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Introduction: Inflammatory bowel disease (IBD) is characterized by a dysbiosis of
the gut microbiome that results from the interaction of the constituting taxa with
one another, and with the host. At the same time, host genetic variation is
associated with both IBD risk and microbiome composition.

Methods: In the present study, we defined quantitative traits (QTs) from modules
identified in microbial co-occurrence networks to measure the inter-individual
consistency of microbial abundance and subjected these QTs to a genome-wide
quantitative trait locus (QTL) linkage analysis.

Results: Four microbial network modules were consistently identified in two cohorts
of healthy individuals, but three of the corresponding QTs differed significantly
between IBD patients and unaffected individuals. The QTL linkage analysis was
performed in a sub-sample of the Kiel IBD family cohort (IBD-KC), an ongoing
study of 256German families comprising 455 IBD patients and 575 first- and second-
degree, non-affected relatives. The analysis revealed five chromosomal regions
linked to one of three microbial module QTs, namely on chromosomes 3
(spanning 10.79 cM) and 11 (6.69 cM) for the first module, chr9 (0.13 cM) and
chr16 (1.20 cM) for the second module, and chr13 (19.98 cM) for the third
module. None of these loci have been implicated in a microbial phenotype before.

Discussion:Our study illustrates the benefit of combining network and family-based
linkage analysis to identify novel genetic drivers of microbiome composition in a
specific disease context.
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1 Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory
condition of the gastrointestinal tract that currently affects
6.8 million people worldwide (Alatab et al., 2020). IBD has two
main sub-entities, Crohn disease (CD) and ulcerative colitis (UC),
both of which are characterized by a complex etiology involving host
genetics, microbiome and environmental factors (Lavoie et al., 2019;
Caruso et al., 2020). Genome-wide association studies (GWAS)
identified over 200 genetic variants that increase IBD risk (Lloyd-
Price et al., 2019). In addition, IBD is also associated with a reduction
of gut microbial diversity in the form of a decreased abundance of
beneficial bacteria, such as Faecalibacterium prausnitzii and Roseburia
intestinalis, and an increased abundance of harmful species (Ott et al.,
2004; Imhann et al., 2018).

Several links have been drawn between host genetic variation and
gut microbiome composition in the context of IBD (Bonder et al.,
2016; Hughes et al., 2020; Rühlemann et al., 2021). For example,
common genetic variation at the NOD2 gene locus, a known IBD risk
factor, was found to be significantly associated with the abundance of
Enterobacteriaceae (Knights et al., 2014; Kurilshikov et al., 2017).
Additional associations with variation in IBD-relevant genes were
observed for other gut microbial features (Hu et al., 2021). In our own
recent study of IBD families, we found 12 chromosomal regions to be
genetically linked, at the genome-wide significance level, to different
abundance-based microbiome traits (Sharma et al., 2022). These
findings notwithstanding, the association between host genome and
microbiome in IBD remains enigmatic which is illustrated, for
example, by the observation of monozygotic twins who are
discordant for UC and also have dissimilar microbiomes (Lepage
et al., 2011).

The composition of the microbiome is the result of an
interaction of its constituting taxa with both one another and
the host. That these complex interactions also affect the health
of the host is evidenced by the role, in many human diseases, of
dysbiosis, i.e., an imbalance in the abundance of particular
microbial community members (Layeghifard et al., 2017). In
view of the clear link between intra-microbiome interaction and
host health (Hansen et al., 2015; Hoffmann et al., 2016; Layeghifard
et al., 2017), a microbial community-level approach should be
taken when studying the biomedical relevance of certain changes in
microbiome composition. To this end, microbiome data can
efficiently be analyzed with graph-theoretical methods, including
co-occurrence networks as a means to capture the correlation
between species abundances (Tong et al., 2013; Layeghifard
et al., 2017). Such networks allow a more systems-level view of
microbial co-occurrence than the consideration of mere abundance
values alone. Interestingly, in the specific context of IBD, it has
been shown before that co-occurrence networks of human intestine
16S rRNA data contain subnetworks, termed “modules,” that are
specifically associated with the disease (Tong et al., 2013). In
addition, it has been shown that the type of gut microbiome
dysbiosis often associated with diseases such as IBD can be
characterized by correlation-based “co-abundance networks” as
well (Chen et al., 2020).

Previous studies of the joint role of host genetics and gut
microbiome in IBD etiology took a single-taxon level approach in
unrelated individuals, assessing the abundance of individual species or
genera for genotype associations at a genome-wide level. The present

study, in contrast, involves classical genetic linkage analysis in IBD
families and extends our previous single-taxon level investigations
(Sharma et al., 2022) to the use of co-occurrence network modules.
Based upon these modules, we defined novel quantitative traits
capturing whole microbiome patterns in a single numerical figure
to facilitate a multivariate, community-level search for genetic
determinants of microbiome composition in IBD families. Our
network-based approach also greatly alleviated the multiple testing
problem affecting single-taxon level studies by the high dimensionality
of the underlying microbiome data.

2 Materials and methods

2.1 Sample description

PopGen is a scientific biobank of residents of Schleswig-Holstein
(Krawczak et al., 2006), the most northern federal state of Germany. In
addition to various disease-specific sample collections, PopGen also
maintains a control cohort from the general population (Ratjen et al.,
2020). The population-based FoCus cohort is part of the Food Chain
Plus (FoCus) study at Kiel, the capital of Schleswig-Holstein (Relling
et al., 2018). The Kiel IBD kindred cohort (IBD-KC) is an ongoing
nationwide prospective study of families of German IBD patients,
coordinated from Kiel (Sharma et al., 2022). Stool samples were
available for our study from 917 members of the PopGen control
cohort, 1583 unrelated FoCus cohort members and 951 IBD-KC
participants, both affected and unaffected. Since the construction of
co-occurrence networks does not allow for any covariates of
microbiome composition, we ensured that the different cohorts
used in our study were generally comparable in terms of sex, age
and BMI. To this end, plots of the age and sex distributions were
visually assessed for sufficient similarity, and only individuals with a
BMI <35 kg/m2 were included. We refrained from performing formal
statistical tests because even small, and hence irrelevant, inter-group
differences would have been declared statistically significant with the
large sample sizes available to us.

2.2 16S RNA sequencing and data processing

Fecal samples of study participants were collected at home using
standard stool collection tubes. Samples were mailed to the study
center and stored at −80°C until processing. DNA was extracted from
~200 mg of fecal material using QIAamp DNA stool mini-kits,
automated on the QIAcube (QIAGEN). Subsequent 16S rRNA
gene library preparation and sequencing were performed as
previously described (Wang et al., 2016). In short, the V1-V2
region of the 16S rRNA gene was sequenced on the MiSeq
platform using v3 chemistry for 2 × 300 bp paired-end reads
(Illumina Inc., San Diego, CA, United States). Demultiplexing after
sequencing was based upon the complete absence of mismatches in the
barcode sequences. Data processing was performed with the
DADA2 version 1.10 workflow for big datasets (https://benjjneb.
github.io/dada2/bigdata.html), resulting in ASV abundance tables.
Different sequencing runs were handled separately (see https://
github.com/mruehlemann/ikmb_amplicon_processing/blob/master/
dada2_16S_workflow.R for a V1-V2-adjusted workflow) and were
only finally collapsed into a single abundance table per dataset, which
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then underwent chimaera filtering. ASVs were subjected to taxonomic
annotation using the Bayesian classifier provided by DADA2 and the
Ribosomal Database Project (RDP) version 16 release. The processing
of microbiome data from fecal samples from the FoCus and PopGen
cohorts has been described elsewhere (Rühlemann et al., 2021).

2.3 Single nucleotide polymorphism (SNP)
genotyping

Genotyping was confined to IBD-KC samples and was carried out
with the Global Screening Array-24 Multi Disease v2.0, following the
Illumina Infinium HTS Assay Auto Workflow (Document
#15045738v0). Subsequent steps, including QC of SNP genotypes,
are described elsewhere (Sharma et al., 2022).

2.4 Data analysis

2.4.1 Network construction and module detection
Microbiome networks were constructed from 16S rRNA data

using pairwise Pearson correlation coefficients of microbial
abundances to quantify “co-occurrence” (Tong et al., 2013). Each
node of a microbiome co-occurrence network represents a genus, and
the edge connecting two nodes (i.e., genera) reflects the strength of
their correlation in abundance. We computed correlation matrices at
the genus level separately for the PopGen and FoCus samples using
FastSpar (Watts et al., 2019), which is a C++ implementation of the
Sparse Correlations for Compositional data (SparCC) algorithm
(Friedman and Alm, 2012). Only genera present in both data sets
were used for network construction to allow meaningful inter-cohort
comparison of the results. Worthy of note, SparCC log-ratio-
transforms microbial abundance values before estimating the
Pearson correlation coefficient for pairs of genera. We then used R
package WGCNA (Weighted Correlation Network Analysis)
(Langfelder and Horvath, 2008; 2012) to construct weighted signed
adjacency matrices from Pearson correlation coefficients as a basis of
subsequent hierarchical clustering of genera by way of average linkage.
Finally, modules were identified in the resulting dendrograms of the
PopGen and FoCus samples using the dynamic tree cut algorithm
(Langfelder et al., 2008), setting the minimum module size to
10 genera. There was no upper limit for the module size. A
balance between generating too large and too small modules was
achieved by setting the deepSplit parameter to 2. All other parameters
were set to default. Notably, this workflow had been followed before in

a network-based gut microbiome analysis of unrelated IBD patients
(Tong et al., 2013).

2.4.2 Network module preservation
To investigate the robustness of the microbiome co-occurrence

networks generated in different cohorts, we first investigated the
extent to which the network modules identified in PopGen were
preserved in FoCus, and vice versa. To this end, we employed an R
implementation of the NetRep workflow (Ritchie et al., 2016), which
entails a permutation-based assessment of the preservation of modules
by seven different statistical tests of the null hypothesis of no module
preservation. NetRep recalculates each test statistic after randomly
permuting node labels, i.e., after shuffling the module affiliation of
genera. For sparse microbiome data, it has been suggested to use only
four of the seven statistics in question, namely coherence, average
node contribution, density of the correlation structure, and average
edge weight (Ritchie et al., 2016). A module detected in one dataset
was considered “strongly preserved” in the other dataset if p < 0.05/4 =
0.012 for all four statistics (i.e., significant after Bonferroni correction),
and “weakly preserved” if p < 0.012 for at least one, but not all
statistics. This way, we assessed the level of module preservation
between the PopGen and FoCus samples twice, considering one
cohort as the discovery dataset and the other as the test dataset.
For each analysis, the number of permutations was set to 10,000.

2.4.3 Module-based quantitative trait (QT) definition
in the IBD-KC dataset

Since the network modules identified in PopGen and FoCus
showed convincing evidence for preservation across cohorts, we
combined the two datasets into a single “control” dataset. In so
doing, we kept only genera that were present in both datasets.
Following network creation and module identification as described
above, the genera constituting a network module in controls were next
used to highlight the respective module in the IBD-KC dataset.
Principal component analysis (PCA) of the microbial abundance
values was then performed in the control dataset separately for
each module, and the resulting loadings were used to project each
IBD-KC sample onto the corresponding, module-specific first
principal component (PC1). In subsequent linkage analyses of the
IBD-KC families, the PC1 values served as quantitative traits (QT) to
measure the level of co-occurrence of the genera constituting a given
microbial network module in the control dataset.

Differences in terms of a given microbial module QT between the
control dataset and either the affected or the unaffected part of IBD-
KC were assessed for statistical significance using a Mann-Whitney U

TABLE 1 Demographic characteristics [median (1st quartile, 3rd quartile) or number (%)] of study samples.

PopGen controls FoCus IBD-KC

IBD Non-IBD

Total (n) 824 1049 294 409

Age (years) 62 [54, 71] 54 [44, 65] 41.9 [30.2, 53.0] 42.6 [26.0, 58.2]

Body mass index (kg/m2) 26.5 [23.9, 29.1] 25.6 [22.2, 28.7] 23.9 [20.9, 26.4] 24.8 [21.4, 27.3]

Female [n, (%)] 344 [41.7] 617 [58.8] 182 [61.9] 231 [56.5]

Ever smoker [n, (%)] 506 [61.4] 629 [59.9] 29 [9.2] 50 [12.2]
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test. For each test, only one randomly selected individual per IBD-KC
family was included to account for familial correlations. By contrast, a
Wilcoxon signed-rank test was used to evaluate microbial module QT
differences between affected and unaffected individuals within IBD-
KC, considering one randomly selected pair of affected and unaffected
members per family. Group-wise medians and quartiles are reported
together with p-values from inter-group comparisons.

2.4.4 Heritability analysis
A pedigree-based estimate of the heritability (h2) of each microbial

module QT was obtained using the variance components method as
implemented in MERLIN v1.1.2 (Abecasis et al., 2002). Sex, smoking
status, IBD status, BMI and age were included as covariates in this and
all other statistical analyses.

2.4.5 Genome-wide QTL linkage analysis
We performed genome-wide multipoint QT locus (QTL) linkage

analysis with MERLIN-REGRESS v1.1.2 to detect chromosomal regions
linked to one or more of the microbial module QTs in IBD-KC families.
The software is an implementation of the regression-based method
proposed by Sham et al. (2002), which relates the estimated local level
of identical-by-descent sharing of SNP haplotypes to both the squared
sum and squared difference of the QT of interest. Individual IBD disease
status was not accounted for in the analysis. We report LOD (“logarithm
of odds”) scores as the key test statistic, with LOD
scores >3 corresponding to significant evidence for linkage at the
genome-wide level (Morton, 1998). As described before (Sharma et al.,
2022), all subsequent analyses were confined to the so-called “2-units
support intervals,” defined as the chromosomal regions around significant
linkage peaks in which the LOD scores of other SNPs deviate by less than
two units from the maximum LOD score (Ott, 1999). All genes located
within 2-units support intervals were identified and a complete list of
associated Gene Ontology (GO) terms was created for each protein-

coding gene to pinpoint biologically plausible candidates for the causation
of the linkage signals.

2.4.6 Association analysis within linkage regions
We also performed family-based association analyses between

microbial module QTs and individual SNPs from the QT-linked 2-
units support intervals. Statistical testing of the SNP associations was
performed using the WISARD workbench (Lee et al., 2018), which is an
implementation of the genome-wide efficient mixed-model association
algorithm (GEMMA) to fit a linear mixed model under the inclusion of a
kinship matrix to account for familial relationships (Zhou and Stephens,
2012). All SNPs within the 2-units support intervals were looked up in
previously published results of GWAS of IBD, UC or CD, drawing upon
the GWAS Catalog (Version 1.0, downloaded on 9 July 2022 as gwas_
catalog_v1.0-associations_e106_r2022-07-09.tsv).

2.4.7 Comparison of module-based and single-
taxon linkage analysis

To assess whether the network-based approach used in the
present study revealed any relevant linkage signals beyond those
already identified in our previous, single-taxon level analysis
(Sharma et al., 2022), we identified all genera considered in the
latter study that were included in at least one module with a
significant linkage signal in the present study. For the 2-units
support interval of a QT-specific linkage signal, we then
recorded the average maximum LOD score from our previous
study, taken over all genera constituting the respective module.
For each linkage signal, this was repeated for 10,000 genomic
regions of the same genetic length as the 2-units support
interval in question, but picked at random from the human
genome. The corresponding p-value was then estimated by the
relative number of times the average maximum LOD score in the
randomly picked regions was greater than the original one.

FIGURE 1
Modules detected, by WGCNA, in the microbial co-occurrence networks of the PopGen and FoCus samples. The size of each circle reflects the number
of constituent genera of the corresponding module; each circle segment contains the number of genera included. For consistency, the original WGCNA
coloring was modified based upon the maximum pairwise overlap between modules. (A): blue module, (B): brown module, (C): turqoise module, (D): yellow
module.
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3 Results

3.1 Cohort characteristics

Healthy controls in our study were members of the population-
based PopGen and FoCus cohorts with a BMI <35 kg/m2. While the
age distribution was similar in the two control samples, the PopGen
controls were found to be somewhat enriched with male samples
(Supplementary Figure S1). For our QTL linkage analysis, we used
genotype, phenotype and microbiome data from the IBD-KC,
comprising 256 families. No relevant differences in terms of
potential confounders such as age and sex were observed
between affected and non-affected IBD-KC members. Overall,
our study drew upon microbiome and supplementary data from
824 to 1049 healthy PopGen and FoCus members, respectively, and
from 703 IBD-KC participants (Table 1). There were 427, 526 and
504 microbial genera present in the PopGen, FoCus and IBD-KC
cohorts, respectively.

3.2 Network construction and module
detection

Co-occurrence networks of microbial genera were generated
separately for the PopGen and FoCus samples, based upon the
362 genera that were present in both cohorts. Four microbial
modules each were detected in PopGen and FoCus, respectively
(see Supplementary Table S1 for the constituent genera, see
Figure 1 for the respective module sizes). The blue module from
PopGen and FoCus contained 31 and 23 genera, respectively, with an
overlap of 22 genera, “brown” contained 22 and 27 genera (overlap:
20), “turquoise” contained 44 and 27 genera (overlap: 20), and
“yellow” contained 21 and 36 genera (overlap: 15). Since WGCNA
uses arbitrary color schemes to label modules, we chose to relabel the
modules detected in PopGen and FoCus based upon maximum
pairwise overlap. We deliberately abstained from using functional
or taxonomical characteristics to label modules in order to avoid any
short-sighted interpretation of our linkage findings.

FIGURE 2
Principal component analysis of the abundance of microbial co-occurrence network modules in the combined control dataset. Black dots: control
samples; colored dots: projected IBD-KC samples. The percentage of variance explained by a given PC is shown in brackets in the respective axis legend.
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3.3 Network module preservation

Whether modules detected in the PopGen samples were preserved
in FoCus, and vice versa, was assessed with NetRep, adopting a
permutation-based testing approach that employs four different

preservation statistics relevant for microbiome data. We assessed
module preservation twice, switching the discovery and test dataset
status between FoCus and PopGen (Supplementary Table S2). Three
of the four modules detected in FoCus (original color labels “blue,”
“turquoise,” “yellow”) were strongly preserved in PopGen whilst all

FIGURE 3
Boxplots of the microbial module QT distributions in the combined control cohort as well as in affected (IBD) and unaffected (non-IBD) IBD-KC
individuals.

TABLE 2 Microbial module QTs in the combined control cohort as well as in affected (IBD) and unaffected (non-IBD) IBD-KC individuals. Shown are group-specific
medians [1st quartile, 3rd quartile] and p-values from inter-group comparisons.

Median [1st quartile, 3rd quartile] p-value

Module CT Non-IBD IBD CT vs. IBD CT vs. non-IBD IBD vs. non-IBD

Blue 4.16 [−23.42, 29.49] −4.92 [−29.90, 17.71] −2.41 [−25.93, 23.82] 0.14 0.0004 0.1

Brown −20.02 [−25.25, 18.58] −24.05 [−25.96, -3.24] −24.95 [−27.19, -21.29] <0.0001 <0.0001 0.0061

Turquoise 11.43 [−6.32, 18.07] 6.87 [−21.64, 17.42] −7.01 [−37.17, 12.49] <0.0001 00039 0.0009

Yellow 6.04 [−19.94, 28.45] 11.97 [−8.38, 30.17] 13.35 [−13.25, 32.21] 0.005 0.0032 0.56

TABLE 3 Genome-wide QTL linkage analysis of microbial module QTs in IBD families. For each significantly linked locus, the 2-units support interval demarcates the
chromosomal region in which the LOD score differs by less than two units from the maximum LOD score. The number, n, of genes in each region was determined using
biomaRt v.2.44.4 (Durinck et al., 2009). Mb: Mega base pairs; cM: centi-Morgan.

Module Chromosome 2-Units support interval Physical (genetic) size Genes (n)

Blue 3 rs2979948—rs116052381 9.41 Mb (10.79 cM) 209

Yellow 9 rs75071805—rs9411370 0.06 Mb (0.13 cM) 2

Blue 11 rs76517460—rs11600109 4.44 Mb (6.69 cM) 148

Turquoise 13 rs11618775—rs117621393 10.51 Mb (19.98 cM) 158

Yellow 16 rs57083127—rs9927472 0.41 Mb (1.20 cM) 6
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PopGen modules were only “weakly” preserved in FoCus (see
Methods). Nevertheless, for PopGen modules “blue” and “brown,”
three of the four preservation statistics (all except coherence) were
significant as well (i.e., p < 0.012).

3.4 Module-based quantitative trait definition
in the IBD-KC dataset

In the microbiome co-occurrence network generated from the
(combined) control dataset, we detected four microbial modules that
were also labelled “blue,” “brown,” “turquoise” and “yellow” by the
WGCNA software (Supplementary Table S3). We re-identified these
modules in the IBD-KC data through consideration of the respective

constituting genera. In each module, the majority of genera belonged to
phylum Firmicutes (blue: 43%, brown: 50%, turquoise: 60%, yellow: 76%).
Next, we performed PCA of the abundance of the module-constituting
genera and, from the results of the PCA, calculated the microbial module
QT of each IBD-KC sample by projecting the sample onto the respective
PC1 (Figure 2). Notably, all modules were found to contain genera
characterized by a high percentage of zero abundance values
(Supplementary Figure S2). While individuals with zero abundance for
all constituting genera of amodule cannot be separated by PCA, those with
zero abundance for most, but not all, genera may end up on a straight line
in the PCA plot (see brown, turquoise and yellow modules in Figure 2).
However, since allmodule-specific PC1 derived here explained at least 40%
of the overall variability in abundance in the combined control dataset, and
since the projection of the IBD-KC samples (colored dots in Figure 2)

FIGURE 4
Regions of significant linkage with microbial module QTs. The locus zoom plots span the 2-units support intervals of a given genome-wide significant
linkage signal. Depicted are the LOD score (top panel), p-value (on the log10 scale) from a SNP-wise association analysis (central panel), and the location of
protein-coding genes (bottom panel). The range of a given gene ismarked by a horizontal line; region-wise lists of gene names (from left to right) are provided
in Supplementary Table S4.
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showed substantial variation for all modules, we considered the resulting
QTs suitable for subsequent linkage analysis.

The microbial module QTs observed in the different study groups are
depicted in Figure 3. Statistically significant inter-group differences were
observed formostmodules (see Table 2). In particular, the brown, turquoise
and yellow module QTs differed significantly between IBD patients and
unrelated healthy controls while the brown and turquoise module QTs also
differed between IBD patients and their unaffected relatives. These results
suggest that the alteration of at least three of the four microbial modules
identified in our controls is relevant to IBD.

3.5 Heritability analysis of microbial
module QTs

The covariate-adjusted, pedigree-based estimate of the heritability
(h2) of the corresponding microbial module QT equaled 6.4% for the

brown module, 14.1% for the turquoise module, 16.7% for the yellow
module and 32.0% for the blue module. Notably, the brown module
had the lowest heritability in the IBD-KC families, which may be
related to the fact that all constituent genera had an abundance of zero
in >20% of the CT individuals (Supplementary Figure S2) and that the
variability of the QT was the lowest of all modules (Figure 3).

3.6 Genome-wide module QTL linkage
analysis

We observed significant evidence for linkage at genome-wide level
(i.e., LOD score >3) between five chromosomal regions and three
microbial module QTs, namely blue [chr3. maximum LOD score (max
LOD) 3.53; chr11, max LOD 3.34], yellow (chr9, max LOD 3.52; chr16,
max LOD 4.18) and turquoise (chr13, max LOD 3.76) (Table 3;
Figure 4). No significant linkage was observed for the QT

FIGURE 4
(Continued).

TABLE 4 Comparison of linkage signals from module-based and single-taxon level linkage analysis.

Module (chromosome) Module-based max LOD Average single-taxon max LOD p-value (average single-taxon max LOD)

Blue (chr 3) 3.53 0.32 0.61

Blue (chr 11) 3.34 0.04 0.95

Turquoise (chr 13) 3.76 0.70 0.24

Yellow (chr 9) 3.52 0.11 0.21

Yellow (chr 16) 4.18 0.33 0.13
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corresponding to the brown module, possibly due to its low
heritability. A summary of the results of the genome-wide QTL
linkage analysis is provided in Supplementary Figure S3. Protein-
coding genes located within the 2-units support intervals of the peak
linkage signals are listed in Supplementary Table S4 whilst the GO
terms associated with these genes are provided in Supplementary
Table S5.

3.7 Association analysis within linkage regions

Genetic association analyses within the 2-units support intervals
linked to different microbial module QTs comprised a variable
number of SNPs (Figure 4): 1422 for blue/chr3, 19 for yellow/chr9,
962 for blue/chr11, 2138 for turquoise/chr13, and 157 for yellow/chr16.
None of the SNPs was significantly associated with the corresponding
module QT after Bonferroni correction for multiple testing. A list of all
nominally significant SNP-QT associations is provided in Supplementary
Table S6. Three of the SNPs within the 2-units support intervals
(rs17085007, rs12585310, and rs630923) have been implicated
previously in IBD, UC or CD by GWAS (Liu et al., 2015; Ellinghaus
et al., 2016; de Lange et al., 2017; for details see Supplementary Table S7).

3.8 Comparison of module-based and single-
taxon level linkage analysis

In order to assess the advantages of a network-based approach
compared to our previous single-taxon level analysis, we identified all
genera included in a given module with a significant QT linkage signal
in the present study and recorded the genus-specific maximum LOD
scores, in the corresponding 2-units support interval, that were
attained in our previous study. We then adopted a randomization-
based approach to determine the p-value of each average maximum
LOD score, taken over the genera included in a given module (see
Methods). None of the observed average maximum LOD scores was
significantly higher than its random expectation (Table 4), implying
that all network-based linkage signals detected in the present study
were indeed novel and not noticeable in our previous single-taxon
level analysis of the same data.

4 Discussion

We investigated the link between host genetics and gut
microbiome composition in the specific context of inflammatory
bowel disease (IBD) using novel microbiome-related quantitative
traits (QTs) that were derived from the modules identified in
microbial co-occurrence networks. More specifically, co-occurrence
networks based upon 16S RNA sequence data were first created
separately for two non-overlapping cohorts of healthy controls,
followed by an assessment of the mutual preservation of the
modules included in the two networks. In view of the results, the
two control datasets were combined into one and the modules
identified in the joint co-occurrence network formed the basis of
the definition, by way of principal component analysis, of QTs in
families of IBD patients. These QTs somehow quantify the level of
coherence of individual 16S RNA profiles with general patterns of
microbial co-occurrence in the guts of healthy controls. Therefore, we

estimated the heritability of each microbial module QT and performed
a genome-wide QTL linkage analysis, in IBD-KC families, to search for
its genetic determinants. To our knowledge, our study is the first to use
QTs derived from modules of microbial co-occurrence networks as
phenotypes in a genetic linkage analysis.

As indicated above, our analyses revealed a high level of module
preservation between the two cohorts of German healthy controls
underlying the present study. This not only suggests that microbiome
composition may be a comparatively stable biological trait in healthy
individuals but also justified the combination of the two control
cohorts into one. Although many of the module-constituting
genera were only present in a small proportion of individuals, their
co-occurrence was still essential for the formation of the respective
module. Estimates of the heritability of the microbial module QTs
derived from the control dataset were consistent with previous reports
(Goodrich et al., 2016; Turpin et al., 2016; Lim et al., 2017) that
microbial traits have lower heritability than other (heritable) human
traits. Notably, the final QTL linkage analyses led to the identification
of five different chromosomal regions individually linked to one of
three of the microbial modules QTs. The QT corresponding to the
brown module, which contained only genera of very low abundance,
had the lowest heritability of all and did not show any evidence of
linkage.

Although challenging (Awany et al., 2019), GWAS of microbial
traits have led to the detection of a number of host genome-
microbiome associations (Bonder et al., 2016; Hughes et al., 2020;
Rühlemann et al., 2021). In the specific context of IBD, NOD2 gene
variation was found to be related to the abundance of specific
microbial taxa (Kurilshikov et al., 2017). Taken together with the
fact that the microbiomes of IBD patients were consistently found to
be altered, compared to healthy controls, these GWAS results pointed
towards a joint role of microbiome and host genetics in shaping the
IBD phenotype. However, both the present and our previous study
were carried out under the premise that the causal connection between
microbiome and disease depends upon additional genes, other than
known IBD risk genes. These genes were searched for by way of
classical (pedigree-based) linkage analysis. Similar to comparable
studies in the field, we initially only looked at individual taxa so
that higher-level associations between host genetics and gut
microbiome in IBD etiology may have been overlooked. Therefore,
we expanded our single-taxon level search for genetic modifiers of
microbiome composition in IBD families to the linkage analysis of
quantitative traits reflecting the coherence of a given gut microbiome
with general patterns of co-abundance. In addition, we investigated
whether the observed linkage signals were novel and had not been
evident already at single-taxon level. The results indicate that our
module-based analysis, addressing the joint effect of a group of
correlated microbes, was indeed valuable in that it yielded five
novel microbiome-related linkage signals of genome-wide
significance.

Although not formally accounting for the IBD status of single
individuals, our linkage analysis nevertheless aimed at uncovering
genetic determinants of microbial composition in the specific
context of IBD families. This approach was motivated by the
plausible assumption that genetic factors that influence
microbiome composition are not necessarily doing so in the
same way and with the same result in all humans. Instead, it is
likely that the relationships between genetic variants and microbial
traits depend upon additional environmental and genetic co-
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factors. Therefore, a link between genetics and the microbiome that
is important against the specific environmental and genetic
background of an IBD family may simply have been overlooked
in less specific, particularly population-wide, studies. Moreover,
the fact that three of the four microbial QTs analyzed for linkage
also differed significantly between IBD patients and unaffected
individuals emphasizes the likely connection between these
phenotypes and the disease. Whether genetic variation in the
identified linkage regions influences the QTs differently in
affected and non-affected individuals, i.e., whether there is
statistical interaction between genotype and IBD status with
regard to gut microbiome composition, requires additional
research in larger family or population-based studies of IBD.

Our study was performed in Germany and it has been observed that
human gut microbiomes of geographically distinct populations show
wide variation in terms of their composition (Porras et al., 2021).
However, to the best of our knowledge, the preservation of co-
occurrence network-derived modules across populations and
ethnicities has not been investigated in much detail yet. Moreover, it
may be argued that the genetic basis of the module-derived QTs studied
here is likely to be widely overlapping between populations, even if their
statistical distributions differ. In addition, genetic linkage depends much
less upon population history than the genotype-phenotype associations
targeted by GWAS. This is because linkage analysis considers the co-
segregation of genotypes and phenotypes in families (usually for no
more than one or two generations), and its results hence depend upon
recombination frequency (or inter-locus genetic distance). By contrast,
GWAS exploit statistical associations at the population level that result
from shared ancestry of phenotypically similar individuals over long
periods of historical time. This notwithstanding, future studies of the
genetic basis of microbial features should aim at including cohorts with
diverse geographic and ethnic backgrounds so as to pinpoint both
common and population-specific etiological factors.

Another aspect worth noting is that our QT linkage analysis
addressed taxonomical co-occurrence, drawing upon 16S rRNA
data. Of course, this type of inter-genera relationship differs from
correlation at the functional level which could be captured, for
example, by shotgun metagenomics data. Since functional and
taxonomical relatedness are evolutionarily connected, the two are
not expected to deviate greatly. However, since microbiome function
likely contributes to host-microbiome interaction at least as much as
microbial taxonomy, the former should explicitly be evaluated for its
connection to host genetic factors as well. Unfortunately, we did not
have the necessary data to do so in the present study.

In the combined control dataset underlying the present study, we
identified four microbial co-occurrence network modules that were
color-labeled automatically by the software used. Interestingly, six
genera present in module “turquoise,” namely Staphylococcus,
Porphyromonas, Fusobacterium, Lactobacillus, Enterococcus and
Corynebacterium, were also present in a network module related
before to relapsing refractory IBD (Yilmaz et al., 2019). This
finding lends additional support to the idea that microbial modules
can be transformed into QTs that segregate in IBD families, and that
are therefore worth studying by means of linkage analysis. Moreover,
the turquoise module was dominated by genera belonging to
taxonomic family Lachnospiraceae (>20%), members of which are
known producers of short-chain fatty acids and a reduction of which
has been related before to microbial dysbiosis in IBD patients in
particular (Deleu et al., 2021).

Our genome-wide QT linkage analysis provided evidence for
linkage between five different chromosomal regions and one of
three microbial module QTs. Worthy of note, SNPs
rs17085007 and rs12585310, which are located in the chr13 region
(Figure 4D) linked to the turquoise module QT, as well as SNP
rs630923 located in chr11 region (Figure 4C) linked to the blue
module QT, have been reported before to be associated with IBD
or one of its subtypes (Liu et al., 2015; Ellinghaus et al., 2016; de Lange
et al., 2017). Of these SNPs, rs17085007 and rs12585310 map to the
regulatory region of the RPS21P8 (ribosomal protein S21 pseudogene
8) and FGFR1OP2P1 (FGFR1 oncogene partner 2 pseudogene 1) genes
while rs630923 maps to the regulatory region of the CXCR5 (C-X-C
motif chemokine receptor 5) gene, according to the GWAS Catalog
(Buniello et al., 2019). This physical overlap between known IBD risk
SNPs and genomic regions linked to microbiome-derived QTs adds
further evidence to the disease relevance of our findings, particularly in
view of the significant difference of the turquoise module QT between
IBD patients and unaffected individuals.

Several other genes in the linked regions have been shown before
to be connected to inflammation or to a response to bacterial infection,
or their expression level has been associated with specific IBD
characteristics. Thus, the TF (transferrin), RAB7A (member RAS
oncogene family) and MGLL (monoglyceride lipase) genes, located
in the chr3 region linked to the blue module QT, are connected to
Gene Ontology (GO) terms “response to bacterium,” “antibacterial
humoral response,” “inflammatory response” or “regulation of
inflammatory response” (Ashburner et al., 2000; The Gene
Ontology Consortium, 2021). Interestingly, increased expression of
the MGLL gene has been observed before in intestinal mucosal
biopsies from CD patients (Hryhorowicz et al., 2021). On the other
hand, TF levels were not only found to be decreased in blood samples
from IBD patients but were also negatively correlated with disease
activity scores in active CD and UC (Matusiewicz et al., 2017).

Of the genes located in the chr11 region linked to the blue module
QT, the NLRX1 (NLR family member X1), APOA1 (apolipoprotein A1)
and CBL (Cbl proto-oncogene) genes are connected to GO terms
“negative regulation of inflammatory response” or “entry of
bacterium into host cell” while the KL (klotho), HMGB1 (high
mobility group box 1) and ALOX5AP (arachidonate 5-lipoxygenase
activating protein) genes are connected to “acute inflammatory
response,” “inflammatory response,” “inflammatory response to
antigenic stimulus,” “leukotriene production involved in inflammatory
response” or “positive regulation of acute inflammatory response”.
Notably, APOA1 expression was found to be reduced in ileal samples
from treatment-naïve CD patients that showed reduced Firmicutes
abundance (Haberman et al., 2014). The NLRX1 gene is a known
anti-inflammatory gene that protects against IBD in mouse models,
and NLRX1−/− mice were reported to exhibit depletion of butyrate-
producing microbial taxa like Faecalibacterium (Leber et al., 2018).
Expression of the ALOX5AP gene was shown before to be
downregulated in CD patients while renal expression of the KL gene
was shown to be reduced in mice models of IBD (Thurston et al., 2010).
Finally, fecal levels of the HMGB1 gene product are a biomarker of
intestinal inflammation that correlates with fecal calprotectin in IBD
patients (Palone et al., 2016). Undoubtedly, these earlier reports lend
additional support to the biological plausibility of ourmicrobial network-
based linkage findings in IBD families. A complete list of the GO terms
associated with genes located in the 2-units support interval of linkage
identified in our study is provided in Supplementary Table S5.
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In conclusion, the present study has been the first to use
microbial co-occurrence networks as the basis of defining
quantitative traits for genetic linkage analysis in IBD families.
All five linkage regions detected with this approach had not
been uncovered by a previous, single-taxon level linkage study
of the same data, and hence are likely to harbor hitherto unknown
genetic drivers of microbiome composition in the specific context
of IBD. Our study thus also illustrates the benefit of using microbial
networks to capture and summarize community-level interactions
in relation to a given disease, and of employing the results in
subsequent family-based genetic analyses. Such advanced studies of
microbial abundance data bear great potential to expand our
understanding of the joint role of the host genome and the
microbiome in shaping disease phenotypes.
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