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The microbiota as a modulator of
mucosal inflammation and HIV/
HPV pathogenesis: From
association to causation

Elena Moreno1,2*, Raquel Ron1,2 and Sergio Serrano-Villar1,2*

1Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina,
Universidad de Alcalá, IRYCIS, Madrid, Spain, 2CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
Although the microbiota has largely been associated with the pathogenesis of viral

infections, most studies using omics techniques are correlational and hypothesis-

generating. Themechanisms affecting the immune responses to viral infections are

still being fully understood. Here we focus on the two most important sexually

transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are

boosting our ability to understand microbiota-pathogen-host interactions from a

functional perspective by surveying the host and bacterial protein and metabolite

production using systems biology approaches. However, while these strategies

have allowed describing interaction networks to identify potential novel

microbiota-associated biomarkers or therapeutic targets to prevent or treat

infectious diseases, the analyses are typically based on highly dimensional

datasets —thousands of features in small cohorts of patients—. As a result, we

are far from getting to their clinical use. Here we provide a broad overview of how

the microbiota influences the immune responses to HIV and HPV disease.

Furthermore, we highlight experimental approaches to understand better the

microbiota-host-virus interactions that might increase our potential to identify

biomarkers and therapeutic agents with clinical applications.
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1 Introduction

Evolutionary and ecological mechanisms have favored the cooperation of

microorganisms that ensure critical functions for host fitness, such as the response against

viral infections. The largest fraction of the microbiota resides in close interaction with the

mucosa-associated lymphoid tissue (MALT) (1). Therefore, the expectations that the

microbiota could exert a clinically relevant impact on viral infections, such as HPV and

HIV, are high. The pathogenesis of HPV and HIV infection is intimately associated with the

MALT, from the early establishment of infection to their persistence or progression (2–4).

For example, HIV infection causes chronic defects in mucosal immunity (5, 6) and

translocation of microbial products from the gut to the blood. These changes promote T
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cell activation, monocyte activation, and proinflammatory cytokine

release (7–10). In HPV, the gut microbiota appears to influence viral

persistence, immune responses, the host-mucosal environment, and

HPV-related cancer progression (11, 12).

Although omics technologies have allowed us to map the

functional alterations produced by viral infections, many studies

show correlations, and we lack a granular understanding of the

underlying mechanisms for the functional alterations. Omics

techniques have allowed linking specific microbiome profiles to

certain disease phenotypes (13, 14). The influence of bacterial

proteins and metabolites on disease is gaining interest and being

more deeply studied (15–21). However, most studies in the field are

still correlational and hypothesis-generating. Furthermore, although

proteomics and metabolomics are helpful tools to infer pathways and

generate hypotheses and they have become increasingly efficient, their

results still have limitations and biases and warrant experimental

validation. Thus, following the enthusiasm of omics-based studies, the

classical approach of designing hypothesis-driven studies focused on

digging deeper into particular questions after interrogating highly

dimensional datasets, is gaining attention. Here, we review specifically

the current concepts on the reciprocal interactions between the

microbiota and two persistent viral infections, HIV and HPV. We

discuss the opportunities for omics techniques and their limitations in

the field, highlight examples of studies aimed at understanding the

consequences of the microbiota in HIV and HPV infections, and

summarize the experimental approaches that have improved our

mechanistic insight.
2 Influence of the microbiota on HIV
and HPV infections

Correlations between changes in gut mucosa leading to

“dysbiosis” (i.e., alterations in the intestinal microbiota) and viral

infections are commonly studied. The commensal microbiota appears

to be a significant determinant of the acquisition and replication of

some pathogenic viruses. This may include mechanisms not well

understood yet, including pathogen growth regulation, competitive

metabolic interactions, localization in intestinal niches, and host-

immune response induction (22–26). However, as we will review

below, there is a clear connection between the microbiota status and

the clinical course of HIV and HPV.
2.1 Influence of HIV infection
on the microbiota

Acute HIV infection exerts dramatic and perhaps irreversible

MALT damage (27, 28). The fact that HIV replication has been

associated with a loss of anti-inflammatory bacteria (20, 29) has

spurred research into the hypothesis that HIV infection affects the

microbiota and that this altered microbiota may contribute to

persistent inflammation, increasing the risk of comorbidities.

Mechanistically, HIV infection could affect the microbiota by

inducing depletion of Th17 cells in MALT, enteropathy, mucosal

inflammation, aberrant cytokine production, and intestinal epithelial
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cell damage (25, 30–34). In the context of HIV infection, microbial-

induced immune activation occurs and correlates with markers of

intestinal damage, suggesting that the microbiota is a relevant driver

of systemic inflammation (35–41). Even the changes appreciated in

the oral microbiota of people living with HIV (PLWH), who exhibit

an increased prevalence of dental caries and periodontal

inflammation, seem to be connected to shifts in systemic immune

responses (reviewed in (42)). Specific Lactobacillus species-rich

vaginal microbiota have been associated to protection from HIV

infection (last reviewed in (43)).

It is now widely accepted that impairment of intestinal integrity

and dysbiosis lead to translocation of bacterial derivatives from the

gut to the bloodstream, resulting in chronic inflammation. This may

occur by immunosuppressive or immunostimulatory mechanisms

and via various non-mutually exclusive processes, including

augmented antigenicity, adjuvanticity, or bystander T-cell activation

(44, 45). This fact has been studied before for HIV-associated

inflammation, which has been associated with an increase of active

microorganisms leading to different pathways related to immune

modification (46), These pathways include (i) decreased amino acid

catabolism, leading to nutritional deficits (47). (ii) induction of

indolamine-2,3-dioxygenase-1 (IDO1) leading to an increased

transformation of tryptophan into the immunosuppressive

kynurenine derivatives, bacterial translocation, and systemic

inflammation, which has been linked with excess mortality risk

,45). (iii) increased butyrate synthesis, which, among other

functions, tempers intestinal inflammation (48). and (iv)

accumulation of inflammatory molecules, such as arachidonic acid

and leukotriene-B4 (49).

Inflammatory biomarkers levels remain increased in PLWH even

when ART is started early (50). Chronic inflammation has

consistently been associated with an excess risk of comorbidities

during treated HIV infection and is suggested as a contributing risk

factor (51, 52). Thus, the HIV field has pursued whether the

microbiota affects inflammation during treated infection. For

example, microbiota metabolic profiles affect HIV inflammation by

promoting changes in glutathione metabolism and zeatin

biosynthesis, butyrate production, or tryptophan catabolism (46, 49,

50, 53). Furthermore, a well-defined deleterious consequence of HIV

infection is bacterial translocation triggering immune activation (54–

56). A few sequence-based and ultramicroscopic studies have

uncovered a blood bacterial DNA profile in HIV. Following acute

SIV infection in macaques, analysis of bacterial DNA isolated from

the colon, liver, and mesenteric lymph nodes demonstrated a

preference for the phylum Proteobacteria to translocate to these

compartments and an increased metabolic activity of Proteobacteria

within the colonic lumen (57). In a study in PLWH diagnosed with

advanced disease and starting ART, we also found that Proteobacteria

was the predominant phylum in the blood, indicating commonalities

in the mechanisms by which bacterial translocate from the gut into

the bloodstream between SIV and HIV infections. The same study

showed that ART initiation in late-presenters attenuated the bacterial

signature of untreated HIV infection, characterized by the presence of

DNA from commensal bacteria with pathogenic potential (58).

Relationships between the translocated microbiome, systemic

inflammation, and clinical outcomes were described in a different
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study showing increased CD4 T cell counts following one year of ART

that were associated with high Serratia abundance, innate

proinflammatory cytokines and metabolites driving Th17 gene

expression signatures, and restoration of mucosal immunity (59).

Current evidence supports investigating therapeutic strategies for

immune modulation in HIV. However, so far, no intervention

targeting the microbiota of PLWH either by using prebiotics (16,

16, 60), probiotics (61–63), synbiotics (64), rifaximin (65, 66), or even

fecal microbiota transplants (67, 68) have convincingly proved to

effectively temper inflammation or enhance boost immune recovery

following ART initiation. In general, there was lack of standardization

in the outcomes assessed (ranging from studies designed to assess T

cell changes (60, 64) to exploratory studies evaluating multiple

markers of T cell activation (69) or soluble markers of

inflammation or bacterial translocation), the duration of the

intervention (from weeks (16, 61, 62, 69) up to one year), the

disease status (from ART naive patients followed without ART (60)

or patients presenting at advanced stages of the disease (64) starting

ART to patients under ART-mediated HIV RNA suppression (61–

63), and even the dosage and components of the prebiotic or probiotic

mixtures (16, 62–64, 69). Therefore, this still represents a field of

active research, and has been extensively reviewed elsewhere (70).
2.2 Influence of HPV infection
on the microbiota

We know less about the impact of HPV infection on the

microbiota epithelial surface integrity, mucosal state, and immune

regulation, all factors related to HPV persistence and progression to

cancer (46, 71–74). For example, metabolites associated with the

vaginal microbiome, including biogenic amines, glutathione, and

lipids, have been implicated in HPV persistence (75). It has been

described that the microbiota composition can affect all these factors

in the context of HPV infection (76–80). A meta-analysis found that

Lactobacillus iners and non-Lactobacilli species dominance in the

vaginal microbiota is associated with a higher risk of persistent HPV

infection and dysplasia (22) compared to the dominance of L. iners

and L. crispatus (81, 82).

A Lactobacillus-depleted microbiome has been associated with a

proinflammatory environment that may increase malignant cell

proliferation and HPV E6 and E7 oncogene expression (22, 83, 84)

and promote coinfections by other pathogens such as Chlamydia

trachomatis (80). Specifically, it has been shown that HPV down-

regulates some innate molecules, such as SLPI, S100A7, elafin, HbD1,
and TNFa/LPS that are used by some Lactobacillus species as an

amino acid source sustaining their growth, in keeping with their

decreased abundance in microbiome analyses of HPV infected

individuals (80). Even virome alterations are associated with

features of the vaginal microbiota and genital inflammation changes

related to HPV infection (85).

Some authors have connected the expression of proinflammatory

and chemotactic cytokines related to HPV-induced carcinogenesis

with an increased presence of Sneathia or Gardnerella in the vaginal

microenvironment (86–90). Furthermore, even though a certain level

of inflammation has been described as potentially beneficial to

decrease HPV dissemination, several studies have shown specific
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inflammation markers as related to the progression to a

carcinogenic status that could be used as clinical markers to prevent

high-grade squamous intraepithelial lesions (46, 86, 90–95) and

specific metabolic profiles (96–98). However, most studies in the

field are cross-sectional, so it is hard to assess whether the microbiota

influences HPV infection or vice versa.
2.3 Microbiota mechanisms with
consequences on viral infection

Viruses infecting epithelial cells can profoundly affect the mucosal

immune system—the central habitat of the mucosal microbiota—

altering the immunological signals required to orchestrate commensal

colonization and possibly affecting systemic immune responses and

other processes. While from an applied perspective, the gut

microbiota functionalities are more relevant for health, most studies

have focused on the compositional level, and only fewer studies have

focused on the functional consequences. Some microbiota-associated

mechanisms possibly influencing the clinical course have been

characterized for HIV and HPV (Table 1).
3 Potential and limitations of
current approaches for understanding
microbiota effects on HIV and
HPV infections

Studying the interactions between host factors and pathogens is

complex, especially when a third term—a virus— is added to the

multifaceted dichotomy of host and microbiota. However, multi-omic

techniques have allowed applying systems biology approaches and

ecological concepts to analyze host-microbiota interactions during

viral infections (130, 131). These approaches have boosted our ability

to understand viral infection to the level in which we are starting to

appreciate the importance of the commensal bacterial communities

on the pathogenesis of diseases that not so long ago were assumed to

depend only on the interactions between viruses and human cells.

Nevertheless, current omic techniques have several limitations, such

as the scarcity of standardized methods to integrate the different omic

levels (132). More importantly, the research potential and fascination

with the increasingly efficient omics approaches have often relegated

hypothesis-driven research to a second position. We believe that,

while the microbiome research primarily relying on 16S rRNA gene

studies has been crucial to generate hypotheses, the field needs to

move towards more mechanistic, hypothesis-driven studies and

applied research.
3.1 Multiomic techniques

Technologies such as Next Generation Sequencing (NGS), RNA

sequencing (RNA-seq), and mass spectrometry (MS/MS) and all their

different variations have already been used to describe the global

landscape of viral-host interactions. Typically, gain and loss-of-

function studies are performed to study the differential expression
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TABLE 1 Summary of the major mechanisms by which the microbiota influences HIV and HPV infection.

Pathway/
Function Virus Bacteria

implicated Biological Mechanism Clinical
Consequences References

Regulation of
innate
immune
molecules

HIV

↓ Lactobacilli
↓ Lachnospira spp.
↓ Roseburia intestinalis
↓ Ruminococcaceae

Peptidoglycan signaling
Decreased butyrate production
Increased local inflammation

Increased HIV
transmission

(16, 99–101)

HPV
↓ Lactobacilli
↓ Bifidobacterium
↑ Anaerobes and diversity

Down-regulation of SLPI, S100A7, elafin, HbD1, TNFa/LPS.
Cytokines and chemokines

Enhance antitumor
immunity and anti-
PD-L1 efficacy.
Higher risk of
sexually transmitted
infections

(102–105)

Tryptophan
catabolism

HIV

↑ Gammaproteobacteria
↑ Pseudomonas spp.
↑ Bacillus spp.
↑ Burkholderia spp.
↑ Prevotella
↑ Acidaminococcus

Immunotolerance Barrier failure Angiogenesis
IDO1 inhibition
↑ immunosuppressive kynurenine derivatives
↓ Th17 cells
Bacterial translocation

Higher risk of non-
AIDS comorbidities

(15, 53, 106,
107)

HPV N.f.
Increased kynurenine derivatives increase oxidative stress HPV malignant

transformation to
cancer

(108)

IL-10
signaling
pathway

HIV ↑ Bacteroides fragilis

Immunotolerance: Polysaccharide A production TLR-2 activation IL-10
expression
Systemic immune activation.
Inflammation

Periodontitis
Higher risk of non-
AIDS comorbidities

(53, 109–112)

HPV ↓ Lactobacilli
IL-10 increase breaks the balance with IL-2 leading to Th2 dominance Immunosuppression

state leading to
progress of lesions

(113)

Choline
metabolism

HIV

↑ Actinobacteria
↓ Bacteroidetes
↑ Firmicutes
↑ Gammaproteobacteria
↑ Clostridium XIVa
↑ Faecalibacterium spp.

Endothelial dysfunction Inflammation. TMAO production.
Monocyte activation

Increased
atherosclerosis and
cardiovascular risk

(114–116)

HPV -
Aberrant DNA methylation associated with HPV infection. Cervical

tumorigenesis
(117)

Activation of
adaptative
immunity

HIV ↑ Bifidobacteria

CTL responses Epithelial cell turnover Immunomodulatory strain-
dependent effects
↑ Dendritic cell activation
↑ CD8+ T cell priming and accumulation in the tumor
microenvironment
↑ Cross-reactivity with tumor antigens

Improved immune
recovery under ART

(118, 119)

HPV
↓ Lactobacillus dominance
↑ Anaerobes and diversity

Recruitment of immune cells Bacterial vaginosis
(BV)

(120)

Chemotaxis

HIV
↓ Akkermansia
muciniphila

Host immune regulation
↓ Mucin degradation.
Higher systemic inflammation (sCD14, IP10) and intestinal
inflammation (fecal calprotectin)

Higher risk of non-
AIDS comorbidities

(121, 122)

HPV
↓ Lactobacillus dominance
↑ Anaerobes and diversity

Reduction in the viscosity of the cervicovaginal fluid (CVF), due to the
production of mucin-degrading enzymes

Breaking the first line
of defense against
exogenous pathogen
colonization.

(120)

Cell
proliferation

HIV ↑ Fusobacterium spp.
Cell proliferation and oncogenesis: TLR-4 signaling. PPAK1 cascade.
Nuclear factor KB induction

Impaired immune
recovery after ART

(29, 123)

HPV

↑ Lactobacillus inners
↑ Gardnerella vaginalis
↑ Atopobium vaginae
↑ Sneathia

Persistent coinfection with other bacteria is linked to epigenetic
changes, oncogenes expression, non-coding RNA regulations, p53
deregulation, etc. But no direct experimental evidence for bacteria other
than C. thrachomatis and found LPS from bacteria in exosomes

Association with
cervical intraepithelial
neoplasia (CIN) to

(124)

(Continued)
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of DNA or RNA, either of human or bacterial origin, after viral

infections. However, since this cannot capture the whole picture of

the complex interactions between the virus and the host, mass

spectrometry started being used to study the complete proteome,

secretome, and metabolome, and even for bacterial identification in

clinical microbiology (133). In addition, some studies have used these

technologies, even performing integration of some of them (134), to

study the role of the microbiome in the inflammation state produced

by HIV infection (20) and reviewed in (24, 46, 135) and in

pathogenesis and progression to cancer after HPV infection (74,

93, 136).

Improvements in meta-omic techniques have mainly been used to

study the totality of the aimed compounds (genes, proteins, and

metabolites) in a set of commensal organisms (metagenomics,

metaproteomics, and metametabolomics). Currently, sophisticated

versions of these methodologies are becoming more commonly

used. For example, shallow metagenomics sequencing is being used

to obtain strain-level resolution (137). This, together with the

development of advanced computational methods (138), is

increasing our resolution allowing the identification of novel strains

with probiotic potential, an unmet need by previous studies with

prebiotics or probiotics in PLWH (39, 64). Other thriving methods

include single-cell technologies, which allow isolating, culturing, and

characterizing the genomes and transcriptomes of individual

microbes in complex communities (139), or tridimensional

mapping of the host microbiota interactions within the mucosa,

which is advancing our understanding of the microbiota-immune

response interactions to the next level (140).
3.2 From hypothesis-generating
microbiota studies to hypothesis-
driven and applied research

Inside and outside the HIV and HPV fields, the lack of

methodological standardization is one of the main limitations in the

study of the microbiome and challenges reproducibility (141). For

example, a comparison of the clinical impacts of the use of probiotic

showed very different results (142) (see Table 2). Although, as discussed

before, technologies are improving, and now is possible to perform

whole genome shotgun sequencing to enhance the detection of
Frontiers in Immunology 05
diversity, prediction of genes, and accuracy of bacterial species

detection (166). However, it is also important to complement the

studies by using omics other than genomics to obtain information at

the functional level, although there are also challenges regarding the

standardization of these methodologies (136, 167, 168). One of these

challenges is the integration of datasets (169), which has led to the

proposal of the use of machine learning and artificial intelligence for

this task, which also have intrinsic limitations (170).

Omic technologies result in compositional profiles and large

taxonomic lists for which we lack culture methods in most cases.

‘Culturomics’—a high-throughput culture method— andMALDI-TOF

mass spectrometry allow the growth of fastidious bacteria together with

the identification of several bacterial species and longer incubation

periods. However, these techniques have only allowed us to partially

overcome the previously mentioned limitations (171). Furthermore,

validation of results obtained from the omic techniques is challenging

since, in most of the cases, if validation is performed, only a few of the

most statistically significant hits are selected for validation. Even when

results are validated, any assumption made or reductionist approach

used in the experimental design need to be revisited in order to ensure

that the results are physiologically relevant and translation to their

clinical use can be performed.

In the case of microbiota studies, omic techniques may often

result in compositional profiles and large taxonomic lists for which we

lack culture methods in most cases. ‘Culturomics’—a high-

throughput culture method—allows the growth of fastidious

bacteria and more extended incubation periods, and MALDI-TOF

mass spectrometry allows the identification of several bacterial

species. However, these techniques have only allowed us to partially

overcome the previously mentioned limitations (171).

Thus, the previously described shortcomings pose an enormous

challenge to unleashing the clinical potential of microbiota role in

medicine. If we want to assess the causal-effect relationship better and

move towards applied microbiome research, it will be necessary to start

with a clinical question and use the most consistent methodology to

perform hypothesis-driven research that identifies convincing

interactions and confounders. For this, we will need to define first the

best hypothesis inspired by a clinical question. Then, from the hypothesis,

we should carefully design the experimental approaches (e.g. different

omics) and analysis (e.g. network models) and further perform

experimental validation, including controls and complementary data
TABLE 1 Continued

Pathway/
Function Virus Bacteria

implicated Biological Mechanism Clinical
Consequences References

↑ Fusobacterium
↑ Chlamydia trachomatis

carcinoma in situ
(CIS)

Inflammation.
Antitumoral
immunity

HIV ↑ Lactobacillales
Enhanced antitumor response: Upregulated IFN-g, GZMB, and PRF1
expression in CD8+ T-cells

Improved immune
recovery after ART

(20, 123, 125)

HPV –

The interplay of viral oncoproteins and inflammatory cytokines leads to
continuous immune evasion, which promotes the progression of the
lesion. Also, increased oxidative stress has been attributed to
inflammation

Progression of the
initial lesion to
malignancy

(126–129)
↑ increased abundance and ↓ decreased abundance.
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sets (e.g., qPCR to confirm sequencing, immunoblot to confirm

proteomic, fluorescence resonance energy transfer to confirm AP-MS

data, infection kinetics, results validation in external cohorts, etc).

For example, we recently sought to solve a clinical need using

applied microbiome research. We asked whether the microbiome

could be harnessed to improve the prevention of anal precancer—a

leading neoplasia in PWLH— for which we need better screening

tools. After investigating a discovery and a validation cohort of at-risk

patients, we discovered twelve proteins, previously reported to be

associated with cancer progression, that were overexpressed in the

anal bacteria from subjects with precancerous lesions. Since these

proteins contribute to succinyl-CoA and cobalamin production, we

measured the intracellular bacterial concentrations of these

metabolites. We discovered that cobalamin and succinyl-CoA were

increased in the anal microbiome of patients with anal precancer and

overperformed the reference test—anal cytology—. Furthermore, we

validated the findings in an external validation cohort, and we

demonstrated greater in vitro production of succinyl-CoA and

cobalamin in bacteria associated with HSIL or cancer vs. those

presumably protective (172). Therefore, starting from a clinical

question and integrating data from different omic levels we were

able to define a new microbiome-based tool that could help in the

prevention of a common cancer in PLWH by discovering two

powerful biomarkers of anal precancer that could improve anal

cancer prevention.
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4 Experimental models commonly used
to study the effects of microbiota on
HIV and HPV infection

To overcome the limitations mentioned before and demonstrate

the mechanisms driving the effects of the microbiota on HIV and

HPV infection, hypothesis-driven experimental designs based on the

information generated from the omics technologies should be

encouraged. Some leading studies using this approach have been

performed in HIV and HPV fields and are summarized in Table 2.

Although some improvements are being established in the

experimental designs to demonstrate mechanisms led by microbiota

components, there are still several limitations. These include a lack of

standardization of the methods for obtaining the samples;

understanding of differences on the effect of microbiota

compartments (such as feces, tissues or EVs) and finding their

correct origin (173); or extrapolation of findings in other model

organisms, such as rodents (174), to human diseases, that are

unrealistic. Furthermore, the in vivo models have been helpful in

the past in proving the functional consequences of the microbiota.

However, the differences between the animal models and the human

anatomy, immune system, and genetic background are significant,

and the type and mechanisms of interactions of the host with the

pathogens are hard to reproduce, even in humanized mice models.
TABLE 2 Summary of the experimental models used to study the effects of microbiota on HIV and HPV infection.

Virus Experimental model Mechanism identified References

HIV

Immune cells stimulation with fecal bacterial communities isolated from HIV
patients

Enteric microbiota of untreated HIV-infected subjects induces
monocytes and T-cell activation.

(41, 143)

Immune cells stimulation with LPS from specific bacteria, such as
mycobacteria or Holdemanella, related to HIV infection

Chemokines and IL-1b released by macrophages. T-cell
activation. Macrophages tolerance. Higher frequency of CCR5
+CD4+T cells.

(41, 144–150)

Effect of fecal microbial transplantation on immunity-related to HIV
Increased Th17 and Th22 cells and reduced CD4+Tcell
activation.

(67, 68, 151,
152)

Study of immune activation after fecal transplant in gnotobiotic mice of feces
from HIV-negative vs HIV-positive individuals

Non-significant differences (143)

Treatment of infection with extracellular vesicles (EVs) or outer membrane
vesicles (OMVs) derived from bacteria such as Lactobacilli or Neisseria
meningitidis

Demonstrated direct interaction of EVs with viral proteins (153–157)

Characterization in vitro of the anti-HIV properties of differentially detected
candidates by metabolomics

Dipeptides bind to HIV, acting as antivirals and supporting
Prevotella growth.

(158)

HPV

OMVs containing HPV antigens create an antitumor vaccine
OMVs stimulated the expression of dendritic cell maturation
markers and interferon-gamma-expressing splenocytes.

(157, 159,
160)

Quantification of bacterial release from vaginal swabs Differential results depending on the used swab (161–163)

Coinfections of bacteria, protozoan, and viruses and quantification of
inflammatory cytokines

Galectin-mediated immunity dysregulation (164)

Three-dimensional cervical epithelial cell model to study bacterial vaginosis
Identification of some metabolites acting as inflammatory
mediators

(165)
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Even more, if we only look at studies based on the human model, we

still find difficulties in setting up proper validations and

standardizations. For example, a significant challenge for human

studies is controlling for confounding factors beyond age, sex, and

sexual preferences (175), such as host genetic, diet, life style or

presence of other pathologies or infections.
5 Future perspectives

Although in the last decade, we have witnessed remarkable

advances in the field of the microbiota in HIV and HPV infections,

we still need to improve our understanding of the specific

mechanisms by which the microbiota influences HIV and HPV

pathogenesis and how effectively modulate the relevant microbiota-

host interactions through targeted interventions. The current state-of-

the-art suggests that the microbiota could offer relevant clinical

applications for HIV and HPV diseases that might prove suitable to

stratify the risk of HIV acquisition (reviewed in (176)), helping to the

diagnosis of comorbidities (e.g., tuberculosis or anal dysplasia). This

field might also advance the therapeutic options for HIV and HPV,

including the development of new treatments or adjuvants through

probiotics or postbiotics that could lead to more personalized

medicine approaches, including targeting chronic inflammation

(67), enhancing immune recovery (60), or facilitating HPV

clearance (177). However, if we want to translate our current

knowledge into clinical applications, we will have to overcome

several methodological challenges, such as standardization of the

methods to assess the species level and identify unknown

microorganisms that represent today a significant fraction of the

microbiota. Advancing culturomic approaches, microbiome-imaging

techniques, multiomic integration, and validating the findings in

hypothesis-driven experimental designs will also help the field to

move forward. Finally, we will need to validate the conclusions from

translational research in observational or interventional studies

designed ad hoc to test previously generated hypotheses. While one

decade of research has paved the road for investigating clinical

applications of the microbiome in HIV and HPV infections, we
Frontiers in Immunology 07
face the challenge of learning how to harness the microbiome in

medicine in the next years.
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JF, Bargiela R, et al. Gut bacteria metabolism impacts immune recovery in HIV-infected
individuals. EBioMedicine (2016) 8:203–16. doi: 10.1016/j.ebiom.2016.04.033

119. Deusch S, Serrano-Villar S, Rojo D, Martıńez-Martıńez M, Bargiela R, Vázquez-
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