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Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous
disease with a complicated prognosis. Even though various prognostic evaluations
have been applied currently, they usually only use the clinical factors that overlook
the molecular underlying DLBCL progression. Therefore, more accurate prognostic
assessment needs further exploration. In the present study, we constructed a novel
prognostic model based on microtubule associated genes (MAGs).

Methods: A total of 33 normal controls and 1360 DLBCL samples containing gene-
expression from the Gene Expression Omnibus (GEO) database were included.
Subsequently, the univariate Cox, the least absolute shrinkage and selection
operator (LASSO), and multivariate Cox regression analysis were used to select
the best prognosis related genes into the MAGs model. To validate the model,
Kaplan-Meier curve, and nomogram were analyzed.

Results: A risk scoremodel based on fourteen candidate MAGs (CCDC78, CD300LG,
CTAG2, DYNLL2, MAPKAPK2, MREG, NME8, PGK2, RALBP1, SIGLEC1, SLC1A1,
SLC39A12, TMEM63A, and WRAP73) was established. The K-M curve presented
that the high-risk patients had a significantly inferior overall survival (OS) time
compared to low-risk patients in training and validation datasets. Furthermore,
knocking-out TMEM63A, a key gene belonging to the MAGs model, inhibited cell
proliferation noticeably.

Conclusion: The novel MAGs prognostic model has a well predictive capability,
which may as a supplement for the current assessments. Furthermore, candidate
TMEM63A gene has therapeutic target potentially in DLBCL.
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1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common
lymphoid neoplasm, has invasive behavior and a complex origin,
and is heterogeneous in clinical presentation, immunophenotype,
and molecular genetics (Locke et al., 2017; Kimani et al., 2021; Jiang
et al., 2022). Although combination chemotherapy cyclophosphamide,
doxorubicin, vincristine, and prednisone (CHOP) containing rituximab
serves as the backbone of treatment, approximately 30%–40% of
patients experience treatment failure or an inevitable relapse, and the
number of DLBCL-related fatalities continues to increase (Maurer et al.,
2014; Miao et al., 2019; Matasar et al., 2021). Conventional prognostic
evaluation methods, such as the International Prognostic Index (IPI)

score and 2-deoxy-2-[F-18]-fluoro-D-glucose (FDG)-PET/CT scan are
insufficient to elucidate the clinical diversity of DLBCL (Zwezerijnen
et al., 2021). In addition, BCL2 and TP53 mutations are considered
prognostic indicators in DLBCL patients (Qin et al., 2021). Nevertheless,
the effectiveness of these identified molecular markers has been limited.
Therefore, predicting the survival rate of patients with a heterogeneous
malignancy such as DLBCL remains challenging (Meyer et al., 2011).

Exploration of the use of microtubules has shown potential
positive effects in prognosis prediction in cancer patients. As a
major part of the eukaryotic cytoskeleton, microtubules serve as
molecular highways and contribute to the exchange of cellular
cargo (Roehlecke and Schmidt, 2020; Liang et al., 2022).
Furthermore, they consist of spindle apparatus that play a

TABLE 1 Clinical information of the patients in training and validating datasets.

Cohort GSE10846 GSE11318 GSE31312 GSE87371 GSE56315

Number of patient Normal/DLBCL 0/414 0/200 470 0/221 33/55

Age (y) 62.5 (14−92) 64 (14−88) 63 (18−92) 60 (19−87) NA

Gender Male/Female/NA 172/224/18 110/90 271/199 116/105 NA

GCB/non-GCB/NA 163/232/19 70/100/30 227/243 84/117/20 NA

IPI 0-2/3-5/NA 216/89/109 101/41/58 274/150/46 119/102 NA

Status Alive/Death 249/165 88/112 300/170 168/53 NA

FIGURE 1
Processes of the study.
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crucial role in the correct attachment and segregation of
chromosomes during cell division (Kavallaris, 2010). Tumor cell
invasion has proven to be highly dependent on microtubule
cytoskeleton systems, and tubulin is the biochemical target for
several clinical anticancer drugs, including vinca alkaloids as

microtubule destabilizers ;and paclitaxel as microtubule
stabilizers (Cao et al., 2018).

Furthermore, tumor microtubules contribute to the resistance
against standard treatment modalities in several solid tumors,
where most of the surviving cells are tumor microtubule-connected

FIGURE 2
Construction of the prognostic gene signature. (A) LASSO regression analysis of the 596 prognosis-related genes. (B) Penalty plot for the LASSO
regression analysis. (C) Forest plots of the multivariate Cox regression analyses of the 14 genes significantly associated with OS. (D) Expression levels of the
14 genes comparing normal B cells and DLBCL B cells. p < .05: *, p < .01: **, p < .001: ***, and p < .0001 ****.

TABLE 2 Functions of genes in the prognostic signature.

Gene Function summary Risk coefficient

CCDC78 Component of the deuterosome, a structure that promotes de novo centriole amplification in multiciliated cells 0.284559

CD300LG May mediate L-selectin-dependent lymphocyte rollings 0.395619

CTAG2 encodes an autoimmunogenic tumor antigen that belongs to the ESO/LAGE family of cancer-testis antigens 0.089041

DYNLL2 Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex −1.137873

MAPKAPK2 Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell
migration, cell cycle control. chromatin remodeling. DNA damage response and transcriptional regulation

−0.623684

MREG Probably functions as cargo-recognition protein that couples cytoplasmic vesicles to the transport machinery −0.279844

NME8 robably required during the final stages of sperm tail maturation in the testis and/or epididymis −0.168762

PGK2 Essential for sperm motility and male fertility −0.496461

RALBP1 Multifunctional protein that functions as a downstream effector of RALA and RALB 0.494892

SIGLECI Acts as an endocytic receptor mediating clathrin dependent endocytosis. 0.262803

SLC1A1 Sodium-dependent, high-affinity amino acid transporter that mediates the uptake of L-glutamate and also L-aspartate and D-aspartate -0.162554

SLC39Al2 Acts as a zinc-influx transporter 0.148126

TMEM63A Acts as an osmosensitive calcium-permeable cation channel 0.598811

WRAP73 The SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome 0.487047
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cells (Osswald et al., 2015; Weil et al., 2017). The newly approved
antibody–drug conjugate polatuzumab vedotin for the treatment of
relapsed or refractory DLBCL performs an essential role via
prevention of tubulin polymerization. However, the association
between microtubules, the prognosis of DLBCL, and the potential
involvement of microtubule-related genes has yet to be explored.

Considering current studies, we established a microtubule-
associated gene (MAG) prognosis prediction model based on
mRNA expression using clinical data from DLBCL patients that
were accessible from the National Center for Biotechnology
Information Gene Expression Omnibus (NCBI GEO). Moreover,
the results have indicated promise for the development of targeted
interventions against DLBCL.

2 Materials and methods

2.1 Data source

Clinical data and gene expression profiling data were
acquired from the NCBI GEO database. Data series in

GSE10846, GSE11318, GSE31312, GSE87371, and
GSE56315 were downloaded in a normalized expression matrix
file format for retrospective analysis. As shown in Table 1,
33 normal controls and 1360 DLBCL samples were included in
our study.

2.2 Selection of optimal prognostic genes
related to OS

We performed univariate Cox regression analysis to investigate
relationships between gene expression and prognostic values. A
total of 1474 MAGs (Supplementary Table S1) were retrieved and
596 genes with p-values <.05 were retained (Supplementary
Table S2). We then performed Lasso penalized Cox regression
analysis with 596 microtubule-associated genes. Next, we
constructed the multivariate Cox regression analysis using the
53 genes obtained from the Lasso analysis (Supplementary Table
S3). Finally, the 14 MAGs that were significantly related to overall
survival (OS) in the datasets were extracted (Supplementary
Table S4).

FIGURE 3
Validation of the prognostic model. (A, B) Forest plots of the univariate Cox regression analyses (A) and multivariate Cox regression analyses (B) of the
prognostic risk score and clinical parameters in the training dataset GSE10846. (C–E) Box plots of the risk score in IPI-low and IPI-high groups in the training
and validation datasets. (F–H) Box plots of the risk score comparing GCB and non-GCB subgroups. Training dataset: GSE10846; validation datasets:
GSE11318 and GSE87371; IPI-low: 0–2, IPI-high: 3–5.
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2.3 Microtubule-associated risk model
development and validation

We built a MAG model based on the GSE10846 dataset and
validated the predictive capacity of the model using the GSE11318,
GSE31312, and GSE87371 datasets.

We calculated the characteristic risk score for every patient using
the following formula: risk score = ∑ βi * X. Next, we set up a proper
cut-off value and divided patients into low-risk and high-risk groups.
Kaplan–Meier (K-M) survival analysis and log-rank test were used to
evaluate OS in different groups. The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve illustrated the
performance of the prognostic signature. The Cox regression model
method in the “survival” R package was used for univariate and
multivariate analyses to explore the independent prognostic role of
the gene signature.

2.4 Nomogram construction

A nomogram, including risk score and clinical features (age,
gender, and IPI components), was established to predict OS of

DLBCL patients at 1, 3, and 5 years. The distinguishing capacity of
the nomogram was assessed via calibration mapping.

2.5 Functional enrichment analysis and
immunohistochemical staining

We used the ‘LIMMA’ R package to identify genes differentially
expressed between the high-risk and low-risk groups (Supplementary
Table S5). Gene Ontology (GO) analysis focused on the upregulated
pathways in the high-risk group (Supplementary Table S6). Gene set
enrichment analysis (GSEA) was used to find pathway enrichment
associated with the differentially expressed genes.
Immunohistochemical staining of RALBP1 was downloaded from
the HPA database (https://www.proteinatlas.org).

2.6 Knockout of the key prognostic gene
TMEM63A

We used CRISPR-Cas9-mediated sgRNA to target and knockout the
TMEM63A gene.We then produced a lentivirus with the sgRNA to infect

FIGURE 4
Predictive capacity of the prognostic gene signature. (A–C) Plot of the risk score, survival time, and status of patients in training and validation cohorts.
(D–F) Kaplan–Meier curves of OS in the high-risk group and low-risk group in the training and validation sets. (G–I) ROC curves with calculated AUC of the
training and validation datasets. Training dataset: GSE10846; validation datasets: GSE11318 and GSE87371.
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the DLBCL cell lines OCI-LY7 and DOHH2. Next, EdU staining was
performed to analyze cell proliferation. TMEM63A-sg1: CACCGTACT
CACTGCAGACGGAAGA, TMEM63A-sg2: CACCGCGATGACAAT
CTCTGAAATC, and non-targeted: ACGGAGGCTAAGCGTCGCAA.

2.7 Statistical analysis

Statistical analyses were carried out, and graphs were generated
using GraphPad Prism 8.0 and R.4.1.1 software;
p-values <.05 indicated significant differences. Expression of
MAG mRNA was compared between normal cells and cells
from DLBCL patients using the unpaired t-test (Figure 2D). The
boxplots of risk score (Figures 3C–H) and predicted drug
sensitivity (Figures 9A–I) were analyzed using the Wilcoxon
test. The K-M curves were analyzed using the log-rank test. The
bar plots of cell proliferation were compared using the unpaired
t-test.

3 Results

3.1 Construction of the predictive signature
model

The flowchart shown in Figure 1 illustrates our study process.
First, we selected 1474 MAGs from the GSEA database and
conducted univariate Cox regression analysis in the training
dataset GSE10846. Next, we extracted 596 genes and performed

least absolute shrinkage and selection (Lasso) penalized Cox
regression analysis to screen the crucial prognostic genes based
on the GSE10846 dataset. We calculated the coefficient values at
different levels of penalty (Figure 2A). Next, we identified the
optimal lambda (λ) value, and two best-fit values (lambda.min and
lambda.1se) were determined by minimizing the mean-square
error, thus establishing the Lasso models (Figure 2B). A total of
53 MAGs that correlated with OS were selected. Finally, we carried
out multivariate Cox regression analyses and selected 14 potential
genes. It was revealed that CCDC78, CD300LG, CTAG2, DYNLL2,
MAPKAPK2, MREG, NME8, PGK2, RALBP1, SIGLEC1, SLC1A1,
SLC39A12, TMEM63A, andWRAP73 were significantly associated
with the OS rate of DLBCL patients (Figure 2C and Supplementary
Figures S1A–S1N). Furthermore, we explored the expression of the
candidate genes mentioned previously in normal cells and DLBCL
samples. Higher expression of CD300LG, SIGLEC1, SLC39A12,
TMEM63A, and WRAP73 was observed in DLBCL samples
compared to normal controls. Meanwhile, lower expression of
DYNLL2, MAPKAPK2, MREG, NME8, PGK2, and SLC1A1 was
detected in DLBCL samples (Figure 2D).

3.2 Relationship between candidate genes
and survival

The functions of the selected genes listed in Table 2 indicate that
most genes are associated with microtubules and are promising for use
in prediction of the prognosis of DLBCL patients. We probed the
independent influence of 14 MAGs on the OS of DLBCL patients and

FIGURE 5
K-M curves in low-IPI score and high-IPI score subgroups. (A–C) K-M curves in low-IPI score groups in the training and validation datasets. (D–F) K-M
curves in high-IPI score groups in the training and validation datasets. Training dataset: GSE10846; validation datasets: GSE11318 and GSE87371; IPI-low: 0–2,
IPI-high: 3–5.
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constructed the risk score model in light of the forum risk score =∑ βi
* Xi, where Xi is the gene expression level and βi is the regression
coefficient.

3.3 Construction and validation of the
14 MAGs risk score model

We performed univariate Cox regression and multivariate Cox
regression analyses using the risk score and clinical parameters. These
analyses showed that the IPI score and our MAG risk score were
statistically associated with OS in the training and validation cohorts
(Figures 3A,B and Supplementary Figures S2A–S2D). Subsequently,
we performed subgroup analysis based on IPI scores and illustrated
that MAG risk score was higher in subgroups with high IPI scores
(3–5) in the GSE10846, GSE11318, and GSE87371 datasets (Figures
3C–E and Supplementary Figures S3A–S3C). Similarly, we performed
subgroup analysis comparing germinal center B-cell (GCB) and non-
GCB groups. The MAG risk score was higher in non-GCB groups,
which suggested a worse prognosis for the subgroup of non-GCB
patients (Figures 3F–H). We then compared age and stage in different
risk score groups. A higher percentage of patients > 60 years of age and

with stage 4 DLBCL were distributed in the high-risk group than in the
low-risk group (Supplementary Figures S3D–S3I). Next, we compared
the MAG model with the revised IPI (R-IPI), which used IPI to divide
the patients into subgroups with zero risk factors, 1–2 risk factors, and
3–5 risk factors. The results showed that a higher proportion of
patients with R-IPI of 3–5 belonged to the high-risk group
(Supplementary Figures S4A–S4C). Lastly, we used the clinical
parameters according to the National Comprehensive Cancer
Network International Prognostic Index (NCCN-IPI) to validate
the MAG model. Patients were divided into subgroups by age: ≤40,
41–60, 61–75, and >75 years, and then divided based on stage into
subgroups of stage 1–2 and stage 3–4. We found that the high-risk
group contained a higher percentage of patients aged 61–75 and >
75 years (Supplementary Figures S4D–S4F). In addition, patients with
DLBCL of stage 3–4 had a higher risk score (Supplementary Figures
S4G, S4H). These data suggest that our MAGmodel is consistent with
clinical assessment methods such as GCB/non-GCB, IPI, R-IPI, and
NCCN-IPI.

We stratified patients into high- and low-risk groups based on the
median risk score from the aforementioned multivariate Cox regression
analysis. The results of our study demonstrated increased survival
among patients in low-risk score groups. Conversely, increased

FIGURE 6
K-M curves in the GCB and non-GCB subgroups. (A–D) K-M curves in the GCB subgroups in the training and validation datasets. (E–H) K-M curves in the
non-GCB subgroups in the training and validation datasets. Training dataset: GSE10846; validation datasets: GSE11318, GSE87371, and GSE11312.
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numbers of fatalities were observed in the high-risk group in both the
training and validating datasets (Figures 4A–C). After K-M analysis and
comparing OS in the different datasets, a poorer outcome was noted in
the high-risk group (p < .0001 in GSE10846, GSE11318, and GSE87378)
(Figures 4D–F). To evaluate the accuracy of our newly constructed
14 MAG prognosis prediction model, we conducted a time-dependent
ROC analysis in which the AUC at 1 year (.777), 3 years (.798), and
5 years (.823) in GSE10846 was analyzed (Figure 4G). Similarly, the
AUC at 1, 3, and 5 years exhibited an excellent capacity to predict
prognostic outcomes in GSE11318 and GSE87378 (Figures 4H, I).
Consistent results and exceptional validation were observed in
GSE31312 (Supplementary Figures S5A–S5C).

The IPI score could not accurately distinguish the risk of
individual DLBCL patients, so we tested our prognostic model in
the high IPI score (3–5) and low IPI score (0–2) subgroups. K-M
curves suggested an excellent prognostic value in different IPI score
subgroups in both training and validating datasets (Figures 5A–F).
Our risk score model also displayed good survival prediction in both
GCB and non-GCB subgroups in different datasets (Figures 6A–H).
Furthermore, we analyzed the prediction of the MAGs at 1, 3, and
5 years. The K-M curves markedly distinguished between low-risk and
high-risk patients (Supplementary Figures S5D–S5L). These results
suggest that the prognostic signature can predict the prognosis of most
DLBCL patients.

3.4 Establishment of a nomogram for
prognosis prediction

To build a novel nomogram that provided more precise
prognosis, we combined 14 MAG risk scores with the vital
clinical factors of age, gender, and IPI scores (Figure 7A). The
calibration curves of 1 year, 3 years, and 5 years were all very close
to the ideal lines, indicating the powerful predictive capacity of this
nomogram (Figures 7B–D).

3.5 Analysis of associated pathways

We performed GO analysis of upregulated genes in the
population with high-risk scores and found that the enriched
genes were mainly involved in RNA splicing, covalent
chromatin modification, and histone modification (Figure 8A).
We also conducted GSEA, and the results implied that the gene
pathways enriched in patients with high-risk scores were most
commonly related to upregulation of epithelial mesenchymal
transition, inflammatory response, and myogenesis. In addition,
enrichment of other crucial pathways involving NFKβ-TNFα and
IL2-STAT5 signaling was also associated with high-risk patients
(Figures 8B–F).

FIGURE 7
Nomogram consisting of age, gender, IPI score, and risk score. (A) Prognostic nomogram predicting OS at 1, 3, and 5 years in the training dataset. (B–D)
Calibration curves for internal validation of the nomogram for OS at 1, 3, and 5 years.
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3.6 Drug sensitivity in different risk groups and
immunohistochemical staining

We assessed the drug sensitivity of high-risk and low-risk
groups to conventional chemotherapeutic strategies. In our study,
the low-risk group showed a significantly lower half-maximal
inhibitory concentration (IC50) ratio of AKT inhibitors,
bortezomib, and pazopanib (Figures 9A–C). In contrast,
patients in the high-risk group were more sensitive to 5-
fluorouracil, doxorubicin, gefitinib, lenalidomide, mitomycin C,
and methotrexate than those in the low-risk group (Figures 9D–I).
These data imply that AKT inhibitors, bortezomib, and pazopanib
have promising effects in the low-risk groups, while 5-
fluorouracil, doxorubicin, gefitinib, lenalidomide, mitomycin C,
and methotrexate are recommended as treatment modalities in
high-risk groups. These results indicate that it may be best to
choose an inhibitor based on the different risk subgroups of each
DLBCL patient.

The level of RALBP1 protein expressed in DLBCL tissue was
further validated using the Human Protein Atlas database
(Figures 10A, B).

3.7 Inhibition of cell proliferation by
TMEM63A knockout

To understand the function of TMEM63A in DLBCL, we
generated TMEM63A knockout strains of the DLBCL cell lines
OCI-LY7 and DOHH2 using CRISPR-CAS9-mediated sgRNA.
Next, we analyzed the proliferating cells that showed growth
inhibition following TMEM63A knockout using EdU staining
(Figure 11A). Bar plots of the data showed a significant difference
in proliferation of the control cell lines compared to the knockout cells
(Figure 11B). These data indicate promise in targeting TMEM63A in
DLBCL therapy.

4 Discussion

DLBCL is an aggressive lymphoma that damages normal lymph
nodes and manifests extensive heterogeneity. Therefore, risk
stratification and prognosis evaluations for DLBCL remain
challenging for clinicians. The three currently available and
universally acknowledged scoring systems in DLBCL (IPI, revised-

FIGURE 8
Enriched pathways in the high-risk group. (A) Bar plots of GO upregulated pathways in the high-risk score subgroup in the training dataset GSE10846.
(B–F) Top five enriched pathways as indicated by GSEA of differentially expressed genes when comparing high-risk and low-risk groups in the training dataset.
GO: gene ontology.
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IPI, and NCCN-IPI classifications) fail to identify high-risk patients
with long-term OS below 50%. In our study, we analyzed the
relationship between MAGs and the prognosis of patients with

DLBCL in the GEO database and established a MAG prognostic
model containing 14 genes (CCDC78, CD300LG, CTAG2, DYNLL2,
MAPKAPK2, MREG, NME8, PGK2, RALBP1, SIGLEC1, SLC1A1,

FIGURE 9
Prediction of responses to drugs. (A–C) Low-risk patients were more sensitive to these drugs in the training dataset. (D–I) High-risk patients were more
sensitive to these drugs in the training dataset.

FIGURE 10
Protein levels of the prognostic genes. (A, B) Immunohistochemical staining of RALBP1 and MAPKAPK2 from the Human Protein Atlas database.
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SLC39A12, TMEM63A, and WRAP73) that showed high predictive
accuracy.

Microtubules are hollow tubes that radiate from the microtubule-
organizing center situated at the centrosome in the cytoplasm of
interphase eukaryotic cells. They are core cytoskeletal structures
involved in material transport and cell proliferation that show
promising capacity to reflect the prognosis of cancer patients
(Osswald et al., 2016). However, the impact of microtubule
function on prognostic assessment in DLBCL cases remains
unclear. Our study demonstrated the use of MAGs to construct the
first prognosis prediction model in DLBCL, which is capable of
precisely evaluating prognosis for DLBCL patients.

Dynein light chain LC8-type 2(DYNLL2) is involved in
cytoskeletal motor activity and protein binding, which plays an
important role in the tumor microenvironment (Rapali et al.,
2011). There is a negative correlation between DYNLL2 expression
and macrophage M0, the most abundant cells in stage N1 colorectal
tumors (Ge et al., 2019). However, the correlation between
DYNLL2 and hematolymphoid neoplasm has yet to be elucidated.
Mitogen-activated protein kinase-activated protein kinase 2
(MAPKAPK2 or MK2) is the downstream substrate in the
p38MAPK pathway and induces post-translational regulation of
cytokines (Soni et al., 2019). MAPKAPK2 has been confirmed as
the core regulator of RNA-binding proteins and has the ability to
sustain regulation stability and inhibition of tumor progression
(Suarez-Lopez et al., 2018). Similarly, melanoregulin (MREG)
downregulates the phosphatidylinositol 3 kinase (PI3K)/Akt-mTOR
signaling pathway and simultaneously inhibits the invasion and
proliferation of cancer cells (Meng et al., 2017). NME8 is the first
metastasis suppressor protein found to be capable of suppressing
metastasis of cancer cells without affecting primary tumor growth
(Puts et al., 2018). Phosphoglycerate kinase 2 (PGK2) impacts the
replication and repair of DNA in mammalian nuclei, and its
expression is regulated via oxygen tension. It is a crucial enzyme in
the glycolysis pathway, catalyzing glycerol-1,3-diphosphate into 3-

phosphoglycerate conversion and ATP production (Wu et al., 2020).
SLC1A1 has been reported as a potential therapeutic target of natural
killer T-cell lymphoma, and it contributes to the favorable prognosis of
asparaginase-based anti-metabolic treatment (Xiong et al., 2021). Our
research suggests that the aforementioned genes are protective factors
in DLBCL.

CCDC78 is correlated with poorer survival when using a
prediction scoring model in colon cancer, but its role in other
cancers is unclear. CCDC78 has been found to interact with PVT1,
which encodes lncRNA and maps to chromosome 8q24 (Guttman
et al., 2009). Likewise, the oncogene MYC, a comprehensively
acknowledged risk biomarker in DLBCL, has been mapped to 8q24.
MYC was also found to co-amplify with PVT1 in several cancer cell lines.
CD300LG has a functional dependency associated with WT1, and
upregulation and hypermethylation of WT1 have been associated with
poor prognosis (Ren et al., 2021). CD300LG also has a wide variety of
immunological functions (Borrego, 2013). Immuno-proteomic screening
demonstrated that elevated titers of auto-antibodies to the cancer-testis
antigens (CTAG2) are correlated with diverse cancer types and suggest
decreased differentiation in cancer cells (Kaaks et al., 2018). RalBP1 acts
as an important mediator of cancer cell migration (Lim et al., 2006). Wu
et al. (2010) showed that RalBP1 depletion inhibits cancer cell growth and
metastasis in vivo. High expression of SIGLEC1 was significantly
associated with shorter DSS in an exploration of breast tumor-
associated macrophage (TAM) markers. CCL8 is chemotactic for
monocytes and forms a positive regulatory loop between cancer cells
and TAMs via CSF1 and TNF-α, which upregulates SIGLEC1 (Lim et al.,
2006). The solute carrier (SLC) groups of membrane transport proteins
provide novel targets for therapeutic strategies in different types of
malignant solid tumors, such as esophageal carcinoma, lung cancer,
and pancreatic cancer (Cui et al., 2015; Wu et al., 2017). Significantly
increased expression of SLC39A12 has been associated with worse OS,
especially for patients with positive lymph node metastasis (Liu et al.,
2020). The transmembrane protein 63A (TMEM63A) has been reported
to be a novel oncogene that promotes cell proliferation, migration, and

FIGURE 11
Knockout of the key prognostic gene TMEM63A. (A) Flow cytometric analysis of EdU staining after TMEM63A knockout. (B) Bar plots of cell proliferation.
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invasion (Zhang et al., 2022). Xenograft tumor growth and lung
metastasis were also observed in vivo. WRAP73 encodes a member of
the WD repeat protein family, which is implicated in osteoblast
differentiation and osteogenesis in vivo. It has been proposed that
WRAP73 participates in the development of osteoporosis through
regulation of bone remodeling. However, the role of WRAP73 in
DLBCL remains unknown. Given the results of our study, these genes
can predict the prognosis of patients withDLBCL, and they show promise
as novel therapeutic targets.

There were some limitations in our study. Further preclinical
experiments are required to validate our predictive model and extend
its capacity to inform clinical assessment. Nevertheless, through our study,
we elucidated the association betweenMAGs and the prognosis of patients
with DLBCL. The results of our study also suggest potential therapeutic
targets and provide novel insights into the management of DLBCL.

5 Conclusion

In summary, we constructed a reliable MAG signature capable of
predicting survival and showing remarkable prognostic performance. We
also discussed distinctive therapeutic patterns in high- and low-risk
cohorts. In addition to being prognostic biomarkers for DLBCL, the
candidate genes in our predictive model are promising potential
therapeutic targets.
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