TYPE Editorial PUBLISHED 23 January 2023 DOI 10.3389/fpubh.2023.1132998

OPEN ACCESS

EDITED AND REVIEWED BY
Terry Huang,
City University of New York, United States

*CORRESPONDENCE Fei Li ☑ lifei@zuel.edu.cn

SPECIALTY SECTION

This article was submitted to Public Health and Nutrition, a section of the journal Frontiers in Public Health

RECEIVED 28 December 2022 ACCEPTED 12 January 2023 PUBLISHED 23 January 2023

CITATION

Li F, Zhang C, Xiao Z and Hu H (2023) Editorial: Multimedia environmental pollution and food safety: New insights from integrated consumer nutrition and health risk management. *Front. Public Health* 11:1132998. doi: 10.3389/fpubh.2023.1132998

COPYRIGHT

© 2023 Li, Zhang, Xiao and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Multimedia environmental pollution and food safety: New insights from integrated consumer nutrition and health risk management

Fei Li^{1*}, Chuanrong Zhang², Zhihua Xiao³ and Hao Hu⁴

¹Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, Hubei, China, ²Department of Geography and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, United States, ³College of Resources and Environment, Hunan Agricultural University, Changsha, China, ⁴College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China

KEYWORDS

environmental pollution, consumer nutrition, health risk management, dietary strategies, food chemistry and safety

Editorial on the Research Topic

Multimedia environmental pollution and food safety: New insights from integrated consumer nutrition and health risk management

Environmental pollution and food safety are closely related critical issues faced by all populations over the world. Safe foods provide the necessary nutrients for human survival and health. Unfortunately, anthropogenic source-driven contaminants could be transported to foods (*via* crops, vegetables, fruits, and animals) from the contaminated multimedia environments including air, soil, surface water or groundwater, etc. This Research Topic aims to provide a platform for scholars to report their research progress on studying multimedia environmental pollutions and food safety around the world. Multidisciplinary research is urgently needed to explore a range of health and nutrition inquiries, from issues of the food supply chain to cooking practices and dietary safety management, not only in normal times but also as a function of the COVID-19 pandemic. The Research Topic has attracted wide attention and generated six multi-disciplinary articles in total.

In this Research Topic, a team from Cukurova University (Turkey) and North Carolina A & T State University (United States) conducted a literature review about the impact of COVID-19 pandemic on seafood safety and human health (Rathod et al.). Another team from University of Veterinary Medicine and Pharmacy (Slovakia) and Menoufifia University (Egypt) performed a health risk evaluation of organochlorine pesticide residues in edible tissue of seafood based on 120 random samples from local markets in Mansoura city, Egypt (Hussein et al.). Furthermore, the study by Chen et al. proposed a novel theoretical framework for food safety management problem using a case study of China's waste cooking oil (WCO). This paper bridged the research gap by systematically applying grounded theory to real criminal cases to explore the main potential influencing factors of WCO crime comprehensively. Zhang G. et al. from the Affiliated Zhongda Hospital of Southeast University (China) used data from the 2013–2014 National Health and Nutrition Examination Survey (NHANES) database to initially explore the relationship between urinary concentrations of Heterocyclic aromatic amines (HAAs) and the risk of kidney stones, which was validated by propensity score matching (PSM) analysis.

Li et al. 10.3389/fpubh.2023.1132998

For detecting botulinum toxin type A, which can cause serious food poisoning, in complex sample matrices. Zhang L. et al. from Anhui Medical University (China) introduced a rapid and sensitive detection tool using AlphaLISA, which was proved to a potentially rapid toxin detection method for foods. Finally, Guanqi et al. evaluated the role of organic food supply chain traceability in food safety and consumer wellbeing using a mediated-moderation investigation.

This Research Topic provides not only a timely reference source for academics, but also has practical implications for decision-makers concerned with environmental pollution and food safety. We thank the members of the Editorial Board and all authors and referees for their valuable contributions to this Research Topic. Of course, these publications would not be possible without the support from the Journal Office.

Author contributions

FL wrote the draft of this manuscript. CZ, ZX, and HH reviewed and approved the final version. All

authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.