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Zusammenfassung

In dieser Arbeit wird eine neue Theorie der quaternionischen Funktionen
vorgestellt, welche das Problem der Bestapproximation von Familien prolater
und oblater sphäroidalen Funktionen im Hilberträumen behandelt.

Die allgemeine Theorie beginnt mit der expliziten Konstruktion von or-
thogonalen Basen für Räume, definiert auf sphäroidalen Gebieten mit be-
liebiger Exzentrizität, deren Elemente harmonische, monogene und kontra-
gene Funktionen sind und durch die Form der Gebiete parametrisiert werden.
Eine detaillierte Studie dieser grundlegenden Elemente wird in dieser Arbeit
durchgeführt. Der Begriff der kontragenen Funktion hängt vom Definitions-
bereich ab und ist daher keine lokale Eigenschaft, während die Begriffe der
harmonischen und monogenen Funktionen lokal sind. Es werden verschiedene
Umwandlungsformeln vorgestellt, die Systeme harmonischer, monogener und
kontragener Funktionen auf Sphäroiden unterschiedlicher Exzentrizität in
Beziehung setzen. Darüber hinaus wird die Existenz gemeinsamer nichttriv-
ialer kontragener Funktionen für Sphäroide jeglicher Exzentrizität gezeigt.

Der zweite wichtige Beitrag dieser Arbeit betrifft eine quaternionische
Raumfrequenztheorie für bandbegrenzte quaternionische Funktionen. Es
wird eine neue Art von quaternionischen Signalen vorgeschlagen, deren En-
ergiekonzentration im Raum und in den Frequenzbereichen unter der quater-
nionischen Fourier-Transformation maximal ist. Darüber hinaus werden diese
Signale im Kontext der Spektralkonzentration als Eigenfunktionen eines kom-
pakten und selbstadjungierteren quaternionischen Integraloperators unter-
sucht und die grundlegenden Eigenschaften ihrer zugehörigen Eigenwerte
werden detailliert beschrieben. Wenn die Konzentrationsgebiete beider Räume
kugelförmig sind, kann der Winkelanteil dieser Signale explizit gefunden wer-
den, was zur Lösung von mehreren eindimensionalen radialen Integralgle-
ichungen führt.

Wir nutzen die theoretischen Ergebnisse und harmonische Konjugierten
um Klassen monogener Funktionen in verschiedenen Räumen zu konstru-
ieren. Zur Charakterisierung der monogenen gewichteten Hardy- und Bergman-
Räume in der Einheitskugel werden zwei konstruktive Algorithmen vorgeschla-
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gen. Für eine reelle harmonische Funktion, die zu einem gewichteten Hardy-
und Bergman-Raum gehört, werden die harmonischen Konjugiert in den gle-
ichen Räumen gefunden. Die Beschränktheit der zugrundeliegenden har-
monischen Konjugationsoperatoren wird in den angegebenen gewichteten
Räumen bewiesen. Zusätzlich wird ein quaternionisches Gegenstück zum
Satz von Bloch für monogene Funktionen bewiesen.



Abstract

This work presents a novel Quaternionic Function Theory associated with
the best approximation problem in the setting of Hilbert spaces concerning
families of prolate and oblate spheroidal functions.

The general theory begins with the explicit construction of orthogonal
bases for the spaces of harmonic, monogenic, and contragenic functions de-
fined in spheroidal domains of arbitrary eccentricity, whose elements are
parametrized by the shape of the corresponding spheroids. A detailed study
regarding the elements that constitute these bases is carried out in this thesis.
The notion of a contragenic function depends on the domain, and, therefore,
it is not a local property in contrast to the concepts of harmonic and mono-
genic functions. Various conversion formulas that relate systems of harmonic,
monogenic, and contragenic functions associated with spheroids of differing
eccentricity are presented. Furthermore, the existence of standard nontrivial
contragenic functions is shown for spheroids of any eccentricity.

The second significant contribution presented in this work pertains to a
quaternionic space-frequency theory for band-limited quaternionic functions.
A new class of quaternionic signals is proposed, whose energy concentra-
tion in the space and the frequency domains are maximal under the quater-
nion Fourier transform. These signals are studied in the context of spatial-
frequency concentration as eigenfunctions of a compact and self-adjoint quater-
nion integral operator. The fundamental properties of their associated eigen-
values are described in detail. When the concentration domains are spherical
in both spaces, the angular part of these signals can be found explicitly, lead-
ing to a set of one-dimensional radial integral equations.

The theoretical framework described in this work is applied to the con-
struction of classes of monogenic functions in different spaces via harmonic
conjugates. Two constructive algorithms are proposed to characterize the
monogenic weighted Hardy and Bergman spaces in the Euclidean unit ball.
For a real-valued harmonic function belonging to a Hardy and a weighted
Bergman space, the harmonic conjugates in the same spaces are found. The
boundedness of the underlying harmonic conjugation operators is proven
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in the given weighted spaces. Additionally, a quaternionic counterpart of
Bloch’s Theorem is established for monogenic functions.
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Introduction

The theory of functions of a complex variable has a wide range of applications
in several branches of mathematics. This theory includes developing a clas-
sification for functions based upon precise definitions, according to whether
the functions present certain properties such as continuity, differentiability,
or integrability, and so on, throughout the domain of the variables. Unfortu-
nately, given its inherent nature, one is mainly restricted to two-dimensional
problems, which has led to an increasing need for higher-dimensional coun-
terparts of complex variable theory.

There are two main approaches for extending the theory of holomorphic
functions to three and four dimensions. On the one hand, we can consider the
concept of holomorphy within the function theory of several complex vari-
ables; on the other hand, we can achieve another generalization by applying
the theory of monogenic functions with values in the Quaternion algebra. The
latter is what is nowadays called Quaternionic analysis. An essential differ-
ence between the two extensions lies in their algebraic structures. While in
the case of several complex variables, commutativity still holds, this is no
longer true in the Quaternionic case. At first glance, this can be perceived as
a drawback. However, the Quaternion variable theory has several advantages
when compared with the theory of several complex variables. For instance,
while the Cauchy kernel function is associated with particular poly-domains
in the latter case, its counterpart in Quaternionic analysis is universal. This
also implies an essential advantage in the Quaternionic-analytical approach
since it does not suffer from the geometrical restrictions of the several com-
plex variable theory. Another advantage lies in the fact that it allows for the
factorization of higher-order differential operators in terms of lower-order
ones. For example, the classical Laplacian can be factorized into first-order
partial differential operators similar to the complex case—independently of
the dimension of the underlying Euclidean space. In this work, we are mainly
concerned with the ordinary three-dimensional Euclidean space. In this way,
we say that the central paradigm followed in this work originated in the
theory of Quaternionic analysis.
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Quaternionic analysis is now a well-established mathematical discipline
offering both a generalization of the classical theory of holomorphic functions
of one complex variable and refinement of classical Harmonic analysis. Some
of the earlier and more recent works on Quaternionic analysis, and more gen-
erally of Clifford analysis, were obtained by Scheffers [293], Dixon [97], Lanc-
zos [193], Moisil and Teodorescu [232], Fueter [126, 127, 128, 129, 130, 131],
Melijhzon [228], Iftimie [174], Hestenes [163], Delanghe [89, 90, 92], Deav-
ours [88], Sudbery [318], Brackx, Delanghe and Sommen [48], Malonek [214,
215, 216, 217, 218], Gürlebeck and Sprößig [145, 146], Gilbert and Murray
[140], Delanghe, Sommen and Soucek [91], Kravchenko and Shapiro [189],
Kravchenko [190], Gürlebeck, Habetha and Sprößig [148, 153], Colombo,
Sabadini and Struppa [80], Gentili, Stoppato and Struppa [136], among oth-
ers. Quaternionic analysis has become an active area of scientific research and
is currently applied to several branches of modern analysis, both pure and
applied. In recent years, methods of Quaternionic analysis combined with
other classical and advanced analytical techniques (such as harmonic analy-
sis, variational methods, or finite difference methods) have become powerful
tools towards the treatment of problems in mathematical physics, signal and
image processing, computer vision, robotics, and even in classical mechanics
and engineering. Much progress has been made on this topic. The ensuing
results led to the treatment of boundary value problems of essential systems
of partial differential equations of first- and higher-orders by adequate nu-
merical methods. Those equations include but are not limited to the Laplace,
Helmholtz, Maxwell, Lamé, and Stokes (later Navier-Stokes) equations.

The study of the fundamental properties of holomorphic functions of one
complex variable is linked to harmonic functions of two real variables through
the Cauchy-Riemann equations. Laplace initiated the theory of harmonic
functions in a study published in 1785 [202], in which a second-order par-
tial differential equation was derived—known today as the Laplace equation.
That same year, Legendre developed the theory of zonal spherical harmonics,
which are solutions of Laplace’s equation in spherical coordinates with axial
symmetry. Laplace himself solved his equation in spherical geometry without
any symmetry, thus introducing the concept of tesseral spherical harmonics.
The foundations of the theory of spherical harmonics began its active de-
velopment in the book “Treatise on Natural Philosophy” [323] by Thomson
and Tait. This work introduced the solid spherical harmonics that are ho-
mogeneous polynomial solutions of the Laplace equation. Green constructed
the first solutions of the Laplace equation related to the ellipsoid in the same
manner that spherical harmonics are related to the sphere in his memoir “On
the Determination of the Exterior and Interior Attractions of Ellipsoids of
Variable Densities” [142]. Green generated harmonic functions using only
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Cartesian and spherical coordinates. Lamé solved the problem of determin-
ing a harmonic function in the interior of an ellipsoid having prescribed values
on the boundary of the region, connected with the theory of heat conduction.
This study led to the discovery of the functions that bear his name today
[192]. The Lamé functions are commonly known as ellipsoidal harmonics
[85, 170, 259]. In his Dissertation [159], Heine dealt with the same problem
and showed for the first time that the functions that occur in the solution are
the associated Legendre functions of the first kind. His main results on the
solution of the external problem were published in the paper “Über einige
Aufgaben, welche auf partielle Differentialgleichungen führen” [160], and in
the treatise “Handbuch der Kugelfunktionen” [161]. Heine first introduced
the Legendre functions of the second kind and the associated functions in
this connection. But some characteristic properties of these functions as we
understand them today have been stressed and applied since the beginning
of the century. Excellent contributions to this subject have been made by
Legendre [206], Liouville [212], Hilbert [164], Niven [259], Klein [181], Linde-
mann [211], Hill [165], Stieltjes [314], Darwin [85], Ferrers [118, 119], Féjer
[117], Whittaker and Watson [330], Hobson [170], Szegö [320], Byerly [61],
Sansone [292], Dixon and Lacroix [98], Dassios [86], and others.

One of the primary problems in our work is the explicit construction
and computation of orthogonal bases of harmonic functions. The internal
and external spherical harmonics are embedded in one-parameter families of
spheroidal harmonics. The original impetus behind the study of orthogonal
bases of polynomials for the spaces of square-integrable harmonic functions
defined in spheroids of the form

{x ∈ R3 : x2
0

cosh2 α
+ x2

1 + x2
2

sinh2 α
= 1}

and
{x ∈ R3 : x2

0

sinh2 α
+ x2

1 + x2
2

cosh2 α
= 1}

called prolate and oblate, respectively, was developed by Garabedian in [132].
The orthogonality was taken in different norms, each of which led to the dis-
cussion of a partial differential equation through the kernel of the orthogonal
system corresponding to that norm. The prescribed spheroids become more
spherical as α → ∞ (since tanhα → 1), but the radii also tend to infinity,
so that the Euclidean ball is not included in the class of functions considered
in [132]. Besides, this work does not cover those harmonics that vanish at
infinity, which are, perhaps, from the point of view of physical application,
the more interesting class. Some aspects of generating harmonic functions
orthogonal in a region outside a prolate spheroid were discussed in [250].
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However, useful properties such as the relationships between internal and ex-
ternal harmonics systems associated with spheroids of differing eccentricity
were not studied. Furthermore, internal and external spherical harmonics
were not considered part of these kinds of systems. The theoretical frame-
work, extensively described in this thesis, provides a general answer to these
questions.

Over the last few years, there has been a growing interest in various as-
pects of the time-frequency concentration problem, including applications
in communication engineering. One such application aims to find the sig-
nals with maximum energy concentration simultaneously in time and fre-
quency domains. In the 60s, Slepian, Landau, and Pollak [198, 199, 299, 300]
found that the Prolate Spheroidal Wave Functions (hereafter abbreviated
as PSWFs) are the most optimal energy concentration functions in a Eu-
clidean space of finite dimension. The PSWFs are band-limited and exhibit
interesting orthogonal relations. They are normalized versions of the so-
lutions to the scalar Helmholtz equation in prolate spheroidal coordinates.
Because of this, considerable effort has been put into developing applications
for the PSWFs. They are often regarded as somewhat mysterious functions,
showing no explicit or standard representation in terms of elementary func-
tions, and are too difficult to compute numerically. PSWFs usually appear in
Dirichlet problems in spheroidal domains arising in hydrodynamics, elastic-
ity, and electromagnetism. Spheroidal functions are frequently encountered
as solutions to boundary value problems of radiation, scattering, and prop-
agation of acoustic signals and electromagnetism waves radiated by sources
with spheroidal shapes.

Another topic that has been catching the interest of the scientific commu-
nity is the development of numerical methods using PSWFs as basis functions
[47, 75, 326, 327, 328]. The PSWFs provide an optimal tool for approximat-
ing band-limited functions [46, 47, 234, 285, 295, 334, 335, 341], and they are
preferable to classical polynomial bases (such as Legendre and Chebychev
polynomials). The PSWFs were used in the sampling and reconstruction of
band-limited signals in [329]. In [329], Walter et al. showed that the PSWFs
could replace the sinc function in the sampling formula. An advantage of this
is that the PSWFs are more concentrated on finite intervals than the sinc
function. Applying the theory of reproducing kernel Hilbert spaces, Moumni
et al. [253] extended the PSWFs to derive a sampling formula for a general
class of functions that are band-limited to the unit cube and the unit ball
in the Euclidean space. This extends Walter and Shen’s Sampling Theo-
rem to higher dimensions and bounds the truncation errors. In [262, 334],
PSWFs were applied to construct quadratures, interpolation, and differenti-
ation formulas for band-limited signals. The resulting numerical algorithms
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were satisfactory [262]. These applications have stimulated a surge of new
ideas and methods, both theoretical and applied. PSWFs have reawakened
an interest in spectral analysis, signal processing, optical system analysis,
approximation theory, potential theory, partial differential equations, and so
forth.

Slepian first studied multi-dimensional PSWFs supported on the unit hy-
perball in [300] (cf. [116]). The author provided many of their analytical
properties in great detail, including those that support the construction of
numerical schemes. These functions are formally known as Slepian func-
tions. Slepian was able to find a self-adjoint second-order differential oper-
ator that commutes with a particular finite convolution integral operator.
In this way, the problem was converted into an eigenvalue problem for an
ordinary differential equation. Slepian also showed that the more general
problem of a hyperball could be entirely reduced to the two-dimensional
case. Later, Morrison [235] successfully extended the domain of definition to
hyperellipsoids and found differential equations for the eigenfunctions thus
obtained. Slepian also proposed and developed the discrete version of the
PSWFs in [300]. Shkolnisky et al. developed many of the properties of the
two-dimensional circular PSWFs in [295, 296], which go in one limit over
into the Zernike circle polynomials (this topic is further discussed in Sec-
tion 4.4). Circular PSWFs were also used to study confocal laser modes
and wave aberrations [182, 309]. In Astrophysics, the circular PSWFs were
applied in stellar coronagraphy [309]. Based on an approximation scheme
for band-limited functions concentrated in a disk, the theory developed in
[194, 195] brought images in cryo-electron microscopy to a graphic represen-
tation. The PSWFs were extended to other domains, such as their spherical
counterparts, with applications in geophysics [297]. More general PSWFs
were studied in [294]. The generalized PSWFs have recently played a very
active role, demonstrated by the multitude of problems arising from their
applications in physical sciences and engineering, such as wave scattering,
signal processing, and antenna theory.

Analytical properties of the PSWFs were proposed in the general con-
text of various function spaces, such as quaternionic and Cliffordian spaces
[185, 251, 350], and under different integral transforms [328, 341]. The
frequency-domain was considered not only under the Fourier transform but
also under the more general fractional Fourier transform (FFT) [268] and the
linear canonical transform (LCT) [348, 349]. The generalized PSWFs asso-
ciated with the FFT and the LCT are relevant when analyzing the status
of energy preservation of optical systems, self-imaging phenomenon, and the
resonance phenomenon of finite-sized one-stage and multiple-stage optical
systems [266].
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Nearly a century after Hamilton discovered the quaternions [155], the
Swiss mathematician Fueter introduced the concept of quaternion-valued reg-
ular functions [126] (known today as monogenic functions) employing an ana-
log of a generalized Cauchy-Riemann system (cf. [127, 128, 129, 130, 131]).
As was mentioned by Sudbery in [318], this generalization is the only appro-
priate way to construct a broad class of functions that generalize the class
of holomorphic functions of one complex variable. A technique for obtaining
monogenic function systems uses the factorization of the Laplace operator
and takes an appropriate set of harmonic functions as a starting point. In
analogy with the one-dimensional case, we aim to reach a system with a
simple structure in the sense that the underlying functions can be explicitly
calculated, and the numerical costs grow only slightly. Bearing in mind the
application of some differential and integral operators to the elements that
constitute such sets and their extensions to more general functions via Fourier
expansions, one must necessarily consider orthogonal bases. A basis can then
be found for approximating monogenic functions or solutions of more general
differential equations by series expansions in terms of monogenic polynomials
via a continuous extension. At the same time, it would ensure the numerical
stability of the best approximations.

The remarks above cover only a part of the problem (at least from the
theoretical viewpoint). We must also consider the following facts:

1. The determination of harmonic and monogenic functions for the space
interior and exterior to a spheroidal structure when their values on the
surface are prescribed;

2. Monogenic functions (and, eventually, their associated scalar and vector
parts) of different degree and order are orthogonal in the L2-Hilbert
space structure;

3. All hypercomplex derivatives and (monogenic) primitives of the func-
tions deliver elements of the same structure again.

The problem of approximating a monogenic quaternion-valued function
by polynomials or other systems of functions has a long history. The first
ideas on how to characterize monogenic functions using power series expan-
sions in terms of monogenic polynomials are mainly due to Fueter [126, 131].
This was done employing the notion of hypercomplex variables. Later, in [48]
and [215], it was shown that a monogenic function could be developed locally
as a Taylor series in terms of the so-called Fueter polynomials based on those
variables. Following this line of reasoning and based on these polynomials,
Leutwiler, in [208], constructed a basis in the real-linear Hilbert space of
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reduced quaternion-valued homogeneous monogenic polynomials in R3. His
results were generalized to arbitrary dimensions in a Clifford algebra frame-
work by Delanghe in [94]. The approach, followed by both authors, relies on
harmonic conjugates. The main difficulty in carrying out this technique is
that the Fueter polynomials and their associated scalar parts are generally
not orthogonal for the scalar inner product (we refer to [62] and [236, Ch.
2] for a particular approach). A naive technique applies the Gram-Schmidt
procedure for the normalization of these polynomials. Unfortunately, this
orthonormalization procedure is not easy to handle, and the numerical cal-
culations are highly unstable. Consequently, one has to consider a more
suitable basis.

Unrelated to previous research, a different effort was made by Ryan in
[287]. The author built a complete orthonormal system of homogeneous
monogenic polynomials for even dimensions. However, that system is not
appropriate for the case presented in this thesis since we will only consider
functions defined in domains of the Euclidean space R3 of odd dimension.
In this context, it is worth mentioning the works of Brackx, Delanghe, and
Sommen in [48] and Gürlebeck in [144]. The authors studied shifted systems
of Cauchy kernels to approximate a monogenic function. Although the ra-
tional systems constructed constitute complete sets of functions, the major
drawback is that they do not carry the orthogonality property. Moreover,
in these systems, the construction of an orthogonal series expansion is not
possible, and hypercomplex derivatives of the basis functions are not even
finite linear combinations of the original basis functions.

Some examples of the research developed in the ’90s include [7, 8, 9, 10,
11, 12] by Abul-Ez and Constales. The authors studied a set of special mono-
genic polynomials involving only products of a hypercomplex variable and its
hypercomplex conjugate. This research extends the basic sets of polynomi-
als of one complex variable, which appeared in the ’30s in Whittaker’s work
and was resumed later in his book [333]. Since the authors only constructed
one polynomial for each degree, it was not enough to form a basis for the
space of square-integrable monogenic functions. Note that the prescribed
monogenic polynomials are deliberately similar, up to a rescaling factor, to
those studied by Falcão and Malonek in [112, 113, 114]. However, at the
time of publication of [7], the concept of hypercomplex differentiability or
the corresponding use of the hypercomplex derivative was not used to prove
the fundamental characteristic Appell property of these polynomials as it is
done at present. A range of significant results was achieved by applying these
polynomials in the study of several elementary functions within Clifford anal-
ysis [5, 68, 69, 72, 83, 113, 219, 220], generalized Joukowski transformations
in Euclidean spaces of arbitrary higher dimension [18, 82], as well as in other
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topics. These polynomials were recently used to prove a Clifford counterpart
of Hadamard’s three-hyperballs Theorem [13].

A different but equally important effort was made by Cação, which re-
sulted in her Ph.D. thesis [63] and follow-up papers [64, 65, 66]. Cação
et al. researched complete orthogonal systems of homogeneous monogenic
quaternion-valued polynomials in the Euclidean ball of R3. The resulting
polynomials carry the property of having hypercomplex derivatives (resp.
monogenic primitives) within the same basis one degree lower (resp. upper),
contrary to the sets referred above. In [38], fundamental recursion formu-
las were obtained for the elements of these bases. These results were used
in the book [148]. A unified and explicit construction of monogenic Appell
bases in dimensions 2, 3, and 4 was given in [41]. These functions played
a fundamental role in the study of quaternionic counterparts of the well-
known Bohr Theorem [150, 151], Borel-Carathéodory’s Theorem [149], and
Hadamard’s Real-Part Theorems on the majorant of a Taylor series [236, 240],
as well as Bloch’s Theorem [241]. The standard domain in which all these
works were developed is the Euclidean ball. In [239, 242], the present author
studied a general theory of prolate spheroidal monogenics that, in particu-
lar cases, contains the prescribed spherical monogenic functions. In [243],
it was shown that the underlying prolate spheroidal monogenics play an
essential role in studying the monogenic Szegö kernel function for prolate
spheroids. In [244, Remark 3.2], it was explained how one could generate
oblate spheroidal monogenics from prolate spheroidal monogenics and vice-
versa. It was pointed out that only the radial part of a monogenic spheroidal
function plays a role in the underlying transformation of variables. Associ-
ated with this topic, the authors in [250] exploited a complete orthogonal
system of oblate spheroidal monogenics and found some recurrence formulas.
It was shown that in the case of an oblate spheroid, a complete system could
only be either an orthogonal or an Appell system. Long sought in this line
of work are orthogonal bases of monogenic spheroidal functions that accom-
modate two classes: prolate and oblate spheroidal monogenics, which can
be reduced to the internal and external solid spherical monogenics when the
underlying eccentricity parameter tends to zero. It is toward the achieve-
ment of this goal that the current work is directed. The present theory gives
a general basis for the study of each particular case and allows for a more
significant simplification of many of the proofs involved.

This thesis is divided into five chapters, and its outline is detailed in
the following. Chapter 1 gives some preliminaries concerning the algebra of
Quaternions, including its insertion as a particular case of a Clifford algebra.
The concept of monogenicity is introduced, and relevant results from the
books [146] and [148] are summarized and applied in the subsequent chapters.
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Since monogenic functions are harmonic in all of their components, we also
summarize elementary facts from harmonic analysis, which will be needed
throughout this thesis.

Chapter 2 presents single one-parameter families of internal and external
spheroidal harmonics, including the spherical harmonic functions as limit-
ing cases. The chapter proceeds to find relationships among the systems of
spherical and spheroidal harmonic functions from which explicit conversion
formulas that relate systems of harmonic functions associated with spheroids
of differing eccentricity can be obtained.

Chapter 3 applies the spheroidal harmonics studied in the previous chap-
ter to construct single one-parameter orthogonal bases of internal and exter-
nal spheroidal monogenics, whose elements are parametrized by the shape
of the corresponding spheroids. The principal point of interest is that the
orthogonality of the elements that constitute the two bases does not depend
on the eccentricity of the spheroids. Using expressions of change of basis
calculated in the previous chapter, conversion formulas that relate different
spheroidal monogenic systems are obtained. By selecting specific options
among the spheroidal monogenic polynomials of the constructed bases, we
derive an orthogonal basis in the quaternionic Hilbert space L2 over spheroids
of arbitrary eccentricity. Furthermore, the Bergman kernel function for the
space of monogenic and square-integrable functions defined in a spheroid of
arbitrary eccentricity is derived from the theory presented previously. The
second part of the chapter focuses on constructing bases for the collection of
spheroidal monogenic constants and spheroidal ambigenic polynomials. This
allows reaching an explicit construction of a graded basis for the space of
square-integrable contragenic functions. The elements of this basis, which
are inhomogeneous polynomials of three spatial variables, depend polynomi-
ally on the eccentricity of the prescribed spheroids. To conclude the chapter,
we investigate the relationships between the contragenic function systems for
spheroids of different eccentricities, showing that there are common contra-
genic functions to all spheroids of all eccentricities.

Chapter 4 discusses a theory of functions with quaternionic values and
three real variables determined by a Moisil-Teodorescu type operator with
non-constant quaternionic coefficients, and it is intimately related to the
theory of PSWFs. We proceed to study the relationship between two closed
subspaces of L2: the subspace D(T) of all functions supported in the spatial
domain T and the subspace B(W) of all functions whose Fourier transforms
are supported in the frequency domain W. We also analyze the composition
DTBWDT, where DT and BW are the projections onto D(T) and B(W),
respectively, and its spectrum and find that the eigenfunctions of the com-
pact and self-adjoint integral operator DTBWDT are a particular class of
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band-limited quaternionic functions: the c-Quaternionic Prolate Spheroidal
Wave Functions (hereafter abbreviated as c-QPSWFs). On the other hand,
using these specific eigenfunctions as a basis for the band-limited functions
in L2, we can prove a series of results concerning the approximate concentra-
tion of functions in the spatial and the frequency domains and a quaternionic
counterpart of Donoho and Stark’s uncertainty principle. This is followed by
a discussion regarding the relevancy of the reproducing kernel in extremum
problems. Such reproducing kernel is obtained from the inverse quaternion
Fourier transform of the characteristic function of the support of the quater-
nionic signals in the transformed domain. Furthermore, it is proven that the
c-QPSWFs are orthogonal and complete over two different bounded domains
along with the Euclidean space R3 under the assumption of a certain kind of
symmetry, namely the space of square-integrable quaternionic functions on a
cube and the reproducing kernel Hilbert space of band-limited quaternionic
signals. In the second part of the chapter, the c-QPSWFs are used to exam-
ine the energy concentration of a signal in the spatial and frequency domains.
Applying these results leads to calculating the c-QPSWFs restricted in the
spatial domain to the Euclidean unit ball and frequency domain to the ball
of radius c > 0. Some of their fundamental properties are established.

Finally, Chapter 5 presents some applications and discusses two construc-
tive approaches for generating Riesz systems of harmonic conjugates. Then
some examples of function spaces illustrating the techniques involved are pre-
sented. More specifically, we discuss the weighted Hardy and Bergman spaces
consisting of monogenic functions in the Euclidean unit ball. Moreover, we
prove the boundedness of the underlying harmonic conjugation operators
in specific weighted spaces. To conclude this chapter, the generalization of
Bloch’s Theorem for monogenic functions in the three-dimensional Euclidean
space is presented, as well as an explicit computation of a lower bound for
the Bloch constant.
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1

Basic Concepts of Quaternionic
Analysis

Time is said to have only one dimension, and space to have three
dimensions. The mathematical quaternion partakes of both these
elements; in technical language it may be said to be “time plus
space”, or “space plus time”: and in this sense it has, or at least
involves a reference to, four dimensions.

And how the One of Time, of Space the Three,
Might in the Chain of Symbols girdled be.

Quoted in R. P. Graves, Life of Sir William Rowan Hamilton.

The first part of this chapter is devoted to the exposition of the basic
definitions and terminology that are to be used throughout this disserta-
tion. We begin with a quick review of the properties of quaternion numbers
and their embedding in more general systems of Clifford numbers. Then
we introduce the generalized Cauchy-Riemann operator ∂, which generalizes
the well-known two-dimensional Cauchy-Riemann operator to quaternionic
analysis. The null-solutions of this operator are called monogenic. The
noncommutative structure of the Hamiltonian quaternion algebra makes it
essential to distinguish between an application of the operator ∂ from the
left-hand side and right-hand side of a quaternion-valued function. It is
possible to factor the Laplace operator in terms of operator ∂ and its quater-
nionic conjugate, similar to the complex case. This factorization gives the
possibility to generate classes of monogenic functions from harmonic ones.
Correspondingly, we proceed with the definition and some basic properties
of the associated Legendre functions of the first and second kinds, which
are used to build the classical systems of internal and external spherical,

25
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and more generally, of spheroidal harmonics. We move forward to discussing
the fundamental properties of the quaternion Fourier transform, including
linearity, space shift, and frequency shift properties, the Riemann-Lebesgue
Lemma, inversion, Plancherel, and Parseval identities.

The second part of the chapter begins with a brief review of the two
contexts that give rise to the PSWFs of order zero and collect some of their
essential properties.

1.1 Quaternions and Clifford Algebras

1.1.1 The Skew-Field H of Quaternions

The Hamilton Quaternions were devised on the 16th of October 1843 by the
mathematical physicist William Rowan Hamilton. The original motivation
behind this research was to build a set of hypercomplex numbers related to
the three-dimensional space in the same way as complex numbers are related
to the two-dimensional plane. But what Hamilton found was a number with
one real component and three distinct imaginary components, and where all
of the squares of the imaginary components are −1. According to legend,
Hamilton was inspired to reach this generalization during a walk along the
Royal Canal in Dublin with his wife. While the quaternions are noncommuta-
tive, they are associative and form an algebra over the real field of dimension
4 [155]. The idea of using multiplication of 4-vectors similar to quaternion
multiplication predates Hamilton and can be found in the works of Euler,
Gauss, and Rodrigues. In 1748 Euler discovered the four-square identity
and used a quaternion representation to describe motions in the Euclidean
space. This fact was rediscovered in 1957 by Blaschke and was mentioned
in his speech on Euler’s 250th anniversary in Berlin. It is also worth not-
ing that Rodrigues used a quaternion multiplication technique to describe
a parametrization of general rotations via the so-called Euler-Rodrigues pa-
rameters. Gauss derived similar results to those of Hamilton and Rodrigues
in 1819, but they remained unpublished during his lifetime and, therefore,
unknown to both of them.

We use the original notation {1, i, j,k} for the standard basis of the Hamil-
tonian quaternions. The imaginary units i, j,k obey the following multipli-
cation rules:

i2 = j2 = k2 = −1;
ij = k = −ji, jk = i = −kj, ki = j = −ik, (1.1.1)
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and the usual componentwise defined addition. A quaternion is a number of
the form

p = p0 + ip1 + jp2 + kp3,

where the pi = [p]i are real numbers. The set of quaternions is denoted by
H, in honor of its discoverer.

Using relations (1.1.1), we define the multiplication of two quaternions
p = p0 + ip1 + jp2 + kp3 and q = q0 + iq1 + jq2 + kq3 as follows:

pq = (p0q0 − p1q1 − p2q2 − p3q3) + i(p1q0 + p0q1 + p2q3 − p3q2)
+ j(p2q0 + p0q2 + p2q1 − p1q3) + k(p3q0 + p0q3 + p1q2 − p2q1).

We denote by
Sc(p) = p0

the scalar part of p and by

Vec(p) = ip1 + jp2 + kp3

its vector part. The real numbers are precisely those with zero vector part,
and if p = Vec(p), then p is called a pure quaternion.

The conjugate of a quaternion p is

p = Sc(p)− Vec(p) = p0 − ip1 − jp2 − kp3.

The quaternion conjugation can also be useful to extract the scalar and vector
parts of p ∈ H:

Sc(p) = 1
2(p + p),

and
Vec(p) = 1

2(p− p).

The following lemma can now be proved:

Lemma 1.1.1. For all p,q ∈ H, the quaternion conjugation has the follow-
ing properties:

(i) p + q = p + q;

(ii) pq = q p;

(iii) p = p;

(iv) p ∈ R, if and only if p = p; p is a pure quaternion, if and only if
p = −p.
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Following what has been introduced above, a cyclic multiplication sym-
metry holds

Sc(pqr) = Sc(rqp) = Sc(qpr) (1.1.2)

for all p,q, r ∈ H.
The (algebraic) norm of a quaternion p = p0 + ip1 + jp2 + kp3 is defined

by
|p| := (pp)1/2 = (pp)1/2 =

(
p2

0 + p2
1 + p2

2 + p2
3

)1/2
,

and it coincides with the corresponding Euclidean norm of p, as a vector
in R4. If |p| = 1, then p is called a unit quaternion. Moreover, it is easily
seen that |pq| = |p||q| and that every nonzero quaternion p possesses an
inverse defined by p−1 := p/|p|2, such that pp−1 = p−1p = 1. It follows
that the inverse of a unit quaternion is its conjugate. Furthermore, it holds
|p|−1 = |p−1|.

As a consequence of the existence of inverse, the quaternions form a non-
commutative division algebra, the skew-field H of quaternions. The quater-
nions remain the most straightforward algebra after the real and complex
numbers. Due to the famous Theorem of Frobenius [124], the real numbers,
the complex numbers, and the quaternions are the only associative division
algebras [178]. Amongst these, the quaternions are the most general. For
a detailed historical survey and an extended list of references on the real
algebra of quaternions, we refer to [126, 145, 146, 148, 189, 190, 247, 318]
and elsewhere.

We will now introduce a proper quaternion exponential function, which
has many similarities with the complex exponential function. Jamison as-
serted the following definition in [176]:

Definition 1.1.2. Let u be any pure quaternion such that u2 = −1, and
let ϑ be any real number. The quaternion exponential function exp(uϑ) is
defined as

exp(uϑ) = cosϑ+ u sinϑ. (1.1.3)

We then have the following lemma.

Lemma 1.1.3. The function defined by (1.1.3) has the following properties:

(i) exp(uϑ1)exp(uϑ2) = exp [u(ϑ1 + ϑ2)];

(ii) exp(uϑ) = exp(−uϑ);

(iii) |exp(uϑ)| = 1;

(iv) d
dϑ

exp(uϑ) = uexp(uϑ).
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1.1.2 The Real Clifford Algebra
We link the previous definition of the quaternion algebra H with the more
general one of universal Clifford algebra. Inspired by the work of Hamilton
and combining ideas of geometric algebra developed by Grassmann, Clifford
introduced the notion of what is now known as the Clifford algebra in 1878.
Said algebra includes generalizations of the scalar and vector products to
higher dimensions [79]. A Clifford algebra is an associative but usually non-
commutative algebra over the real or the complex field. For more details
about Clifford algebras, please refer, e.g., to [48, 148, 213, 273].

We henceforth consider the universal real Clifford algebra of signature
(0, n) denoted by C`0,n and let {e0, e1, e2, . . . , en} stand for the canonical
basis of the Euclidean vector space Rn+1. The basis elements satisfy the
following multiplication rules:

ekel + elek = −2δk,le0,

e0ek = eke0 = ek, (k, l = 1, 2, . . . , n),

where δk,l denotes the Kronecker delta and the element e0 is regarded as the
usual unit, that is, e0 = 1.

A basis for C`0,n is given by the elements eA = ei1ei2 · · · eik , where A =
{i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} is such that 1 ≤ i1 < i2 < · · · < ik ≤ n
and e∅ = e0 = 1. It then follows that the dimension of C`0,n is 2n. As
C`0,n is isomorphic to R2n , we may provide it with the R2n-norm |a|, and
one can verify that for any a,b ∈ C`0,n, |a b| ≤ 2n/2 |a| |b|, where a =∑
A⊆{1,...,n} eAaA and b = ∑

A⊆{1,...,n} eAbA. The addition and multiplication
of elements of C`0,n by real numbers are defined componentwise. In this way,
the multiplication between two elements of C`0,n turns out to be associative,
anticommutative, and has distributive properties.

Now, let C`k0,n be the real linear subspace of C`0,n, defined as

C`k0,n =
{
a ∈ C`0,n : a =

∑
|A|=k

eAaA
}
,

where |A| denotes the cardinality of the set A. The elements of C`2
0,n are

called bivectors, while the elements of C`3
0,n are called pseudoscalars. We

define the even subalgebra C`+
0,3 as

C`+
0,n =

⊕
k even

C`k0,n.

We shall remark that C`+
0,n is again a Clifford algebra, but not a universal one.

From the considerations above adduced, it is seen thatH can be interpreted as
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Clifford algebras in two different ways. On the one hand, H is isomorphic to
the four-dimensional, even subalgebra C`+

0,3 with the identification−e1e2 → i,
−e1e3 → j, e2e3 → k. On the other hand, H can be realized as the universal
Clifford algebra C`0,2 = 〈{1, e1, e2, e1e2}〉 with the identification e1 → i,
e2 → j, e1e2 → k.

We proceed to consider the subset of H, defined as

A := {x0 + ix1 + jx2 + kx3 ∈ H : xi ∈ R, x3 = 0}. (1.1.4)

The elements of A are known as reduced quaternions. The elements of R3 can
be identified with elements of A by considering (x0, x1, x2) ∈ R3. To this end,
throughout the text, we will often use the same symbol x to be regarded as
a point in R3 and to represent the corresponding reduced quaternion. There
are other ways of embedding R3 in H, for example, using the subspace of
pure quaternions, i.e., by considering (x1, x2, x3) ∈ R3. Furthermore, since A
is not closed under the quaternionic multiplication, it is clear that A is only
a real vector subspace and not a subalgebra of H.

1.2 Operators on Hilbert spaces over H

1.2.1 Linear Spaces of H-valued functions
Throughout the text, let Ω denote an open set of R3 with a piecewise smooth
boundary. Here adopted, the notations for the boundary and the closure of
Ω are, respectively, ∂Ω and Ω. We will use the notation Ω0 to denote the
Euclidean unit ball.

A quaternion-valued function or, briefly, an H-valued function is a map-
ping of the form f : Ω→ H such that

f(x) = [f(x)]0 + i[f(x)]1 + j[f(x)]2 + k[f(x)]3,

where x ∈ Ω and the [f ]i are real-valued functions defined in Ω. By abuse
of notation, we shall use [f ]0 and Sc(f) interchangeably. It is clear that
if [f(x)]3 = 0 for all x, then f is itself an A-valued function. Properties
such as continuity, differentiability, or integrability ascribed to f , are defined
coordinatewise.

Due to the noncommutativity of quaternions, it is necessary to distinguish
between two types of linear spaces over H, namely left-linear and right-linear
spaces.

Definition 1.2.1. A left-linear space L over H is an additive abelian group
in which there is defined operation of scalar multiplication by elements of H.
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Scalar multiplication is assumed to obey the following laws for all x,y ∈ L,
α,β ∈ H:

(i) α(x + y) = αx +αy;

(ii) (α+ β)x = αx + βx;

(iii) (αβ)x = α(βx).

Unless stated otherwise, all H-linear spaces here are assumed to be left
spaces over the quaternions; the right space is defined similarly. We shall
adopt L(Ω,H) for linear spaces consisting of H-valued, or more particularly,
of A-valued functions. The R-linearity of the space L(Ω,A) needs not be
confused with the prescribed (left) H-linearity of L(Ω,H). The context will
usually distinguish between the two without clarification. In cases where am-
biguity may occur, we shall denote the R-linear spaces of A-valued functions
by L(Ω,A) and the (left-) linear spaces of H-valued functions by L(Ω,H).

It should be noted that the fundamental theory of finite-dimensional lin-
ear spaces over associative division algebras is well-established [175]. The
definitions of basis, dimension, subspace, etc., are the same as those in the
complex case and will not be given here.

Definition 1.2.2. Let L be a linear space over H. A mapping F : L → H is
called a left-linear functional if F (x+y) = F (x)+F (y) and F (αx) = αF (x)
for all x,y ∈ L, α ∈ H.

Definition 1.2.3. A linear space over H is called a normed linear space if
there exists a function ‖ · ‖ : L → R with the following properties:

(i) ‖x‖ ≥ 0, for all x ∈ L and ‖x‖ = 0, if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖, for all x ∈ L and α ∈ H;

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, for all x,y ∈ L.

Definition 1.2.4. Let L be a normed linear space (with respective norm ‖·‖)
over H. A left-linear functional F is called bounded if |F (x)| ≤ kF‖x‖ for
all x ∈ L, where kF > 0 and depends only on F .

As usual, we denote the partial derivative of a function with respect to
the variable xi by ∂

∂xi
, i ∈ {0, 1, 2} and the partial derivatives of higher-order

by

∂λ = ∂|λ|

∂xλ0
0 ∂x

λ1
1 ∂x

λ2
2
,
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where λ = (λ0, λ1, λ2) is a multi-index of nonnegative integers such that
|λ| = λ0 + λ1 + λ2.

We introduce the following quaternionic spaces, which will be of use in
further discussion:

Definition 1.2.5. We denote by

(i) C(Ω,H) the space of all H-valued functions that are continuous in Ω;

(ii) Cm(Ω,H) the space of all H-valued functions f such that ∂λf ∈ C(Ω,H)
whenever |λ| ≤ m;

(iii) C∞(Ω,H) the space of all H-valued functions that belong to Cm(Ω,H)
for every m ∈ N.

Definition 1.2.6. Let 1 ≤ p < ∞. The Lp(Ω,H) space is defined to be the
class of all Lebesgue measurable H-valued functions defined on Ω such that
|f |p ∈ L1(Ω) for all f ∈ Lp(Ω,H); that is,

Lp(Ω,H) =
{
f : Ω→ H measurable :

(∫
Ω
|f(x)|pdx

)1/p
<∞

}
,

where dx denotes the Lebesgue measure on Ω.

From the above definition, it is clear that if f ∈ Lp(Ω,H), then αf is also
in Lp(Ω,H) for all α ∈ H. Since |f + g|p ≤ 2p (|f |p + |g|p), Lp(Ω,H) is also
closed under addition. Accordingly, Lp(Ω,H) is a left-linear space over H. It
can further be shown that the space Lp(Ω,H) (p ≥ 1) is complete [176].

Next, we will consider the primary space L2(Ω,H) endowed with the (left)
quaternionic inner product defined below.

Definition 1.2.7. The L2(Ω,H)-inner product is defined by

〈f , g〉L2(Ω,H) =
∫

Ω
f(x)g(x)dx (1.2.1)

for any f , g ∈ L2(Ω,H), which satisfies the following properties:

(i) 〈f ,f〉L2(Ω,H) > 0, f 6= 0;

(ii) 〈f , g〉L2(Ω,H) = 〈g,f〉L2(Ω,H);

(iii) 〈f + g,h〉L2(Ω,H) = 〈f ,h〉L2(Ω,H) + 〈g,h〉L2(Ω,H);

(iv) 〈αf , g〉L2(Ω,H) = α〈f , g〉L2(Ω,H), 〈f ,αg〉L2(Ω,H) = 〈f , g〉L2(Ω,H)α.
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Definition 1.2.8. Two functions f , g of L2(Ω,H) are called orthogonal in
the L2-sense if 〈f , g〉L2(Ω,H) = 0.

Definition 1.2.9. Let B be any subset of L2(Ω,H). Then B⊥ is defined to
be B⊥ = {g : 〈f , g〉L2(Ω,H) = 0 for every f ∈ B}.

In accordance with (1.1.4), we endow the space L2(Ω,A) with a positive
definite symmetric bilinear form (also known as the scalar inner product),
defined by

〈f , g〉0,L2(Ω,A) := 1
2
[
〈f , g〉L2(Ω,H) + 〈g,f〉L2(Ω,H)

]
= Sc

∫
Ω
f(x)g(x)dx. (1.2.2)

It is clear that (1.2.2) does not define an inner product in L2(Ω,H) seen as an
H-linear space because it is not homogeneous for quaternionic scalars. The
scalar inner product (1.2.2) appears, for example, in [87] in the context of
complex vector spaces, in [145] for spaces of H-valued functions, and in [48]
for spaces of C`0,2-valued functions.

Definition 1.2.10. For f ∈ L2(Ω,H), the L2-norm induced by the (left)
quaternionic inner product (1.2.1) is defined by

‖f‖L2(Ω) =
(
〈f ,f〉L2(Ω,H)

)1/2
=
(∫

Ω
|f(x)|2dx

)1/2
. (1.2.3)

The space L2(Ω,H) furnished with the quaternionic inner product (1.2.1)
is a (left) quaternionic Hilbert space, and the norm (1.2.3) turns L2(Ω,H)
into a Banach space [176].

Thus, the L2-norm induced by the quaternionic inner product (1.2.1)
coincides with the quadratic form associated with the bilinear form (1.2.2)
and further, with the L2-norm of f considered as a vector-valued function.
Therefore, convergence results are independent of the choice of the inner
product. Accordingly, from now on, we will denote each of these norms by
‖ · ‖L2(Ω).

The next lemma is known as the Cauchy-Bunyakovsky-Schwarz inequality
[322] (cf. [176]).

Lemma 1.2.11. If f , g ∈ L2(Ω,H), then

|〈f , g〉L2(Ω,H)| ≤ ‖f‖L2(Ω)‖g‖L2(Ω). (1.2.4)
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It should be observed that, as was shown in [48], the significant inequality
given in the previous lemma is valid in much more broad circumstances. In
particular, the inequality holds for a class of modules over the general (real)
Clifford algebras.

With the aid of Definition (1.2.7), the preceding investigations allow us to
define the angle between two functions in L2(Ω,H); in virtue of the Cauchy-
Schwarz inequality (1.2.4), it follows that

| Sc(〈f , g〉L2(Ω,H))| ≤ ‖f‖L2(Ω)‖g‖L2(Ω).

Thus, for all nonzero f , g ∈ L2(Ω,H),

−1 ≤ Sc(〈f , g〉L2(Ω,H))
‖f‖L2(Ω)‖g‖L2(Ω)

≤ 1.

This discussion leads to the following definition:

Definition 1.2.12. The angle arg(f , g) between two nonzero functions f , g ∈
L2(Ω,H) is defined by

arg(f , g) = arccos
(

Sc(〈f , g〉L2(Ω,H))
‖f‖L2(Ω)‖g‖L2(Ω)

)
. (1.2.5)

It should be remarked that the extreme values 0 and π for arg(f , g)
can only be reached if f and g are proportional (so that equality holds in
(1.2.4)) and 〈f , g〉L2(Ω,H) is real. It can also be seen that the arg(f , g) defined
in (1.2.5) equals π/2, if and only if f and g are orthogonal (over R). These
observations being made, we proceed to consider a further aspect of an angle
between two H-valued functions, which is substantially the one given by Rao
in [276] and adopted by Gustafson and Rao in [154, p.56]. Because this
result is proved in the same manner as in complex Hilbert spaces, we state
the technical lemma without proof.

Lemma 1.2.13. For all nonzero f , g,h ∈ L2(Ω,H) the angle in (1.2.5)
satisfies the triangle inequality:

arg(f , g) ≤ arg(f ,h) + arg(g,h). (1.2.6)

Before proceeding to investigate the spectral theorem for quaternionic
compact self-adjoint operators, it will be convenient to discuss the elemen-
tary properties of bounded, compact, and self-adjoint operators on infinite-
dimensional Hilbert spaces over the quaternions. To proceed further, we need
to make the following definitions:



1.2. OPERATORS ON HILBERT SPACES OVER H 35

Definition 1.2.14. An operator T : L2(Ω,H)→ L2(Ω,H) is called

(i) additive if T (f + g) = T (f) + T (g) for all f , g ∈ L2(Ω,H);

(ii) left-homogeneous if T (αf) = αT (f) for all α ∈ H;

(iii) left-linear if both (i) and (ii) hold.

Definition 1.2.15. An operator T : L2(Ω,H)→ L2(Ω,H) is called bounded
if there exists a constant M > 0 such that ‖Tf‖L2(Ω) ≤ M‖f‖L2(Ω) for all
f ∈ L2(Ω,H). The norm of such an operator T is defined by

‖T‖ = sup
0 6= f ∈L2(Ω,H)

‖Tf‖L2(Ω)

‖f‖L2(Ω)
.

For the sake of clarity, it should be emphasized that the class of bounded
left-linear operators on a Hilbert space over H is generally not a (left-) linear
space over H. This is because the quaternions are noncommutative.

Definition 1.2.16. Let T be a left-linear operator on L2(Ω,H). T is called
compact if for each bounded sequence {fn} from L2(Ω,H), the sequence
{Tfn} contains a convergent subsequence in L2(Ω,H).

The following lemma is a well-known result for compact operators on
complex Hilbert spaces. The proof can be easily carried over to the case of
quaternionic Hilbert spaces and will not be given.

Lemma 1.2.17. If T1 is a compact operator on L2(Ω,H) and T2 is a bounded
operator on L2(Ω,H), then T1T2 and T2T1 are compact operators.

1.2.2 The Riesz Representation Theorem in H
This section discusses the fundamental concepts of completeness and closure
of orthonormal sets in Hilbert spaces over H. Also, we revisit a quaternionic
version of the Riesz Representation Theorem and the notion of a Reproducing
Kernel Quaternion Hilbert Space (hereafter abbreviated as RKQHS).

Definition 1.2.18. Let Λ be an index set and {f i}i∈Λ a subset of L2(Ω,H).
{f i}i∈Λ is called an orthonormal set if 〈f i,f j〉L2(Ω,H) = δi,j.

Definition 1.2.19. An orthonormal set {f i}i∈Λ in L2(Ω,H) is called com-
plete if it is maximal in the partially ordered set of all orthonormal sets for
L2(Ω,H). This class is ordered by inclusion. A complete orthogonal (or-
thonormal) set in L2(Ω,H) is called an orthogonal (orthonormal) basis in
L2(Ω,H).
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Definition 1.2.20. A set {f i}i∈Λ is called closed in L2(Ω,H) if for every
element f ∈ L2(Ω,H), it follows from 〈f ,f i〉L2(Ω,H) = 0 (∀ i ∈ Λ) that f = 0.

The following theorems were proved in [322], and they are essential to
much that follows:

Theorem 1.2.21. Every nonzero Hilbert space over H contains an orthonor-
mal basis.

Theorem 1.2.22. Let {f i}i∈Λ be an orthonormal set in L2(Ω,H). The fol-
lowing conditions are equivalent:

(i) {f i}i∈Λ is complete;

(ii) {f i}i∈Λ is closed in L2(Ω,H);

(iii) if f ∈ L2(Ω,H), then f = ∑〈f ,f i〉L2(Ω,H)f i;

(iv) if f ∈ L2(Ω,H), then ‖f‖2
L2(Ω) = ∑ |〈f ,f i〉L2(Ω,H)|2. (Parseval’s iden-

tity)

The considerations above adduced apply to classical problems of best
approximation in Hilbert spaces over H. In accordance with the condition
(iii) of the above theorem and the fact that the L2-norm defined by (1.2.3) is
strictly convex, it should be observed that the prescribed best approximation
of f ∈ L2(Ω,H) by elements of the orthonormal set {f i}i∈Λ in L2(Ω,H) exists
and is unique.

To sum up these results, we discuss the Quaternion Riesz Representation
Theorem, which is one of the essential structure theorems for Hilbert spaces
over H [176].

Theorem 1.2.23. For every bounded left-linear functional F defined on
L2(Ω,H), there exists a unique g ∈ L2(Ω,H) such that F (f) = 〈f , g〉L2(Ω,H)
for all f ∈ L2(Ω,H).

We are thus led to the definition of RKQHS.

Definition 1.2.24. We say that L2(Ω,H) is a RKQHS if the (left-)linear
evaluation functional Fx : L2(Ω,H) → H, defined by Fx(f) = f(x), is
bounded for all x ∈ Ω.
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1.2.3 Spectral Representations
As regards Definition 1.2.15, let T be a bounded left-linear operator on
L2(Ω,H). Let f , g ∈ L2(Ω,H) and define the functional F (f) := 〈Tf , g〉L2(Ω,H).
According to the Quaternion Riesz Representation Theorem 1.2.23, there ex-
ists a unique h ∈ L2(Ω,H), which depends on the g chosen initially, such
that F (f) = 〈f ,h〉L2(Ω,H) for every f ∈ L2(Ω,H). To emphasize this, let h
be written as h = T ∗g, where T ∗ is called the adjoint of T . The operator T ∗
which thus fulfills 〈Tf , g〉L2(Ω,H) = 〈f , T ∗g〉L2(Ω,H), is unique by virtue of the
properties of the quaternionic inner product (1.2.1). It can further be shown
that T ∗ is a bounded left-linear operator on L2(Ω,H).

Just as in the case of complex Hilbert spaces, the following theorem may
be established [176]:

Theorem 1.2.25. The adjoint operation T → T ∗ has the following proper-
ties:

(i) (T1 + T2)∗ = T ∗1 + T ∗2 ;

(ii) (T1T2)∗ = T ∗2 T
∗
1 ;

(iii) (T ∗)∗ = T ;

(iv) ‖T ∗‖ = ‖T‖;

(v) ‖T ∗T‖ = ‖T‖2.

The adjoint operation introduced above may be used to define certain
types of operators on (left) quaternionic Hilbert spaces. We proceed with
the following definitions:

Definition 1.2.26. Let T be a left-linear operator on L2(Ω,H). T is called

(i) self-adjoint if T = T ∗;

(ii) an orthogonal projection if it is self-adjoint and T 2 = T ;

(iii) positive if 〈Tf ,f〉L2(Ω,H) > 0 for all f ∈ L2(Ω,H).

Definition 1.2.27. If T is a left-linear operator on L2(Ω,H) and f ∈
L2(Ω,H) (f 6= 0) for which Tf = λf for some λ ∈ H, then f is called
an eigenfunction of T and λ the eigenvalue of T corresponding to f .

Definition 1.2.28. Let T be a left-linear operator on L2(Ω,H) and let λ be
an eigenvalue of T . The eigenmanifold, associated with the eigenvalue λ, is
the set of all elements f in L2(Ω,H) such that Tf = λf .
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The following theorem, which will be of use in further discussion, is a
well-known result [322] (cf. [176]).

Theorem 1.2.29. (i) The eigenvalues of a self-adjoint operator are real;

(ii) the eigenfunctions corresponding to distinct eigenvalues are orthogonal.

The Spectral Theorem for quaternionic compact, self-adjoint operators
may now be established [176]:

Theorem 1.2.30. Let T be a (nonzero) self-adjoint and compact left-linear
operator on L2(Ω,H). Then there exists a countable infinite set {ψn} con-
sisting of eigenfunctions of T and a corresponding set of real numbers {λn}
consisting of eigenvalues of T such that |λ0| ≥ |λ1| ≥ |λ2| ≥ · · · , which
may or not be finite. If the sequence {λn} is infinite, then |λn| → 0 as
n→∞. Each nonzero eigenvalue occurs in the sequence {λn}. Further, the
eigenmanifold corresponding to a particular λi is finite-dimensional, and its
dimension is exactly the number of times this particular eigenvalue is repeated
in the set.

1.3 H-valued functions on Spatial Domains

1.3.1 Monogenic Functions
In this section, we introduce the basic facts of monogenic functions and their
associated quaternionic function theory. For detailed information, we refer,
e.g., to [145, 146, 148, 318].

The generalized Cauchy-Riemann (or Fueter) operator is defined as

∂ = ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
. (1.3.1)

In the same manner, we define the conjugate generalized Cauchy-Riemann
operator as

∂ = ∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
. (1.3.2)

Suggested by the complex case, we will focus on particular classes of H-valued
functions analogous to complex holomorphic and antiholomorphic functions.
The particular classes we are interested in are the following.

Definition 1.3.1. A function f ∈ C1(Ω,H) is called

(i) left- (resp. right-) monogenic in Ω if ∂f = 0 (resp. f∂ = 0) identically
in Ω;
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(ii) left- (resp. right-) antimonogenic in Ω if ∂f = 0 (resp. f∂ = 0)
identically in Ω.

The function f is called two-sided monogenic in Ω if it is both left- and
right-monogenic in Ω.

By Definition 1.3.1, an H-valued function f is left-monogenic if it satisfies
the following system of differential equations, known as theMoisil-Teodorescu
system [232]: 

∂[f ]0
∂x0

− ∂[f ]1
∂x1

− ∂[f ]2
∂x2

= 0,

∂[f ]1
∂x0

+ ∂[f ]0
∂x1

+ ∂[f ]3
∂x2

= 0,

∂[f ]2
∂x0

− ∂[f ]3
∂x1

+ ∂[f ]0
∂x2

= 0,

∂[f ]3
∂x0

+ ∂[f ]2
∂x1

− ∂[f ]1
∂x2

= 0

or, in a more compact form:

(MT)

 div([f ]3, [f ]2,−[f ]1) = 0,

∇[f ]0 + curl([f ]3, [f ]2,−[f ]1) = 0.
(1.3.3)

To bring to light the essential distinction between classes of A- and H-valued
functions, as exhibited by the corresponding real vector space A defined in
(1.1.4), we first of all remark that an A-valued function f is left-monogenic
if it satisfies the following system:

∂[f ]0
∂x0

− ∂[f ]1
∂x1

− ∂[f ]2
∂x2

= 0,

∂[f ]0
∂x1

+ ∂[f ]1
∂x0

= 0,

∂[f ]0
∂x2

+ ∂[f ]2
∂x0

= 0,

∂[f ]1
∂x2

− ∂[f ]2
∂x1

= 0

or, analogously, in a more compact form:

(R)

 div(f) = 0,

curl(f) = 0.
(1.3.4)
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The 3-tuple f in (1.3.4) is said to be a system of conjugate harmonic functions
in the sense of Stein-Weiß [311, 312], and (R) is called the Riesz system
[127, 283]. As was observed in [26, 27, 94, 95], the importance of the (R)- and
(MT)-systems in physical applications has led to substantial generalizations,
and some theoretical results can be consulted in [101, 278, 279, 288] and
elsewhere.

Hereafter, the word monogenic (resp. antimonogenic) will always mean
left-monogenic (resp. left-antimonogenic). All results obtained for left-
monogenic (resp. left-antimonogenic) functions can easily be adapted to
right-monogenic (resp. right-antimonogenic) functions.

Definition 1.3.2. We denote by M(Ω) the set of monogenic functions in
Ω and byM(Ω) the set of antimonogenic functions in Ω. Further, we write
M2(Ω) =M(Ω) ∩ L2(Ω,H) andM2(Ω) =M(Ω) ∩ L2(Ω,H).

The notation in this definition does not indicate whether M(Ω) (resp.
M(Ω)) is a space consisting ofH- orA-valued functions. When it is necessary
to make clear this difference, we will writeM(Ω,B) (resp. M(Ω,B)), where
B = A or H. We will use the same abbreviated form of notation for the
spacesM2(Ω) andM2(Ω).

As discussed in [236], it turns out that

−k(∂f)k = ∂f

for every A-valued function f ; and thus, it follows that an A-valued function
f is monogenic, if and only if f is antimonogenic. This observation is anal-
ogous to the complex case and differs from the general situation of H-valued
monogenic functions.

As a matter of fact, it is proved that

Proposition 1.3.3. An A-valued function is left-monogenic, if and only if
it is right-monogenic. Further, the set of conjugates of A-valued monogenic
functions in Ω coincides with the setM(Ω).

A basic example of a two-sided A-valued monogenic function is the so-
called Cauchy-Fueter kernel, which is the fundamental solution of the oper-
ator (1.3.1):

Definition 1.3.4. The Cauchy-Fueter kernel is

q(x) = 1
4π

x
|x|3

, (1.3.5)

defined in R3 \ {0}.
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As regards the above definition, the following analog of Cauchy’s integral
formula may be established [146, p.87-88]:
Theorem 1.3.5. Suppose f : Ω ⊂ R3 → H is monogenic in a neighborhood
of the closure Ω of a bounded, open set Ω. Then, for each x ∈ Ω, we have
that

f(x) = 1
4π

∫
∂Ω
q(x− y)n(y)f(y)dσ(y), (1.3.6)

where n(y) is the outward pointing normal vector to Ω at y, and dσ is the
Lebesgue measure on the surface ∂Ω.

Moreover, by a simple calculation, one can verify that the operators
(1.3.1) and (1.3.2) factor the Laplace operator in R3, in a sense, that

∆3 = ∂∂ = ∂∂. (1.3.7)

Accordingly, if f is an H-valued function defined on Ω, twice differentiable,
monogenic, or antimonogenic, then f is harmonic in Ω, and so are all its
quaternionic components. The converse is not valid. The factorization (1.3.7)
establishes a special relationship between quaternionic analysis and harmonic
analysis in that monogenic and antimonogenic functions refine the properties
of harmonic functions.

The notion of monogenicity provides a powerful generalization of complex
analyticity to quaternionic analysis since many classical theorems of complex
analysis can be generalized to higher dimensions following this approach. We
refer, for instance, to [126, 127, 128, 129, 130, 131, 145, 146, 148, 153, 318]
and elsewhere.

Before we proceed, we need to introduce some further notation.
Definition 1.3.6. We denote by P+

l (R3) (resp. P−l (R3)) the space of homo-
geneous polynomials of degree l in R3 (resp. homogeneous functions of degree
−(l + 1) in R3 \ {0}) with real coefficients. The subspace of P+

l (R3) (resp.
P−l (R3)) of those polynomials (resp. functions) that are harmonic is denoted
by Har+

l (R3) (resp. Har−l (R3)). The set of H-valued harmonic functions in
Ω is denoted by Har(Ω). Further,

Har2(Ω) = Har(Ω) ∩ L2(Ω,H),
M+

l (Ω) =M(Ω) ∩ P+
l (R3),

M−
l (Ω) =M(R3 \ Ω) ∩ P−l+2(R3).

Definition 1.3.7. Let 0 < p < ∞. The p-integral mean of an H-valued
function f(x) = f(ρζ) in Ω0 (0 ≤ ρ < 1) is defined by

Mp(f ; ρ) =
(∫

∂Ω0
|f(ρζ)|p dσ(ζ)

)1/p
. (1.3.8)
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Definition 1.3.8. Let 1 ≤ p <∞ and β > 0. We define

(i) the harmonic weighted Hardy spaces as

Hp,β(Ω0) =
{
h ∈ Har(Ω0) : ‖h‖Hp,β(Ω0) = sup

0<ρ<1
(1− ρ)βMp(h; ρ) <∞

}
;

(1.3.9)

(i) the monogenic weighted Hardy spaces as

Hp,β(Ω0) =
{
f ∈M(Ω0) : ‖f‖Hp,β(Ω0) = sup

0<ρ<1
(1− ρ)βMp(f ; ρ) <∞

}
.

(1.3.10)

When β = 0, (1.3.9) and (1.3.10) are the usual Hardy spaces of harmonic
and monogenic functions denoted, respectively, by Hp(Ω0) and Hp(Ω0).

Definition 1.3.9. Let 1 < p < ∞ and α > −1. The weighted Bergman
space of f on Ω0 is defined by

Lp,α(Ω0,H) =
{
f : Ω0 → H measurable :

‖f‖Lp,α(Ω0) =
(∫

Ω0
(1− |x|)α|f(x)|pdx

)1/p
<∞

}
.

Further, we denote the subspaces of Lp,α(Ω0,H) consisting of harmonic and
monogenic functions, respectively, by Bp,α(Ω0) and Bp,α(Ω0).

1.3.2 Hypercomplex Derivatives and Primitives of
Monogenic Functions

In this section, we study the existence of the quaternionic derivative and
primitive of a monogenic function. Developments of the theory that go be-
yond those of which an account is given in the present subsection will be
found in [147, 318].

At the end of the 19th century, some attempts were made to extend the
concept of complex differentiability to H-valued functions [293]. Due to the
lack of commutativity of quaternions, two approaches were possible:

Definition 1.3.10. A function f : Ω ⊂ R3 → H is said to be quaternionic
differentiable on the left (resp. right) at a point q ∈ Ω, if the limit

lim
h→0

h−1 [f(q + h)− f(q)]
(

resp. lim
h→0

[f(q + h)− f(q)] h−1
)

exists, when h converges to zero along any direction in the quaternionic space.
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However, and as was observed in [293], the only H-valued functions that
are quaternionic differentiable on the left (resp. right) in an open domain
have the form f(q) = a + qb (resp. f(q) = a + bq), for some a,b ∈ H.
Since this builds a very restrictive class of functions, these approaches were
abandoned. These statements were proved by Krylov in [191] and adopted
by his student Melijhzon in [228]. Malonek developed characterization of the
class of monogenic functions in terms of hypercomplex derivability in the
sense of linear approximability in [214] (cf. also [93] and [148, Ch. 5]). A
first attempt at characterizing a regular (monogenic) function f : H → H
employing the existence of its quaternionic derivative was published by Sud-
bery in [318], in which the subject is treated from his point of view. In this
framework, Mitelman and Shapiro in [230] considered the operator (1/2)∂
a hypercomplex derivative by studying the generalized Martinelli-Bochner
integral formulas for H-valued functions and the directional derivability of
the Cauchy-Fueter kernel. Following the idea of Sudbery’s quaternion re-
sults, Gürlebeck and Malonek showed that monogenicity and hypercomplex
derivability are equivalent in higher dimensions and that the hypercomplex
linearization of a monogenic function f is precisely given by (1/2)∂f [147].
In [216], Malonek provided details about the integral representation of the
hypercomplex derivative and its corresponding mapping properties.

Definition 1.3.11. Let f ∈ C1(Ω,H). (1/2)∂f is called the hypercomplex
derivative of f in Ω.

It is readily seen that the hypercomplex derivative of a monogenic func-
tion is again monogenic, namely

∂(1
2∂f) = 1

2∆3f = 0.

Definition 1.3.12. We denote byM2,1(Ω) the Sobolev-type space of all func-
tions fromM2(Ω) whose hypercomplex derivatives also belong toM2(Ω).

Definition 1.3.13. A monogenic constant is a function of C1(Ω,H), which
is monogenic in Ω and has an identically vanishing hypercomplex derivative
in Ω.

As was observed in [63], monogenic constants do not depend on the vari-
able x0. They can be expressed as f = a0 + i[f ]1 + j[f ]2, where a0 ∈ R is a
constant, and [f ]1− i[f ]2 is an ordinary holomorphic function of the complex
variable x1 + ix2.

We shall now consider the definition of monogenic primitive (or mono-
genic antiderivative) of a monogenic function. In the complex plane, we can
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describe primitives easily by line integrals. It does not remain valid in higher
dimensions as line integrals are generally path-dependent. In [318], it was
proved that an H-valued monogenic polynomial has a monogenic primitive,
which is again a monogenic polynomial. Later in [48], monogenic primi-
tives were discussed in the case of domains that are normal with respect to
the x0-direction. In [147], Gürlebeck et al. showed that the Fueter-regular
polynomials have monogenic polynomial primitives, and for the first time,
existence results for monogenic primitives were obtained. A different effort
was made in [66] (cf. [63]), where an antiderivative operator was defined as
the right-inverse of the hypercomplex derivative.

The following definition will be required [66]:

Definition 1.3.14. A function F ∈ C1(Ω,H) is called a monogenic primitive
of a function f ∈ M(Ω), with respect to the hypercomplex derivative, if
F ∈M(Ω) and

(1
2∂)F = f . (1.3.11)

For a given f ∈M(Ω), if such function F exists, we denote it by P(f).

Analogously to the complex case, Definition 1.3.14 concerns the primitive
of a given function f if it results from the application of the operator P to f ,
without adding any monogenic constant. “Omitting” the constants means
that we are looking for the unique primitive orthogonal to the monogenic
constants [240, 241].

Note that the definition above can be extended to define primitives of
a given function f as those functions F (not necessarily monogenic) that
satisfy (1.3.11). As is well-known, the Teodorescu transform T can also be
interpreted as a primitive of a given square-integrable monogenic function.
Bearing in mind that ∂T = I, it follows that Tf is only an algebraic primitive
of f for ∂, and this in accordance with Definition 1.3.11. Consequently, this
algebraic primitive is harmonic but not monogenic for a given monogenic
function [310]. Accordingly, T cannot be used as an analog of the complex
integration of a holomorphic function.

1.4 The Associated Legendre Functions of the
First and Second Kinds

The majority of functions used in technical and applied mathematics origi-
nated as the result of investigating practical problems. A relevant example is
the class of functions known as the associated Legendre functions (also known
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as the Ferrer’s associated functions). The functions in question are solutions
of the well-known Legendre’s associated differential equation:

(1− t2)y′′(t)− 2t y′(t) +
(
l(l + 1)− m2

1− t2

)
y(t) = 0, (1.4.1)

where l and m are nonnegative integers and t ∈ R.
When m = 0, (1.4.1) becomes the classical Legendre’s differential equa-

tion:
(1− t2)y′′(t)− 2ty′(t) + l(l + 1)y(t) = 0. (1.4.2)

The fundamental system of solutions of (1.4.2) is given by two kinds of
functions that we denote by Pl(t) and Ql(t). The Pl(t) is commonly referred
to as the Legendre polynomial and the Ql(t) as the Legendre function of the
second kind. For the reader’s convenience and the sake of easy reference, we
will follow mainly the notations introduced in [170].

The prescribed functions are defined by
Pl(t) = 1

2l l!
dl

dtl
(t2 − 1)l, t ∈ R,

Ql(t) = 1
2Pl(t) log t+ 1

t− 1 −
l−1∑
k=0

Pk(t)Pl−k−1(t)
l − k

, |t| > 1.
(1.4.3)

There are classical formulas that express the products of two Legendre
polynomials in terms of a Legendre polynomial and two Legendre functions
of the second kind in terms of a Legendre function of the second kind [30].

Proposition 1.4.1. Let l1, l2 be nonnegative integers such that l1 ≥ l2 and
|t| > 1. Then

Pl1(t)Pl2(t) =
l2∑
r=0

ArAl1−rAl2−r
Al1+l2−r

(
2l1 + 2l2 − 4r + 1
2l1 + 2l2 − 2r + 1

)
Pl1+l2−2r(t), (1.4.4)

Ql1(t)Ql2(t) =
∞∑
r=0

ArAl1+l2+r+2

Al1+r+1Al2+r+1

×
(

(l1 + l2 + r + 2)(2l1 + 2l2 + 4r + 3)
(l1 + r + 1)(l2 + r + 1)(2l1 + 2l2 + 2r + 3)

)
Ql1+l2+2r+1(t),

(1.4.5)

where Ar = (2r − 1)!!/r!.

We shall now formulate an essential relation between the above functions
for different values of l, known as Neumann’s formula [255, p. 24] (cf. [170,
p. 63]).
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Theorem 1.4.2. Let l be a nonnegative integer and |t| > 1. Then

Ql(t) = 1
2

∫ 1

−1

Pl(u)
t− u

du. (1.4.6)

The following is a fundamental technical lemma that generalizes the iden-
tity in [261, formula 18.17.19].

Lemma 1.4.3. Let u be any pure quaternion such that u2 = −1. For each
l ≥ 0 and small |s| � 1,

ul

2

∫ 1

−1
Pl(t)exp(−ust)dt =

√
π

2s Jl+1/2(s),

where Jl(s) denotes the Bessel function of the first kind.

Proof. Using the orthogonality (1.4.24) of the Legendre polynomials and the
well-known closed-form representation

tl =
∑

k= l, l−2, ...

(2k + 1)l!
2(l−k)/2 ((l − k)/2)!(l + 1 + k)!! Pk(t),

it follows that
ul

2

∫ 1

−1
Pl(t)exp(−ust)dt

= ul

2

∫ 1

−1
Pl(t)

[
· · ·+ (−ust)l

l! + (−ust)l+1

(l + 1)! + · · ·
]
dt

= sl

(2l + 1)!! +O(sl+1),

where the series in square brackets converges for any unit pure quaternion u
since we have |(−ust)|l ≤ |s|l. The right-hand side of the previous equality
behaves like [π/(2s)]1/2 Jl+1/2(s) for the limiting case of small s.

The solutions of (1.4.1) are the associated Legendre functions of the first
and second kinds denoted, respectively, by Pm

l (t) and Qm
l (t). The indices l

and m are referred to as the degree and order of the associated Legendre
functions. For nonnegative integer values of m, these functions are related
to the Legendre functions for nonnegative integer l by

Pm
l (t) =


(−1)m(1− t2)m/2d

mPl(t)
dtm

, t ∈ [−1, 1],

(t2 − 1)m/2d
mPl(t)
dtm

, |t| > 1,
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and
Qm
l (t) = (t2 − 1)m/2d

mQl(t)
dtm

, |t| > 1.

By the above definitions, we shall observe a slight difference between the
variation of the indexes l and m in these functions. Although the Pm

l (t) are
only defined for nonnegative integer values of m, which are less than or equal
to l, the functions Qm

l (t) are defined for all nonnegative integer values of m.
The associated Legendre functions are defined for negative integers m by

[170, Ch. III]

P−ml (t) =


(−1)m (l −m)!

(l +m)! P
m
l (t), t ∈ [−1, 1],

(l −m)!
(l +m)! P

m
l (t), |t| > 1,

(1.4.7)

and
Q−ml (t) = (l −m)!

(l +m)! Q
m
l (t), |t| > 1. (1.4.8)

We proceed to consider explicit expressions for the associated Legendre
functions [284, p. 589].

Lemma 1.4.4. Let l ≥ 0 and 0 ≤ m ≤ l. Then

Pm
l (t) =



(−1)m(1− t2)m/2
l∑

s=m
λl,ms (t− 1)l−s(t+ 1)s−m

if t ∈ [−1, 1],

(t2 − 1)m/2
l∑

s=m
λl,ms (t− 1)l−s(t+ 1)s−m

if |t| > 1,

(1.4.9)

where
λl,ms = l!(l +m)!

2l(l +m− s)!(l − s)!(s−m)!s! . (1.4.10)

We further have from [271, p. 965]:

Lemma 1.4.5. Let l and m be nonnegative integer values and let |t| > 1.
Then

Qm
l (t) = eiπm(l +m)!(t2 − 1)m/2

(2l + 1)!! tl+m+1 2F1

(
l +m+ 2

2 ,
l +m+ 1

2 ; 2l + 3
2 ; 1

t2

)
,

(1.4.11)
where 2F1 denotes the classical Gaussian hypergeometric function.
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We may now take the opportunity to consider the recurrence formulas
for the associated Legendre functions, which will be used in the forthcoming
chapters [170, 319].
Proposition 1.4.6. Let l ≥ 0, 0 ≤ m ≤ l and let t ∈ R. Then

(1− t2)(Pm
l+1)′(t) = (l + 1 +m)Pm

l (t)− (l + 1)tPm
l+1(t), (1.4.12)

(l + 1−m)Pm
l+1(t) = (2l + 1)tPm

l (t)− (l +m)Pm
l−1(t). (1.4.13)

Proposition 1.4.7. Let l ≥ 0, 0 ≤ m ≤ l and let t ∈ [−1, 1]. Then
(t2 − 1)(Pm

l+1)′(t) = (1− t2)1/2Pm+1
l+1 (t) +mtPm

l+1(t), (1.4.14)

(1− t2)1/2Pm
l+1(t) = 1

2l + 3[−Pm+1
l+2 (t) + Pm+1

l (t)], (1.4.15)

2mtPm
l+1(t)

= −(1− t2)1/2[Pm+1
l+1 (t) + (l + 1 +m)(l + 2−m)Pm−1

l+1 (t)], (1.4.16)
(1− t2)1/2Pm+1

l (t) = (l −m)tPm
l (t)− (l +m)Pm

l−1(t). (1.4.17)
Proposition 1.4.8. Let l ≥ 0, 0 ≤ m ≤ l and let |t| > 1. Then

(t2 − 1)(Pm
l+1)′(t) = (t2 − 1)1/2Pm+1

l+1 (t) +mtPm
l+1(t), (1.4.18)

(t2 − 1)1/2Pm
l+1(t) = 1

2l + 3[Pm+1
l+2 (t)− Pm+1

l (t)], (1.4.19)

2mtPm
l+1(t)

= (t2 − 1)1/2[−Pm+1
l+1 (t) + (l + 1 +m)(l + 2−m)Pm−1

l+1 (t)]. (1.4.20)
Proposition 1.4.9. Let l and m be nonnegative integer values and |t| > 1.
Then

(1− t2)(Qm
l+1)′(t) = (l + 1 +m)Qm

l (t)− (l + 1)tQm
l+1(t), (1.4.21)

(l + 1−m)Qm
l+1(t) = (2l + 1)tQm

l (t)− (l +m)Qm
l−1(t), (1.4.22)

(t2 − 1)1/2Qm+1
l (t) = (l −m)tQm

l (t)− (l +m)Qm
l−1(t), (1.4.23)

with the initial values

Q0
0(t) = 1

2 log t+ 1
t− 1 , Q1

0(t) = − 1√
t2 − 1

, Q2
0(t) = t

2 log t+ 1
t− 1 − 1.

Another essential property of the associated Legendre functions of the
first kind is their orthogonality in L2([−1, 1]),∫ 1

−1
Pm1
l1 (t)Pm2

l2 (t)dt = 2(l1 +m1)!
(2l1 + 1)(l1 −m1)! δl1,l2δm1,m2 . (1.4.24)

For a detailed historical survey and an extended list of references on asso-
ciated Legendre functions, we refer to [19, 34, 108, 170, 205, 254, 271, 275,
292, 332] and elsewhere.
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1.5 The Prolate Spheroidal Wave Functions

1.5.1 The Helmholtz Equation in Spheroidal Coordi-
nates

The PSWFs are solutions to the ordinary differential equations obtained from
solving the scalar Helmholtz equation in prolate spheroidal coordinates by
the usual procedure of separation of variables. Niven initially introduced
the PSWFs in [259]. They were subsequently investigated by several authors
such as Strutt [317], Stratton, Morse, Chu, Hutner, Little, and Corgbato
[315, 316], Bouwkamp [44], Morse, and Feshbach [252], Meixner, Schäfke,
and Wolf [226, 227], Flammer [120], Arscott [23], Hunter [171, 172], Hanish,
Baier, Van Buren, and King [156, 157, 158], Abramowitz, and Stegun [6],
Komarov, Ponomarev, and Slavyanov [183], Zhang, and Jin [346], Thompson
[324], Olver, Lozier, Boisvert, and Clark [261] and others. In literature, the
PSWFs are often regarded as “mysterious” functions of L2(R), showing no
explicit or standard representation in terms of elementary functions and too
challenging to compute numerically.

In three-dimensional Cartesian coordinates, the scalar Helmholtz equation
(also called the reduced wave equation) has the form

(∆3 + k2)u = ∂2u

∂x2
0

+ ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ k2u = 0, k ∈ R+. (1.5.1)

The Helmholtz operator (∆3 + k2) acts on the space C2(R3). For convenience,
we consider this operator acting on C2(Ωx0,x1,x2), where

Ωx0,x1,x2 = R3 \ {(x0, x1, x2) ∈ R3 : x0 ∈ R, x1 = x2 = 0}.

In the sequel, consider a prolate spheroidal domain Ωµ in a copy of R3 with
the prolate spheroidal coordinates (ξ, t, ϕ) defined as follows [6, p. 752]:

x0 = µξt, x1 = µ
√

(ξ2 − 1)(1− t2) cosϕ, x2 = µ
√

(ξ2 − 1)(1− t2) sinϕ,
(1.5.2)

where ξ, t and ϕ are parameters such that 1 ≤ ξ ≤ 1/µ, −1 ≤ t ≤ 1 and
ϕ ∈ [0, 2π), and µ ∈ (0, 1) is the eccentricity of the spheroid. Further details
about spheroidal coordinates will be provided in Section 2.1.

Assume there exists a mapping

Φ(ξ, t, ϕ) := (x0 = [Φ(ξ, t, ϕ)]1, x1 = [Φ(ξ, t, ϕ)]2, x2 = [Φ(ξ, t, ϕ)]3) ,

such that Φ ∈ C2(Ωµ) makes a one-to-one correspondence between the do-
mains Ωµ and Ωx0,x1,x2 . Assume that Ψ : Ωx0,x1,x2 → Ωµ is the inverse
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map, i.e., it is such that Φ(Ψ(x0, x1, x2)) = (x0, x1, x2) for any (x0, x1, x2) ∈
Ωx0,x1,x2 , and Ψ(Φ(ξ, t, ϕ)) = (ξ, t, ϕ) for any (ξ, t, ϕ) ∈ Ωµ.

We proceed to introduce the linear operators under the change of variables
(1.5.2):

WΦ : u ∈ C2(Ωx0,x1,x2) 7→ u ◦Φ =: ũ ∈ C2(Ωµ),

WΨ = W−1
Φ : ũ ∈ C2(Ωµ) 7→ ũ ◦Ψ =: u ∈ C2(Ωx0,x1,x2).

It follows that WΦ is an isomorphism of C2(Ωx0,x1,x2) onto C2(Ωµ), whereas
WΨ is an isomorphism of C2(Ωµ) onto C2(Ωx0,x1,x2).

Let A be an arbitrary linear operator acting on C2(Ωx0,x1,x2) and let B
be an arbitrary operator acting on C2(Ωµ). Define the operators Ã and B̃ as
WΦAWΨ =: Ã and WΨBWΦ =: B̃. Obviously, Ã acts on C2(Ωµ) while B̃
acts on C2(Ωx0,x1,x2).

Now, we take A = ∆3 + k2. Whence, WΦAWΨ = WΦ∆3WΨ +WΦk
2WΨ,

where

WΦ∆3WΨ =WΦ

(
∂2

∂x2
0

+ ∂2

∂x2
1

+ ∂2

∂x2
2

)
WΨ

=WΦ
∂2

∂x2
0
WΨ +WΦ

∂2

∂x2
1
WΨ +WΦ

∂2

∂x2
2
WΨ

=
(
WΦ

∂

∂x0
WΨ

)(
WΦ

∂

∂x0
WΨ

)
+
(
WΦ

∂

∂x1
WΨ

)(
WΦ

∂

∂x1
WΨ

)

+
(
WΦ

∂

∂x2
WΨ

)(
WΦ

∂

∂x2
WΨ

)
.

For any ũ ∈ C2(Ωµ), it can be seen that

WΦk
2WΨ[ũ] = WΦk

2[u] = WΦ[k2u] = k̃2u = k2ũ.

It then follows that WΦk
2WΨ = k2I, where I denotes the identity operator.

Applying all the above to the prolate spheroidal change of variables (1.5.2),
we find

WΦ(∆3 + k2)WΨ = 1
h2

1(ξ, t)

[
Wξ,t,ϕ + c2(ξ2 − t2)

]
, (1.5.3)

where

Wξ,t,ϕ := (ξ2 − 1) ∂
2

∂ξ2 + (1− t2) ∂
2

∂t2
+ 2ξ ∂

∂ξ
− 2t ∂

∂t
+ h2

1(ξ, t)
h2

2(ξ, t)
∂2

∂ϕ2 (1.5.4)

with

h2
1(ξ, t) := µ2(ξ2 − t2), h2

2(ξ, t) := µ2(ξ2 − 1)(1− t2), c := µk. (1.5.5)
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It may be seen that ker(∆3 + k2) is isomorphic to ker (Wξ,t,ϕ + c2(ξ2 − t2)).
Hereafter we assume that the operatorWξ,t,ϕ + c2(ξ2− t2) acts on C2(Ωξ,t,ϕ),
where

Ωξ,t,ϕ = (1, 1/µ]× (−1, 1)× [0, 2π). (1.5.6)

The PSWFs of degree n and order zero are solutions of (1.5.3) and can be
represented in the form:

Φn,0(ξ, t) := Sn,0(c, t)Rn,0(c, ξ). (1.5.7)

The separation of variables in (1.5.3) implies the following two coupled ordi-
nary differential equations:

(1− t2)d
2S

dt2
− 2tdS

dt
+
(
χ(c)− c2t2

)
S = 0, (1.5.8)

(ξ2 − 1)d
2R

dξ2 + 2ξ dR
dξ
−
(
χ(c)− c2ξ2

)
R = 0, (1.5.9)

where χ(c) is a parameter introduced during the method of separation of
variables. Eqs. (1.5.8) and (1.5.9) are called, respectively, the angular and
the radial prolate spheroidal equations. A detailed treatment of the separation
of Eq. (1.5.3) in the prolate spheroidal coordinates (1.5.2) can be found in
[227] (cf. [103]).

The solutions of (1.5.8) form a countable sequence of angular prolate
spheroidal functions Sn,0(c, t), n = 0, 1, . . . , each corresponding to a real
positive eigenvalue in the set χ0(c) < χ1(c) < χ2(c) < · · · , such that
limn→∞ χn = ∞. Each eigenfunction is real for real t and can be extended
to the whole complex plane as an entire function. It is thus seen that the
Sn,0 are orthogonal and complete in L2(−1, 1). It can further be shown that
Sn,0(c, t) has exactly n zeros in (−1, 1) and is even or odd according to as n
is even or odd. Moreover, the eigenvalues χn(c) are continuous functions of
c. It will be seen that the functions Sn,0(c, t) are also solutions of an integral
equation involving the sinc function. When indexed by increasing values of
χ, they will agree with the notation of indexing by decreasing values of λ
(see Eq. (1.5.16) below).

In the particular case, c = 0, Eq. (1.5.8) becomes the Legendre equa-
tion (1.4.2) having χn(0) = n(n + 1), n = 0, 1, 2, . . . , as eigenvalues, and
Sn,0(c, t) = Pn(t), the Legendre polynomial of degree n, defined by (1.4.3),
as the corresponding eigenfunctions. The functions Sn,0(c, t) have several
essential properties that can be deduced from (1.5.8) [299].

The solutions of (1.5.9) for the same values of χ(c) are chosen as the radial
prolate spheroidal functions of the first kind, which differ from the angular
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functions only by a real scaling factor. The radial and angular spheroidal
wave functions were implemented in Fortran [346] and C [324, 325]. Much
progress has been made in this part of the subject, and implementations were
obtained using double precision. Due to round-off errors, double precision
might lead to large errors—especially for higher frequencies and modes. In
[59, 60], the functions were implemented in Fortran using quadruple precision,
leading to a better accuracy over a wide range of frequencies, modes, and
argument values. Mathematica was used in [115, 207] to investigate complex
frequencies and noninteger modes with arbitrary precision.

1.5.2 The Original Approach of Landau, Pollak, and
Slepian

Denote by B(W ) the subclass of L2(R) consisting of those signals whose FTs
vanish, if |ω| > W for some fixed bandwidth parameter W > 0. In other
words,

B(W ) = {f ∈ L2(R) : suppF(f)(ω) ⊂ [−W,W ]} , (1.5.10)

where
F(f)(ω) =

∫ ∞
−∞

f(t)e−iωtdt.

Each member f(t) of (1.5.10) can be written as a finite-FT of a function
integrable in the absolute square:

f(t) = 1
2π

∫ W

−W
F(f)(ω)eiωtdω. (1.5.11)

Members of (1.5.10) are said to be of bandwidth W or are said to be band-
limited to the band [−W,W ], and B(W ) is referred to as the Paley-Wiener
space of W -band-limited functions. Analogously, f(t) is said to be time-
limited if, for some T > 0, f(t) vanishes for all |t| > T .

According to the classical Paley-Wiener Theorem [264, 313] and (1.5.11),
each member of B(W ) admits an extension to an entire function of the com-
plex variable t. That is, it has no singularities in the finite t-plane, it is in-
finitely differentiable everywhere, and has a Taylor series about every point
with an infinite radius of convergence. Consequently, a nontrivial band-
limited signal f cannot vanish on any interval of the t-axis. In other words,
“no signal can be both time-limited and band-limited, except for the trivial
case where f is identically equal to zero” [123]. Thus, there is a dilemma in
seeking signals that are somehow concentrated in both time and frequency
domains.
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A nonclassical statement of expressing the impossibility of simultaneous
confinement of a signal and its FT is a version of Heisenberg’s uncertainty
principle given by Slepian et al. in [299], which is described as follows: Let
the signal f(t) have finite total energy; that is,∫ ∞

−∞
|f(t)|2dt = 1

2π

∫ ∞
−∞
|F(f)(ω)|2dω <∞.

If α2(T ) denotes the time-spread of f(t) defined by

α2(T ) :=
∫ T
−T |f(t)|2dt∫∞
−∞ |f(t)|2dt, (1.5.12)

how large can α2(T ) in (1.5.12) be for f(t) ∈ B(W ) for a given fixed interval
T? To answer this question, we express f(t) in (1.5.12) via (1.5.11) to obtain:

α2(T ) =
∫W
−W

∫W
−W F(f)(ω)F(f)(ω′)DT (ω, ω′)dω′dω∫W

−W |F(f)(ω)|2dω
,

where the kernel

DT (ω, ω′) := 1
2π

∫ T

−T
e−it(ω−ω

′)dt = sinT (ω − ω′)
π(ω − ω′)

is the scaled FT of the characteristic function of the interval [−T, T ].
From the theory of the eigenvalues of integral operators with real and

symmetric kernels (see, for example, [81, pp.122–134]), α2(T ) attains its
maximum value for fixed T , if and only if it is a solution of the following
homogeneous Fredholm equation of the second kind:∫ W

−W
DT (ω, ω′)F(f)(ω′)dω′ = α2(T )F(f)(ω)dω, |ω| ≤ W. (1.5.13)

With the appropriate change of variables, the quantities α2(T ) = λ may be
seen to depend on the time-bandwidth product 2TW (also known as the
Shannon number), rather than on T and W separately (see Eq. (1.5.16)
below). Physical applications of Eq. (1.5.13) can be found in diverse fields,
such as stochastic processes [298], the determination of laser modes [45], the
statistical theory of energy levels of complex systems [100, 135], antenna
theory [280], and a variety of considerations of fundamental importance in
communication theory [200, 269].

A rigorous exploration of this problem was initially considered jointly by
Slepian, Pollak, and Landau in a series of papers [198, 199, 201, 299, 300,
301, 302, 303, 304], who discovered that the functions ψn(c, t) := Sn,0(c, t) are
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the band-limited solutions of the maximum concentration energy problem in
a fixed time interval. The {ψn(c, t)}∞n=0 depend on the parameters T and W .
In most of the literature, this dependence is suppressed in the notation. We
shall write ψn(t) = ψn(c, t), where c := TW will remain fixed, and name it
the Slepian frequency.

Another significant discovery of Slepian and Pollak [299] is that the
PSWFs described above are solutions of the following integral eigenvalue
problem given by

∫ T

−T
ψn(s)eictsds = µnψn(t), t ∈ R, (1.5.14)

where µn = µn(c) ∈ C is a scaling factor up to which the PSWFs have the
same shape as their FTs in the interval [−T, T ]. This surprising connection is
labeled a “lucky accident” by Slepian in [304] and makes the differential equa-
tion (1.5.8) and the integral equation (1.5.14) interchangeable when studying
properties of the PSWFs.

By Eq. (1.5.14) it is thus seen that every even-numbered eigenfunctions
ψn are even, the odd-numbered ones are odd. All eigenvalues µn are nonzero
and simple; the even-numbered ones are purely real, and the odd-numbered
ones are purely imaginary.

It is worth mentioning that the integral equation (1.5.14) does not hold
when c = 0. In other words, the Legendre polynomials are not band-limited,
which can also be seen from Lemma 1.4.3 taking u = −i:

∫ 1

−1
Pn(t)eistdt = in

√
2π
s
Jn+1/2(s), s 6= 0. (1.5.15)

In correspondence with the previous identity, we may also show that the FT
of Jn+1/2(s) is, up to a constant multiple, the restriction of Pn(t) to [−1, 1],
so it is band-limited. Since a function and its FT cannot both have finite
support, Pn(t) is not band-limited, compared to the PSWFs.

Moreover, the eigenvalue problem (1.5.14) is equivalent to the following
eigenvalue integral equation:

W

π

∫ T

−T
ψn(t)K

(
W

π
(s− t)

)
dt = λnψn(s), |s| ≤ T, (1.5.16)

λn = c

2π |µn|
2,

where
K(u) := sinc(u) (= Dπ(u)) ; (1.5.17)
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here, sinc(u) denotes the sinc function, defined as sinc(u) := sin(πu)/(πu).
Furthermore, it can be shown that the symmetric kernel K belonging to
L2([−T, T ]2) is positive definite so that according again to [81, pp.122–134],
it follows that Eq. (1.5.16) has solutions in L2([−T, T ]) only for a discrete
set of real positive values of λn, say λ0 > λ1 > λ2 > · · · bounded away from
one, and such that limn→∞ λn = 0. For any fixed n, it was shown by Fuchs in
[125] that the eigenvalues λn approach one exponentially in c. In [199], the
authors proved that λ[c]+1 is bounded away from one independently of c and
interpreted this to imply that the set of functions in B(W ) whose energy is
concentrated in |t| < T has, in a well-defined sense, an approximate dimen-
sion bounded by 2TW . In [199], it was also shown that λ[c]−1 is bounded
away from zero independently of c.

The variational problem that led to (1.5.16) requires only that equation
to hold for |s| ≤ T . Nevertheless, the left-hand side of (1.5.16) can be used
to extend the range of definition of the ψn’s. We set

ψn(s) := W

πλn

∫ T

−T
ψn(t)K

(
W

π
(s− t)

)
dt, |s| > T.

The eigenfunctions ψn(s) are now defined for all s.
The considerations above adduced suggest that the PSWFs are closely

related to their FTs. The FTs of ψn are given by

F(ψn)(ω) = (−1)n
√

2πT
Wλn

ψn

(
Tω

W

)
χW (ω),

where χW (ω) is the characteristic function of [−W,W ].
In addition to Eq. (1.5.16), the {ψn}∞n=0 satisfy an integral equation over

R as well:
W

π

∫ ∞
−∞

ψn(t)K
(
W

π
(s− t)

)
dt = ψn(s)

with the same kernel.
This leads to double orthogonality [299]:∫ T

−T
ψn1(t)ψn2(t)dt = λn1δn1,n2 ,

and ∫ ∞
−∞

ψn1(t)ψn2(t)dt = δn1,n2 .

With such a normalization, the λ’s can be regarded as the indices of concen-
tration of the signal’s energy on the interval [−T, T ]. Moreover, the PSWFs
have the remarkable properties of forming an orthogonal basis of L2([−T, T ]),
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an orthonormal system of L2(R), and, more importantly, an orthonormal ba-
sis of the subspace B(W ) of L2(R). It was believed that no other system of
classical orthogonal functions possesses these remarkable properties for a long
time. Another example of such a system was found in [341].

Chapter 4 will generalize the Landau-Pollak-Slepian theory to infinite-
dimensional spaces for the cases of compact, self-adjoint operators over the
quaternions. We will address all the above and explore new facts of the
arising quaternionic function theory.

1.6 The Quaternion Fourier Transform
The works of Ernst et al. [109] and Delsuc [96] in the late 80s, as based
upon Sommen’s definition of a Clifford Fourier Transform (CFT) [306, 307],
were the historical starting-point from which a significant part of the de-
velopment of Quaternion Fourier Transforms (QFTs) originated. Ernst and
Delsuc’s two-dimensional quaternion transforms were put forward and ap-
plied to nuclear magnetic resonance imaging. The QFTs in question were of
the following form:

F(f)(u, v) =
∫
R2
f(x, y)eiuxejvydxdy; f : R2 → H, (1.6.1)

where (x, y), (u, v) are points in R2, and the quaternion exponential product
eiuxejvy is a two-dimensional quaternion Fourier kernel.

This version of the QFT is merely a particular case of the CFT given
by Brackx, Delanghe, and Sommen in [48]. Bülow, Felsberg, and Sommer
followed a different approach to the CFTs in [58]. In [209], Li, McIntosh,
and Qian extended the complex Fourier Transform (FT) holomorphically
to a function of several complex variables. It is well to observe that with
(1.6.1), the four QFT-components separate four symmetry cases in real sig-
nals instead of only two, as in the FT. In [222], Mawardi et al. investigated
an uncertainty principle for the QFT of the form (1.6.1), which prescribes
a lower bound on the product of the effective widths of quaternionic sig-
nals in the spatial and frequency domains; cf. also [166, 169, 221, 222]. In
[137], Georgiev et al. used the form (1.6.1) to define the Quaternion Fourier-
Stieltjes Transform. The same type of QFT was employed in the extension of
Bochner-Minlos Theorem within quaternionic analysis by Georgiev et al. in
[138]. Two novel uncertainty principles were proposed recently in [339], com-
mencing with a QFT in the form (1.6.1). Generalized sampling expansions of
band-limited quaternionic signals associated with (1.6.1) were established in
[77]. An account of the essential recent investigations which had their origin
in the QFT (1.6.1) can be found in [55].



1.6. THE QUATERNION FOURIER TRANSFORM 57

Because the exponentials in (1.6.1) do not commute, nor with the signal
f , it means that different formulations are possible for the two-dimensional
QFT. In the meantime, an indication of a QFT with the two exponentials
positioned on either side of the signal function was given by Ell in 1992
[104, 105]:

F(f)(u, v) =
∫
R2
eiuxf(x, y)ejvydxdy. (1.6.2)

Zou et al. [350] recently used this version of the QFT to study a new class of
two-dimensional quaternionic signals whose energy concentration is maximal
in both time and frequency. For a given finite energy quaternionic signal, we
found the possible proportions of its energy in a finite time-domain and a
finite frequency-domain, including the signals that do the best job of simul-
taneous time and frequency concentration.

A different idea emerged in the late ’90s in a paper by Sangwine and Ell
[290]. Their definition of a QFT was mainly that of Jamison in [176]. Firstly,
it consisted of considering a general pure quaternion u, with negative square,
rather than a quaternion basis unit (i, j, or k) and secondly, choosing a
single exponential rather than two. Such a two-dimensional transform (1.6.3)
suggests general applications in which the quaternionic signal has three or
four independent components [246, 251]:

F(f)(u, v) =
∫
R2

exp(u〈(u, v), (x, y)〉)f(x, y)dxdy. (1.6.3)

Another often used convention for two-dimensional QFTs is to split the factor
(2π)−2 asymmetrically or equivalently, replace it with a factor 2π in the
exponents.

An essential part of the development of the QFTs is their applicabil-
ity to signal and image processing. Much progress has been made on this
topic and in applying QFTs to color images. These results can be found
in image diffusion, electromagnetism, multi-channel processing, vector field
processing, shape representation, linear scale-invariant filtering, fast vector
pattern matching, phase correlation, analysis of nonstationary improper com-
plex signals, flow analysis, partial differential systems, disparity estimation,
and texture segmentation, as well as spectral representations for hypercom-
plex wavelet analysis (see [16, 29, 31, 32, 33, 51, 52, 53, 54, 57, 58, 102, 106,
221, 222, 223, 225, 267, 289, 291, 340] and elsewhere).

A discussion of the main properties of different types of QFTs, includ-
ing (1.6.1)-(1.6.3), about linearity, shift, modulation, dilation, moments, in-
version, derivatives, Plancherel and Parseval identities, and investigation of
a convolution theorem can be found in [167]. Specific studies relating to
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those particular cases of QFTs, and various general criteria were discussed
in [107, 168] and [153, Ch. 11].

Let us now conceive a version of the right-sided QFT (1.6.3) of a three-
dimensional quaternionic signal in L1(R3,H) [106]. The treatment given here
is a generalization of that provided by Jamison in [176]. We shall remark
that all results can be performed straightforwardly to other types of QFTs
[350], but we do not dwell further here on these structures.

Definition 1.6.1. Let f ∈ L1(R3,H). Let u be a fixed pure quaternion such
that u2 = −1 and let x,ω be points in R3. The steerable right-sided QFT of
f is the function F(f) : R3 → H defined as the quaternion-valued (Lebesgue)
integral

F(f)(ω) =
∫
R3
f(x)E(ω,x)dx, (1.6.4)

with the quaternion Fourier kernel

E : R3 × R3 → H, E(ω,x) := exp(−u〈ω,x〉). (1.6.5)

We refer to x as space-variables and ω as angular-frequency variables.

Since |f(x)E(ω,x)| = |f(x)| for x,ω ∈ R3, it is clear that if f is ab-
solutely integrable in R3, then the QFT given as (1.6.4) is defined, and the
integral (1.6.4) converges absolutely and uniformly for ω in R3. We shall
observe that the order of the factors in (1.6.4) has to be written in a fixed or-
der since the quaternion Fourier kernel (1.6.5) does not commute with every
element of the algebra.

From (1.1.3), it follows that the QFT (1.6.4) has the representation

F(f)(ω) =
∫
R3
f(x) cos(〈ω,x〉)dx

+
∫
R3
f(x)(−u) sin(〈ω,x〉)dx. (1.6.6)

Eq. (1.6.6) clearly shows how the QFT (1.6.4) separates real signals into four
quaternionic components, i.e., the even and odd components of f .

To make this work self-contained, we list and prove the elementary prop-
erties of the QFT (1.6.4) needed in the sequel.

Proposition 1.6.2. Let f , g ∈ L1(R3,H). The QFT (1.6.4) satisfies the
following properties:

(i) left-linearity: for any constants α,β ∈ H,

F(αf + βg)(ω) = αF(f)(ω) + βF(g)(ω); (1.6.7)
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(ii) space-shift: if fα(x) = f(x−α) with a fixed constant α ∈ R3, then

F(fα)(ω) = F(f)(ω)E(ω,α); (1.6.8)

(iii) frequency-shift: if h(x) = f(x)E(σ,x) with a fixed constant σ ∈ R3,
then

F(h)(ω) = F(f)(ω + σ);

(iv) the function F(f) is bounded for each f ∈ L1(R3,H);

(v) the function F(f) is continuous for each f ∈ L1(R3,H);

(vi) Riemann-Lebesgue: if f ∈ L1(R3,H), then F(f)(ω)→ 0 as |ω| → ∞;

(vii) if f is a spherically symmetric function, then F(f) is also spherically
symmetric.

Proof. The properties (i), (ii), and (iii) are direct consequences of the defi-
nition (1.6.4) and, therefore, will be omitted. For the proof of property (iv),
we observe that

|F(f)(ω)| ≤
∫
R3
|f(x)| dx = ‖f‖L1(R3).

To show the continuity of F(f) for each f ∈ L1(R3,H), we may proceed as
follows:

|F(f)(ω + σ)−F(f)(ω)| =
∣∣∣∣∫

R3
f(x)E(ω,x) [E(σ,x)− 1] dx

∣∣∣∣
≤
∫
R3
|f(x)| |E(σ,x)− 1| dx.

Since |f(x)| |E(σ,x)− 1| ≤ 2 |f(x)| and limσ→0 |f(x)| |E(σ,x)− 1| = 0, it
follows from the Lebesgue’s Dominated Convergence Theorem that

lim
σ→0
F(f)(ω + σ) = F(f)(ω).

To prove the limit assertion (vi), we use a density argument as in the classical
case. Let f ∈ L1(R3,H). We set y := (π/3) (1/ω1, 1/ω2, 1/ω3); then by
Lemma 1.1.3 and property (ii), it follows that

2 |F(f)(ω)| =
∣∣∣∣∫

R3
[f(x)− fy(x)]E(ω,x)dx

∣∣∣∣
≤
∫
R3
|f(x)− fy(x)| dx,
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where fy(x) := f(x + y). Let Cc(R3,H) denote the linear space of H-valued
continuous and compactly supported functions1. Since functions in Cc(R3,H)
are dense in L1(R3,H), then for any ε > 0, we can choose a g ∈ Cc(R3,H)
so that |f − g| < ε. Now, f − fy = f − g + gy − fy + g − gy. Because
g ∈ Cc(R3,H), when ω is sufficiently large, while y becomes very small,
‖fy − gy‖L1(R3) = ‖f − g‖L1(R3) < ε. Clearly, we have

‖g − gy‖L1(R3) =
∫
R3
|g − gy| dx → 0

as y→ 0. The result follows.
We now prove (vii). Let x = (x0, x1, x2) ∈ R3. Suppose f(x) = f(|x|) is

a spherically symmetric function (i.e., a function that depends only on the
length of the vector x and not on its orientation) and let θ denote the angle
between the vectors x and ω. We employ spherical coordinates (ρ, θ, ϕ) such
that the x2-axis is along the ω-vector and, with |x| = ρ, we have

F(f)(ω) = F(f)(|ω|, θ, ϕ)

=
∫ ∞

0

∫ π

0

∫ 2π

0
f(ρ)exp(−u|ω|ρ cos θ)ρ2 sin θ dϕdθdρ

= 2π
∫ ∞

0
f(ρ)

(
exp(u|ω|ρ)− exp(−u|ω|ρ)

u|ω|ρ

)
ρ2dρ

= 4π
∫ ∞

0
f(ρ)sin(|ω|ρ)

|ω|ρ
ρ2dρ.

Since the above integral depends only on |ω|, it follows that the QFT of a
spherically symmetric function is also spherically symmetric, completing the
proof.

The following result is an immediate consequence of Eq. (1.6.6) and
property (vi) of Proposition 1.6.2.

Corollary 1.6.3. If f ∈ L1(R3,H), then

lim
|ω|→∞

∫
R3
f(x) cos(〈ω,x〉)dx

= lim
|ω|→∞

∫
R3
f(x) sin(〈ω,x〉)dx = 0.

Under suitable conditions, the original signal f can be reconstructed from
the QFT by the inverse transform [106, 176].

1The definition, here made of a continuous quaternionic function with compact support,
will be discussed in detail in Subsection 4.2.1.
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Definition 1.6.4. The inverse (right-sided) QFT of g ∈ L1 ∩ L2(R3,H) is
the function F−1(g) : R3 → H defined by

F−1(g)(x) = 1
(2π)3

∫
R3
g(ω)E(ω,x)dω, (1.6.9)

where E(ω,x) = exp(u〈ω,x〉) is called the inverse quaternion Fourier ker-
nel.

Apart from the convention used in Definition 1.6.4 with 1/(2π)3 in the
inverse QFT (1.6.9), there are two other standard conventions: one is ob-
tained by substituting ω → 2πω in (1.6.4). The other is obtained by evenly
distributing the 2π factors between the QFT and the inverse QFT, respec-
tively,

F(f)(ω) = 1
(2π)3/2

∫
R3
f(x)E(ω,x)dx

and
F−1(g)(x) = 1

(2π)3/2

∫
R3
g(ω)E(ω,x) dω.

All calculations can easily be converted to these other conventions.
In our notation, Plancherel’s Theorem is

Theorem 1.6.5. If f , g ∈ L1 ∩ L2(R3,H), then∫
R3
f(x)g(x)dx = 1

(2π)3

∫
R3
F(f)(ω)F(g)(ω)dω. (1.6.10)

In particular, Parseval’s identity now reads as follows:

Corollary 1.6.6. If f ∈ L1 ∩ L2(R3,H), then

‖f‖2
L2(R3) = 1

(2π)3 ‖F(f)‖2
L2(R3). (1.6.11)

The quantity E = ‖f‖2
L2(R3) will be called the total energy of a quater-

nionic signal f . In Chapter 4, we will restrict our attention to signals whose
energy is finite.

According to (1.6.11), observe that the total signal energy calculated in
the spatial-domain equals the total energy computed in the frequency-domain
up to a constant. Parseval’s identity (1.6.11) asserts that the QFT (1.6.4) is
a bounded linear operator on the space L1∩L2(R3,H). In this way, standard
density arguments allow us to extend the definition (1.6.4) in a unique way
to the whole of L2(R3,H) [78]. In what follows, we always consider the QFT
as an operator from L2(R3,H) into L2(R3,H).
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It will be convenient, before proceeding further, to observe the well-known
fact that a counterpart of Parseval’s identity fails for the two-sided QFT de-
fined by (1.6.2) using the quaternionic inner product (1.2.1). As was observed
in [167], this failure occurs since (1.2.1) does not obey the cyclic symme-
try property (1.1.2). To obtain that the “energy” of a quaternionic signal
is indeed invariant under (1.6.2), it is therefore either necessary to modify
the definition of the inner product (1.2.1) or to modify the QFT itself. In
[167], Hitzer changed the inner product (1.2.1) to the scalar inner product
(1.2.2) and proved a quaternionic version of Parseval’s identity. Chen et
al. developed a different strategy in [76], which redefines the modulus of a
quaternionic function in the frequency-domain, known as Q-modulus, while
maintaining the original inner product in the time-domain. The latter ap-
proach was adopted by Zou et al. in [350], who investigated specific results
of the quaternionic time-frequency spectral concentration problem that arises
under this modulus. As the development of the Q-modulus is beyond the
scope of the present work, reference is made to the account given in [76],
where details of the subject can be found.



2

Families of Harmonic Functions
on Spheroidal Domains

In this chapter, we introduce two distinct single one-parameter orthogonal
families of internal and external spheroidal harmonics, whose elements are
parametrized by the shape of the corresponding spheroid. The main point
of interest is that the orthogonality of the elements that constitute the two
families does not depend on the eccentricity of the spheroids. A general
expression for the basis changes between different systems of spheroidal har-
monic functions is then calculated, obtaining conversion formulas that relate
systems of harmonic functions associated with spheroids of arbitrary eccen-
tricity.

2.1 Harmonics in Spheroidal Coordinates

Traditionally, spherical domains are considered a reference while studying
realistic problems. Given this perfectly symmetrical property of the domains,
theory and applications of the discussed methods become easier. However, in
many cases, the spherical reference domain is inappropriate, and spheroidal
domains are used instead.

A spheroid is a quadric surface that is generated by rotating an ellipse
around its major axis. The analysis of harmonic functions on spheroids
typically separates the prolate and oblate cases, which are parametrized in
their respective confocal families

{x ∈ R3 : x2
0

cosh2 α
+ x2

1 + x2
2

sinh2 α
= 1}
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and
{x ∈ R3 : x2

0

sinh2 α
+ x2

1 + x2
2

cosh2 α
= 1}

for α > 0. These domains do not include the case of a Euclidean ball, but
they become rounder as they degenerate with α → ∞. In the sequel, we
combine them into a single family of coaxial spheroidal domains Ωµ, oriented
so that their axes of rotational symmetric are along the x0-axis and whose
focal lengths equal 2(1− e2ν)1/2:

Ωµ = {x ∈ R3 : x2
0 + x2

1 + x2
2

e2ν = 1}, (2.1.1)

where ν ∈ R is arbitrary. The parameter µ = µ(ν) = (1− e2ν)1/2 denotes the
eccentricity of the generating ellipses all centered at the origin and lying in
the (x0, x1)-plane, which by convention is in the interval (0, 1) when ν < 0
(prolate spheroid), and in iR+ when ν > 0 (oblate spheroid); the intermediate
value ν = 0, µ = 0 gives the Euclidean unit ball Ω0 = {x ∈ R3 : |x|2 < 1}.
It is significant to note that in the prolate case, we obtain the mentioned
spheroid by setting eν = tanhα and rescaling x by a factor of µ−1, while for
the oblate case, we set eν = cothα and rescale by a factor of (µ/i)−1.

The main objective of the present section is to develop families of in-
ternal and external harmonic functions with particular emphasis on those
orthogonal in the L2-Hilbert space structure, which are parametrized by the
single value ν. This cannot be done with models in which the ball only is
approximated as a degenerate case. It requires a separate yet utterly anal-
ogous treatment for prolate and oblate spheroids [132, 170]. Garabedian in
[132] developed the original impetus behind the study of orthogonal bases of
polynomials for the spaces of square-integrable harmonic functions defined in
a prolate or oblate spheroid. The orthogonality was taken for certain natural
inner products, each of which leads to the discussion of a partial differential
equation employing the kernel of the orthogonal system corresponding to
that inner product. Some aspects of generating harmonic functions orthog-
onal in a region outside a prolate spheroid were recently considered in [250].
However, valuable properties, such as the relationships between systems of
internal and external harmonics associated with the spheroids Ωµ to those
related to the ball Ω0, were not studied. Also, internal and external spherical
harmonics were not considered part of these kinds of systems.

In general, the boundary value problems involving prolate and oblate
spheroidal bodies may be treated using prolate and oblate spheroidal coor-
dinate systems. There are several equivalent ways to introduce spheroidal
coordinates [6, Ch. XXI] and [205, Ch. VIII]. Suppose for the moment that
ν < 0 (the other case ν > 0 will be explained below). In this way, we use
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prolate spheroidal coordinates (η, ϑ, ϕ) related to Cartesian coordinates by
the following transformation:

x0 = µ cosh η cosϑ, x1 = µ sinh η sinϑ cosϕ, x2 = µ sinh η sinϑ sinϕ,
(2.1.2)

where µ > 0, and η ∈ [0, ηµ] with ηµ = arctanh eν is the “radial” coordinate,
ϑ ∈ [0, π] is the spheroidal colatitude angle, and ϕ ∈ [0, 2π) is the azimuthal
angle.

Let
Ω∗µ := Ωµ ∪ {(η, ϑ, ϕ) : η ∈ (ηµ,∞), ϑ ∈ [0, π], ϕ ∈ [0, 2π)} ,

where ν < 0.
It is a relatively simple matter to verify that the Laplace equation in

terms of the coordinates (2.1.2) becomes
1

µ2(sinh2 η + sin2 ϑ)

(
∂2U [µ]
∂η2 + ∂2U [µ]

∂ϑ2 + coth η ∂U [µ]
∂η

+ cotϑ ∂U [µ]
∂ϑ

)

+ 1
µ2 sinh2 η sin2 ϑ

∂2U [µ]
∂ϕ2 = 0; U [µ] ∈ C2(Ω∗µ). (2.1.3)

The previous equation is separable in prolate spheroidal coordinates [233,
Ch. I]. For x ∈ Ω∗µ the corresponding solutions of (2.1.3), often referred to
as the prolate spheroidal harmonics, are given by

U [µ](x) := Ξ(η) Θ(ϑ) Φ(ϕ), (2.1.4)
where Ξ(η) is the radial function, Θ(ϑ) is the angular function, and Φ(ϕ) is
the azimuthal function, which are solutions of the following ordinary differ-
ential equations:

d2Ξ
dη2 + coth η dΞ

dη
−
[

m2

sinh2 η
+ l(l + 1)

]
Ξ = 0,

d2Θ
dϑ2 + cotϑ dΘ

dϑ
+
[
l(l + 1)− m2

sin2 ϑ

]
Θ = 0,

d2Φ
dϕ2 +m2Φ = 0, (2.1.5)

where l is a constant and m is a parameter introduced during the method
of separation of variables. Hence the solutions of the first two equations are,
for Ξ(η) and Θ(ϑ), respectively, Pm

l (cosh η) or Qm
l (cosh η), and Pm

l (cosϑ) or
Qm
l (cosϑ). For the typical applications, we take Pm

l (cosϑ), where m and l
are positive integers, including zero, and suppose m not greater than l; we
shall accordingly confine ourselves at present to this case. Thus, solutions of
equation (2.1.5) are either cos(mϕ) or sin(mϕ).
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Correspondingly, we define the required solutions (2.1.4) to be employed
in the sequel as follows.

Definition 2.1.1. Let l ≥ 0 and 0 ≤ m ≤ l. For µ 6= 0, the basic spheroidal
harmonics of degree l and order m are

αl,m µ
lPm
l (cosϑ)Pm

l (cosh η) cos
sin (mϕ),

and βl,m
µl+1P

m
l (cosϑ)Qm

l (cosh η) cos
sin (mϕ),

with
αl,m = (l −m)!

(2l − 1)!! , βl,m = (2l + 1)!!
(l +m)! .

It is of interest to remark that the second of these functions cannot be
applied in a space that contains the origin x0 = x1 = x2 = 0 because the
functions Qm

l (cosh η) become infinite when η = 0. Hence, for the interior
of the prescribed spheroids (2.1.1), the one-parameter family of spheroidal
harmonics

U±l,m[µ](x) := αl,m µ
lPm
l (cosϑ)Pm

l (cosh η) Φ±m(ϕ) (2.1.6)

will be taken. We have written

Φ+
m(ϕ) = cos(mϕ), Φ−m(ϕ) = sin(mϕ)

to unify the notation for the odd and even functions. We will not use Φ−0
since it is identically zero.

On the other hand, we need functions that vanish at infinity for the
exterior of the prescribed spheroids. Since Pm

l (cosh η) become infinite with η,
the appropriate spheroidal harmonics employed for the space exterior R3\Ωµ

will be
Û±l,m[µ](x) := βl,m

µl+1P
m
l (cosϑ)Qm

l (cosh η) Φ±m(ϕ). (2.1.7)

Versions of a capital letter with and without circumflex will always denote
external and internal functions. The harmonics (2.1.7) are not polynomials
but rather algebraic functions, which are homogeneous of degree −(l + 1).

We add that U−l,0[µ] and Û−l,0[µ] vanish identically, as do all U±l,m[µ] and
Û±l,m[µ] for m ≥ l + 1. Therefore when we refer to the sets {U±l,m[µ]} and
{Û±l,m[µ]}, we always exclude the indices which apply to these trivial cases,
even when we do not explicitly state 0 ≤ m ≤ l for the “+” case and
1 ≤ m ≤ l for the “−” case.
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The spheroidal harmonics (2.1.6) and (2.1.7), except for the constant
factors αl,m and βl,m and the rescaling of the x variable, are the functions
defined in [170, Ch. X]. We shall discuss their properties more fully hereafter.
The motivation behind the choice for redefining these rescaling functions will
be explained in detail later in this section (see Proposition 2.1.2 below).

The ideas that led us here allow the discussion of internal and external
harmonics for oblate spheroids in a similar manner. By equations (2.1.2), a
direct computation shows that

|x|2 + µ2 = µ2(cosh2 η + cos2 ϑ),

and also
µ2 (cosh η ± cosϑ)2 = (x0 ± µ)2 + x2

1 + x2
2.

Hence
cosh η = ω(µ)

2µ , cosϑ = 2x0

ω(µ) ,

where

ω(µ) :=
√

(x0 + µ)2 + x2
1 + x2

2 +
√

(x0 − µ)2 + x2
1 + x2

2 (2.1.8)

is positive. In the considerations to follow, we will often omit the argument
of (2.1.8) and write ω instead of ω(µ). It is now evident that the oblate case
ν > 0 is obtained from this by analytic continuation, thinking of µ ∈ iR+

as being boundary values of the first quadrant in the complex plane. The
following terms

ζ(µ) = |x|2 + µ2 + 2x0µ, ζ(µ) = |x|2 + µ2 − 2x0µ

inside the radicals in (2.1.8) are now complex conjugates, where

|ζ(µ)| = |µ2 − (x0 + i
√
x2

1 + x2
2 )2|. (2.1.9)

When it is necessary to particularize the variables involved in it, we shall
write ζ(µ,x).

It is interesting to note that the function defined by (2.1.9) describes a
single-parametrical family of Cassini surfaces as it equals to the product of
the distances from any point on the prescribed spheroids to the two foci
(±µ, 0, 0). This function will play an essential role in the forthcoming sec-
tions.

Moreover, from (2.1.8) it follows that

ω =
√

2 (Re ζ(µ) + |ζ(µ)|)
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is real and slightly less than 2|x| for µ/i small. We have, thus,

2x0

ω
= x0

√
2

Re ζ(µ) + |ζ(µ)| ,
ω

2µ = i

√√√√Re ζ(µ) + |ζ(µ)|
2(e2ν − 1) ,

and from this, one can verify that |2x0/ω| ≤ 1 and Im(ω/2µ) takes values
in the interval [0,∞). Thus, for the interior (resp. exterior) of an oblate
spheroid we first replace η with the value arcsinh cosh η to retain the formula
(2.1.2) through the relations

ω

2µ = i sinh η, 2x0

ω
= cosϑ,

where η ∈ [0, η̃µ] (resp. η ∈ (η̃µ,∞)) with η̃µ = arccoth eν and ϑ ∈ [0, π], and
then use expressions (2.1.6) and (2.1.7) again to define the oblate harmonics.
The construction of the spheroidal harmonics in its extended signification
being thus completed, no difficulties can occur in restricting particular cases.

The use of the coefficients αl,m and βl,m in the expressions (2.1.6) and
(2.1.7) is for the following.

Proposition 2.1.2. For all x ∈ R3, |x| 6= 0, the limits

lim
µ→0

U±l,m[µ](x), lim
µ→0

Û±l,m[µ](x)

exist and are given, respectively, by

U±l,m[0](x) = |x|lPm
l

(
x0

|x|

)
Φ±m(ϕ), (2.1.10)

Û±l,m[0](x) = 1
|x|l+1P

m
l

(
x0

|x|

)
Φ±m(ϕ), (2.1.11)

where we employ spherical coordinates x0 = ρ cos θ, x1 = ρ sin θ cosϕ, and
x2 = ρ sin θ sinϕ.

Proof. Since the variable ϕ in (2.1.6) and (2.1.7) does not depend on the
variable x0, we examine the factors Pm

l (2x0/ω)Pm
l (ω/(2µ)) in (2.1.6) (resp.

Pm
l (2x0/ω)Qm

l (ω/(2µ)) in (2.1.7)) with ω given by (2.1.8).
Since √

(x0 ± µ)2 + x2
1 + x2

2 = |x| ± x0

|x|
µ+O(µ2),

it follows that ω = 2|x|+O(µ2) as µ→ 0. Furthermore, we have once more
from (2.1.8) that

2x0

ω
= x0

|x|
+O(µ),
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so Pm
l (2x0/ω) → Pm

l (x0/|x|) as µ → 0. Using the explicit representation
(1.4.9) valid for real |t| > 1, and the fact that

(αl,m)−1 = l!(l +m)!
2l

l∑
s=m

λl,ms ,

with the constants λl,ms given by (1.4.10), we have the required asymptotic
behavior αl,mPm

l (t) ' tl as t = ω/2µ tends to infinity, which corresponds
to µ → 0 for fixed x. In a similar way, according to formula (1.4.11) it
follows that βl,mQm

l (t) ' 1/tl+1 as t = ω/2µ tends to infinity, corresponding
to µ→ 0 for fixed x.

By the proposition just proved, it is observed that the internal and the ex-
ternal solid spherical harmonics defined, respectively, by (2.1.10) and (2.1.11)
are embedded in the preceding one-parameter families of spheroidal harmon-
ics. In contrast, in treatments such as [132] and [250], the spheroidal har-
monics degenerate as the eccentricity of the spheroid decreases.

Unlike the spherical functions U±l,m[0](x) and Û±l,m[0](x), U±l,m[µ](x) and
Û±l,m[µ](x) are generally not homogeneous.

We add a note concerning the orthogonality of the spheroidal harmonics
with respect to two natural inner products. As was shown in [132], the
family {U±l,m[µ]} turns out to be orthogonal with respect to the Dirichlet
inner product over Ωµ, defined by

(f, g)µ =
∫
η=ηµ

f(x) ∂g
∂n

(x)dσ, (∆g = 0), (2.1.12)

where n denotes the unit outward normal vector to the boundary of Ωµ at
the point P ∗ := (ηµ, ϑ, ϕ), with cosh ηµ = 1/µ:

n = 1√
1− µ2 cos2 ϑ

[√
1− µ2 cosϑ+ (i cosϕ+ j sinϕ) sinϑ

]
. (2.1.13)

Since the measure on the boundary is dσ =
√

1− µ2 sinϑdϕdϑ, we can com-
pute the outward normal derivative ∂/∂n of g at any point using (2.1.13) to
obtain

dσ
∂g

∂n
(ϑ, ϕ) =

√
1− µ2 sinϑ dϕdϑ ∂g

∂η
(P ∗).

Hence, we deduce from (2.1.12) that

(f, g)µ =
∫ π

0

∫ 2π

0
f(P ∗) ∂g

∂η
(P ∗)

√
1− µ2 sinϑ dϕdϑ. (2.1.14)
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We will now show similar orthogonality of the external functions (2.1.7) in
the sense of the integral (2.1.12). Here and in the sequel, we introduce the
notation U±l,m[µ] = Ul,m[µ]Φ±m (resp. Û±l,m[µ] = Ûl,m[µ]Φ±m) for use when the
factors Φ±m are not of interest.

Proposition 2.1.3. For fixed µ, the harmonic functions Û±l,m[µ] are orthog-
onal over R3 \ Ωµ in the sense of the Dirichlet integral (2.1.12).

Proof. We will assume that ν < 0, because the case ν > 0 is similar. When
m1 6= m2, we have by the orthogonality of ordinary Fourier series

(Ûl1,m1 [µ]Φ+
m1(ϕ), Ûl2,m2 [µ]Φ+

m2(ϕ))µ = 0,

(Ûl1,m1 [µ]Φ−m1(ϕ), Ûl2,m2 [µ]Φ−m2(ϕ))µ = 0,

(Ûl1,m1 [µ]Φ+
m1(ϕ), Ûl2,m2 [µ]Φ−m2(ϕ))µ = 0,

(Ûl1,m1 [µ]Φ−m1(ϕ), Ûl2,m2 [µ]Φ+
m2(ϕ))µ = 0.

By definition of the integral (2.1.12) and using (2.1.14), for m1 = m2 = m a
direct computation shows that

(Ûl1,m[µ]Φ+
m(ϕ), Ûl2,m[µ]Φ+

m(ϕ))µ

=
∫ π

0

∫ 2π

0
Ûl1,m[µ](P ∗) ∂Ûl2,m[µ]

∂η
(P ∗) (Φ+

m(ϕ))2
√

1− µ2 sinϑ dϕdϑ

= βl1,m βl2,m
µl1+l2+1 π(1 + δ0,m)Qm

l1 (1/µ)
[√

1− µ2Qm+1
l2 (1/µ) +mQm

l2 (1/µ)
]

×
∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑ dϑ

= (βl1,m)2

µ2l1+1
2π(l1 +m)!

(2l1 + 1)(l1 −m)! (1 + δ0,m)δl1,l2

×Qm
l1 (1/µ)

[√
1− µ2Qm+1

l1 (1/µ) +mQm
l1 (1/µ)

]
.

The same value is obtained when we replace Φ+
m(ϕ) by Φ−m(ϕ) throughout,

m > 0.

We turn next to a less obvious result, which asserts that the spheroidal
harmonics U±l,m[µ] (resp. Û±l,m[µ]) are not necessarily orthogonal in the closed
subspace Har2(Ωµ) (resp. Har2(R3 \Ωµ)) of L2(Ωµ) (resp. L2(R3 \Ωµ)) with
respect to the ordinary L2-inner product. It turns out that the collections
{U±l,m[µ] : l ≥ 0, 0 ≤ m ≤ l} and {Û±l,m[µ] : l ≥ 0, 0 ≤ m ≤ l} do not
form orthogonal bases for the spaces of square-integrable harmonic functions,
except for the unit ball, µ = 0.
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For simplicity, we assume again that ν < 0, with 0 < η ≤ ηµ when we
refer to Ωµ and ηµ < η < ∞ when we refer to R3 \ Ωµ, with cosh ηµ = 1/µ.
Now, let

〈f, g〉0,L2(Ωµ) =
∫

Ωµ
f(x)g(x)dx, (2.1.15)

where dx = dx0dx1dx2.
Applying the coordinates (2.1.2), gives the infinitesimal volume element

dx = µ3(cosh2 η − cos2 ϑ) sinϑ sinh η dϑdη. (2.1.16)

It is clear that, when m1 6= m2, we have

〈Ul1,m1 [µ]Φ+
m1(ϕ), Ul2,m2 [µ]Φ+

m2(ϕ)〉0,L2(Ωµ) = 0,
〈Ul1,m1 [µ]Φ−m1(ϕ), Ul2,m2 [µ]Φ−m2(ϕ)〉0,L2(Ωµ) = 0,
〈Ul1,m1 [µ]Φ+

m1(ϕ), Ul2,m2 [µ]Φ−m2(ϕ)〉0,L2(Ωµ) = 0,
〈Ul1,m1 [µ]Φ−m1(ϕ), Ul2,m2 [µ]Φ+

m2(ϕ)〉0,L2(Ωµ) = 0,

and similarly for Û±l,m[µ].
We now compute

〈Ul1,m[µ]Φ+
m(ϕ), Ul2,m[µ]Φ+

m(ϕ)〉0,L2(Ωµ)

=
∫ ηµ

0

∫ π

0
Ul1,m[µ]Ul2,m[µ]µ3(cosh2 η − cos2 ϑ) sinϑ sinh η dϑdη

×
∫ 2π

0
(Φ+

m(ϕ))2dϕ

=αl1,m αl2,m µ
l1+l2+3(1 + δ0,m)π

×
[∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑ dϑ

×
∫ ηµ

0
Pm
l1 (cosh η)Pm

l2 (cosh η) sinh η cosh2 η dη

−
∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑ cos2 ϑ dϑ

×
∫ ηµ

0
Pm
l1 (cosh η)Pm

l2 (cosh η) sinh η dη
]
. (2.1.17)
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Furthermore, according to (1.4.13), it follows that

cos2 ϑPm
l1 (cosϑ)Pm

l2 (cosϑ)

= (l1 + 1−m)(l2 + 1−m)
(2l1 + 1)(2l2 + 1) Pm

l1+1(cosϑ)Pm
l2+1(cosϑ)

+ (l1 + 1−m)(l2 +m)
(2l1 + 1)(2l2 + 1) Pm

l1+1(cosϑ)Pm
l2−1(cosϑ)

+ (l1 +m)(l2 + 1−m)
(2l1 + 1)(2l2 + 1) Pm

l1−1(cosϑ)Pm
l2+1(cosϑ)

+ (l1 +m)(l2 +m)
(2l1 + 1)(2l2 + 1) P

m
l1−1(cosϑ)Pm

l2−1(cosϑ).

It may be found that the underlying functions are generally not orthogonal
(when µ 6= 0), neither when l2 = l1 + 2 nor when l2 = l1 − 2. For l2 = l1 + 2,
we obtain

〈Ul1,m[µ]Φ+
m(ϕ), Ul1+2,m[µ]Φ+

m(ϕ)〉0,L2(Ωµ)

= −µ
2l1+5 2π(1 + δ0,m)

(2l1 + 5)
(l1 + 2 +m)!
(l1 + 2−m)! (αl1+2,m)2Il1,m(µ)

for µ > 0, where
Il1,m(µ) :=

∫ 1/µ

1
Pm
l1 (t)Pm

l1+2(t)dt. (2.1.18)

The same values are obtained when we replace Φ+
m(ϕ) by Φ−m(ϕ) throughout,

m > 0.
For the sake of simplicity, we will show here only that Il,0(µ) 6= 0 for each

l = 0, 1, . . . and fixed µ > 0. The general case Il,m(µ) (m > 0) can be treated
analogously. Using (2.1.18), (1.4.4), and the well-known representation of the
Legendre polynomials

Pl(t) = 2l
l∑

k=0

(
l

k

)(
(l + k − 1)/2

l

)
tk,

we obtain

µ2l+5Il,0(µ) =
l∑

r=0

ArAl+2−rAl−r
A2l+2−r

(
4l − 4r + 5
4l − 2r + 5

)
µ2l+5

∫ 1/µ

1
Plr(t)dt,

where lr = 2l + 2− 2r, and

µ2l+5
∫ 1/µ

1
Plr(t)dt = 2lr

lr∑
k=0

(
lr
k

)(
(lr + k − 1)/2

lr

)
µ2(l+2)−k(1− µk+1).
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Note, in passing, that for the limiting case, µ = 0, we make use of the
continuity and the asymptotic behavior of the Legendre functions of the first
kind (see Proposition 2.1.2 above) to show that limµ→0 µ

2l+5Il,m(µ) = 0, for
all l = 0, 1, . . . and therefore 〈Ul1,m[µ]Φ+

m(ϕ), Ul2,m[µ]Φ+
m(ϕ)〉0,L2(Ωµ) tends to

zero. Analogously, we obtain that 〈Ul1,m[µ]Φ−m(ϕ), Ul2,m[µ]Φ−m(ϕ)〉0,L2(Ωµ) →
0 when µ tends to zero. Hence it follows that the internal solid spherical
functions U±l,m[0] defined by (2.1.10) are orthogonal with respect to the scalar
product (2.1.15). Thus the collection {U±l,m[0] : m = 0, . . . , l; l = 0, 1, . . . }
forms an orthogonal basis of Har2(Ω0) [292]. Moreover, by (2.1.17), we have
the known result

‖U±l,m[0]‖2
L2(Ω0) = 2π(1 + δ0,m)(l +m)!

(2l + 1)(2l + 3)(l −m)! . (2.1.19)

From the above, we deduce the following general result:

Proposition 2.1.4. The set {U±l,m[µ] : m = 0, . . . , l; l = 0, 1, . . . } does not
form an orthogonal basis of Har2(Ωµ), unless µ = 0.

As mentioned in [132], there are further orthogonality properties of the
basic harmonics U±l,m[µ], which do not depend on the shape of the prescribed
spheroids. However, we make no pretense here at tabulating all possible
orthogonal harmonic polynomials of this type [320] but proceed instead to
apply the results to the construction of more suitable spheroidal harmonics,
which are orthogonal in the usual L2-sense.

As was before observed, it now remains to show that the functions Û±l,m[µ]
do not form an orthogonal basis of Har2(R3 \ Ωµ), unless µ = 0. We have
then

〈Ûl1,m[µ]Φ+
m(ϕ), Ûl2,m[µ]Φ+

m(ϕ)〉0,L2(R3\Ωµ)

= − βl1,m βl2,m
µl1+l2−1 (1 + δ0,m)π

×
[∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑ dϑ

×
∫ ∞
ηµ

Qm
l1 (cosh η)Qm

l2 (cosh η) sinh η cosh2 η dη

−
∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑ cos2 ϑ dϑ

×
∫ ∞
ηµ

Qm
l1 (cosh η)Qm

l2 (cosh η) sinh η dη
]
.

It may be found that, in general, the external functions are not orthogonal
(when µ 6= 0) with respect to the scalar product (2.1.15). For l2 = l1 + 2, it
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can be shown that

〈Ûl1,m[µ]Φ+
m(ϕ), Ûl1+2,m[µ]Φ+

m(ϕ)〉0,L2(R3\Ωµ)

= − 2π(1 + δ0,m)
µ2l1+1 (2l1 + 1)

(l1 +m)!
(l1 −m)! (βl1,m)2Îl1,m(µ),

where µ > 0, and

Îl1,m(µ) :=
∫ ∞

1/µ
Qm
l1 (s)Qm

l1+2(s)ds. (2.1.20)

The same values are obtained when Φ+
m(ϕ) is replaced by Φ−m(ϕ), m > 0.

Using (1.4.5), it can be shown that Îl1,0(µ) 6= 0 for each l1 = 0, 1, . . . and
fixed µ > 0.

When µ = 0, we use the continuity and the asymptotic behavior of
the Legendre functions of the second kind (see Proposition 2.1.2 above)
to show that limµ→0 Îl,m(µ)/µ2l+1 = 0, for all l = 0, 1, . . . and therefore
〈Ûl1,m[µ]Φ+

m(ϕ), Ûl2,m[µ]Φ+
m(ϕ)〉0,L2(R3\Ωµ) tends to zero. Similarly, we can

prove that 〈Ûl1,m[µ]Φ−m(ϕ), Ûl2,m[µ]Φ−m(ϕ)〉0,L2(R3\Ωµ) → 0 when µ tends to
zero. It then follows that the external solid spherical functions defined by
(2.1.11) are orthogonal with respect to the scalar product (2.1.15), and thus
form an orthogonal basis of Har−l (Ω0) (cf. [170, Ch. IV]). Moreover, bearing
in mind the orthogonal Hilbert space decomposition

Har2(R3 \ Ω0) =
∞⊕
l=0

Har−l (Ω0),

it follows that the collection {Û±l,m[0] : m = 0, . . . , l; l = 0, 1, . . . } constitutes
an orthogonal basis of Har2(R3 \Ω0). This proves the following proposition:

Proposition 2.1.5. The set {Û±l,m[µ] : m = 0, . . . , l; l = 0, 1, . . . } does not
form an orthogonal basis of Har2(R3 \ Ωµ), unless µ = 0.

The lack of orthogonality of the basis harmonics (2.1.6) and (2.1.7) over
the interior, and exterior, of the prescribed spheroids means defining suitable
orthogonal families of harmonic functions shall be handled with care. It
is always possible to use an appropriate geometric weighting factor or to
apply an orthogonalization process to the prescribed basis harmonics, for
example, the Gram-Schmidt procedure that restores orthogonality. However,
this orthogonalization process may be time-consuming and unstable. We
rather discuss a constructive approach and show how it will be helpful not
only from a function point of view in spheroidal domains but also for fast
and stable computations.
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With these observations at hand, we shall be concerned now with the
proper spheroidal harmonics defined as follows:

V ±l,m[µ](x) = ∂

∂x0
U±l+1,m[µ](x), (2.1.21)

V̂ ±l,m[µ](x) = ∂

∂x0
Û±l+1,m[µ](x). (2.1.22)

The variation of the indexes l andm in any of these functions is determined in
greater detail in the next subsection. Bearing in mind that partial derivatives
of harmonic functions are also harmonic, the construction above results in
two new families of internal and external harmonics. They have, as will
hereafter be seen, new properties.

We have an analogous result to Proposition 2.1.2 for the harmonics (2.1.21)
and (2.1.22).

Proposition 2.1.6. For all x ∈ R3, |x| 6= 0, the limits

lim
µ→0

V ±l,m[µ](x), lim
µ→0

V̂ ±l,m[µ](x)

exist and are given, respectively, by

V ±l,m[0](x) = ∂

∂x0
U±l+1,m[0](x), V̂ ±l,m[0](x) = ∂

∂x0
Û±l+1,m[0](x).

In the following section, we shall accordingly proceed, after investigating
general expressions for the proper harmonics (2.1.21) and (2.1.22), to prove
that they form, respectively, orthogonal bases over the interior and exterior
of the prescribed spheroids in the L2-Hilbert space. Besides, we show the
corresponding properties of orthogonality and completeness of the proper
harmonics over the surface of the spheroids with respect to a suitable weight
function.

2.2 Conversions among Spheroidal Harmon-
ics

It is desirable to relate the proper spheroidal harmonics, (2.1.21) and (2.1.22)
associated with one spheroid Ωµ to those for another spheroid. It is natural
to use the ball Ω0 as a point of reference, which will be the case in the
first results. We shall do it in the following manner. We will determine the
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nonvanishing coefficients α, α̃, and β, β̃ of the following direct and inverse
transformation formulas:

Vl,m[µ] =
∑
k

αl+1,m,k µ
2kVl−2k,m[0], Vl,m[0] =

∑
k

α̃l+1,m,k µ
2kVl−2k,m[µ],

V̂l,m[µ] =
∑
k

βl+1,m,k µ
2kV̂l+2k,m[0], V̂l,m[0] =

∑
k

β̃l+1,m,k µ
2kV̂l+2k,m[µ].

By referring to these expansions, we shall employ the constraints that the
index m is not involved in the summations, and the values of the same even-
ness restrict the index k as a given l. It will then follow from symmetry
considerations that the above relations will work for the “+” and “−” cases
(cosines and sines) and, strikingly, for all values of µ. So that the rela-
tionships between the proper internal and external harmonics in the form
of linear combinations may be exhibited, it appears to be most convenient
to start from already existing transformation formulas between the basic
spheroidal harmonics (2.1.6) and (2.1.7), and their corresponding limiting
cases, respectively, (2.1.10) and (2.1.11).

Various authors investigated harmonic series expansions in terms of spher-
ical and spheroidal harmonics, the investigations usually resting on a more
or less identical basis. For functions that are harmonic inside a prolate or
an oblate spheroid, the transition from the expansion in internal spheroidal
harmonics to that in internal spherical harmonics (and vice-versa) is worked
out in [56] and [177], while the relation between the coefficients in the expan-
sions in external oblate spheroidal and spherical harmonics is given in [20].
Some of these formulas are discussed thoroughly in [22]. In classic books
[110, 170, 252, 258], these expansions are used separately without specifying
relations between them.

Two of these fundamental formulas relevant in the sequel are reproduced
in our notation below [56].

Proposition 2.2.1. Let l ≥ 0 and 0 ≤ m ≤ l. Then

U±l,m[µ] =
[ l−m2 ]∑
k=0

αl,m,k µ
2kU±l−2k,m[0],

U±l,m[0] =
[ l−m2 ]∑
k=0

α̃l,m,k µ
2kU±l−2k,m[µ],

where as usual [s] denotes the integer part of s, and the coefficients are given
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by

αl,m,k = (−1)k (l +m)!(2l − 1− 2k)!(l − 1)!
k!(l − 1− k)!(l +m− 2k)!(2l − 1)! , (2.2.1)

α̃l,m,k = (l +m)!(2l + 1− 4k)!(l − k)!
k!(l − 2k)!(2l + 1− 2k)!(l +m− 2k)! . (2.2.2)

Direct and inverse transformation formulas between Û±l,m[µ] and Û±l,m[0]
can also be derived [20, 22].

Proposition 2.2.2. Let l ≥ 0 and 0 ≤ m ≤ l. Then

Û±l,m[µ] =
∞∑
k=0

βl,m,k µ
2kÛ±l+2k,m[0],

Û±l,m[0] =
∞∑
k=0

β̃l,m,k µ
2kÛ±l+2k,m[µ],

where the coefficients are given by

βl,m,k = (−1)k (l + 2k −m)!(l + k)!(2l + 1)!
(l −m)!k!(2l + 1 + 2k)!l! , (2.2.3)

β̃l,m,k = (l + 2k −m)!(2l + 2k)!(l + 2k)!
(l −m)!k!(l + k)!(2l + 4k)! . (2.2.4)

Given the practical applicability of the V ±l,m[µ] and V̂ ±l,m[µ], it might be
interesting to know whether one can obtain similar transition formulas for
these functions and their limiting configurations. Since ∂/∂x0 is a linear
operator, we automatically have the corresponding transformation formulas
for the proper spheroidal harmonics:

Corollary 2.2.3. Let l ≥ 0 and 0 ≤ m ≤ l. Then

V ±l,m[µ] =
[ l+1−m

2 ]∑
k=0

αl+1,m,k µ
2kV ±l−2k,m[0], (2.2.5)

V ±l,m[0] =
[ l+1−m

2 ]∑
k=0

α̃l+1,m,k µ
2kV ±l−2k,m[µ], (2.2.6)

where the constants αl,m,k and α̃l,m,k are given by (2.2.1) and (2.2.2).
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Corollary 2.2.4. Let l ≥ 0 and 0 ≤ m ≤ l + 1. Then

V̂ ±l,m[µ] =
∞∑
k=0

βl+1,m,k µ
2kV̂ ±l+2k,m[0],

V̂ ±l,m[0] =
∞∑
k=0

β̃l+1,m,k µ
2kV̂ ±l+2k,m[µ],

where the constants βl,m,k and β̃l,m,k are given by (2.2.3) and (2.2.4).

Following the notation already employed, we shall use V ±l,m[µ] = Vl,m[µ]Φ±m
(resp. V̂ ±l,m[µ] = V̂l,m[µ]Φ±m) when the factors Φ±m are not of interest. Before
discussing the properties of the ansatz functions Vl,m[µ] and V̂l,m[µ], it will be
convenient to investigate their algebraical forms. Explicit expressions may
be derived by applying different formulas involving Legendre functions of the
first and second kinds, see Section 1.4. We will assume in the sequel that
ν < 0 because the case ν > 0 is similar.

From differentiating (2.1.2),

∂

∂x0
= 1
µ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η ∂

∂η
− sinϑ cosh η ∂

∂ϑ

)
,

from which the definition (2.1.21) gives

(cosh2 η − cos2 ϑ)
αl+1,m µl

Vl,m[µ] = cosϑ sinh2 ηPm
l+1(cosϑ)(Pm

l+1)′(cosh η)

+ sin2 ϑ cosh ηPm
l+1(cosh η)(Pm

l+1)′(cosϑ).

So, by (1.4.12) and (1.4.13), it follows that

Vl,m[µ] = αl+1,m µ
l

cosh2 η − cos2 ϑ

×
(

cosh ηPm
l+1(cosh η) [(l + 1 +m)Pm

l (cosϑ)

−(l + 1) cosϑPm
l+1(cosϑ)

]
+ cosϑPm

l+1(cosϑ)[(l + 1) cosh ηPm
l+1(cosh η)

− (l + 1 +m)Pm
l (cosh η)]

)
= αl+1,m(l + 1 +m)µl

cosh2 η − cos2 ϑ

[
cosh η Pm

l (cosϑ)Pm
l+1(cosh η)

− cosϑPm
l+1(cosϑ)Pm

l (cosh η)
]
, (2.2.7)
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with the initial values

Vl,l[µ] = (2l + 1)Ul,l[µ], Vl+1,l[µ] = 2(l + 1)Ul+1,l[µ].

After what precedes, it seems worthy to research a similar expression for the
proper functions V̂l,m[µ]. By (1.4.21) and (1.4.22), direct computations can
be used to show that

V̂l,m[µ] = βl+1,m (l + 1 +m)
µl+3(cosh2 η − cos2 ϑ)

[
cosh η Pm

l (cosϑ)Qm
l+1(cosh η)

− cosϑPm
l+1(cosϑ)Qm

l (cosh η)
]
. (2.2.8)

The following are some particular values:

V̂l,l[µ] =



3
2µ3 log

(
cosh η + 1
cosh η − 1

)
− 3 cosh η
µ3(cosh2 η − cos2 ϑ)

if l = 0,

(2l + 1)(2l + 3)
µ2

(
Ûl,l[µ]− 1

(2l − 2)!! µ
2 cosh η Vl[µ]

)
if l > 0,

(2.2.9)

V̂l+1,l[µ] =



45
4µ3 cosϑ

[
cosh η log

(
cosh η + 1
cosh η − 1

)
− 2

]

− 15 cosϑ
2µ3(cosh2 η − cos2 ϑ)

if l = 0,

(2l + 3)(2l + 5)
2µ2

(
Ûl+1,l[µ]− 2l + 1

(2l − 2)!! µ cosϑVl[µ]
)

if l > 0,

where
Vl[µ] := P l

l (cosϑ)Ql
l−1(cosh η)

µl+3(cosh2 η − cos2 ϑ)
. (2.2.10)

We may observe in the first place that there is a slight difference between
the two preceding proper functions Vl,m[µ] and V̂l,m[µ]. It is quite evident
from the form (2.2.7) that Vl,l+1[µ] = 0 for all l. However, it can be seen that
V̂l,l+1[µ] 6= 0. More specifically, we find

V̂l,l+1[µ] = −(2l + 3)
(2l)!! µ cosϑVl+1[µ]. (2.2.11)

It follows from (2.2.8) that V̂l,m[µ] = 0 for m ≥ l+ 2 since Pm
l = 0 for m > l.
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To avoid the difficulties usually associated with manipulations such as
those of the formulas (2.2.7) and (2.2.8), it will be convenient to notice el-
ementary recurrence relations for the internal and external harmonics. The
following will be the key in the proof of Theorem 3.1.10, and it is based on
the results of [239].

Proposition 2.2.5. Let l ≥ 0 and 0 ≤ m ≤ l. The functions Vl,m[µ] satisfy
the recurrence relation

1
l + 1 +m

Vl,m[µ] = Ul,m[µ] + µ2(l +m)
4l2 − 1 Vl−2,m[µ]. (2.2.12)

This uses the convention Vl−2,m[µ] = 0 when m > l.

Proof. Using (2.2.7) and (1.4.12) direct computations show that

Vl+1,m[µ] = (l + 1 +m)Ul,m[µ]

+ αl,m µ
l(l + 1 +m)(l +m)

(cosh2 η − cos2 ϑ)(2l + 1)
[cosϑPm

l−1(cosϑ)Pm
l (cosh η)

− cosh η Pm
l (cosϑ)Pm

l−1(cosh η)],

with
αl,m = 2l + 1

l + 1−m αl+1,m.

Using again (1.4.13), we obtain

Vl+1,m[µ] = (l + 1 +m)Ul,m[µ]

+ αl−1,m µ
l(l + 1 +m)(l +m)(l +m− 1)

(cosh2 η − cos2 ϑ)(2l + 1)(2l − 1)
× [cosh η Pm

l−2(cosϑ)Pm
l−1(cosh η)

− cosϑPm
l−1(cosϑ)Pm

l−2(cosh η)].

The result now follows.

Since the basic harmonics, U±l,m[µ] of [132] are polynomials of degree l
it is clear that the operations of rescaling by 1/µ or i/µ and multiplying
by µl implied in (2.1.6) assure that the proper harmonics V ±l,m[µ] defined by
(2.1.21) are polynomials of degree l in µ2. From the preceding discussion, it
is clear that −µ produces the same results as µ, so the only powers of µ that
appear are even.
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From (2.2.12), we note that for the internal solid spherical harmonics
(2.1.10), there holds a formula analogous to Appell differentiation of mono-
mials,

∂

∂x0
U±l+1,m[0](x) = (l + 1 +m)U±l,m[0](x). (2.2.13)

In contrast, V ±l,m[µ] is not so related merely to U±l,m[µ] for µ 6= 0, as we proceed
to show.

Accordingly, the preceding recurrence formula for Vl,m[µ] combined with
(2.2.7) gives a representation for the functions V ±l,m[µ] in terms of the basic
harmonics U±l,m[µ], which is surprisingly simple and reasonably efficient. The
theorem is as follows:

Theorem 2.2.6. Let l ≥ 0 and 0 ≤ m ≤ l. The coefficients vl,m,k in the
relation

V ±l,m[µ] =
[ l−m2 ]∑
k=0

vl,m,k µ
2kU±l−2k,m[µ] (2.2.14)

are given by
vl,m,k = (l + 1 +m)!(2l + 1− 4k)!!

(l +m− 2k)!(2l + 1)!! . (2.2.15)

Proof. Suppose inductively that the formula holds when l is replaced by
l′ < l. Then

V ±l,m[µ] = (l + 1 +m)U±l,m[µ]

+ (l + 1 +m)(l +m)
(2l + 1)(2l − 1)

[ l−2−m
2 ]∑

k=0
vl−2,m,k µ

2(k+1)U±l−2(k+1),m[µ].

Since, by (2.2.15),

vl,m,0 = l + 1 +m, vl,m,k+1 = (l + 1 +m)(l +m)
4l2 − 1 vl−2,m,k,

we find that the stated formula holds, completing the proof.

The above theorem is the generalization of the result given in [239] to
spheroids of arbitrary eccentricity.
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Corollary 2.2.3, in conjunction with (2.2.13), immediately yield the fol-
lowing:

Corollary 2.2.7. Let l ≥ 0 and 0 ≤ m ≤ l. Then

V ±l,m[µ] =
[ l−m2 ]∑
k=0

αl+1,m,k(l + 1 +m− 2k)µ2kU±l−2k,m[0], (2.2.16)

U±l,m[0] =
[ l−m2 ]∑
k=0

α̃l+1,m,k

l + 1 +m
µ2kV ±l−2k,m[µ], (2.2.17)

where the constants αl,m,k and α̃l,m,k are given by (2.2.1) and (2.2.2).

Having thus proved that internal harmonics of the form (2.2.7) which
satisfy (2.2.12) likewise satisfy (2.2.14), it will be interesting to know whether
the external functions will fulfill similar recurrence relations employing the
equation (2.2.8). In the first place, it is evident from the form of the external
functions (2.2.8), by (2.2.11), that a direct substitution of our arguments is
not applicable.

Proceeding in a manner analogous to that for the internal spheroidal
harmonics (2.2.7), it turns out that the functions V̂ ±l,m[µ] can be computed
directly using a recurrence formula as in [250]:

Proposition 2.2.8. Let l ≥ 0 and 0 ≤ m ≤ l + 1. The functions V̂l,m[µ]
satisfy the recurrence relation

µ2(l + 1−m)(l −m)
(2l + 1)(2l + 3) V̂l,m[µ] = (l −m)Ûl,m[µ] + V̂l−2,m[µ]. (2.2.18)

This uses the convention V̂l−2,m[µ] = 0 when m > l + 1.

Proof. The proof is similar to the one presented for Proposition 2.2.5, and it
uses (1.4.21) and (1.4.22).

The result, which follows from (2.2.18), is in analogy to (2.2.13), involving
the derivatives of the external solid spherical harmonics (2.1.11) with respect
to x0:

∂

∂x0
Û±l+1,m[0](x) = −(l + 2−m)Û±l+2,m[0](x). (2.2.19)

In virtue of Proposition 2.2.8, we are thus led to the following representation
of the proper functions V̂ ±l,m[µ] in terms of the external harmonics Û±l,m[µ],
which have a similar proof to that of Theorem 2.2.6.
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Theorem 2.2.9. Let l ≥ 0 and 0 ≤ m ≤ l+ 1. The coefficients v̂l,m,k in the
relation

V̂ ±l,m[µ] =
[ l−m2 ]−1∑
k=0

v̂l,m,k
1

µ2(k+1) Û
±
l−2k,m[µ]

+


(2l + 3)!!

(l + 1−m)!(2m+ 3)!!
1

µl−m
V̂ ±m,m[µ] if l −m is even,

2(2l + 3)!!
(l + 1−m)!(2m+ 5)!!

1
µl−m−1 V̂

±
m+1,m[µ] if l −m is odd

(2.2.20)

are given by
v̂l,m,k = (l −m− 2k)!(2l + 3)!!

(l + 1−m)!(2l − 1− 4k)!! . (2.2.21)

The proper harmonics V ±l,m[µ] and V̂ ±l,m[µ] will play a crucial role in study-
ing the internal and external spheroidal monogenics in Chapter 3.

2.3 Orthogonal Families of Proper Internal
and External Spheroidal Harmonics

Since the internal harmonics (2.1.21), except for the constant factors αl,m and
the rescaling of the x variable, are the functions defined in [132], an essential
result of that paper regarding the orthogonality and completeness of these
functions in the L2-Hilbert space can be restated as follows. To make this
work self-contained, we prove the orthogonality in the following calculation
of the norms.

Theorem 2.3.1. For fixed µ, the set {V ±l,m[µ] : m = 0, . . . , l; l = 0, 1, . . . }
forms an orthogonal basis of Har2(Ωµ) with the norms

‖V ±l,m[µ]‖2
L2(Ωµ) = 2π(1 + δ0,m)µ2l+3γl,mIl,m(µ), (2.3.1)

where Il,m(µ) is defined by (2.1.18), and

γl,m = (l + 1 +m)(l + 2−m)!(l + 1 +m)!
(2l + 1)!!(2l + 3)!! . (2.3.2)

For the limiting case, µ = 0,

‖V ±l,m[0]‖2
L2(Ω0) = 2π(1 + δ0,m)(l + 1 +m)(l + 1 +m)!

(2l + 1)(2l + 3)(l −m)! . (2.3.3)



84 2. SOLUTIONS OF LAPLACE’S EQUATION IN SPHEROIDAL COORDINATES

Proof. For simplicity, we consider the prolate case, where 0 < η ≤ ηµ, i.e.,
with cosh ηµ = 1/µ. When m1 6= m2, we have

〈Vl1,m1 [µ]Φ+
m1(ϕ), Vl2,m2 [µ]Φ+

m2(ϕ)〉0,L2(Ωµ) = 0,
〈Vl1,m1 [µ]Φ−m1(ϕ), Vl2,m2 [µ]Φ−m2(ϕ)〉0,L2(Ωµ) = 0,
〈Vl1,m1 [µ]Φ+

m1(ϕ), Vl2,m2 [µ]Φ−m2(ϕ)〉0,L2(Ωµ) = 0,
〈Vl1,m1 [µ]Φ−m1(ϕ), Vl2,m2 [µ]Φ+

m2(ϕ)〉0,L2(Ωµ) = 0.

By definition of the integral (2.1.15) and using (2.2.7) for m1 = m2 = m, a
direct computation shows that

〈Vl1,m[µ]Φ+
m(ϕ), h〉0,L2(Ωµ)

= αl1+1,m(l + 1 +m)µl1+3
∫ ηµ

0

∫ π

0

∫ 2π

0
hΦ+

m(ϕ)

×
[
cosh ηPm

l1 (cosϑ)Pm
l1+1(cosh η)

− cosϑPm
l1+1(cosϑ)Pm

l1 (cosh η)
]

sinh η sinϑ dϕdϑdη.

The last integral vanishes when h is a harmonic polynomial of the form

Pm
l2 (cosϑ)Pm

l2 (cosh η)Φ+
m(ϕ)

of degree l2 < l1, since∫ π

0
Pm
l1 (cosϑ)Pm

l2 (cosϑ) sinϑdϑ = 0,

and ∫ π

0
Pm
l1+1(cosϑ) cosϑPm

l2 (cosϑ) sinϑdϑ = 0.

Hence, for l1 6= l2,

〈Vl1,m[µ]Φ+
m(ϕ), Vl2,m[µ]Φ+

m(ϕ)〉0,L2(Ωµ) = 0,

and also
〈Vl1,m[µ]Φ−m(ϕ), Vl2,m[µ]Φ−m(ϕ)〉0,L2(Ωµ) = 0.

For l1 = l2 = l, by (2.2.12), we find

〈Vl,m[µ]Φ+
m(ϕ), Vl,m[µ]Φ+

m(ϕ)〉0,L2(Ωµ)

= αl+1,m αl,m(l + 1 +m)2 µ2l+3
∫ 2π

0
(Φ+

m(ϕ))2dϕ

×
∫ ηµ

0

∫ π

0
Pm
l (cosϑ)Pm

l (cosh η)
[
cosh ηPm

l (cosϑ)Pm
l+1(cosh η)

− cosϑPm
l+1(cosϑ)Pm

l (cosh η)
]

sinh η sinϑdϑdη.
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Now, using (1.4.13) it follows that

tPm
l (t)Pm

l+1(t)

= 1
2l + 3

[
(l + 2−m)Pm

l+2(t) + (l + 1 +m)Pm
l (t)

]
Pm
l (t),

with t = cosϑ or cosh η.
Therefore

〈Vl,m[µ]Φ+
m(ϕ), Vl,m[µ]Φ+

m(ϕ)〉0,L2(Ωµ)

= αl+1,m αl,m
(l + 2−m)(l + 1 +m)2

2l + 3 µ2l+3(1 + δ0,m)π

×
[∫ ηµ

0
Pm
l+2(cosh η)Pm

l (cosh η) sinh ηdη

×
∫ π

0
(Pm

l (cosϑ))2 sinϑdϑ

−
∫ ηµ

0
(Pm

l (cosh η))2 sinh ηdη

×
∫ π

0
Pm
l+2(cosϑ)Pm

l (cosϑ) sinϑdϑ
]

= (αl,m)2 (l + 1 +m)2 (l + 2−m)(l +m)!
(2l + 1)(2l + 3)(l −m)! µ

2l+3(1 + δ0,m)2π

×
∫ ηµ

0
Pm
l+2(cosh η)Pm

l (cosh η) sinh ηdη.

We obtain the same value when Φ+
m(ϕ) is replaced by Φ−m(ϕ) throughout,

m > 0. The limiting case, µ = 0, follows with the use of Proposition 2.2.5
and (2.1.19).

It will be a convenient opportunity to deliver the orthogonality of the cor-
responding proper spheroidal polynomials over the surface of the prescribed
spheroids with respect to a suitable weight function. The following theorem
generalizes a similar result in [132] to spheroids of arbitrary eccentricity.

Theorem 2.3.2. For fixed µ, the set {V ±l,m[µ] : m = 0, . . . , l; l = 0, 1, . . . }
forms an orthogonal family over the surface of the spheroid Ωµ in the sense
of the scalar product

{f, g}0,L2(∂Ωµ) =
∫
∂Ωµ

f(x)g(x) |ζ(µ,x)|1/2 dσ, (2.3.4)

where |ζ(µ,x)| is defined by (2.1.9).
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Proof. For the proof, we use similar ideas as in Theorem 2.3.1 and consider
the prolate case again. When m1 6= m2, we have

{Vl1,m1 [µ]Φ+
m1(ϕ), Vl2,m2 [µ]Φ+

m2(ϕ)}0,L2(Ωµ) = 0,
{Vl1,m1 [µ]Φ−m1(ϕ), Vl2,m2 [µ]Φ−m2(ϕ)}0,L2(Ωµ) = 0,
{Vl1,m1 [µ]Φ+

m1(ϕ), Vl2,m2 [µ]Φ−m2(ϕ)}0,L2(Ωµ) = 0,
{Vl1,m1 [µ]Φ−m1(ϕ), Vl2,m2 [µ]Φ+

m2(ϕ)}0,L2(Ωµ) = 0.

Let P ∗ = (ηµ, ϑ, ϕ), i.e., with cosh ηµ = 1/µ. By a similar argument to that
used in [132], a direct computation shows that

{Vl1,m[µ]Φ+
m(ϕ), Vl2,m[µ]Φ+

m(ϕ)}0,L2(Ωµ)

= |µ|3 sinh ηµ
∫ 2π

0
(Φ+

m(ϕ))2dϕ

×
∫ π

0
Vl1,m[µ](P ∗)Vl1,m[µ](P ∗) sinϑ |sin(ϑ− iηµ)|2 dϑ

so that
|sin(ϑ− iηµ)|2 = cosh2 ηµ − cos2 ϑ,

where we have used that

|ζ(µ, P ∗)|1/2 = |µ|
∣∣∣1− (cosϑ cosh ηµ + i sinϑ sinh ηµ)2

∣∣∣1/2
= |µ| |sin(ϑ− iηµ)| .

By the usual argument of assuming that l1 > l2 in association with the facts∫ π

0
Pm
l1 (cosϑ)Pm

l2−2k(cosϑ) sinϑdϑ = 0,∫ π

0
Pm
l1+1(cosϑ) cosϑPm

l2−2k(cosϑ) sinϑdϑ = 0,

we find, by (2.2.7) and (2.2.14), that

{Vl1,m[µ]Φ+
m(ϕ), Vl2,m[µ]Φ+

m(ϕ)}0,L2(Ωµ)

= 2π(1 + δ0,m) |µ|2l1+3(l1 + 1 +m)(l1 + 1−m)(l1 + 1 +m)!
(2l1 + 1)2(l1 −m)! (αl1+1,m)2

×
√

1− µ2

µ
Pm
l1 ( 1

µ
)
[

1
µ
Pm
l1+1( 1

µ
)− l1 + 1 +m

2l1 + 3 Pm
l1 ( 1

µ
)
]
δl1,l2 ,

with the same formula when Φ+
m(ϕ) is replaced by Φ−m(ϕ), m > 0.
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Using the expressions of change of basis between different systems of
spherical and spheroidal harmonics calculated in the previous section, we
can now verify the following general conversion formula, which relates the
proper internal spheroidal harmonics associated with Ωµ to those associated
with any other Ωµ̃. Here the coefficients in the underlying series must depend
on µ, µ̃ in a nonpolynomial way.

Theorem 2.3.3. Let l ≥ 0, 0 ≤ m ≤ l and let µ, µ̃ ∈ [0, 1) ∪ iR+ such that
µ 6= 0. The coefficients wl,m,k[µ̃, µ] in the relation

V ±l,m[µ̃] =
[ l−m2 ]∑
k=0

wl,m,k[µ̃, µ]V ±l−2k,m[µ] (2.3.5)

are given by

wl,m,k[µ̃, µ] = 2F1(−k,−l + k − 3/2;−l − 1/2; (µ̃/µ)2) w̃l,m,k µ2k, (2.3.6)

where
w̃l,m,k = (l + 1 +m)!(2l + 3− 4k)!!

2k(l + 1 +m− 2k)!k!(2l + 3− 2k)!! .

Proof. We begin by replacing µ by µ̃ in (2.2.17) and replacing the terms
on the right-hand side according to (2.2.16). By linear independence of the
harmonic basis elements, it follows that

wl,m,k[µ̃, µ] = µ2k
k∑

n=0
αl+1,m,nα̃l−2n+1,m,k−n (µ̃/µ)2n (2.3.7)

in which we note that all terms are real-valued. Direct computations show
that

αl+1,m,nα̃l−2n+1,m,k−n = w̃l,m,k cl,k,n,

where

cl,k,n = (−1)n l!k!(2l + 1− 2n)!(2l + 3− 2k)!
n!(l − n)!(2l + 1)!(k − n)!(2l + 3− 2n− 2k)!

is the coefficient in the polynomial

2F1(−k,−l + k − 3/2;−l − 1/2; (µ̃/µ)2) =
k∑

n=0
cl,k,n (µ̃/µ)2n .

The result now follows.
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The use of the particular coefficients wl,m,k[µ̃, µ] in (2.3.5) is for the fol-
lowing.

Corollary 2.3.4. For each l ≥ 0 and 0 ≤ m ≤ l, the limits

lim
µ̃→0

wl,m,k[µ̃, µ], lim
µ→0

wl,m,k[µ̃, µ]

exist and are given, respectively, by

wl,m,k[0, µ] = α̃l+1,m,k µ
2k, wl,m,k[µ̃, 0] = αl+1,m,k µ̃

2k,

where the constants αl,m,k and α̃l,m,k are given by (2.2.1) and (2.2.2).

Proof. By (2.3.7), it follows that

wl,m,k[µ̃, µ] =
k−1∑
n=1

αl+1,m,nα̃l−2n+1,m,k−n µ̃
2nµ2(k−n)

+ αl+1,m,kα̃l−2k+1,m,0 µ̃
2k + αl+1,m,0α̃l+1,m,k µ

2k.

By taking µ = 0 or µ̃ = 0, we obtain the desired limits.

Corollary 2.3.4 extends the definition of the coefficients wl,m,k[µ̃, µ] for the
case µ = 0, and we thus can drop the restriction µ 6= 0 stated in Theorem
2.3.3.

From the considerations adduced in the previous section, it becomes clear
that the orthogonality of the proper external functions may be derived using
the evident connections with the proper internal ones. It will be worked out
thoroughly below. The main difference between the internal and external
proper harmonics lies in the additional functions (2.1.6) and (2.1.7). As we
could see, Vl,m[µ] decomposes into summands of the form

Pm
l−2k(cosϑ)Pm

l−2k(cosh η).

However, V̂l,m[µ] includes not only summands of the form

Pm
l−2k(cosϑ)Qm

l−2k(cosh η)

but also an additional term, cosh η Vl[µ] or cosϑVl[µ], as the case may be,
where Vl[µ] is given by (2.2.10). Thus, it is necessary to improve our tech-
niques of proving the orthogonality of the external functions V̂ ±l,m[µ] with
respect to different inner products.

At first, we formulate the following technical proposition, a result which
will be useful hereafter. It expresses an orthogonal property for the ansatz
functions V̂l,m[µ]. We here borrow from the techniques used in the earlier
work [250] and extend those results.
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Proposition 2.3.5. Let V̂l,m[µ] be defined as in (2.2.8) and let µ be fixed.
The following orthogonality relations hold for all m = 0, 1, . . . and each pair
(l, k) such that l, k ∈ {m,m+ 1},

∫ π

0
V̂l,m[µ]Pm

k (cosϑ) sinϑdϑ = 0. (2.3.8)

Proof. Fix a value of µ. We denote the left-hand sides of (2.3.8) by Cm
ε1,ε2(µ)

with l = m+ ε1 and k = m+ ε2. We only use pairs in the set {(0, 0), (0, 1),
(1, 0), (1, 1)}.

We have from (2.2.8) that

Cm
(1,0)(µ) =

∫ π

0
V̂m+1,m[µ]Pm

m (cosϑ) sinϑdϑ

= βm+2,m(m+ 1)
µm+4

∫ π

0

[
(2m+ 3)Pm

m+1(cosϑ)Qm
m+1(cosh η)

− 2mPm
m+1(cosϑ)Qm

m−1(cosh η)
cosh2 η − cos2 ϑ

]
Pm
m (cosϑ) sinϑdϑ.

We may observe that the first term gives a zero-integral because of the or-
thogonality (1.4.24) of the associated Legendre functions of the first kind.
The second term also has a vanishing integral because the underlying func-
tion is odd with respect to the variable t = cosϑ. Similarly, it can be proved
that Cm

(0,1)(µ) = 0.
We now consider the two remaining integrals Cm

(0,0)(µ) and Cm
(1,1)(µ). For

simplicity, we only sketch the proof for Cm
(0,0)(µ). The other can be derived

straightforwardly. We proceed with the proof using induction. Let us begin
by computing Cm

(0,0)(µ) for the initial values m = 0, 1. As a consequence of
Neumann’s formula (1.4.6), we find that

Q0(cosh η) = 1
2

∫ π

0

cosh η sinϑ
cosh2 η − cos2 ϑ

dϑ.

Using the explicit representation (2.2.9) for the V̂0,0[µ] we obtain, as before,

C0
(0,0)(µ) =

∫ π

0
V̂0,0[µ]P0(cosϑ) sinϑdϑ

= 3
µ3 log

(
cosh η + 1
cosh η − 1

)
− 6
µ3 Q0(cosh η)

= 0.
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We compute

C1
(0,0)(µ) =

∫ π

0
V̂1,1[µ]P 1

1 (cosϑ) sinϑdϑ

= 15
2µ4

∫ π

0

[
3P 1

1 (cosϑ)Q1
1(cosh η)

− 2 cosh η P 1
1 (cosϑ)Q1

0(cosh η)
cosh2 η − cos2 ϑ

]
P 1

1 (cosϑ) sinϑdϑ

= 15
2µ4

[
4Q1

1(cosh η)− 2 cosh η Q1
0(cosh η)

∫ π

0

sin3 ϑ

cosh2 η − cos2 ϑ
dϑ

]
= 0,

where Neumann’s formula (1.4.6) and (2.2.9) were used again to obtain∫ π

0

sin3 ϑ

cosh2 η − cos2 ϑ
dϑ = 2

[
Q0(cosh η)

cosh η −Q1(cosh η)
]
.

Having thus shown that C0
(0,0)(µ) = C1

(0,0)(µ) = 0, it now remains to deduce
the values of Cm

(0,0)(µ) from the values of the corresponding integrals Cm−1
(0,0) (µ)

using a recurrence relation, as we proceed to show.
For an arbitrary m > 1, we have from (2.2.8) that

Cm
(0,0)(µ) =

∫ π

0
V̂m,m[µ]Pm

m (cosϑ) sinϑdϑ

= βm+1,m(2m+ 1)
µm+3

∫ π

0

[
(2m+ 1)Pm

m (cosϑ)Qm
m(cosh η)

− 2mcosh η Pm
m (cosϑ)Qm

m−1(cosh η)
cosh2 η − cos2 ϑ

]
Pm
m (cosϑ) sinϑdϑ

= βm+1,m(2m+ 1)
µm+3

[
2(2m)!Qm

m(cosh η)

− 2m cosh η Qm
m−1(cosh η)

∫ π

0

[Pm
m (cosϑ)]2

cosh2 η − cos2 ϑ
sinϑdϑ

]
.

Now, we rewrite the integral part in the above formula as follows:∫ π

0

[Pm
m (cosϑ)]2

cosh2 η − cos2 ϑ
sinϑdϑ

= (2m− 1)2
∫ π

0

[Pm−1
m−1 (cosϑ)]2

cosh2 η − cos2 ϑ
sin3 ϑdϑ

= 2(2m− 1)!− (2m− 1)2 sinh2 η
∫ π

0

[Pm−1
m−1 (cosϑ)]2

cosh2 η − cos2 ϑ
sinϑdϑ.
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Substituting all these computations into Cm
(0,0), we find

µm+3

βm+1,m(2m+ 1) Cm
(0,0)(µ)

= 2(2m)!
[
Qm
m(cosh η)− cosh η Qm

m−1(cosh η)

+(2m− 1) sinh η Qm−1
m−1(cosh η)

]
− µm+2

βm,m−1
2m(2m− 1) sinh ηCm−1

(0,0) (µ),

with
βm+1,m

βm,m−1
= 2m+ 3

2m(2m+ 1) .

We shall proceed as follows. According to (1.4.22) and (1.4.23), we obtain

Qm
m(cosh η)− cosh η Qm

m−1(cosh η)
+ (2m− 1) sinh η Qm−1

m−1(cosh η) = 0.

Therefore
Cm

(0,0)(µ) = −(2m+ 1)(2m+ 3)
µ

sinh ηCm−1
(0,0) (µ).

This is an inductive formula associated with the initial values C0
(0,0)(µ) =

C1
(0,0)(µ) = 0. It yields that Cm

(0,0)(µ) = 0 for all m = 0, 1, . . . . This completes
the proof.

According to the previous result, we can formulate two main theorems
about the orthogonality of the external functions V̂ ±l,m[µ] over the exterior
and surface of the prescribed spheroids. The theorems are as follows:

Theorem 2.3.6. For fixed µ, the set {V̂ ±l,m[µ] : m = 0, . . . , l+1; l = 0, 1, . . . }
forms an orthogonal family of Har2(R3 \ Ωµ) with the norms

‖V̂ ±l,m[µ]‖2
L2(R3\Ωµ) = 2π(1 + δ0,m)

µ2l+3 γ̂l,mÎl,m(µ), (2.3.9)

where Îl,m(µ) is defined by (2.1.20), and

γ̂l,m = (2l + 1)!!(2l + 3)!!(l + 2−m)
(l +m)!(l + 1−m)! . (2.3.10)
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Proof. We will assume that ν < 0 because the case ν > 0 is similar. When
m1 6= m2, we have

〈V̂l1,m1 [µ]Φ+
m1(ϕ), V̂l2,m2 [µ]Φ+

m2(ϕ)〉0,L2(R3\Ωµ) = 0,

〈V̂l1,m1 [µ]Φ−m1(ϕ), V̂l2,m2 [µ]Φ−m2(ϕ)〉0,L2(R3\Ωµ) = 0,

〈V̂l1,m1 [µ]Φ+
m1(ϕ), V̂l2,m2 [µ]Φ−m2(ϕ)〉0,L2(R3\Ωµ) = 0,

〈V̂l1,m1 [µ]Φ−m1(ϕ), V̂l2,m2 [µ]Φ+
m2(ϕ)〉0,L2(R3\Ωµ) = 0.

Using (2.1.15), we obtain

〈V̂l1,m[µ]Φ+
m(ϕ), V̂l2,m[µ]Φ+

m(ϕ)〉0,L2(R3\Ωµ)

= (1 + δ0,m)π
∫ π

0

∫ ∞
ηµ

V̂l1,m[µ]V̂l2,m[µ]dR,

where dR = µ3(cosh2 η − cos2 ϑ) sinh η sinϑ dηdϑ.
Thus we study integrals of the form∫ π

0
V̂l1,m[µ] V̂l2,m[µ](cosh2 η − cos2 ϑ) sinϑdϑ.

Without loss of generality, we assume in the first instance that l1 > l2 and
proceed to set V̂l1,m[µ] as (2.2.8) and V̂l2,m[µ] as (2.2.20). Thus, following
Theorem 2.2.9, it follows that the remaining nonvanishing integrals are, re-
spectively, ∫ π

0
V̂l1,m[µ]Pm

m (cosϑ) sinϑdϑ,

according to l2 −m being even, or∫ π

0
V̂l1,m[µ]Pm

m+1(cosϑ) sinϑdϑ,

according to l2 −m being odd.
Using representation (2.2.20) for V̂l1,m[µ] again, we are led towards the

integrals of the form, as stated in Proposition 2.3.5. Therefore, the remaining
integrals vanish, so the orthogonality property follows. The rest of the proof
is similar to that for Theorem 2.3.1.

Theorem 2.3.7. For fixed µ, the set {V̂ ±l,m[µ] : m = 0, . . . , l+1; l = 0, 1, . . . }
forms an orthogonal family over the surface of the spheroid Ωµ in the sense
of the scalar product (2.3.4).

Proof. The proof goes along the same lines as those of Theorems 2.3.2 and
2.3.6, and hence, we omit the details.



3

Families of Monogenic and
Contragenic Functions on
Spheroidal Domains

In the first part of this chapter, two distinct single one-parameter families of
internal and external spheroidal monogenics are calculated. New explicit for-
mulas for their nonscalar parts are obtained in terms of the proper spheroidal
harmonics. Consequently, two orthogonal bases of monogenic functions are
constructed for the interior and exterior of a spheroid. It is further shown
that the orthogonality of the spheroidal monogenics in question does not
depend on the eccentricity of the spheroids. Conversion formulas are ob-
tained that relate different spheroidal monogenic systems using expressions
of change of basis calculated in the previous chapter. An application of the
theoretical material is made to determine the Bergman kernel function for
the space of monogenic and square-integrable functions defined in a spheroid.
Also, we provide plot simulations that demonstrate the effectiveness of this
approach.

The second part of the chapter is focused on constructing a basis for
the space of functions obtained by summing a monogenic function with an
antimonogenic function. Also, we give an explicit construction of a graded
basis for the space of square-integrable contragenic functions. Then we inves-
tigate the relations between the contragenic function systems for spheroids
of different eccentricities. This produces the notion of “universal spheroidal
contragenic function.” For simplicity’s sake, we have confined our discussion
in this part of the chapter to the case of the region inside a spheroid. Still,
it is worth mentioning that the results can be extended to the region outside
a spheroid.

93
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3.1 Orthogonal Bases for Monogenics in Dis-
tinct Spheroids

We have hitherto discussed those solutions of the Laplace equation, or in
other words, those solutions of the equivalent equation in prolate spheroidal
coordinates. In the present section, we propose to consider families of inter-
nal and external spheroidal monogenics, for which new explicit formulas for
their nonscalar parts are obtained in terms of the proper spheroidal harmon-
ics (2.1.21) and (2.1.22). We also relate the families of monogenic functions
associated with a spheroid Ωµ to those defined in another spheroid via com-
putational formulas. Moreover, we prove that these families are orthogonal
with respect to the scalar L2-inner product over the interior and exterior of
a spheroidal domain. Additionally, we show the corresponding orthogonality
of these families over the surface of the prescribed spheroids with respect to
a suitable weight function. Although the spheroidal monogenics are nonho-
mogeneous, this will not affect the completeness of the obtained systems.

3.1.1 Internal Monogenic Spheroidal Polynomials
A basis of polynomials spanning the square-integrable solutions of ∂f = 0
was given in [239, 242] for prolate spheroids and another in [256] (cf. [248])
for oblate spheroids, via explicit formulas. Note that the preceding prolate
and oblate spheroidal monogenics can be obtained as a particular case of the
present theory by appropriate interpretation. In the following, we consider
the prolate and oblate cases of spheroids simultaneously.

Definition 3.1.1. Let l ≥ 0 and 0 ≤ m ≤ l+1. The basic internal monogenic
spheroidal polynomials of degree l and order m are

X±l,m[µ] = ∂(U±l+1,m[µ]), (3.1.1)

where the U±l,m[µ] are defined by (2.1.6).

The prescribed polynomials X±l,m[µ] are indeed monogenic since U±l+1,m[µ]
are harmonic, given the factorization (1.3.7) of the Laplacian. As derivatives
of polynomials, they are also polynomials in x0, x1, x2. It can be further
shown that X±l,m[µ] are (up to rescaling) the same polynomials defined in
[239]; we will not need this fact here.

As shown in [239], the following expression will be essential in construct-
ing the basic spheroidal monogenics. It allows us to define the zero-order
monogenic polynomials.
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Lemma 3.1.2. For each l ≥ 0,

Vl,−1[µ] = − 1
(l + 1)(l + 2) Vl,1[µ]. (3.1.2)

Proof. To prove this, we use representation (2.2.7). According to (1.4.7), we
find that

Vl,−1[µ] = − αl+1,−1

(l + 1)2(l + 2)2 αl+1,1
Vl,1[µ]

= − 1
(l + 1)(l + 2) Vl,1[µ].

The result follows.

By the lemma just proved, and by (3.1.1), we obtain the further result:

Lemma 3.1.3.

X±l,−1[µ] =

∓
1

(l + 1)(l + 2) X±l,1[µ] if l = 1, 2, . . . ,

0 if l = 0.
(3.1.3)

Now we will work out explicit expressions for the basic spheroidal mono-
genics in terms of the orthogonal basis of proper harmonic polynomials,
first published in [239]. It was noted in [240] that Sc(X±l,m[0]) is equal to
V ±l,m[0] = (l + 1 + m)U±l,m[0], and an explicit expression for the vector part
of X±l,m[0] was written out. In this way, the following theorem may be con-
sidered as a generalization of the corresponding result of [240] to spheroidal
domains of arbitrary eccentricity.

Theorem 3.1.4. For each l ≥ 0 and 0 ≤ m ≤ l + 1, the basic internal
monogenic spheroidal polynomials (3.1.1) are equal to

X±l,m[µ] =V ±l,m[µ] + i
2

[
(l + 1 +m)V ±l,m−1[µ]− 1

l + 2 +m
V ±l,m+1[µ]

]
∓ j

2

[
(l + 1 +m)V ∓l,m−1[µ] + 1

l + 2 +m
V ∓l,m+1[µ]

]
, (3.1.4)

where the V ±l,m[µ] are defined by (2.2.7). Further, the X±l,m[µ] are polynomials
in µ2.
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Proof. The operator (1.3.2) in spheroidal coordinates (2.1.2) is

∂ = 1
µ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η ∂

∂η
− sinϑ cosh η ∂

∂ϑ

)

− 1
µ(cosh2 η − cos2 ϑ)

(i cosϕ+ j sinϕ)
(

sinϑ cosh η ∂
∂η

+ cosϑ sinh η ∂
∂ϑ

)

− 1
µ sinϑ sinh η (−i sinϕ+ j cosϕ) ∂

∂ϕ
.

The first line of this expression applied to U±l+1,m[µ] produces the scalar part
of X±l,m[µ] in (3.1.4). For the nonscalar part, we use the relations (1.4.14),
(1.4.16), (1.4.18) and (1.4.20) to obtain

2
µl+1αl+1,mΦ±m

(
cosϑ sinh η ∂

∂ϑ
+ sinϑ cosh η ∂

∂η

)
U±l+1,m[µ]

= (l + 1 +m)(l + 2−m)
[
sinϑ cosh ηPm

l+1(cosϑ)Pm−1
l+1 (cosh η)

− cosϑ sinh η Pm−1
l+1 (cosϑ)Pm

l+1(cosh η)
]

+ sinϑ cosh ηPm
l+1(cosϑ)Pm+1

l+1 (cosh η)
+ cosϑ sinh ηPm+1

l+1 (cosϑ)Pm
l+1(cosh η).

Next, we use the relation (1.4.17) (valid for |t| < 1, and replacing 1− t2 with
t2 − 1 for |t| > 1) producing

−(cosh2 η − cos2 ϑ)
µlαl+1,m−1

Vl,m−1[µ] = sinϑ cosh η Pm
l+1(cosϑ)Pm−1

l+1 (cosh η)

− cosϑ sinh η Pm−1
l+1 (cosϑ)Pm

l+1(cosh η).

Furthermore, using the expression (1.4.15) and its counterpart (1.4.19) for
|t| > 1, and then applying (1.4.13), we arrive at

cosh η sinϑPm
l+1(cosϑ)Pm+1

l+1 (cosh η)
+ sinh η cosϑPm+1

l+1 (cosϑ)Pm
l+1(cosh η)

= (cosh2 η − cos2 ϑ)
(l + 1−m)(l + 2 +m)µlαl+1,m+1

Vl,m+1[µ].

With these calculations at hand, we have

− 1
µ(cosh2 η − cos2 ϑ)

(
sinϑ cosh η ∂

∂η
+ cosϑ sinh η ∂

∂ϑ

)
U±l+1,m[µ]

= (l + 1 +m)
2 Vl,m−1[µ]Φ±m −

1
2(l + 2 +m) Vl,m+1[µ]Φ±m.
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Similarly, one can prove that

1
sinϑ sinh η

∂

∂ϕ
U±l+1,m[µ]

=∓ mµl+1αl+1,m

cosh2 η − cos2 ϑ
Φ∓m

×
[

sinh ηPm+1
l+1 (cosϑ)Pm

l+1(cosh η)
sinϑ + sinϑPm+1

l+1 (cosϑ)Pm
l+1(cosh η)

sinh η

]

=± µ

2

[ 1
l + 2 +m

Vl,m+1[µ] + (l + 1 +m)Vl,m−1[µ]
]

Φ∓m.

Combining these three formulas, one straightforward obtains the desired ex-
pressions for (∂/∂x1)U±l+1,m[µ] and (∂/∂x2)U±l+1,m[µ]. It turns out by the
uniqueness of the representation of expression (2.2.16) that X±l,m[µ] are poly-
nomials in µ2.

Some examples of (3.1.1) in low degree provided by (3.1.4) are exhibited
in Tables 3.1 and 3.2.

It is evident that, by Proposition 2.2.5 and Theorem 3.1.4, we may find
explicit expressions for the internal solid spherical monogenics X±l,m[0] in
terms of the basic solid spherical harmonics U±l,m[0] [240]. Applications of
these functions are detailed in Chapter 5.

Corollary 3.1.5. For all x ∈ R3, the limit limµ→0 X±l,m[µ](x) exists and is
given by

X±l,m[0](x) = (l + 1 +m)U±l,m[0](x)

+ i
2

[
(l +m)(l + 1 +m)U±l,m−1[0](x)− U±l,m+1[0](x)

]
∓ j

2

[
(l +m)(l + 1 +m)U∓l,m−1[0](x) + U∓l,m+1[0](x)

]
, (3.1.5)

where the U±l,m[0] are defined by (2.1.10).

For general orientation, the reader is urged to read some of the exist-
ing works where the internal spherical monogenics emerged [63, 64, 65].
It is worth mentioning that at the time of the publications [64, 65, 67],
closed-form representations corresponding to X±l,m[0] in terms of the basic
internal solid spherical harmonics (2.1.10), initially stated in [240], were not
at disposal for the investigation of some basic properties of these functions
[240]. They played a fundamental role in [149, 150, 151, 236, 240, 241] in
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l m X±l,m[µ]

0
0 X+

0,0 = 1

1 X+
0,1 = i

X−0,1 = j

1

0 X+
1,0 = 2x0 + ix1 + jx2

1 X+
1,1 = −3x1 + 3ix0

X−1,1 = −3x2 + 3jx0

2 X+
1,2 = −6ix1 + 6jx2

X−1,2 = −6ix2 − 6jx1

2

0 X+
2,0 = 3

(
x2

0 −
x2

1
2 −

x2
2

2 −
µ2

5

)
+ 3ix0x1 + 3jx0x2

1 X+
2,1 = −12x0x1 + 3i

(
2x2

0 −
3x2

1
2 −

x2
2

2 −
2µ2

5
)
− 3jx1x2

X−2,1 = −12x0x2 − 3ix1x2 + 3j
(
2x2

0 −
x2

1
2 −

3x2
2

2 −
2µ2

5
)

2 X+
2,2 = 15(x2

1 − x2
2)− 30ix0x1 + 30jx0x2

X−2,2 = 30x1x2 − 30ix0x2 − 30jx0x1

3 X+
2,3 = 45i(x2

1 − x2
2)− 90jx1x2

X−2,3 = 90ix1x2 + 45j(x2
1 − x2

2)

Table 3.1: Basic spheroidal monogenic polynomials of degree l = 0, 1, 2,
parametrized by the eccentricity µ.

the study of quaternionic counterparts of the well-known Bohr Theorem,
Borel-Carathéodory’s Theorem, and Hadamard’s Real-Part Theorems on the
majorant of a Taylor series, as well as Bloch’s Theorem, where they were in-
vestigated in detail.

In a different context, orthogonal Appell bases (with respect to the hyper-
complex derivative) of monogenic polynomials were constructed in [38, 39]
(cf. [40, 41] and [238]) using systems of H-valued internal solid spherical
monogenics, which are orthogonal with respect to the quaternionic inner
product (1.2.1). These bases were rediscovered in [203] and [42, 204] using
a different algebraic approach based on Gelfand-Tsetlin schemes. We shall
not enter into a discussion of the properties of the Gelfand-Tsetlin bases in
dimension 3. They will be found very completely treated by Bock et al. [42].
We will, however, as explained later in this chapter, show that the prescribed
bases can also be generated using the previous functions (3.1.5) (see Theorem
3.1.20 below).
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l m X±l,m[µ]

3

X+
3,0 = 2x0

(
2x2

0 − 3x2
1 − 3x2

2 −
6µ2

7
)

0 + 3ix1
(
2x2

0 −
x2

1
2 −

x2
2

2 −
2µ2

7
)

+ 3jx2
(
2x2

0 −
x2

1
2 −

x2
2

2 −
2µ2

7
)

X+
3,1 = 15x1

(
− 2x2

0 + x2
1

2 + x2
2

2 + 2µ2

7

)
1 + 5ix0

(
2x2

0 −
9x2

1
2 −

3x2
2

2 −
6µ2

7
)
− 15jx0x1x2

X−3,1 = 15x2

(
− 2x2

0 + x2
1

2 + x2
2

2 + 2µ2

7

)
− 15ix0x1x2 + 5jx0

(
2x2

0 −
3x2

1
2 −

9x2
2

2 −
6µ2

7
)

X+
3,2 = 90x0(x2

1 − x2
2) + 30ix1

(
− 3x2

0 + x2
1 + 3µ2

7
)

2 + 30jx2
(
3x2

0 − x2
2 −

3µ2

7
)

X−3,2 = 180x0x1x2 + 15ix2
(
− 6x2

0 + 3x2
1 + x2

2 + 6µ2

7
)

+ 15jx1
(
− 6x2

0 + x2
1 + 3x2

2 + 6µ2

7
)

3 X+
3,3 = 105x1(−x2

1 + 3x2
2) + 315ix0(x2

1 − x2
2)− 630jx0x1x2

X−3,3 = 105x2(−3x2
1 + x2

2) + 630ix0x1x2 + 315jx0(x2
1 − x2

2)

4 X+
3,4 = 420ix1(−x2

1 + 3x2
2) + 420jx2(3x2

1 − x2
2)

X−3,4 = 420ix2(−3x2
1 + x2

2) + 420jx1(−x2
1 + 3x2

2)

Table 3.2: Basic spheroidal monogenic polynomials of degree l = 3,
parametrized by the eccentricity µ.

To motivate the relevance of the expressions stated above, explicit recur-
rence rules between the basic spheroidal monogenic polynomials (3.1.4) are
discussed in the following.

Proposition 3.1.6. For each l ≥ 0 and 0 ≤ m ≤ l+1, the basic polynomials
(3.1.1) satisfy the recursive formula

X±l,m[µ] = (l + 1 +m)
2

(
X±l,m−1[µ] i∓X∓l,m−1[µ] j

)
− 1

2(l + 2 +m)
(
X±l,m+1[µ] i±X∓l,m+1[µ] j

)
. (3.1.6)
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Proof. The proof is an immediate consequence of Theorem 3.1.4 by direct
inspection of the relations between the quaternionic components of the basic
polynomials.

Eq. (3.1.6) requires knowledge of polynomials of a fixed degree l with
ordersm−1 andm+1. These polynomials in their turn depend, respectively,
upon polynomials of degree l, with ordersm−2 andm. Thus, only a recursion
overm from smallest to largest is needed. Under these conditions, a recursive
scheme based on this equation should find the backward and the basic forward
polynomials for a fixed degree with various orders up to m+1. In particular,
it is easy to find the values of X+

0,1[µ] and X−0,1[µ], directly from the initial
value X+

0,0[µ], expressed as

X+
0,0[µ] = 1 = −X+

0,1[µ]i = −X−0,1[µ]j. (3.1.7)

From this we easily deduce the further result:

Corollary 3.1.7. For each l ≥ 0 and 0 ≤ m ≤ l + 1, the basic polynomials
(3.1.1) satisfy the recurrence formula

(l + 1 +m)
(
X+
l,m−1[µ]−X−l,m−1[µ]k

)
+ X+

l,m[µ]i + X−l,m[µ]j = 0,

with the starting value (3.1.7).

However, the computation of representations (3.1.4) and (3.1.5) would be
somewhat laborious; we proceed, therefore, to investigate more convenient
expressions. Given Theorem 2.3.3, it is natural to ask whether it would
be possible to express the basic spheroidal monogenics associated with Ωµ

to those associated with Ωµ̃. The following conversion formula can be ob-
tained as a direct consequence of the fact that by Theorem 2.3.3, the matrix
(wl,m,k[µ, µ̃])l,k is essentially the product of (αl+1,m,kµ̃

2k)l,k and the inverse of
(α̃l+1,m,kµ

2k)l,k.

Theorem 3.1.8. Let l ≥ 0, 0 ≤ m ≤ l+ 1 and let µ, µ̃ ∈ [0, 1)∪ iR+. Then

X±l,m[µ̃] =
[ l+1−m

2 ]∑
k=0

wl,m,k[µ̃, µ]X±l−2k,m[µ], (3.1.8)

where the wl,m,k[µ̃, µ] are given by (2.3.6).

It is of interest to remark at this point that the basic antimonogenic
polynomials satisfy the same relation,

X±l,m[µ̃] =
[ l+1−m

2 ]∑
k=0

wl,m,k[µ̃, µ]X±l−2k,m[µ].
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As a consequence of the above theorem and Corollary 2.3.4, we have the
following result:

Corollary 3.1.9. Let l ≥ 0 and 0 ≤ m ≤ l + 1. Then

X±l,m[µ] =
[ l+1−m

2 ]∑
k=0

αl+1,m,k µ
2kX±l−2k,m[0], (3.1.9)

X±l,m[0] =
[ l+1−m

2 ]∑
k=0

α̃l+1,m,k µ
2kX±l−2k,m[µ],

where the constants αl,m,k and α̃l,m,k are given by (2.2.1) and (2.2.2).

It readily follows from expression (3.1.9) that for fixed µ 6= 0, the poly-
nomials X±l,m[µ] are generally not homogeneous.

In Subsection 3.2.3, we extend the above formulas to include the con-
tragenic functions, which are those harmonic functions orthogonal to the
monogenic functions and the antimonogenic functions in the domain under
consideration.

The following theorem, more general than that of [239], includes the latter
as a particular case. It addresses the orthogonality of the basic monogenic
polynomials X±l,m[µ], which is the central theme of the present section. The
proof here given may be taken as an alternative to that of [239].

Theorem 3.1.10. For fixed µ, the set {X±l,m[µ] : m = 0, . . . , l + 1; l =
0, 1, . . . } forms an orthogonal family over the spheroid Ωµ in the sense of the
scalar inner product (1.2.2). Their norms are given by

‖X±l,m[µ]‖2
L2(Ωµ) = π µ2l+3

(l + 2)(l + 2 +m)(2l + 1)!!(2l + 3)!![
(l + 2)(l +m)(l + 1 +m)(l + 3−m)!(l + 2 +m)!Il,m−1(µ)

+ 2δ0,m(l + 2 +m)(l + 1)!(l + 2)!Il,1(µ)
+ (l + 2)(l + 1−m)!(l + 2 +m)!

(
Il,m+1(µ)

+ 2(l + 2−m)(l + 1 +m)(1 + δ0,m)Il,m(µ)
)]
,

where Il,m(µ) is defined by (2.1.18). For the limiting case, µ = 0,

‖X±l,m[0]‖2
L2(Ω0) = 2π(1 + δ0,m)(l + 1)(l + 1 +m)!

(2l + 3)(l + 1−m)! . (3.1.10)
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Proof. By definition of the integral (1.2.2), it follows that

〈X±l1,m1 [µ],X±l2,m2 [µ]〉0,L2(Ωµ,A)

=
∫

Ωµ

(
[X±l1,m1 [µ]]0[X±l2,m2 [µ]]0 + [X±l1,m1 [µ]]1[X±l2,m2 [µ]]1

+ [X±l1,m1 [µ]]2[X±l2,m2 [µ]]2
)
dx.

By Theorems 3.1.4 and 2.3.1, we have
∫

Ωµ
[X±l1,m1 [µ]]0[X±l2,m2 [µ]]0 dx = ‖V ±l1,m1 [µ]‖2

L2(Ωµ) δl1,l2δm1,m2 . (3.1.11)

Thus, to verify the orthogonality of the X±l,m[µ], it suffices to show that the
vector parts of the polynomials X±l,m[µ] are orthogonal.

Expanding the integrands and applying the trigonometric identities

Φ±m1−1Φ±m2−1 + Φ∓m1−1Φ∓m2−1 = Φ+
m1−m2 ,

Φ±m1+1Φ±m2+1 + Φ∓m1+1Φ∓m2+1 = Φ+
m1−m2 ,

−Φ±m1−1Φ±m2+1 + Φ∓m1−1Φ∓m2+1 = ∓Φ+
m1+m2 ,

−Φ±m1+1Φ±m2−1 + Φ∓m1+1Φ∓m2−1 = ∓Φ+
m1+m2 ,

we obtain that∫
Ωµ

(
[X±l1,m1 [µ]]1[X±l2,m2 [µ]]1 + [X±l1,m1 [µ]]2[X±l2,m2 [µ]]2

)
dx

= 1
4

(
p1p2

∫
Ωµ
Vl1,m1−1[µ]Vl2,m2−1[µ]Φ+

m1−m2 dx

∓ p1

p2 + 1

∫
Ωµ
Vl1,m1−1[µ]Vl2,m2+1[µ]Φ+

m1+m2 dx

∓ p2

p1 + 1

∫
Ωµ
Vl1,m1+1[µ]Vl2,m2−1[µ]Φ+

m1+m2 dx

+ 1
(p1 + 1)(p2 + 1)

∫
Ωµ
Vl1,m1+1[µ]Vl2,m2+1[µ]Φ+

m1−m2 dx
)
,

where pi = li + 1 +mi (i = 1, 2).
We continue the calculations only for the prolate case. The following

identities ∫ 2π

0
Φ±m1±m2(ϕ)dϕ = 2πδm1,m2
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for m1,m2 > 0 imply that∫
Ωµ

(
[X±l1,m1 [µ]]1[X±l2,m2 [µ]]1 + [X±l1,m1 [µ]]2[X±l2,m2 [µ]]2

)
dx

= πp1(l2 + 1 +m1)
2 δm1,m2

∫ ηµ

0

∫ π

0
Vl1,m1−1[µ]Vl2,m1−1[µ] dR

∓ π l2 + 1
2(l1 + 2) δm1,0

∫ ηµ

0

∫ π

0
Vl1,1[µ]Vl2,−1[µ] dR

∓ π l1 + 1
2(l2 + 2) δm1,0

∫ ηµ

0

∫ π

0
Vl1,−1[µ]Vl2,1[µ] dR

+ π

2(p1 + 1)(l2 + 1 +m1) δm1,m2

∫ ηµ

0

∫ π

0
Vl1,m1+1[µ]Vl2,m1+1[µ] dR,

where dR = µ3(cosh2 η − cos2 ϑ) sinϑ sinh η dϑdη.
In consequence, using (3.1.3), we find∫

Ωµ

(
[X±l1,m1 [µ]]1[X±l2,m2 [µ]]1 + [X±l1,m1 [µ]]2[X±l2,m2 [µ]]2

)
dx

= πp1(l2 + 1 +m1)δm1,m2

2

∫ ηµ

0

∫ π

0
Vl1,m1−1[µ]Vl2,m1−1[µ] dR

± π

(l1 + 2)(l2 + 2) δm1,0

∫ ηµ

0

∫ π

0
Vl1,1[µ]Vl2,1[µ] dR

+ π

2p1(l2 + 1 +m1) δm1,m2

∫ ηµ

0

∫ π

0
Vl1,m1+1[µ]Vl2,m1+1[µ] dR.

Now, using Proposition 2.2.5 and applying again the orthogonality of Theo-
rem 2.3.1, we are left with∫

Ωµ

(
[X±l1,m1 [µ]]1[X±l2,m2 [µ]]1 + [X±l1,m1 [µ]]2[X±l2,m2 [µ]]2

)
dx

= πµ2l1+3

(l1 + 2)(2l1 + 1)!!(2l1 + 3)!!
×
[
(l1 + 2)(l1 + 1 +m1)!(

(l1 +m1)(l1 + 1 +m1)(l1 + 3−m1)!Il1,m1−1(µ)

+ (l1 −m1 + 1)!Il1,m1+1(µ)
)

+ 2(l1 + 1)!(l1 + 2)!Il1,1(µ)δ0,m1

]
δl1,l2δm1,m2 ,

(3.1.12)

with Il,m(µ) defined in (2.1.18). Combining (3.1.11) and (3.1.12), we conclude
that 〈X+

l1,m1 [µ],X+
l2,m2 [µ]〉0,L2(Ωµ,A) = 0 when l1 6= l2 or m1 6= m2. Similarly,

〈X−l1,m1 [µ],X−l2,m2 [µ]〉0,L2(Ωµ,A) = 0 when l1 6= l2 or m1 6= m2.
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Using the orthogonality of the system {Φ±m} on [0, 2π] again, we conclude
that 〈X±l1,m1 [µ],X∓l2,m2 [µ]〉0,L2(Ωµ,A) = 0 when the indices do not coincide. The
calculation of the norms comes from taking l1 = l2 and m1 = m2 in (3.1.12)
and adding expression (2.3.9). By the symmetric form of the X±l,m[µ] in
(3.1.4), it follows that ‖X+

l,m[µ]‖L2(Ωµ) = ‖X−l,m[µ]‖L2(Ωµ) when m 6= 0. The
limiting case, µ = 0, follows with the use of Corollary 3.1.5 and (2.3.3). The
proof is now completed.

The corresponding orthogonality of the basic spheroidal monogenic poly-
nomials over the surface of the prescribed spheroids follows immediately from
Theorems 2.3.2 and 3.1.10.

Theorem 3.1.11. For fixed µ, the set {X±l,m[µ] : m = 0, . . . , l + 1; l =
0, 1, . . . } forms an orthogonal family over the surface of the spheroid Ωµ in
the sense of the scalar product

{f , g}0,L2(∂Ωµ,A) = Sc
∫
∂Ωµ

f(x)g(x) |ζ(µ,x)|1/2 dσ, (3.1.13)

where |ζ(µ,x)| is defined by (2.1.9).

In Subsection 3.2.1, we detail how the monogenic polynomials fit in the
space of harmonic polynomials. In [208], it was shown that the dimension
of the spaceM+

l (Ω,A) of homogeneous monogenic polynomials with values
in A in the variables x0, x1, x2 of degree l is 2l + 3 (this does not depend on
the domain Ω). Since the polynomials we are working with are generally not
homogeneous (when µ 6= 0), we consider the space

M∗
l (Ωµ,A) =

⋃
0≤k≤l

M+
k (Ω,A)

of monogenic polynomials of degree no greater than l with values in A. This
class is not altered by adding monogenic polynomials of lower degree.

Thus

Proposition 3.1.12.

dimM∗
l (Ωµ,A) =

l∑
k=0

(2k + 3) = (l + 1)(l + 3). (3.1.14)

Consider the collection of 2k + 3 polynomials

Bk[µ] := {X+
k,m[µ] : 0 ≤ m ≤ k + 1} ∪ {X−k,m[µ] : 1 ≤ m ≤ k + 1}.
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By (3.1.14) and Theorem 3.1.10, the union⋃
0≤k≤l

Bk[µ] (3.1.15)

is an orthogonal basis for M∗
l (Ωµ,A). In addition, M∗

l (Ωµ,A) is dense in
M2(Ωµ,A). Therefore the following result, which will be of use in further
discussion, can now be established:

Theorem 3.1.13. For fixed µ, the set (3.1.15) forms an orthogonal basis of
M2(Ωµ,A).

Thus, as a consequence of the above theorem, we can define the Fourier
expansion of a square-integrable monogenic function defined in a spheroid of
arbitrary eccentricity. Using the L2-norms stated in Theorem 3.1.10, we can
normalize the proposed basic monogenic polynomials, and so the definition
is as follows:

Definition 3.1.14. Suppose f ∈ M2(Ωµ,A) and µ is fixed. The Fourier
series of f with respect to the basis (3.1.15) is

∞∑
l=0

l+1∑
m=0

(
a+
l,m[µ]

X+
l,m[µ]

‖X+
l,m[µ]‖L2(Ωµ)

+ a−l,m[µ]
X−l,m[µ]

‖X−l,m[µ]‖L2(Ωµ)

)
, (3.1.16)

where the associated coefficients are uniquely defined by

a±l,m[µ] = 1
‖X±l,m[µ]‖L2(Ωµ)

〈f ,X±l,m[µ]〉0,L2(Ωµ,A).

As will be hereafter seen, the series expansion (3.1.16) plays an essential
role in Chapter 5.

Obviously, according to Definition 3.1.14, f may be characterized by its
coefficients using Parseval’s identity:

Corollary 3.1.15. For fixed µ, f ∈M2(Ωµ,A) is equivalent to

∞∑
l=0

l+1∑
m=0

[
(a+
l,m[µ])2 + (a−l,m[µ])2

]
<∞.

Furthermore, it would be useful if the preceding basis (3.1.15) also has
the Appell property (with respect to the hypercomplex derivative). It was
shown in [256] that there does not exist an orthogonal Appell basis in the
case of spaces of internal oblate spheroidal monogenics.
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We shall proceed in such a manner that we compute the hypercomplex
derivative of a basic monogenic spheroidal polynomial of degree l and show,
as expected, that the obtained polynomial is not a member of the family with
degree l−1 like in the cases of Appell bases [39, 63, 65, 67]. We find that the
hypercomplex derivative of a basic spheroidal monogenic is a combination of
[(l−m)/2] + 1 spheroidal monogenics of lower degrees. It can be represented
by all basic polynomials of degree at most l − 1.

Theorem 3.1.16. For fixed µ, the hypercomplex derivatives of the X±l,m[µ]
are equal to

(1
2∂)X±l,m[µ] =

[ l−m2 ]∑
k=0

vl,m,k µ
2kX±l−1−2k,m[µ], (3.1.17)

where the constants vl,m,k are given by (2.2.15).

Proof. Since ∂/∂x0 is a linear operator, we find, by Theorem 2.2.6, the rela-
tion

∂

∂x0
V ±l,m[µ] =

[ l−m2 ]∑
k=0

vl,m,k µ
2kV ±l−1−2k,m[µ].

The rest of the proof follows from the same principle as Theorem 3.1.9.
Hence, we omit it.

Accordingly, from what has just been proved, we show that there are
two spheroidal monogenic constants among the elements of the canonical
basis (3.1.15), i.e., functions whose hypercomplex derivative is identically
zero. Later, by dimension considerations, we will see that these generate all
monogenic constants.

Proposition 3.1.17. For fixed µ, the polynomials X±l,l+1[µ] are monogenic
constants. Further, they do not depend on µ2.

Proof. The proof is a consequence of Theorem 3.1.16. It can be further
proved, by Corollary 3.1.9, that X±l,l+1[µ] = X±l,l+1[0]. Hence, the polynomials
X±l,l+1(x1, x2) do not depend on µ2.

The hypercomplex derivatives of the prescribed monogenic polynomials
in its extended signification being thus computed, no difficulties can arise in
restricting them to a particular limiting case. When µ = 0, we have readily
from (3.1.17) that [63, 65]:

(1
2∂)X±l,m[0] = (l + 1 +m)X±l−1,m[0]. (3.1.18)
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The reader might find that without any additional work, using (3.1.18) and
setting for each l ≥ 0 and 0 ≤ m ≤ l + 1,

Y±l,m := l!(1 +m)!
(l + 1 +m)! X±l,m[0] (3.1.19)

that
(1
2∂)Y±l,m = lY±l−1,m. (3.1.20)

Thus, the hypercomplex derivative of Y±l,m results again in a real multiple of
the similar polynomial one degree lower [238]. The particular normalization
(3.1.20) is called Appell property, which was already generalized in 1880
by Appell [21] to more general polynomial systems, nowadays called Appell
systems. In [67], it was proved that the internal solid spherical monogenics
(3.1.19) form, indeed, an orthogonal Appell basis forM2(Ω0,A). In [38] and
[41], fundamental recursion formulas were obtained for the elements of the
prescribed Appell basis.

It was further observed in [67] that for fixed l, the set {Y+
l,0 : l = 0, 1, . . . }

coincides in dimension 3 with the family of Appell homogeneous monogenic
polynomials studied by Malonek et al. in [112, 113, 114]. It is of interest to
remark that these generalized Appell polynomials were extensively applied
to the study of several elementary functions within hypercomplex analysis [5,
68, 69, 72, 83, 113, 219, 220], the computation of combinatorial identities [14,
71, 73], and the study of generalized Joukowski transformations in Euclidean
spaces of arbitrary higher dimension [18, 82]. We call attention to the fact
that the special monogenic polynomials given by Abul-Ez and Constales in
[7, 8, 9, 12, 342] are deliberately similar, up to a rescaling factor, to those
exploited in [113]. However, at the time of publication [7], the concept of
hypercomplex differentiability or the corresponding use of the hypercomplex
derivative was not reflected in the investigation of Appell sets of monogenic
polynomials. These generalized polynomials were used to prove a counterpart
of Hadamard’s three-hyperballs Theorem within hypercomplex analysis [13].

We now turn to the discussion of our results. We show that the Ap-
pell property holds for a part of the basic internal spheroidal monogenics
(providing the prescribed normalization (3.1.19) for X±l,m[µ]).

Corollary 3.1.18. Let µ be fixed. For l−m = 0, 1, the hypercomplex deriva-
tives of the X±l,m[µ] are equal to

(1
2∂)X±l,m[µ] = (l + 1 +m)X±l−1,m[µ].

Proof. It is an immediate consequence of Theorem 3.1.16.
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Having established this result, we proceed to compute the primitives of
the basic monogenic polynomials according to Definition 1.3.14. This will
be done by direct inversion of the formula of their hypercomplex derivatives
(3.1.17).

The result is that:

Theorem 3.1.19. For fixed µ, the monogenic primitives of the X±l,m[µ] are
equal to

P
(
X±l,m[µ]

)
= 1
l + 2 +m

X±l+1,m[µ]− µ2(l + 1 +m)
(2l + 1)(2l + 3) X±l−1,m[µ]. (3.1.21)

Proof. Using (2.2.15), it is easy to verify that

vl+1,m,k+1 = (l + 2 +m)(l + 1 +m)
(2l + 1)(2l + 3) vl−1,m,k.

We rely on formula (3.1.17) to obtain

1
2∂

(
X±l+1,m[µ]− µ2 (l + 2 +m)(l + 1 +m)

(2l + 1)(2l + 3) X±l−1,m[µ]
)

= (l + 2 +m)X±l,m[µ].

This leads to the theorem.

A direct examination of 3.1.21 shows that in the limiting case, µ = 0, we
readily have that [63, 66]:

P
(
X±l,m[0]

)
= 1
l + 2 +m

X±l+1,m[0]. (3.1.22)

The advantages of identities such as (3.1.17) and (3.1.21) are that they furnish
concise expressions for the hypercomplex derivatives and primitives of the
basic monogenic spheroidal polynomials for which many of their properties
may be investigated. These are explored in more detail in Chapter 5.

One of our significant results is that the three-dimensional solid spherical
monogenics considered, e.g., in [39, 43, 65, 67, 236], are embedded in the
prescribed one-parameter family of internal spheroidal monogenics. Hence,
the latter can be seen as an extension of the former functions to arbitrarily
spheroidal domains.
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3.1.2 The Monogenic Bergman Kernel on Spheroids
In the first instance, this section is concerned with constructing an orthog-
onal basis ofM2(Ωµ,H) formed by monogenic spheroidal polynomials with
values in H. The importance of building this basis stems from the role it plays
in the calculation of the monogenic Bergman kernel function in spheroidal
domains of arbitrary eccentricity. In particular, it is proved that the con-
structed mapping is a mapping in R3, and some examples that illustrate the
effectiveness of the approach are given.

With slight adaptation, all the results established in Subsection 3.1.1
apply to the construction of H-valued (left) monogenic polynomials satisfying
the Moisil-Teodorescu system (1.3.3). Cação gave the first example of such
a development in Ω0, in [63, 67] (cf. [64, 65, 66]), followed by Bock [38, 39,
40, 41] (cf. [238]).

By the representation given in (3.1.4), the following theorem can be es-
tablished:

Theorem 3.1.20. Let l ≥ 0 and 0 ≤ m ≤ l. For fixed µ, the monogenic
spheroidal polynomials defined by

XQ
l,m[µ] = X+

l,m+1[µ]i + X−l,m+1[µ]j (3.1.23)

or, more explicitly,

XQ
l,m[µ] =− (l + 2 +m)

(
V +
l,m[µ]− kV −l,m[µ]

)
+ iV +

l,m+1[µ] + jV −l,m+1[µ] (3.1.24)

are orthogonal over the spheroid Ωµ in the sense of the quaternionic inner
product (1.2.1). Their norms are given by

‖XQ
l,m[µ]‖2

L2(Ωµ) = 4π µ2l+3 (l + 2 +m)(l + 1−m)!(l + 2 +m)!
(2l + 1)!!(2l + 3)!!

[(l + 2−m)(l + 1 +m)(1 + δ0,m)Il,m(µ) + Il,m+1(µ)] ,

where Il,m(µ) is defined by (2.1.18). For the limiting case, µ = 0,

‖XQ
l,m[0]‖2

L2(Ω0) = 4π(l + 2 +m)(l + 2 +m)!
(2l + 3)(l −m)! . (3.1.25)

Proof. By definition of the quaternionic inner product (1.2.1),

〈XQ
l1,m1 [µ],XQ

l2,m2 [µ]〉L2(Ωµ,H) = (I) + i(II) + j(III) + k(IV),



110 3. MONOGENICS AND CONTRAGENICS ON SPHEROIDAL DOMAINS

where

(I) =
∫

Ωµ

(
[XQ

l1,m1 [µ]]0[XQ
l2,m2 [µ]]0 + [XQ

l1,m1 [µ]]1[XQ
l2,m2 [µ]]1

+ [XQ
l1,m1 [µ]]2[XQ

l2,m2 [µ]]2 + [XQ
l1,m1 [µ]]3[XQ

l2,m2 [µ]]3
)
dx,

(II) =
∫

Ωµ

(
−[XQ

l1,m1 [µ]]0[XQ
l2,m2 [µ]]1 + [XQ

l1,m1 [µ]]1[XQ
l2,m2 [µ]]0

− [XQ
l1,m1 [µ]]2[XQ

l2,m2 [µ]]3 + [XQ
l1,m1 [µ]]3[XQ

l2,m2 [µ]]2
)
dx,

(III) =
∫

Ωµ

(
−[XQ

l1,m1 [µ]]0[XQ
l2,m2 [µ]]2 + [XQ

l1,m1 [µ]]2 [XQ
l2,m2 [µ]]0

+ [XQ
l1,m1 [µ]]1[XQ

l2,m2 [µ]]3 − [XQ
l1,m1 [µ]]3[XQ

l2,m2 [µ]]1
)
dx,

(IV) =
∫

Ωµ

(
−[XQ

l1,m1 [µ]]0[XQ
l2,m2 [µ]]3 + [XQ

l1,m1 [µ]]3[XQ
l2,m2 [µ]]0

− [XQ
l1,m1 [µ]]1[XQ

l2,m2 [µ]]2 + [XQ
l1,m1 [µ]]2[XQ

l2,m2 [µ]]1
)
dx.

The proof follows similar lines of Theorems 3.1.4 and 3.1.10 and is therefore
omitted.

The theorem that has now been established will play an essential role in
calculating the monogenic kernel function in spheroidal domains of differing
eccentricity.

Further, it is seen that the chosen combination for the basic spheroidal
monogenics X±l,m+1[µ] stated in Theorem 3.1.20 follows by the underlying
symmetry of the polynomials (see Proposition 3.1.6 above); other possible
combinations of these polynomials could also be considered.

The corresponding orthogonality over the surface of the prescribed spheroids
holds for the polynomials (3.1.23).

Theorem 3.1.21. For fixed µ, the set {XQ
l,m[µ] : m = 0, . . . , l; l = 0, 1, . . . }

forms an orthogonal family over the surface of the spheroid Ωµ in the sense
of the quaternionic inner product

{f , g}L2(∂Ωµ,H) =
∫
∂Ωµ

f(x)g(x) |ζ(µ,x)|1/2 dσ,

where |ζ(µ,x)| is defined by (2.1.9).

Some examples of (3.1.23) in low degree provided by (3.1.23) are exhibited
in Table 3.3.
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l m XQ
l,m[µ]

0 0 XQ
0,0 = −2

1 0 XQ
1,0 = −6x0 − 3ix1 − 3jx2

1 XQ
1,1 = 12x1 − 12kx2

2
0 XQ

2,0 = 6
(
− 2x2

0 + x2
1 + x2

2 + 2µ2

5

)
− 12ix0x1 − 12jx0x2

1 XQ
2,1 = 60x0x1 + 15i(x2

1 − x2
2) + 30jx1x2 − 60kx0x2

2 XQ
2,2 = 90(−x2

1 + x2
2) + 180kx1x2

3

XQ
3,0 = 10x0

(
− 2x2

0 + 3x2
1 + 3x2

2 + 6µ2

7
)

0 + 15ix1
(
− 2x2

0 + x2
1

2 + x2
2

2 + 2µ2

7
)

+ 15jx2
(
− 2x2

0 + x2
1

2 + x2
2

2 + 2µ2

7
)

XQ
3,1 = 45x1

(
4x2

0 − x2
1 − x2

2 −
4µ2

7
)

1 + 90ix0(x2
1 − x2

2) + 180jx0x1x2

+ 45kx2(−4x2
0 + x2

1 + 45x2
2 + 4µ2

7
)

2 XQ
3,2 = 630x0(−x2

1 + x2
2) + 105ix1(−x2

1 + 3x2
2)

+ 105jx2(−3x2
1 + x2

2) + 1260kx0x1x2

3 XQ
3,3 = 840x1(x2

1 − 3x2
2) + 840kx2(−3x2

1 + x2
2)

Table 3.3: Spheroidal monogenic basis polynomials of degree l = 0, 1, 2, 3,
parametrized by the eccentricity µ.

In [318], it was shown that the dimension of the spaceM+
l (Ω,H) consist-

ing of homogeneous monogenic polynomials with values in H in the variables
x0, x1, x2 of degree l is l+1, and this does not depend on the domain Ω. Since
the polynomials XQ

l,m[µ] are generally not homogeneous (when µ 6= 0), we
proceed to the consideration of the space of H-valued monogenic polynomials
of degree no greater than l defined by

M∗
l (Ωµ,H) =

⋃
0≤k≤l

M+
k (Ω,H).

Thus
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Proposition 3.1.22.

dimM∗
l (Ωµ,H) =

l∑
k=0

(k + 1) = (l + 1)(l + 2)
2 . (3.1.26)

Now, consider the collection of k + 1 polynomials

Ck[µ] := {XQ
k,m[µ] : 0 ≤ m ≤ k}.

Hence, the union ⋃
0≤k≤l

Ck[µ] (3.1.27)

is an orthogonal basis for the spaceM∗
l (Ωµ,H), and this is by (3.1.26) and

Theorem 3.1.20. Moreover,M∗
l (Ωµ,H) is dense inM2(Ωµ,H).

It has thus been shown that:

Theorem 3.1.23. For fixed µ, the set (3.1.27) forms an orthogonal basis of
M2(Ωµ,H).

Accordingly, from what has just been proved, we can now find an ex-
plicit representation of the monogenic Bergman kernel function in spheroidal
domains of arbitrary eccentricity, which generalizes the corresponding result
in [243]. We see that M2(Ωµ,H) is a subspace of L2(Ωµ,H). Thus, by the
Quaternion Riesz Representation Theorem 1.2.23, to each x, x̃ ∈ Ωµ, there
exists a unique reproducing kernel B[µ](x, x̃) inM2(Ωµ,H) such that

f(x̃) = 〈f ,B[µ](·, x̃)〉L2(Ωµ,H), (3.1.28)

or equivalently,
f(x̃) =

∫
Ωµ
f(x)B[µ](x, x̃)dx

for any f ∈M2(Ωµ,H).
On combining this with what has been proved above, we have further the

following theorem:

Theorem 3.1.24. For fixed µ, the function

B[µ](x, x̃) =
∞∑
l=0

l∑
m=0

XQ
l,m[µ](x̃) XQ

l,m[µ](x)
‖XQ

l,m[µ]‖2
L2(Ωµ)

is the monogenic Bergman kernel function of the spheroid Ωµ.
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We now proceed to consider the particular case x̃ = 0. By (2.2.16), it
then follows that

B[µ](x,0) =
∞∑
l=0

XQ
l,0[µ](0) XQ

l,0[µ](x)
‖XQ

l,0[µ]‖2
L2(Ωµ)

=
∞∑
l=0

(−1)l+1(4l + 3)!! XQ
2l,0[µ](x)

(2µ)2l+3 l!(l + 1)! [4(l + 1)(2l + 1)I2l,0(µ) + I2l,1(µ)] ,

where Il,m(µ) is defined by (2.1.18).
In accordance with Theorem 3.1.20, a straightforward observation shows

that XQ
2l,0[µ] = −2(l + 1)X+

2l,0[µ] for all l ≥ 0, and thus B[µ](x,0) defines a
mapping in R3. It can further be seen that |B[µ](x,0)| does not depend on
the azimuthal angle ϕ. Hence the image of a spheroidal domain under this
mapping will be symmetric with respect to the x0-axis.

Figures 3.1–3.6 visualize approximations of different degrees for the image
of a prolate spheroid centered at the origin of eccentricity µ =

√
3/2, under

the mapping B[µ](x,0).

Figure 3.1: l = 1 Figure 3.2: l = 3

3.1.3 External Spheroidal Monogenic Functions
An orthogonal basis for the monogenic L2-space consisting of external sphe-
roidal functions is of prime importance to the analysis. Much of this sub-
section is devoted to studying the analytical properties of the elements that
constitute such a basis. The construction of the basic external spheroidal
monogenics becomes much more complicated than the one for internal func-
tions since they contain logarithmic functions. Thus a simple substitution in
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Figure 3.3: l = 5
Figure 3.4: l = 10

Figure 3.5: l = 13 Figure 3.6: l = 15

our arguments is not enough. We refer to [250] for a list of the known results
concerning the external prolate spheroidal monogenics before the present in-
vestigation.

In [18, 82], the authors defined the hypercomplex Joukowski transforma-
tions employing the connection between the Kelvin transform [148] applied
to certain monogenic polynomials and the hypercomplex derivative of the
fundamental solution (1.3.5). In [237], Morais et al. used the same strategy
and proposed an orthogonal basis of external solid hyperspherical monogen-
ics in dimension 4. In [40], the author also used a proper Kelvin transform
to construct H-valued external spherical monogenics from internal spheri-
cal monogenics. Additionally, a generalized Laurent series expansion for the
spherical shell was also considered in [40]. A theoretical advantage of these
procedures is that using a Kelvin transform keeps specific desirable properties
of the functions, such as orthogonality, invariant.

We point out that for A-valued functions in a spheroid, the Kelvin trans-
form method is not directly applicable.
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Moreover, ordinary methods based on the decomposition of an exterior
function space into subspaces of homogeneous functions often fail to prove
the completeness of a function system because of the appearance of logarith-
mic functions. All these remarkable observations suggest using a different
approach to verify the completeness of the underlying external monogenic
function system. The technique we use is based on the harmonic extension
of a function defined on the boundary of the spheroid Ωµ to the external
domain R3 \ Ωµ.

In an earlier paper [250], we treated the analogous problem of constructing
an orthogonal basis of elements spanning the square-integrable solutions of
∂f = 0 for the space exterior of a prolate spheroid via explicit formulas. We
here borrow some of these techniques and fit many of those results to the
present case. In particular, we can consider the prolate and oblate examples
of spheroids simultaneously. It is left to show that explicit formulas for the
external functions can readily be carried through in detail.

By following the procedure discussed in Subsection 3.1.1, we define the
required spheroidal monogenics to be employed for the space exterior of the
prescribed spheroids as follows.

Definition 3.1.25. Let l ≥ −1 and 0 ≤ m ≤ l + 1. The basic external
monogenic spheroidal functions of degree l and order m are

X̂±l,m[µ] = ∂Û±l+1,m[µ], (3.1.29)

where the Û±l,m[µ] are defined by (2.1.7).

Morais et al. [250] gave the first definition of the kind just indicated, thus
defining what, by using Legendre functions of the second type, are known as
the external prolate spheroidal monogenics.

We shall emphasize the apparent fact that the spheroidal monogenics
(3.1.29) are not polynomials but rather algebraic functions, which are homo-
geneous of degree −(l + 3).

By similar reasoning to that by which the internal spheroidal monogenics
were established, it can be shown that the explicit expressions of the external
spheroidal monogenics satisfy the same type of symmetry as the internal
spheroidal monogenics. However, when deducing equations such as (2.2.8)
and (2.2.20), l is supposed to be greater than or equal to −1, and m is a
positive integer, including zero, not greater than l + 1. The reader will also
notice that, given the factorization of the Laplacian (1.3.7), the functions
X̂±l,m[µ] are indeed monogenic. It is left to the reader to check that X̂±l,m[µ]
are (up to rescaling) the same functions defined in [250].
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We can now explicitly express the quaternionic components of the exter-
nal spheroidal monogenics in terms of the proper external harmonic functions
(2.1.22). From (1.4.8) and (2.2.8), we deduce the following preliminary result,
whose proof is similar to Lemma 3.1.2.

Lemma 3.1.26. For each l ≥ 0,

V̂l,−1[µ] = − 1
(l + 1)(l + 2) V̂l,1[µ]. (3.1.30)

The functions (3.1.30) are involved in the representation (3.1.31) for zero-
order monogenic functions. We have then the theorem:

Theorem 3.1.27. For each l ≥ 0 and 0 ≤ m ≤ l, the basic external
spheroidal monogenic functions (3.1.29) are equal to

X̂+
−1,0[µ] = − sinh η cosϑ+ (i cosϕ+ j sinϕ) cosh η sinϑ

µ2 sinh η (cosh2 η − cos2 ϑ)
,

X̂±l,m[µ] = V̂ ±l,m[µ] + i
2

[
(l + 2−m)V̂ ±l,m−1[µ]− 1

l + 1−m V̂ ±l,m+1[µ]
]

∓ j
2

[
(l + 2−m)V̂ ∓l,m−1[µ] + 1

l + 1−m V̂ ∓l,m+1[µ]
]
, (3.1.31)

X̂±l,l+1[µ] = V̂ ±l,l+1[µ] + i
2

[
V̂ ±l,l [µ]− µ cosh η

2(2l + 5) cos θ V̂
±
l+1,l+2[µ]

]

∓ j
2

[
V̂ ∓l,l [µ] + µ cosh η

2(2l + 5) cos θ V̂
∓
l+1,l+2[µ]

]
,

where the V̂ ±l,m[µ] are defined by (2.2.8).

Proof. The proof follows the same lines as the proof of Theorem 3.1.4 and
will be omitted.

It might be interesting to trace the connections between the internal
spheroidal monogenics and the external functions just considered. In the
first place, we observe that X̂−l,0[µ] also vanish identically. However, on ac-
count of V̂ ±l,l+1[µ] 6= 0, there are apparent identifiable differences between the
internal and external functions. Further observation shows that the scalar
parts of X̂±l,l+1[µ] do not vanish.

As a direct consequence of Theorem 3.1.27, and by Propositions 2.1.6 and
2.2.8, we may obtain an explicit representation for the external solid spherical
monogenics (3.1.29) employing the external solid spherical harmonic func-
tions [250].
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Corollary 3.1.28. For all x ∈ R3, |x| 6= 0, the limits limµ→0 X̂+
−1,0[µ](x)

and limµ→0 X̂±l,m[µ](x) exist and are given, respectively, by

X̂+
−1,0[0](x) = − x

|x|3
,

X̂±l,m[0](x) = − (l + 2−m)Û±l+2,m[0](x)

− i
2
[
(l + 2−m)(l + 3−m)Û±l+2,m−1[0](x)− Û±l+2,m+1[0](x)

]
± j

2
[
(l + 2−m)(l + 3−m)Û∓l+2,m−1[0](x) + Û∓l+2,m+1[0](x)

]
,

where the Û±l,m[0] are defined by (2.1.11).

From this result, we see that the function X̂+
−1,0[µ] leads to the Cauchy-

Fueter kernel (1.3.5), except for the normalization factor −1/4π when µ →
0. This observation is fundamental to ensure that the external spheroidal
functions are well-defined on the outer domain of the prescribed spheroid
Ωµ and gives evidence of the completeness of the underlying basic external
spheroidal monogenics.

Given Corollary 2.2.4, it is natural to find the direct and inverse trans-
formation formulas that permit passing from spherical to spheroidal mono-
genics.

Theorem 3.1.29. Let l ≥ 0 and 0 ≤ m ≤ l + 1. Then

X̂±l,m[µ] =
∞∑
k=0

βl+1,m,k µ
2k X̂±l+2k,m[0], (3.1.32)

X̂±l,m[0] =
∞∑
k=0

β̂l+1,m,k µ
2k X̂±l+2k,m[µ], (3.1.33)

where the constants βl,m,k and β̂l,m,k are given by (2.2.3) and (2.2.4).

Proof. For simplicity, we only prove the direct transformation formula (3.1.32).
The inverse formula (3.1.33) can be proved similarly. We fix m, l, µ, and
the choice of sign ±. According to (3.1.31), we want to show that X̂±l,m[µ] is
equal to

A =
∞∑
k=0

µ2k
(
A0,k + i

2A1,k ∓
j
2A2,k

)
,
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where the quaternionic components are given by

A0,k = βl+1,m,kV̂
±
l+2k,m[0],

A1,k = (l + 2−m+ 2k)βl+1,m,kV̂
±
l+2k,m−1[0]

− 1
l + 1−m+ 2k βl+1,m,kV̂

±
l+2k,m+1[0],

A2,k = (l + 2−m+ 2k)βl+1,m,kV̂
∓
l+2k,m−1[0]

+ 1
l + 1−m+ 2k βl+1,m,kV̂

∓
l+2k,m+1[0].

By (2.2.3),

A1,k = (l + 2−m)βl+1,m−1,kV̂
±
l+2k,m−1[0]

− 1
l + 1−m βl+1,m+1,kV̂

±
l+2k,m+1[0],

A2,k = (l + 2−m)βl+1,m−1,kV̂
∓
l+2k,m−1[0]

+ 1
l + 1−m βl+1,m+1,kV̂

∓
l+2k,m+1[0],

and then by Corollary 2.2.4,
∞∑
k=0

A0,k = V̂ ±l,m[µ],

∞∑
k=0

A1,k = (l + 2−m)V̂ ±l,m−1[µ] + 1
l + 1−m V̂ ±l,m+1[µ],

∞∑
k=0

A2,k = (l + 2−m)V̂ ∓l,m−1[µ]− 1
l + 1−m V̂ ∓l,m+1[µ],

which justifies the assertion X̂±l,m[µ] = A in view of (3.1.31).

The consideration of questions that arise about the external spheroidal
monogenic functions will be postponed. For the present, it is sufficient to
justify that the spherical functions defined in Corollary 3.1.28 form an or-
thogonal basis of the L2-space of A-valued monogenic functions for the space
exterior of a unit ball in R3. In the first place, it should be noted that
the operator ∂ establishes an isomorphism between the corresponding spaces
Har−l+1(Ω0) and M−

l (Ω0,A). Moreover, bearing in mind the Hilbert space
orthogonal decomposition

M2(R3 \ Ω0,A) =
∞⊕
l=0
M−

l (Ω0,A),
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it follows that the collection

{X̂+
−1,0[0], X̂±l,m[0] : m = 0, . . . , l + 1; l = 0, 1, . . . } (3.1.34)

forms an orthogonal basis ofM2(R3 \ Ω0,A).
With a view to the extension of the general theorem of [250], it will now

be shown that the basic external spheroidal functions (3.1.29) are indeed
orthogonal over the exterior of the prescribed spheroids.

Theorem 3.1.30. For fixed µ, the set (3.1.34) forms an orthogonal family
over the exterior of the spheroid Ωµ in the sense of the scalar inner product
(1.2.2).

Proof. Since the external functions (3.1.29) share the same structure as the
internal ones (3.1.1), the orthogonality for different degrees l1 6= l2 can be
done similarly to Theorem 3.1.10. We then prove the orthogonality of the
functions in cases of the same degree l. Looking back to the form of the
external functions, we find that X̂+

l,m[µ] and X̂−l,m[µ] are orthogonal by the
orthogonality of the following pairs on [0, 2π]: {Φ−m,Φ+

m}, {Φ−m+1,Φ+
m−1},

{Φ−m−1,Φ+
m+1}. It suffices to check the orthogonality inside each subset of

{X̂±l,m[µ]}, whose proof follows the same lines as Theorem 2.3.6.

We proceed to investigate a result about the approximation of a function
f ∈M2(R3 \Ωµ,A) expanded as a linear combination of external spheroidal
monogenics.

Theorem 3.1.31. Suppose f ∈M2(R3\Ωµ,A)∩C1(∂Ωµ) and let µ be fixed.
The Fourier series expansion given by the expression

â+
−1,0[µ]

X̂±−1,0[µ]
‖X̂±−1,0[µ]‖L2(R3\Ωµ)

+
∞∑
l=0

l+1∑
m=0

â+
l,m[µ]

X̂+
l,m[µ]

‖X̂+
l,m[µ]‖L2(R3\Ωµ)

+ â−l,m[µ]
X̂−l,m[µ]

‖X̂−l,m[µ]‖L2(R3\Ωµ)

 ,
(3.1.35)

where

â+
−1,0[µ] =

〈f , X̂+
−1,0[µ]〉0,L2(R3\Ωµ,A)

‖X̂+
−1,0[µ]‖L2(R3\Ωµ)

, â±l,m[µ] =
〈f , X̂±l,m[µ]〉0,L2(R3\Ωµ,A)

‖X̂±l,m[µ]‖L2(R3\Ωµ)

converges to f in the L2-sense.
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Proof. The proof is similar to that in [250], but it is necessary to employ the
definitions 2.1.7 and 3.1.29. Suppose that f ∈M2(R3 \Ωµ,A). Hence, there
exists a real-valued harmonic function h in R3 \ Ωµ such that (1/2)∂h = f .
Moreover, the restriction of h on ∂Ωµ is a twice continuously differentiable
function. Now, let g(ϑ, ϕ) be a function defined on the unit sphere, which
is related to the value of Tr∂Ωµh on the prescribed spheroid by g(ϑ, ϕ) =
Tr∂Ωµh(ϑ, ϕ) = h(ηµ, ϑ, ϕ). The trace operator Tr∂Ωµ describes just the
restriction onto the boundary ∂Ωµ. Since g(ϑ, ϕ) is a twice continuously
differentiable function on the unit sphere, it can be expressed employing a
series of surface spherical harmonics,

g(ϑ, ϕ) =
∞∑
l=0

l∑
m=0

Pm
l (cosϑ)

[
α+
l,mΦ+

m(ϕ) + α−l,mΦ−m(ϕ)
]

(3.1.36)

= Tr∂Ωµh(ϑ, ϕ).

It was shown in [179, 274] that the above expansion is uniformly absolutely
convergent with respect to (ϑ, ϕ) ∈ ∂Ω0.

For simplicity, we now assume that ν < 0, where ηµ < η < ∞, i.e., with
cosh ηµ = 1/µ. Extending the series expansion (3.1.36) to R3 \Ωµ leads to a
series expansion of h in terms of the external spheroidal harmonics (2.1.7):

h =
∞∑
l=0

l∑
m=0

βl,m
µl+1

Qm
l (cosh η)
Qm
l (1/µ) Pm

l (cosϑ)
[
α+
l,mΦ+

m(ϕ) + α−l,mΦ−m(ϕ)
]
. (3.1.37)

Using the results of [170, pp.417–421], we find |Qm
l (cosh η)/Qm

l (1/µ)| < 1
for all m = 0, . . . , l (l = 0, 1, . . . ). Under the previous circumstances, it then
follows that the series (3.1.37) converges uniformly and absolutely to h in
R3 \ Ωµ.

Moreover, since h is harmonic in R3 \ Ωµ and twice continuously differ-
entiable on the boundary ∂Ωµ, it yields the absolute uniform convergence of
its first derivatives in R3 \ Ωµ ∪ ∂Ωµ. In particular, the corresponding series
expansion for the derivatives, namely

∞∑
l=0

l∑
m=0

(
α+
l,m[µ]

Qm
l (1/µ) X̂+

l−1,m[µ] +
α−l,m[µ]
Qm
l (1/µ) X̂−l−1,m[µ]

)
(3.1.38)

converges uniformly and absolutely to f = (1/2)∂h in R3 \ Ωµ ∪ ∂Ωµ. This
further implies the L2-convergence in every subset R3 \ Ωµ ∩ Br, where Br

is a ball with some radius r > 0, which contains Ωµ. More precisely, denote
by SN the finite sum of the first N -summands in the series (3.1.38). For any
ε > 0, there exists a natural number N(ε) such that

sup
x∈R3\Ωµ∪∂Ωµ

|SN(ε)(x)− f(x)| < ε.
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We have then ‖SN(ε)−f‖2
L2(R3\Ωµ∩Br)

< ε2 vol(R3 \Ωµ∩Br). For the exterior
domain of Br, we use another estimation. Let 0 < r1 < r such that Ωµ ⊂ Br1 .
By the Cauchy integral formula (1.3.6), for all z ∈ R3\Br, one finds

|SN(ε)(z)− f(z)| ≤ 1
4π

∫
∂Br1

|q(z− ζ)| |SN(ε)(ζ)− f(ζ)|dσ(ζ)

<
ε

4π

∫
∂Br1

1
|z|2 − |ζ|2

dσ(ζ)

< ε
r2

1
|z|2 − r2

1
.

Now, the L2-norm of the difference between SN and f can be approximated
by

‖SN(ε) − f‖2
L2(R3\Br) =

∫
R3\Br

|SN(ε) − f |2 dω

< (r2
1ε)2

∫ ∞
r

∫ π

0

∫ 2π

0

ρ2 sin θ
(ρ2 − r2

1)2 dϕdθdρ

< 4π(r2
1ε)2

∫ ∞
r

ρ2

(ρ2 − r2
1)2 dρ

< 4π(r2
1ε)2

[
r

2(r2 − r2
1) −

1
4r1

log r − r1

r + r1

]
.

To sum up, for an arbitrary small ε > 0, we can find a natural number
N(ε) such that ‖SN(ε) − f‖L2(R3\Ωµ) < ε. Thus, the series expansion (3.1.38)
converges to f in the whole domain R3 \Ωµ in the sense of the L2-norm. The
theorem follows.

From this theorem, we easily deduce the further results:

Corollary 3.1.32. Suppose f ∈M2(R3\Ωµ,A) and let µ be fixed. Then the
restriction of f in R3 \Ωµ can be represented by its Fourier series expansion
with respect to the set

{X̂+
−1,0[µ], X̂±l,m[µ] : m = 0, . . . , l + 1; l = 0, 1, . . . }. (3.1.39)

Further, this series expansion converges to f in the L2-sense.

Corollary 3.1.33. Any function in the set (3.1.34) can be represented by its
Fourier series expansion with respect to the set (3.1.39).

To conclude, the general result is that:
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Theorem 3.1.34. For fixed µ, the set (3.1.39) forms an orthogonal basis of
M2(R3 \ Ωµ,A).

Proof. This result may be proved by first approximating f inM2(R3\Ωµ,A)
by external solid spherical monogenics (3.1.34), and then by basic external
spheroidal monogenics (3.1.39).

This theorem is the generalization of that of [250], which corresponds to
the case of prolate spheroids.

3.2 Contragenics on Spheroidal Domains
This section builds polynomial bases for square-integrable harmonic function
spaces. These functions are called contragenic and are orthogonal to the
monogenic and antimonogenic A-valued functions defined in a prolate or
oblate spheroid in the sense of L2. We further give computational formulas
relating to orthogonal bases of harmonic and contragenic functions defined in
spheroids of differing eccentricity. As an application, we show that there are
common nontrivial contragenic functions to all spheroids of all eccentricities,
thus presenting the concept of “spheroidal universally contragenic function.”
For simplicity, we have confined our discussion only to the case of the region
inside a spheroid. It might be worth noting that all our results can also be
extended to the region outside a spheroid. The results that appear in this
section are published in [133] and [134].

3.2.1 Ambigenic Spheroidal Polynomials
It is well-known that every complex-valued harmonic function in a simply
connected domain in the complex plane can be expressed as the sum of
a holomorphic function and an antiholomorphic function, where these two
elements are unique up to a constant summand. This fact was generalized
for monogenic functions on quaternions [318] and Clifford algebras [48], and
there is a similar result for monogenic functions from R3 to H published in
[63]. Notwithstanding these achievements, it was revealed in [17] that there
is no corresponding statement for A-valued monogenic functions because the
multiplication in A is not a closed operation in H. This means that there
are harmonic functions that cannot be expressed as the sum of a monogenic
and an antimonogenic function.

Given the facts discussed above, in this section, we write out a basis for
the space of internal functions obtained by summing a monogenic function
and an antimonogenic function. All these orthogonal bases are composed
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of elements parametrized by the shape of the corresponding spheroid. In
general, aspects of antimonogenic functions are slight modifications of mono-
genic function facts retrieved by assuming the conjugate. But to discuss
contragenic functions in the following, it is necessary to consider the sub-
space of the A-valued harmonic functions generated by both the monogenic
and antimonogenic functions. In [17], elements of this space were termed
ambigenic functions.

As discussed in Subsection 1.3.1, an A-valued function f is antimono-
genic, if and only if f is monogenic. Since the decomposition of an ambi-
genic function as a sum of a monogenic and an antimonogenic function is
not unique, the setM(Ωµ) ∩M(Ωµ) of monogenic constants in the domain
Ωµ must be taken into account. Going back to the representation (3.1.4), we
observe that for 0 ≤ k ≤ l

X±k,k+1[µ] = (k + 1)
(
iV ±k,k[µ]∓ jV ∓k,k[µ]

)
,

where
Vk,k[µ] = (−1)k(2k + 1)!! (x2

1 + x2
2)k/2.

From Proposition 3.1.17, it follows that X±k,k+1[µ] are spheroidal monogenic
constants with vanishing scalar part; that is, they are the negatives of their
conjugates. This observation, along with dimension considerations, makes it
possible to give a canonical basis for the ambigenic polynomials defined in
spheroidal domains of arbitrary eccentricity.

There are natural projections ofM(Ωµ) onto the subspaces

ScM(Ωµ) = {Sc(f) : f ∈M(Ωµ)} ⊆ HarR(Ωµ)

and
VecM(Ωµ) = {Vec(f) : f ∈M(Ωµ)} ⊆ Har{0}⊕R2(Ωµ).

Hence, ScM(Ωµ) = ScM(Ωµ) and VecM(Ωµ) = −VecM(Ωµ). In [236], it
was further shown that the property of Ωµ of being simply-connected guaran-
tees that ScM(Ωµ) = Har(Ωµ) (that is, every harmonic function is the scalar
part of a monogenic function). The corresponding vector part is unique up to
the addition of a monogenic constant. The discussion of two constructive ap-
proaches for generating monogenic functions in Ω0 via harmonic conjugates
is detailed in Chapter 5.

As was shown in [17], the dimension of the spaceM+
l (Ω0) +M+

l (Ω0) of
homogeneous ambigenic polynomials is 4l+4 when l ≥ 1. As discussed in the
previous section, the polynomial basis for spheroidal harmonics are generally
not homogenous (when µ 6= 0). Thus we continue to work with all degrees
up to l. The dimension of the spaceM∗

l (Ωµ) +M∗
l (Ωµ) (not a direct sum)

of ambigenic polynomials of degree at most l is
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Proposition 3.2.1.

dim
(
M∗

l (Ωµ) +M∗
l (Ωµ)

)
=

l∑
k=0

dim
(
M+

k (Ω0) +M+
k (Ω0)

)

= 3 +
l∑

k=1
(4k + 4)

= 2l(l + 3) + 3.

Before we state the main result of the present section, the following ele-
mentary lemma will be required:
Lemma 3.2.2. Let µ be fixed. For m 6= 0,

〈X+
k,m[µ], X+

k,m[µ]〉0,L2(Ωµ,A) = 〈X−k,m[µ], X−k,m[µ]〉0,L2(Ωµ,A).

Proof. By definition of the integral (1.2.2) it follows that

〈X+
k,m[µ],X+

k,m[µ]〉0,L2(Ωµ,A)

=
∫

Ωµ

(
[X+

k,m[µ]]20 − [X+
k,m[µ]]21 − [X+

k,m[µ]]22
)
dx

=
∫ π

0

∫ ηµ

0
(Vk,m[µ])2dηdϑ

∫ 2π

0
cos2(mϕ)dϕ

− 1
4

∫ π

0

∫ ηµ

0

[
(k + 1 +m)Vk,m−1[µ]− 1

k + 2 +m
Vk,m+1[µ]

]2
dη dϑ

×
∫ 2π

0
cos2(mϕ) dϕ

− 1
4

∫ π

0

∫ ηµ

0

[
(k + 1 +m)Vk,m−1[µ]− 1

k + 2 +m
Vk,m+1[µ]

]2
dη dϑ

×
∫ 2π

0
sin2(mϕ)dϕ.

Since m 6= 0, the two values
∫ 2π

0 [Φ±m(ϕ)]2 dϕ are equal, and therefore

〈X+
k,m[µ],X+

k,m[µ]〉0,L2(Ωµ,A) =
∫

Ωµ

(
[X−k,m[µ]]20 − [X−k,m[µ]]21 − [X−k,m[µ]]22

)
dx

= 〈X−k,m[µ],X−k,m[µ]〉0,L2(Ωµ,A).

Unfortunately, it is not clear how to extract an orthogonal basis of ambi-
genic functions from the list {X±l,m[µ],X±l,m[µ]} when µ 6= 0. It will now be
shown that this can be solved by making a slight modification of the ideas
given in [17]. Bearing in mind the Gram-Schmidt orthogonalization proce-
dure, a definition of the ambigenic spheroidal functions for the interior of the
prescribed spheroids is as follows.
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Definition 3.2.3. Let l ≥ 0. The basic internal ambigenic spheroidal poly-
nomials of degree l and order m are

Y++
l,m [µ] = X+

l,m[µ] for m = 0, . . . , l + 1,
Y−+
l,m [µ] = X−l,m[µ] for m = 1, . . . , l,

Y+−
l,m [µ] = X+

l,m[µ]− γl,m[µ]X+
l,m[µ] for m = 0, . . . , l,

Y−−l,m [µ] = X−l,m[µ]− γl,m[µ]X−l,m[µ] for m = 1, . . . , l + 1,

where

γl,m[µ] =


〈X+

l,m[µ],X+
l,m[µ]〉0,L2(Ωµ,A)

‖X+
l,m[µ]‖2

L2(Ωµ)
if 0 ≤ m ≤ l,

0 if m = l + 1.
(3.2.1)

The result of [17], which gives the construction of an orthogonal basis for
the space of ambigenic functions defined in Ω0, is a particular case of the
following more general result:

Proposition 3.2.4. For fixed µ, the collection of 2l(l + 3) + 3 polynomials

{Y++
k,m : 0 ≤ m ≤ k + 1} ∪ {Y−+

k,m : 1 ≤ m ≤ k}
∪ {Y+−

k,m : 0 ≤ m ≤ k} ∪ {Y−−k,m : 1 ≤ m ≤ k + 1},

where 0 ≤ k ≤ l, forms an orthogonal basis in L2(Ωµ,A) for the subspace of
ambigenic polynomials of degree at most l.

Proof. Bearing in mind that µ is fixed, we write X±k,m, Y±±k,m, γk,m for X±k,m[µ],
Y±,±k,m [µ], γk,m[µ]. Since there are 2l(l + 3) + 3 polynomials in the given
list, it suffices to prove the orthogonality to conclude that they generate the
ambigenic polynomials. Now, because the collection {X±k,m : m = 0, . . . , k +
1; k = 0, . . . , l} is an orthogonal basis ofM∗

l (Ωµ), it then follows that

〈Y++
k,m,Y

−+
k,m〉0,L2(Ωµ,A) = 〈Y++

k,m,Y
−−
k,m〉0,L2(Ωµ,A)

= 〈Y+−
k,m,Y

−+
k,m〉0,L2(Ωµ,A) = 〈Y+−

k,m,Y
−−
k,m〉0,L2(Ωµ,A) = 0.

Since

〈Y+−
k1,m1 ,Y

+−
k2,m2〉0,L2(Ωµ,A)

= 〈X+
k1,m1 − γk1,m1X+

k1,m1 ,X
+
k2,m2 − γk2,m2X+

k2,m2〉0,L2(Ωµ,A)

= 〈X+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A) − γk2,m2〈X

+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A)

− γk1,m1〈X+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A) + γk1,m1γk2,m2〈X+

k1,m1 ,X
+
k2,m2〉0,L2(Ωµ,A),
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it will be enough to study 〈X+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A) and 〈X+

k1,m1 ,X
+
k2,m2〉0,L2(Ωµ,A):

〈X+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A) =

∫
Ωµ

[
[X+

k1,m1 ]0[X+
k2,m2 ]0

−
(
[X+

k1,m1 ]1[X+
k2,m2 ]1 + [X+

k1,m1 ]2[X+
k2,m2 ]2)

]
dx,

but from the proof of Theorem 3.1.10, we have

〈X+
k1,m1 ,X

+
k2,m2〉0,L2(Ωµ,A)

=
(
‖ Sc(X+

k1,m1)‖2
L2(Ωµ) − ‖Vec(X+

k1,m1)‖2
L2(Ωµ)

)
δk1,k2δm1,m2 .

Now, we find that

〈Y++
k1,m1 ,Y

+−
k2,m2〉0,L2(Ωµ,A) = 〈X+

k1,m1 ,X
+
k2,m2 − γk2,m2X+

k2,m2〉0,L2(Ωµ,A).

By the above observations, we see that these polynomials are orthogonal
when k1 6= k2 or m1 6= m2, and when the indices coincide,

〈Y++
k,m,Y+−

k,m〉0,L2(Ωµ,A) = 〈X+
k,m,X

+
k,m〉0,L2(Ωµ,A)

−
〈X+

k,m,X
+
k,m〉0,L2(Ωµ,A)

‖X+
k,m‖2

L2(Ωµ)
‖X+

k,m‖2
L2(Ωµ)

= 0.

Moreover, by the orthogonality of the system {Φ+
k ,Φ−l : k ≥ 0, l > 0} in

[0, 2π], it is clear that

〈Y++
k1,m1 ,Y

−−
k2,m2〉0,L2(Ωµ,A) = 0,

and further
〈Y++

k,m,Y−−k,m〉0,L2(Ωµ,A) = 0.

Similarly, by Lemma 3.2.2, we have

〈Y−+
k,m,Y−−k,m〉0,L2(Ωµ,A) = 〈X−k,m,X

−
k,m〉0,L2(Ωµ,A)

−
〈X+

k,m,X
+
k,m〉0,L2(Ωµ,A)

‖X+
k,m‖2

L2(Ωµ)
‖X−k,m‖2

L2(Ωµ)

= 0,

which completes the proof.
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3.2.2 Contragenic Spheroidal Polynomials
Contragenic functions were unknown until [17]. Their very existence was
not contemplated until that study was published. But to be able to con-
sider the “monogenic part” of a given harmonic function, it is of the utmost
importance that contragenic functions are understood. Unlike harmonicity
and monogenicity, contragenicity is not a local property as it depends on the
domain under consideration. Therefore, it cannot be defined by the direct
application of any differential operator.

The dimensions over R of the relevant polynomial spaces are summarized
in Table 3.4. The subscript ∗ refers to polynomials of degree at most l.

Space of polynomials dimR

Har∗l (R) (l + 1)2

Har∗l (R3) 3(l + 1)2

M∗
l ,M

∗
l (l + 1)(l + 3)

M∗
l ∩M

∗
l 2l + 3

M∗
l +M∗

l 2l(l + 3) + 3

Table 3.4: Dimensions of spaces of polynomials (l ≥ 0).

Table 3.4 refers to polynomials defined in the whole R3, or likewise as
their restrictions to any domain. For compact domains such as the spheroids
Ωµ, the functions are automatically square-integrable.

Orthogonal complements can be used to quantify how a harmonic function
is not ambigenic. Since, by definition, real-valued functions are orthogonal
in L2(Ωµ,A) to functions taking values in iR+ jR, there is a natural orthog-
onal direct sum decomposition of the space of square-integrable ambigenic
functions [17], namely

Proposition 3.2.5.

M2(Ωµ) +M2(Ωµ) = ScM2(Ωµ)⊕ VecM2(Ωµ), (3.2.2)
M2(Ωµ) ∩M2(Ωµ) ⊆ VecM2(Ωµ).

Using the previous result, we are positioned to formulate the following
general definition of a contragenic function.
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Definition 3.2.6. In any domain Ω ⊆ R3, a function h ∈ Har(Ω)∩L2(Ω,A)
is called Ω-contragenic when it is orthogonal in L2(Ω,A) to all square-inte-
grable ambigenic functions, that is, if it lies in

N (Ω) = (M2(Ω) +M2(Ω))⊥,

where the orthogonal complement is taken in Har(Ω) ∩ L2(Ω,A).

Unlike the spaces of harmonic, monogenic, antimonogenic, and ambigenic
functions, the above definition of N (Ω) involves the L2-inner product. Thus,
it depends on domain Ω, which cannot be omitted from the notation without
ambiguity.

Our principal concern is a basis for the contragenic spheroidal functions,
which will enable us to express an arbitrary harmonic function predictably
as a sum of an ambigenic function and a contragenic function in Ωµ.

The following discussion focuses on spaces of polynomials of degree no
greater than l. As regards Definition 3.2.6, let Nl(Ωµ) ⊂ N (Ωµ) denote
the subspace of contragenic polynomials of degree l, and let N ∗l (Ωµ) =⋃l
k=0Nk(Ωµ) be the subspace of contragenic polynomials of degree no greater

than l. Nonzero constant harmonic functions are never contragenic so that
we will have no use for N ∗0 (Ωµ) = {0}.

Thus we have the successive orthogonal complements

Nl(Ωµ) = N ∗l (Ωµ)	N ∗l−1(Ωµ),

which are composed of polynomials of degree precisely l. It can further be
seen that

N ∗l (Ωµ) =
l⊕

k=1
Nk(Ωµ),

and there is a Hilbert space orthogonal decomposition

N ∗(Ωµ) =
∞⊕
k=1
Nk(Ωµ)

of the full collection of contragenic functions in L2(Ωµ,A).
It was shown in [17] that the homogeneous polynomials of degree l, which

are contragenic on Ω0, form a space of dimension 2l − 1 with l ≥ 1 (this
dimension count is simply the difference of 3 dim Har+

l (Ω0) = 3(2l + 1) and
dim(M+

l (Ω0) +M+
l (Ω0)) = 4l + 4). The same study also observed that if

a real-valued harmonic homogeneous polynomial is completed as the scalar
part of a monogenic function (unique up to adding a monogenic constant),
then the vector part can also be seen as a homogeneous polynomial of the
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same degree. Since the spheroidal harmonics and monogenics are generally
not homogeneous (when µ 6= 0), it is preferable to combine the dimensions up
to l; we have dimN ∗l (Ω0) = l2 for the unit ball. Now, because the dimension
of an orthogonal complement within a fixed vector space does not depend
upon the choice of the L2-inner product, and the harmonic and the ambigenic
polynomials of degree less than or equal to l do not rely on the domain under
consideration, it is clear that, in general, we have dimNl(Ωµ) = 2l − 1 also
for l ≥ 1.

Accordingly, we have the following result:

Proposition 3.2.7.

dimN ∗l (Ωµ) =
l∑

k=0
dimNk(Ωµ) = l2.

By using the vector parts of the basic monogenic spheroidal polynomials
(3.1.1) as building blocks, an orthogonal basis of N ∗l (Ωµ) for µ 6= 0 can be
found, such as is required. In this connection, we define the contragenic
spheroidal functions to be employed for the space interior of the prescribed
spheroids as follows.

Definition 3.2.8. Let l ≥ 1 and 0 ≤ m ≤ l − 1. The basic internal contra-
genic spheroidal polynomials of degree l and order m are

Z±l,m[µ] = al,m[µ]
l + 1 +m

[
Vec(X∓l,m[µ])∓ Vec(X±l,m[µ])k

]
−
[
Vec(X∓l,m[µ])± Vec(X±l,m[µ])k

]
, (3.2.3)

where

al,m[µ] = 1
l + 1 +m

(
‖V +

l,m+1[µ]‖L2(Ωµ)

(l + 2 +m)‖V +
l,m−1[µ]‖L2(Ωµ)

)2

. (3.2.4)

By Lemma 3.1.2, it follows that al,0[µ] = l + 1. Thus,

Z+
l,0[µ] = −2 Vec(X+

l,0[µ])k.

We have not yet proved that the proposed polynomials are indeed contra-
genic. That it is so, will be shown hereafter. Given Theorem 3.1.4, we shall
now express the basic polynomials (3.2.3) in terms of the i, j components of
the basic monogenic polynomials (3.1.1) in a completed developed form.

By Definition 3.2.8, we set

b±l,m[µ] := al,m[µ]± (l + 1 +m)
l + 1 +m

. (3.2.5)
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It then follows that

Z±l,m[µ] = i
(
b−l,m[µ][X∓l,m[µ]]1 ∓ b+

l,m[µ][X±l,m[µ]]2
)

+ j
(
b−l,m[µ][X∓l,m[µ]]2 ± b+

l,m[µ][X±l,m[µ]]1
)
.

Moreover, from X±l,m[µ]k = i[X±l,m[µ]]2 − j[X±l,m[µ]]1 + k[X±l,m[µ]]0, the above
expression becomes

Z±l,m[µ] = i
(
al,m[µ]V ∓l,m−1[µ] + 1

l + 2 +m
V ∓l,m+1[µ]

)
± j

(
al,m[µ]V ±l,m−1[µ]− 1

l + 2 +m
V ±l,m+1[µ]

)
(3.2.6)

for 1 ≤ m ≤ l − 1, while for m = 0,

Z+
l,0[µ] = 1

l + 2
(
iV −l,1[µ]− jV +

l,1[µ]
)
,

where the proper functions V ±l,m[µ] are defined by (2.2.7).
Some examples of Z±l,m[µ] in low degree provided by (3.2.6) are given in

Table 3.5.
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l m Z±l,m[µ]
1 0 Z+

1,0 = −ix2 + jx1

2

0 Z+
2,0 = −3ix0x2 + 3jx0x1

1 Z+
2,1 = 6ix1x2 + 3j

30− 20µ2 + 6µ4

[
25x2

2 − 2µ2 − 10x2
2µ

2

+ 4µ4 + x2
2µ

4 − 2µ6 + 10x2
0(−1 + µ2)2

+x2
1(−35 + 30µ2 − 11µ4)

]
Z−2,1 = 3i

30− 20µ2 + 6µ4

[
− 35x2

2 − 2µ2 + 30x2
2µ

2 + 4µ4

− 11x2
2µ

4 − 2µ6 + x2
1(−5 + µ2)2

+ 10x2
0(−1 + µ2)2

]
+ 6jx1x2

3

Z+
3,0 = 3

14 ix2(−28x2
0 + 7x2

1 + 7x2
2 + 4µ2)

0 − 3
14jx1(−28x2

0 + 7x2
1 + 7x2

2 + 4µ2)

Z+
3,1 = 30ix0x1x2 + 15jx0

70− 84µ2 + 30µ4

[
49x2

2

− 6µ2 − 42x2
2µ

2 + 12µ4 + 9x2
2µ

4 − 6µ6 + 14x2
0(−1 + µ2)2

1 +x2
1(−91 + 126µ2 − 51µ4)

]
Z−3,1 = 15ix0

70− 84µ2 + 30µ4

[
− 91x2

2 − 6µ2

+ 126x2
2µ

2 + 12µ4 − 51x2
2µ

4 − 6µ6 + x2
1(7− 3µ2)2

+ 14x2
0(−1 + µ2)2

]
+ 30jx0x1x2

Z+
3,2 = − 30ix2

35− 14µ2 + 3µ4

[
− 21x2

2 − 2µ2 + 14x2
2µ

2 + 4µ4

− 5x2
2µ

4 − 2µ6 + x2
1(−7 + µ2)2 + 14x2

0(−1 + µ2)2
]

− 30jx1

35− 14µ2 + 3µ4

[
49x2

2 − 2µ2 − 14x2
2µ

2 + 4µ4 + x2
2µ

4

− 2µ6 + 14x2
0(−1 + µ2)2 + x2

1(−21 + 14µ2 − 5µ4)
]

2 Z−3,2 = 60ix1

35− 14µ2 + 3µ4

[
28x2

2 + µ2 − 14x2
2µ

2 − 2µ4 + 4x2
2µ

4

+µ6 − 7x2
0(−1 + µ2)2 + x2

1(−7 + µ4)
]

− 60jx2

35− 14µ2 + 3µ4

[
− 7x2

2 + µ2 − 2µ4 + x2
2µ

4

+µ6 − 7x2
0(−1 + µ2)2 + 2x2

1(14− 7µ2 + 2µ4)
]

Table 3.5: Spheroidal contragenic polynomials of low degree, parametrized
by the eccentricity µ.
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The general theorem is the following:

Theorem 3.2.9. The l2 polynomials Z±k,m[µ] (with 1 ≤ k ≤ l, 0 ≤ m ≤ k−1)
are contragenic. Further, they form an orthogonal basis for N ∗l (Ωµ) when µ
is fixed.

Proof. For simplicity, we will continue to write X±l,m, Z±l,m, in place of X±l,m[µ],
Z±l,m[µ] considering that µ is fixed. First, we prove that Z±k,m are contragenic.
As they have no scalar parts, it suffices to show that they are orthogonal to
VecM∗

l (Ωµ). To do this, we use the basis obtained by dropping the scalar
parts of the basis forM∗

l (Ωµ) given in Theorem 3.1.10. Since

{Φ+
m1 ,Φ

−
m2 : m1 ≥ 0,m2 ≥ 1}

is a system of orthogonal functions in [0, 2π], then when 1 ≤ m1 ≤ k1 and
1 ≤ m2 ≤ k2, we readily see that

〈Z+
k1,m1 ,Vec(X+

k2,m2)〉0,L2(Ωµ,A) = 〈Z−k1,m1 ,Vec(X−k2,m2)〉0,L2(Ωµ,A) = 0.

On the other hand, when m1 > 0 and m2 ≥ 0, we have that

〈Z±k1,m1 ,Vec(X∓k2,m2)〉0,L2(Ωµ,A) = b−k1,m1

∫
Ωµ

[X∓k1,m1 ]1[X∓k2,m2 ]1 dx

∓ b+
k1,m1

∫
Ωµ

[X±k1,m1 ]2[X∓k2,m2 ]1 dx

+ b−k1,m1

∫
Ωµ

[X∓k1,m1 ]2[X∓k2,m2 ]2 dx

± b+
k2,m2

∫
Ωµ

[X±k1,m1 ]1[X∓k2,m2 ]2 dx,

where the coefficients b±k,m are defined by (3.2.5).
Since the system{

Vec(X+
k,m),Vec(X−j,l) : 0 ≤ k ≤ l, 0 ≤ m ≤ k, 1 ≤ j ≤ l, 1 ≤ l ≤ j

}
is orthogonal, the previous integrals may be written as

〈Z±k1,m1 ,Vec(X∓k2,m2)〉0,L2(Ωµ,A)

= π

2

[
2ak1,m1(k1 + 1 +m1)

∫ ηµ

0

∫ π

0
(Vk1,m1−1[µ])2 dϑ dη

− 2
(k1 + 2 +m1)2

∫ ηµ

0

∫ π

0
(Vk1,m1+1[µ])2 dϑ dη

∓ 2δ0,m1

(k1 + 2)2

∫ ηµ

0

∫ π

0
(Vk1,1[µ])2 dϑ dη

]
δk1,k2δm1,m2 . (3.2.7)
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Furthermore, using the expression (3.2.6) and recalling that

2 Vec(X−k,m) = i
2

[
(k + 1 +m)V −k,m−1[µ]− 1

k + 2 +m
V −k,m+1[µ]

]
+ j

2

[
(k + 1 +m)V +

k,m−1[µ] + 1
k + 2 +m

V +
k,m+1[µ]

]
when m > 0, by (3.2.4), it hence follows that

〈Z+
k,m,Vec(X−k,m)〉0,L2(Ωµ,A)

= 1
2

[ ∫
Ωµ

(
ak,mV

−
k,m−1[µ] + 1

k + 2 +m
V −k,m+1[µ]

)
×
(

(k + 1 +m)V −k,m−1[µ]− 1
k + 2 +m

V −k,m+1[µ]
)
dx

+
∫

Ωµ

(
ak,mV

+
k,m−1[µ]− 1

k + 2 +m
V +
k,m+1[µ]

)

×
(

(k + 1 +m)V +
k,m−1[µ] + 1

k + 2 +m
V +
k,m+1[µ]

)
dx
]

= ak,m‖V +
k,m−1[µ]‖2

L2(Ωµ) −
1

(k + 2 +m)2 ‖V
+
k,m+1[µ]‖2

L2(Ωµ)

= 0.

Similarly, the orthogonality of {Φ+
m,Φ−l } gives

〈Z−k,m,Vec(X+
k,m)〉0,L2(Ωµ,A) = 0.

Next, we compute

〈Z+
k1,0,Vec(X±k2,m)〉0,L2(Ωµ,A)

= 1
2(k1 + 2)

[
(k2 + 1 +m)

∫
Ωµ
V −k1,1[µ]V ±k2,m−1[µ] dx

− 1
k2 + 2 +m

∫
Ωµ
V −k1,1[µ]V ±k2,m+1[µ] dx

±
(

(k2 + 1 +m)
∫

Ωµ
V +
k1,1[µ]V ∓k2,m−1[µ] dx

+ 1
k2 + 2 +m

∫
Ωµ
V +
k1,1[µ]V ∓k2,m+1[µ] dx

)]
= 0,

which follows by the orthogonality of {Φ+
m,Φ−l }.
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For k1 6= k2, by the orthogonality of the system {V +
k1,m1 , V

−
k2,m2 : 0 ≤ k1 ≤

l1, 0 ≤ k2 ≤ l2, 0 ≤ m1 ≤ k1, 1 ≤ m2 ≤ k2, l1, l2 ≥ 0} it remains to check
that

〈Z+
k,0,Vec(X−k,2)〉0,L2(Ωµ,A)

= (k + 1 +m)
2(k + 2)

(∫
Ωµ

(V −k,1[µ])2dx−
∫

Ωµ
(V +

k,1[µ])2dx
)

= 0,

where the last equality is a consequence of∫
Ωµ

(V −k,1[µ])2dx =
∫ π

0

∫ ηµ

0
(Vk,1[µ])2 dη dϑ

∫ 2π

0
sin2 ϕdϕ

=
∫ π

0

∫ ηµ

0
(Vk,1[µ])2 dη dϑ

∫ 2π

0
cos2 ϕdϕ

=
∫

Ωµ
(V +

k,1[µ])2dx.

We have then verified that the functions Z±k,m are contragenic. It remains to
prove the orthogonality of the system

{Z±k,m : k ≥ 1, 0 ≤ m ≤ k − 1}.

Using the expression (3.2.6), when m1,m2 ≥ 1 we then get

〈Z±k1,m1 ,Z
±
k2,m2〉0,L2(Ωµ,A)

= ak1,m1ak2,m2

∫
Ωµ
V ∓k1,m1−1[µ]V ∓k2,m2−1[µ] dx

+ ak1,m1

k2 + 2 +m2

∫
Ωµ
V ∓k1,m1−1[µ]V ∓k2,m2+1[µ] dx

+ ak2,m2

k1 + 2 +m1

∫
Ωµ
V ∓k1,m1+1[µ]V ∓k2,m2−1[µ] dx

+ 1
(k1 + 2 +m1)(k2 + 2 +m2)

∫
Ωµ
V ∓k1,m1+1[µ]V ∓k2,m2+1[µ] dx

+ ak1,m1ak2,m2

∫
Ωµ
V ±k1,m1−1[µ]V ±k2,m2−1[µ] dx

− ak1,m1

k2 + 2 +m2

∫
Ωµ
V ±k1,m1−1[µ]V ±k2,m2+1[µ] dx

− ak2,m2

k1 + 2 +m1

∫
Ωµ
V ±k1,m1+1[µ]V ±k2,m2−1[µ] dx

+ 1
(k1 + 2 +m1)(k2 + 2 +m2)

∫
Ωµ
V ±k1,m1+1[µ]V ±k2,m2+1[µ] dx.
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Thus, by similar reasoning to that used in the proof of Theorem 3.1.10, we
obtain

〈Z±k1,m1 ,Z
±
k2,m2〉0,L2(Ωµ,A)

= 2πδm1,m2δk1,k2

[
(ak1,m1)2

∫ π

0

∫ ηµ

0
(Vk1,m1−1[µ])2dη dϑ

+ 1
(k1 + 2 +m1)2

∫ π

0

∫ ηµ

0
(Vk1,m1+1[µ])2dη dϑ

]
.

On the other hand, when 1 ≤ m ≤ k1, we have that

〈Z+
k1,0,Z

±
k2,m〉0,L2(Ωµ,A)

= 1
k1 + 2

(
1

k2 + 2 +m

∫
Ωµ
V −k1,1[µ]V ∓k2,m+1[µ] dx

+ ak2,m

∫
Ωµ
V −k1,1[µ]V ∓k2,m−1[µ] dx∓ ak2,m

∫
Ωµ
V +
k1,1[µ]V ±k2,m−1[µ] dx

± 1
k2 + 2 +m

∫
Ωµ
V +
k1,1[µ]V ±k2,m+1[µ] dx

)
.

Whence, it is clear that 〈Z+
k1,0,Z

−
k2,m〉0,L2(Ωµ,A) = 0. It remains to check that

also 〈Z+
k1,0,Z

+
k2,m〉0,L2(Ωµ,A) = 0. But this follows again from the formula for

the cosine of a sum of angles and
∫ 2π

0 Φ+
mdϕ = 0. Finally, by the orthogonality

of the system {Φ±m}, it then follows that 〈Z±k1,m1 ,Z
∓
k2,m2〉0,L2(Ωµ,A) = 0. This

furnishes the complete proof.

Theorem 3.2.9 is the generalization of that of [17], which corresponds to
the case of the unit ball. It has, of course, essential consequences. The object
here will be to discuss an orthogonal decomposition for the Hilbert space
of square-integrable A-valued harmonic functions in Ωµ. We shall observe
that subspaces analogous to the homogeneous polynomials are obtained by
defining Ĥarl(Ωµ) as the orthogonal component of Har∗l−1(Ωµ) in Har∗l (Ωµ).
This gives an orthogonal Hilbert space decomposition

Har(Ωµ) ∩ L2(Ωµ,A) =
∞⊕
l=0

Ĥarl(Ωµ).

For µ = 0, this is, in fact, the well-known decomposition by solid spherical
harmonics [25, p. 81]. Similarly, let N̂l(Ωµ) be the orthogonal component of
N ∗l−1(Ωµ) in N ∗l (Ωµ); whence, N ∗l (Ωµ) = ⊕l

k=1 N̂k(Ωµ). Thus

Ĥarl(Ωµ) = M̂l(Ωµ)⊕ M̂l(Ωµ)⊕ N̂l(Ωµ), (3.2.8)
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where the monogenic part M̂l(Ωµ) is defined analogously.
From the observations just made, we will now infer a result, which ex-

presses for contragenics the analogy of the well-known denseness of the har-
monic polynomials and the monogenic polynomials in the corresponding
Hilbert spaces of harmonic and monogenic functions.

Theorem 3.2.10. The functions Z±k,m[µ] span a dense set in N (Ωµ). There-
fore the functions Y±±k,m[µ], Z±k,m[µ] form an orthogonal basis for the Hilbert
space Har(Ωµ) ∩ L2(Ωµ,A).

Proof. Let Z ∈ N (Ωµ) be an arbitrary contragenic function. Write Z =∑∞
0 Uk, where Uk ∈ Ĥark(Ωµ), and let Uk = Yk + Zk be the decomposition

of Uk into ambigenic and contragenic polynomials. Thus Z = Y + ∑∞
1 Zk,

where Y = ∑∞
0 Yk is both ambigenic and contragenic, Y = 0, and thus

Z = ∑∞
1 Zk. Hence, by Proposition 3.2.4 and Theorem 3.2.9, it then follows

that Z ∈⊕ N̂k(Ωµ), as required.

To sum up, the orthogonal decomposition of square-integrable harmonic
functions in Ωµ as Har(Ωµ) = (M2(Ωµ) +M2(Ωµ)) ⊕ N (Ωµ) justifies the
idea of referring to the “ambigenic part” or the “monogenic part” of any
harmonic function Ωµ → A (the latter being determined up to an additive
monogenic constant). Theorem 3.2.10 provides a method of calculating this
part by obtaining the Fourier coefficients as in any Hilbert space and then
discarding the contragenic and antimonogenic terms.

In closing this section, we call attention to the fact that the notion of con-
tragenicity depends on the domain under consideration, which implies that it
is not a local property. In this way, contragenicity differs from harmonicity
and monogenicity since those are both local properties. For example, the
restriction of a contragenic function to a subdomain does not need to be
contragenic. In particular, it is impossible to seek a condition on the deriva-
tives of a harmonic function that can detect if it is contragenic or not. It is
still unknown whether such a condition exists when associated with a fixed
domain, such as a sphere or a spheroid.

3.2.3 Relations among Contragenic Functions
In this section, we investigate functions that are contragenic for spheroids of
differing eccentricity. Most of our attention is related to different systems
of harmonic functions in N (Ωµ) to those in N (Ωµ̃), where µ 6= µ̃. While
manipulating the underlying formulas is essentially algebraic, it should be
borne in mind that we are dealing with continuously varying families of
function spaces, which are determined by integration over varying domains.
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When it is asserted that the notion of orthogonality is different for dif-
ferent spheroids, the assertion must be taken to mean that the definition of
a contragenic function does not imply that an L2-function belonging to the
space N ∗l (Ωµ̃) should also be in N ∗l (Ωµ), when µ̃ 6= µ. In other words, we
may not expect a general formula like

“Z±l,m[µ̃] = ∑
zn,m,k[µ̃, µ]Z±l−2k,m[µ]”

analogous to the results of Theorems 2.3.3 and 3.1.8 for harmonic and mono-
genic functions. It will here be shown that the intersection of all of the
N ∗l (Ωµ) is nontrivial, giving what may be called universal contragenic func-
tions in the context of spheroids.

These observations being made, we consider the particular ambigenic
spheroidal polynomials

A±l,m[µ] := 2 Vec(X±l,m[µ]) = X±l,m[µ]−X±l,m[µ], (3.2.9)

where l ≥ 1 and 0 ≤ m ≤ l + 1. In accordance with Definition 3.2.3, we
further observe that

A±l,m[µ] = −Y±,−l,m [µ] + (1− γl,m[µ])Y±,+l,m [µ],

where the coefficients γl,m[µ] are given by (3.2.1).
The following two preliminary lemmas are required to prove a general

formula relating systems of harmonic and contragenic functions associated
with spheroids of differing eccentricity:

Lemma 3.2.11. For fixed µ, the set {A±k,m[µ] : 1 ≤ k ≤ l, 0 ≤ m ≤ k + 1}
forms an orthogonal family over the interior of the spheroid Ωµ in the sense
of the scalar inner product (1.2.2).

Proof. For simplicity of notation, we denote by σk,m = 1− γk,m[µ]. A direct
computation shows that

〈A±k1,m1 [µ],A±k2,m2 [µ]〉0,L2(Ωµ,A)

= 〈Y±,−k1,m1 [µ],Y±,−k2,m2 [µ]〉0,L2(Ωµ,A) − σk2,m2〈Y
±,−
k1,m1 [µ],Y±,+k2,m2 [µ]〉0,L2(Ωµ,A)

− σk1,m1〈Y
±,+
k1,m1 [µ],Y±,−k2,m2 [µ]〉0,L2(Ωµ,A)

+ σk1,m1σk2,m2〈Y
±,+
k1,m1 [µ],Y±,+k2,m2 [µ]〉0,L2(Ωµ,A).

By Theorem 3.2.4, the system {Y±,±k,m [µ] : k ≥ 1, 0 ≤ m ≤ k + 1} is or-
thogonal. It then follows that 〈A±k1,m1 [µ],A±k2,m2 [µ]〉0,L2(Ωµ,A) = 0, when
k1 6= k2 or m1 6= m2. In a similar manner as above, we can show that
〈A±k1,m1 [µ],A∓k2,m2 [µ]〉0,L2(Ωµ,A) = 0.
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Lemma 3.2.12. Let l ≥ 1 and 1 ≤ m ≤ l − 1. The basic contragenic
polynomials (3.2.3) are equal to

Z+
l,0[µ] = 2

l + 2 Vl,1[µ]Ψ−+,1, (3.2.10)

Z±l,m[µ] = (l + 1 +m)al,m[µ]Vl,m−1[µ]Ψ∓−,m−1

+ 1
l + 2 +m

Vl,m+1[µ]Ψ∓+,m+1, (3.2.11)

where the Vl,m[µ] are defined by (2.2.7), Ψ±+,m = iΦ±m(ϕ) ± jΦ∓m(ϕ) and
Ψ±−,m = iΦ±m(ϕ)∓ jΦ∓m(ϕ).

Proof. It is a simple matter to verify that

Ψ±+,mk = ±Ψ∓+,m,
Ψ±−,mk = ∓Ψ∓−,m,
iV ±l,m[µ] + jV ∓l,m[µ] = Vl,m[µ]Ψ±±,m,
iV ±n,m[µ]− jV ∓l,m[µ] = Vl,m[µ]Ψ±∓,m.

Now, by (3.2.9), we find

A±l,m[µ] = (l + 1 +m)Vl,m−1[µ]Ψ±−,m−1

− 1
l + 2 +m

Vl,m+1[µ]Ψ±+,m+1. (3.2.12)

The rest of the proof follows from Definition 3.2.8 by considering (3.2.3).

With regard to Lemma 3.2.12, it will be convenient to decompose the
harmonic polynomials just considered, Vl,m−1[µ]Ψ∓−,m−1 and Vl,m+1[µ]Ψ∓+,m+1,
as the sum of basic contragenic and ambigenic polynomials.

Proposition 3.2.13. Let l ≥ 1 and 0 ≤ m ≤ l + 1. Then

Vl,m−1[µ]Ψ±−,m−1 = 1
(l + 1 +m) (al,m[µ] + 1)

(
Z∓l,m[µ] + A±l,m[µ]

)
,

Vl,m+1[µ]Ψ±+,m+1 = l + 2 +m

al,m[µ] + 1
(
Z∓l,m[µ]− al,m[µ]A±l,m[µ]

)
,

where the al,m[µ] are given by (3.2.4).

Proof. The proof immediately follows from Lemma 3.2.12 by adding and
subtracting instances of (3.2.10), (3.2.11), and (3.2.12).



3.2. CONTRAGENICS ON SPHEROIDAL DOMAINS 139

We then proceed by stating and proving the main result of the section,
which provides many examples for which Z±l,m[µ̃] 6∈ N ∗l (Ωµ) for m ≥ 1. It will
be further observed that there are common nontrivial contragenic functions
to all spheroids of all eccentricities.

Additionally, we introduce the following notations:

zC
l,0,k[µ̃, µ] = l + 2− 2k

l + 2 wl,1,k[µ̃, µ],

zC
l,m,k[µ̃, µ] =


al,m[µ̃] + 1

al−2k,m[µ] + 1 wl,m,k[µ̃, µ], k = 0, . . . ,
[
l−1−m

2

]
,

al,m[µ̃]
al−2k,m[µ] + 1 wl,m,k[µ̃, µ], k =

[
l−m

2

]
, . . . ,

[
l+1−m

2

]
,

zA
l,m,k[µ̃, µ] =


al,m[µ̃]− al,m[µ]
al−2k,m[µ] + 1 wl,m,k[µ̃, µ], k = 0, . . . ,

[
l−1−m

2

]
,

al,m[µ̃]
al−2k,m[µ] + 1 wl,m,k[µ̃, µ], k =

[
l−m

2

]
, . . . ,

[
l+1−m

2

]
,

(3.2.13)

where 1 ≤ m ≤ l − 1, and the wl,m,k[µ̃, µ] are given by (2.3.6).
We are now ready to express the decomposition of basic contragenics for

one spheroid in terms of the basic contragenics (3.2.3) and the ambigenics
(3.2.9) of any other.

Proposition 3.2.14. Let l ≥ 1. Then

Z+
l,0[µ̃] =

[ l−1
2 ]∑

k=0
zC
l,0,k[µ̃, µ]Z+

l−2k,0[µ],

Z±l,m[µ̃] =
[ l+1−m

2 ]∑
k=0

(
zC
l,m,k[µ̃, µ]Z±l−2k,m[µ] + zA

l,m,k[µ̃, µ]A±l−2k,m[µ]
)

for 1 ≤ m ≤ l − 1.

Proof. We first prove the case m = 0. By applying Theorem 2.3.3 to (3.2.10)
with µ̃ in place of µ, we obtain

Z+
l,0[µ̃] = 2

l + 2

[ l−1
2 ]∑

k=0
wl,1,k[µ̃, µ]Vl−2k,1[µ]Ψ−+,1,
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which is reduced to the first statement after another application of (3.2.10).
Similarly, for m ≥ 1,

Z±l,m[µ̃] = (l + 1 +m)al,m[µ̃]
[ l+1−m

2 ]∑
k=0

wl,m−1,k[µ̃, µ]Vl−2k,m−1[µ]Ψ±−,m−1

+ 1
l + 2 +m

[ l−1−m
2 ]∑

k=0
wl,m+1,k[µ̃, µ]Vl−2k,m+1[µ]Ψ±+,m+1. (3.2.14)

We observe from the definitions leading to Corollary 2.2.7 that

αl+1,m−1,n α̃l+1−2n,m−1,k−n = l + 1 +m− 2k
l + 1 +m

αl+1,m,n α̃l+1−2n,m,k−n

and, by (2.3.7), we find

l + 1 +m

l + 1 +m− 2k wl,m−1,k[µ̃, µ] = wl,m,k[µ̃, µ]

= l + 2 +m− 2k
l + 2 +m

wl,m+1,k[µ̃, µ].

With these calculations at hand, we further apply Proposition 3.2.13 to show
that

(l + 1 +m)wl,m−1,k[µ̃, µ]Vl−2k,m−1[µ]Ψ±−,m−1

= 1
al−2k,m[µ] + 1 wl,m,k[µ̃, µ]

(
Z∓l−2k,m[µ] + A±l−2k,m[µ]

)
,

and
1

l + 2 +m
wl,m+1,k[µ̃, µ]Vl−2k,m+1[µ]Ψ±+,m+1

= 1
al−2k,m[µ] + 1 wl,m,k[µ̃, µ]

(
Z∓l−2k,m[µ]− al−2k,m[µ]A±l−2k,m[µ]

)
.

Inserting these two relations into the respective sums of (3.2.14) gives the
desired result.

The chief interest of this proposition arises from the fact that it provides
information about the intersection of the spaces of contragenic functions up
to degree l. The general theorem may now be stated:

Theorem 3.2.15. Let l ≥ 1. The following statements hold:

(i) Z+
l,0[µ] ∈ N ∗l (Ω0) for all µ;
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(ii) Z±l,m[µ] /∈ N ∗l (Ω0) when µ 6= 0 and 1 ≤ m ≤ l − 1.
Proof. The first statement is an immediate consequence of the first formula
of Proposition 3.2.14. Now, consider a basic element Z±l,m[µ] of N ∗l (Ωµ), with
µ 6= 0 and 1 ≤ m ≤ l−1. We have then, by the second formula of Proposition
3.2.14,

Z±l,m[µ] =
[ l+1−m

2 ]∑
k=0

(
zC
l,m,k[µ, 0]Z±l−2k,m[0] + zA

l,m,k[µ, 0]A±l−2k,m[0]
)
.

Suppose that Z±l,m[µ] ∈ N ∗l (Ω0). Since the right-hand side of the above
expression is orthogonal to all Ω0-ambigenics, we obtain

[ l+1−m
2 ]∑

k=0
zA
l,m,k[µ, 0]A±l−2k,m[0] = 0.

So by the linear independence of the ambigenic polynomials (3.2.9), it then
follows that zA

l,m,k[µ, 0] = 0 for all k. The case in (3.2.13) where k is
[(l −m)/2] or [(l + 1−m)/2] tells us that al,m[µ] = 0, which is manifestly
false by (3.2.4). Consequently, Z±l,m[µ] 6∈ N ∗l (Ω0) as claimed, and accordingly,
the theorem has been established.

It is significant to note in this connection that Theorem 3.2.15 does not
assert that Z+

l,0[µ] lies in the top-level slice Nl(Ω0) of N ∗l (Ω0). We now have
the result that
Corollary 3.2.16. Let l ≥ 1. Then

dim
⋂

µ∈ [0,1)∪ iR+

N ∗l (Ωµ) ≥ l.

Proof. The result is an immediate consequence of the fact that Theorem
3.2.15 applies to arbitrary µ, so the intersection contains a fixed l-dimensional
subspace of N ∗l (Ω0).

Furthermore, it follows from Theorem 3.2.15 that the common intersec-
tion ⋂N ∗(Ωµ) of the full spaces of contragenic functions on spheroids is
infinite-dimensional, containing all the contragenic polynomials Z+

l,m[µ] for
which m = 0. Although this phenomenon is not fully understood, it seems
likely that these contragenic polynomials have unique characteristics, given
their more straightforward structure (3.2.10). Further questions regarding
the exact relations among the spaces N ∗l (Ωµ) remain open. If the method
employed in the proof of Theorem 3.2.15 is applied to linear combinations
of the Z±l,m[µ] instead of just to these generators individually, transcendental
equations related to (3.2.4) appear. These equations may be a subject for
future work.
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4

Prolate Spheroidal Wave
Functions associated with the
QFT

The first part of this chapter begins with a discussion of the existence of
a theory of functions with quaternionic values and of three real variables,
which is determined by a Moisil-Teodorescu type operator with quaternionic
variable coefficients and it is intimately related to the theory of PSWFs. We
proceed to study the energy concentration problem of band-limited quater-
nionic signals under the QFT defined by (1.6.4) and prove a quaternionic
version of Donoho-Stark’s uncertainty principle. Keys to the analysis are
certain c-Quaternionic Prolate Spheroidal Wave Functions (from now on ab-
breviated as c-QPSWFs), which possess several unique properties that make
them most useful for the study of band-limited functions. We prove that the
c-QPSWFs are maximally concentrated in both the spatial and frequency
domains among band-limited quaternionic functions of a given energy. The
c-QPSWFs are orthogonal and complete over two different bounded domains
along the Euclidean space R3, under certain symmetry assumptions: the
space of square-integrable quaternionic functions and the reproducing kernel
Hilbert space of band-limited quaternionic signals.

In the second part of the chapter, the c-QPSWFs are used to investigate
the band-limited extrapolation problem. The mean-square convergence of
the quaternionic Slepian series for band-limited functions is also discussed.
More importantly, the maximization problem of the c-QPSWFs is analyzed.
It is shown how to use the c-QPSWFs to examine the energy concentration
of a signal in the spatial and frequency domains. In the application part, we
study the c-QPSWFs restricted in the spatial domain to the unit ball Ω0 and
frequency domain to the ball cΩ0 of radius c > 0 and establish some of their

143
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fundamental properties.

4.1 The Connection between the PSWFs and
the Notion of c-hyperholomorphicity

In the present section, we show that the theory of PSWFs may also be de-
termined by a Moisil-Teodorescu type operator with quaternionic variable
coefficients [103]. It will follow from the fact that every metaharmonic func-
tion can be decomposed into a direct sum of two functions from the con-
jugate classes of Dc-hyperholomorphy [189]. As a result, we explain the
connections between the PSWFs, on the one hand, and the quaternionic c-
hyperholomorphic and c-antihyperholomorphic functions, c = µk, µ ∈ (0, 1),
k ∈ R+, on the other.

By (1.5.1), the following factorization holds for the Helmholtz operator
in three-dimensional Cartesian coordinates:

∆3 + k2 =
(
k + i

∂

∂x0
+ j

∂

∂x1
+ k

∂

∂x2

)(
k − i

∂

∂x0
− j

∂

∂x1
− k

∂

∂x2

)
=: DcDc.

By using notations already employed in Subsection 1.5.1, the Helmholtz op-
erator can then be written as

WΦ
(
∆3 + k2

)
WΨ

= WΦ (Dc)WΨWΦ
(
Dc

)
WΨ

= WΦ

(
k + i

∂

∂x0
+ j

∂

∂x1
+ k

∂

∂x2

)
WΨWΦ

(
k − i

∂

∂x0
− j

∂

∂x1
− k

∂

∂x2

)
WΨ.

Straightforward computations show that

WΦ
∂

∂x0
WΨ = h2(ξ, t)

h2
1(ξ, t)

(
ξ
∂

∂ξ
− t ∂

∂t

)
cosϕ− sinϕ

h2(ξ, t)
∂

∂ϕ
,

where h1(ξ, t) and h2(ξ, t) are defined in (1.5.5).
Similarly,

WΦ
∂

∂x1
WΨ = h2(ξ, t)

h2
1(ξ, t)

(
ξ
∂

∂ξ
− t ∂

∂t

)
sinϕ+ cosϕ

h2(ξ, t)
∂

∂ϕ
,

and
WΦ

∂

∂x2
WΨ = µ

h2
1(ξ, t)

[
(ξ2 − 1)t ∂

∂ξ
+ (1− t2)ξ ∂

∂t

]
.
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In this manner, it follows that

Dc :=WΦDcWΨ (4.1.1)

=WΦ

(
k + i

∂

∂x0
+ j

∂

∂x1
+ k

∂

∂x2

)
WΨ

= k +
[
h2(ξ, t)
h2

1(ξ, t) (i cosϕ+ j sinϕ) ξ + µk
h2

1(ξ, t) (ξ2 − 1)t
]
∂

∂ξ

+
[
−h2(ξ, t)
h2

1(ξ, t) (i cosϕ+ j sinϕ) t+ µk
h2

1(ξ, t) (1− t2)ξ
]
∂

∂t

+
[

1
h2(ξ, t) (−i sinϕ+ j cosϕ)

]
∂

∂ϕ
.

Analogously,

Dc :=WΦDcWΨ (4.1.2)

= k −
[
h2(ξ, t)
h2

1(ξ, t) (i cosϕ+ j sinϕ) ξ + µk
h2

1(ξ, t) (ξ2 − 1)t
]
∂

∂ξ

−
[
−h2(ξ, t)
h2

1(ξ, t) (i cosϕ+ j sinϕ) η + µk
h2

1(ξ, t) (1− t2)ξ
]
∂

∂t

−
[

1
h2(ξ, t) (−i sinϕ+ j cosϕ)

]
∂

∂ϕ
.

The operators Dc and Dc are well-defined on

R3 \ {(ξ, t, ϕ) ∈ R3 : h1(ξ, t) 6= 0, h2(ξ, t) 6= 0},

but to unify the notations and simplify the calculations further, we choose
them acting on Ωξ,t,ϕ, defined as (1.5.6).

We introduce a particular class of H-valued functions analogous to holo-
morphic complex-valued functions.

Definition 4.1.1. Given a real number c > 0, a function f ∈ C1(Ωξ,t,ϕ,H)
is called

(i) c-hyperholomorphic in Ωξ,t,ϕ if Dcf = 0 identically in Ωξ,t,ϕ;

(ii) c-antihyperholomorphic in Ωξ,t,ϕ if Dcf = 0 identically in Ωξ,t,ϕ.

It is understood that Dc,Dc are applied to f after the change of variables
(x0, x1, x2) ↔ (ξ, t, ϕ), which itself depends on the choice of µ. The next
lemma follows immediately from the definition.
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Lemma 4.1.2. The operators (4.1.1) and (4.1.2) factor the differential op-
erator induced by equation (1.5.3); that is,

DcDc = DcDc = 1
h2

1(ξ, t)W , (4.1.3)

where
W =Wξ,t,ϕ + c2(ξ2 − t2) (4.1.4)

and Wξ,t,ϕ is defined by (1.5.4).

The factorization property (4.1.3) suggests that nullsolutions of the Dc-
operator play the same role for the W-operator as the usual holomorphic
functions in one complex variable or monogenic functions of quaternionic
analysis play for the corresponding Laplace operators. Furthermore, they
are related to researched c-hyperholomorphic functions for the Helmholtz
operator [189, 190]. However, note that there is an essential difference as the
operators (4.1.1) and (4.1.2) have nonconstant coefficients, and the theories
of such operators are much more sophisticated.

We proceed to show how to relate the solutions of the angular and radial
prolate spheroidal equations (1.5.8) and (1.5.9) directly to the notion of c-
hyperholomorphicity of Definition 4.1.1. A discussion of the relationship
between a quaternionic function theory and the theory of the PSWFs (of
order zero) was considered in [103]. However, in treatments such as [103]
and [248], the PSWFs degenerate to a segment as the eccentricity of the
spheroid decreases. The present approach does not suffer this drawback as
it is based on explicit formulas, whose elements are parametrized by the
shape of the spheroids. We start by considering a real-valued solution to
the operator (1/h2

1(ξ, t))W , say Φn,0(ξ, t), given by (1.5.7). Bearing in mind
the factorization (4.1.3), we may then apply either the operator (4.1.1) or
its conjugate operator (4.1.2) to Φn,0(ξ, t), n = 0, 1, . . . . More precisely,
we set φn,0 := (1/2k)Dc[Φn,0] and φn,0 := (1/2k)Dc[Φn,0]. It is clear from
the context that we have suppressed that the family of conjugate functions
{φn,0,φn,0} depend on the parameter c.

Following what has been conducted above, direct observations show that

Dcφn,0 = Dc
( 1

2kDcΦn,0

)
= 1

2kDcDcΦn,0 = 1
2k

1
h2

1(ξ, t)WΦn,0 = 0

and, similarly, Dcφn,0 = 0. It then follows that each pair of solutions of the
corresponding equations (1.5.8) and (1.5.9) generate a c-hyperholomorphic
function and a c-antihyperholomorphic function. Furthermore, the decom-
position φn,0 + φn,0 = Φn,0 holds for all n = 0, 1, . . . . This is related to the
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fact that if Φn,0 is a metaharmonic function (i.e., ∆3Φn,0 + k2Φn,0 = 0), then
there exist (uniquely) two functions φ(1)

n,0 and φ(2)
n,0 from the conjugate classes

of Dc-hyperholomorphy such that Φn,0 = φ
(1)
n,0 + φ(2)

n,0 [189].
Now we will work out explicit expressions of the functions φn,0, which

follow by straightforward calculations.

Proposition 4.1.3. Given a real number c > 0, the φn,0 (n = 0, 1, . . . ) are
equal to

φn,0(ξ, t, ϕ) = 1
2 Sn,0(c, t)Rn,0(c, ξ)

+ (i cosϕ+ j sinϕ) h2(ξ, t)
h2

1(ξ, t)

[
tRn,0(c, ξ) dS0,n(c, t)

dt
− ξ dRn,0(c, ξ)

dξ
Sn,0(c, t)

]

− µk
h2

1(ξ, t)

[
(1− t2)ξRn,0(c, ξ) dS0,n(c, t)

dt
+ (ξ2 − 1)tdRn,0(c, ξ)

dξ
Sn,0(c, t)

]
,

(4.1.5)

where Sn,0(c, t) is a solution of (1.5.8) and Rn,0(c, ξ) is a solution of (1.5.9).

The suggested φn,0 are illustrated below. It can further be seen that
for each n, the functions |φn,0|2 do not depend on ϕ, by Proposition 4.1.3.
Hence the plots of these functions will be symmetric with respect to the
x0-axis. The following figures show the function |φ0,0(ξ, t)|2 in the spatial
domain (ξ, t) ∈ (1, 1/µ] × (−1, 1) provided by (4.1.5). The parameters are
c = 0.1, 2, 3, 4 and µ = c.

Figure 4.1: c = 0.1 Figure 4.2: c = 2
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Figure 4.3: c = 3 Figure 4.4: c = 4

We now plot the functions |φn,0(ξ, t)|2 (n ∈ {0, . . . , 5}) for c ∈ [0.1, 17].

Figure 4.5: |φ0,0|2 Figure 4.6: |φ1,0|2

Figure 4.7: |φ2,0|2 Figure 4.8: |φ3,0|2

Figure 4.9: |φ4,0|2 Figure 4.10: |φ5,0|2
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4.2 The c-QPSWFs
We propose, in the present section, to introduce the c-QPSWFs. We shall
study the c-QPSWFs in detail and present some of their applications to rep-
resent band-limited quaternionic functions. The property that we shall be
most concerned with is the orthogonality of the c-QPSWFs over two different
three-dimensional spaces, under the assumption of a certain kind of symme-
try: the space of square-integrable quaternionic functions on a cube and the
reproducing kernel Hilbert space of band-limited quaternionic signals. The
treatment given here is a generalization provided by Slepian and Pollak in
[299] and Landau and Pollak in [198].

It is quite surprising that by slightly modifying the standard methods
described in Subsection 1.5.2, one can obtain a nearly complete theory, as
in the case of the multi-dimensional PSWFs [300]. There will appear signif-
icant algebraic complications because of the underlying noncommutativity
of quaternions; nevertheless, the essential nature of the arguments will re-
main unchanged. For instance, see [251, 350] for a list of the known results
concerning the c-QPSWFs before the present investigation.

4.2.1 Space-Limited and Band-Limited Quaternionic
Signals

Let T and W be two cubes in R3 centered at the origin with edges parallel
to the coordinate axes, of volumes |T| = 8T 3 and |W| = 8W 3 respectively,
where T andW are fixed positive real numbers. We call T the spatial-domain,
and W the frequency-domain. In the interest of simplicity, we henceforth
choose W to be a scaled version of T. We write W = cT, meaning that
x ∈ T if and only if cx ∈ W, with c a positive constant. We henceforth
assume T and W so chosen.

To begin with, we study the relationship between two closed subspaces of
L2(R3,H): the subspace D(T) of all f ∈ L2(R3,H) supported in T and the
subspace B(W) of all f ∈ L2(R3,H) whose QFTs are supported in W. We
will show that several questions about D(T) and B(W) can be answered in
terms of the eigenvalues of the operator DTBWDT, where DT and BW are
the projections onto D(T) and B(W), respectively. As will later be seen, the
operator DTBWDT may be written as a finite convolution. The behavior
of its eigenvalues is worth highlighting because it differs markedly from that
established in [350] for the class of finite convolutions whose QFTs are de-
fined by (1.6.1). Apart from this application, interpretable as describing how
the energy of a function in L2(R3,H) can be distributed over space and fre-
quency, we prove a quaternionic counterpart of the Donoho-Stark uncertainty
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principle associated with the QFT defined by (1.6.4). Similar questions for
the case where more general measurable spaces replace the domains T and
W are not considered in the present discussion.

We have adapted the following definitions of H-valued functions within
our context: ε-concentrated (in energy) in the spatial and frequency domains,
from [99].

Definition 4.2.1. Let εT, εW ≥ 0. We say that a function f ∈ L2(R3,H)
is εT-concentrated on T if there is a function g(x) vanishing outside T such
that

‖f − g‖L2(R3) ≤ εT‖f‖L2(R3).

Similarly, we say that F(f) is εW-concentrated on W if there is a function
h(ω) vanishing outside W with

‖F(f)− h‖L2(R3) ≤ εW‖f‖L2(R3).

We consider two types of H-valued square-integrable functions and their
corresponding space-limited and band-limited spaces. The definitions of a
space-limited and a band-limited quaternionic signal are more general than
those of Zou et al., presented in [350]. A quaternionic function theory of
generalized two-dimensional PSWFs was developed in [350] using definition
(1.6.2) but not employing (1.6.4) as considered in this text.

Definition 4.2.2. We say that an H-valued function f with finite energy is
space-limited if it vanishes for all x ∈ R3 \T.

Definition 4.2.3. We say that an H-valued function f with finite energy is
band-limited with band W if F(f)(ω) vanishes for all ω ∈ R3 \W.

From any f in L2(R2,H), we define two restriction operators on L2(R3,H)
for each of which f becomes either a space-limited or a band-limited function;
we will call them, respectively, space-limiting and band-limiting operators.

Definition 4.2.4. Let f ∈ L2(R3,H). We define the space-limiting operator
by

(DTf)(x) = χT(x)f(x), (4.2.1)
where χT is the characteristic function of T. The subspace of quaternionic
signals that are space-limited to T, namely all functions f in L2(R3,H) such
that DTf = f , is denoted by D(T).

We regard DT as an operator whose effect on a function f ∈ L2(R3,H)
is to produce its space-limited version. According to Definition 4.2.1 we say
that f is εT-concentrated on T, if and only if

‖f −DTf‖L2(R3) ≤ εT‖f‖L2(R3). (4.2.2)
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Similarly, we define an operator whose effect on a quaternionic function is to
produce its band-limited version.
Definition 4.2.5. Let f ∈ L2(R3,H). We define the band-limiting operator
by

(BWf)(x) = F−1 [χWF(f)] (x)

= 1
(2π)3

∫
W
F(f)(ω)E(ω,x)dω. (4.2.3)

We denote by

B(W) =
{
f ∈ L2(R3,H) : F(f)(ω) ≡ 0, ω ∈ R3 \W

}
(4.2.4)

the space of quaternionic signals that are band-limited to W, namely all
functions in L2(R3,H) such that BWf = f .

The expression (4.2.3) for BW defines a function whose QFT agrees with
F(f)(ω) in ω ∈ W and vanishes elsewhere; thus, the operation BWf is
entirely analogous to DWF(f).

If g := BWf , then F(g) vanishes outside W. With Definition 4.2.1
in place, it is clear that g is the closest function to f with the following
property: F(f) is εW-concentrated on W, if and only if

‖F(f)−F(BWf)‖L2(R3) = (2π)3/2 ‖f −BWf‖L2(R3)

≤ εW‖f‖L2(R3). (4.2.5)

In accordance with Definition 1.2.24, we will now show that the space
B(W) is a RKQHS. The product of three sinc functions gives the corre-
sponding three-dimensional reproducing kernel.
Theorem 4.2.6. Let x,y be points in R3. The space B(W) is a RKQHS on
R3. The unique reproducing kernel KW(x,y) is given by

KW(x,y) =
2∏
j=0

[(
W

π

)
K

(
W (xj − yj)

π

)]
, (4.2.6)

where K denotes the sinc function defined by (1.5.17).
Proof. Let f ∈ B(W). Applying Schwarz’s inequality (1.2.4) and Parseval’s
identity (1.6.11) to the representation (4.2.3), we obtain

|f(x)| ≤ 1
(2π)3

(∫
W
|F(f)(ω)|2 dω

)1/2 (∫
W
|E(ω,x)|2dω

)1/2

≤

√
|W|

(2π)3/2 ‖f(x)‖L2(R3)
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for all x. Hence, it follows that B(W) is a RKQHS. In this case, the re-
producing kernel is obtained from the inverse QFT (1.6.9) of the function
χW(ω)E(ω,y):

KW(x,y) = 1
(2π)3

∫
W
E(ω,y)E(ω,x)dω (4.2.7)

= 1
(2π)3

2∏
j=0

(∫ W

−W
euωj(xj−yj)dωj

)
.

To transform this expression further, we use Lemma 1.1.3 to find

1
2π

∫ W

−W
euωj(xj−yj)dωi = (−u)

2πxj

∫ W

−W
u(xj − yj)euωj(xj−yj)dωj

= (−u)
πxj

(
eu(xj−yj)W − e−u(xj−yj)W

2

)

= (−u)
πxj

Vec(eu(xj−yj)W )

= sin[W (xj − yj)]
π(xj − yj)

,

and hence the result follows.

It is an immediate and essential consequence from the above result that
norm convergence in B(W) does indeed imply uniform convergence in the
whole R3.

Lemma 4.2.7. Let {fn} be a sequence in B(W). If fn converges to f in
the RKQHS-norm, then limn→∞ |fn(x)− f(x)| = 0 for all x ∈ R3.

An essential matter for investigation is the determination of specific prop-
erties of the spaces D(T) and B(W). In light of the considerations above
adduced, it appears certain that a band-limited function f(x), which van-
ishes for x ∈ T, must vanish identically; in other words, D(T)∩B(W) = {0}.
It will be asserted later that there is a nonzero minimum angle between the
spaces D(T) and B(W). It will be shown that the eigenvalues of the convo-
lution operator DTBWDT measure the angles formed by the two subspaces.
Simultaneously, its eigenfunctions are a convenient basis for the study of
questions regarding the relationship between quaternionic functions and their
QFTs. These spaces will be discussed in detail in Subsection 4.3.

The remarks made regarding space-limiting and band-limiting a quater-
nionic function show that D(T) and B(W) are linear subspaces of L2(R3,H).
We proceed with the following lemma:
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Lemma 4.2.8. The spaces D(T) and B(W) are complete and orthogonal to
their complements L2(R3,H) \ D(T) and L2(R3,H) \ B(W).

Proof. The range of the operator DT is a subspace of L2(R3,H) that is iso-
metrically isomorphic to L2(T,H). By abuse of notation, we shall continue
to denote it by D(T). It then follows that D(T) is complete. Moreover, it is
clear that

〈DTf ,f −DTf〉L2(R3,H) = 0 (4.2.8)

for all f ∈ L2(R3,H), since each one vanishes where the other does not. We
proceed to show that B(W) is a closed subspace of L2(R3,H). By Lemma
4.2.7, we prove this assertion in the following manner. Suppose a sequence
{fn} in B(W) converges in the mean-square to f . Clearly f ∈ L2(R3,H).
By Plancherel’s identity (1.6.10), the corresponding QFT converges likewise,∫

R3
|fn(x)− f(x)|2 dx = 1

(2π)3

∫
R3
|F(fn)(ω)−F(f)(ω)|2 dω.

Thus F(f)(ω) must vanish for ω ∈ R3 \W and f(x) has band W. Now,
employing again (1.6.10) we have then,

〈BWf ,f −BWf〉L2(R3,H) = 0 (4.2.9)

for all f ∈ L2(R3,H); the argument then proceeds as before.

In the following sections, it will be shown that there are certain functions
DTψn and ψn which span, respectively, the spaces D(T) and B(W). Let
us now consider the space D(T) ∪ B(W) and its complement L2(R3,H) \
(D(T) ∪ B(W)) = (D(T))⊥ ∩ (B(W))⊥. The space (D(T) ∪ B(W))⊥ con-
tains all such f for which DTf = f and BWf = f , namely all such func-
tions that are space-limited to T and band-limited to W. There do not seem
to be any known quaternionic function that possesses this property. How-
ever, this function must exist since D(T) ∪ B(W) 6= L2(R3,H), and hence
(D(T) ∪ B(W))⊥ is not empty. Whether a construction scheme for the miss-
ing functions can be developed is a matter of great concern [198], but it is
an issue that goes beyond the scope of the present study.

Having made these observations, we proceed to consider a further aspect
of the spacesD(T) and B(W), which is substantially the one given by Landau
et al. [198]. Because these results are proved in a manner precisely similar
to that in which the corresponding ones in the one-dimensional case were
established in [198], we state the lemmas without proof.

Lemma 4.2.9. The space D(T) + B(W) is closed.
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Lemma 4.2.10. There are infinitely many functions in L2(R3,H), which are
orthogonal to D(T) + B(W).

In preparation for the following section, it will now be shown that the op-
erators defined by (4.2.1) and (4.2.3) satisfy the usual requirement of projec-
tion operators on a complex linear space and will be referred to as orthogonal
projection operators of L2(R3,H) onto D(T) and B(W), respectively.

Lemma 4.2.11. The operator DT is an orthogonal projection of L2(R3,H)
onto D(T), and BW is an orthogonal projection of L2(R3,H) onto B(W).

Proof. According to Definition 4.2.4, it is clear that DT is left-linear. More-
over, it is easily seen that DT is idempotent (that is, D2

T = DT), and the
fact that DT is self-adjoint follows from

〈DTf , g〉L2(R3,H) =
∫
R3
f(x)χT(x)g(x)dx

= 〈f , DTg〉L2(R3,H).

Similarly, by Definition 4.2.5, the range of BW consists of all functions in
L2(R3,H) with spectrum in W, namely those f ∈ L2(R3,H) such that
suppF(f) ⊂ W. We may proceed in this manner to show that BW is a
left-linear operator. We use Definition 4.2.5 and Theorem 4.2.6 to prove that
each of the quantities F−1 [χWF([f ]i)] (x) (i = 0, 1, 2, 3) is a real-valued
function.

Accordingly, by the Tonelli-Hobson Theorem, we get

BW[f ]i(x) = 1
(2π)3

∫
W
F([f ]i)(ω)E(ω,x) dω

= 1
(2π)3

∫
W

[∫
R3

[f(y)]iE(ω,y)E(ω,x)dy
]
dω

=
∫
R3

[f(y)]iKW(x,y)dy,

where the last step follows from changing the order of integration (justified
by the absolute convergence of the integrals involved). It is then clear that
BW can be further decomposed as follows:

BWf = F−1 {χW [F([f ]0) + iF([f ]1) + jF([f ]2) + kF([f ]3)]}
= BW[f ]0(x) + iBW[f ]1(x) + jBW[f ]2(x) + kBW[f ]3(x),

where F([f ]i) (i = 0, 1, 2, 3) are H-valued functions. Because of the (left-)
linearity property (1.6.7) of the QFT, it follows that the operator BW is also
left-linear. It can be further seen that BW is idempotent.
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Now, we use Plancherel’s identity (1.6.10) to show that BW is self-adjoint:

〈BWf , g〉L2(R3,H) = 〈F−1 [χWF(f)] , g〉L2(R3,H)

= 1
(2π)3 〈χWF(f),F(g)〉L2(R3,H)

= 1
(2π)3 〈F(f), χWF(g)〉L2(R3,H)

= 〈f ,F−1 [χWF(g)]〉L2(R3,H)

= 〈f , BWg〉L2(R3,H).

The lemma is now thoroughly established.

We may then describe how the energy of a function in L2(R3,H) can
be distributed over both space and frequency. Let f(x) ∈ L2(R3,H) have
total energy E = ‖f‖L2(R3). The space-limited version of f(x) has total
energy ET = ‖DTf‖L2(R3) = ‖f‖L2(T) ≤ E. Since DTf cannot be band-
limited, its QFT has nonvanishing energy in ω ∈ R3 \W. The band-limited
version of DTf , namely BWDTf , will have total energy EWT < ET ≤ E.
The operation BWDT transforms a member of L2(R3,H) into a member of
B(W) with smaller total energy. The question is then to identify which
members of L2(R3,H) lose the smallest fraction of their energy under such a
transformation. That is, for which f ∈ L2(R3,H) \ {0} is

‖BWDTf‖L2(R3)

‖f‖L2(R3)

a maximum? This can be answered in terms of the eigenvalues of the operator
DTBWDT (see Subsection 4.3 for details).

For any f in L2(R3,H), using Fubini’s Theorem and Eq. (4.2.7) we may
write the composite operator BWDT, which first space-limits and then band-
limits, explicitly as

(BWDTf)(x) = 1
(2π)3

∫
W
F(DTf)(ω)E(ω,x) dω

= 1
(2π)3

∫
W

(∫
T
f(y)E(ω,y)dy

)
E(ω,x)dω

= 1
(2π)3

∫
T
f(y)

(∫
W
E(ω,y)E(ω,x)dω

)
dy

=
∫
R3
χT(y)KW(x,y)f(y)dy, (4.2.10)
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where KW(x,y) is defined by (4.2.6). By the Tonelli-Hobson Theorem, the
operator DTBW may be defined in an analogous fashion:

(DTBWf)(x) = χT(x) 1
(2π)3

∫
W
F(f)(ω)E(ω,x)dω

= χT(x) 1
(2π)3

∫
W

(∫
R3
f(y)E(ω,y)dy

)
E(ω,x)dω

= χT(x)
∫
R3
f(y)

(
1

(2π)3

∫
W
E(ω,y)E(ω,x)dω

)
dy

= χT(x)
∫
R3
KW(x,y)f(y)dy.

From what has been shown above, it is clear that the two operators, DT and
BW, do not commute.

However, it is unnecessary to proceed with a detailed analysis of DTBW
because the two operators, DTBW and BWDT, have the same spectrum as
shown below. We shall hereafter take BWDT as our operator of fundamental
concern.

What is essential here is contained in the following lemma:

Lemma 4.2.12. The operator BWDT is compact on L2(R3,H).

Proof. In the first place, it is easily seen that BWDT is a (left-)linear op-
erator. Now, we set gy(x) := KW(x,y). Noting that KW(x,y) defined by
(4.2.6) is an even function, we find from the space-shift property (1.6.8) of
the QFT that

F(gy)(ω) = χW(ω)E(ω,y). (4.2.11)
Parseval’s identity (1.6.11), together with Lemma (1.1.3), gives further∫

R3
|gy(x)|2 dx = 1

(2π)3

∫
R3
|F(gy)(ω)|2 dω

= 1
(2π)3

∫
R3
|χW(ω)|2 dω.

Proceeding in this manner, we find that BWDT defined by (4.2.10) is an
integral operator whose kernel is square-integrable:∫

R3

∫
R3
|χT(y)KW(x,y)|2 dxdy

= 1
(2π)3

∫
R3
|χT(y)|2 dy

∫
R3
|χW(ω)|2 dω

= 1
(2π)3 |T| |W| . (4.2.12)
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Let {fn} be a bounded sequence in L2(T,H). Then, there exists a subse-
quence {fnk}, which converges weakly to some f ∈ L2(T,H). By (4.2.12), it
follows that

∫
R3 |χT(y)KW(x,y)|2 dy <∞ for almost every x ∈ R3. For any

such x ∈ R3,

lim
k→∞

∫
T
KW(x,y)fnk(y)dy = lim

k→∞
〈fnk , KW(x, ·)〉L2(T,H)

= 〈f , KW(x, ·)〉L2(T,H)

=
∫

T
KW(x,y)f(y)dy,

which shows that (BWDTfnk)(x) converges pointwise to (BWDTf)(x) for
almost every x.

Schwarz’s inequality (1.2.4) yields

|(BWDTfnk)(x)| ≤ sup
k
‖fnk‖L2(T)

(∫
T
|KW(x,y)|2 dy

)1/2

for all k, and thus, by the Lebesgue Dominated Convergence Theorem,

lim
k→∞
‖BWDTfnk −BWDTf‖2

L2(R3)

= lim
k→∞

∫
R3
|BWDTfnk(x)−BWDTf(x)|2 dx

= 0.

This concludes the proof.

We may further observe that, since the separate operators BW and DT
are both self-adjoint and do not commute, the operator BWDT cannot be
self-adjoint. Nevertheless, the eigenvalues of the operator BWDT are all
positive real numbers, an important fact whose proof we shall postpone for
the moment. By the above observation, Proposition 4.2.14 below justifies
considering combinations of the separated operators DT and BW, such as
DTBWDT and BWDTBW. It will be further shown that the spectra of
DTBWDT and BWDTBW are identical.

Hence, we may proceed as follows. In accordance with Definition 4.2.4
and Eq. (4.2.10) the quaternionic Hilbert-Schmidt operatorDTBWDT, which
takes DT into itself, may be written explicitly as

(DTBWDTf)(x) =
∫
R3
χT(x)χT(y)KW(x,y)f(y)dy, (4.2.13)

where KW(x,y) is the kernel defined in (4.2.6).
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It will be convenient to study certain properties of the kernel in (4.2.13).
The properties in question are as follows:

Proposition 4.2.13. The kernel KW(x,y) of DTBWDT is real, symmetric,
and positive definite.

Proof. From Theorem 4.2.6, we may first observe that the kernel given in
(4.2.6) is real and symmetric; that is, KW(x,y) = KW(y,x). We note
further that∫

T

[∫
T
KW(x,y)f(x)f(y)dx

]
dy

= 1
(2π)3

∫
T

∫
T
f(x)

[∫
W
E(ω,x)E(ω,y)dω

]
f(y)dxdy

= 1
(2π)3

∫
W

∣∣∣∣∫
T
f(x)E(ω,x)dx

∣∣∣∣2 dω > 0, (4.2.14)

whenever ∫
T
|f(x)|2dx > 0.

It follows from the fact that, if it were equal to zero for some nonzero signal
f ∈ B(W), then f would be identically zero on T. This cannot happen since
nontrivial H-valued functions in R3 compose B(W).

In the following proposition, we prove some elementary properties of the
operator DTBWDT.

Proposition 4.2.14. (i) The operator DTBWDT acting on T is bounded
by 1, self-adjoint, positive, and compact.

(ii) The distinct nonzero eigenvalues of DTBWDT and BWDTBW are the
same, with the same respective multiplicities.

(iii) Given two eigenfunctions ψi with DTBWDTψi = λiψi (i = 1, 2) for
the eigenvalues λ1 6= λ2, we deduce 〈DTψ1, DTψ2〉L2(R3,H) = 0. Also,
the eigenfunctions of BWDTBW corresponding to different eigenvalues
are automatically orthogonal on T.

Proof. First, since projections are bounded by 1, self-adjoint and idempotent,

〈DTBWDTf ,f〉L2(R3,H) = 〈B2
WDTf , DTf〉L2(R3,H)

= ‖BWDTf‖2
L2(R3)

< ‖f‖2
L2(R3),
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therefore, DTBWDT is bounded by 1, self-adjoint, and positive. Moreover,
by Lemma 4.2.12 the operator BWDT is compact, so are DTBWDT and
BWDTBW, and this by Lemma 1.2.17. Next, write A ∼ B if the compact
operators A and B have the same nonzero eigenvalues, including multiplici-
ties. We may observe that, if DTBWDTψ = λψ and λ 6= 0, then ψ = DTψ
since DT is a projection and ‖BWDTψ‖L2(R3) 6= 0. An application of the pro-
jection BW to the equation now yields BWDTBW (BWDTψ) = λBWDTψ,
so that λ is likewise an eigenvalue of BWDTBW. Similar reasoning applies
to the other direction. Moreover, since the QFT is invertible, we have then

DTBWBWDT = (DTBW)(BWDTDTBW)(DTBW)−1,

so DTBWDT and BWDTBW are similar, and DTBWDT ∼ BWDTBW.
Now, according to Theorem 1.2.29 and using the fact that DTBWDT (resp.
BWDTBW) is self-adjoint, it follows that eigenfunctions of these operators
corresponding to different eigenvalues are orthogonal on T. This concludes
the proof.

We can fall back in this manner on the theory of quaternionic compact,
self-adjoint operators discussed in Subsection 1.2.3, to obtain essential prop-
erties of the eigenfunctions of the operator DTBWDT and their respective
eigenvalues; that is, the λ’s for which the characteristic quaternion equation
of the form DTBWDTψ = λψ has a nontrivial solution, ψ ∈ B(W). It shall
be remarked that, in the one-dimensional case, all eigenvalues of DTBWDT
have multiplicity one. The proof of this property uses the differential equation
(1.5.8) of the PSWFs [299]. Although this is also true for symmetric regions
in higher dimensions [301], we can only conclude that each eigenvalue has
finite multiplicity, in general.

From Proposition 4.2.14, there is no assurance that each eigenfunction
belongs to an eigenvalue different from all the rest. Of course, if we have two
degenerate eigenfunctions ψ1,ψ2 of DTBWDT (i.e., with a common eigen-
value), we can always construct orthogonal eigenfunctions. Since DTBWDT
is left-linear, it is clear that every linear combination of ψ1 and ψ2 is also
an eigenfunction of DTBWDT. Consider ψ(1) := α1ψ1 + β1ψ2, and ψ(2) :=
α2ψ1 +β2ψ2 for quaternionic constants αi,βi. The functions ψ(1) and ψ(2)

are orthogonal on T, provided

0 = 〈DTψ
(1), DTψ

(2)〉L2(R3,H)

= α1α2‖DTψ1‖2
L2(R3) +α1〈DTψ1, DTψ2〉L2(R3,H)β2

+ β1〈DTψ2, DTψ1〉L2(R3,H)α2 + β1β2‖DTψ2‖2
L2(R3).
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Although this equation can be satisfied by choosing the adequate underlying
constants αi,βi ∈ H, such development is beyond the scope of the present
work.

By the Spectral Theorem 1.2.30 for compact and self-adjoint operators, we
can then find a countably infinite set of band-limited quaternionic functions
ψ0(x),ψ1(x),ψ2(x), . . . , and a set of real positive numbers 1 > λ0 ≥ λ1 ≥
λ2 ≥ · · · such that as n → ∞, lim λn = 0, which we will henceforth assume
done. The notation used above hides the fact that both the ψ’s and the
λ’s depend upon the space-bandwidth product |T||W|/8, which now plays
the role of the time-bandwidth product 2TW in the one-dimensional case.
In Subsection 4.2.2, we show that the eigenfunctions ψn enjoy a remarkable
double orthogonality property: not only are they orthogonal over the three-
dimensional Euclidean space R3, but their restrictions to T are also mutually
orthogonal and, when normalized, form a basis for both D(T) and B(W) (see
Theorem 4.2.24 below). This double orthogonality makes the sequence {ψn}
an ideal basis for considering the many problems in which information about
a band-limited quaternionic function is given on a domain. We will illustrate
it with the question of extrapolation, already mentioned (see Subsection 4.2.3
below).

Although BWDT is not self-adjoint, we proceed to show that all of its
eigenvalues are real and, in fact, equal to those of DTBWDT, respectively,
of BWDTBW.

Proposition 4.2.15. The spectrum of the operator BWDT consists of posi-
tive eigenvalues, bounded by 1 and accumulating at zero.

Proof. We assume that DTBWDTψ = λψ. An application by BWDT
to the equation leads to (BWDT)2ψ = λBWDTψ, which shows that λ
is an eigenvalue of BWDT (it corresponds to the eigenfunction BWDTψ).
Hence, every eigenvalue of DTBWDT is also an eigenvalue of BWDT. Con-
versely, assume that BWDTψ = λψ. Applying DT to the equation leads
to DTBWDTψ = λDTψ, which is equivalent to DTBWDTDTψ = λDTψ.
This means that λ is also an eigenvalue of DTBWDT, and thus every eigen-
value of BWDT is also an eigenvalue of DTBWDT. It follows then that
DTBWDT and BWDT (as well as DTBW) have the same set of eigenvalues.
The rest of the proof follows from Proposition 4.2.14.

The following theorem, which will be used in further discussion, gener-
alizes the uncertainty principle due to Donoho and Stark in [99] within our
context. In short, this result asserts that a signal and its FT cannot both
be well-concentrated around their respective means: narrowing one broadens
necessarily the other. The classical version of this theorem is particularly
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crucial as it can be applied to signal recovery. Many variations and related
information about this result can be found in [123, 143]. Other versions of
this result were given, for locally compact abelian groups, by Smith [305],
Özaydin and Przebinda [263], for operators on Banach spaces, by Goha and
Goodman [141], and for the Dunkl Transform by Soltani [308]. A multi-
dimensional generalization of this theorem in which the QFT is defined by
(1.6.1) and the sets are measurable was first proved, as in [99], by Chen et
al. in [76].

According to Definition 4.2.1, we extend this result within our context as
follows:
Theorem 4.2.16 (Uncertainty principle of Donoho and Stark). Suppose that
f ∈ L2(R3,H), not identically zero, is εT-concentrated on T and F(f) is
εW-concentrated on W. Then

|T||W| ≥ (2π)3
(

1− εT −
1

(2π)3 εW

)2

.

Proof. This is proved in a manner similar to [99]. We rely on the norm of
the operator BWDT:

‖BWDT‖ = sup
f∈L2(R3,H)

‖BWDTf‖L2(R3)

‖f‖L2(R3)
,

and, in accordance with (4.2.10), define the Hilbert-Schmidt norm of BWDT
to be

‖BWDT‖HS :=
(∫

R3

∫
T
|KW(x,y)|2 dydx

)1/2
.

With these definitions in place and using Cauchy-Schwarz inequality (1.2.4),
it turns out that ‖BWDT‖HS ≥ ‖BWDT‖. Moreover, since

|KW(x,y)|2 = |KW(y,x)|2,
by (4.2.12), we have

‖BWDT‖HS = 1
(2π)3/2 (|T| |W|)1/2 . (4.2.15)

By Definitions 4.2.4 and 4.2.5 and the fact that ‖BW‖ = 1, if f is εT-
concentrated on T and F(f) is εW-concentrated on W, then it follows from
(4.2.2) and (4.2.5) that

‖f −BWDTf‖L2(R3)

≤ ‖f −BWf‖L2(R3) + ‖BW(f −DTf)‖L2(R3)

≤
(
εT + 1

(2π)3/2 εW

)
‖f‖L2(R3).
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Proceeding in this manner, we obtain

‖BWDTf‖L2(R3) ≥
(

1− εT −
1

(2π)3/2 εW

)
‖f‖L2(R3)

or, equivalently, that

‖BWDT‖ ≥ 1− εT −
1

(2π)3/2 εW.

This inequality, together with (4.2.15), implies the theorem.

It is not in the scope of the present work to thoroughly discuss the appli-
cations of Theorem 4.2.16. But to help the reader understand the importance
of this result in a quaternionic context, set εT = εW = 0 in Theorem 4.2.16
and observe that f is concentrated on T if and only if suppf ⊂ T and F(f)
is concentrated on W if and only if suppF(f) ⊂W. Hence, |T||W| ≥ (2π)3.
This means that a nonzero function and its QFT cannot both be highly con-
centrated, independently of the concentration sets T and W chose.

The proof of Theorem 4.2.16 is more prosperous than the stated con-
clusion. We note that since ‖BWf‖L2(R3) ≤ ‖f‖L2(R3), the norm ‖DTBW‖
satisfies the identity

‖DTBW‖ = sup
f∈L2(R3,H)

‖DTBWf‖L2(R3)

‖BWf‖L2(R3)

= sup
g∈B(W)

‖DTg‖L2(R3)

‖g‖L2(R3)
.

Thus the quantity ‖DTBW‖ measures how nearly concentrated on T a func-
tion g ∈ B(W) can be. It will be discussed in detail in Section 4.3.

4.2.2 Definition and Properties of the c-QPSWFs
The previous section presented a preliminary account of specific properties of
the spectrum of the convolution integral operator DTBWDT. It was shown
that the introduction of such an operator was suggested by the operation
that corresponds to space-limiting and band-limiting a quaternionic signal.
The fundamental discovery of Slepian and his collaborators Landau and Pol-
lak in the early 60s [198, 199, 299], which states that the PSWFs of order
zero are maximally concentrated within a given time interval, suggests the
development of a general theory of eigenfunctions and eigenvalues of a finite
version of the QFT. The procedure we adopt consists of identifying under
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what circumstances a square-integrable quaternionic function and its QFT
are simultaneously concentrated. The account of the theory given in the
present section extends the results from [300] and [350] to quaternionic sig-
nals using the QFT defined by (1.6.4).

We begin by introducing the c-QPSWFs in the finite-QFT setting. This,
we shall do in the following manner. We have already seen that the classical
PSWFs are solutions of the integral equation (1.5.14), which involves an
exponential factor containing the parameter c = TW . In the new definition,
we use the same strategy to construct the underlying integral equation and
first replace (1.6.5) in (1.6.4) with the quaternionic Fourier kernel E(y, cx),
where again we write W = cT. We will keep referring to the scale factor c as
the Slepian frequency. Second, by combining the noncommutativity of the
underlying multiplication and the left-linearity property (1.6.7) of the QFT,
it makes sense to multiply the eigenvalues from the left of the corresponding
quaternionic signals. Carrying this further, we are thus led to the following
statement, containing a definition of the c-QPSWFs.

Definition 4.2.17. Given a real number c > 0, the c-QPSWFs ψn (n =
0, 1, . . .) are the solutions of the integral equation

µnψn(x) =
∫

T
ψn(y)E(y, cx)dy (4.2.16)

for any x ∈ T, where µn ∈ H are called the eigenvalues corresponding to the
eigenfunctions ψn.

We will call this definition the finite-QFT form of the c-QPSWFs and
was first given, in a form substantially identical with the above, by Morais
et al. in [251]. The notation in this definition conceals that both the µ’s
and the ψ’s are functions of the parameter c. When it is necessary to make
this dependence explicit, we write µn = µn(c) and ψn(x) = ψn(c,x), n =
0, 1, 2, . . . .

Later in this section, we show that a solution of equation (4.2.16) is
entirely equivalent to a solution of a more straightforward quaternionic inte-
gral equation with kernel arising from the sinc functions (respectively, of the
form (4.2.13)) when the symmetries discussed in the previous subsection are
maintained. We shall accordingly hereafter take (4.2.16) as our equation of
fundamental concern.

Naturally, a considerable simplification occurs when for each n, the func-
tion ψn(x) is even or odd as a function of a quaternionic variable. Due to the
symmetry of the domain T about the origin (that is, x ∈ T implies −x ∈ T),
if we change variables in (4.2.16) by replacing x and y with their negatives,
then the quaternionic kernel remains unchanged as well as the domain of
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integration. Therefore ψn(x) and ψn(−x) are both solutions to the integral
equation (4.2.16) corresponding to the same eigenvalue µn. If ψn(x) is not
even or odd, there will be two independent solutions, one even and one odd,
corresponding to that eigenvalue, namely ψe(x) := (1/2) [ψn(x) +ψn(−x)]
and ψo(x) := (1/2) [ψn(x)−ψn(−x)]. The eigenfunctions of (4.2.16) can
be chosen to be either even or odd functions of x.

The quaternionic conjugate of (4.2.16) is given by

ψn(x) µn =
∫

T
E(y, cx)ψn(y)dy. (4.2.17)

Multiply (4.2.16) by ψn(x) from the right-hand side and integrate over T,
and multiply (4.2.17) by ψn(x) from the left-hand side and integrate over
T. Combining these equations, one finds by using the symmetry of T and
Fubini’s Theorem that

(µn ± µn)
∫

T
|ψn(x)|2dx

=
∫

T

(∫
T
ψn(y)E(y, cx)dy

)
ψn(x)dx

±
∫

T

(∫
T
ψn(x)E(−x, cy)dx

)
ψn(y)dy

=
∫

T

(∫
T

[ψn(y)±ψn(−y)]E(y, cx)dy
)
ψn(x)dx.

If ψn(x) is even, by choosing the negative sign in this equation, then one
obtains µn−µn = 0, whereas if ψn(x) is odd, by choosing the plus sign, one
finds µn + µn = 0.

We have thus shown that:

Proposition 4.2.18. The eigenvalues of (4.2.16) associated with even eigen-
functions are real, and the eigenvalues of (4.2.16) associated with odd eigen-
functions are purely quaternionic.

It should be observed that the solutions of (4.2.16) can be chosen either
even (in which case the eigenvalue µ is real) or odd (in which case µ is purely
quaternionic), if and only if both T and W are symmetric about the origin.
If one or both domains T and W is asymmetric, then no eigenfunctions of
fixed parity exist.

Our present concern is with the completeness properties of the c-QPSWFs
in two subspaces of L2(R3,H). The following theorem gives these remarkable
properties.
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Theorem 4.2.19. Given a real number c > 0, the c-QPSWFs ψn (n =
0, 1, . . .) are band-limited functions to W and their QFTs are given by

F(ψn)(ω) =
(2π
c

)3
(µn)−1ψn

(
ω

c

)
χW(ω). (4.2.18)

Further, they are complete in D(T) and B(W).

Proof. From Proposition 4.2.18 and representation (1.6.6), it follows that
equation (4.2.16) is equivalent to the pair of equations

µeψe(x) =
∫

T
cos(c〈x,y〉)ψe(y)dy, (4.2.19)

−µouψo(x) =
∫

T
sin(c〈x,y〉)ψo(y)dy (4.2.20)

in which µe and µo are, respectively, real and purely quaternionic constants.
The eigenfunctions of (4.2.19) must be even, and µe = 0 cannot be an eigen-
value of this equation, so the only even square-integrable quaternionic func-
tion in T for which ∫

T
cos(c〈x,y〉)ψ(y)dy = 0, x ∈ T

is ψ(y) ≡ 0. It then follows from [282, p.234] that the eigenfunctions of
(4.2.19) are complete in the class of even quaternionic functions square-
integrable in T. A similar argument shows that the solutions of (4.2.20)
are complete in the class of odd quaternionic functions square-integrable in
T. Solutions of (4.2.19) are automatically orthogonal to solutions of (4.2.20)
by symmetry. We have thus shown that the solutions of (4.2.16) are complete
in D(T).

Now, a change of variables converts (4.2.16) into
(
c

2π

)3
µnψn(x) = 1

(2π)3

∫
W
ψn

(
ω

c

)
E(ω,x)dω,

which shows that ψn ∈ B(W). Indeed, since the functions ψn (ω/c) are
complete in ω ∈W, Parseval’s identity shows that the ψn(x) are complete
in B(W). The result follows.

Eq. (4.2.18) states the exciting fact that the finite-QFT of ψn(x) re-
stricted to W has the same form as the ψn except for a scale change. There
does not seem to be any known quaternionic function that possesses a similar
property.
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It is possible to find an interesting relation between the c-QPSWFs at
different scales by applying Eq. (4.2.16). We proceed to show that the
product of a quaternionic exponential with a c-QPSWF of Slepian frequency
c > 0 is a band-limited function with frequency 2c. This lemma contains a
quaternionic counterpart of a result due to Shkolnisky [296], who established
the lemma for the case of complex exponentials of form eic〈x,ω〉, where x,ω ∈
Ω0.

Proposition 4.2.20. Given a real number c > 0, ω ∈ T, there exists a
band-limited function Ψ on T such that

ψn(x)E(ω, cx) =
∫

T
Ψ(σ)E(σ, 2cx)dσ

for any x ∈ T, where ψn is a solution of (4.2.16) and Ψ satisfies∫
T
|Ψ(σ)|2dσ = 4

|µn|2
‖DTψn‖2

L2(R3). (4.2.21)

Proof. Multiplying both sides of (4.2.16) from the right-hand side byE(ω, cx),
it follows that

ψn(x)E(ω, cx) = (µn)−1
∫

T
ψn(y)E(y + ω, cx)dy. (4.2.22)

Applying the change of variables σ = (y + ω)/2 to (4.2.22), we obtain

ψn(x)E(ω, cx) = (µn)−1
∫

T∗ω
2ψn(2σ − ω)E(σ, 2cx)dσ, (4.2.23)

where T∗ω is a cube obtained by shifting the domain T by the amount of
ω/2; that is if x ∈ T∗ω then x − ω/2 ∈ T. Therefore, we can write (4.2.23)
as

ψn(x)E(ω, cx) =
∫

T
Ψ(σ)E(σ, 2cx)dσ,

where
Ψ(σ) := χT∗ω(σ) (µn)−1 2ψn(2σ − ω). (4.2.24)

Equality (4.2.21) follows straightforwardly from (4.2.24).

The proposition now established may be of considerable importance since
it can be applied to construct an approximation scheme for quaternionic
exponentials. As a development of a numerical technique for representing
a band-limited quaternionic function as an expansion in c-QPSWFs goes
beyond the scope of the present work, reference is here made to [296], where
details on the subject can be found.
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The c-QPSWFs possess several unique properties that make them useful
in the study of band-limited quaternionic functions. They are also the eigen-
functions of an integral equation with kernel arising from the sinc functions
(see Eq. (4.2.25) below), called the low-pass filtering form of the c-QPSWFs,
which is a quaternionic analog of (1.5.16). Theorem 4.2.21 asserts that to
solve (4.2.16), it suffices to solve (4.2.25) and vice-versa. Most of the al-
gebraic properties of the c-QPSWFs and the corresponding eigenvalues are
deduced from (4.2.25).

Theorem 4.2.21. Given a real number c > 0, the c-QPSWFs ψn (n =
0, 1, . . .) are solutions of the integral equation

λnψn(x) = DTBWDTψn(x)
(

=
∫

T
KW(x,y)ψn(y)dy

)
(4.2.25)

for any x ∈ T, where the KW(x,y) is defined by (4.2.6). The parameters
λn := (c/(2π))3 |µn|

2, n = 0, 1, . . . are the eigenvalues corresponding to the
eigenfunctions ψn.

Proof. Bearing in mind that the kernel KW(x,y) is real so that it can com-
mute with any quaternionic number. Now, consider the relation∫

W
E(ω,x− y)dω =

∫
W
E(ω,y)E(ω,x)dω. (4.2.26)

From above and Fubini’s Theorem, the right-hand side of equation (4.2.25)
gives ∫

T
ψn(y)KW(x,y)dy

= 1
(2π)3

∫
W

(∫
T
ψn(y)E(ω,y)dy

)
E(ω,x)dω.

Using the property E(x, cω) = E(−x, cω), and the definition (4.2.16) of the
c-QPSWFs, the above integral reads now as follows:∫

T
ψn(y)KW(x,y)dy = 1

(2π)3 µn

∫
W
ψn

(
ω

c

)
E(ω,x)dω

=
(
c

2π

)3
µn

∫
W/c

ψn(ω)E(cω,x)dω

=
(
c

2π

)3
µn

∫
T
ψn(ω)E(−x, cω)dω

=
(
c

2π

)3
(µn)2ψn(−x).
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From the last equality and the fact that the ψn is even or odd with n (see
Proposition 4.2.18 above), we find

λn =
(
c

2π

)3
|µn|

2 , (4.2.27)

which gives the left-hand side of (4.2.25).

It should be emphasized that the reduction of Eq. (4.2.16) to the more
straightforward integral equation (4.2.25) is only possible because both T
and W are symmetric about the origin and W = cT with c > 0. Bearing in
mind the noncommutativity of products of H-valued signals with the QFT
kernel (4.2.16), the low-pass filtering form (4.2.25), which connects the H-
valued signals with a real-valued kernel, provides an easy way to study the
c-QPSWFs.

It is clear from the context that we have suppressed that the eigenvalues
λn depend on the parameter c as well. It should be observed that the com-
pleteness of the functions ψn in D(T) assures us that the quantities (4.2.27)
are the only eigenvalues of (4.2.25) and that if these quantities are distinct,
the ψn are (apart from multiplicative constants) the unique D(T) solutions
of (4.2.25). If several of the quantities (4.2.27) are equal for different val-
ues of n, then linear combinations of the corresponding ψn will also satisfy
(4.2.25). Within the sense of this degeneracy, the ψn are the unique solu-
tions of (4.2.25). Moreover, by Theorem 4.2.19, the solutions of (4.2.16) are
complete, and thus it follows that they are also a complete set of solutions
of (4.2.25).

In Section 4.3, it will be shown that the largest eigenvalue of (4.2.25)
measures the least angle between D(T) and B(W), and its associated eigen-
function ψ0 is the best-concentrated function in T. This result will play a
crucial role in the study of specific questions regarding the relationship be-
tween the energy concentration of a quaternionic signal in the spatial and
frequency spaces.

In the integral equations (4.2.16) and (4.2.25) of the c-QPSWFs, it is
assumed that the spatial and frequency domains of definition are symmetric
about the origin. However, the question is whether these properties can be
extended to domains that are not necessarily symmetric about the origin
but some other points. In such a case, the following modified results, which
are more general than those of Definition 4.2.17 and Theorem 4.2.21, hold
similar proof to Theorem 4.2.21:

Proposition 4.2.22. Given a real number c > 0, P ∈ R3, if the c-QPSWFs
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satisfy the following variant of the Fourier property

ψn(x) := (µn)−1
[∫

T
ψn(y)E(y + P, cx)dy

]
,

then they satisfy the corresponding integral eigenvalue equation

ψn(x) = 1
λn

[∫
T
DW(x,y)ψn(y)

]
E(P, cx),

where the parameters λn are given by (4.2.27), and the kernel is

DW(x,y) =
2∏
j=0

[(
W

π

)
K

(
W (xj − yj − Pj)

π

)]
.

The problem that led to Eq. (4.2.25) only requires that equation to hold
for x ∈ T. The following proposition, which we call the all-pass filtering
form of the c-QPSWFs, extends the spatial-domain of the c-QPSWFs from
T to R3.

Proposition 4.2.23. Given a real number c > 0, the c-QPSWFs ψn (n =
0, 1, . . .) satisfy the integral equation

ψn(x) = (ψn ∗KW) (x)
(

=
∫
R3
KW(x,y)ψn(y)dy

)
, (4.2.28)

where the KW(x,y) is defined by (4.2.6) and ∗ denotes the convolution op-
eration.

Proof. The proof follows from the reproducing property of the kernel KW.
We set gx(y) := KW(x,y). Using (4.2.11) and Plancherel’s Theorem (1.6.10),
a direct computation shows that∫

R3
KW(x,y)ψn(y)dy =

∫
R3
ψn(y) gx(y)dy

= 1
(2π)3

∫
R3
F(ψn)(ω)χW(ω)E(ω,x)dω

= (BWψn)(x)
= ψn(x).

Using the fact that the eigenfunctions ψn(x) are now defined for all x,
we proceed to show that the ψn(x) are doubly orthogonal in the sense that
they are orthogonal over a given T as well as over R3. It will follow that the
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functions ψ0,ψ1,ψ2, . . . that solve Eq. (4.2.25) are normalized to unity over
the whole Euclidean space R3, that is, ‖ψn‖2

L2(R3) = 1, n = 0, 1, . . .. This
surprising observation emphasizes the underlying uniqueness of the properties
associated with the c-QPSWFs. This double orthogonality property was first
recognized for the PSWFs (of order zero) by Slepian and Pollak in [299]. A
later investigation by Rhodes [281] revealed that this property is possessed
by all of the PSWFs of arbitrary order.

The following general result may be now deduced.

Theorem 4.2.24. There are a countably infinite set of band-limited quater-
nionic functions ψ0(x),ψ1(x),ψ2(x), . . . and a set of real positive numbers
λ0 ≥ λ1 ≥ λ2 ≥ · · · , bounded by 1 and accumulating at zero, with the follow-
ing properties (for all nonnegative integers n1 and n2):

(i) The functions DTψn1(x) are orthogonal and complete in D(T):∫
R3
DTψn1(x)DTψn2(x)dx = λn1δn1,n2 . (4.2.29)

(ii) The ψn1(x) are orthonormal in R3 and complete in B(W):∫
R3
ψn1(x)ψn2(x)dx = δn1,n2 . (4.2.30)

Proof. Since ψn ∈ B(W), from Lemma 4.2.11 and Proposition 4.2.14, it then
follows that

〈DTψn1 , DTψn2〉L2(R3,H) = 〈DTBWψn1 , DTBWψn2〉L2(R3,H)

= 〈BWD2
TBWψn1 ,ψn2〉L2(R3,H)

= 〈BWDTBWψn1 ,ψn2〉L2(R3,H)

= λn1δn1,n2 .

For the proof of Statement (ii), we make use of the low-pass filtering form
(4.2.25) of the c-QPSWFs and extend the domain of definition of ψn from T
to R3 in the sense that

ψn(x) = 1
λn

∫
T
KW(x,y)ψn(y)dy (4.2.31)

for all x ∈ R3. The quaternionic conjugate of (4.2.31) is

ψn(x) = 1
λn

∫
T
KW(x,y)ψn(y)dy.
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By the symmetry of T and Tonelli-Hobson Theorem, after interchanging the
order of integration, we have∫

R3
ψn1(x)ψn2(x)dx

= 1
λn1λn2

∫
T

∫
T
ψn1(y)ψn2(t)

(∫
R3
KW(x,y)KW(x, t) dx

)
dydt.

We note further that KW is an even function and that from (4.2.6), (4.2.11),
and Plancherel’s Theorem (1.6.10), we obtain the reproducing property∫

R3
KW(y,x)KW(x, t)dx = KW(y, t). (4.2.32)

By proceeding in this manner, one finds∫
R3
ψn1(x)ψn2(x)dx = 1

λn1λn2

∫
T
ψn1(y)

(∫
T
KW(y, t)ψn2(t)dt

)
dy

= 1
λn1

∫
T
ψn1(y)ψn2(y) dy

= 1
λn1

λn1δn1n2

= δn1n2 .

For the last equality, we have used the orthogonality (4.2.29) of the ψn in
T. Thus, the orthogonality of the ψn over T implies orthogonality over the
whole R3 and vice-versa.

The functions ψn constitute the three-dimensional c-QPSWFs associated
with the sets T and W.

We shall observe that (4.2.25) determinesψn and λn up to a multiplicative
constant, and normalization in (4.2.30) defines this constant. Throughout
this chapter, the symbols λn and ψn will always bear the meaning of Theorem
4.2.24. Since ‖ψn‖2

L2(R3) = 1 and ‖DTψn‖2
L2(R3) = λn, a small value of λn

implies that ψn has most of its energy outside T, while a value of λn near
one means that ψn is mostly concentrated in T.

Under the normalization referred to Theorem 4.2.24, the kernel KW(x,y)
defined by (4.2.6) has an expansion in terms of the eigenfunctions ψn, given
by

KW(x,y) =
∞∑
n=0
ψn(x)ψn(y). (4.2.33)

This relation, a form of Mercer’s Theorem [229, 282] may be easily verified
by substituting the right-hand side of (4.2.33) into (4.2.25) and then using
the orthogonality (4.2.29).
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Another essential feature of the c-QPSWFs is the generalized Shannon
number, which we define in the same way as in the original Slepian design,
i.e., as the sum over all eigenvalues λn. Using properties (4.2.29) and (4.2.30)
of the eigenfunctions ψn, it may be shown that this number, NShannon, only
depends on the space-bandwidth product, namely

NShannon =
∞∑
n=0

λn =
∫

T
lim
y→x

KW(x,y)dx = 1
(2π)3 |T| |W| . (4.2.34)

The quantity (4.2.34) approximately represents the number of eigenfunctions
that are well-concentrated within the selected region of interest. More pre-
cisely, it measures the dimension of the subspace spanned by the band-limited
signals that are well-localized [199].

4.2.3 Extrapolation of a Band-limited Quaternionic
Function by the c-QPSWFs

Suppose one seeks to extrapolate a band-limited function known only on the
spatial-domain T to values outside this domain using the c-QPSWFs. In
principle, this extrapolation can be done. For example, one could calculate
successive derivatives of f at some point in T and form a Taylor series rep-
resentation that would converge anywhere. However, such a Taylor series
would necessarily be truncated. The resultant approximation to f(x) would
be a polynomial, which for sufficiently large values of |x|, would result in
a poor approximation of f . This approximation is not band-limited. The
c-QPSWFs provide an alternative approach in specific least-squares approx-
imation problems. We propose an extrapolation routine that computes the
values of f(x), for any x ∈ R3, relying only on the knowledge of this func-
tion restricted to the spatial-domain T. In the following, we do not specify
the dependence of the notation on the parameter c > 0 whenever it is clear
from the context. Property (ii) of Theorem 4.2.24 leads us to the following
definition.

Definition 4.2.25. Suppose f ∈ B(W). For any x ∈ R3, the left-sided
quaternionic Slepian series of f is

f(x) =
∞∑
n=0
anψn(x), (4.2.35)

where an =
∫
R3 f(x)ψn(x)dx are called the Slepian coefficients.

The following result studies the mean-square convergence of (4.2.35),
which will be useful in Section 4.3.
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Lemma 4.2.26. Suppose f ∈ B(W). Then

lim
N→∞

∫
R3

∣∣∣∣∣f(x)−
N∑
n=0
anψn(x)

∣∣∣∣∣
2

dx = 0, (4.2.36)

where the coefficients an are quaternionic constants, which can be determined
from values of f in T:

an = 1
λn

∫
T
f(x)ψn(x)dx. (4.2.37)

Proof. According to Definition 4.2.25 and Parseval’s identity,
∞∑
n=0
|an|2 =

∫
R3
|f(x)|2dx, (4.2.38)

f may be characterized by its coefficients, and the convergence in (4.2.35) is
in the mean-square sense:

lim
N→∞

∫
R3

∣∣∣∣∣f(x)−
N∑
n=0
anψn(x)

∣∣∣∣∣
2

dx = 0.

Multiplying (4.2.35) by ψn(x) from the right-hand side, integrating over T,
and using (4.2.29), we obtain (4.2.37).

The above result suggests approximating f(x) for all x ∈ R3 by the N -th
partial sum, namely

fN(x) =
N∑
n=0
anψn(x), (4.2.39)

where the coefficients an are given by (4.2.37). The approximation (4.2.39)
is itself band-limited, and the mean-square error is∫

R3
|f(x)− fN(x)|2 dx =

∞∑
n=N+1

|an|2. (4.2.40)

According to (4.2.38), this error can be made as small as desired by making
N sufficiently large. In the sense of (4.2.40), the extrapolation remains good
for all x ∈ R3. The error in fitting fN to f in T is given by∫

T
|f(x)− fN(x)|2 dx =

∞∑
n=N+1

|an|2λn. (4.2.41)

As the λn approach zero rapidly for sufficiently large n, it may happen that
(4.2.41) is small for values of N for which (4.2.40) is still large.
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Suppose now f ∈ L2(R3,H) is known in the spatial-domain T, but f is
not necessarily in B(W). Applying the proof of Theorem 4.2.24, it follows
that f may still be represented by (4.2.35) with the coefficients given by
(4.2.37). Nevertheless, this representation is valid now only for x ∈ T. If
f /∈ B(W), then the series (4.2.35) does not converge in the mean-square
sense over the whole three-dimensional Euclidean space R3.

The previous investigations provide, by Definition 4.2.1 and Lemma 4.2.26,
an answer to the question which arises as regards the quality of approximat-
ing space-limited and band-limited functions at a level ε for some T and W
by the c-QPSWFs.

Proposition 4.2.27. Suppose f ∈ L2(R3,H), not identically zero, is εT-
concentrated on T and F(f) is εW-concentrated on W. Then, for any pos-
itive integer N , we have

‖f −DTfN‖L2(T) ≤
(
εT + 1

(2π)3/2 εW +
√
λN+1

)
‖f‖L2(R3).

Proof. It is similar to that of Theorem 4.2.16, but it is necessary to employ
Lemma 4.2.26. The rest of the proof follows from (4.2.41) and the fact that
the λn are monotonically decreasing in the interval (0, 1).

To sum up the above observations, and bearing in mind the efficiency
and applicability of the present approach, we proceed to present a practical
routine for calculating a quaternionic signal f ∈ B(W) known only in the
spatial domain. The unknown information for f outside T will be filled in
step-by-step. When viewed in this manner, the technique is spoken of as the
band-limited quaternionic signal extrapolation. It is based on the well-known
Papoulis-Gerchberg algorithm [265], as discussed in [350].

According to Proposition 4.2.23, we define the ith step of the algorithm
in the following manner:

F(fi)(ω) = F(gi−1)(ω)χW(ω), i = 1, 2, . . .

or, equivalently,
fi(x) = gi−1(x) ∗KW(x,y), (4.2.42)

where KW(x,y) is defined by (4.2.6), and

gi−1(x) = DTf(x) + [1− χT(x)]fi−1(x)

=

 DTf(x) if x ∈ T,
fi−1(x) if x /∈ T,
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with f0(x) = 0.
By the assumption, it is quite natural to ask how to construct the ith

iteration fi(x) using the c-QPSWFs and their corresponding eigenvalues and,
consequently, to check if the proposed method is effective. This discussion
introduces the following lemma.
Lemma 4.2.28. Suppose f ∈ B(W). For any x ∈ R3, the function of the
ith iteration (4.2.42) is given by

fi(x) = f(x)−
∞∑
n=0
an(1− λn)iψn(x),

where λn are the eigenvalues of (4.2.25), and ψn the corresponding eigen-
functions. Further, fi converges (in the mean-square sense) to f when i
approaches infinity.
Proof. This lemma is proved by induction. Let f ∈ B(W). By Definition
4.2.25, for x ∈ R3, f(x) = ∑∞

n=0 anψn(x). For simplicity of description, we
assume that f(x) = ψm(x) for a fixed m, and that there exists a constant
Ci such that

fi(x) = [1− (1− λm)i]ψm(x) =: Ciψm(x) (4.2.43)
for all i ∈ N. If i = 1, then f1(x) = [1− (1− λm)1]ψm(x) is true. Now,
suppose that (4.2.43) holds for i = k. We need to show that (4.2.43) also
holds for i = k + 1. By (4.2.42), it follows that gk(x) = DTψm(x) +
Ck [1− χT(x)]ψm(x). Whence

fk+1(x) = [Ckψm(x) + (1− Ck)DTψm(x)] ∗KW(x,y).
The low-pass filtering form (4.2.25) and the all-pass filtering form (4.2.28) of
the c-QPSWFs, together with Proposition 4.2.15, lead to

fk+1(x) = Ckψm(x) + (1− Ck)λmψm(x) = Ck+1ψm(x).
Hence, we obtain an iteration equation involving constants Ck and Ck+1,
namely Ck+1 = Ck + (1 − Ck)λm. It was proved that C1 = λm. A direct
computation shows that Ck+1 = 1− (1− λm)k+1. It follows then that

fi(x) = Ciψm(x) = [1− (1− λm)i]ψm(x)
for f(x) = ψm(x). Applying these results to f(x) = ∑∞

n=0 anψn(x), we
conclude that

fi(x) =
∞∑
n=0

[1− (1− λn)i]anψn(x)

= f(x)−
∞∑
n=0
an(1− λn)iψn(x),
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which proves the assertion.
We proceed to show that the error in the fit of fi to f , say ei(x), tends

to zero as i approaches infinity. By (1.6.9) and (1.2.4), we find

|ei(x)|2 = |f(x)− fi(x)|2

≤ 1
(2π)6

∫
W
|F(f)(ω)−F(fi)(ω)|2 dω

∫
W
|E(ω,x)|2dω

= 1
(2π)3 |W|Ei,

where the mean-square error Ei := ‖ei(x)‖2
L2(R3) denotes the energy of error

ei. Now, using (4.2.40) and (4.2.30), we find

Ei =
∫
R3

∣∣∣∣∣
∞∑
n=0
an(1− λn)iψn(x)

∣∣∣∣∣
2

dx =
∞∑
n=0
|an|2 (1− λn)2i.

By (4.2.38), E = ∑∞
n=0 |an|

2 < ∞. Hence, for any ε > 0, there exists an
N such that ∑n>N |an|

2 < ε. Moreover, since the λn are monotonically
decreasing in the interval (0, 1), it follows at once that 1− λn ≤ 1− λN , for
n ≤ N . We then have

Ei ≤ (1− λN)2i
N∑
n=0
|an|2 +

∞∑
n=N+1

|an|2

≤ (1− λN)2iE + ε.

Now, since 0 < 1 − λN < 1, it follows that Ei → 0 as i → ∞. Thus
|ei(x)| ≤

√
(|W|Ei)/(2π)3 → 0 as i→∞. This completes the proof.

4.3 The c-QPSWFs vs. the Energy Extremal
Problem

In the present section, we bring back the question posed in Subsection 4.2.1
about a quaternionic counterpart of Slepian’s spatial-frequency concentration
problem: Under what conditions the energy conservation ratio

‖BWDTf‖2
L2(R3)

‖f‖2
L2(R3)

(4.3.1)

for f ∈ L2(R3,H) \ {0} is a maximum? As we already pointed out, to
answer this question, we proceed on and apply the space-limiting operator
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(4.2.1) to a given nonzero quaternionic signal in the spatial domain and
employ the band-limiting operator (4.2.3) in the frequency domain. From the
definition in (4.2.10), it is clear that the underlying signal is different from
the original one, as its energy is reduced by at least one of the operators. In
the latter part of this section, it will be found the possible proportions of the
energy of a quaternionic signal generated by this double truncation in a given
spatial-domain T and a given frequency-domain W, as well as the signals
which best simultaneously maximize the spatial-frequency concentration, by
(4.3.1). The techniques used in the proofs of the following results are mainly
due to Slepian and Pollak [299] and Landau and Pollak [198]. Even though
the essential nature of the quaternionic counterparts of the corresponding
results in the one-dimensional case is nearly unchanged, we should note that
we consider spaces of H-valued functions, thus yielding a much richer theory.
In this sense, these results extend the classical results of [198, 299] to a
broader space.

The following generalization of the result of [299] answers the above ques-
tion by finding the quaternionic band-limited signals that are maximally con-
centrated in a given spatial domain.

Theorem 4.3.1. Let f be a nonzero signal in L2(R3,H). The maximum
value of (4.3.1) can be obtained if f is a multiple of the eigenfunction of
(4.2.25) belonging to the largest eigenvalue λ0.

Proof. By definition (4.2.10) of the operator BWDT and (4.2.32), it follows
from the Tonelli-Hobson Theorem that

‖BWDTf(t)‖2
L2(R3)

=
∫
R3
BWDTf(t)BWDTf(t)dt

=
∫
R3

∫
R3
DTf(y)DTf(x)

(∫
R3
KW(y, t)KW(t,x)dt

)
dydx.

=
∫

T

∫
T
KW(x,y)f(y)f(x)dydx.

The above reasoning shows that the quantity ‖BWDTf‖L2(R3) depends only
on values of f in T. Consequently, the ratio (4.3.1) is equal to the maximum
of

‖BWDTf‖2
L2(R3)

‖DTf‖2
L2(R3)

=
∫
T
∫
TKW(y,x)f(y)f(x)dydx∫

T |f(x)|2dx

over all f ∈ D(T).
Now, by Definition 4.2.25 and Lemma 4.2.26, for x ∈ T, it follows that

DTf(x) = ∑∞
n=0 anDTψn(x). Moreover, since KW is real and using (4.2.25)



178 4. THE C-QUATERNIONIC PROLATE SPHEROIDAL WAVE FUNCTIONS

in Theorem 4.2.21, we find∫
T

∫
T
KW(x,y)f(y)f(x)dydx

=
∞∑

n1=0

∞∑
n2=0

an1

∫
T

(∫
T
KW(x,y)DTψn1(y)dy

)
DTψn2(x)an2 dx

=
∞∑

n1=0

∞∑
n2=0

an1λn1

(∫
T
DTψn1(x)DTψn2(x) dx

)
an2 .

Now, using (4.2.29) of Theorem 4.2.24, it follows that

‖BWDTf‖2
L2(R3) =

∞∑
n=0
|an|2 λ2

n.

Since the λn are real, we apply (4.2.29) again and find

∫
T
|f(x)|2 dx =

∞∑
n1=0

∞∑
n2=0

an1

(∫
T
DTψn1(x)DTψn2(x)dx

)
an2

=
∞∑

n1=0
|an1 |2 λn1 . (4.3.2)

Thus the energy preservation ratio (4.3.1) is given by

‖BWDTf‖2
L2(R3)

‖DTf‖2
L2(R3)

=
∑∞
n=0 |an|2 λ2

n∑∞
n=0 |an|2 λn

.

Since λ0 ≥ λn, if n ≥ 1, to make the energy ratio maximal, f(x) should be a
multiple of DTψ0(x), where DTψ0(x) denotes the eigenfunction of (4.2.25)
belonging to the largest eigenvalue λ0. Thus f(x) = a0DTψ0(x), where
a0 ∈ H.

Before proceeding with the discussion of the energy extremal properties
between the spatial and frequency domains involving the c-QPSWFs, we first
investigate the existence of a nonzero least angle between the two subspaces
D(T) and B(W) of L2(R3,H) and discuss its properties. The following rea-
soning extends the one presented in [198]. This result will allow us to infer
the possible proportions of a signal’s energy in the spatial and frequency
domains.

According to Definition 1.2.12, we define the canonical angle between
D(T) and B(W) as follows:



4.3. THE C-QPSWFS VS. THE ENERGY EXTREMAL PROBLEM 179

Definition 4.3.2. Let f ∈ B(W) and g ∈ D(T). The number arg(f , g) is
called the canonical angle between B(W) and D(T) if it satisfies

cos arg(f , g) =
Sc(〈f , g〉L2(R3,H))
‖f‖L2(R3)‖g‖L2(R3)

. (4.3.3)

The discussion below concerns the extremal values of the angle between
space-limited and band-limited quaternionic signals. The question naturally
arises: What are the extremal values of arg(f , g) between g ∈ D(T) and
f ∈ B(W) under the QFT defined by (1.6.4)? The following two results
give this extremal value. Despite the difficulties arising from the fact that
the underlying multiplication is not commutative, it will be shown that the
essential nature of the arguments for quaternionic signals remains unchanged.

Lemma 4.3.3. If f ∈ B(W) is fixed, then the arg(f , g) between f and any
g ∈ D(T) satisfies inf

g∈D(T)
arg(f , g) > 0. This infimum equals

arccos
‖DTf‖L2(R3)

‖f‖L2(R3)
,

and is assumed by g = kDTf for any constant k > 0.

Proof. By the same reasoning as in [198], if g is any function in D(T), it is
clear that

Sc(〈f , g〉L2(R3,H)) ≤ |〈f , g〉L2(R3,H)| = |〈DTf , g〉L2(R3,H)|

since f = f −DTf +DTf and by (4.2.8), 〈f −DTf , g〉L2(R3,H) = 0.
Furthermore, we rely on

|〈DTf , g〉L2(R3,H)| ≤ ‖DTf‖L2(R3)‖g‖L2(R3)

to show that

Sc(〈f , g〉L2(R3,H))
‖f‖L2(R3)‖g‖L2(R3)

≤
‖DTf‖L2(R3)

‖f‖L2(R3)

=
Sc(〈f , DTf〉L2(R3,H))
‖f‖L2(R3)‖DTf‖L2(R3)

.

Since cos(arg) is monotone decreasing in the interval (0, π), it follows that
arg(f , g) ≥ arg(f , DTf) for any g ∈ D(T). This inequality becomes an
equality when g and DTf are proportional, which proves the lemma.
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Building on the previous lemma, we proceed to find the least arg(f , g) of
arbitrary f ∈ B(W) and g ∈ D(T). We show that

inf
f∈B(W), g∈D(T)

arg(f , g) (4.3.4)

is assumed by specific functions so that the spaces B(W) and D(T) form
indeed the least angle. The result may be stated as follows:

Theorem 4.3.4. Given f ∈ B(W) and g ∈ D(T), there exists a least angle
between B(W) and D(T) that satisfies

inf
f∈B(W), g∈D(T)

arg(f , g) = arccos
√
λ0 ,

if and only if f = ψ0 and g = DTψ0, where λ0 is the largest eigenvalue of
(4.2.25), and ψ0 the corresponding eigenfunction.

Proof. By the preceding lemma,

min
g∈D(T)

arg(f , g) = arccos
‖DTf‖L2(R3)

‖f‖L2(R3)

and therefore, (4.3.4) yields

inf
f∈B(W), g∈D(T)

arg(f , g) = inf
f∈B(W)

arccos
‖DTf‖L2(R3)

‖f‖L2(R3)
, (4.3.5)

and the infimum on the left of (4.3.5) will be assumed if the infimum on
the right is attained. According to Definition 4.2.25 and Lemma 4.2.26, for
x ∈ T, DTf(x) = ∑∞

n=0 anDTψn(x). Moreover, by (4.2.38) and (4.3.2), we
find

arccos
‖DTf‖L2(R3)

‖f‖L2(R3)
= arccos

(∑∞
n=0 |an|2 λn∑∞
n=0 |an|2

)1/2

. (4.3.6)

Since λ0 ≥ λn, if n ≥ 1, the minimum possible value of (4.3.6), namely
arccos

√
λ0, is assumed if f = ψ0 and g = DTψ0.

We have thus found that B(W) and D(T) have a least angle between
them. Consequently, a space-limited quaternionic function and a band-
limited quaternionic function cannot be very close together unless they are
very small “of unit norm.”

Following the notation already employed, we now introduce the fraction
of energy of a nonzero quaternionic signal f in L2(R3,H) that lies in a given
spatial domain as

α(T)[f ] = α(T) :=
‖DTf‖L2(R3)

‖f‖L2(R3)
. (4.3.7)
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Similarly, we define the fraction of the signal energy that lies in a given
frequency domain as

β(W)[f ] = β(W) :=
‖BWf‖L2(R3)

‖f‖L2(R3)
. (4.3.8)

We can think of α(T) as the fraction of the energy of f in the space of
receiver functions, and β(W) is the fraction of the energy of f in the space
of transmitter functions. A first observation shows that if the signal is band-
limited to W, then β(W) = 1. Analogously, if the signal is space-limited
to T, then α(T) = 1. As f(x) ranges overall functions in L2(R3,H), the
quantities α(T) in (4.3.7) and β(T) in (4.3.8) will take values over the interval
[0, 1].

We proceed to prove an uncertainty principle that constrains the possible
range of values that α(T) and β(W) can take, provided the subspaces B(W)
and D(T) form a nonzero least angle.

Proposition 4.3.5. Suppose the subspaces B(W) and D(T) form a nonzero
least angle ϑ. Then arccosα(T) + arccos β(W) ≥ ϑ.

Proof. By the same reasoning as used in Lemma 4.3.3, it can be easily seen
that

cos arg(f , DTf) =
Sc(〈DTf , DTf〉L2(R3,H))
‖DTf‖L2(R3)‖f‖L2(R3)

= α(T).

Similarly, β(W) = cos arg(f , BWf). Lemma 1.2.13 shows further that

arccosα(T) + arccos β(W) = arg(f , DTf) + arg(f , BWf)
≥ arg(DTf , BWf)
≥ ϑ,

where the last step follows since DTf ∈ D(T) and BWf ∈ B(W), and these
two subspaces form the least angle ϑ.

The above proposition has an unusual physical interpretation. Suppose
the space of all the functions that a transmitter can generate and the space
of all the functions a receiver can receive form a nonzero least angle. Then
there exist no functions that can have arbitrarily large fractions of energy in
those two spaces of functions.

The main results of this section, which consist of finding the signals that
reach the extremal values of (α(T), β(W)), are summarized in the following



182 4. THE C-QUATERNIONIC PROLATE SPHEROIDAL WAVE FUNCTIONS

four theorems. We show that the quaternionic counterparts of the corre-
sponding results in the one-dimensional case are nearly unchanged. It will
be convenient first to discuss the possible values that the pair (α(T), β(W))
can take if the signal is band-limited.

Theorem 4.3.6. For any nonzero function f ∈ B(W) such that ‖f‖L2(R3) =
1, ‖DTf‖L2(R3) = α(T) and ‖BWf‖L2(R3) = β(W), the quantity α(T) is less
or equal than

√
λ0, where λ0 is the largest eigenvalue of (4.2.25).

Proof. According to Definition 4.2.25, DTf(x) = ∑∞
n=0 anDTψn(x) with

an ∈ H. Clearly, by (4.3.2), it follows that

α2(T) =
∫
R3
|DTf(x)|2dx =

∞∑
n=0

λn|an|2 ≤ λ0

∞∑
n=0
|an|2,

since λ0 ≥ λn, if n ≥ 1. Hence, the extremal condition is g∗(x) = DTψ0(x).
It then follows that α2(T) = ‖g∗‖2

L2(R3) = λ0. For any linear combination of
ψn, the quantity α(T) is less than

√
λ0.

We proceed to discuss the range of values of β(W) when α(T) is fixed,
starting by considering the case when α(T) = 0.

Theorem 4.3.7. There is a nonzero function f ∈ L2(R3,H) such that
‖f‖L2(R3) = 1, ‖DTf‖L2(R3) = α(T) and ‖BWf‖L2(R3) = β(W), under the
following condition: if α(T) equals 0 on T, then β(W) is greater than or
equal to 0 and less than 1 on W.

Proof. This is proved similarly to [198]. We first observe that if the quantity
α(T) equals 0, then β(W) 6= 1. Although β(W) cannot attain the value 1, we
can still find an underlying quaternionic signal for which β(W) is arbitrarily
close to 1.

Let

G := {f ∈ L2(R3,H) : ‖f‖L2(R3) = 1, ‖DTf‖L2(R3) = α(T)} (4.3.9)

be a given function class. For α(T) = 0, we construct a signal f ∗(x) in G as
follows:

f ∗(x) := ψn(x)−DTψn(x)√
1− λn

, (4.3.10)
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where λn and ψn are, respectively, an eigenvalue and a corresponding eigen-
function of (4.2.25). In this way, it is easy to see that

‖f ∗‖2
L2(R3) = 1

1− λn

∫
R3

[ψn(x)−DTψn(x)]
[
ψn(x)−DTψn(x)

]
dx

= 1
1− λn

[∫
R3
|ψn(x)|2 dx−

∫
R3
ψn(x)DTψn(x)dx

−
∫
R3
DTψn(x)ψn(x)dx +

∫
R3
|DTψn(x)|2 dx

]
= 1− 2λn + λn

1− λn
= 1,

and α(T) = ‖DTf
∗‖L2(R3) = 0. Hence, f ∗ ∈ G. We proceed to compute

‖BWf
∗‖2
L2(R3). Because ψn(x) ∈ B(W), we find

BWf
∗(x) = ψn(x)−BWDTψn(x)√

1− λn
.

Hence, we obtain∫
R3
|BWf

∗(x)|2dx

= 1
1− λn

∫
R3

[ψn(x)−BWDTψn(x)]
[
ψn(x)−BWDTψn(x)

]
dx

= 1
1− λn

[∫
R3
|ψn(x)|2 dx−

∫
R3
ψn(x)BWDTψn(x)dx

−
∫
R3
BWDTψn(x)ψn(x)dx +

∫
R3
|BWDTψn(x)|2 dx

]
.

The first integral on the right-hand side follows from the orthogonality (4.2.30)
of the c-QPSWFs.

Straightforward computations of the second integral further show that∫
R3
ψn(x)BWDTψn(x)dx = 〈BWψn, DTψn〉L2(R3,H)

= 〈ψn, DTψn〉L2(R3,H)

= λn

=
∫
R3
ψn(x)BWDTψn(x)dx

=
∫
R3
BWDTψn(x)ψn(x)dx.
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For the last integral, we use the definition (4.2.10) of the operator BWDT,
and (4.2.32) and (4.2.25). It then follows from the Tonelli-Hobson Theorem
that ∫

R3
|BWDTψn(x)|2 dx

=
∫
R3

(∫
T
KW(x,y)ψn(y)dy

)(∫
T
KW(x, z)ψn(z)dz

)
dx

=
∫

T

∫
T
ψn(y)ψn(z)KW(y, z)dydz

= λn

∫
T
|ψn(z)|2 dz

= λ2
n.

With these calculations at hand, we finally obtain that β(W) =
√

1− λn.
Since the sequence of eigenvalues {λn}∞n=0 is monotone decreasing in the
interval (0, 1), the λn’s can be made arbitrarily close to 0. Thus, there
exist functions in G with values of β(W) arbitrarily close to 1. On the
other hand, it is clear that when both energy ratios α(T) and β(W) are
equal to 0, the underlying quaternionic signal must be the identically zero
signal. Nevertheless, we shall also show that there exists a signal that is not
identically zero when β(W) is arbitrarily close to 0.

We proceed to find a function g(x) such that F(g)(ω) = F(f ∗)(ω − σ)
for any σ ∈ R3, where f ∗ is defined above as (4.3.10). If such a g(x) exists,
then

β(W) = 1
(2π)3/2 ‖F(BWg)‖L2(R3)

= 1
(2π)3/2

(∫
W
|F(f ∗)(ω − σ)|2dω

)1/2

= 1
(2π)3/2

(∫
Wσ

|F(f ∗)(ω)|2dω
)1/2

,

where Wσ is a cube with edges of length 2W and translated by the amount
of σ. We shall observe that the quantity β(W) is continuous in σ for a fixed
W, and by Theorem 1.6.2 property (vi), it approaches zero as |σ| → ∞.
Thus, β(W) can be arbitrarily close to 0.

It remains to construct f(x) and then check whether it belongs to the
class G. Since g(x) satisfies F(g)(ω) = F(f ∗)(ω−σ), by definition (1.6.9),
it follows that

g(x) = 1
(2π)3

∫
R3
F(f ∗)(ω)E(ω + σ,x)dω

= f ∗(x)E(σ,x).
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It can further be shown that

‖g‖2
L2(R3) =

∫
R3
|f ∗(x)E(σ,x)|2dx

= ‖f ∗‖2
L2(R3)

= 1

and
α(T) =

∫
T
|f ∗(x)E(σ,x)|2dx = 0.

Hence, g ∈ G and β(W) can be arbitrarily close to 0 when |σ| → ∞; that
is, 0 ≤ β(W) < 1. This completes the proof.

From the properties of the QFT, we may conclude that the extremal
properties for band-limited functions proved so far have their corresponding
space-limited counterparts. In this manner, if α(T) = 0, then it follows that
0 ≤ β(W) < 1. Also, if β(W) = 0, then it follows that 0 ≤ α(T) < 1.
One can further conclude a similar result as Theorem 4.3.6 for the extremal
value α(T) = 1. For any nonzero quaternionic signal f ∈ D(T), i.e., for
which α(T) = 1, we may find that β(W) ≤

√
λ0. If β(W) =

√
λ0, then

f ∗(x) = (DTψ0(x)) /
√
λ0.

It is now left to prove that for all quaternionic signals for which 0 <
α(T) <

√
λ0 holds, the quantity β(W) is not limited.

Theorem 4.3.8. There is a nonzero function f ∈ L2(R3,H) such that
‖f‖L2(R3) = 1, ‖DTf‖L2(R3) = α(T) and ‖BWf‖L2(R3) = β(W), under the
following condition: if 0 < α(T) <

√
λ0, then the quantity β(W) can take

on any value in the interval [0, 1].

Proof. Let 0 < α(T) <
√
λ0. Since the sequence {λn}∞n=1 is monotone de-

creasing in the interval (0, 1), and λn → 0 when n approaches infinity, we
can find an eigenvalue λn such that λn < α(T). Let ψn be the eigenfunction
corresponding to the eigenvalue λn. Now, consider the signal

f ∗(x) =

√
α2(T)− λnψ0(x) +

√
λ0 − α2(T)ψn(x)

√
λ0 − λn

.

It is thus seen that f ∗ ∈ B(W) since ψ0,ψn ∈ B(W).
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From the orthogonality (4.2.30) of the c-QPSWFs, it follows that

‖f ∗‖2
L2(R3) = 1

λ0 − λn

[
(α2(T)− λn)

∫
R3
|ψ0(x)|2 dx

−
√

(α2(T)− λn)(λ0 − α2(T))
∫
R3
ψ0(x)ψn(x)dx

−
√

(α2(T)− λn)(λ0 − α2(T))
∫
R3
ψn(x)ψ0(x)dx

+ (λ0 − α2(T))
∫
R3
|ψn(x)|2 dx

]
= 1
λ0 − λn

[
(α2(T)− λn) + (λ0 − α2(T))

]
= 1.

Similarly, using (4.2.29), we find that

‖DTf
∗‖2
L2(R3) = 1

λ0 − λn

[
(α2(T)− λn)λ0 + (λ0 − α2(T))λn

]
= α2(T),

which implies that f ∗ ∈ G, where G was defined in (4.3.9). Likewise, we find
that ‖BWf

∗‖L2(R3) = β(W) = 1. Consequently, if 0 < α(T) <
√
λ0, then

there exists a quaternionic signal such that β(W) = 1. The verification of
0 ≤ β(W) < 1 is similar to Theorem 4.3.7.

We conclude this section by studying the range of possible values of β(W)
for which

√
λ0 ≤ α(T) < 1.

Theorem 4.3.9. There is a nonzero function f ∈ L2(R3,H) such that
‖f‖L2(R3) = 1, ‖DTf‖L2(R3) = α(T) and ‖BWf‖L2(R3) = β(W), under the
following condition: the maximum of β(W) is assumed by

arccosα(T) + arccos β(W) ≥ arccos
√
λ0, (4.3.11)

as such
√
λ0 ≤ α(T) < 1, where λ0 is the largest eigenvalue of (4.2.25).

Proof. Let
√
λ0 ≤ α(T) < 1. For a function f ∈ G, where G was defined in

(4.3.9), we find its projections onto D(T) and B(W). By Lemmas 4.2.9 and
4.2.10, we can then decompose f as follows:

f = λDTf + µBWf + g, (4.3.12)

where λ,µ ∈ H, 〈g, DTf〉L2(R3,H) = 0, and 〈g, BWf〉L2(R3,H) = 0.
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Now, taking the quaternionic inner product of the decomposition (4.3.12),
respectively, with f , DTf , BWf , and g over the whole R3, and using the
fact that f ∈ G, we obtain

1 = α2(T)λ+ β2(W)µ+ 〈f , g〉L2(R3,H),

α2(T) = α2(T)λ+ 〈DTf , BWf〉L2(R3,H)µ,

β2(W) = 〈BWf , DTf〉L2(R3,H)λ+ β2(W)µ,
〈g,f〉 = ‖g‖2

L2(R3).

By eliminating the terms 〈g,f〉, λ, and µ from the above equations, we find
that, for α(T)β(W) 6= 0,

β2(W)− 2 Sc〈DTf , BWf〉L2(R3,H)

= −α2(T) +
(
1− ‖g‖2

L2(R3)

)(
1−
|〈DTf , BWf〉L2(R3,H)|2

α2(T)β2(W)

)
.

By considering
Sc〈DTf , BWf〉L2(R3,H)

‖DTg‖L2(R3)‖BWf‖L2(R3)
= cos arg(DTf , BWf),

where arg(DTg, BWg) is the angle formed betweenDTf ∈ D(T) and BWf ∈
B(W), by Theorem 4.3.4, arg(DTf , BWf) ≥ arccos

√
λ0. Further computa-

tions show that
β2(W)− 2α(T)β(W) cos arg(DTf , BWf)
= −α2(T) +

(
1− ‖g‖2

L2(R3)

) (
1− cos2 arg(DTf , BWf)

)
≤ −α2(T) + sin2 arg(DTf , BWf).

Simplifying the above inequality, we obtain(
β(W)− α(T) cos arg(DTf , BWf)

)2

≤ (1− α2(T)) sin2 arg(DTf , BWf),
with equality, if and only if g = 0 and 〈DTf , BWf〉L2(R3,H) is real.

We then find

β(W) ≤ cos
(

arg(DTf , BWf)− arccosα(T)
)
.

We conclude that arccosα(T) + arccos β(W) ≥ arccos
√
λ0. Equality is at-

tained by setting g(x) = pψ0(x) + qDTψ0(x), where

p =
√

1− α2(T)
1− λ0

, and q = α(T)√
λ0
−
√

1− α2(T)
1− λ0

.

The proof is completed.
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Theorem 4.3.9 constrains the possible values of the pair (α(T), β(W))
when T and W are specified because the property 0 < λ0 < 1 always holds.
Therefore, the fractions of the energy of a nonzero signal f ∈ L2(R3,H) in
two random domains cannot be arbitrarily large simultaneously, no matter
what sets of concentration we choose. That is to say, if the fraction of
energy of a nonzero signal in a given spatial domain is specified, then the
fraction of its energy on a given frequency domain must remain below a
certain maximum. It is a generalization of the classical uncertainty principle
proved by Landau et al. in [198], which states that any nonzero signal cannot
have arbitrarily large proportions of energy in both a finite time-domain and
a finite frequency-domain.

In the following figure, we describe the set (α(T), β(W)) as the region of
the square 0 ≤ α(T) ≤ 1, 0 ≤ β(T) ≤ 1 lying above the ellipse (4.3.11). It
exhibits the impossibility of the simultaneous confinement of a given quater-
nionic signal and its amplitude spectrum.

c = 1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

0,2

0,3

0,4

0,5

0,6
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1

α(T)

β(T)

Figure 4.11: The relationship between α(T) and β(W) for c = 1.

4.4 Constructing c-QPSWFs on the Ball
Subsection 4.2.2 shows that when T is a cube centered at the origin and W =
cT, then solutions of Eq. (4.2.16) are also solutions to a more straightforward
integral equation. In the present section, we show that if T and W are
spherical, then the angular part of the solutions of (4.2.16) can be found
explicitly. The separation of variables in spherical coordinates leads to a set
of one-dimensional radial integral equations. The treatment given here is a
generalization of that provided by Slepian in [300].
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Before we proceed, we give a version of the Funk-Hecke formula for the
surface spherical monogenics of the form (3.1.24), which we formulate in a
preliminary lemma.

Lemma 4.4.1. Let f be an H-valued integrable function over [−1, 1]. For
ω′ ∈ ∂Ω0 and nonnegative integers l,m with 0 ≤ m ≤ l, the Funk-Hecke
formula holds for the surface spherical monogenics of the form (3.1.24):∫

ω∈∂Ω0
f(< ω,ω′ >)XQ

l,m[0](ω)dσ(ω) = 2πλl XQ
l,m[0](ω′), (4.4.1)

with λl =
∫ 1
−1 Pl(t)f(t)dt, where Pl(t) denotes the Legendre polynomial of

degree l.

Proof. The result follows straightforwardly from the well-known Funk-Hecke
formula for surface spherical harmonics [286, Thm. A.34], but it is necessary
to employ the definition (3.1.24).

By Definition 4.2.17 and the above lemma, the following theorem will
now be established:

Theorem 4.4.2. Let u be any pure quaternion such that u2 = −1. Given
a real number c > 0, the eigenvalues and eigenfunctions of the finite-QFT
supported on T = Ω0, namely

µl,m,nψl,m,n(x) =
∫

Ω0
ψl,m,n(y)E(y, cx)dy (4.4.2)

for any x ∈ Ω0 are, respectively, µl,m,n = (2π)3/2ulβl,n (n, l = 0, 1, 2, . . .)
and ψl,m,n(x) = [(2l + 3)Cl,m]−1/2Rl,n(|x|)XQ

l,m[0](x/|x|) (m = 0, . . . , l) with
Cl,m given by (3.1.25), where Rl,n(|x|) are radial eigenfunctions and βl,n the
corresponding eigenvalues of the integral equation

βl,nRl,n(|x|) =
∫ 1

0

Jl+1/2(cρ|x|)
(cρ|x|)1/2 Rl,n(ρ)ρ2dρ. (4.4.3)

Further, the eigenfunctions ψl,m,n are orthogonal and complete in D(Ω0) and
B(cΩ0), and orthogonal on R3.

Proof. Since by Lemma 1.6.2, the QFT is spherically symmetric, the problem
of finding the eigenfunctions and eigenvalues of (4.4.2) can be solved by the
method of separation of variables. In the first place, by expanding ψ in
surface spherical monogenics, ψ = ∑

l

∑
m[(2l+3)Cl,m]−1/2Rl,m(ρ)XQ

l,m[0](η),
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where XQ
l,m[0](η) are of the form (3.1.24), andRl,m(ρ) is a real-valued function

defined on the interval [0, 1], we obtain

µl,mψl,m(x)

=
∞∑
l=0

l∑
m=0

∫ 1

0

∫∫
η∈∂Ω0

[(2l + 3)Cl,m]−1/2Rl,m(ρ)XQ
l,m[0](η)E(ρη, cx)ρ2dηdρ.

(4.4.4)

Next, write x = rξ with r ≥ 0, ξ ∈ ∂Ω0 so that E(ρη, crξ) = exp(usc〈η, ξ〉),
where s = ρr. Moreover, we have by the Funk-Hecke formula (4.4.1) and
Lemma 1.4.3 ∫∫

η∈∂Ω0
XQ
l,m[0](η)E(ρη, crξ)dη

= 2π
(∫ 1

−1
Pl(t) exp(usct)dt

)
XQ
l,m[0](ξ)

= ul(2π)3/2Jl+1/2(cs)
(cs)1/2 XQ

l,m[0](ξ). (4.4.5)

We emphasize that in the above equation, the function Jl+1/2(cs) is inde-
pendent of the index m. As a matter of fact, by substituting (4.4.5) into
(4.4.4), it is thus seen that both Rl,m(ρ) and µl,m are independent of m, and
so (4.4.4) becomes

βl,nψl,m,n(r, ξ)

= [(2l + 3)Cl,m]−1/2XQ
l,m[0](ξ)

∫ 1

0

Jl+1/2(cρr)
(cρr)1/2 Rl,n(ρ)ρ2dρ (4.4.6)

for all r ∈ [0, 1], where

µl,m,n = µl,n = (2π)3/2ulβl,n, (4.4.7)

with n, l = 0, 1, . . . . A simple argument shows that (4.4.6) reduces to the
integral equation of the form (4.4.3). Now, by similar reasoning to that by
which the general properties of the c-QPSWFs were established, it follows
from Proposition 4.2.18 that the eigenfunctions of (4.4.2) are even or odd,
and the corresponding eigenvalues are real or pure quaternionic according to
the parity of these eigenfunctions. The domain on which the eigenfunctions
are defined can be extended from Ω0 to R3 by requiring that (4.4.2) holds for
all x ∈ R3. Theorems 4.2.19 and 4.2.24 further ensure that the eigenfunctions
are orthogonal and complete in D(Ω0) and B(cΩ0), and orthogonal on R3.
Thus, the result follows.
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The notation above hides the fact that both the µl,m,n’s and the radial
part Rl,n of the ψl,m,n’s are functions of the parameter c. When it is necessary
to make this dependence explicit, we write µl,m,n = µl,m,n(c), Rl,n(|x|) =
Rl,n(c, |x|), and ψl,m,n(x) = ψl,m,n(c,x).

It follows from the preceding theorem that the radial function Rl,n co-
incides with the corresponding radial factor of the even and odd PSWFs of
order zero treated by Slepian et al. [299]. We also observe that the one-
dimensional integral equation (4.4.3) is independent of the index m, and
thus, by (4.4.7), the expected degeneracy of eigenvalues occurs due to the
spherical symmetry.

The next proposition shows the relations between the c-QPSWFs and the
PSWFs, described in [300].

Proposition 4.4.3. Let n, l ≥ 0 and 0 ≤ m ≤ l. Given a real number c > 0,
the c-QPSWFs supported on Ω0 are equal to

ψl,m,n(x) = 1
2(2l + 1)(l + 2 +m)

[
−(1 + δ0,m)

(
ψ+
l,m,n(x)− kψ−l,m,n(x)

)
+ (l −m)

(
iψ+

l,m+1,n(x) + jψ−l,m+1,n(x)
)]
,

where
ψ±l,m,n(x) = (2l + 1)(l −m)!

2π(1 + δ0,m)(l +m)! Rl,n(|x|)U±l,m[0](x/|x|).

Proof. The proof follows in a rather straightforward way from the represen-
tation (3.1.24) and Theorem 4.4.2.

By adding these results together, and making the substitution ϕl,n(r) =
rRl,n(r) with r = |x|, we shall note that (4.4.3) can also be written as a
finite-Hankel transform [180]:

γl,nϕl,n(r) =
∫ 1

0
Jl+1/2(cρr)√cρr ϕl,n(ρ)dρ, 0 ≤ r ≤ 1, (4.4.8)

where γl,n = cβl,n, n, l = 0, 1, . . . . We observe that ϕl,n(0) = 0. The even
and odd PSWFs (of order zero) correspond to the eigenfunctions of (4.4.8)
for l = −1 and 0; in these two cases, the kernels become (2/π)1/2 cos(cρr)
and (2/π)1/2 sin(cρr), respectively. Proceeding in this way, we now consider
the operator Mc : L2([0, 1])→ L2([0, 1]) defined by

Mcϕl,n(r) =
∫ 1

0
Jl+1/2(cρr)√cρr ϕl,n(ρ)dρ.

In the first place, it is known from [300] that the operator, Mc, is compact
and self-adjoint on L2([0, 1]), and γ = 0 is not an eigenvalue of this operator.
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The standard spectral theory assures the existence of an orthogonal basis of
eigenfunctions ϕl,n of L2([0, 1]). One of the main results found by Slepian in
[300] was that solutions of (4.4.8) are also solutions of the Sturm-Liouville
problem:

Lcϕl,n(r) = −χl,nϕl,n(r), (4.4.9)

where Lc is the differential operator given by

Lcϕl,n(r) = (1− r2)dϕl,n(r)
dr

− 2rdϕl,n(r)
dr

+
(
− l(l + 1)

r2 − c2r2
)
ϕl,n(r),

(4.4.10)
where 0 < r < 1. The operator Lc is self-adjoint for square-integrable and
twice-differentiable functions that vanish at the origin. Bounded solutions
of (4.4.9) exist only for a countable set of real values of χl,n, n, l = 0, 1, . . . ,
which we label so that χl,0 ≤ χl,1 ≤ χl,2 ≤ . . . . Slepian [300] called the
solutions of (4.4.9) generalized prolate spheroidal functions. In [173], Hurtley
called these solutions hyperspheroidal functions.

With the help of specific formulas for the eigenfunctions and eigenvalues
of (4.4.9) found in [300], the following result may be established:

Proposition 4.4.4. Let u be any pure quaternion such that u2 = −1. Given
a real number c > 0, the eigenfunctions and eigenvalues of the finite-QFT
supported on Ω0 are equal to

ψl,m,n(x) = (l −m)!ϕl,n(c, |x|)
4π(l + 2 +m)(l + 2 +m)! |x| X

Q
l,m[0](x/|x|),

µl,n = (2π)3/2ul
[

(l + 1 + 2n)(l + 2 + 2n)
c

+O(c)
]
,

as c→ 0, where

ϕl,n(c, |x|) = (2n)!!(2l + 1)!!
(2n+ 2l + 1)!! |x|

lP (l+1/2,0)
n (1− 2|x|2) +O(c2). (4.4.11)

In (4.4.11), P (α,β)
λ (x) denotes the classical Jacobi polynomial of degree λ in

x, and with real parameters α and β.

The radial eigenfunctions ϕl,n(0, |x|) are known as the Zernike circle poly-
nomials. These polynomials form a basis of orthogonal polynomials that
arise in expanding the optical wavefront in imaging systems with circular
pupils. These polynomials were first introduced by Zernike’s Nobel prize
[344, 345] about eighty years ago connected with his phase contrast and



4.4. CONSTRUCTING C-QPSWFS ON THE BALL 193

knife-edge tests and since then have been extensively discussed in the litera-
ture [1, 2, 3, 4, 28, 36, 249, 257, 260, 321]. It may further be shown that the
functions ϕl,n(0, |x|) are the same as those of a second-order homogeneous dif-
ferential equation, which arises in the theory of orthogonal ball polynomials
[84, Theorem 11.1.5]. The three-dimensional quaternionic Zernike spheri-
cal polynomials introduced by Morais et al. in [249] can be obtained as a
particular case of the present theory by appropriate interpretation. Further
generalizations were made in [70], in which several analytical and algebraical
properties of the quaternionic Zernike spherical polynomials were provided.
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5

Applications

In the first part of the chapter, we present some applications and discuss two
constructive approaches for the generation of harmonic conjugates to find
monogenic functions in R3. The first algorithm is based on different systems
of harmonic and monogenic functions proposed in previous chapters. In con-
trast, the second one is presented, employing an integral representation. We
give some examples of function spaces illustrating the techniques involved.
More specifically, we discuss the monogenic weighted Hardy and Bergman
spaces consisting of all functions with values in A, which are monogenic in
Ω0 and satisfy growth restrictions other than boundedness. We end up prov-
ing the boundedness of the underlying harmonic conjugation operators in
specific weighted spaces.

In the second part of the chapter, the focus is direct to the geometric map-
ping properties of monogenic functions. Another application of the theory
developed in the previous sections is the generalization of Bloch’s Theorem
to monogenic mappings defined in the unit ball of the three-dimensional
Euclidean space. We can explicitly compute a lower bound for the Bloch
constant.

The results that appear in the first part of the chapter were published in
[245]. The results of the second part appeared in [241].

5.1 On Riesz Systems of Harmonic Conju-
gates

Given a harmonic function u in a domain Ω of R4, the problem of finding
a harmonic conjugate v, which holds f(x) = u + v monogenic in Ω and
generalizes the well-known case of the complex plane, was first introduced
by Sudbery in [318]. The author proposed an algorithm for the calculation of

195
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quaternion-valued monogenic functions. Later and independently, Xu con-
sidered the problem of conjugate harmonics in the framework of Clifford
analysis [336]. In [337] and [338], the constructions of conjugate harmonics
to the Poisson kernel in the open unit ball and the upper half-space were
obtained. The extension and completeness of these results were obtained in
[49] and [50]. However, no effort was made to establish the function spaces
to which these conjugate harmonics and the whole monogenic function be-
long. In [24], this question was replied for conjugate harmonics via Sudbery’s
formula in the scale of Bergman spaces. Nevertheless, these results do not
apply to functions with values in A.

We begin to recall from [152] an algorithm to determine a “unique” f ∈
M2(Ω0) via conjugate harmonics, which makes essential use of the orthogonal
bases of solid spherical harmonics and monogenics discussed in Chapters 2
and 3, respectively. See [152, 245] for a list of the known results before the
present investigation. In the literature, similar ideas can be found in the
works of Moisil in [231] and Stein and Weiß in [311]. However, in [311], the
authors presented an approach based on the gradient of harmonic functions
in the upper half-space, which are radial in two variables. Therefore the link
is not immediate and will not be developed here.

In the following, assume that h is a square-integrable harmonic function
defined in Ω0. Given Theorems 2.3.1 and 3.1.10 and representation (3.1.5),
start by considering the Fourier expansion of h in terms of the orthogonal
basis formed by the scalar parts of the solid spherical monogenics. Then
replace the scalar parts of each harmonic polynomial with the full monogenic
polynomial to obtain a Fourier series expansion of the form (3.1.16). In doing
so, we consider that the monogenic polynomials are not normalized, and the
coefficients of the series expansion need to be corrected. It results in an
additional condition on the original Fourier coefficients of h. We formulate
this idea in detail in the following theorem [152].

Theorem 5.1.1. Let h ∈ Har2(Ω0) be expressed as a Fourier series expan-
sion:

h(x) =
∞∑
l=0

l∑
m=0

(
a+
l,m[0]

Sc(X+
l,m[0])

‖ Sc(X+
l,m[0])‖L2(Ω0)

+ a−l,m[0]
Sc(X−l,m[0])

‖ Sc(X−l,m[0])‖L2(Ω0)

)
.

(5.1.1)
If, additionally, the Fourier coefficients satisfy the condition

∞∑
l=0

l∑
m=0

(l + 1)(2l + 1)
(l + 1)2 −m2

[
(a+
l,m[0])2 + (a−l,m[0])2

]
<∞, (5.1.2)
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then the series
∞∑
l=0

l∑
m=0

(
a+
l,m[0]

Vec(X+
l,m[0])

‖ Sc(X+
l,m[0])‖L2(Ω0)

+ a−l,m[0]
Vec(X−l,m[0])

‖ Sc(X−l,m[0])‖L2(Ω0)

)
(5.1.3)

converges in the mean-square sense and it defines a vector-valued function
v ∈ Har2(Ω0) such that f(x) = u(x) +v(x) ∈M2(Ω0). Further, v is unique
up to the addition of a nontrivial monogenic constant.

We will call (h,v) a pair of conjugate harmonic functions in Ω0. This
construction is obtained step-by-step, where each simple step exhibits the
existence and uniqueness (up to the addition of a monogenic constant) of a
vector-valued harmonic function v conjugate to h, which will make f an A-
valued monogenic function. To see this, observe that by adding a monogenic
constant ϕ to v, the resulting function ṽ = v +ϕ is also conjugate to h. In
the remainder of this section, we study how the quality of h influences the
quality of v and then examine how h and v together define a suitable space for
f . Such a result will allow the definition of a continuous operator between
spaces of harmonic and monogenic functions given by the construction of
harmonic conjugates.

Before developing the general theory further, let us make two observa-
tions. First, by the direct construction of the expansion (5.1.3), we ob-
tain a total of 2l + 1 monogenic polynomials of degree l. However, since
dimM+

l (Ω,A) = 2l + 3, adding two monogenic constants, the number of
independent polynomials needed to form a basis forM2(Ω0) can indeed be
attained. Secondly, it should be remarked that the criterion described in
Theorem 5.1.1 is not well-applicable in practice. It is not yet clear how to
characterize which condition of the theorem describes a function space (for
the functions h). If we suppose for the moment more smoothness of the
given function h, we can count exponential decay of the Fourier coefficients.
Thus, by Definition 1.3.12, we can formulate a general sufficient condition
that guarantees the convergence of the series expansion (5.1.3), and hence
the existence of a function f in M2,1(Ω0). The following theorem answers
this question.

Theorem 5.1.2. Let h ∈ Har2(Ω0). If the absolute values of the coefficients
of the series expansion (5.1.1) satisfy the condition (5.1.2) and, additionally,
are less than C/(l + 1)1+α with α > 1 for some constant C > 0, then there
exists a function f ∈M2,1(Ω0) such that Sc(f) = h in Ω0.

Proof. Let expand h ∈ Har2(Ω0) as in Theorem 5.1.1. First, we replace the
scalar parts of each monogenic polynomial by the full polynomial itself. On
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introducing suitable correction factors, we can then rewrite the underlying
series as a Fourier expansion in terms of solid spherical monogenics. Hence,
we obtain a function f inM2(Ω0), represented by the expansion:

f =
∞∑
l=0

l∑
m=0

√√√√(l + 1)(2l + 1)
(l + 1)2 −m2

(
a+
l,m[0] X+

l,m[0] + a−l,m[0] X−l,m[0]
)
.

Since the hypercomplex derivative of a monogenic function f is again mono-
genic, it remains to prove that (1/2)∂f ∈ L2(Ω0,A). The above series con-
verges in the L2-sense. So it converges uniformly to f in each compact subset
of Ω0. Accordingly, the series of all partial derivatives converge uniformly to
the corresponding partial derivatives of f in compact subsets of Ω0. Since
the operator ∂ is continuous, we can thus take the hypercomplex derivative
of the series term-by-term, and by Corollary 3.1.18 one finds

(1
2∂)f =

∞∑
l=1

l∑
m=0

√
l(2l + 3)

(
a+
l,m[0] X+

l−1,m[0] + a−l,m[0] X−l−1,m[0]
)
. (5.1.4)

We now proceed to use the L2-convergence of (5.1.4) to find that the expan-
sion

∞∑
l=1

l(2l + 3)
l∑

m=1

[
(a+
l,m[0])2 + (a−l,m[0])2

]
(5.1.5)

also converges in the mean-square sense. Using the hypothesis on the upper
bounds of the Fourier coefficients, it follows from (5.1.5) that

‖f‖2
L2(Ω0) <

∞∑
l=1

6C2

(l + 1)2α−1 .

Since the assumption that α > 1 leads to the convergence of the above
series, it follows that (5.1.4) converges and hence (1/2)∂f ∈ L2(Ω0,A). The
theorem has now been completely established.

From the preceding considerations, we deduce the further result:
Lemma 5.1.3. Let α > −1. Suppose that f ∈ M2(Ω0) has the expansion
f(x) = ∑∞

l=0 Pl(x), where

Pl(x) =
l∑

m=0

(
a+
l,m[0]

X+
l,m[0]

‖ Sc(X+
l,m[0])‖L2(Ω0)

+ a−l,m[0]
X−l,m[0]

‖ Sc(X−l,m[0])‖L2(Ω0)

)
.

Then

‖f‖L2,α(Ω0) ≈
( ∞∑
l=0

1
(l + 1)α+1 ‖Pl‖2

L2(∂Ω0)

)1/2

. (5.1.6)

(For any A,B > 0, A ≈ B denotes the two-sided estimate c1A ≤ B ≤ c2A
for some constants c1, c2 > 0.)
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Proof. In view of the homogeneity and orthogonality of the monogenic poly-
nomials Pl for each l = 0, 1, . . . , term-by-term integration yields

(M2(f ; ρ))2 =
∫
∂Ω0
|f(ρη)|2dσ(η) =

∞∑
l=0

ρ2l‖Pl‖2
L2(∂Ω0), (5.1.7)

where ρ ∈ [0, 1).
In this manner, we obtain

‖f‖H2(Ω0) = ‖f‖L2(∂Ω0) =
( ∞∑
l=0
‖Pl‖2

L2(∂Ω0)

)1/2

. (5.1.8)

In order to obtain an equivalent norm in the Bergman spaces, B2,α(Ω0) or
B2,α(Ω0), we integrate (5.1.7) over the interval (0, r) for every r ∈ (0, 1), and
obtain

3
∫ r

0
(1− ρ)α (M2(f ; ρ))2 ρ2dρ

= 3
∞∑
l=0
‖Pl‖2

L2(∂Ω0)

∫ r

0
(1− ρ)αρ2l+2dρ.

By the Stirling’s formula, we have then∫ 1

0
(1− ρ)α ρ2l+2dρ ≈ α!

2α+1
1

(l + 1)α+1

as l→∞. By letting r approach 1− we obtain (5.1.6).

As was shown in [35], similar results apply to the more general class of
Clifford algebra-valued functions expanded into spherical harmonics. The
Hardy norm (5.1.8) and the unweighted Bergman L2,0(Ω0)-norm were ob-
tained in this setting. For real-valued harmonic functions in the unit ball in
Rn, the equivalence of (5.1.6) was obtained in [270].

It will be observed that we cannot assume a priori that the existence
of a function h in Har(Ω0) or H2(Ω0) necessarily implies the existence of a
function f in H2(Ω0), constructed as in Theorem 5.1.1. It will thus appear
that the inequality

‖f‖H2(Ω0) ≤ C‖h‖H2(Ω0) (5.1.9)
fails for some constant C > 0.

To see this we consider, for example, the expansion

h(x) =
∞∑
l=0

a+
l,l[0]

Sc(X+
l,l[0])

‖ Sc(X+
l,l[0])‖L2(Ω0)

,
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where a+
l,l[0] = (l + 1)−3/2. In the first place, we find

‖h(x)‖2
H2(Ω0) =

∞∑
l=0

(2l + 3)(a+
l,l[0])2 <∞.

However, in accordance with Theorem 5.1.1, a straightforward calculation
shows that

‖f‖2
H2(Ω0) =

∥∥∥∥∥
∞∑
l=0

a+
l,l[0]

X+
l,l[0]

‖ Sc(X+
l,l[0])‖L2(Ω0)

∥∥∥∥∥
2

H2(Ω0)

=
∞∑
l=0

(l + 1)(2l + 3)(a+
l,l[0])2

=∞,
which contradicts (5.1.9). Having made this observation, we have then to in-
vestigate whether, or under what conditions, concrete a priori criteria for the
given harmonic function are capable of ensuring the existence of a “unique”
monogenic function.

We now infer from Theorem 5.1.1, in combination with Lemma 5.1.3, an
essential result of the boundedness of the harmonic conjugation operator in
some given weighted spaces.
Theorem 5.1.4. Let h ∈ Har2(Ω0). The harmonic conjugation operator
h→ f is
(i) bounded from H2(Ω0) into B2(Ω0):

‖f‖L2(Ω0) ≤ ‖h‖H2(Ω0);

(ii) bounded from B2,α(Ω0) (for α > −1) into B2,α+1(Ω0):
‖f‖L2,α+1(Ω0) ≤ ‖h‖L2,α(Ω0).

The previous inequality is sharp in the sense that the exponent α + 1
on the left-hand side cannot be replaced by any smaller one, and the
operator h → f is unbounded from B2,α(Ω0) to B2,α+1−ε(Ω0) for any
ε > 0.

Proof. For simplicity of presentation, we set f(x) = ∑∞
l=0 Pl(x), where Pl is

given as in Lemma 5.1.3. A direct computation shows that

‖f‖2
L2(Ω0) =

∞∑
l=0

l∑
m=0

(2l + 1)(2l + 3)
(l + 1)2 −m2

[
(a+
l,m[0])2 + (a−l,m[0])2

]

≤
∞∑
l=0

(2l + 3)
l∑

m=0

[
(a+
l,m[0])2 + (a−l,m[0])2

]
= ‖h‖2

H2(Ω0),
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and this is the required result.
For the proof of the second part,

‖f‖2
L2,α+1(Ω0) =

∞∑
l=0

1
(l + 1)α+2

l∑
m=0

(2l + 1)(2l + 3)
(l + 1)2 −m2

[
(a+
l,m[0])2 + (a−l,m[0])2

]

≤
∞∑
l=0

2l + 3
(l + 1)α+1

l∑
m=0

[
(a+
l,m[0])2 + (a−l,m[0])2

]
= ‖h‖2

L2,α(Ω0).

We proceed to find a counterexample for the inequality

‖f‖L2,α+1−ε(Ω0) ≤ C(α, ε)‖h‖L2,α(Ω0) (5.1.10)

for some constant C(α, ε) > 0. Let ε be arbitrarily chosen and fixed such
that 0 < ε < 1. Now, consider the expansion

h(x) =
∞∑
l=0

a+
l,l[0]

Sc(X+
l,l[0])

‖ Sc(X+
l,l[0])‖L2(Ω0)

,

where a+
l,l[0] = (l + 1)(α−1−ε)/2.

We thus have

‖h‖2
L2,α(Ω0) ≤ 3

∞∑
l=0

1
(l + 1)α (a+

l,l[0])2 <∞,

and
‖ Sc(f)‖2

L2,α+1−ε(Ω0) ≥ 2
∞∑
l=0

1
(l + 1)α−ε (a+

l,l[0])2 =∞,

which contradicts (5.1.10). This completes the proof.

It is interesting to note that the Hardy space H2(Ω0) can be regarded as
the limiting case of the weighted Bergman space B2,α(Ω0) as α approaches
−1+. Accordingly, if we identify B2,−1(Ω0) with B2(Ω0), then it turns out for
Theorem 5.1.4 that Property (i) can be seen as a generalization of Property
(ii).

Furthermore, if we want to make the above theorem more precise, then we
need a priori criteria for the given function h that ensure the convergence of
the constructed series expansion of f = h+v inM2(Ω0) or another suitable
space. Of course, the additional assumption (5.1.2) of Theorem 5.1.1 is such
a criterion, but it is not well-applicable in practice. It is not known at present
whether there is a known function space that is defined precisely by these
conditions.
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We now proceed to consider an alternative algorithm to computing a
“unique” pair of conjugate harmonic functions in R3 whose properties we can
investigate to provide a characterization for the boundedness of harmonic
conjugation operators on specific weighted function spaces. The proposed
algorithm may be stated as follows:
Theorem 5.1.5. Suppose that h ∈ Har2(Ω0) has continuous second deriva-
tives. If

[v(x)]1 := −x0

∫ 1

0

∂h(ρx0, x1, x2)
∂x1

dρ+ w(x1, x2), (5.1.11)

where w(x1, x2) is a function such that ∆3w = ∂2h(0,x1,x2)
∂x0 ∂x1

, and

[v(x)]2 :=
∫ 1

0

−
∣∣∣∣∣∣∣

x0 x2

∂h(tx)
∂x0

∂h(tx)
∂x2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

x1 x2

∂[v(tx)]1
∂x1

∂[v(tx)]1
∂x2

∣∣∣∣∣∣∣
 dt,
(5.1.12)

then there exists a function f ∈M2(Ω0) such that Sc(f) = h, [f ]1 = [v]1 and
[f ]2 = [v]2 in Ω0. Further, the most general monogenic function g having h
as its scalar part is given by g(x) = f(x)+ϕ(x1, x2), where ϕ is a nontrivial
monogenic constant.
Proof. In the first place, we prove that f = h+v is monogenic, i.e. it satisfies
the Riesz system (1.3.4). On account of the assumption about [v]1, it follows
that

[v(x)]1 = −
∫ x0

0

∂h(t, x1, x2)
∂x1

dt+ w(x1, x2)

for all x ∈ Ω0.
Thus

∂[v(x)]1
∂x0

= −∂h(x)
∂x1

. (5.1.13)

We have now

∆[v(x)]1 = ∂2[v(x)]1
∂x2

0
+ ∆x1,x2 [v(x)]1

= − ∂2h(x)
∂x0∂x1

−
∫ x0

0

∂

∂x1
∆x1,x2h(t, x1, x2)dt+ ∆x1,x2w(x1, x2)

= − ∂2h(x)
∂x0∂x1

+
∫ x0

0

∂3h(t, x1, x2)
∂x2

0 ∂x1
dt+ ∆x1,x2w(x1, x2)

= − ∂2h(x)
∂x0∂x1

+ ∂2h(x)
∂x0∂x1

− ∂2h(0, x1, x2)
∂x0∂x1

+ ∆x1,x2w(x1, x2)

= 0.
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Hence [v(x)]1 is harmonic.
Next, we define the function

F (x) :=
∫ x2

0

(
∂h(0, 0, t)

∂x0
− ∂[v(0, 0, t)]1

∂x1

)
dt+

∫ x1

0

∂[v(0, t, x2)]1
∂x2

dt

−
∫ x0

0

∂h(t, x1, x2)
∂x2

dt. (5.1.14)

We proceed to compute the partial derivatives of F with respect to x0, x1, x2.
It follows that

∂F (x)
∂x0

= −∂h(x)
∂x2

. (5.1.15)

Using (5.1.13), we have then

∂F (x)
∂x1

= ∂[v(0, x1, x2)]1
∂x2

−
∫ x0

0

∂2h(t, x1, x2)
∂x1∂x2

dt

= ∂[v(0, x1, x2)]1
∂x2

+
∫ x0

0

∂2[v(t, x1, x2)]1
∂x0∂x2

dt

= ∂[v(0, x1, x2)]1
∂x2

+ ∂[v(t, x1, x2)]1
∂x2

∣∣∣∣∣
x0

0

= ∂[v(x)]1
∂x2

. (5.1.16)

In view of the harmonicity of h and [v]1, and using (5.1.13), it thus follows
that

∂F (x)
∂x2

= ∂h(0, 0, x2)
∂x0

− ∂[v(0, 0, x2)]1
∂x1

+
∫ x1

0

∂2[v(0, t, x2)]1
∂x2

2
dt

−
∫ x0

0

∂2h(t, x1, x2)
∂x2

2
dt

= ∂h(0, 0, x2)
∂x0

−
∫ x1

0

(
∂2[v(0, t, x2)]1

∂x2
0

+ ∂2[v(0, t, x2)]1
∂x2

1

)
dt

− ∂[v(0, 0, x2)]1
∂x1

+
∫ x0

0

(
∂2h(t, x1, x2)

∂x2
0

+ ∂2h(t, x1, x2)
∂x2

1

)
dt

= ∂h(0, 0, x2)
∂x0

−
∫ x1

0

(
−∂

2h(0, t, x2)
∂x0∂x1

+ ∂2[v(0, t, x2)]1
∂x2

1

)
dt

− ∂[v(0, 0, x2)]1
∂x1

+
∫ x0

0

(
∂2h(t, x1, x2)

∂x2
0

− ∂2[v(t, x1, x2)]1
∂x0∂x1

)
dt

= ∂h(x)
∂x0

− ∂[v(x)]1
∂x1

. (5.1.17)
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We proceed to show that [v(x)]2 = F (x) for all x ∈ Ω0. In accordance with
(5.1.14), we write F as a curve-line integral:

F (x)

=
∫ (x0,x1,x2)

(0,0,0)

[
−∂h(y)

∂x2
dy0 + ∂[v(y)]1

∂x2
dy1 +

(
∂h(y)
∂x0

− ∂[v(y)]1
∂x1

)
dy2

]
.

(5.1.18)
Thus, the above integral is path independent in view of the conditions (5.1.15),
(5.1.16) and (5.1.17), namely

∇F =
(
− ∂h

∂x2
,
∂[v]1
∂x2

,
∂h

∂x0
− ∂[v]1

∂x1

)
,

curl∇F = 0.
It is convenient to choose a path of integration in (5.1.18) whose segments
are parallel to the coordinate axes. A suitable change of variables in (5.1.18)
leads to

F (x) =
∫ 1

0

[
−x0

∂h(tx)
∂x2

+ x2
∂h(tx)
∂x0

+ x1
∂[v(tx)]1
∂x2

− x2
∂[v(tx)]1
∂x1

]
dt,

(5.1.19)
which corresponds to the general form of (5.1.12). Thus, F (x) = [v(x)]2 for
all x ∈ Ω0. This establishes that f = h+i[v]1 +j[v]2 is a solution of the Riesz
system (1.3.4). Now, let g be the most general monogenic function such that
Sc(g) = h. On account of the assumption about f , it follows that 2h(x) =
g(x) + g(x) = f(x) + f(x). Therefore f(x) − g(x) + (f(x)− g(x)) = 0,
and so [f(x)− g(x)]0 = 0 for all x ∈ Ω0. Since f(x)− g(x) is monogenic in
Ω0, it is then clear that f(x)−g(x) reduces to a monogenic constant ϕ with
Sc(ϕ) = 0. We now see that g(x) = f(x) + ϕ(x1, x2) for all x ∈ Ω0. This
completes the proof of the theorem.

The above theorem shows that there are as many A-valued monogenic
functions as there are harmonic functions in R3. In the following two sections,
we shall illustrate how these techniques can be applied to problems that arise
as to the discussion of the monogenic Hardy and weighted Bergman spaces
in Ω0.

5.1.1 Harmonic conjugates in monogenic weighted Hardy
spaces

In this section, we rely on various techniques used in Theorem 5.1.5 to further
develop results in the general setting of the monogenic weighted Hardy spaces
and to discuss some applications.
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We now briefly recall some basic facts about the Poisson kernel, which
will be used to estimate the size of certain integrals.

Lemma 5.1.6 (see [188]). Let Ω be a bounded domain in R3 and ∂Ω ∈ C2,
and let PΩ(x,η) be the Poisson kernel for Ω. Then

PΩ(x,η) ≈ dist(x, ∂Ω)
|x− η|3

for all x ∈ Ω, η ∈ ∂Ω.

For any fixed ρ, r ∈ (0, 1), we consider the inner domain of the following
oblate spheroid:

Ωρ,r = {x ∈ R3 : x2
0

ρ2r2 + x2
1
r2 + x2

2
r2 < 1}. (5.1.20)

Now we estimate the size of the Poisson kernel for Ωρ,r, which will be of use
in the further discussion.

Lemma 5.1.7. Let PΩρ,r(x,η) be the Poisson kernel for Ωρ,r. Then

PΩρ,r(x,η) ≈ dist(x, ∂Ωρ,r)
|x− η|3

for all x ∈ Ωρ,r, η ∈ ∂Ωρ,r. In particular,

PΩρ,r(0,η) ≈ ρr

|η|3

for all η ∈ ∂Ωρ,r.

Before we proceed any further, we need the following preliminary lemmas
and some notation.

Lemma 5.1.8. For any α > 0 and β > 1, there holds∫ 1

0

tα−1

(1− ρt)β dt ∼
1

(β − 1)(1− ρ)β−1

as ρ→ 1−.

Proof. The proof is straightforward and will be omitted.

Lemma 5.1.9 (see [347]). Let h = h(x1, x2) be a nonnegative superharmonic
function in the unit disk D = {x2

1+x2
2 < 1}, and let γ > −1 and 0 < p < 2+γ.

Then there is a constant C(p, γ, a) > 0 such that ‖h‖Lp,γ(D) ≤ C(p, γ, a)h(a)
for any point a ∈ D.
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Lemma 5.1.10 (see [122]). Let h(x) be a nonnegative subharmonic function
in Ω0. If M1(h; ρ) =

∫
∂Ω0

h(ρη)dσ(η) is bounded on ρ ∈ [0, 1), then h(x) has
a harmonic majorant u(x) ∈ H1(Ω0) such that h(x) ≤ u(x) for all x ∈ Ω0,
and ‖u‖H1(Ω0) ≤ C supρ∈(0,1)M1(h; ρ) for some constant C > 0.

By means of this result, the following lemma may be deduced:

Lemma 5.1.11. Let 1 ≤ p < ∞, β > 0, α > −1, λ = (λ0, λ1, λ2) a multi-
index of nonnegative integers such that |λ| = λ0 + λ1 + λ2, and let m be a
positive integer. Then

‖h‖Hp,β(Ω0) ≈
∑
|λ|<m

|∂λh(0)|+
∑
|λ|=m

‖∂λh‖Hp,β+m(Ω0), (5.1.21)

‖h‖Lα,p(Ω0) ≈
∑
|λ|<m

|∂λh(0)|+
∑
|λ|=m

‖∂λh‖Lp,α+pm(Ω0) (5.1.22)

for all h ∈ Har(Ω0). Further,

‖h‖Hp,β(Ω0) ≈ |h(0)|+ ‖∇h‖Hp,β+1(Ω0), (5.1.23)

‖h‖Lp,α(Ω0) ≈ |h(0)|+ ‖∇h‖Lp,α+p(Ω0). (5.1.24)

The constants involved in the equivalence of the different norms depend on
some or all of p, β, α,m.

Proof. The proofs of (5.1.21) and (5.1.23) can be found in [24]. We omit the
proofs of (5.1.22) and (5.1.24) because they follow the same lines, without
essential change.

We are now in a position to establish the following general theorem, which
provides criteria for the existence of an A-valued function f in the space
Hp,β(Ω0).

Theorem 5.1.12. Let h ∈ Har(Ω0) and let w(x1, x2) be a solution of the
equation

∆x1,x2w = ∂2h(0, x1, x2)
∂x0 ∂x1

(5.1.25)

such that h(a) is finite at some point a = (a1, a2) with a2
1 + a2

2 < 1. If
h ∈ Hp,β(Ω0) for some β > 0 and 1 < p <∞, then there exists a function f
in Hp,β(Ω0) such that Sc(f) = h in Ω0, and a constant C(p, β, a) > 0 such
that

‖f‖Hp,β(Ω0) ≤ C(p, β, a)
(
‖h‖Hp,β(Ω0) + |w(a)|

)
.
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Proof. In the first place, we use Theorem 5.1.5 to construct a monogenic
function f = h + i[v]1 + j[v]2 for a given real-valued harmonic function h,
where the quaternionic components [v]1 and [v]2 can be found, respectively,
by (5.1.11) and (5.1.12). For any point x = rη ∈ Ω0, by (5.1.11) we have
then

|[v(x)]1| ≤ |x0|
∫ 1

0

∣∣∣∣∣∂h(ρx0, x1, x2)
∂x1

∣∣∣∣∣ dρ+ |w(x1, x2)|

=: ṽ1(x) + |w(x1, x2)|. (5.1.26)

Minkowski’s inequality gives

Mp(ṽ1; r) ≤
∫ 1

0

(∫
|x|=r
|x0|p

∣∣∣∣∣∂h(ρx0, x1, x2)
∂x1

∣∣∣∣∣
p

dσ

)1/p

dρ.

Denote by u(y) the smallest harmonic majorant of the subharmonic function∣∣∣∂h(y)
∂x1

∣∣∣p in the ball B(
√
r) = {x ∈ R3 : |x| <

√
r}. The previous inequality

becomes

Mp(ṽ1; r) ≤
∫ 1

0

(∫
|x|=r
|x0|pu(ρx0, x1, x2)dσ

)1/p

dρ

≤ r
∫ 1

0

(∫
|x|=r

u(ρx0, x1, x2)dσ
)1/p

dρ

= r
∫ 1

0

(∫
∂Ωρ,r

u(y)dσ
)1/p

dρ,

where the spheroid Ωρ,r was defined in (5.1.20).
Now, we write the Poisson integral representation of u in Ωρ,r ⊂ B(

√
r),

and estimate it at the origin:

u(x) =
∫
∂Ωρ,r

PΩρ,r(x,y)u(y)dσ.

By Lemma 5.1.7, we have

u(0) =
∫
∂Ωρ,r

PΩρ,r(0,y)u(y)dσ

≥ C
∫
∂Ωρ,r

ρr

|y|3
u(y)dσ

≥ C
ρ

r2

∫
∂Ωρ,r

u(y)dσ.
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From this we find

Mp(ṽ1; r) ≤ r
∫ 1

0

(∫
∂Ωρ,r

u(y)dσ
)1/p

dρ

≤ Cr
∫ 1

0

(
r2

ρ
u(0)

)1/p

dρ

= C(p)r1+2/p (u(0))1/p .

By the mean-value property for harmonic functions and Lemma 5.1.10, it
follows that

Mp(ṽ1; r) ≤ C(p)r1+2/p
∫ 1

0

(
1
ρr
M1(u;√ρr)

)1/p

dρ

= C(p)r1+1/p
∫ 1

0

1
ρ1/p (M1(u;√ρr))1/p dρ

≤ C(p)r1+1/p
∫ 1

0

1
ρ1/p Mp

(
∂h

∂x1
;√ρr

)
dρ. (5.1.27)

It follows from these considerations and, in particular from Lemma 5.1.8,
that

Mp(ṽ1; r) ≤ C(p)r1+1/p
∫ 1

0

(1−√ρr)β+1Mp( ∂h
∂x1

;√ρr)
ρ1/p(1−√ρr)β+1 dρ

≤ C(p, β)r1+1/p
∥∥∥∥∥ ∂h∂x1

∥∥∥∥∥
Hp,β+1(Ω0)

∫ 1

0

1
ρ1/p(1− ρr)β+1 dρ

≤ C(p, β)
(1− r)β

∥∥∥∥∥ ∂h∂x1

∥∥∥∥∥
Hp,β+1(Ω0)

.

We have then, in accordance with Lemma 5.1.11,

(1− r)βMp(ṽ1; r) ≤ C

∥∥∥∥∥ ∂h∂x1

∥∥∥∥∥
Hp,β+1(Ω0)

≤ C ‖∇h‖Hp,β+1(Ω0)

≤ C‖h‖Hp,β(Ω0) (5.1.28)

for all r ∈ (0, 1).
We proceed to estimate the last term of (5.1.26) by means of Lemma

5.1.9. It is known from [139] that the solution w(x1, x2) of the Poisson equa-
tion (5.1.25) in D with vanishing boundary values on the unit circle is the
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Green potential of ∂2h(0,x1,x2)
∂x0 ∂x1

. We split the function ∂2h(0,x1,x2)
∂x0 ∂x1

into its pos-
itive and negative parts, namely w = w+ − w−, where w+ = max{w, 0}
and w− = max{−w, 0} are nonnegative superharmonic functions in D. By
Lemma 5.1.9, it follows that ‖w±‖Lp,p(D) ≤ C(p, a)w±(a) for some constant
C(p, a) > 0.

Thus,

‖w‖Lp,p(D) ≤ ‖w+‖Lp,p(D) + ‖w−‖Lp,p(D) ≤ C(p, a)|w(a)|.

Since the integral means of w±, Mp(w±; r), are decreasing functions of r,
then

sup
1/2≤ r < 1

(1− r)βMp(w±; r) ≤ C‖w±‖Lp,p(D) ≤ C(p, β, a)w±(a)

for any β > 0. Whence,

sup
1/2≤ r < 1

(1− r)βMp(w; r) ≤ C(p, β, a)|w(a)|, (5.1.29)

and this conclusion holds, not only for w(x1, x2), but also for its extension in
Ω0, namely w(x). Accordingly, by (5.1.26), (5.1.28) and (5.1.29), we have

‖[v]1‖Hp,β(Ω0) ≤ C(p, β) sup
1/2≤ r < 1

(1− r)βMp([v]1; r)

≤ C(p, β, a)
(
‖h‖Hp,β(Ω0) + |w(a)|

)
. (5.1.30)

Proceeding in a similar manner, we use (5.1.19) to estimate the quaternionic
component [v]2:

|[v(x)]2| ≤
∫ 1

0

(
|x0|

∣∣∣∣∣∂h(tx)
∂x2

∣∣∣∣∣+ |x2|
∣∣∣∣∣∂h(tx)
∂x0

∣∣∣∣∣+ |x1|
∣∣∣∣∣∂[v(tx)]1

∂x2

∣∣∣∣∣
+|x2|

∣∣∣∣∣∂[v(tx)]1
∂x1

∣∣∣∣∣
)
dt

≤
√

2
∫ 1

0
(|∇h(tx)|+ |∇[v(tx)]1|) dt.

Now, we use the function [v]2 and Minkowski’s inequality as above, and
obtain

Mp([v]2; r) ≤ C
∫ 1

0
Mp (∇h; tr) dt+ C

∫ 1

0
Mp (∇[v]1; tr) dt. (5.1.31)
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It follows immediately from these estimates that

Mp([v]2; r) ≤C sup
0<t<1

(1− tr)β+1Mp (∇h; tr)
∫ 1

0

1
(1− tr)β+1 dt

+ C sup
0<t<1

(1− tr)β+1Mp (∇[v]1; tr)
∫ 1

0

1
(1− tr)β+1 dt

≤C(1− r)−β
(
‖∇h‖Hp,β+1(Ω0) + ‖∇[v]1‖Hp,β+1(Ω0)

)
.

We observe now that, by Lemma 5.1.11 and (5.1.30), we have

‖[v]2‖Hp,β(Ω0) ≤ C ‖∇h‖Hp,β+1(Ω0) + C ‖∇[v]1‖Hp,β+1(Ω0)

≤ C ‖h‖Hp,β(Ω0) + C ‖[v]1‖Hp,β(Ω0)

≤ C(p, β, a)
(
‖h‖Hp,β(Ω0) + |w(a)|

)
,

and therefore the theorem has been established.

The question of whether there is a similar characterization for monogenic
weighted Bergman spaces will be considered in the next section.

5.1.2 Harmonic conjugates in monogenic weighted Bergman
spaces

From the point of view adopted in Theorem 5.1.12, we proceed to prove a
similar result for the monogenic weighted Bergman spaces Bp,α(Ω0) in the
range α > −1. The proof of this result is based on Theorem 5.1.5, along
with some well-known inequalities.

With a view to the extension of the general theorem, the following lemma
will be required:
Lemma 5.1.13 (see [121]). Let 1 ≤ p < ∞, γ < −1 < α and let h(ρ) > 0
for ρ ∈ (0, 1). Then there exists a constant C(p, α, γ) > 0 such that∫ 1

0
(1− ρ)αργ

(∫ ρ

0
h(t)dt

)p
dρ ≤ C(p, α, γ)

∫ 1

0
(1− ρ)α+pργ+php(ρ)dρ.

It now remains for us to present a weighted Bergman space estimate; and
this required estimate is founded upon the following lemma:
Lemma 5.1.14. If 1 ≤ p <∞ and γ < −1 < α, then there exists a constant
C(p, α, γ) > 0 such that(∫ 1

0
(1− ρ)α (Mp(h; ρ))p ργdρ

)1/p
≤ C(p, α, γ)‖h‖Lp,α(Ω0)

for all h ∈ Har(Ω0).
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Proof. The result follows in a straightforward way from the subharmonicity
of |h|p and the monotonicity of the integral Mp(h; ρ) with respect to ρ ∈
[0, 1).

The following theorem will now be established:

Theorem 5.1.15. Let h ∈ Har(Ω0) and let w(x1, x2) be a solution of (5.1.25)
such that w(a) is finite at some point a = (a1, a2) with a2

1 + a2
2 < 1. If

h ∈ Bp,α(Ω0) for some α > −1 and 1 < p <∞, then there exists a function
f in Bp,α(Ω0) such that Sc(f) = h in Ω0, and a constant C(p, α, a) > 0 such
that

‖f‖Lp,α(Ω0) ≤ C(p, α, a)
(
‖h‖Lp,α(Ω0) + |w(a)|

)
.

Proof. As in Theorem 5.1.12, this is proved at once by applying Theorem
5.1.5 to the construction of a monogenic function f = h+ i[v]1 + j[v]2 for a
given real-valued harmonic function h, where the quaternionic components
[v]1, [v]2 can be obtained, respectively, by (5.1.11) and (5.1.12). We proceed
to estimate |[v(x)]1| as in (5.1.26). By (5.1.27), we have then

Mp(ṽ1; r) ≤ Cpr
1+1/p

∫ 1

0

1
ρ1/p Mp

(
∂h

∂x1
;√ρr

)
dρ

= Cpr
2/p
∫ r

0

1
t1/p

Mp

(
∂h

∂x1
;
√
t

)
dt,

where

ṽ1(x) = |x0|
∫ 1

0

∣∣∣∣∣∂h(ρx0, x1, x2)
∂x1

∣∣∣∣∣ dρ.
Raising both sides of the above expression to the power of p, integrating, and
using Lemma 5.1.14 we find

‖ṽ1‖pLp,α(Ω0) ≤ C
∫ 1

0
(1− r)α [Mp(ṽ1; r)]p dr

≤ C
∫ 1

0
(1− r)αr2

[∫ r

0
t−1/pMp

(
∂h

∂x1
;
√
t

)
dt

]p
dr

≤ C
∫ 1

0
(1− r)αr−1−δ

[∫ r

0
t−1/pMp

(
∂h

∂x1
;
√
t

)
dt

]p
dr,

where the parameter δ > 0 can be chosen arbitrarily. In order to apply the
Hardy inequality of Lemma 5.1.13, we choose δ = (p−1)/2. Thus, by Lemma
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5.1.14, it follows that

‖ṽ1‖pLp,α(Ω0) ≤ C
∫ 1

0
(1− r)α+prp−1−δ

[
r−1/pMp

(
∂h

∂x1
;
√
r

)]p
dr

= C
∫ 1

0
(1− r)α+pr(p−1)/2−1

[
Mp

(
∂h

∂x1
;
√
r

)]p
dr

≤ C(p, α)
∥∥∥∥∥ ∂h∂x1

∥∥∥∥∥
p

Lp,α+p(Ω0)
.

By Lemma 5.1.11, we also have

‖ṽ1‖Lp,α(Ω0) ≤ C(p, α) ‖∇h‖Lp,α+p(Ω0) ≤ C(p, α)‖h‖Lp,α(Ω0). (5.1.32)

Next, we estimate the term w(x1, x2) in (5.1.26) as in Theorem 5.1.12. Mak-
ing use of Lemma 5.1.9, we have ‖w±‖Lp,p(D) ≤ C(p, a)w±(a) for nonnegative
superharmonic functions w±.

Since the integral means Mp(w±; r) of the superharmonic functions w±
are decreasing functions of r, we thus obtain

‖w±‖Lp,p(D) ≥
[
2
∫ r

0
(1− t)p

(
Mp(w±; t)

)p
tdt
]1/p

≥ CpMp(w±; r)

for all r ∈ [1/2, 1). For any α > −1, it then follows that
[∫ 1

1/2
(1− r)α

(
Mp(w±; r)

)p
r dr

]1/p

≤ C(p, α)‖w±‖Lp,p(D)

≤ C(p, α, a)w±(a). (5.1.33)

We note in passing that inequality (5.1.33) remains valid for the extension
w(x) of W (x1, x2) in Ω0. Accordingly, by (5.1.32) and (5.1.33), we have

‖[v]1‖Lp,α(Ω0) ≤ C(p, α)
[∫ 1

1/2
(1− r)α (Mp([v]1; r))p dr

]1/p

≤ C(p, α, a)
(
‖h‖Lp,α(Ω0) + |w(a)|

)
. (5.1.34)

We proceed to estimate the quaternionic component [v]2. By (5.1.31) and
(5.1.34), and using Lemma 5.1.11, we deduce also

Mp([v]2; r) ≤ C
∫ 1

0
Mp(∇h; tr)dt+ C

∫ 1

0
Mp(∇[v]1; tr)dt.
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Hence

‖[v]2‖Lp,α(Ω0) ≤ C ‖∇h‖Lp,α+p(Ω0) + C ‖∇[v]1‖Lp,α+p(Ω0)

≤ C ‖h‖Lp,α(Ω0) + C ‖[v]1‖Lp,α(Ω0)

≤ C(p, α, a)
(
‖h‖Lp,α(Ω0) + |w(a)|

)
,

and thus the theorem is established.

5.2 A Bloch-type theorem for monogenic func-
tions

Bloch’s classical theorem, being a traditional object of analysis, occupies a
special place in the geometric theory of holomorphic functions. It asserts that
if f is a holomorphic function on a region that contains the closure of the unit
disk centered at the origin such that f(0) = 0 and |f ′(0)| = 1, then the image
domain contains a disk of radius 1/72. The optimal value is known as Bloch’s
constant, and 1/72 is not the best possible. The original proof of Bloch [37]
depends on the Wiman theory of the comparison of two power series involving
integral functions [331]. A treatise was published independently by Landau
and Valiron [197], in which Bloch’s arguments were considerably simplified.
There are many other proofs of Bloch’s Theorem, including works by Landau
[196], Carathéodory [74], Heins [162], Pommerenke [272], Estermann [111],
Ahlfors [15], and Remmert [277].

In the present section, we present a generalization of Bloch’s Theorem for
A-monogenic functions defined in the unit ball of the Euclidean space R3.
We also give an explicit lower bound for the Bloch constant.

5.2.1 Estimates for monogenic functions bounded with
respect to their hypercomplex derivatives

Following the results obtained in Chapter 3, relating to solid spherical mono-
genics, we begin by finding estimates for the Fourier coefficients of an A-
valued monogenic function expanded in series of solid spherical monogenics
by the growth of the maximum of the modulus of its hypercomplex deriva-
tive. Let us introduce some notation, which we shall use in the sequel: let
M(f ; ρ) := maxBρ |f(x)| for all 0 ≤ |x| ≤ ρ denote the maximum modulus
of f . In view of Definition 1.3.14, we shall now prove a useful upper bound
estimate forM (P [(1/2)∂f(x)− (1/2)∂f(0)] ; ρ) in terms of the C-norm of
(1/2)∂f(x)− (1/2)∂f(0).
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Lemma 5.2.1. Let f ∈M2(Bρ) be such that f(0) = 0. Then,∣∣∣∣P [(1
2∂)f(x)− (1

2∂)f(0)
]∣∣∣∣

≤ 2√
3
|x|2(4|x|2 + 9ρ2 − 11|x|ρ)

(ρ− |x|)3 M
(

(1
2∂)f(x)− (1

2∂)f(0); ρ
)

for all 0 ≤ |x| < ρ.

Proof. Bearing in mind that the orthogonality and completeness of the set
{X±l,m[0] : m = 0, . . . , l + 1; l = 0, 1, . . . } inM2(Ω0) implies its orthogonality
and completeness inM2(Bρ), so that

‖X±l,m[0]‖2
L2(Bρ) = ρ2l+3

2l + 3 ‖X
±
l,m[0]‖2

L2(Ω0)

for all l = 0, 1, . . ., we can consider the Fourier expansion of a function f in
M2(Bρ):

f =
∞∑
l=0

l+1∑
m=0

(
ã+
l,m[0]

X+
l,m[0]

‖X+
l,m[0]‖L2(Bρ)

+ ã−l,m[0]
X−l,m[0]

‖X−l,m[0]‖L2(Bρ)

)
, (5.2.1)

where ã±l,m[0] = (1/‖X±l,m[0]‖L2(Bρ))〈f ,X±l,m[0]〉0,L2(Bρ,A). Since the prescribed
monogenic polynomials X±l,m[0] are homogeneous, the assumption f(0) = 0
yields to ã+

0,0[0] = ã+
0,1[0] = ã−0,1[0] = 0. Moreover, since the series (5.2.1)

converges in L2(Bρ), it follows that it converges uniformly to f in each com-
pact subset of Bρ; and also, the series of all partial derivatives converges
uniformly to the corresponding partial derivatives of f in compact subsets
of Bρ. We proceed to apply the hypercomplex derivative of the series (5.2.1)
term-by-term, and subtract the quantity of (1/2)∂f(0). Thus, by (3.1.18),
we have

(1
2∂)f(x)− (1

2∂)f(0)

=
∞∑
l=2

l∑
m=0

(l + 1 +m)
‖X±l,m[0]‖L2(Bρ)

(
ã+
l,m[0]X+

l−1,m[0] + ã−l,m[0]X−l−1,m[0]
)
. (5.2.2)

We consequently apply the primitive operator P of the above series term-by-
term, and by (3.1.22), we see that

P
[
(1
2∂)f(x)− (1

2∂)f(0)
]

=
∞∑
l=2

l∑
m=0

(
ã+
l,m[0]X+

l,m[0] + ã−l,m[0]X−l,m[0]
)

‖X±l,m[0]‖L2(Bρ)
.
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Now, we investigate the relationships between the Fourier coefficients ã±l,m[0]
and the C-norm of “(1/2)∂f(x)−(1/2)∂f(0)”. Multiply both sides of (5.2.2)
by the orthogonal set {X±l−1,m[0] : m = 0, . . . , l; l = 1, 2, . . . } and integrate
over Bρ. It then follows that

ã±l,m[0] = 1
(l + 1 +m)

‖X±l,m[0]‖L2(Bρ)

‖X±l−1,m[0]‖2
L2(Bρ)

×
∫
Bρ

[
(1
2∂)f(x)− (1

2∂)f(0)
]
X±l−1,m[0]dx

for each l ≥ 2 and m = 0, . . . , l.
In view of the relations just made, it is clear that the Fourier coeffi-

cients in (5.2.1) can now be determined from a scalar inner product between
“(1/2)∂f(x)− (1/2)∂f(0)” and each element on the foregoing set, consisting
of 2l + 1 polynomials. Accordingly, using the following pointwise estimates
proved in [240],

|X±l,m[0](x)| ≤ 1
2(l + 1)

√√√√(l + 1 +m)!
(l + 1−m)! |x|

l (5.2.3)

for all l ≥ 0 and m = 0, . . . , l + 1, we then have

|ã±l,m[0]| ≤
√

4πρ3

3
‖X±l,m[0]‖L2(Bρ)

‖X±l−1,m[0]‖L2(Bρ)

× 1
(l + 1 +m)M

(
(1
2∂)f(x)− (1

2∂)f(0); ρ
)
.

It thus appears, from the estimates of the Fourier coefficients obtained so far,
that∣∣∣∣P [(1

2∂)f(x)− (1
2∂)f(0)

]∣∣∣∣ ≤
√

4πρ3

3 M
(

(1
2∂)f(x)− (1

2∂)f(0); ρ
)

×
∞∑
l=2

l∑
m=0

(
|X+

l,m[0]|+ |X−l,m[0]|
)

(l + 1 +m)‖X±l−1,m[0]‖L2(Bρ)
.

Finally, using again (5.2.3), a straightforward computation shows that∣∣∣∣P [(1
2∂)f(x)− (1

2∂)f(0)
]∣∣∣∣

≤
√

2
3ρ

3M
(

(1
2∂)f(x)− (1

2∂)f(0); ρ
) ∞∑
l=2

|x|l√
ρ2l+1

(1 + 2l
√
l + 1)

√
1 + 1

l

≤ 2ρ√
3
M

(
(1
2∂)f(x)− (1

2∂)f(0); ρ
) ∞∑
l=2

(
|x|
ρ

)l
(l + 1)2.
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Thus the lemma is proved.

We proceed further to prove an estimate forM ((1/2)∂f(x)− (1/2)∂f(0); ρ)
in terms of the C-norm of (1/2)∂f(x). The following lemma will then be
established:

Lemma 5.2.2. Let f ∈M2(Bρ). Then∣∣∣∣(1
2∂)f(x)− (1

2∂)f(0)
∣∣∣∣ ≤ 6|x|ρ

(ρ− |x|)2 M
(

(1
2∂)f(x); ρ

)
for all 0 ≤ |x| < ρ.

Proof. By the Cauchy integral formula (1.3.6), it follows that

f(x)− f(0) = 1
4π

∫
∂Bρ

[q(x− y)− q(−y)] n(y)f(y)dσ(y),

where the following inequality holds [145, p. 50]:

|q(x− y)− q(−y)| ≤ |x− y| (|y|2 + |y||x− y|+ 2|x− y|2) |x|
|x− y|3|y|3

.

Thus, we have∣∣∣∣(1
2∂)f(x)− (1

2∂)f(0)
∣∣∣∣

= 1
4π

∣∣∣∣∣
∫
∂Bρ

[q(x− y)− q(−y)] n(y)(1
2∂)f(y)dσ(y)

∣∣∣∣∣
≤ 1

4π

∫
∂Bρ

|x− y| (|y|2 + |y||x− y|+ 2|x− y|2) |x|
|x− y|3|y|3

∣∣∣∣(1
2∂)f(y)

∣∣∣∣ dσ(y)

≤ 1
4π |x|M

(
(1
2∂)f(x); ρ

) [∫
∂Bρ

(
1
ρ

1
|x− y|2

+ 1
ρ2

1
|x− y|

+ 2
ρ3

)]
dσ(y)

≤ |x|
(ρ− |x|)2 M

(
(1
2∂)f(x); ρ

)(
2ρ− |x|+ 2

ρ
(ρ− |x|)2

)

≤ |x|
(ρ− |x|)2 M

(
(1
2∂)f(x); ρ

)(
4ρ+ 2|x|2

ρ
− 5|x|

)

≤ |x|
(ρ− |x|)2 M

(
(1
2∂)f(x); ρ

)
(6ρ− 5|x|)

≤ 6|x|ρ
(ρ− |x|)2 M

(
(1
2∂)f(x); ρ

)
,

which furnishes the required estimate.
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5.2.2 The Bloch Theorem
We shall, in this section, state and prove a quaternionic version of Bloch’s
Theorem. It will be asserted that if f is an A-valued square-integrable and
monogenic function on a region containing the closure of the unit ball in R3

and such that its hypercomplex derivative is normalized to 1 at the origin,
then there is an open subset of the unit ball on which f maps one-to-one
onto some ball of radius at least R. It will be observed that the conclusion
of the theorem holds with R equal to 1/120− (31096

√
3)/20511149 > 1/150.

It will further be seen that the value of R does not depend on the choice of
f . Although the assumption is inherently differential geometric, the proof
techniques remain purely theoretical.

The present will be a convenient opportunity for studying the monotony
of the following real-valued function:

g(r) = r

2 − 8
√

3 r3ρ(4r2 + 9ρ2 − 11rρ)
(ρ− r)5 (5.2.4)

for all r ∈ (0, ρ). It can be easily proved that g is an increasing function near
the point r = 0, and if r approaches ρ then g is decreasing. It follows at once
that g′(ρ/30) > 0 and g′(ρ/20) < 0. It can be seen further that g′′ has only
one real zero and this zero must be positive, which means that g′′(r) < 0 in
(0, ρ). Accordingly, ρ/30 estimates from below the only real zero of g′(r) in
(0, ρ); and thus,

g
(
ρ

30

)
=
( 1

60 −
62192

20511149
√

3
)
ρ

is a lower estimate for the maximum of g in (0, ρ). We have thus obtained
the following lemma:

Lemma 5.2.3. Let g be defined by (5.2.4) for all r ∈ (0, ρ). Then g has only
one maximum in (0, ρ) at r = rmax. Further, g(rmax)>

( 1
60 −

62192
20511149

√
3
)
ρ

and rmax > ρ/30.

The following proposition follows at once from Lemmas 5.2.1, 5.2.2 and
5.2.3:

Proposition 5.2.4. Let f ∈ M2(Bρ) be nonconstant and satisfy the nor-
malization M ((1/2)∂f(x), ρ) ≤ 2|(1/2)∂f(a)| for a ∈ Bρ. Then the image
domain contains a ball of radius

( 1
60 −

62192
20511149

√
3
)
ρ|(1/2)∂f(a)|. (We

note that 1/60− (62192
√

3)/20511149 > 1/75).
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Proof. We may assume for the moment that a = f(a) = 0. The result is
trivial if (1/2)∂f(0) = 0, so it may be assumed that (1/2)∂f(0) 6= 0. By
(3.1.22), we thus have

P
[
(1
2∂)f(x)− (1

2∂)f(0)
]

= f(x)− (1
2∂)f(0)1

2 X+
1,0[0](x)

=: A(x),

where (1/2)∂f(0)(1/2)X+
1,0[0](x) denotes the linear term from the corre-

sponding (left-sided) Taylor series of f . In accordance with Lemmas 5.2.1
and 5.2.2, a simple computation shows that

|A(x)| =
∣∣∣∣P [(1

2∂)f(x)− (1
2∂)f(0)

]∣∣∣∣
≤ 12√

3
|x|3 ρ(4|x|2 + 9ρ2 − 11|x|ρ)

(ρ− |x|)5 M
(

(1
2∂)f(x); ρ

)
. (5.2.5)

Let r ∈ (0, ρ). Since X+
1,0[0](x) = 2x0 + ix1 + jx2, it then follows that∣∣∣∣f(x)− (1

2∂)f(0)1
2 X+

1,0[0](x)
∣∣∣∣ ≥ r

2

∣∣∣∣(1
2∂)f(0)

∣∣∣∣− |f(x)|,

which holds for all x with |x| = r. In accordance with (5.2.5), the assumption
M ((1/2)∂f(x), ρ) ≤ 2 |(1/2)∂f(0)| yields to

|f(x)| ≥
(
r

2 − 8
√

3 r
3ρ (4r2 + 9ρ2 − 11rρ)

(ρ− r)5

) ∣∣∣∣(1
2∂)f(0)

∣∣∣∣ .
By translation of the corresponding Taylor series of f around the origin, we
can extend the above arguments to an arbitrary point a ∈ Bρ. Thus, by
Lemma 5.2.3, we have

|f(x)− f(a)| ≥
( 1

60 −
62192

20511149
√

3
)
ρ

∣∣∣∣(1
2∂)f(a)

∣∣∣∣
for all |x| = ρ/30. The result follows.

The extension of Bloch’s Theorem will now be established:

Theorem 5.2.5. If f ∈ M2(Ω0) is nonconstant, then its image domain
contains a ball of radius( 1

120 −
31096

20511149
√

3
)
M

(∣∣∣∣(1
2∂)f(x)

∣∣∣∣ (1− |x|) ; 1
)
>

1
150

∣∣∣∣(1
2∂)f(0)

∣∣∣∣ .
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Proof. To every f inM2(Ω0), we assign the function |(1/2)∂f(x)|(1− |x|),
which is continuous on Ω0. It assumes its maximum at a point y ∈ Ω0. With
t := (1− |y|)/2, we have

M
(∣∣∣∣(1

2∂)f(x)
∣∣∣∣ (1− |x|), 1) = 2t

∣∣∣∣(1
2∂)f(y)

∣∣∣∣
for Bt(y) ⊂ Ω0. We have also 1 − |x| ≥ t for x ∈ Bt(y). Next, from
|(1/2)∂f(x)|(1− |x|) ≤ 2t|(1/2)∂f(y)| we then deduce that |(1/2)∂f(x)| ≤
2|(1/2)∂f(y)| for all x ∈ Bt(y). Thus, by Proposition 5.2.4, we see that the
image domain of f contains a ball about f(y) of radius

R =
( 1

60 −
62192

20511149
√

3
)
t|(1/2)∂f(y)|.

The quaternionic version of Bloch’s Theorem is further contained in the
following:

Theorem 5.2.6. Let f ∈ M2(Ω0) be nonconstant and satisfy the normal-
ization |(1/2)∂)f(0)| = 1. Then the image domain contains a ball of radius
1/120− (31096

√
3)/20511149 > 1/150.

Further, it remains to investigate the best possible value of the Bohr
radius for which Bloch’s Theorem still holds.
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6

Conclusions and Suggestions
for Further Study

In the present thesis, a quaternionic function theory related to spheroidal
functions was developed in two separate contexts. In the first part, dis-
tinct orthogonal bases were constructed for the spaces of harmonic, mono-
genic, and contragenic functions defined in spheroids, particularly prolates
and oblates. For spheroidal domains of arbitrary eccentricity, formulas that
relate systems of harmonic, monogenic, and contragenic functions from one
domain to another were described. Correspondingly, it was shown that there
are common contragenic functions for spheroids of any eccentricity. Various
applications associated with the prescribed spheroidal harmonics and mono-
genics are possible due to their unique structure combined with explicit se-
ries representations of the hypercomplex derivative and primitive of a mono-
genic function. In one of these applications, two constructive approaches
were discussed to generate monogenic functions via harmonic conjugates.
Another application focused on the generalization of Bloch’s Theorem for
monogenic functions defined in the unit ball of the three-dimensional Eu-
clidean space. In the second part of the thesis, a space-frequency theory for
band-limited quaternionic functions was developed, which runs parallel to
the time-frequency analysis of band-limited functions produced by Slepian,
Landau, and Pollak.

As a result of this study, some interesting but unresolved questions arose
and are discussed in the following. As future work, besides applying our re-
sults to concrete boundary value problems, we intend to use the constructed
bases for the study of convex and starlike univalent monogenic functions and
their geometrical properties. In general, it is still an open problem of de-
scribing monogenic functions via their global geometric mapping properties.
It is still unknown which domains can be mapped to a ball (or spheroid)
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and which domains can be the image of such simple domains. Interest in
questions of this type has increased in connection with constructing a theory
of monogenic mappings. A first global result was considered by Almeida et
al. in [18], in which the authors studied the global behavior of a generalized
Joukowski transformation in the context of Clifford analysis (cf. [82]). It
is hoped that the explicit expressions we found for the internal and exter-
nal spheroidal monogenics may shed light on these problems. It would also
be interesting to know whether the results of Chapter 4 could be extended
to more general integral transforms, such as the Quaternion Linear Canon-
ical Transform [184, 186] and the Windowed Quaternion Fourier Transform
[224, 223]. To the best of our knowledge, no one has discussed this sort of
question until now, even though they seem to pave the way to promising
future work.
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norm, 28
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INDEX 255

operator norm, 35
orthogonal, 33
orthogonal Appell basis, 107
orthogonal basis, 35
orthogonal projection, 37, 154
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quaternion, 27
quaternion conjugate, 27
quaternion exponential function,

28
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Transform, 56
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quaternionic Hilbert space, 33
quaternionic Hilbert-Schmidt

operator, 157
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polynomials, 193

radial coordinate, 65
radial function, 65
radial prolate spheroidal equation,
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functions, 51
reduced quaternion-valued

function, 30
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reproducing kernel, 151
Reproducing Kernel Quaternion

Hilbert Space, 36
Riemann-Lebesgue, 59
Riesz system, 40

scalar inner product, 33
scalar part, 27
self-adjoint, 37
self-adjoint operator, 158
Shannon number, 53
Slepian frequency, 54, 163
space-bandwidth product, 160,
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space-limited function, 150
space-limiting operator, 150
space-variables, 58
spatial-domain, 149
Spectral Theorem, 160
spherically symmetric, 60
surface spherical harmonics, 120
symmetric kernel, 158

the band-limited quaternionic
signal extrapolation, 174

The Fourier expansion of a
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monogenic function
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the left-sided quaternionic Slepian
series, 172

The Prolate spheroidal wave
functions, 49



256 INDEX

the right-sided Quaternion Fourier
Transform, 58

the scalar Helmholtz equation, 49
the skew-field of quaternions, 28
The Spectral Theorem, 38
Tonelli-Hobson Theorem, 154, 177
total energy, 61
two-sided monogenic function, 40

Uncertainty principle of Donoho
and Stark, 160

unit quaternion, 28
universal contragenic functions,
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vector part, 27

Zernike circle polynomials, 192
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