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Introduction:High pacing frequency or irregular activity due to arrhythmia produces
complex optical mapping signals and challenges for processing. The objective is to
establish an automated activation time-based analytical framework applicable to
optical mapping images of complex electrical behavior.

Methods: Optical mapping signals with varying complexity from sheep (N = 7)
ventricular preparations were examined. Windows of activation centered on each
action potential upstroke were derived using Hilbert transform phase. Upstroke
morphology was evaluated for potential multiple activation components and peaks
of upstroke signal derivatives defined activation time. Spatially and temporally
clustered activation time points were grouped in to wave fronts for individual
processing. Each activation time point was evaluated for corresponding
repolarization times. Each wave front was subsequently classified based on
repetitive or non-repetitive events. Wave fronts were evaluated for activation time
minima defining sites of wave front origin. A visualization tool was further developed
to probe dynamically the ensemble activation sequence.

Results:Our framework facilitated activation timemapping during complex dynamic
events including transitions to rotor-like reentry and ventricular fibrillation. We
showed that using fixed AT windows to extract AT maps can impair interpretation
of the activation sequence. However, the phase windowing of action potential
upstrokes enabled accurate recapitulation of repetitive behavior, providing
spatially coherent activation patterns. We further demonstrate that grouping the
spatio-temporal distribution of AT points in to coherent wave fronts, facilitated
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interpretation of isolated conduction events, such as conduction slowing, and to derive
dynamic changes in repolarization properties. Focal origins precisely detected sites of
stimulation origin and breakthrough for individual wave fronts. Furthermore, a
visualization tool to dynamically probe activation time windows during reentry
revealed a critical single static line of conduction slowing associated with the
rotation core.

Conclusion: This comprehensive analytical framework enables detailed quantitative
assessment and visualization of complex electrical behavior.
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1 Introduction

Chaotic electrical activity in the ventricles of the heart form the
precursor to sudden cardiac death, a major public health problem. Our
understanding of arrhythmic behavior and electrical remodeling in
cardiac diseases at the organ level continues to grow with
advancements of recording instruments. Optical mapping using
potentiometric fluorescent probes excels in the compromise over
resolution and imaging field of view (Himel and Knisley, 2007).
Yet, spatio-temporal complexity of electrical signals recorded
during chaotic electrical events such as in cardiac arrhythmias,
imposes constraints to accurately interpret the electrical behavior.
Increased frequency of activity often leads to concomitant slowing of
overall conduction, increased variance of conduction velocities and a
loss of synchronization (Kleber et al., 1986; Akar et al., 2007); the
latter, impacting negatively the signal amplitude (Fast and Kleber,
1995). Moreover, multiple complex arrhythmic patterns may co-exist,
originate from numerous sources and transition from one behavior to
another over time. As a result, algorithmic activation time (AT)
detection, visualization and interpretation are challenging and a
unified approach encompassing a broad range of signal
complexities is lacking.

The first 20 s following the induction of ventricular fibrillation in
pig showed chaotic electrical impulse propagation evolving towards
steadily more organized states (Rogers et al., 1997a; Rogers et al.,
1997b). To understand and quantify waveform complexity, a
multiplicity metric was developed to determine the repetitiveness of
propagating wave fronts, which are dependent on their orientation,
size and regularity. Chen et al. (2000) later showed using frequency
analysis and phase mapping that regions of the ventricles in rabbit
maintained periodic activity at frequencies exceeding the surrounding
tissue. From this, they determined that high frequency periodic
sources were responsible for driving complex fibrillatory behavior
in the periphery, underlying ventricular fibrillation. However, the life-
time of rotors when measuring from the epicardial surface are variable
and rarely lasting more than two rotations in healthy myocardium
(Kay et al., 2006). In this case, rotors were identified as the point of
phase singularity, where contours of all phases converge to form the
center of rotation (Winfree, 1989). More recently, it was
demonstrated that the point of phase convergence could also
assume a line, which aligned with functional gradients or structural
boundaries (Arno et al., 2021). The wavelet hypothesis was evaluated
using in silico models and suggested that multiple wavelets could
be sustained in homogeneous tissue, but preferentially block or lead
to wave break with increased heterogeneity (Fenton et al., 2002).
Short-lived and intermittent renewal of rotor sources or the

constant wave break and regeneration of wavelets describe at least
part of the fundamental complexity of fibrillatory behavior. But this
is further confounded in tissue by structural heterogeneities,
particularly in pathological conditions resulting in increased
electrical uncoupling.

Phase analysis of electrograms and optical mapping studies of
tachyarrhythmic events has proven effective at identifying the
substrate region implicated in classical rotor theory, but is less
adapted currently for applications to assess macroreentry or non-
reentrant events. Frequency analysis requires multiple electrical events
to determine the periodicity and regularity of activity. However there
remains an unmet need to provide a unified approach to spatially
resolve electrical propagation patterns and to investigate wave front
behavior in an individualized manner, irrespective of the underlying
mechanism.

AT mapping has been used successfully to track critical excitatory
pathways underlying stable ventricular tachycardia (Takahashi et al.,
2004). Child et al. (2015) developed the reentry vulnerability index
from an activation-repolarization time metric between the proximal
and distal ends of the same wave front. Requiring only a short-coupled
stimulation protocol, the vulnerability index provided maps of the
relative probability of reentry without needing to induce the
arrhythmia. Focal sources of activation can also be readily located
as local sites of AT minima. Although surface mapping methods
cannot distinguish between focal sources originating from the mapped
surface or deeper layers and are therefore termed sites of activation
breakthrough. That being said, optical mapping signals originate from
a near-surface tissue volume and are therefore an integral of electrical
responses from several cell layers (Fedorov et al., 2010). As a result,
optical action potential upstroke morphology depends on the
sequence that the different cell layers are activated and provides an
approximation of the subsurface electrical wave orientation (Hyatt
et al., 2008). Moreover, the depth contribution of optical signals can be
varied by modifying the wavelength of excitation light (Walton et al.,
2010); A palette of voltage-sensitive dyes extending in to the near-
infrared range continue to be developed (Matiukas et al., 2007). The
versatility, effective resolution, signal morphology and additional
depth information afforded by optical mapping necessitates a
dedicated framework for analysis of complex tachyarrhythmia.

The objective of this study was to establish a novel analytical
framework for assessing electrical complexity recorded by optical
mapping. Specifically, aims were to: Conserve image resolution;
avoid temporal signal complexity reduction; conserve multiple
upstroke events; To achieve spatial coherence of AT; To perform
classification of repetitive/non-repetitive activity and to spatially
classify wave fronts by their source. We present a comprehensive
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pipeline based on a novel unified method to assess the activation
sequence adapted for arrhythmic and transitional electrical behavior.
We compared experimental recordings with an in silico model of
reentry induced in a three-dimensional ventricular slab geometry.
Optical mapping signals were derived from the in silicomodel to apply
processing and analyses on signals with appropriate morphology,
consistent with optical mapping experiments (Hyatt et al., 2005;
Walton et al., 2012).

2 Methods and materials

2.1 In silico model

A finite element model of a three-dimensional ventricular wedge,
measuring 5 cm × 5 cm in the epicardial plane and 1 cm transmural
thickness, was created at a spatial resolution of 200 µm isotropic. Fibre
orientation was set to vary by 120from the endocardial to the
epicardial surfaces. The Ten Tusscher ionic model (Ten Tusscher
and Panfilov, 2006) was implemented to simulate ventricular
arrhythmia. Monodomain simulations were performed using the
openCARP simulation environment (Plank et al., 2021) with
baseline conductivity values of 0.03, 0.02 and 0.02 S/m for
longitudinal (σL), transverse (σT) and transmural (σS) directions.
Using time steps of 0.05 ms throughout, a planar wave was
generated by stimulating one transmural surface of the slab with
shortening coupling intervals at 0, 325, 525 and 715 ms. A rotating
wave was then generated by applying a cross field stimulus during the
recovery phase of the central portion of the model at 860 ms
(Skouibine et al., 2002). To emulate experiments and signal
morphology specific to optical mapping, the cardiac arrhythmia
research package (Vigmond et al., 2003) was used to generate epi-
fluorescent optical signals from electrical simulations, as described
previously (Bishop et al., 2006).

2.2 Tissue acquisition

Hearts were obtained from sheep (N = 8, 2 years old) weighing
40–50 kg in accordance with the guidelines from Directive 2010/63/
EU of the European Parliament on the protection of animals used for
scientific purposes and the local ethical committee. Healthy sheep (N =
7) and a sheep (N = 1) with chronic myocardial infarction following
coronary embolization (see Pallares-Lupon et al., 2022) were
premedicated with ketamine (20 mg/kg) and acepromazine
(0.02 mL/kg), anesthesia was induced by propofol (2 mg/kg) and
maintained under isoflurane, 2%, in air/O2 (50/50%) after
intratracheal intubation. Sheep were euthanized by intravenous
injection with pentobarbital (30 mL/50 Kg) and hearts were rapidly
excised, cannulated and flushed with cardioplegic solution, containing
(mM): NaCl, 110; CaCl2, 1.2; KCl, 16; MgCL2, 16; NaHCO3, 10 and
glucose, 9.01 at 4°C.

2.3 Preparations of sheep myocardium

Coronary-perfused ventricular wedges were prepared by
dissection in to two different configurations, based on the major
coronary artery perfused: right ventricle (right coronary artery) and

left ventricle (left anterior descending and circumflex arteries
(Moreno et al., 2019)). In each case, cannulation of the coronary
circulation was applied at the ostia, arising from the aortic root.
Perfusion leaks at cut surfaces were carefully tied-off and
preparations mounted on to a frame, exposing the endocardial
surfaces. Wedges were submersed and perfused with a saline
solution gassed with 95%/5% O2/CO2 and containing (mM):
NaCl, 130; NaHCO3, 24; NH2PO4, 1.2; MgCl2, 1; glucose, 5.6;
KCl, 4; CaCl2, 1.8, at 37°C and pH7.4.

2.4 Optical mapping

Preparations were imaged using optical mapping of the
endocardial surfaces after being mechanically-uncoupled using
15 µM blebbistatin, and loaded with the voltage-sensitive dye, Di-4-
ANEPPS (Cytocybernetics, United States). Endocardial surfaces were
illuminated with monochromatic LEDs at 530 nm (Cairn Research
Ltd, Kent, United Kingdom). Optical images (100 × 100 pixels) of
signals passed through a 650 ± 20 nm band-pass filter were
acquired using a Micam Ultima CMOS camera (SciMedia
United States Ltd, CA, United States) at 1 kHz with a spatial
resolutions of 0.7 × 0.7 mm.

2.5 Pacing protocols

To demonstrate the analysis pipeline, an optical mapping
acquisition for the induction of reentry composed of a single rotor
was recorded from the right ventricle. Figure 1A shows two parallel
4 cm platinum line electrodes (Cardialen Inc, United States) were
sutured to the endocardial surface at the atrioventricular ring and
along the apico-anterior border of the preparation (approximately
5 cm apart). The preparation was paced by a train of pulses at twice the
threshold at a fixed frequency of 2 Hz from the posterior border.
Depolarization and repolarization fronts were near planar in between,
and perpendicular to the line electrodes. With a delay of 220 ms from
the last planar stimulation pulse, an electrical cross-field shock at 80 V
was applied between the parallel electrodes, creating a voltage gradient
of 16 V/cm. This was found to fall in the critical window of
repolarization for induction of self-sustaining arrhythmic activity
by the cross-field shock-on-T wave mechanism (Frazier et al.,
1989) (Figure 1B). Following tachyarrhythmia induction, pacing
was discontinued.

To observe transitioning dynamic electrical behavior from basal
pacing rates to ventricular arrhythmia, left ventricles from a set of
5 sheep were optically mapped during increasingly shortened coupling
intervals of pacing (S1S2S3S4 protocol). Following a stimulus train of
ten beats (S1) at a frequency of 1.5 Hz, short coupled pulses were
delivered just above the effective refractory period (ERP), with a
precision of 5 ms. The ERP was determined by testing stimulation
responses of tissue at decreasing coupling intervals starting from the
interval of the preceding stimulation pulse. Therefore, S2 responses
were tested for the following intervals (ms): 667, 600, 500, 450, 430,
410, 400, 390, . . ., decreasing by 10 ms until loss of capture. Intervals
would then be stepped up 5 ms at a time until capture was
reestablished. The pacing regime was continued, until a maximum
S4 short-coupled stimuli and either ventricular fibrillation was
initiated or a loss of capture.
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2.6 Signal processing methods

All pre-conditioning and post-processing procedures were
performed using custom-built software developed in our lab using
the programming environment PV wave. Each specific processing and
analytical procedure described below is detailed using universal
pseudocode in the Supplementary Material.

2.7 Pre-conditioning of optical mapping
signals

We consider optical mapping data as a time-series containing T
image matrices, each with dimensions X, Y. Prior to initiating the
analysis pipeline described herein, all voltage-sensitive fluorescent
signals (F) first underwent filtering using a forwards-backwards
butterworth digital filter with a low-pass cut-off at 60 Hz, spatial
averaging using a 3 × 3 pixel uniform average filter and a 3-frame
uniform running-average temporal filter. Signals were inverted and
the magnitude of fluorescent changes normalized from 0 to 1 in each
pixel (Figure 1C). A region of interest (Figure 1A) was defined for each
experiment to identify foreground pixels and exclude background
pixels containing noise (set to zero).

The tachyarrhythmia induced by cross-field shock-on-T example
(Figure 1B) is used to illustrate the signal processing pipeline proposed
herein. Phase mapping of the tachyarrhythmia showed a circuitous
activation pattern (Figure 1D; Supplementary Video S1), which
appeared to repeat over several consecutive APs (Figure 1E). ATs
were sought from optical mapping signals during the arrhythmic
episode using a uniform time window across all pixels (green shaded
region in Figure 1E) for comparison with the proposed novel
approach. ATs derived from a uniform window, uAT, failed to
recapitulate a circuitous activation sequence (Figure 1F). The
uniform time window was manually validated to incorporate the
beginning of the earliest AP upstroke and the end (peak) of the
latest upstroke during a single reentrant cycle.

2.8 Novel post-processing pipeline for
analysis of complex optical mapping signals

The proposed method herein is a novel framework for AT-based
processing and analysis of complex signals. The comprehensive
pipeline is summarized in Figure 2 in to three main sections: 1)
Deriving AT; 2) Associating AT points to common wave fronts and
3) classification and quantification of electrical behavior.

FIGURE 1
uAT mapping extracted from a fixed time window during reentry. (A) Background optical mapping image of the endocardial surface from a coronary-
perfused right ventricle. The region of interest lying in between two line electrodes for reentry induction is highlighted by blue shading. (B) Example pre-
processed optical mapping signals extracted from the full region of interest. (C) A snapshot of the dynamic voltage-dependent optical signal (F/dF) during
reentry [time indicated by the red dashed line in (B)]. (D) An instantaneous phase map derived using the Hilbert transform showing evidence for a
repetitive propagating wave front [red dashed line in (B)]. (E) Example pre-processed optical mapping signals extracted from pixels along the circular black
arrow in (D). A green shaded region indicates a uniform timewindow used to derive uAT points using the uniformwindowmethod for calculation of activation
time. The red arrow shows the principle sequence of activation. (F) uAT map corresponding to the fixed time window shown in B during reentry. Isolines are
spaced 10 ms.
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2.8.1 Deriving AT
2.8.1.1 Pixel-independent optical action potential upstroke
windowing

Time windows centered on action potential upstrokes were sought
in a non-uniform, pixel-independent manner. All signals were
temporarily mean-subtracted for computation of phase (φ) using a
Hilbert Transform, with a negative phase-shift of 90°. Considering
φ ranges from 0 to 2 π, taking φ>π, provided positive deflections of
φ coinciding with, and encompassing action potential upstrokes
from an experimental recording (Figure 3A) and a simulation of
myocardial reentry (Figure 3B). Deriving φ using the Hilbert
Transform is robust for periodic signals but fails when signals
are non-periodic. Therefore, phase computation was applied to
signal segments (Supplementary Figure S1). Further splitting of
segments and phase computation was applied iteratively until
segments reached a minimum duration of 128 ms. The resultant
phase of the full-length signal was determined by assigning a value
of 2π at all instances where φ>π was observed in any corresponding
segments. To avoid overpopulation of false positive phase
detection, a second filtering step was applied. Windows where
φ = 2π were rejected if the corresponding optical signals showed
linear regression ≤0 or a maximal derivative below a predefined
derivative threshold (θ(dF⁄dt)), defined either manually, or
through automation (Section 2.8.1.2 Automated definition of a
signal derivative threshold for AT). The time of maximal derivative
of fluorescent signals during each phase-derived upstroke window
defined AT using the novel method (pAT).

2.8.1.2 Automated definition of a signal derivative threshold
for AT

Derivatives of optical mapping signals are highly susceptible to
influences by noise. Thus a minimum, θdF⁄dt (>0) should be assigned to

increase the probability of detecting true depolarizing events. Either a
user-defined threshold can be employed based on the impact of
background noise or alternatively, we propose an automated
approach that approximates a single derivative threshold value that
can be applied across all unmasked pixels and upstroke windows. The
maximal derivative for each phase-derived time window from each
pixel were identified. To reduce the influence of noise, outliers of
maximum derivative values were removed using the False Discovery
Rate method (Motulsky and Brown, 2006), where θ′dF⁄dt equals the
maximum desired false discovery rate of 1%.

2.8.1.3 Defining AT
The fundamental approach of defining pAT by the maximal

derivative is the same as described for conventional methods
(Walton et al., 2012), however we apply two additional
constraints. These are: 1) That ATs are sought on a pixel-
independent and upstroke window-independent basis and 2)
Upstroke morphology is evaluated to identify a maximum of two
AT points per upstroke. For the latter, Upstroke morphology was
characterized from derivative profiles of the upstroke signal. The two
largest first-order derivative maxima exceeding θ′dF⁄dt were
considered potential AT points (Figures 3A, B). If two potential
AT points were detected, the signal derivative was further evaluated
to determine of the derivative maxima are attributed to the same or
separate depolarization events. The valley depth of the signal
derivative between the two largest derivative maxima was
measured relative to the amplitude of the smaller of the two
maxima. The current study assumed a minimum valley depth of
75% to consider the upstroke morphology to be the result of two
independent activation events (Fedorov et al., 2010). Otherwise, only
the time of the largest derivative maxima was determined to be
a pAT.

FIGURE 2
Schematic workflow of the novel pAT mapping framework.
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To store and manipulate pAT values, a new pAT matrix with
dimensions X,Y,T was considered. For each pixel and upstroke
window pAT values were soughtafter as described above and the
pAT matrix was updated in the corresponding pixel (x,y) and frame
corresponding to pAT, t, with a value of 1.

2.8.2 Associating pAT points to commonwave fronts
Wave fronts were identified by grouping spatially and

temporally associated pAT points in the pAT matrix using an
adapted connected components algorithm. A wave front was
defined as a single object composed of all propagating fronts

FIGURE 3
Defining phase window-independent upstroke morphology and pAT using the signal derivative. (A) Extraction of the pre-processed optical action
potential signal during reentry from pixel coordinate (20,10). Corresponding phase windows of pAT are superimposed. The derivative of the corresponding
signal is shown. Pronounced derivative peaks falling within phase windows indicate pAT (red lines). (B) Similarly, an optical action potential signal and
corresponding derivative extracted from an in silico model of reentry. (C) Membrane voltage (Vm) map extracted from the epicardial surface of the
electrical in silico model at the time indicated by a black arrow in (B). (D) Corresponding F/dF computed from the in silico model. In silico optical signal in B
extracted from pixel indicated by +.
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that spatially and temporally converge. With this definition, a single
wave front therefore may originate from multiple source locations.
Connectivity within the pATmatrix is assessed by iterating through
pAT points. Connectivity in the spatial domain only considered the
immediate neighboring pixels in an 8-point neighborhood.
However, wave front propagation from one pixel to its neighbor
can be susceptible to conduction delays far exceeding a single time
frame (Figure 4A). This required determining the maximum pAT
gradient that could be considered as slowed but successful impulse
propagation versus conduction block. A threshold of the delay
defining conduction block (θt,CB) may be a user-defined parameter,
based on known literature of the species and conditions applied.
However, we propose an alternative method to compute θt,CB
automatically based on real experimental conditions and
individual behavior of the tissue. First we describe how θt,CB is
obtained automatically, followed by the procedure to derive
adaptive connected component labels of individual wave fronts.

2.8.2.1 Automated definition of the conduction block
parameter

The automated conduction block parameter is defined using an
experiment-specific reference acquisition during progressively
shortened stimuli (Section 2.5 Pacing protocols). An automated
conduction block parameter, θt,CB, assesses local conduction delays
in an 8-point neighborhood. The parameter θt,CB was defined as the
maximum conduction delay (to the nearest 1 ms) observed with a
number of occurrences equal to the number of short-coupled stimuli
applied (i.e., for a S1S2S3S4 stimulation protocol, θt,CB was defined as
the largest common activation gradient observed between four pixel
pairs during all stimuli.

2.8.2.2 Connected components labelling of wave fronts
A connected components labelling scheme was applied to the pAT

matrix (Figure 4). The following iterative procedure was applied
incrementally (looping fastest through X, then Y, then T) across all
detected pAT points.

1) Assign label value 1 to the element corresponding to the first
indexed pAT point.

2) Let the current pAT point be found at (x, y, t). Evaluate
connectivity with adjacent unlabeled pAT points in a local 8-
point spatial neighborhood and over the time interval extending
from t–θt,CB to t + θt,CB. In the absence of unassigned pAT points,
go directly to (3). If pAT points not yet assigned a label exist, assign
the same label value as pAT (x,y,t), and add the neighboring pAT
point coordinates for matrix X,Y,T as the first elements in a queue;
then go to (3).

3) Remove the original indexed pAT element from the queue and
repeat (2) until there are no more elements in the queue.
Go to (4).

4) Increment label by 1. By looping fastest through X, then Y, then
T to the next unassigned pAT point of the pAT matrix; then
go to (2).

2.8.3 Characterisation and classification of electrical
behavior
2.8.3.1 Mapping wave front pAT

Each wave front identified by their unique label number was
assessed independently for activation and repolarization distribution
characteristics. Activation time maps of dimensions X,Y were derived
for individual wave fronts. Iterating through each pixel, the earliest
pAT point with the corresponding wave front label was plotted on the
wave front label AT map. In cases where biphasic upstroke
morphologies identified a second short-coupled pAT point (Section
2.8.1.3 Defining pAT), a second wave front label AT map was created
to conserve information regarding local disassociated conduction
patterns.

2.8.3.2 Mapping wave front repolarization characteristics
Repolarization time (RT) was similarly identified in a pixel- and

label-wise manner. From any given pAT, the corresponding optical
action potential was evaluated for the signal’s recovery from
excitation. The RT is measured from a user-defined percentage

FIGURE 4
Adapted connected components algorithm for wave front clustering. (A) A schematic diagram illustrates pAT points on a space-time plot. In the example,
wave front label assignment has beenmade for all pAT points in the first 4 frames to label #1. Let the current pAT point be evaluated for connectivity be at pixel
4, frame 4 on the space-time plot. The red box illustrates the space-time bounds of eligible connectivity. In this case, the currently unassigned pAT point at
pixel 5, frame 7 lies within the connectivity boundary and will be assigned to wave front label #1. (B) A spatio-temporal distribution of pAT points for the
first 4 s of pacing and reentry induction in experiments (upper panel). pAT points are assigned colors based on their wave front label assignment (lower panel).
(C) Similarly, pAT points of the in silico model from the moment of reentry induction (upper panel) and wave front label assignment (lower panel).
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drop in signal amplitude from the action potential peak (for example,
80% of repolarization). The time window to search for RT was
constrained to APD limits (APD’min and APD’max) measured
from the earliest pAT of the corresponding action potential.
Provisionally, limits used were user-selected for suitability to the
species, state and experimental conditions implemented. However,
for any individual wave front, a second set of minimum andmaximum
action potential duration limits (APD”min and APD”max) were
established for the nth pAT. Universal psuedocode is provided in
the supplemental materials detailing APD”min and APD”max
definitions. Within the refined APD limits the RT was determined
based on the normalized signal amplitude of the full analyzed time
window. It should be noted however that baseline elevation is a
common occurrence when electrical activity becomes increasingly
dyssynchronous at a local level. Therefore, signals during episodes of
ventricular fibrillation, and particularly those capturing a transition from
stable rhythm to fibrillatory behaviormay not necessarily repolarize to the
same baseline as signals during non-arrhythmic events. Therefore signals
during arrhythmia initiation may have dynamic baselines, rendering the
true level of repolarization challenging to define. For such cases, an
alternative definition of RT is proposed based on the time of minimum

signal derivative (Salama et al., 1989; Salama et al., 1994). Similar to pAT,
RTs for each wave front were projected to maps RT [X,Y]. Corresponding
APDmaps were subsequently derived by subtracting pAT from the RT of
corresponding pixels.

2.8.3.3 Classification of repetitive and non-repetitive wave
fronts

Wave fronts were assessed for repeated excitation of the same
regions of tissue over two or more cycles and wave front labels were
classified as either repetitive or non-repetitive, accordingly. Firstly, each
pixel of a given wave front was assessed for incidences of pAT repetition.
If a majority of pixels for a given wave front had repetitiveness of pAT
points, then this wave front was designated with a repetition
classification. This classification scheme imposed the following
criteria: A minimum cycle length between repetitive excitation
events, defined by ERPmin, was necessary to identify as persistent
behavior. ERPmin was defined as the shortest pacing interval during
reference recordings using S1S2S3S4 stimulation where available.
Otherwise, ERPmin was defined manually based on experience with
the relevant species and disease state. If the majority of pAT points do
not show repetition, impulse propagation events were assumed to self-

FIGURE 5
Spatial classification of activation sources. (A) A dynamic pAT map (left panel). (B)Origins of activation for breakthrough (red triangles) and passive (blue
triangles) sources. (C) Leading pAT points of the active wave front (pink squares). (D)Conduction vectors oriented in the direction of local propagation overlaid
on (C). (E) The conduction fields of leading pAT points. (F)Number of accumulated breakthrough or passive origins throughout wave front #4. (G) A pATmap
shows leading wave front pAT sites (purple squares) with conduction fields emanating from a single breakthrough (red triangles) and passively from
outside of the imaged field of view. (H) The leading wave front during tachyarrhythmia was also maintained by reentrant propagation through myocardial
pathways or regions of tortuous propagation. Yellow arrows indicate the local direction of propagation.
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terminatewithout re-excitation and the wave front was classified as non-
repetitive. It should be noted that classification at this stage does not
distinguish classical reentry from macroreentry, for example.
Similarly, there is no inference of the source of the identified
non-repetitive activity, which may have single or multiple
origins, or be driven by sinus rhythm/pacing/automaticity/etc.,
A detailed description in the form of pseudocode for the
implementation of the reentry classification procedure can be
found in the Supplementary Material.

2.8.3.4 Identifying origins of activation
Origins of activation presenting as sites of breakthrough on the

imaged surface were evaluated throughout the full duration of each

wave front label. Provisionally, pAT origins were found by
assessing the spatio-temporal distributions of pAT minima
(Supplementary Figure S3 for an example). Local pAT minima
were determined as sites absent of preceding pAT points during an
interval of ERPmin within the local 8 point neighborhood.
However, considering pAT minima within a local neighborhood
did not discriminate between multiple equivalent pAT points with
a common origin such as when broad regions of tissue are activated
simultaneously. These manifest either as a true breakthrough event
or as false-positives due to continuity of propagation from a source
peripheral to the region. Therefore false positive pAT origins were
assessed using a connected components analysis to spatially group
pAT minima points. Any of the points from the same pAT cluster

FIGURE 6
Dynamic mapping of experimental complex activity. (A) A spatio-temporal distribution of pAT points spanning pacing, induction and reentry phases of
the experimental optical acquisition. pAT maps were dynamically probed for wave front labels (#): 1 (B), 3 (C), 5 (D–F), 6 (G–K), and 7 (L). Lines of conduction
slowing where the direction of maximal gradient exceedes 50 ms are annotated (pink lines). pAT windows are labelled in panel (A) (red). (M) Lines of
conduction slowing superimposed. Lines are colored according to their average AT.
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with preceding pATs in the ERPmin interval and across an 8-point
neighborhood would identify the whole pAT cluster as a false
positive breakthrough sites.

Maps counting the occurrence of origins with dimensions [X,Y]
were generated for each wave front such that Originx,y = Originx,y + 1.
Complementary maps of the same dimensions were generated to show
the location of the breakthrough center. The centeral pixel of origin
pAT clusters were identified by averaging all horizontal and all vertical
components of pAT point coordinates in each cluster to define mean
focal origins.

2.8.3.5 Dynamically probing complex activation and
repolarization sequences

Thus far, we have shown how to compute and visualize activation
and repolarization sequences for individual labels. However, we should
consider that activation or repolarization events can occur
simultaneously for different wave fronts located in distinct regions.
Moreover, we only map the earliest pAT points for each wave front,
ignoring re-excitation in repetitive wave front labels. Therefore, a single
pAT map per wave front does not allow understanding of the
interactions between wave fronts or transitions to persistent
reentrant behavior. Moreover, a single AT map is not compatible
with reentrant activity, which inherently has strong overlap of the
activation sequence between cycles, particularly when wave fronts are
out of phase and discordant. Thus, a dynamic method was developed to
interrogate and visualize the ensemble spatial components in a stack of
maps, each covering sub-windows of time for activation or
repolarization sequences. Firstly, an image stack of dynamic maps
with dimensions [X,Y] were generated based on the following steps:
The first map was constructed by mapping the earliest time points
(using the desired pAT or RT matrix). From the earliest time point,
advancing in time through the matrix, the rest of the map was filled with
time points until the first instance where the map already contained a
time point. A newmap was initialized firstly by populating themapwith

all values from the previous map. Then the time of the next matrix time
points were found and replaced the values in the corresponding pixel of
the new map. A new map was again initialized with the previous map
values and the same procedure repeated until the full time window of
interest of the time point matrix was mapped.

2.8.3.6 Dynamic classification of activation sources of the
leading wave front

Thus far, wave front labels have been broadly classified by their
repetitive or non-repetitive sequences. But this is insufficient to
understand the mechanisms underlying the arrhythmic event, such
as myocardial reentry, macroreentry or short-coupled fast focal
behavior, for example. Moreover, tachyarrhythmia are often unstable
and evolving. Therefore a second detailed classification scheme is
proposed to assess spatially and temporally the underlying source of
activation for each pAT. In other words, which conduction source drove
local propagation? Potential sources of conduction included: Passive
activation from outside of the field of view; a breakthrough site on the
imaged surface; a myocardial reentrant source; sources emanating from
sites of discontinuous (tortuous) propagation and sources emanating
from a wave front boundary.

Each pAT was individually classified by activation source in
dynamic pAT maps (Figure 5A). Prior to classification, we
identified if origins of activation (see Section 2.8.3.4 Identifying
origins of activation) reflect breakthrough sites or origins of passive
activation located at the periphery of the masked region of interest
(Figure 5B). Pixels were selected for classification by identifying
maximum pAT values along the leading wave front edges
(Figure 5C). In addition, as shown in Figure 5D, local vectors of
conduction normal to pAT contours were determined across the
dynamic map using a finite different method (Cantwell et al., 2015).
In order to identify the origin of each pAT value, the full surface area of
tissue involved in the activation sequence (conduction field) leading
directly to each maximum pAT site were identified as follows:

FIGURE 7
Repetitive/non-repetitive classification of wave fronts. (A—D) Wave fronts shown in Figure 5 were classified as repetitive or non-repetitive. The spatial
distribution of the number of repetitions of activation for each wave front (upper panels) and their histograms (lower panels) are shown. Labels were classified
as repetitive if the histogram peak of activation repetitions was ≥1.
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1) The first pAT from the leading wave front, found at (x,y,t) was
annotated with a unique conduction field label.

2) Evaluate connectivity with adjacent unlabeled pAT points in a
local 8-point spatial neighborhood. Neighboring pAT values
within the time interval extending from t–θt,CB to t were
considered. In the absence of eligible pAT neighbors, go
directly to (3). Eligible pAT points were evaluated for
conduction vectors intersecting pAT (x,y,t). Unlabelled
intersecting pAT pixels were assigned the same conduction
field label value as pAT (x,y,t) and the neighboring pAT
point coordinates for matrix X,Y,T were added as the first
elements in a queue; then go to (3).

3) Remove the last pAT coordinates from the queue and repeat (2)
until there are no more elements in the queue. Repeat from (1) for
the next leading wave front pAT value.

A classification scheme determined the origins of each identified
conduction field driving the leading wave front pAT sites (Figure 5E).
Evaluating each pAT point in conduction field, identify pAT points
matching the following criteria for each class.

1) Breakthrough: One or more pAT points co-localize with one or
more breakthrough activation origins (Figures 5F, G).

2) Passive: One or more pAT points co-localize with one or more
passive activation origins (Figures 5F, G).

3) Myocardial reentry: Any number of conduction field pAT points
with neighboring pAT points of the same conduction field with
differences in pAT values > ERPmin (Figure 5H).

4) Tortuous propagation: One or more conduction field pAT points
with neighbors within the time interval extending from t–θt,CB to t,
but absent of intersecting conduction vectors (Figure 5H).

5) Wave front boundary: One or more conduction field pAT points
absent of intersecting conduction field neighbors and neighboring
pAT points from a different wave front label.

2.9 Statistical analyses

The performance and robustness of the signal processing
pipeline was evaluated by varying the signal-to-noise ratio (SNR)
of optical mapping recordings during tachyarrhythmia induction
(N = 5, see Supplementary Figures S4–S8 for examples at baseline
conditions). Non-parametric analyses of variance Friedman tests
were used to identify statistical differences of signal characteristics
and signal processing outputs across SNR populations. A multiple
comparison assessment was also performed to compare results for
individual SNR populations versus the baseline SNR population
(established using a cut-off of 60Hz for a butterworth lowpass
filter). Spatial correlations by pixel-to-pixel linear regression
analyses were used for simulation data to compare eAT with uAT
and pAT maps. Statistical differences of linear regression values
between uAT and pAT performance was evaluated using the paired
t-test. For all tests, statistical significance was determined when
p < 0.05.

3 Results

3.1 AT mapping

Figure 4B showed that the pATmatrix derived from the experimental
example was composed of distinct wave front labels with the conduction
block parameter set to 76 ms. The experimental example acquisition of
tachyarrythmia analyzed was 6,700 ms. The analysed arrhythmic episode
was 5,211 ms in length, 14 out of 28 beats were classified as repetitive
activity. Mean cycle lengths were 186 ms. Image stacks of pAT maps
incrementing through the pAT matrix from the experimental example
recording enabled dynamic visualization of the full activation sequence
(SupplementaryVideo S1). Figure 6 shows extracts of pATmaps from the
image stack and the corresponding time windows (Figure 6A). Figure 6B
shows the pAT map for wave font #1 during steady-state pacing prior to
the induction of reentry. Total pAT across the region of interest was
56 ms and composed of a regular near-planar wave front that propagated
unperturbed from the lower left to upper right of the pAT map. A sub-
region of pAT points from wave front #4, approximately 200 ms after the
shock were projected on to a pAT map (Figure 6C). In contrast to uAT
mapping (Figure 1F) pAT found a preferential activation of the lower left
region of the map, coinciding with the region of early activation during
basal pacing. The wave front subsequently propagated in a counter
clockwise movement with a maximal local pAT gradient of 75 ms/
mm observed between neighboring pixels and where pAT contours
converged to a single site at the core of the circular movement. Over
20 arrhythmic cycle lengths, every second cycle of the arrhythmic episode
was plotted as pAT maps (Figures 6D–6L), until a distinct near-planar
wave front was observed (Figure 6L). The AT sequence was consistently
characterized by a counter clockwise rotation. It was observed that each
reentrant cycle was accompanied by a region of local pAT
gradients >50 ms/mm, indicating conduction slowing. The locally
enhanced pAT gradient was primarily vertically orientated at the
bottom of the pAT map during wave front #4 (Figures 6C–E), but
shifted towards the right border of the pAT map coincided with the
transition to wave front #5 (Figure 6M).

3.2 Origins of activation

In an additional experimental preparation, the ventricular wedge
from sheep was paced at a frequency of 6 Hz (Supplementary Figure
S3). pAT minima were identified for each wave front label
(Supplementary Figure S3). The activation sequence globally
propagated from a single region of the myocardial surface from left
to right (Supplementary Figure S3B). Yet the earliest pAT region was
shared between two sites (Supplementary Figure S3C). These
coincided with two electrodes used for bipolar stimulation.
However, two sites of origin distal to the stimulation location were
also observed. Initial computation revealed pAT origin clusters,
indicating simultaneous activation of areas exceeding a single pixel
(Supplementary Figure S3D). Supplementary Figure S2E shows the
pAT origin clusters reduced to the estimated center-most pixel,
representing a local single pAT origin site.
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3.3 Mapping repolarization properties

Supplementary Figure S4A shows pAT values derived from
recordings of multiple short-coupled stimuli and ectopic activity at
the onset of self-sustained tachyarrhythmia following S1S2S3S4 pacing
(see Section 2.5 Pacing protocols). This pacing regime is composed of
irregular coupling intervals that gave way to highly varying total pATs
ranging from 42 ms (S1) to 334 ms (ectopic beat A). Despite the
irregular coupling intervals and total pAT exceeding the shortest
coupling interval (S3-S4, 215 ms), RTs could be determined across
the imaged field of view (Supplementary Figure S4B). A user-defined
window of 80–400 ms following pAT was used to refine repolarization
time estimates. Resulting RT gradients (maximum–minimum) ranged
from 72 ms (S1) to 424 ms (ectopic beat A). Pixels assigned both pAT
and RT values were subsequently used to derive APD (Supplementary
Figure S4C).

3.4 Wave front classification

Labelled wave fronts derived from the experimental and simulated
acquisitions underwent classification in to repetitive and non-repetitive
activation sequences. Figure 7A shows a map and histogram of pAT
repetitiveness for wave front #2 of the example experimental recording
under basal stimulation. Zero pixels observed repetitive pAT points with
intervals exceeding aminimumERP parameter, whichwas set to 200 ms.
In this case, we did not have recordings of short-coupled stimulation
intervals to identify the local ERP. Therefore, aminimumERP parameter
was estimated to equate 80% of the minimum action potential duration
(250 ms) during basal stimulation. Wave front #2, was consequently
classified as a non-repetitive activation sequence. Wave front #4, which
was initiated by the cross-field shock and the activation sequence was
maintained for a period of 1,018 ms. Wave front #4 was found to have
almost uniform repetitiveness of 5 pAT repetitions across all pixels

FIGURE 8
Simulations of pATmapping and image resolution. (A)Ground truth eAT derived from a simulation of the underlying electrical action potential. (B)Optical
mapping signals were derived from electrical simulations in (A). The effects of image resolution evaluated on uAT and pAT derived from optical mapping
signals. Optical mapping signals were derived from downsampled electrical simulations to simulate reduction of image resolution from 400 μm to 1,000 µm.
(C)Mean ± standard deviation eAT, uAT, and pAT from dynamic ATmaps of the full simulation. (D) Linear regression of pixel-to-pixel correlations of eAT
with uAT and pAT.
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(Figure 7B). A dominance of pAT repetition across pixels underlay
the classification of wave front #4 as repetitive. Similarly, wave
front #5 was classified as repetitive with a predominance of
12 repeated pAT points during a total activation period of
2,297 ms (Figure 7C). Concordantly, a computer model of
repetitive behavior was accurately classified as repetitive through
computation of the dominant pAT repetitiveness factor
(Figure 7D). Local classification of the origin driver provided
insight in to the spatial organization of arrhythmia and the
temporal evolution underlying transitions between activation
sequences, notably from wave front #4 to #5.

In the experimental example, origins of activation were
detected following the onset of the tachyarrhythmic episode
(wave front #4) both as breakthrough sites and at the periphery
of the imaged tissue (Figure 5A). In part, breakthrough sites
contributed to the progression of the wave front in the lower
portion of the pAT map as observed by overlapping conduction
fields with breakthrough sites (Figure 5B). The upper portion of
the pAT map was primarily driven by passive impulse propagation
emanating from outside of the imaged tissue in the upper left
corner. Figure 5C shows that the wave front was also driven by
myocardial reentry and tortuous propagation in the regions of
slowest conduction. Throughout the full arrhythmic episode, there
was a predominance of passively activated wave front (74.1%).
This was primarily attributed to propagation extending from the
top of the mapped area throughout the recorded arrhythmia
episode. However, 22.3% was attributed to breakthrough sites
of origin, observed as an important mechanism for
maintenance of re-excitation of the lower portion of the map
during wave front #4 and #5. To a lesser extent, the tissue was
maintained through myocardial reentrant pathways and sites of
tortuous propagation.

3.5 Robustness of phase window-derived AT
mapping

The core methodology of this processing and analytical pipeline
centers on the capacity of pAT mapping to reliably and
reproducibly detect AT points in complex dynamic electrical
behavior. For comparison to experimental measurements, a
repetitive activation sequence was induced in a computational
model. A pAT matrix was constructed over the duration of the
simulated time window of 2 s (Figure 4C). The activation sequence
was established to be a single wave front (#1), indicating a self-
sustained arrhythmia. Figure 8A shows an activation map of the
underlying electrical action potential (eAT), representing the
ground truth activation sequence. A clockwise rotating
activation sequence was observed on the eAT map. Figure 8B
shows equivalent maps for uAT and pAT at varying image
resolutions. Maps of uAT shows a complex and fragmented
activation sequence with a total AT (95%–5% AT) of 362 ms,
compared to 185 ms for eAT. However, pAT much more closely
resembled the spiral activation sequence of the ground truth. Total
AT for pAT was 192 ms. Sensitivity of the signal processing pipeline
was tested on a series of simulations following down sampling of the
ground truth electrical simulation and generation of optical signals
with reduced resolution from 400 μm to 1,000 µm. Both uAT and
pAT was compared across the down sampled simulated data sets,

but there was no impact on the overall activation sequences
detected using mapping methods (Figure 8C) and linear
regression analysis comparing eAT with uAT and pAT showed
consistently significantly higher correlations with eAT than uAT
(Figure 8D).

Our signal processing framework relies on robust automated
determination of θt,CB using a reference recording during
S1S2S3S4 stimulation, the separation of pAT points in to coherent
wave front labels and the capacity to reliably classify repetitive wave
front activity. Table 1 summarizes the experimental parameters for
implementation in five cases from left ventricles of sheep. The shortest
stimulation interval ranged from 190–260 ms across all cases. Despite
this variation, the conduction block parameter remained consistent
with a mean (±standard deviation) of 59.2 ± 17.0 ms. Supplementary
Figures S5–S9 showed pAT distributions, wave front labelling and
pAT maps of each case during the transition from the end of a train of
S1 pulses to short-coupled stimulation and to post-stimulation events.
Despite broad total pAT events overlapping with stimulation intervals,
activation sequences elicited by each stimulation pulse were
successfully isolated and grouped in to individual wave fronts for
each experimental case. Table 1 shows that signal-to-noise ratios of
recordings were progressively reduced from >37.2 to 12.1 to evaluate
pAT-sensitivity to noise (Figures 9A, B). Lowering signal-to-noise
ratios reduced signal regularity indices significantly when limiting
signal filtering to low pass filter cut-off 180 Hz. Concordantly, phase-
derive AT window estimation also observed marginal reduction of
regularity indices. Despite reduced quality of signals and signal
windowing, output parameters were only significantly influenced by
noise amplification using lowpass filter cut-offs >180Hz. Decreases in
the estimations of θt,CB and augmented θ”dF⁄dt were observed.
Similarly, the number of wave fronts detected, pAT points and
breakthrough sites were preserved using filtering cut-off <180Hz
(Figure 9C).

3.6 pAT mapping of tachyarrhythmia in
chronic myocardial infarction

The endocardial surface of the structurally remodeled was
imaged by optical mapping (Figures 10A, B). Figure 10C
showed that optical mapping signals were observed within the
infarct zone indicating surviving functional myocardium and
conduction within the structurally remodeled region, although
SNR was reduced (Figure 10D). Nevertheless, a pAT matrix was
derived. θt,CB was automatically detected as 62 ms and ERPmin
was 180 ms. These parameters enabled coherent wave front
allocation throughout the mapped surface during
S1S2S3S4 stimulation and tachyarrhythmia onset (Figure 10E).
Planar wave front propagation from the posterior left ventricular
free wall induced by S2 (Figure 10F) was followed by passive
activation from the anterobasal region (Figure 10G).
Simultaneously, impulse propagation from S3 stimulation
collided with the passive wave at the infarct zone (Figure 10H).
This was followed by apex-to-base propagation in to the
posterolateral base (Figure 10I). The excitatory wave front
continued to advance to the anterior base and anterior apex
(Figure 10J), colliding with an S4-driven impulse. From the late
activated apical scar region, the wave front emanated towards the
base along a narrow trajectory with an antero-lateral aspect
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TABLE 1 Repeated use and robustness of the novel pAT mapping framework in experimental cases. Ventricular arrhythmia was induced in five experiments using an S1S2S34 induction protocol.

Lpf cut-off frequency (Hz) 60 80 100 120 140 160 180 200 220 240 p-Value

Stimulation protocol

Minimum interval of short-coupled
S1S2S3S4 stimuli (ms)

224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 224 ± 23.4 NS

Mean signal characteristics

SNR >37.2 37.2 ± 6.1 23.1 ± 4.2 18.4 ± 3.7 16.0 ± 3.4 14.6 ± 3.3 13.7 ± 3.2 13.0 ± 3.2* 12.5 ± 3.1** 12.1 ± 3.1*** <0.0001
AP signal Dominant frequency (Hz) 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 NS

AP signal regularity index 0.62 ± 0.09 0.60 ± 0.09 0.60 ± 0.09 0.59 ± 0.09 0.59 ± 0.09 0.59 ± 0.09 0.59 ± 0.09* 0.58 ± 0.09** 0.58 ± 0.09*** 0.58 ± 0.09**** <0.0001

pAT characteristics

pAT window dominant frequency (Hz) 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 NS

pAT window regularity index 0.37 ± 0.12 0.35 ± 0.12 0.35 ± 0.11 0.33 ± 0.12 0.33 ± 0.12 0.32 ± 0.12 0.32 ± 0.12* 0.31 ± 0.12** 0.33 ± 0.16* 0.33 ± 0.15** 0.0004

θ”dF⁄dt 0.00039 ±
0.00013

0.00045 ±
0.00015

0.00049 ±
0.00016

0.00053 ±
0.00018

0.00057 ±
0.00019

0.00060 ±
0.00020

0.00062 ±
0.00021*

0.00064 ±
0.00023**

0.00066 ±
0.00024***

0.00068 ±
0.00024****

<0.0001

θt,CB (ms) 59.2 ± 17.0 56.2 ± 14.8 53.6 ± 13.7 54.0 ± 13.9 51.6 ± 12.6 52 ± 12.7 49.6 ± 12.3* 48.8 ± 12.1* 48.4 ± 11.6* 44.4 ± 12.3* 0.0002

N wave fronts 19.8 ± 15.0 17.8 ± 15.3 15.4 ± 13.2 14.2 ± 12.9 15.2 ± 13.9 16.4 ± 13.2 11.2 ± 2.7 13.8 ± 13.2* 16.0 ± 12.9 15.6 ± 13.6 0.0156

N AT points 216,810 ±
179,447

223,596 ±
174,066

230,518 ±
167,108

239,869 ±
160,573

248,019 ±
157,367

257,069 ±
155,073

273,621 ±
152,972

275,621 ±
150,720

284,561 ±
151,429

291,159 ±
151,319**

0.0015

N breakthrough sites 2,461 ± 1899 2,580 ± 1839 2,601 ± 1719 2,657 ± 1701 2,733 ± 1,685 2,758 ± 1,698 2,740 ± 1858 2,980 ± 1901 3,112 ± 1846** 3,222 ± 1832*** 0.0004

Wave front repetitiveness

N Non-sustained wave fronts 17.2 ± 15.7 15.2 ± 16.3 12.6 ± 13.8 12.0 ± 12.6 12.2 ± 13.6 13.8 ± 14.3 8.8 ± 3.3 12.0 ± 13.1 13.6 ± 13.3 13.8 ± 14.4 NS

N sustained wave fronts 3.6 ± 1.5 4.2 ± 1.3 3.6 ± 1.5 4.2 ± 1.9 4.2 ± 1; 3 4.2 ± 1.3 3.2 ± 1.3 3.3 ± 1.2 3.4 ± 1.5 4.4 ± 1.3 NS

Classification of the origins of the local wave front

Breakthrough (%) 9.7 ± 1.3 10.6 ± 1.4 10.7 ± 1.1 11.2 ± 1.9 10.4 ± 0.8 10.3 ± 0.6 9.9 ± 0.6 10.1 ± 0.5 10.1 ± 0.6 10.2 ± 0.7 NS

Passive (%) 4.3 ± 1.3 4.5 ± 1.4 4.6 ± 1.3 4.8 ± 1.3 4.6 ± 1.1 4.5 ± 1.1 4.5 ± 1.1 4.6 ± 1.2 4.5 ± 1.0 4.5 ± 0.9 NS

Myocardial reentry (%) 0.5 ± 0.5 1.0 ± 1.2 1.5 ± 1.8 1.9 ± 2.3 2.1 ± 2.6 2.4 ± 3.0 2.6 ± 3.3* 3.1 ± 3.8** 3.1 ± 4.0* 3.6 ± 4.0** 0.0001

Tortuous propagation (%) 85.5 ± 2.7 83.8 ± 3.4 83.2 ± 3.5 82.0 ± 4.1 82.9 ± 4.1 82.9 ± 4.1 82.9 ± 4.4 82.2 ± 4.7 82.3 ± 4.4* 81.6 ± 4.2** 0.0157

Wave front boundary (%) 0.018 ± 0.026 0.008 ± 0.012 0.038 ± 0.076 0.008 ± 0.011 0.015 ± 0.018 0.023 ± 0.024 0.02 ± 0.021 0.019 ± 0.027 0.0273 ± 0.035 NS

Data are mean ± standard deviation and N = 5 for all cases. Statistical significance was considered if p < 0.05. *p < 0.0332, **p < 0.0021, ***p < 0.0002, ****p < 0.0001.

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

14

R
am

lu
g
u
n
e
t
al.

10
.3
3
8
9
/fp

h
ys.2

0
2
3
.73

4
3
5
6

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.734356


(Figure 10K). The wave front successfully propagated to the base
where it diverged towards the posterior and anterior left ventricle
(Figure 10L). Figure 10M showed both wave fonts circumventing
the lateral left ventricle to again converge at the apical scar region
in a figure of eight formation. Interestingly, pAT mapping of the
scar tissue region was incomplete in Figure 10H requiring almost
200 ms to maximally activate (Figure 10I). The pAT map could
distinguish individual pathways of fast and slow conduction
within the structurally remodeled tissue.

4 Discussion

The framework for a novel analytical approach has been developed
for AT mapping of complex electrical behavior recorded using optical
mapping. A first critical aspect was to accurately probe activation
events. For each image pixel, a Hilbert Transform phase analysis
revealed the time intervals of action potential upstrokes. In turn, pAT
events were elucidated for each upstroke based on signal morphology
and slope profile. The spatio-temporal distribution of pAT events were

FIGURE 9
Influences of the signal-to-noise ratio. (A) Action potential traceswith varying lowpass filter cut-off frequencies. (B)Mean ± standard deviation signal-to-
noise ratios for experimental optical mapping recordings during S1S2S3S4 stimulation and tachyarrhythmia induction (N = 5). (C) Spatio-temporal distribution
of pAT points corresponding to recordings used in A.
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assigned groups corresponding to individual wave fronts. This enabled
individualized analysis of the conduction properties of wave fronts.
The corresponding time of repolarization and spatial distributions
were also derived. Moreover, each wave front could be classified in to
probable repetitive or non-repetitive propagating fronts. An approach
for dynamically viewing the ensemble activation sequence throughout
complex events was developed. This aided detailed interrogation of
wave front interactions and classification of the wave front progression
based on the underlying source of impulse propagation, irrespective of
the complexity and irregularity of electrical organization. In addition,
the pAT algorithm was thoroughly evaluated for sensitivity to SNR
and image resolution. Finally, the algorithm was further tested on an
experimental model of chronic myocardial infarction in sheep.

The aim of our pAT-based analysis of complex optical mapping
signals is 2-fold: i) To accurately deduce the propagation sequence
while conserving a high spatial resolution and ii) To thereby inform on
the critical properties of arrhythmia and functional pro-arrhythmic
factors. pAT maps can report on the source of activation for any given
pAT point (Figures 5, 8). Moreover, pacing modalities are important
tools for manipulating the AT or RT sequences to characterize
functional substrates, induce arrhythmia or entrain and arrest
arrhythmic behavior. Generally, high pacing frequencies or variable
stimulation intervals are applied, which incurs further complexity to
interpret and isolate the relevant AT events. Generally, AT mapping
relies on adequately selecting a time window of interest, identification
of a suitable time reference and robust interpretation of the signal

FIGURE 10
pAT mapping tachyarrhythmia in chronic myocardial infarction. (A) The endocardial surface was subject to optical mapping, encompassing a region of
scar in the ventricular apex. (B) Background optical mapping signals. (C)Optical mapping traces taken from normal myocardium [black asterisk in (B)] and the
scar region [red asterisk in (B)]. (D) Map of SNR from the same optical mapping recording. (E) pAT matrix with labelled wave fronts and indicating the timing
stimulation pulses (red arrows). (F–M) Progressive pAT maps during the onset of tachyarrhythmia.
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morphology. Depending on the approach selected to probe ATs,
conflicting information can often times be produced (Walton et al.,
2012; Tomek et al., 2021). This effect can be further confounded when
signal complexity increases (Bishop et al., 2007; Asfour et al., 2011;
O’shea et al., 2019). Therefore, identifying a robust approach to
appropriately identify the window of activation and accurately
interpret AT irrespective of the signal complexity underlay signal
processing automation without prior understanding of the signal
morphology.

Enhancing the versatility of our processing pipeline, this
framework provided automatic determination of some critical
properties of optical signals, such as maximal pAT gradients that
determine thresholds of conduction block and tissue refractoriness.
Moreover, automated assignment of such parameters can be derived
on an individual basis for optical mapping images. This will enable the
analytical procedure to adapt dynamically to changing conditions,
such as rhythm or effects of ion channel-targeting drug treatments.
Furthermore, the approach for determination of pAT was developed
to maximally retain propagating wave front information by evaluating
the upstroke morphology and signal derivative (Figure 3). The
maximum derivative of the action potential upstroke is known to
precisely reflect AT on the imaged surface of tissue (Walton et al.,
2012). Moreover, the orientation of the wave front relative to the
imaged surface can be inferred from the normalized amplitude of the
maximal derivative on the upstroke, termed VF* (Zemlin et al., 2008).
VF* is a byproduct of the derivation of pAT in our processing pipeline,
which can therefore be exploited when implementing this framework.
Biphasic upstroke morphologies have been shown to correspond to
propagation through distinct myocardial pathways found within the
tissue volume contributing to the same optical signal (Fedorov et al.,
2010). Secondary pAT components likely inform on remnant late
propagating electrical impulses (Kertes et al., 1984). Clinically, late
potentials with slow conduction are thought to underlie numerous
electrical disorders (Haïssaguerre et al., 2019a; Haïssaguerre et al.,
2019b). In this context, information-loss through signal reduction to a
single AT event for any given upstroke would likely exclude the critical
arrhythmic pathway in favor of the principal propagating wave front.

Optical mapping has seen substantial development over recent
years, particularly in the event of near-infrared voltage-sensitive dyes
(Matiukas et al., 2007). Using near-infrared excitation wavelengths
incur several differences to more conventional blue/green excitation
optical mapping. Firstly, longer wavelength light better penetrates
biological tissue as a result of reduced absorption and scattering
properties. This can more easily result in substantial
transillumination light if a photodetector (CCD/CMOS camera, for
example) was simultaneously imaging the opposite surface to the one
being illuminated (Baxter et al., 2001). Moreover, reduced attenuation
and scatter increases the overall optical integration volume
contributing to fluorescence. This means that a larger sub-surface
volume of tissue contributes to the optical signal in epi-fluorescence
mode and to an even greater extent when imaging transilluminated
light. This further contributes to blurring of the optical action
potential upstroke. Despite this, we showed in (Walton et al., 2012)
that AT, defined as the maximal derivative of the optical action
potential upstroke effectively approximates the true electrical AT
irrespective of the excitation light wavelength in the range of
530 nm (green) to 660 nm (near-infrared). To our knowledge, there
are no known alternatives of the fundamental approach to define AT
that further improves this estimation. This strongly supports the

versatility of the framework that we propose and its compatibility
with near-infrared imaging, as well as transilluminated signals. We
further demonstrated that image resolution has no impact on pAT
computation and that the proposed pipeline is relatively insensitive to
signal noise; an important factor that often depends on the
experimental conditions and choices of voltage-sensitive dyes used.

Arrhythmia events can occur suddenly or as a result of gradual
adaptation over several heart beats. Therefore, to prevent further
information loss our pipeline avoids other forms of signal
reduction such as ensemble averaging of action potentials. Yet,
analysis of each propagation event may be complicated by
interference from adjacent and spatially overlapping wave fronts
and repolarization times. That being said, the interactions of
independent wave fronts and particularly the influence of
repolarization heterogeneity and refractoriness on subsequent
electrical responses is crucial to determine how arrhythmia is
maintained. Therefore, in order to optimize the diagnostic yield
when mapping the arrhythmia mechanism, this framework probes
the pAT matrix (and subsequently derived RT matrix) both at the
individual wave front level and through a customized dynamic
window of the ensemble time-based data fields. This allowed
substantial mechanistic insight in to the causal activation sequence
and origin of the leading wave front at the individual pixel level.
Probing the conduction field of aberrant wave fronts provides deep
understanding of the regions of tissue involved and the source of the
activity. This insight will aid to identify arrhythmia organization and
improve investigations of optimal therapeutic interventions on
arrhythmia sources.

We have presented our own analytical tools to evaluate and
classify arrhythmic behavior within this framework. However, our
tools also serve to extract detailed activation sequence data pertinent to
existing analytical approaches. Isolating wave fronts is a necessary post
processing step for the multiplicity metric (Rogers et al., 1997a;
1997b). Similarly, the reentry vulnerability index depends upon
activation and repolarization times to estimate local sites
susceptible to re-excitation. In our framework, wave front
classification of the repetitiveness of activity rapidly provides
insight of the life-time of persistent versus non-persistent activity,
whichmay be used analogously with rotor life-time analysis (Kay et al.,
2006). Figure 6 showed that local points of rotation of the activation
sequence were associated with large pAT gradients (>50 ms/mm).
Moreover, conduction field analysis of wave front origins did not rely
on the gradient point or line and was therefore not hindered by
complex gradient organization or discontinuity that can hamper phase
singularity detection (Arno et al., 2021). Therefore, our framework
provides a versatile unified solution to analyze spatio-temporal
dynamics of cardiac arrhythmias.

4.1 Limitations

The current framework has been parametrized to analyze optical
mapping signals derived from voltage-sensitive dyes, accommodating
action potential signal morphologies. Yet, the foundational approach
to window individual activation events based on phase responses can
likely be applied more diversely across dynamic imaging and
recording modalities. More so, this proof-of-principle study focused
on data obtained only from sheep ventricles. However, each procedure
of this pipeline was designed on the premise of being applicable to the
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broader spectrum of species or anatomical regions (e.g., atria vs.
ventricles) and therefore action potential morphologies. The
capacity to adapt from the basal action potential to complex and
non-periodic fibrillatory activity within the same recording,
insensitivity to image resolution, noise-handling and application in
pathological settings is a strong indicator of the framework’s versatility
and robustness.

Our analytical framework proposes a novel approach to estimate
the threshold of conduction block, θt,CB, although a single threshold
value generalizes the conduction limitations across the imaged field of
view. However, the maximal electrical impulse transmission delay
across structural substrates is likely heterogeneous. Cases in this study
showed that regions of high pAT gradients represents only a small
subset of the total activation sequence (~5%, Supplementary Figure
S3). The challenge is to identify the excitable gap corresponding to
vulnerable sites. It is assumed that the ERP termination can be
spatially determined as the action potential duration to 80% of
repolarization under conditions of short-coupled stimulation. A
delay of activation of the following paced action potential
(activation latency) approximated excitability for each pixel. As a
result, local activation delays associated with pathological remodeling,
namely post-repolarization refractoriness are addressed (Coronel
et al., 2012). The θt,CB parameter is used to separate wave fronts
temporally. However, in the current framework, wave fronts that
converge, i.e., those originating from independent sources are
considered the same wave front. Convergence will be considered
for wave fronts that are temporally aligned, i.e., wave front
collision sites show pAT gradients inferior to θt,CB. But tissue
generally remains in refractoriness for much longer than θt,CB in
our experience, meaning wave fronts colliding with local pAT
gradients superior to θt,CB will be separated.

4.2 Conclusion

In conclusion, we provide a comprehensive framework for image
processing of complex optical mapping signals, including
tachyarrhythmias. An action potential upstroke-windowing scheme
based on calculations of phase enabled pixel-wise and upstroke-
independent identification of pAT events. This approach is highly
robust against changing signal morphology, signal noise, changes to
the signal baseline and transitional behavior between non-arrhythmic
and arrhythmic states. A crucial component of the image processing
pipeline furthermore identifies the spatial organization of pAT points
and groups them in to individual wave fronts. A series of analytical and
visualization tools permit detailed characterization in a beat-to-beat
basis, irrespective of signal complexity.
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