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A new merged dataset of
global ocean chlorophyll-a
concentration for better
trend detection

Shujie Yu1,2, Yan Bai2*, Xianqiang He1,2, Fang Gong2 and Teng Li2

1Ocean College, Zhejiang University, Zhoushan, China, 2State Key Laboratory of Satellite Ocean
Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources,
Hangzhou, China
Chlorophyll-a concentration (Chla) is recognized as an essential climate variable

and is one of the primary parameters of ocean-color satellite products. Ocean-

color missions have accumulated continuous Chla data for over two decades since

the launch of SeaWiFS (Sea-viewing Wide Field-of-view Sensor) in 1997. However,

the on-orbit life of a single mission is about five to ten years. To build a dataset with

a time span long enough to serve climate change related studies, it is necessary to

merge the Chla data from multiple sensors. The European Space Agency has

developed two sets of merged Chla products, namely GlobColour and OC-CCI

(Ocean Colour Climate Change Initiative), which have been widely used.

Nonetheless, issues remain in the long-term trend analysis of these two datasets

because the inter-mission differences in Chla have not been completely corrected.

To obtain more accurate Chla trends in the global and various oceans, we

produced a new dataset by merging Chla records from the SeaWiFS, MODIS

(Medium-spectral Resolution Imaging Spectrometer), MERIS (Moderate Resolution

Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite), and

OLCI (Ocean and Land Colour Instrument) with inter-mission differences

corrected in this work. The fitness of the dataset on long-term Chla trend study

was validated by using in situ Chla and comparing the trend estimates to the multi-

annual variability of different satellite Chla records. The results suggest that our

dataset can be used for long-term series analysis and trend detection. We also

provide the global trend map in Chla over 23 years (1998–2020) and present a

significant positive global trend with 0.67% ± 0.37%/yr.

KEYWORDS
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1 Introduction

As an essential part of the global ecosystem, phytoplankton

converts atmospheric carbon dioxide into organic carbon through

photosynthesis; its primary productivity accounts for almost half of

the global total (Field et al., 1998). Moreover, marine phytoplankton is

very sensitive to climate change and is generally considered an

excellent indicator of the impact of climate change on the marine

ecosystem and environment. Understanding the time-series variation

of phytoplankton is the basis for predicting how marine ecosystems

respond to climate change (Muller-Karger et al., 2014).

The biomass of phytoplankton in the marine ecosystem can be

characterized by chlorophyll-a (Chla) concentration in seawater,

recognized as an essential climate variable (Bojinski et al., 2014) by

the Global Climate Observing System (GCOS, 2011). To estimate the

importance of phytoplankton to the global carbon cycle and its

variation under the background of climate change, an expanded

scope of observation in both time and space is needed (Johnson

et al., 2009; Chavez et al., 2011). Long-time-scale climate change

research also requires Chla data to have high accuracy and

consistency to extract tiny climate-related signals from short-term

dynamic changes and environmental disturbances (Henson et al.,

2010). Ocean-color remote sensing is ideally suited for such studies

because of its large-scale, relatively long-term, and high-frequency

observations. At present, it is the only available means to understand

and track near-surface Chla concentration and its variations in the

global ocean comprehensively (Mélin, 2016).

Chla is one of the primary parameters of ocean-color satellite

missions (O'Reilly et al., 1998; Morel et al., 2006; Maritorena et al.,

2010). The ongoing series of satellite deployments have provided us

with a continuous sequence of global Chla data for over two decades.

Launched in 1997 by NASA, the Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) (McClain, 1998) has been recognized as the

beginning of systematic global monitoring of the worldwide ocean

(McClain et al., 2004). This mission ended in 2010 and was followed

by the Moderate Resolution Imaging Spectroradiometer (MODIS) on

the Aqua platforms and the European Space Agency’s (ESA’s)

Medium-spectral Resolution Imaging Spectrometer (MERIS) on

Envisat since 2002, NASA’s Visible Infrared Imaging Radiometer

Suite (VIIRS) on the SUOMI National Polar-Orbiting Partnership

(SNPP) since 2012, and then ESA’s Ocean and Land Colour

Instrument (OLCI) on Sentinel-3A and Sentinel-3B since 2016

(McClain, 2009). As strong interannual signals such as the El Nino

Southern Oscillation can affect the trend calculation over a decade

(Ryan et al., 2006; Collins et al., 2010), Chla trend estimation on a

long time scale requires a sequence beyond decades that exceeds the

maximum life expectancy of a single satellite mission (Henson

et al., 2010).

Merging datasets from different missions is an effective method for

increasing the period of ocean-color satellites to meet the demand of

detecting Chla changes on the climatic time scale (Gregg and

Woodward, 1998; Maritorena and Siegel, 2005). The International

Ocean-Colour Coordinating Group (IOCCG) released a report

focusing on the issues associated with ocean-color data merging in

2007 (IOCCG, 2007). ESA launched the GlobColour project and the

Climate Change Initiative (CCI) (Plummer et al., 2017) in 2005 and
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2010, respectively, and produced continuous multi-sensor ocean-color

datasets that have been widely used (Maritorena and Siegel, 2005;

Pottier et al., 2006; IOCCG, 2007; Mélin et al., 2009; Maritorena et al.,

2010; Kahru et al., 2012; Kahru et al., 2015; Ford and Barciela, 2017).

The GlobColour project has provided two merged Chla products from

September 1997 to date, namely AVW and Garver–Siegel–Maritorena

(GSM), released in 2005 and kept updated. AVW is the weighted

average of single-sensor Level 2 Chla products. GSM makes use of the

normalized reflectances at the original sensor wavelengths, without

intercalibration, to retrieve ocean-color data (Maritorena and Siegel,

2005). The OC-CCI project (ESA) provides merged ocean-color

products, integrating remote sensing reflectance (Rrs) values from

single sensors and retrieving various ocean-color parameters via

selected algorithms (Sathyendranath et al., 2019).

However, inter-mission differences can be transmitted to these

merged time series and thus interfere with the Chla trend detection

(Hammond et al., 2018). In particular, trend detection based on

multimission (merged or concatenated) data appears to be extremely

sensitive to inter-mission biases (Mélin, 2016). Gregg and Rousseaux

(2014) reported that, because of the difference between MODIS and

SeaWiFS, a significant decreasing trend was detected when Chla

records switched from SeaWiFS to MODIS in 2003 (or any year

through 2007), whereas SeaWiFS (1998–2007) and MODIS-Aqua

(2003–2012) global annual median Chla show no significant trend.

Though these products have been strictly verified in terms of the

accuracy of Chla concentration using in situ data or theoretical

derivation, some caution is warranted when using them as a

multidecadal climate data record (CDR). For OC-CCI products,

bias correction has been applied to remote-sensing reflectance

(Sathyendranath et al., 2017). Nevertheless, Mélin et al. (2017)

stated that, in 1998–2007, the Chla trend derived from the OC-CCI

product was significantly different from that derived from SeaWiFS in

some areas of the Atlantic, and, in 2002–2012, it was also different

from that derived from MODIS data in the Pacific. Moreover, the

GlobColour data are not explicitly bias-corrected (Maritorena et al.,

2010; Hammond et al., 2018).

Therefore, for Chla data that have been accumulated for more

than 20 years, it is necessary to develop a better dataset specialized for

trend analysis. In this study, a fast and straightforward method is

adopted to combine the frequently used sensors SeaWiFS, MERIS,

MODIS, VIIRS, and OLCI to eliminate the inter-mission differences

between sensors, thus obtaining accurate long-term variations in Chla

on a global scale. We have provided product validation using data

from in situ and single sensors and confirm the improvements in Chla

variation detection via comparison with existing merged products.

The implications of the product are discussed under the background

of climate change.
2 Materials and methods

2.1 Satellite and in situ data

This work employed data from five widely used sensors—

SeaWiFS, MERIS, MODIS/Aqua, VIIRS/SNPP, and OLCI/Sentinel-

3A (Figure 1)—to produce a monthly and 8-day-averaged merged
frontiersin.org
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Chla dataset from Sept. 1997 to Dec. 2020. The Chla data derived

from SeaWiFS, MODIS/Aqua, and VIIRS/SNPP were obtained from

the OceanColor website (National Aeronautics and Space

Administration, NASA, https://oceancolor.gsfc.nasa.gov/l3/) archive

of Level-3 gridded data associated with processing versions 2018.0

and theOCI (OceanColor Index) algorithm.TheChla dataderived from

MERIS and OLCI/Sentinel-3A were obtained from the GlobColor

website (ESA, https://hermes.acri.fr/) with processing versions 2016.0

for MERIS and 2017.2 for OLCI, respectively. The temporal resolutions

of the satellite data are 8-day averages andmonthly averages. The spatial

resolution of SeaWiFS data is 9 km (resampled to 4 km before fusion),

and thatofotherdata is 4km.Weexcluded the SeaWiFSrecord for2008–

2010 because of severe sensor issues that caused a significant loss of data

(Gregg and Rousseaux, 2014). The first and last months of the MERIS

record and the first month of OLCI were also eliminated for the same

reason. VIIRS records after 2018 were also removed as they exhibited a

massive Chla decrease on the global scale, which was not detected by

MODIS nor OLCI.

An effective way to assess and validate the quality of our merged

product is to compare it with other datasets. The merged Chla dataset

we produced will be compared with two merged Chla products, the

OC-CCI and GlobColour datasets. The ESA climate office provided

the OC-CCI 8-day and monthly Chla products (version 5.2) with a 4-

km resolution for 1997–2020 (https://climate.esa.int/en/projects/

ocean-colour/). For GlobColour, as the weighted averages of single

sensors have apparent disadvantages in ensuring the authenticity of

the Chla trend detected, just like switching from one sensor to another

at a particular point of time, we employed the GSM product rather

than the AVW product. The GlobColour data (http://globcolour.

info/) used in this study are the Level-3 gridded data, which are 8-day

and monthly averages with a resolution of 4 km and developed,

validated, and distributed by ACRI-ST, France.

To validate the accuracy of Chla data retrieved by the product, we

adapted the global bio-optical in situ database constructed for ocean-

color satellite remote sensing published by Valente et al. (2019). The

database was composed of different sources, including MOBY

(Marine Optical Buoy), BOUSSOLE (BOUée pour l’acquiSition de

Séries Optiques à Long termE project), AERONET-OC (AErosol

RObotic NETwork-Ocean Color), SeaBASS (SeaWiFS Bio-optical

Archive and Storage System), NOMAD (NASA bio-Optical Marine

Algorithm Dataset), MERMAID (MERIS Match-up In situDatabase),
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AMT (Atlantic Meridional Transect), ICES (International Council for

the Exploration of the Sea), HOT (Hawaii Ocean Time-series), and

GeP&CO (Geochemistry, Phytoplankton, and Color of the Ocean),

with an increased number of matchups with satellite records and

spatiotemporal distribution. The compiled data span the period from

1997 to 2018 and have a total data volume of 79,924 samples. This

dataset was initially built to develop and validate OC-CCI products

(Sathyendranath et al., 2019).

Additionally, to illustrate the potential driving mechanism of

climate change to the long-term trends of Chla, trends in sea surface

temperature (SST) are presented in the discussion section. The

monthly SST data were obtained from the AVHRR_OI (optimal

interpolation) dataset (processing version 2.1) provided by the Group

for High-Resolution Sea Surface Temperature, National Oceanic and

Atmospheric Administration (https://www.ghrsst.org/), and have a

0.25° resolution.
2.2 Method of merging multiple sensors

The data-merging algorithm we built is for Level-3 Chla records.

Space agencies have expended considerable effort on the calibration of

instruments and assessing their stability over time, thus supporting a

solid basis for using single-mission Chla products as reliable

references for multi-annual time-variation analysis (Xiong et al.,

2009; Eplee et al., 2012; Cao et al., 2013; IOCCG, 2013; Eplee et al.,

2015; Mélin, 2016). Therefore, we adopted an efficient inter-mission

bias-correction method that minimizes the trend signal modification

from every single sensor. The principle of this method entails

correcting inter-mission bias between two sensors using their

overlapping observation period. This merging strategy was

mentioned by Mélin et al. (2017) and used to build a standard

sequence in which inter-mission biases between SeaWiFS and

MODIS/Aqua were considered to be corrected to check the impact

of inter-mission differences and drifts on Chla trend estimates. On

this basis, we extended this method to the above five sensors and

produced global monthly and 8-day-averaged Chla products from

September 1997 to December 2020. The data production procedure is

shown in Figure 2.

Because of the long on-orbit operation time of MODIS/Aqua(A)

(i.e., from August 2002 to the present), the overlap with SeaWiFS(S),
FIGURE 1

The time span of sensors and merged datasets.
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MERIS(M), VIIRS(V), and OLCI(O) is more than five years, so

MODIS/Aqua is regarded as the benchmark in this work. The first

step is bias correction, which corrects the data derived by other

sensors. For each pixel, the inter-mission bias between MODIS/Aqua

(A) and the target sensor (X), DA, X , can be expressed as

DA, X mð Þ = AC,overlap mð Þ −  XC,overlap mð Þ
where we use monthly data for example, m means the monthly data

that were processed, and the ‘C, overlap’ subscript indicates

the climatological monthly Chla derived using the overlap period

for the 8 days or monthm. Taking SeaWiFS as an example, we see that

the climatological January value is the average of the valid January

values for the five years overlapping with MODIS, from 2003 to 2007,

and so on for the other months and sensors. The corrected record of

sensor X, Xcorr
wp (m), can be expressed as

Xcorr
wp mð Þ = Xwp mð Þ + DA, X mð Þ

where the ‘wp’ subscript means the whole on-orbit period of sensor X,

and Xwp (m) represents the entire original series of the target sensor X.

The first step corrects the spatial and seasonal dependencies in inter-

mission biases that have been noticed for ocean-color products in a

simple manner and guarantees consistency for the merged Chla

product (Mélin, 2016; Sathyendranath et al., 2019). Some negative

values could result from considering the bias as an arithmetic

difference, but the number of negative values is quite limited in

practice, accounting for an average of 0.91% of the total valid pixels

for SeaWiFS, 1.33% for MERIS, 0.18% for VIIRS, and 0.97% for OLCI.

These negative values are regarded as invalid data and excluded from

subsequent processing.

In the second step, merging is simply averaging the available data

for a given pixel. Therefore, the merged series, Dmrg (m), can be

expressed as

Dmrg mð Þ = 1
No

N

i=1
X mð Þ

where N represents the number of sensors in orbit for each month

m and X (m) indicates the corrected Chla of every single sensor and

MODIS record.
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2.3 Calculation of time-series trends

Trends showed in this work were based on linear regression

analysis of monthly Chla anomaly data. Using anomaly data instead

of monthly Chla data helps to avoid the interference of seasonal

signals on interannual trend detection. The monthly anomaly

sequence was obtained by subtracting the corresponding monthly

climatological value from the monthly value. The anomaly sequence

and corresponding date (e.g., months since the first month) were

linearly fitted pixel by pixel, and the obtained slope is then regarded as

the rate of change of Chla in units of mg/L/month, which is converted

to mg/L/yr subsequently. For a certain region, we first calculate the

regional average Chla value, and then obtain the anomaly sequence

and calculate the trend at last. A statistically significant trend is one

that exceeds the 95% confidence level (i.e., p< 0.05) under the t-test.
2.4 In situ data matchup

The in situ Chla data (Valente et al., 2019) were matched with

corresponding satellite data to validate the merged products. First, the

in situ data were gridded with a time window of 8 days and a spatial

window of 4 km, the same as the satellite data resolution. The

principle is that each sample can only belong to one grid. For the

grid containing more than three samples, abnormal values were

identified by the 3s principle and eliminated. The averaged value of

valid data in each grid was considered as the value of the grid. Then,

matching-up processing basically followed the procedures adopted by

the OC-CCI group (Sathyendranath et al., 2019): The nearest latitude

and longitude identified the central pixel collocated with each in situ

datum. The surrounding pixels (a 5 × 5 box with the in situ datum in

the center) were selected for further analysis. Only those pixels with a

valid central pixel and satisfying checks that Chla was within the

0.01–100 mg/L range and at a water depth of >50 m according to

bathymetry were considered to be valid. Homogeneity criteria—that

the coefficient of variation was<0.15 and at least 10 valid pixels were

in the 5 × 5 box—were also used to exclude nonhomogeneous pixels

to avoid the impact of the noise within satellite products on the
FIGURE 2

The procedure of multiple sensors Chla data merging.
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validation. In addition, high-latitude ocean regions (>66.5°) are

excluded owing to the generally high Chla values in these regions

that are not applicable for the CI-based Chla algorithm (Wang and

Son, 2016). Finally, valid central pixels and corresponding gridded in

si tu data were matched to construct the database for

product validation.
3 Results

3.1 Validation by in situ Chla data

Comparison with in situ measurements is one of the essential

means of validating the quality of satellite products (Maritorena et al.,

2010). After the procedures mentioned in section 2.4 were

implemented, 19,836 groups of in situ data matched up with our

product. As a reference, OC-CCI and GlobColour products were also

involved. Finally, 15,599 groups of valid data were successfully

matched with all OC-CCI, GlobColour, and our products. Their

spatial and numerical distributions are shown in Figure 3.

Figure 4 shows how the three merged 8-day products compare

with the corresponding gridded in situ observations. It indicates an

acceptable agreement between the product generated in our study and

the in situ data (Figure 4A), with a root mean squared error (RMSE)

of 1.04 and R2 = 0.75 based on log10 Chla. The statistics are similar to

that of OC-CCI and GlobColour (Figures 4B, C), whose RMSE values

are 0.98 and 0.91 and R2 values are 0.78 and 0.79, respectively. The

low degree of correlation may be because the sampling time of the in

situ observations does not entirely match that of the satellite data (8

days) despite the gridding before matching up. Though no in situ

observations were employed in the data processing, the accuracy of

the Chla value of this work is not inferior to that of OC-CCI and

GlobColour data. Validations with all the matched samples for three

individual products were presented in Supplementary Material Figure
Frontiers in Marine Science 05
S1, which also showed that the three products have similar accuracy,

despite different matchup samples owing to different spatial coverage.
3.2 Trend validation by using the original
sensor sequence

This work is oriented toward producing a set of global satellite-

derived Chla products with high reliability on the long-time-series

trend analysis. Under the assumption that single sensors can be used

as a benchmark time series as the trends they capture are the actual

variability of Chla, the dataset we produce should be able to reproduce

the trend patterns obtained by single-mission records over their

respective periods. Mélin et al. (2017) proposed a protocol to assess

the fitness of OC-CCI Chla data (version 3.0) using contingency

matrices, Cohen’s k index, and the differences (and their

distributions) between trend slopes. Contingency matrices were

used to compare the trends (expressed in terms of significant

increase, significant decrease, and not significant) associated with

two satellite products. Cohen’s k index is used to quantify the

magnitude of the agreement between two diagnostics (Cohen, 1960;

Viera and Garrett, 2005; Warrens, 2011); the more k value close to 1,

the more consistent two diagnostics are. Here we apply the main

principle of this protocol suggested by Mélin et al. (2017) to assess our

dataset by comparing it with single sensor records.

3.2.1 Comparison with SeaWiFS for September
1997 to December 2007

The contingency matrix comparing trends derived by SeaWiFS

and this study over the overlapping period (September 1997 to

December 2007) is presented in Table 1. The diagnostics agree; that

is, the slopes of linear regression S of both sequences are concurrently

greater than 0 (Chla increase), less than 0 (Chla decrease), or not

significant for >91.91% of the ocean over which the trend diagnostics

apply (with 66.29% associated with nonsignificant trends and 25.62%

associated with significant trends). Contradictory diagnostics

characterize only 8.09% of the domain, and the worst case, in

which significant trends for both products have opposite signs,

almost never occurs (being found in only two pixels). The same

comparisons were conducted on OC-CCI and GlobColour products

(Table 1); 80.97% and 82.16% of the areas exhibit consistent

diagnostics, respectively, both of which are ∼10% lower than that in

this study. The k values of three products were 0.82, 0.59, and

0.63, respectively.

In addition to the consistency of diagnostics, the value of Chla

trends was also validated. Figures 5A–C show the pixel-by-pixel

comparison between the rate of change derived from SeaWiFS and

that of the three merged products. It can be seen that the rate of

change found in this study is most consistent with that of SeaWiFS at

the pixel level (Figure 5A), with R2 = 0.93 and RMSE = 0.008. The

numerical distribution of the rate of change from OC-CCI is relatively

discrete (Figure 5B), with R2 = 0.20 and RMSE = 0.034, and the

absolute value of which is underestimated compared with that of

SeaWiFS. The rate of change of GlobColour is concentrated around 0,

and the increasing trend is significantly underestimated (R2 = 0.30

and RMSE = 0.024, Figure 5C).
A

B

FIGURE 3

(A) Spatial and (B) numerical (bar plot) distribution of in situ Chla data
matched up for the OC-CCI, GlobColour, and our merged products
(15,599 in total); (Units of Chla: mg/L.).
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TABLE 1 Contingency matrices comparing trend analysis outcomes for SeaWiFS period.

(%) This study OC-CCI GlobColour

SeaWiFS n.s. S* ≥ 0 S*< 0 n.s. S* ≥ 0 S*< 0 n.s. S* ≥ 0 S*< 0

n.s. 66.29 2.02 1.26 60.31 3.38 6.13 59.47 6.32 4.03

S* ≥ 0 3.76 15.12 0.00 8.20 10.49 0.01 5.01 13.65 0.04

S*< 0 1.05 0.00 10.50 1.30 0.00 10.17 2.44 0.00 9.04
F
rontiers in Mar
ine Science
 06
 fro
SeaWiFS and merged products are compared over September 1997 to December 2007. Percentage values quantify the number of pixels where the diagnostics on the trend slopes (S) apply. S* ≥ 0
denotes significant (p< 0.05) increasing trend; S*< 0 indicates significant decreasing trend; n.s. stands for nonsignificant. The bold font emphasizes that the diagnostics from the two sequences agree.
D

A B

E

F G

C

FIGURE 5

(A–C) Scatter plots of pixel-by-pixel Chla trends comparison between SeaWiFS and the three merged datasets from September 1997 to December 2007.
(D) Chla trend maps in units of %/yr from SeaWiFS for September 1997 to December 2007. (E–G) Chla trends from SeaWiFS minus that from the three
merged datasets in units of mg/L/yr. Black lines on the scatter plots represent the 1:1 line, and the color scale indicates the data density in pixels. The light
gray on the maps represents insufficient data for making a trend calculation (i.e., the number of valid data collected in the statistical period (62 months)
does not reach 50%), and the white color indicates that the SeaWiFS data show that the pixel has not changed significantly (p< 0.05).
A B C

FIGURE 4

Comparison of in situ Chla data with the corresponding 8-day and merged satellite data from (A) this study, (B) OC-CCI, and (C) GlobColour. The color
scale indicates the data density in pixels, the black lines are the linear fitting of in situ and satellite data, and the red dotted lines represent 1:1. Log10
(Chla) was used in the computation of the fitted equation and R2. Chla was used in the computation of RMSE. (Units of Chla: mg/L.).
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The global distribution of ocean Chla variation from September

1997 to December 2007 derived from the SeaWiFS record is shown in

Figure 5D. The regions with significant increases of Chla are mainly

located in the Northwest Pacific, the edge of the South Pacific Basin,

the South Atlantic, and the western North Indian Ocean, and the

regions with decreases are concentrated in the North Atlantic, the

center of the South Pacific Basin, the subtropical North Pacific, and

the eastern Indian Ocean (Figure 5D). The spatial distributions of the

differences between the rates of change from the SeaWiFS record and

that of the merged products are shown in Figures 5E–G. The trends

generated from this study are more consistent with that of the

SeaWiFS record, with the differences ranging within ±2 × 10−3 mg/
L/yr and slightly underestimating the growth rate in the mid and high

latitudes of the northern hemisphere, the Arabian Sea, and the west

coast of South America (Figure 5E). However, OC-CCI records in this

period exhibit a noticeable disagreement, with the difference being

generally positive. Specifically, the decreasing trends of Chla in the

Pacific Ocean, Indian Ocean, and North Atlantic oligotrophic basin

are overestimated, and the increasing trends in the South Pacific

Basin, Arabian Sea, and coastal oceans are underestimated

(Figure 5F). GlobColour underestimates the increasing trends of the

Southern Ocean and along the margin of the Pacific and the

decreasing trends of the oligotrophic basin to a great extent (>4 ×

10−3 mg/L/yr, Figure 5G).

3.2.2 Comparison with MERIS for May 2002 to
March 2012

Validations of the trend diagnosis, value, and distribution of trend

differences were conducted by taking the MERIS record as a

benchmark over the period of May 2002 to March 2012 similarly.

As Table 2 indicates, the slopes of our product agree with the MERIS

record for 85.94% of the ocean, representing the most incredible

consistency among the three products. The portion is 11.05% and

5.68% higher than that of OC-CCI and GlobColour. The k values of

the three products were 0.70, 0.50, and 0.59, respectively, also

indicating that our product has the highest agreement in trend

diagnosis with MERIS.

As to the value of the trend, the trend from our product is the most

consistent with the MERIS sequence, with the highest R2 and lowest

RMSE (Figure 6A). The slopes of the other two products have

significant systematic bias and are concentrated near 0 (Figures 6B, C).

The trend map for the MERIS record (Figure 6D) shows that Chla

increased dramatically at a rate of 5%–10%/yr in the low-latitude

basin of the Pacific Ocean while decreasing in the western Indian

Ocean and mid-latitude basins in the Pacific and Indian oceans by
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5%–8%/yr throughout May 2002 to March 2012. Trends generated

from this study have minor differences from that of the MERIS

record, ranging mostly within ±2 × 10−3 mg/L/yr and underestimating

the increasing trend in the mid- to low-latitude basin and the area

near 60°S in the eastern Pacific (Figure 6E). Both OC-CCI and

GlobColour dramatically overestimated the growing trend by >3 ×

10−3 mg/L/yr in the low-latitude basin of the Pacific Ocean compared

to the MERIS record (Figures 6F, G). Moreover, GlobColour also

overestimated the decreasing trend in the western Indian Ocean.

3.2.3 Comparison with VIIRS for 2012 to 2018
In the case of VIIRS records throughout January 2012 to

December 2018 (Table 3), our product and GlobColour have better

diagnostic consistency with VIIRS, as the diagnostic trends are

consistent in 82.74% and 85.73% of regions and with k values 0.61

and 0.68 (versus only 74.8% and 0.46 for OC-CCI).

It can be seen that the consistency between our product and

VIIRS is better than that for the other two products at the pixel level

(Figure 7A). The numerical distribution of the Chla trends from OC-

CCI is concentrated (Figure 7B), and, for GlobColour, it is relatively

discrete but tends to be negative overall (Figure 7C).

The Chla records from VIIRS exhibit a significant negative trend

overall from 2012 to 2018, especially in the Pacific low-latitude basin and

the northeast Pacific marginal seas, with declining trends of >10%/yr

(Figure 7D). Though our study generally underestimated the declining

trend, the difference with VIIRS is slight, primarily within 2 × 10−3 mg/L/
yr (Figure 7E). OC-CCI overestimates the decreasing rate in the mid and

low latitudes of the Pacific to a large extent, but the rate is similar to that

of our product in other regions (Figure 7F). GlobColour exhibits

apparent bias, which leads to a significant overestimate of the declining

trend worldwide by >4 × 10−3 mg/L/yr (Figure 7G).
Comparison with MODIS is shown in Supplementary Material

(Table S1 and Figure S2). Since the MODIS record is used as a baseline

in this study, the trends derived from our dataset are much more

consistent with that from MODIS than OC-CCI and GlobColour.
4 Discussion

4.1 Global Chla trend

The trends obtained for SeaWiFS (September 1997 to December

2007), MERIS (May 2002 to March 2012), and VIIRS (January 2012

to December 2018) are presented in Figures 5D, 6D, 7D, respectively.

It is noticeable that the oligotrophic subtropical gyres in the Pacific
TABLE 2 Contingency matrices comparing trend analysis outcomes for MERIS period.

(%) This study OC-CCI GlobColour

MERIS n.s. S* ≥ 0 S*<0 n.s. S* ≥ 0 S*< 0 n.s. S* ≥ 0 S*< 0

n.s. 62.65 5.77 2.67 54.73 14.25 2.14 58.71 6.04 6.36

S* ≥ 0 1.15 10.17 0.00 0.87 10.43 0.00 2.32 8.98 0.02

S*< 0 4.47 0.00 13.12 7.78 0.06 9.73 5.00 0.02 12.57
fro
MERIS and merged products are compared over May 2002 to March 2012. Percentage values quantify the number of pixels where the diagnostics on the trend slopes (S) apply. S* ≥ 0 denotes
significant (p< 0.05) increasing trend; S*< 0 indicates significant decreasing trend; n.s. stands for nonsignificant. The bold font emphasizes that the diagnostics from the two sequences agree.
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witnessed significant negative trends from late 1997 to 2007, which

was also mentioned in several previous studies (Vantrepotte and

Mélin, 2009; Vantrepotte et al., 2011; Vantrepotte and Mélin, 2011).

However, these trends were replaced by a positive signal in the

following period, as Mélin et al. (2017) reported, and then reverted

to a negative trend again. Transformations in trend also occurred in

the north temperate Pacific and the western Indian Ocean, where

Chla values exhibited an increasing trend before 2008 and then

decreased afterward.

Time-series analysis for single sensors is limited to about ten

years, while merged products enable trend detection over decades.

Here we employed our product to calculate global Chla changes for 23

years (1998–2020, Figure 8A). Significant negative trends (which can

reach −1% to −2% per year) are generally observed in the Pacific and

Indian oligotrophic gyres. In contrast, significant positive trends are

noticed in various regions, including the Southern Ocean, Southeast
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Pacific, South Atlantic gyres, and isolated patches in the north

Arabian Sea and mid to high latitudes of the northern hemisphere.

Figure 8B shows the SST trend during this period. The SST in the

Indian Ocean, the Northwest Atlantic, the mid- and low-latitude

ocean basin and the northeastern part of the Pacific, including the

Bering Sea, increased significantly. The sea area between 45°S–60°S of

the Southern Ocean also became warmer. The negative trends in Chla

in the subtropical oligotrophic gyres appeared to be consistent with

the hypothesis of a more stratified and warming ocean (Doney, 2006).

Increasing temperature strengthens the stratification of the upper

ocean, which hinders the nutrient supply from the subsurface to the

upper layer, thereby limiting phytoplankton growth and decreasing

Chla (Behrenfeld et al., 2006; Irwin and Oliver, 2009; Behrenfeld et al.,

2016). However, the increasing temperature in the middle to high

latitudes could promote phytoplankton growth by becoming closer to

the optimum growing temperature for some phytoplankton species
TABLE 3 Contingency matrices comparing trend analysis outcomes for VIIRS period.

(%) This study OC-CCI GlobColour

VIIRS n.s. S* ≥ 0 S*< 0 n.s. S* ≥ 0 S*< 0 n.s. S* ≥ 0 S*< 0

n.s. 63.64 6.74 0.54 57.95 11.85 1.12 63.43 1.35 6.10

S* ≥ 0 0.46 4.08 0.00 0.46 4.07 0.00 2.21 2.32 0.00

S*< 0 9.42 0.00 15.12 11.62 0.02 12.91 4.30 0.00 20.29
fron
tiersin.or
VIIRS and merged products are compared over January 2012 to December 2018. Percentage values quantify the number of pixels where the diagnostics on the trend slopes (S) apply. S* ≥ 0 denotes
significant (p< 0.05) increasing trend; S*< 0 indicates significant decreasing trend; n.s. stands for nonsignificant. The bold font emphasizes that the diagnostics from the two sequences agree.
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FIGURE 6

Pixel-by-pixel comparison of the Chla rate of change from MERIS and (A) this study, (B) OC-CCI, and (C) GlobColour. (D) Chla trend maps in units of
%/yr from MERIS for May 2002 to March 2012. (E–G) Chla trends from MERIS minus that from the three merged datasets in units of mg/L/yr. Black lines
on the scatter plots represent the 1:1 line, and the color scale indicates the data density in pixels. The bright gray on the maps represents insufficient data
for estimating a trend (i.e., the number of valid data collected in the statistical period (60 months) does not reach 50%), and white indicates that the
MERIS data show that the pixel has not changed significantly (p< 0.05).
g
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(Thomas et al., 2012) and causing poleward shifts of phytoplankton

communities at mid to low latitudes (Toggweiler and Russell, 2008;

Gregory et al., 2009), thus leading to the increase in Chla here.

Moreover, the generally positive trend of Chla in the Southern Ocean

is also consistent with the widely reported conclusion that carbon

sinks have increased significantly since 2000 (Lavender et al., 2015;

DeVries et al., 2019; Gruber et al., 2019; Zhang et al., 2022).

Our product indicates that the global pelagic ocean Chla

presented a significant increasing trend over 1998–2020 with a rate

of 0.67% ± 0.37%/yr, which is a more positive value than found in a

number of previous studies. Using the SeaWiFS record, Vantrepotte

and Mélin (2011) found that, over the period 1997–2007, Chla

decreased in most of the global ocean; our results from SeaWiFS

original series are consistent with these findings (Figure 5D). Saulquin

et al. (2013) reported a low-magnitude positive trend (2.83 × 10−4 mg/
L/yr) in global Chla over September 1997 to April 2012 using

combined data from SeaWiFS and MERIS. However, Hammond

et al. (2017) calculated that the trend of marine Chla from

September 1997 to December 2013 was −0.023% ± 0.12%/yr using

the Bayesian hierarchical spatiotemporal model and the OC-CCI

dataset. They further reported a global average weighted trend of

0.08 ± 0.35%/yr over the period 1997–2018 with prior information

provided by the Coupled Model Intercomparison Project phase 5

output (Hammond et al., 2020). It is reasonable to get different trends

when various periods and datasets are analyzed.

The global data were further divided into 12 regions (Figure 8E)

according to Gregg and Rousseaux (2014) to quantify the Chla trend.

Significant declines are observed in the North Central Atlantic and
Frontiers in Marine Science 09
equatorial Atlantic, whereas, in the South Indian and South Atlantic

oceans, Chla increases by 0.5%/yr. The downward trend in the North

Atlantic was earlier mentioned by Gregg and Rousseaux (2014), who

integrated SeaWiFS and MODIS records from 1998 to 2012 and

reported that the rate of decline was 1.1%/yr. The rate of the

decreasing trend we calculated for the North and Central Atlantic is

much lower, being 0.46% ± 0.42%/yr. The differences could be

attributed to the different datasets and the eight-year longer data

span we used. The decline in the equatorial Atlantic (0.45% ± 0.17%/

yr) is consistent with the result of Hammond et al. (2018), who, using

the OC-CCI record, suggested that Chla in the Eastern Tropical

Atlantic decreased by ~0.7%/yr from 1998 to 2016. The increased

Chla in the South Indian and South Atlantic oceans may be associated

with relatively stable temperature (Figure 8B) and stratification, as

well as atmospheric soluble iron deposition enhancement (Hamilton

et al., 2020).

In addition, it is worth noting that, from the trend map, many of

the pixels in the North Pacific, North Atlantic, North Indian, and

Antarctic oceans exhibit a significant increasing trend, but not from

the perspective of the regional statistics. One possible reason for this

difference is that, during data processing, we first calculate the

regional average value of each month, and then we calculate its

linear trend. The increasing signal may be interfered with or masked

when the pixels that significantly declined and nonsignificantly

changed (which also account for a considerable proportion) were

also included in regional averaging. Another possible cause is the

different data coverage before and after 2002 (Gregg and Casey, 2007).

Before 2002, the spatial coverage of the merged data was relatively
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FIGURE 7

Pixel-by-pixel comparison of the Chla rate of change from VIIRS and (A) this study, (B) OC-CCI, and (C) GlobColour. (D) Chla trend maps in units of %/yr
from VIIRS for January 2012 to December 2018. (E–G) Chla trends from VIIRS minus that from the three merged datasets in units of mg/L/yr. Black lines
on the scatter plots represent the 1:1 line, and the color scale indicates the data density in pixels. The bright gray on the maps represents insufficient data
for trend estimation (i.e., the number of valid data collected in the statistical period (41 months) does not reach 50%), and white indicates that the VIIRS
data show that the pixel has not changed significantly (p< 0.05). .
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insufficient as only SeaWiFS was in orbit, while at least two sets of

satellite data were available at the same time after 2002, especially the

introduction of MERIS and the processing of MERIS data with

POLYMER (Steinmetz et al., 2011; van Oostende et al., 2022),

improved the spatial coverage of the data considerably, especially in

high latitudes, the intertropical convergence zone, and highly

productive coastal regions. The data before 2002 may not represent

the whole region with insufficient coverage, thus misleading the trend

calculation. This problem exists in basically all multimission ocean-

color datasets. However, (van Oostende et al., 2022) applied the

temporal gap detection method (TGDM) to the OC-CCI record to

homogenize the observations per pixel of the time series, which may

be worth attempting to avoid artifacts trends in long-term analysis

when significant coverage differences exist in the interested regions.
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4.2 Trend difference between merged
Chla datasets

Many studies on the trend of the Chla long-time series use the

products from OC-CCI and GlobColour (Chen et al., 2014; Racault

et al., 2015; Hammond et al., 2017; Sravanthi et al., 2017; Gbagir and

Colpaert, 2020; Hammond et al., 2020; Moradi, 2021; Guo et al.,

2022). Mélin et al. (2017) assessed the fitness for time-series analysis

of OC-CCI Chla data (version 3, 1998–2015) and stated that the OC-

CCI data had a remarkable agreement with single-mission products.

However, it should not be taken for granted, as the results have

evolved with the OC-CCI dataset versions (Mélin et al., 2017).

Hammond et al. (2018) assessed the presence of discontinuities in

both the OC-CCI dataset (version 3.1) and the GlobColour dataset
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FIGURE 8

(A) Chla trend map derived from this study and (B) SST trend map from 1998 to 2020. (C, D) Trend differences between OC-CCI and GlobColour and
that from this study in units of %/yr. (E) Basin definitions for the trend analysis (Gregg and Rousseaux, 2014), (F) time series curve of global Chla, and (G)
Chla trends in global oceans and 14 basins from the three merged datasets. The light gray on the maps represents insufficient data from our dataset for
making a trend calculation (i.e., the number of valid data collected in the statistical period (138 months) does not reach 50%), and white indicates that the
pixel trend is insignificant (p > 0.05) according to our dataset. For (G), the bar with an asterisk (*) marked indicates that the trend is significant (p< 0.05);
error bars show 95% credible intervals of the rate of change.
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from September 1997 to December 2016 and found their effect in

most regions worldwide, which leads to a corresponding difference in

trend estimates, with a maximum difference of 2.9%/yr, and can even

change the direction of trends.

In Section 3.2, we verified that our merged product has acceptable

accuracy of the Chla value and fits to long-term Chla trend analysis

and climate change related studies better than OC-CCI and

GlobColour products as it is more consistent with the single-

satellite sequence in the aspect of trend diagnosis. Figures 8C, D

show the difference between the Chla variation rate calculated in this

study and that of the two published merge products from 1998 to

2020. OC-CCI may overestimate the rising rate by 0.5%–1% per year

in the Southern Ocean and Southeast Pacific, lose sight of the increase

in the northwest Arabian Sea, and underrate the rising observed along

the Northwest Pacific margin. GlobColour, however, shows an overall

negative pattern, that is, an overstated downward trend over the

Pacific and Indian oligotrophic gyres, an underestimated increasing

rate at the North Atlantic high latitudes, Southern Ocean, and

Southeast Pacific, and even a misdiagnosed growing trend in the

north Arabian Sea and South Atlantic.

The global ocean Chla trend from OC-CCI is similar to that from

our product, with a rising rate of 0.54% ± 0.31%/yr, while the trend

from GlobColour indicates that it had not changed significantly

(Figure 8G). The noticeable discontinuity can be captured from the

global time-series Chla curve (Figure 8F) of OC-CCI and GlobColour

with systematical high values over 2002–2012 resulting from the

introduction of MERIS and the utilize of POLYMER to MERIS data

(Steinmetz et al., 2011; van Oostende et al., 2022). In addition,

GlobColour also has an obvious systematic low value after 2017. In

terms of regional statistics, OC-CCI exhibits the same trends in

regions where significant trends occurred according to our dataset,

with slight differences in the rate of change (~0.1%/yr). It also

indicates that Chla increased in the North, equatorial, and South

Pacific oceans while there was no significant trend detected from our

dataset. GlobColour exhibits overwhelming negative trends in most

regions (7 out of 12) besides high latitudes, with no positive trend

found. It should be noted that the decreasing trend revealed by

GlobColour in the North Central, equatorial, and South Pacific

oceans and the North and equatorial Indian oceans was not found

in OC-CCI nor in our product. In general, the Chla trend generated

from OC-CCI is closer to that from our products compared with

GlobColor because the OC-CCI dataset has been corrected for Rrs

bias (Lavender et al., 2015), while the GlobColour data are not

explicitly bias-corrected but are instead merged by inversion with a

bio-optical model (Maritorena et al., 2010).
5 Conclusions and implications

To better detect the long-term trend of sea surface Chla, we

corrected and merged multi-sensor Chla data and produced a set of

satellite-derived Chla products from September 1997 to 2020. Our

product has similar accuracy to that of OC-CCI and GlobColour

products in terms of Chla value, as has been validated by the in situ

data. Moreover, the dataset has great potential to be used in

climatology studies as it has excellent accuracy in Chla trends that

is generally more consistent with single-mission records than OC-
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CCI and GlobColour products. Based on this dataset, we illustrated

the linear trend of Chla and its distribution in various regions around

the world over 23 years. The difference among trends estimated using

the three merged products was also analyzed to provide a reliable Chla

trend and stated that caution should be exercised when using existing

merged products to calculate long-term trends.

Though the method we employed to correct bias between sensors

is straightforward, we have performed a series of validations to prove

the fitness of the dataset in long-term ecological research. Our method

is an efficient operation and is easy to apply and extend. We used

MODIS records as the benchmark, but, in the future, with the launch

of new satellites and the continuous accumulation of Chla data, this

method can be used to build new datasets quickly. It can also be

extended to other missions and parameters such as SST, kd490, and

Rrs from multiple missions. However, it should be stated that the

method itself tends more toward mathematics and statistics and

barely involves remote-sensing mechanisms. We have also assumed

that the bias between sensors does not change with the aging of

sensors during the overlap period. Although we have performed

quality control for single-sensor data, in theory, though limited, the

aging of sensors may impact the correction effect.

The key objective of this study is to create a new dataset for better

trend detection and provide a reliable trend map of Chla in the past 23

years, and we have corrected the potential misunderstanding of global

Chla changes generated by the OC-CCI and GlobColour datasets.

Our data have been shared on Zenodo (https://doi.org/10.5281/

zenodo.7092220). We hope our work can offer the community a

reliable dataset to conduct Chla trends analysis globally and on

different systems, provide a methodology reference for developing

future ocean-color CDR and ECV products, and thus contribute to

understanding the long-term trend of phytoplankton under

climate change.
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Pottier, C., Garçon, V., Larnicol, G., Sudre, J., Schaeffer, P., and Le Traon, P.-Y. (2006).
Merging SeaWiFS and MODIS/Aqua ocean color data in north and equatorial Atlantic
using weighted averaging and objective analysis. IEEE Trans. Geosci. Remote Sens. 44 (11),
3436–3451. doi: 10.1109/TGRS.2006.878441

Racault, M.-F., Raitsos, D. E., Berumen, M. L., Brewin, R. J., Platt, T., Sathyendranath,
S., et al. (2015). Phytoplankton phenology indices in coral reef ecosystems: Application to
ocean-color observations in the red Sea. Remote Sens. Environ. 160, 222–234. doi:
10.1016/j.rse.2015.01.019

Ryan, J. P., Ueki, I., Chao, Y., Zhang, H., Polito, P. S., and Chavez, F. P. (2006). Western
Pacific modulation of large phytoplankton blooms in the central and eastern equatorial
pacific. J. Geophysical Research: Biogeosciences 111, G02013. doi: 10.1029/2005JG000084

Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B., Chuprin, A.,
et al. (2019). An ocean-colour time series for use in climate studies: the experience of the
ocean-colour climate change initiative (OC-CCI). Sensors 19 (19), 4285. doi: 10.3390/
s19194285

Sathyendranath, S., Brewin, R. J., Jackson, T., Mélin, F., and Platt, T. (2017). Ocean-
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