

LvRGBP1 LVAN23245 LVANscaffold_3526 817681-821300(+) 8 300 PfamROC 6.52 35.0 XP_027232892.1

LvRGBP2 LVAN10418 LVANscaffold_1743 12487-28108(+) 8 403 PfamSRPRB 4.63 45.9 ROT75709.1

LvOBG1 LVAN13973 LVANscaffold_2198 107630-120662(-) 7 346
PfamGTP1_OBG,
PfamMMR_HSR1

8.38 38.6 ROT72156.1

LvOBG2 LVAN09529 LVANscaffold_1637 267545-277265(-) 9 437
PfamGTP1_OBG,
PfamMMR_HSR1

8.12 48.0 ROT76592.1

Lvseptin LVAN02721 LVANscaffold_693 43543-54935(+) NA 308 Pfam_septin 8.18 34.1 ROT83391.1

LvEFCAB4B LVAN23704 LVANscaffold_3675 563504-574292(-) NA 466 SmallGTPase 5.79 49.6 ROT62468.1

LvSRP LVAN12281 LVANscaffold_1980 125372-130524(+) 5 238 SmallGTPase 8.54 26.5 ROT73853.1

LvGPo LVAN23290 LVANscaffold_3533 210346-225082(-) 5 249 SmallGTPase 4.87 28.8 XP_027232961.1
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LvIFT1-2, LvRGBP1-2, LvOBG1-2, Lvseptin, LvEFCAB4B, LvSRP,

LvGPo (Table 1).
3.2 Phylogenetic analysis of the Ras
superfamily numbers

In order to clarify the phylogenetic relationship among Ras

superfamily members of L. vannamei, we constructed phylogenetic
Frontiers in Marine Science 07
trees using Ras superfamily genes from L. vannamei and those

identified from other species (Table 1 and Supplementary Table S3).

Phylogenetic analysis showed that the Ras GTPase proteins were

clustered in the clades of each subfamily, although they come from

different species (Figure 2A). The result suggested that the Ras

superfamily members of L. vannamei could be divided into two large

monophyletic groups. The Ras family and Rho family could be

clustered into a clade, the number of Rab family is the largest (35

members) and form a clade with Ran family, then clustered with Ras
FIGURE 1

Multiple sequence alignment of some classical Ras superfamily protein sequences of L. vannamei. Red indicates complete agreement and orange
indicates 75% ~ 99% homology. Conserved residues: G1 (GXXXXGKS/T), G2 (T), G3 (DXXGQ/H/T), G4 (T/NKXD) and G5 (C/SAK/L/T) (X stands for any
amino acid). Red and yellow triangles represent major sites of conserved motifs.
B

A

FIGURE 2

(A) Phylogenetic tree of Ras superfamily genes of L. vannamei and other species. The accession numbers of amino acid sequences used in phylogenetic
trees were shown in Table 1 and Supplementary Table S3. The red box marks the most typical GTPases with high expression. The orange shadow
represents Rab family; The green shadow represents Ran family; The red shadow represents Ras family; The blue shadow represents Rho family; The
yellow shadow represents Arf family. The purple shadow represents Unconventional Ras superfamily. The phylogenetic tree periphery represents motifs
of different families of L. vannamei and other species, the colored boxes indicate the conserved motifs. (B) Domains of classical Ras GTPases of different
families of L. vannamei. The tree on the left illustrates the phylogenetic relationships of various families of Ras GTPases. On the right are the different
domains of each family.
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family and Rho family into a larger clade. Arf family members were

clustered together and far away from other four families, other

unconventional Ras superfamily numbers were clustered together,

and then clustered with the Arf family clade formed another large

clade (Figure 2A).
3.3 Conserved motifs and gene structure of
the Ras superfamily numbers

According to the analyses of gene structure and conserved motifs,

most Ras superfamily genes share a set of conserved G box GDP/

GTP-binding motif elements: GXXXXGKS/T, T, DXXGQ/TE, NXXD

and SXK (X stands for any amino acid), a few genes contain only G1

box, G3 box, and G4 box (Figures 1, 2B). However, different Ras

GTPases have many specific motifs, resulting in different domains

(Figure 2), and the differences of their amino acid sequences mainly

occur in the amino terminal and carboxyl terminal, which are

considered as major protein modification sites (Figure 1).
3.4 Gene expression patterns of the Ras
superfamily of L. vannamei

In order to clarify the expression patterns of Ras superfamily

genes of L. vannamei, we summarized four different transcriptional

profiles of 108 Ras GTPase genes into heatmaps of different tissues,

development stages, molting stages and WSSV infection status

(Figures 3–6; Supplementary Figures S1-6).

In different tissues of adult shrimp, most members of Ras

superfamily showed low expression, a few genes were highly

expressed in their respective families, such as LvRab18, LvRab20,

LvRho3, LvRho5, LvRas4, LvRas10, LvArf1, LvArf10, and LvRan.

(Figure 3). LvRan had the highest expression level in all the

examined tissues, and its expression level is more than 3-5 times

that of other members (Figure 3; Supplementary Figures S1, S2A).

Other highly expressed Ras superfamily genes usually presented in

some specific tissues: LvRas4 was highly expressed in hemocyte and
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intestines; LvRab18 was highly expressed in muscle; LvArf1 was

highly expressed in brain, thoracic ganglion, ventral nerve and

intestines; and LvRho5 was highly expressed in antenna,

hepatopancreas and intestines. Some unconventional Ras

superfamily members were highly expressed in testis and ovary

tissues, such as LvGPN1, LvGPN3, LvIFT2 and LvOBG1.

At early development, most members of Ras superfamily were

expressed at a higher level. LvRas1, LvRas2, LvRas5 and LvRas10 are

the main expressed Ras family genes, in addition to LvRas10 at

gastrula (gast) and limb bud embryo (Lbe) stages, the expression of

Ras genes was not very obvious in early development as a whole. The

Rab family showed two expression patterns, some genes were highly

expressed mainly during the zygote to gast stages, while others were

highly expressed after limb bud embryo stages. Arf12, Rho1 and Rho5

were the most expressed genes in their respective families, and their

expression trends remained relatively stable during different stages

(Figure 4; Supplementary Figure S3). Ran was the gene with the

highest expression of all Ras superfamily numbers in the early

developmental stages of L. vannamei, but with little fluctuations

(Supplementary Figure S4A). Interestingly, most of the

unconventional Ras superfamily genes had high expression levels at

early development stages. LvSRP and LvGPo were highly expressed at

the whole stages, showing that play an important role in early

development. LvREM, LvGPN2, LvIFT2, and LvRGBP1 had similar

expression patterns, they were all highly expressed after gastrula stage

(gast). In contrast, LvRbj and LvGPN1 were highly expressed before

gastrula stage (gast) (Supplementary Figures S4B-H).

In different molting stages of L. vannamei, most members of Ras

superfamily showed lower expression (Figure 5; Supplementary

Figure S5), and only a few genes were highly expressed in

respective different families, such as LvRab18, LvRho1, LvArf12,

LvRan, LvRas5. Similarly, a few unconventional members were

highly expressed at different molting stages, such as LvRGBP1,

LvSRP and LvGPo (Supplementary Figures S6B-H).

The hemocyte, hepatopancreas, lymphoid (Oka) organs are the

three main immune related tissues. The expression level of many Ras

superfamily genes was up-regulated in different organs after WSSV

infection. In lymphoid organs, 19 Rab genes, 8 Rho genes, 11 Ras
FIGURE 3

Ras superfamily gene expression profiles in different tissues of L. vannamei. Adult tissues: Hc, hemocyte; Ant, antenna; Ms, muscle; In, intestines; Ov,
ovary; St, stomach; Oka, lymphoid organ; Gi, gill; Hp, hepatopancreas; Te, testis; Es, eye stalk; Br, brain; Tg, thoracic ganglion; Vn, ventral nerve; Epi,
epidermis; and Ht, heart. Pink shading represents members of the classical Ras superfamily in each classification, red fonts represent members of the Ras
superfamily with validated expression levels in each classification.
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genes, 10 Arf genes, LvRGBP2, LvSRP, LvEFCAB4B and LvGPo were

significantly up-regulated. In hepatopancreas, 11 Rab genes, 5 Rho

genes, 4 Ras genes, 10 Arf genes, LvIFT1 and LvGPN2 genes were

significantly up-regulated. In hematocyte, 6 Rab genes, 1 Rho gene, 7

Ras genes and 8 Arf genes were up-regulated, most unconventional

Ras superfamily genes were also significantly up-regulated (except for

LvRGKs, LvSRP and LvRGBP2) (Figure 6; Supplementary Table S2).
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The types of up-regulated Ras superfamily genes were different in

different tissues, and it is possible that these genes play different roles

in the immune process. For example, LvRan was up-regulated in

hemocyte and hepatopancreas, but down-regulated in lymphoid

organs after WSSV infection. In lymphoid organs, most of the Ras

superfamily genes were up-regulated and a few genes were down-

regulated, while was opposite in hepatopancreas. Among them, some
FIGURE 4

Ras superfamily gene expression profiles at different early developmental stages of L. vannamei. Early development stages: zygote (zygo), 2 cells (C2), 4
cells (C4), 32 cells (C32), blastula (blast), gastrula (gast), limb bud embryo I (Lbe1), limb bud embryo II (Lbe2), larva in membrane I (Lim1), larva in
membrane II (Lim2), nauplius I (N1), nauplius III (N3), nauplius VI (N6), zoea I (Z1), zoea II (Z2), zoea III (Z3), mysis I (M1), mysis II (M2), mysis III (M3), and
post larvae 1 (P1). Pink shading represents members of the classical Ras superfamily in each classification, red fonts represent members of the Ras
superfamily with validated expression levels in each classification.
FIGURE 5

Ras superfamily gene expression profiles at different molting stages of L. vannamei. Molting stages: intermolting phase (C), premolting phase (D0, D1, D2,
D3, and D4), and postmolting phase (P1 and P2). Pink shading represents members of the classical Ras superfamily in each classification, red fonts
represent members of the Ras superfamily with validated expression levels in each classification.
FIGURE 6

Changes of Ras superfamily gene expressions after WSSV infection of L. vannamei. The orange line (Hp) shows high expression in hepatopancreas tissue,
the red line (Hc) shows high expression in hemocyte, the green line (Oka) shows high expression in lymphoid organ. Sterile phosphate-buffered saline
(PBS) as control group, the infection lasts for 6 hours.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1063857
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Si et al. 10.3389/fmars.2023.1063857
Ras and Arf genes and LvRGK showed no changes in their expression

levels in the three organs after WSSV infection, indicating that these

genes are not affected by immune response.
3.5 Expression verification of some Ras
superfamily genes

In order to verify the accuracy of the expression level of different

tissues, the expression of twelve Ras superfamily genes were verified

by qRT-PCR in twelve different adult tissues (Figure 7). LvRas5 and

LvRas10 were highly expressed in hepatopancreas and ventral nerve

respectively, and LvRas6 was highly expressed in ventral nerve,

lymphoid organ and brain. LvRab18, LvRab20, LvRho1 and LvRho5

were relatively expressed in most tissues except eyestalk, epidermis

and muscle, among the expression tissues, these genes were mainly

highly expressed in ventral nerve, brain, lymphoid organ and

hepatopancreas, which is similar to the expressed pattern of verified

Ras genes above. LvArf1 and LvArf12 were expressed in most tissues,

and the three tissues with the highest expression were brain, ventral

nerve and gill. LvRan was highly expressed in ventral nerve, and is

about 2-4 times higher than other tissues. In the unconventional Ras
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superfamily members, LvGPN1 and LvRGBP1 had similar expression

patterns with the classical Ras superfamily members, which were

mainly highly expressed in hepatopancreas, brain, heart and other

tissues. In sum, the most expression levels of these genes were

consistent with respective RNA-Seq results, and some differences

might be caused by individual differences. We found that almost all

verified members of Ras superfamily were expressed in almost all

detected tissues, and showed the lowest expression level in eyestalk,

epidermis and muscle tissues. It is possible that Ras GTPases play a

weak role in these tissues.
4 Discussion

The Ras superfamily is a large gene family, which generally

contains fewer members in invertebrates and more in vertebrates,

such as 68 in D. melanogaster and 46 in C. elegans, correspondingly,

170 in human and 137 in Xenopus tropicalis (Rojas et al., 2012). In

metazoans, although the total number of Ras superfamily varies in

different species, the Ras superfamily has traditionally been divided

into five major branches: Ras, Rho, Rab, Ran, and Arf/Sar. Among

them, the Rab family has the most members, and the Ran family has
B C
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FIGURE 7

Tissue distributions of 12 Ras superfamily genes were detected by RT-qPCR, and (A–L) was LvRas5, LvRas10, LvRas6, LvArf1, LvArf12, LvRab18, LvRab20,
LvRho1, LvRho5, LvRan, LvGPN1, LvRGBP1, respectively. Adult tissues: Hc, hemocyte; Ant, antenna; Ms, muscle; In, intestines; Ov, ovary; St, stomach;
Oka, lymphoid organ; Gi, gill; Hp, hepatopancreas; Te, testis; Es, eye stalk; Br, brain; Tg, thoracic ganglion; Vn, ventral nerve; Epi, epidermis; and Ht,
heart." . Please note that "LvRas5, LvRas10, LvRas6, LvArf1, LvArf12, LvRab18, LvRab20, LvRho1, LvRho5, LvRan, LvGPN1, LvRGBP1.
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the least members (usually one). In this study, shrimp obviously has

an expanded Ras superfamily (108 members), in which, Contains five

classic Ras families and with the most Rabs and the least Rans,

implying a high degree of conservation of the structure and pattern of

this superfamily.

From the perspective of gene structure, most these Ras GTPase

have a close genetic relationship and very similar binding GTP related

motifs, indicating that these genes have the same ancestor, and the

gene structure differentiation originated from different functional

requirements in the process of evolution. Phylogenetic analysis

showed that among these different families, Ras and Rho families

are closely related, clustered on the same branch and have high

homology; Rab family cluster with Ran, then combine with Ras and

Rho into a larger branch. However, Arf family is a relatively separate

branch, and the unconventional Ras superfamily numbers are

clustered into larger branch with the Arf family. The result

indicated that the members of Ras superfamily might come from

two different origins, which is consistent with previous studies: Ras,

Rho, Rab and Ran were probably derived from Cyanobacteria or

proteobacteria, or the common ancestor of both; and Arf was

probably derived from Methanogenus (Dong et al., 2007).

Comprehensive snapshots of the patterns of gene expression can

provide a path toward a global and dynamic understanding of gene

functions and their roles in particular biological processes or events.

In this study, the expression analysis of Ras superfamily genes showed

that the expression of different Ras GTPases was different under

different conditions (different tissues, development/molting stages

and WSSV infection). In general, from the expression pattern, it

can be concluded that the functions of the Ras superfamily of shrimp

are similar to other animals, which are very diverse and complex

(Table 2). Only a few members of each family are highly expressed,

suggesting that these genes are critical in the corresponding biological

processes, while other members may correspond to other specific

conditions, allowing for more fine-grained regulation. During early

development, unconventional Ras family members are generally

expressed more actively than the classical Ras superfamily
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members, which suggested that the unconventional members play a

vital role in early developmental stages. In addition, after WSSV

infection, almost all of Ras superfamily genes are up-regulated in

different tissue, which at least suggests that these genes play an

important role in development and pathogenesis.
4.1 The Ras family

Ras family is the most typical and common class of Ras

superfamily. In L. vannamei, multiple Ras family members such as

Ras, Rap, Ral, Rheb, RHEs and RIT were found. Gene expression

analysis showed that these Ras genes were expressed in different

tissues, indicating their respective functions. Most members of the

Ras family in mammals are called oncogenes and well-studied. Ras

proteins receive signals from cell surface receptors, these signals are

transmitted among proteins through different pathways, and finally

affect a variety of biological functions, such as development,

proliferation, differentiation, and survival (Goitre et al., 2014). If the

Ras gene was mutated, these signal pathways will be destroyed, which

will lead to a variety of tumors and cancers (Bos, 1989; Goodsell, 1999;

Murugan et al., 2019). In addition, some Ras family genes are

considered to be involved in animal growth and reproduction. For

example, the Ras gene is related to the size of catfish head (Geng et al.,

2016), it is involved in the regulation of insulin pathway during oocyte

vitellogenesis in female oysters (Jouaux et al., 2012). During

vitellogenesis of the marine flounder Solea senegalensis, the

expression of Ras homologous gene was up-regulated (Tingaud-

Sequeira et al., 2009). In L. vannamei, Ras family genes also were

highly expressed in ovary, such as LvRas4 and LvRas10. In previous

study, we conducted growth candidate gene association analysis in

two independent populations of L. vannamei, the results showed that

the SNP of Ras related protein gene Rap-2a (LvRas1) was significantly

correlated with growth traits (Yu et al., 2019). The above research

proves that Ras family may play an important role in growth and

reproduction of shrimp.
TABLE 2 The possible function of Ras superfamily in L. vannamei.

Groups Gene number Possible functions

Ras family 24 growth and reproduction, nervous system development and signal transduction

Rab family 35 vesicle morphology, vesicle transport and immune regulation

Rho family 10 development, cytoskeleton dynamics and immunity

Ran family 1 the gonad development and antiviral immunity

Arf family 20 nervous system development

RJL family 1 immune and neural regulation

RGK family 3 regulates calcium and insulin signaling pathways

GPN family 3 immune regulation

IFT family 2 cilia assembly and maintenance

OBG family 2 unknown

RGBP family 2 unknown

Others 5 unknown
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There are also other classic Ras family genes in L. vannamei,

such as M-Ras and Ras related protein R-Ras2. M-Ras alone

constitutes a small Ras subfamily in mammals, in L. vannamei,

M-Ras gene was named as LvRas2, and showed high relative

expression under most conditions, indicating that M-Ras plays an

important role in shrimp. Classical Ras binds to Raf and activates

ERK pathway (Endo, 2020), while M-Ras mediated cell

transformation related to the weak activation of RAF/MEK/ERK

pathway, other downstream effectors are also involved in the

pathway, which can induce neuronal differentiation (Castro et al.,

2012). In mice, both classical Ras andM-Ras are highly expressed in

the central nervous system (Sun et al., 2006). In addition, neuronal

differentiation of p12 cells in rats also requires the induction of

classical Ras andM-Ras (Sassone-Corsi et al., 1989). R-Ras2 has also

been shown to be essential for correct axonal myelination and

accurate neurotransmission in mouse (Gutierrez-Erlandsson et al.,

2013; Sanz-Rodriguez et al., 2018). In L. vannamei, both M-Ras

(LvRas2) and R-Ras2 (LvRas6) gene were highly expressed in the

thoracic ganglion, which further showed that Ras family genes may

play an important role in nervous system development and

signal transduction.

At present, there are few studies on Ras family of L. vannamei, but

as these typical Ras superfamily proteins may play an important role

in metabolism, growth, reproduction and neural development, the

related mechanisms need to be further studied.
4.2 The Rab family

Rab is a kind of regulatory small molecule GTPase protein,

found on eukaryotic cell and organelle membrane (Seabra et al.,

2002), and it also is a group with the largest number of genes of the

Ras superfamily in L. vannamei. For example, there are 57 Rab genes

in Arabidopsis, 30 in D. melanogaster, and 61 in Mus musculus

(Rojas et al., 2012). The main members of Rab family include Rab1,

Rab3A and Rab5c.

Rab, called Ypt in yeast, plays an important role in vesicle

transport (Takai et al., 2001). Rab8 and Rab5 in human have the

same function as YPT in yeast, and they share high sequence

similarity (Molendijk et al., 2004). It has also been reported that

Rab protein plays a role in vesicle transport in plants. For example,

Rab1, Rab2, Rab4, Rab5 and Rab6 in Arabidopsis have been proven

to play an important role in regulating the morphology of

endoplasmic reticulum, Golgi apparatus and plasma membrane

vesicles (Stenmark and Olkkonen, 2001). In the squid Loligo pealei,

it was verified that Myo5a and Rab3A directly bind and interact

with synaptic vesicles (SVs) and participate in the transport of

neuronal vesicles (Wöllert et al., 2011). In L. vannamei, studies

showed that Rab might be related to the resistance mechanism of

shrimp induced by environmental stress (Wang et al., 2015). In

addition, Rab gene also plays an important role in shrimp

immunity, Rab like protein had been proved to interact with

immune related membrane proteins to regulate the phagocytosis

of shrimp hemolymph cells against WSSV, and Rab27 mutation

leads to immune deficiency (Wu et al., 2008; Han et al., 2011; Chen

et al., 2021). Similarly, Rab gene (Rab6a) in M. japonicus was up-

regulated during WSSV infection (Wu and Zhang, 2007). In this
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study of WSSV-infected L. vannamei, several Rab family genes were

significantly up-regulated in immune organs such as Oka organ,

hepatopancreas and hemocyte. Therefore, Rab family may affect

vesicle morphology, vesicle transport and immune regulation

in shrimp.
4.3 The Rho family

In 1985, Madaule found a Ras superfamily member Rho (RAS

homolog) in the marine gastropod molluscs Aplysia (Kawasaki et al.,

2004). The study confirmed that Ras has highly sequence homology

with Rho, with 35% consistency in amino acid sequence. Moreover,

they have the same C-terminal required for membrane attachment. In

L. vannamei, Rho family were found in the same clade of the

phylogenetic tree with Ras family. These results suggest that Rho

family is closely related to Ras family. In vertebrates, the Rho family

has undergone considerable expansion and differentiated into more

than 10 subfamilies, including Rho subtypes (A, B, C, D, G, E), Rac

subtypes (1, 2, 3), Cdc42, Rnd (1, 2, 3), TCL, Rho H/TTF, Chp,Wrch-1,

Rif, Rho BTB1, Rho BTB2, Miro-1 and Miro-2 (Burridge and

Wennerberg, 2004; Wennerberg and Der, 2004). Five Rho

subfamilies, including Rhol, Cdc42, Rac2, MIG-2, Rho BTB1, were

identified in L. vannamei.

As a representative and well-studied member of Rho family,

Cdc42 plays a significant role in a variety of cellular processes that

are dependent on the actin cytoskeleton, such as cytokinesis, cell

migration, phagocytosis, morphogenesis, axon myelination,

intracellular trafficking, and tumor occurrence (Etienne-

Manneville and Hall, 2002; Sahai and Marshall, 2002; Moon and

Zheng, 2003). Rac is another member of the Rho family with more

research. In mammals, Rac is mainly involved in promoting the

malignant proliferation and migration of tumor cells (Chan et al.,

2007). Compared with normal striated muscle tissue, the expression

of Rac1 and Cdc42 was significantly high (P < 0.05) in

rhabdomyosarcoma (RMS) tissue (Li et al., 2021). In addition, Rac

also plays a role in immunity, the expression of Rac2 gene in the

large yellow croaker Pseudosciaena crocea was significantly up-

regulated after challenge by Vibrio parahaemolyticus (Liu et al.,

2017). Injection of Vibrio alginolyticus into L. vannamei induced

up-regulated expression of LvRac1 (LvRho1) in hepatopancreas,

then after knocking down LvRac1 and stimulating V. alginolyticus,

the mortality of L. vannamei was significantly increased relative to

that of the control group (Cha et al., 2015). Rho1 is another

important Rho GTPase protein, and previous research has shown

a role for this in immunity, cytoskeleton dynamics and embryonic

development. For example, Rho1 affected the development of eggs

by regulating the hormone level of the braconid wasp Microplitis

mediator (Magie and Parkhurst, 2005). Rho1 also regulated the

rearrangement of cytoskeleton, and then affected the cellular

immunity of the cotton bollworm Helicoverpa armigera (Li et al.,

2010). In the purple sea urchin Strongylocentrotus purpuratus, Rho

could affect SpROCK expression by the Rho dependent signal

pathway, which is essential for early embryonic development

(Aguirre-Armenta et al., 2011). In this study, we suggest Rho

family may play an important role in development, cytoskeleton

dynamics and immunity in L. vannamei.
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4.4 The Ran family

Although the Ran is small family in number, it plays an important

role in many species. In H. armigera, it was reported that Ran

participated in the 20-hydroxyecdysone (20E) signal transduction

pathway by regulating the location of ecdysone receptor-B1 (EcR-B1)

(He et al., 2010). In the brown planthopper Nilaparvata lugens, NlRan

knockdown significantly delayed development and affected

reproduction (Liao et al., 2019). Only one Ran gene exists in L.

vannamei, and its expression is higher than that of other Ras

superfamily genes. It was previously reported that the highest

expression of Ran is the black tiger shrimp, Penaeus monodon is in

the ovary (Zhou et al., 2012). In the expression profile of testis

maturation stages of scallop, Ran expression increased dramatically

during meiosis and spermatogenesis (Hino et al., 2012). In addition,

there is a similar situation in mammals. Ran had a high level of

expression from the late pachytene spermatocytes to early round

spermatocytes in mice (López-Casas et al., 2003). Moreover, the

cellular localization of Ran also changed during spermatogenesis

(Kierszenbaum et al., 2002). On the other hand, Ran may also

involve in the immune process. In the Kuruma shrimp M.

japonicus, Ran played a vital role in antiviral immunity (Han and

Zhang, 2007). Another study found that Ran interacts with myosin in

M. japonicus, which can regulate blood cell phagocytosis. RNAi

knockdown led to a significant increase in virus copy number in M.

japonicus, and overexpression of Ran resulted in a significant decrease

in virus copy number (Liu et al., 2009). When IL-4 and

lysophosphatidylcholine were respectively injected into shrimp, the

results indicated that the two molecules could enhance the Ran

GTPase activity and improve hemocytic phagocytosis against

WSSV (Zhao et al., 2011). In our study, LvRan was significantly

up-regulated in hemocytes and hepatopancreas, but down-regulated

in Oka after WSSV infection. The above research suggests that Ran

may participate in the 20E signaling pathway, regulate the gonad

development and antiviral immunity, and then affect the growth and

reproduction in shrimp.
4.5 The Arf family

The Arf family is mainly divided into three subfamilies: Arf, Arf like

proteins (ARLs) and Sar1. Relevant studies have confirmed that Arf and

the components that promote Arf function played an important role in

mediating the transport of endoplasmic reticulum to the Golgi (Balch

et al., 1992; Dong et al., 2010). For example, Arf1 regulated vesicle

formation, Golgi assembly and promoting vesicle division, and Arf6

promoted membrane invagination on the cell surface during endocytosis

(D’Souza-Schorey and Chavrier, 2006). Arf and Rab have similar

functions in vesicle formation and transportation, indicating that the

connection between GTPase-mediated signaling pathways requires

different Ras superfamily proteins to fulfill a common task by a

cooperation (Mitin et al., 2005). In D. melanogaster, Arf6 was only

involved in spermatogenesis (Lambaerts et al., 2009), it was not required

for early development in mice (Doherty and McMahon, 2009). In L.

vannamei, Arf4 was almost not expressed in the early development

stages, however, it had a higher expression in adults. There is almost no
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research on Arf in crustaceans, we foundmost Arf genes highly expressed

in brain and ventral nerve of L. vannamei, so it is speculated that Arf

should have a certain effect on the nervous system in shrimp.
4.6 The unconventional Ras GTPase families
in L. vannamei

The researches of the five classical Ras GTPase families have been

very in-depth. Furthermore, many genes have regions predicted as or

similar to the small GTPase domain, but they’re unconventional, for

example, RJL family, RGK family, GPN family, IFT family, OBG

family and Septin family. They have the same motif as classical Ras

superfamily members, and the prediction region acts as a signal

converter or molecular switch, called GTP-binding protein and has

GTPase activity. Unlike the other members of the classical Ras

GTPase, most these non-classical members showed extremely low

levels of expression in adult tissues of L. vannamei, but most of them

showed high levels of expression during early development and

WSSV infection, this indicates that their functions are relatively

specific and may be related to early development and immunity.

4.6.1 RJL family
RJL is a new member of Ras superfamily reported in recent years

(Gao et al., 2019). Besides the GTP binding domain, members of this

family also contain an additional DnaJ domain, so they are also

named the DnaJ family. The family is divided into two subfamilies: Rjl

and Rbj. Different from other Ras superfamily members, The RJL

family lacks membrane targeting signal and their hydrolysis ability of

GTP is impaired. The RJL family exists in many protozoa and

deuterostome metazoans, but is obviously missing in some

intermediate phyla, indicating an interesting possibility of

horizontal gene transfer (HGT) between lower and higher

eukaryotes (Nepomuceno-Silva et al . , 2004). In human

gastrointestinal cancers, Rbj was dysregulated and could promote

tumor progression, the activation of MEK and ERK by Rbj indicated

that RJL family might have a role in MEK/ERK signaling pathway

(Gao et al., 2019; Chen et al., 2021). No any RJL family member has

been reported in shrimp so far. In this study, the Rjl gene with GTP

binding domain and DnaJ domain was found in L. vannamei, and

called LvRbj. This gene was little highly expressed in the limb bud

embryo (Lbe) and Lim stages, while in the adult, it only had low

expression in eyestalk and blood cells, and only significantly highly

expressed in hemolymph after WSSV interference, so LvRbj might

involve in immune and neural regulation of shrimp.

4.6.2 RGK family
In this study, we identified three unconventional Ras superfamily

genes of L. vannamei, LvRGK1-3. The RGK family includes Rad, Rem,

Rem2 and Gem/Kir, which are called “distant cousins” of the typical G

proteins and constitute the first unconventional Ras subfamily with a

novel effector binding mechanism distinct from that of other Ras

GTPases (Miranda et al., 2021). Rad (Ras associated with diabetes) is

mainly in skeletal muscle and cardiac muscle, and its expression increase

by an average of 8.6 times in muscle of type II diabetes. It is speculated

that Rad may be an inhibitor of Ras, interfering with the function of
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normal Ras, Rab or Rap (Reynet and Kahn, 1993). In addition, Rad can

be phosphorylated by PKA, but it does not affect GTP binding and

GTPase activity like classical Ras superfamily members, indicating it may

have a specific GAP-like activity regulationmechanism (Zhu et al., 1995).

Rem is the first Ras-related GTP-binding protein whose mRNA levels are

regulated by repression after stimulation (Finlin and Andres, 1997). In

human, RGK GTPase family genes bind directly to Ca2+ channel b-
subunits (CaVb), serve as regulators of Ca2+ channel activity (Finlin et al.,
2003). In conclusion, RGK family is mainly highly expressed in skeletal

muscle, cardiac muscle and other tissues, and plays a major role in the

calcium and insulin signaling pathway. In L. vannamei, the overall

expression level of RGK family was low, but they were higher

expressed in skeletal muscle and cardiac muscle than most other tissues.

4.6.3 GPN family
GPN-loop GTPase (GPN) is a member of P-loop NTPase, which

has a GTP binding domain similar to the classical Ras superfamily

(Forget et al., 2010). However, this family is rare and there are few

relevant studies. In the yeast S. cerevisiae, the deletion of Gpn1 or its

homologous genes Gpn2 and Gpn3 was fatal (Giaever et al., 2002),

Gpn1, Gpn2, and Gpn3 were all essential proteins for cell growth, and

deletion of each one resulted in cell death, suggesting that these GPN-

like GTPases may be necessary for survival and their functions are not

redundant (Liu et al., 2020). Three GPN subfamily genes were found in

L. vannamei: LvGPN1, LvGPN2 and LvGPN3, their expression patterns

were similar, mainly in gonads and muscles, and significantly increased

in hemocyte after WSSV infection, but the specific role is unknown.

4.6.4 IFT family
The intraflagellar transport (IFT) family contains at least 20

different proteins and can be resolved into two smaller subunits,

complexes A and B (Cole et al., 1998), complexe A contains 6

protein subunits (IFT43, 121, 122, 139, 140, 144), and complexe B

contains 14 protein subunits (IFT20, 22, 25, 27, 46, 52, 54, 57, 70, 72, 74,

80, 81, 88, 172) (Fan et al., 2010). Only IFT-B complexes were found in

L. vannamei: IFT22 and IFT27. As core subunits of IFT-B complexes,

IFT22 and IFT27 have significant sequence homology with members of

Ras superfamily. IFT27 was predicted to be Rab-like GTPase and

proved to binding to GTP (Qin et al., 2007). IFT complex has a

function similar to small GTPase, but its GTPase activity is very low,

due to the lack of conserved catalytic Gln sites, so some GTP-activating

proteins (GAPs) are needed to exchange between GTP and GDP

(Bhogaraju et al., 2011). Therefore, the IFT complex, as an important

structure in cilia assembly and maintenance, may be required for

ciliogenesis by ferrying ciliary components using IFT complexes as

cargo adaptors and may be necessary for normal life activities.

4.6.5 OBG family
OBG like-GTPase is a subfamily of P-loop GTPase, which was

originally found downstream of Spo0b in the Gram-positive bacteria

Bacillus subtilis (Trach and Hoch, 1989). Although these proteins contain

GTP binding domains and conserved from bacteria to human, their

sequence homology with other GTP-binding proteins is low (Kukimoto-

Niino et al., 2004), so they are divided into a new group: OBG family,

which contains three domains: OBG folding, G domain and OBG c-

terminal region (OCT). In this study, an OBG-like GTPases protein of L.
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vannamei was identified, which has three domains, GTP1_OBG (OBG

folding), FeOB_N, MMR_HSR1, among them MMR_HSR1 interacts

with 50S ribosome and is necessary for binding adenine and guanine

nucleotides to have complete activity. At present, research on OBG-like

GTPases mainly focused on bacteria, yeast and plant chloroplasts (Chigri

et al., 2009; Lin et al., 2018), and there are few reports in animals.
4.6.6 Septin family
Septin, a unique polymeric Ras superfamily protein with GTPase

activity, was found in L. vannamei. Septin was described mainly as a

spatial regulator of protein localization and interaction in the budding

yeast, it is the key to their asymmetric cell shape and division (Spiliotis

and McMurray, 2020). In human, septin2 is a cancer promoting gene,

its overexpression can promote the proliferation of gastric cancer cells

and inhibit apoptosis (Li et al., 2018). Septin2 gene was highly

expressed in liver cancer tissues and corresponding adjacent tissues

(Xu et al., 2019). Septin is classified as a member of the Ras

superfamily because it has the same GTP binding motif as most

Ras GTPases, and it is closely related to cell proliferation and

oncogenesis. In crustaceans, the function of Septin is unclear.
5 Conclusion

In this study, based on genome and transcriptome data, we have

conducted comprehensive analyses of gene structure, protein domain,

and expression patterns of the Ras superfamily members in the

economically important shrimp, L. vannamei. The results showed

that the Ras superfamily is relatively complete in shrimp, a total of 108

Ras superfamily genes were identified. We found that shrimp

contained not only all classical Ras superfamily members, but also

some unconventional and novel Ras superfamily genes, these genes

shared common conserved domain and motifs. From a phylogenetic

point of view, Ras superfamily of L. vannamei are divided into two

clades, They had different expression patterns and might have

diversified functions in development, growth and immune response.

These works provide important clues for future research on the

function of Ras superfamily genes in crustaceans, which is of great

significance for understanding growth development and immunity

mechanism and promoting genetic breeding of shrimp.
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