
Journal of Scientific & Industrial Research

Vol. 82, January 2023, pp. 142-150

DOI: 10.56042/jsir.v82i1.69938

DeeR-Hash: A lightweight hash construction for Industry 4.0 / IoT

Deena Nath Gupta* & Rajendra Kumar

Jamia Millia Islamia, New Delhi, Delhi 110 025, India

Received 2 August 2022; revised 18 September 2022; accepted 06 October 2022

Industry 4.0 and IoT are emerging computing environments for low energy devices. Implementing complex security

mechanisms in such environment is challenging. A lightweight and energy aware hashing provides high security to the

devices under these environments. Earlier hash algorithms such as SHA and MD5 were very complex and hence are not

suitable for the energy constrained devices. Similar hashing algorithm is needed for low energy devices as well. The authors

proposed a sponge based hashing algorithm that is capable of providing a security up to second preimage attack to the

devices communicating under such constrained environments. The methodology of the proposed design is derived from

some existing lightweight hash constructions such as Photon, Quark, Gluon, and Spongent. The steps in the algorithm of

DeeR-Hash include the steps for DeeRSponge and DeeRStateUpdate as well. To construct the sponge for the proposed

hashing, the authors had taken the value of b, r, and c as 80, 2, and 78 respectively. After implementing the algorithm in a

tag-reader scenario, the authors find that it is taking only 483 GE for 80-bits digest and is suitable for a lightweight

cryptographic environment. The avalanche effect produced by the proposed algorithm further strengthens the security claim
of the authors. Comparing other related work in this area, the authors claim that the required area in ASIC in lowest.

Keywords: Collision resistance, Cryptography, Energy aware, Lightweight, Security

Introduction

The main focus of Industry 4.0 / IoT is to provide a

secure computing environment for the resource

constrained devices in a lightweight fashion. This

includes a small registration mechanism, a low energy

mutual authentication, and a lightweight encryption

scheme. Apart from all these, storage capacity and

transmission range are also the driving factors of

Industry 4.0/IoT. The scope of this article is restricted

to lightweight encryption scheme only. A lightweight

encryption scheme can be a block or stream

cipher mechanism. The computer science research

community is blessed with a lot of work in this field

from many researchers from all over the globe. Some

of the well-known lightweight ciphers are GRAIN,

TRIVIUM, PRESENT, HIGH, HUMMINGBIRD,

BEAN, CLEFIA, KATAN, and KTANTAN.
1–6

Although the above-mentioned ciphers are meant

for constrained environment, they don‘t fully satisfy

the requirements of Industry 4.0/IoT. There are many

devices in Industry 4.0 /IoT those hardly get a power

source to recharge themselves. This means that they

have to manage their whole life with the stored

battery power only. Keeping this constraint in mind,

the research community decides to design the security

mechanisms including only the operations those

required very less amount of computation power. For

this purpose, two methodologies are commonly used.

One is Pseudo Random Number Generator (PRNG)

and the other is Sponge based Hash Construction.
7,8

The common approach used in both of the methods is

shift operation. Because of the fact that the shift

operation works with lowest computing power

requirement, the above mentioned two methods are

suitable for Industry 4.0/IoT upon satisfying the

lightweight requirements of the environment.

The development of PRNG and sponge based hash

construction is somewhat similar. In this article, the

authors are mainly focusing the development of sponge

based hash constructions. Hashing is a very old

methodology for securing the messages. It takes the bits

from input message to perform a specific operation.

After completing its operation with all the input bits, it

produces a digest as output. This digest, known as

message digest or hash value, is a fixed-size value for

any size of input message bits. The sponge construction

serves the purpose very effectively. A sponge

construction is subdivided into two parts, the first one is

absorbing phase and the second is squeezing phase.
9

The absorbing phase is responsible for

implementing a strong confusion mechanism. Unlike

——————

*Author for Correspondence

E-mail: prof.dev.cse@gmail.com

GUPTA & KUMAR: SPONGE BASED SECOND PREIMAGE RESISTANT HASHING

143

the older hash techniques those uses S-boxes, the

sponge construction works only with shift and XOR

operations. Different hash constructions use different

combinations of shift registers for their update

process. Two types of shift registers are in use, one is

Linear Feedback Shift Registers (LFSR) and the

second one is Non-Linear Feedback Shift Registers

(NLFSR). The output from a LFSR can be guessed

easily. The same is not true for a NLFSR. Also, a

LFSR can work with low power, whereas the NLFSR

needs more computing power.
10

 Keeping both the

factors in mind, the researchers started using a mix of

both the flavors.

Another important factor of using a sponge

construction is the security against preimage and

collisions. The width of a sponge state ‗b‘ is

subdivided into two parts; one is the rate ‗r‘ and

second is the capacity ‗c‘. Where the capacity should

be smaller than the size of hash value and the rate

should be as small as possible. The collision

resistance of a sponge construction under the flat

sponge claim is 2
min(cp,n)/2

, the (second) preimage

resistance is 2
min(cp/2,n)

.The main attraction of a sponge

construction over the Merkle-Damgard construction is

its resistance over the second preimage attack.

Related Work

The authors studied several well-known sponge-

based hash designs. The most popular among them

are Photon, Quark, Gluon, Spongent, and Hash-

One.
6,11–13

 Photon is hardware oriented lightweight

hash design based on sponge construction. Its internal

state is presented as a matrix whose inputs are either

4-bits or 8-bits. Photon uses a fix key for permutation

likewise in AES. The 12 steps of Photon include

AddConstant, SubCells, ShiftRows, and AES like

MixColoumSerial. The five variants of Photon are

PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-

160/36/36, PHOTON-224/32/32, and PHOTON-

256/32/32.

Quark is a lightweight hash design mainly based on

the functionality of Grain and Katan. Three versions

of Quark are proposed namely, U-Quark, S-Quark,

and D-Quark. The lightest of them are U-Quark.

Quark updates its internal state 4b times with the help

of two NFSR and one LFSR. One linear Boolean

function is used to update the LFSR while three non-

Boolean functions are used to update the NFSR. Apart

from all these, one non-Boolean function is used to

update both the NFSR simultaneously. The design of

Gluon is based on two stream ciphers F-FCSR-v3 and

X-FCSR-v2.
(14)

 A world ring FCSR based on a main

shift register and a carry register is used in the design

of Gluon. The three variants of Gluon are

Gluon-128/8, Gluon 160/16 and Gluon 224/32.

Spongent is based on PRESENT like permutation.

Five variants of Spongent have been proposed

namely, SPONGENT-88/88/40, SPONGENT-

128/128/64, SPONGENT-160/160/80, SPONGENT-

224/224/112, and SPONGENT-256/256/128.

The Hash-One claim to operate with lowest Gate

Equivalent (GE) among the above mentioned

lightweight sponge based hash constructions. The

authors studied the methodology used in Hash-One

and found some serious security flaws in it. Although

the Hash-One claims to be the lightest one yet it is not

suitable to be used in the applications those needs

high security, for example, life critical healthcare IoT

and real time industrial IoT. Some of the raised issues

from the Hash-One are as follows:

1. What if someone manage to know the initial

entries in S? The entries of P and Q will be known.

2. If someone knows the array positions of P and Q

those are used in function then the values of Pf, Qf,

and Lf will be calculated easily so that the values

of T1 and T2.

3. If someone knows the steps involved in the

algorithm, he/she can easily hash his/her own

message. This message might be used to initiate

the communication with the internal node/device.

4. The 324 times state update for first and last

message bits and 162 times state update for all

other internal bits will take a lots of computation

power and hence this is not suitable for the energy

constrained devices.

To make up these shortfalls, the authors proposed a

new hash design named DeeR-Hash. DeeR-Hash is

lightweight yet highly secure hash algorithm to be

used in cryptographic applications under Industry

4.0/IoT. DeeR-Hash is fast enough to be used in real

time industrial applications as well as highly secured

to be used in life critical healthcare applications. The

name DeeR-Hash comes from the initials of its

inventers Deena Nath Gupta and Rajendra Kumar.

Methodology
In this section, the authors will describe everything

about scheme, methodology and architecture of the

proposed hash construction. There will be total nine

random selections in sender side. The receiver uses

these values to compute hash over the same value. For

example, suppose a Tag is having the ID of Reader at

J SCI IND RES VOL 82 JANUARY 2023

144

the time of registration. When it comes into the

periphery of a Reader, the Reader will give its Hashed

ID to Tag along with other credentials. The Tag will

use these credentials over the Reader‘s ID it is already

having. If the computed hash value at Tag side will

match the Hashed ID given by Reader, then only the

verification will be successful.

Scheme

The proposed design is based on the fact that

security is the utmost priority of Industry 4.0/IoT. The

lower area requirement is welcomed but not at the

cost of security. For the same, it is worth to notice that

randomization is a proven concept of uncertainty.

Keeping this in mind, the authors proposed their

scheme for DeeR-Hash. The authors first take a set of

eight well-known mathematical constants. One will be

taken randomly for one complete hashing process. A

list containing eight mathematical constants is shown

in Table 1 for reference.

The binary equivalent (up to 80-bits) of the chosen

mathematical constant will be placed in an array,

authors named it D here. This array will be

subdivided into two arrays E and F of 40-bits each.

The first 40-bits of D will be placed as it is into E and

the remaining 40-bits will be placed into F. Again,

four random selections will be performed on each of

the arrays E and F. This will result in four array

positions from E as well as from F. Suppose,

V1,V2,V3, and V4 are the randomly selected array

positions from E and U1, U2, U3, and U4 are the

randomly selected array positions from F. These

selections will be effective for one complete hashing

process only.

After successfully running of the entire algorithm,

the sender will have packet containing following

items:

1. The 8-bit binary equivalent of chosen number of

Mathematical Constant (MC) from the list.

2. A total of 64-bits (32-bits for E and 32-bits for F)

related to selected array positions. Each position

number will be converted to its 8-bit binary

equivalent.

3. The computed hash value H of 80-bits length.

The packet send to receiver will look like:

[MC (8-bits) || V1V2V3V4U1U2U3U4 (64-bits) || H

(80-bits)]

The receiver of the packet will use first 8-bits to

identify the mathematical constant used in the hashing

process. Next 64-bits will give the details about array

positions those are used to calculate the values of Ef

and Ff. Remaining 80-bits will be used to match the

computed hash value.

Proposed Method

The design of DeeR-Hash is highly motivated from

the well-known lightweight hash design Hash-One.

Although the authors followed the working style of

Hash-One, they included their own security

mechanism at each desired level. Also, the number of

state update is reduced to significant amount of time

in DeeR-Hash to make it suitable for low energy

devices. The design of DeeR-Hash follows the true

definition of a sponge construction, i.e. variable

length input and arbitrary length output. The

algorithm to construct DeeR-Hash is given here for

easiness in understanding.

Algorithm: DeeR-Hash

Step1- Select one constant randomly from the

given list of eight mathematical constants

Step2- Randomly choose four positions from array

E[40] and four positions from array F[40]

Step3- Call DeeRSponge

Step4- Send the packet to receiver

Algorithm: DeeRSponge

Initialization Phase:

Step1- Make the length of message multiple of r

(=2), do padding of one bit if required

Absorbing Phase:

Step2- Perform XOR of M1 with D39 and M2 with

D79 and store the resultant at D39 and D79 respectively

Step3- Increment M by 2 and call

Table 1 — Mathematical constants used for initialization

Sr. No. Name Value

1 Archimedes' constant π 3.14159 26535 89793 23846 26433 83279 50288

2 Euler's number e 2.71828 18284 59045 23536 02874 71352 66249

3 Pythagoras' constant √2 1.41421 35623 73095 04880 16887 24209 69807

4 Theodorus' constant √3 1.73205 08075 68877 29352 74463 41505 87236

5 The Euler–Mascheroni constant γ 0.57721 56649 01532 86060 65120 90082 40243

6 The Feigenbaum constants δ 4.66920 16091 02990 67185 32038 20466 20161

7 Apéry's constant ζ(3) 1.20205 69031 59594 28539 97381 61511 44999

8 The golden ratio φ 1.61803 39887 49894 84820 45868 34365 63811

GUPTA & KUMAR: SPONGE BASED SECOND PREIMAGE RESISTANT HASHING

145

DeeRStateUpdate

Step4- Repeat Step2 with incremented values of M

Step5- Repeat Step3 and Step4 till Message length

Squeezing Phase:

Step7- Do h[1]S79

Step8- Increment M by 1 (k=2 to 80)

Step9- Call DeeRStateUpdate

Step10- Do h[k]S79

Step11- Concatenate H=h[1]||h[2]||h[3]||----||h[80]

Algorithm: DeeRStateUpdate

Step1- Convert the value of MC in its binary (take

first 80 bits)

Step2- Make an array D of size 80 with the values

from Step1

Step3- Make two arrays E and F of sizes 40 and 40

respectively

Step4- Calculate Ef by using the following

function:

 Ef(V1,V2,U3,V4) =

(V1V2⊕V1V4⊕V2U3⊕U3V4⊕U3⊕V4)⊕1

Step5- Calculate Ff by using the following

function:

 Ff(U1,U2,V3,U4) =

(U2V3⊕U2U4⊕U1V3⊕U1U4⊕U2⊕U4)

Step6- Calculate Lf by using the following

function:

 Lf(V1,U1,V25) = (V1⊕U1⊕V25)

Step7-Calculate the value of T1 and T2 as follows:

 T1 = Ef⊕Lf

 T2 = Ff⊕Lf

Step8- Update the array E. Pop the leftmost bit,

shift all the bits to one position left, and insert T1 at

the rightmost bit position. Similarly update the array F

by inserting T2 at the rightmost bit position

Step9- Update S by concatenating the updated E

and F

The variables T1 and T2 are generated from the

state update process. During the absorption phase the

values of T1 and T2 will be updated using linear and

non-linear shift registers. This update will take place

exactly half of the message length times, i.e. [Length

of Message/2] to produce a high level of confusion.

On the other hand, in the squeezing phase, the values

of T1 and T2 will be updated for complete hash

length times to produce the proper diffusion.

Architecture

DeeR-Hash is a sponge based lightweight hash

design. The algorithm named DeeRSponge illustrates

the complete process right from the initialization till

the squeezing phase through absorbing phase. The r

value taken here is 2. Hence, in the initialization

phase, padding is required (if necessary) to make the

length of massage a multiple of 2. The total width of a

sponge state taken here is b = 80-bits subdivided into

rate r = 2-bits and capacity c = 78-bits. This will

provide a hash value of n=80-bits satisfying the basic

formula of the sponge function [b = (r + c) ≥ n]. The

proposed construction for sponge based hash design

DeeRSponge is illustrated in Fig. 1.

The 39
th
 bit and 79

th
 bit of array D is taken out to

be the two values of r. The value at these array

positions will be XORed with the initial two bits of

message. The resultant is stored at the same array

position, 39 and 79. The state update procedure

will be called and next two message bits will be

XORed with the new values at the array position

39 and 79. This process will be repeated till the end of

all message bits. This complete process ensures the

mixing of all message bits with the state bits in

absorbing phase. In the squeezing phase, the value at

position 79 of array D will be returned as it is for

h1. The state update procedure will be called. Again,

the changed last bit of array D will be return for h2.

This process will continues till the size of state

bit, here it is 80. After a complete process of

DeeRSponge, the mechanism will produce a hash

of size 80-bits for the input message of any

size.

Fig. 1 — Proposed DeeRSponge construction

J SCI IND RES VOL 82 JANUARY 2023

146

The update function is a combination of two non-
linear update functions along with one linear update
function. Here, the non-linear update function works
with four variables while the linear update function
works with only three variables. The randomly chosen

array positions will act like the inputs for the non-
linear update functions. Suppose that the array
positions chosen from array E are V1, V2, V3, and V4,
and the array positions chosen from array F are U1,
U2, U3, and U4. The formula for updating the non-
linear functions will look like:

Calculate Ef by using the following function:

Ef (V1,V2,U3,V4) =

(V1V2⊕V1V4⊕V2U3⊕U3V4⊕U3⊕V4)⊕1

Calculate Ff by using the following function:

Ff (U1,U2,V3,U4) =

(U2V3⊕U2U4⊕U1V3⊕U1U4⊕U2⊕U4)

After calculating the values for non-linear update

functions, the linear update function will be calculated

by using the second value of both the arrays along

with the 25
th
 value of array E. The formula for

updating the linear function will look like:

Calculate Lf by using the following function:

Lf (V1,U1,V25) = (V1⊕U1⊕V25)

These calculated values of Ef, Ff, and Lf will be

used to calculate the values of temporarily variables

T1, and T2. The formula for calculating the values of

T1, and T2 will look like:

Calculate the value of T1 and T2 as follows:

T1 = Ef⊕Lf

T2 = Ff⊕Lf

The value of T1 and T2 will then be inserted at the
last array positions of array E and array F
respectively. All the values will be shifted one bit left

and the left most value will be removed from the
arrays. This whole process will produce an updated
array D of 80-bits. This update will be performed
before each computation. The same update procedure
will be followed for absorption as well as squeezing
phase.

Results and Discussion

The authors analyze the proposed design for the

hardware and the software implementation both. The

lightweight criteria for a hash design appropriate to be

used in Industry 4.0 / IoT is taken care of along with

the less complex nature of algorithm as required for a

low energy device.
15–17

The proposed design choses

shift registers for confusion and diffusion because

of the fact that the shift operations take lowest power

for execution. On the contrary, substitution and

permutation boxes are not only complex but also need

lots of power to run. The shift registers can be seen as

unsecured linear computing model. For this, the

authors use two NLFSRs along with one LFSR.

NLFSRs work with four variables whose positions are

randomly chosen and the LFSR works with three

variables from selected fixed positions. Two different

arrays are used in this process. The selections are

made from both the arrays.

For the constrained devices, almost all the

applications uses Area Specific Integrated Circuits
(ASIC) rather than microcontrollers because the
ASICs are very much cheaper (180 nm) than
programmed microcontrollers. The usual
measurement for area is µm

2
 but the comparisons are

done on the basis of Gate Equivalent (GE) used

because of the fact that earlier depends on some
inherent properties of circuits such as fabrication and
others. The two-input NAND gate with lowest driving
strength of the corresponding technology turns out to
be equivalent to one GE. Here, we will see the area
requirements for different elements used in our

design.
5

The design consists of selecting one element
randomly from a list of eight elements. This could be
achieved by using an ―8 × 1‖ multiplexer. For the
random selection of four different elements from an
array of 40 elements, the authors divided the array

into five equal parts of 8 elements and then leaving
the middle partition as it is. The authors select one
element from remaining four partitions by
implementing four ―8×1‖ multiplexers. This will give
first array position from 0 to 7, second from 8 to 15,
third from 24 to 31 and fourth from 32 to 39. Two

similar arrangements will be needed for both the
arrays E and F. It results into a total of three ―8 × 1‖
multiplexers. The area requirement for implementing
one ―8×1‖ multiplexer is 26 GE. Hence,
implementing three 8 × 1 multiplexer will need 78 GE
in total. The logic circuits used in different

constructions are shown in Fig. 2.
The shift registers is made up of flip-flops. The

design of DeeR-Hash used D flip-flops. The area

requirement for a D flip-flop is 5 GE. Hence, the total

area required by an 80-bit shift register would be 80 ×

5 = 400 GE approximately. The state update process

merges two arrays into one to get the desired array

positions for XOR operation. For this, the design uses

a 2 × 1 multiplexer. The area requirement for a 2 × 1

multiplexer is 4 GE. An XOR operation require 4 GE,

in this design two XOR operations are needed

GUPTA & KUMAR: SPONGE BASED SECOND PREIMAGE RESISTANT HASHING

147

simultaneously for XORing message bits with T1 and

T2, hence it needs 8 GE for XOR operations. The

linear function performs two XOR operations; hence

8 GE will be used by this.

Also, two non-linear functions are using AND &

XOR operations for their calculation. The calculated

area requirement for each of the non-linear functions

is 13 GE. Hence, two non-linear update will take 26

GE. The total sum for the complete operation will be

(400 + 4 + 8 + 8 + 26 =) 405 GE. Adding this with

the total gate requirement of multiplexers (78 GE), the

overall total will come to be 483 GE only. For a 160-

bit hashing, the proposed mechanism will require

(800 + 4 + 8 + 8 + 26 + 26 + 112 =) 984 GE. This

area requirement is the lowest till date. The values

showing the comparison of GE used by different well-

known lightweight hash designs are given in Table 2.

Analysis of the Update Function

Randomization is a proven solution for uncertainty.

Uncertainty brings yet another level of security to the

cryptographic algorithms. This is said that, an

algorithm is suitable to be used in any cryptographic

application only when even the makers don‘t know

Fig. 2 — Different logic circuit used in DeeR-Hash: (a) A 4 × 1 multiplexer using 2 input NAND gates only, (b) A 2 × 1 multiplexer

using 2 input NAND gates only, (c) An 8 × 1 multiplexer using two 4 × 1 and one 2 × 1 multiplexer, (d) A D flip-flop using 2 input

NAND gates only

Table 2 — Hardware performance of DeeR-Hash against other available counterparts

Hash function N c r Preimage Collision Second

Preimage

Process

(µm)

Area

(GE)

Cycle

DeeR-Hash 160 158 2 158 79 79 0.18 984 1

Hash-One 160 160 1 160 80 80 0.18 1006 324/162

SPONGENT 176 160 16 144 80 80 0.13 1329 3960

D-QUARK 176 160 16 160 80 80 0.13 2190 90

PHOTON 160 160 36 124 80 80 0.18 1396 1332

Gluon 160 160 16 160 80 80 0.18 2799 50

J SCI IND RES VOL 82 JANUARY 2023

148

about the next move. Once deployed, the algorithm

should not be predictable in any circumstances. Keeping

this in mind, the authors used a list of eight

mathematical constants randomly to choose one for a

specific operation. This protects the initial value of the

80-bit D array to be known by anyone. Similarly, the

values of 40-bit E and 40-bit F arrays will be unknown.

The random selection of array positions to get the

input for update function Ef and Ff will provide

another level of randomization. This protects the

inputs of the functions to be known unlike in Hash-

One where the makers know the exact inputs of the

function. If the adversary knows the inputs of a

function, he/she can easily predict the outputs well in

advance. In DeeR-Hash no one knows the inputs to be

taken for update functions till the process begins the

randomization. Also, these chosen values will be

effective for one operation only.

The temporarily variables are calculated from

XORing the outputs of NFSRs with the output of

LFSR. This will ensure the proper mixing of input

bits with state bits. The chosen combination of shift

registers will provide adequate security with low

power consumption. Two input bits are taken at a

time for this XOR operation. This will help reduce the

operation by half the times of message length, again

requiring almost half of required energy. Also, the

update function will run after each absorbing and

squeezing phase to produce a high quality of

confusion and diffusion.

Computed hash and their hex equivalent for different

input messages are presented in Table 3. It can be seen

that first six inputs are slightly differing while other four

are of variable lengths. One can clearly see that DeeR-

Hash produces fix length hash on variable length input

sizes. Also, there is an avalanche effect on the produced

hash values, i.e. almost all the values got changed on a

slight change in input messages.

Security Analysis

The resistance of the proposed model from the

preimage, collision, and second preimage attacks are

already discussed in the introduction part of Bertoni

et al.
9
 As the design follows the sponge based criteria,

the DeeR-Hash gets all the benefits related to security

from the sponge only. In this section, the authors will

discuss about other security requirements of the

update function.

Cube Attack

The update function of DeeR-Hash works with two

NLFSR and one LFSR. The XOR operation between

an NLFSR and a LFSR gives it a similar processing

as in a Galois FCSR (Feedback with Carry Shift

Registers). Cube attackers attack the functions with

weak algebraic structure. High degree components are

used to make a Galois FCSR and hence its algebraic

structure is so strong that a cube attacker has no

impact on the update functions. Hence, the authors

can conclude that the DeeR-Hash is protected with the

cube attacks.

Table 3 — Computed Hash and their hex equivalent

Sr.

No.

Input Massage Computed Hash Hex Equivalent

1 Deena Nath 0001110011010001101001110001001111000101000000010000011010010011100010

0010010111

1CD1A713C50106938897

2 deena Nath 1001011110011111100011011001011011011011001110110100100100110111100000

0001001011

979F8D96DB3B4937804B

3 deenanath 0011110010111011110001010000110001111001100110001101001001001001011000

1001000110

3CBBC50C7998D2496246

4 dEenanath 1011100100011001111101010011110010111100111010101110100001000011101111

1001000100

B919F53CBCEAE843BE44

5 deEnanath 0111100110101110110101101001111011110111100010000000011100001101010100
1010000100

79AED69EF788070D5284

6 deeNanath 1110010110101011010000010100011001110100011100000001111000110011010111

0001011011

E5AB414674701E335C5B

7 Deena 0010110000110000110000001101101000100000111011110111010101010111010100

1010111011

2C30C0DA20EF755752BB

8 Deena Nath

Gupta

0001101111010011111111100111000110010101001010100001110100111011000010

1101011101

1BD3FE71952A1D3B0B5D

9 Chandra 1111101000011110011111100010111011101001101101001110001110111101101101

1001111000

FA1E7E2EE9B4E3BDB678

10 Rajendra 0101001110111001010111110000011111001100010111001010010001001000100011

1101101111

53B95F07CC5CA4488F6F

GUPTA & KUMAR: SPONGE BASED SECOND PREIMAGE RESISTANT HASHING

149

The Hell and Johansson Attack

The feedback values T1 and T2 are generated by

using four randomly chosen values (three from one

sub array and one from other sub array) putting in a

non-linear function and performing XOR with its

output to the output of a linear function that works on

three different values (two from one sub array and one

from other sub array). These feedback bits will not

affect the next round as the inputs for the next round

will be independent from these values. Hence, the

Hell and Johansson attack will not be effective.

Differential Attack

The two specific X points on the graph of an

FCSR, the all-zero point turned into itself and the all-

one point turned into it, could be used to create slide

distinguishers.Due to the way the sponge construction

creates its internal states, the all-one point for f could

not be attained when employed inside the sponge

construction. However, if a specific start value is not

assigned to a specific word of the FCSR's main

register, the all-zero point for f may be reached. That

is why the authors used eight different mathematical

constants to randomly initialize the 80-bit array used

in the construction of DeeR-Hash.

Conclusions

The proposed instance of DeeR-Hash is an 80-bit

digest. It works on an estimated 483 GE only, which

is lowest till date. For the comparison purpose, the

area requirement for a 160-bit instance is also given.

The 160-bit digest of DeeR-Hash required an

estimated 984 GE only, again lowest among its

counterparts. The proposed hash construction is a

lightweight hash design based on the sponge

construction that fulfills all security requirements and

energy requirements of Industry 4.0 / IoT. Hence, the

authors can conclude that the proposed instance of the

lightweight hash design DeeR-Hash is suitable to be

used in the lightweight cryptographic algorithms.

Scholars can choose different mathematical

constants to seed the initial arrays. The authors

presented a method that selects four out of five

available sub arrays; the scholars can make their own

method of selecting array positions. Also, the

mathematics proposed by authors can be framed

differently. Scholars can check other equations those

might produce better results. The packet formation to

be sent to receiver end may also be reconfigured. This

will also add on the security of the whole hashing

process. The authors fixed the value for rate as 2;

other scholars may choose different values like 4 or

any other even number and can check for the

differences in output.

References
1 Ågren M, Hell M, Johansson T & Meier W, Grain-128a: a

new version of Grain-128 with optional authentication,

Int J Wirel Mob Comput, 5(1) (2011) 48, https://doi.org/

10.1504/ijwmc.2011.044106.

2 Chakraborti A, Chattopadhyay A, Hassan M & Nandi M,

TriviA and uTriviA: two fast and secure authenticated

encryption schemes, J Cryptogr Eng, 8(1) (2018) 29–48,

https://doi.org/10.1007/s13389-016-0137-2.

3 Duan X, Cui Q, Wang S, Fang H & She G, Differential

power analysis attack and efficient countermeasures on

PRESENT, Proc 8th IEEE Int Conf Commun Soft

Netw (IEEE) (2016), 8–12, https://doi.org/10.1109/ICCSN.

2016.7586627.

4 Engels D, Saarinen M J O, Schweitzer P & Smith E M, The

hummingbird-2 lightweight authenticated encryption

algorithm', in Int workshop on radio frequency identification:

Security and privacy issues (Springer-Verlag Berlin

Heidelberg) 2012, 19–31. https://doi.org/10.1007/978-3-642-

25286-0_2.

5 Saravanan P, Rani S S, Rekha S S & Jatana H S, An Efficient

ASIC Implementation of CLEFIA Encryption/Decryption

Algorithm with Novel S-Box Architectures, 2019 IEEE 1st

Int Conf Energy Syst Inf Process, (IEEE) (Chennai, India)

2019, 1–6,

https://doi.org/10.1109/ICESIP46348.2019.8938329.

6 Aumasson J P, Henzen L, Meier W & Naya-Plasencia M,

Quark: A lightweight hash, J Cryptol, 26(2) (2013) 313–339,

https://doi.org/10.1007/s00145-012-9125-6.

7 Gupta A, Srivastava A, Anand R & Tomažič T, Business

application analytics and the internet of things: The

connecting link, in Transforming the Internet through

Machine Learning, IoT, and Trust Modeling, edited by G

Shrivastava, S-L Peng, H Bansal, K Sharma & M Sharma,

(New Age Analytics, Apple Academic Press) 2020, 249–273,

https://doi.org/10.1201/9781003007210.

8 Gupta A, Asad A, Meena L & Anand R, IoT and RFID-based

smart card system integrated with health care, electricity,

QR and banking sectors, in Artificial Intelligence on Medical

Data, Lecture Notes in Computational Vision and

Biomechanics, edited by M Gupta, S Ghatak, A Gupta & A L

Mukherjeem, vol 37 (Springer, Singapore) 2023, 253–265,

https://doi.org/10.1007/978-981-19-0151-5_22

9 Bertoni G, Daemen J, Peeters M & Assche G V, Sponge

Functions, ECRYPT Hash Workshop (May 2007, Barcelona,

Spain) (9) 2007, 1–22.

10 Peinado A & Fúster-Sabater A, Generation of pseudorandom

binary sequences by means of linear feedback shift registers

(LFSRs) with dynamic feedback, Math Comput Model,

57(11-12) (2013) 2596–2604.

11 Guo J, Peyrin T & Poschmann A, The PHOTON family of

lightweight hash functions, Lect Notes Comput Sci, 6841

(2011) 222–239, https://doi.org/10.1007/978-3-642-22792-

9_13.

12 Berger T P, D‘Hayer J, Marquet K, Minier M & Thomas G,

The GLUON family: A lightweight hash function family

https://doi.org/10.1007/s13389-016-0137-2
https://doi.org/10.1007/978-3-642-25286-0_2
https://doi.org/10.1007/978-3-642-25286-0_2
https://doi.org/10.1109/ICESIP46348.2019.8938329
https://doi.org/10.1007/s00145-012-9125-6
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-22792-9_13

J SCI IND RES VOL 82 JANUARY 2023

150

based on fcsrs, in Progress in Cryptology - AFRICACRYPT

2012, AFRICACRYPT 2012, Lecture Notes in Computer

Science, vol 7374, edited by A Mitrokotsa & S Vaudenay,

(Springer, Berlin, Heidelberg) 2012, 306–323, https://

doi.org/10.1007/978-3-642-31410-0_19.

13 Manayankath S, Srinivasan C, Sethumadhavan M &

Megha M P, Hash-One: a lightweight cryptographic

hash function, IET Inf Secur, 10(5) (2016) 225–231,

https://doi.org/10.1049/iet-ifs.2015.0385.

14 Arnault F, Berger T P, Lauradoux C & Minier M, X-FCSR -

A new software-oriented stream cipher based upon

FCSRs, in Progress in Cryptology – INDOCRYPT 2007,

INDOCRYPT 2007, Lecture Notes in Computer Science, vol

4859, edited by K Srinathan, C P Rangan & M Yung

(Springer, Berlin, Heidelberg) 2007, 341–350, https://

doi.org/10.1007/978-3-540-77026-8_26.

15 Anand R, Sinha A, Bhardwaj A & Sreeraj A, Flawed security

of social network of things, in Handbook of Research on

Network Forensics and Analysis Techniques edited by G

Shrivastava, P Kumar, B B Gupta, S Bala & N Dey (IGI

Global) 2018, 65–86, https://doi.org/10.4018/978-1-5225-

4100-4.ch005.

16 Gupta R, Shrivastava G, Anand R & Tomažič T, IoT-

based privacy control system through android,

in Handbook of E-business Security, 1st Edn, edited by J

M R S Tavares, B K Mishra, R Kumar, N Zaman & M Khari

(Auerbach Publications) 2018, 341–363, https://doi.org/

10.1201/9780429468254.

17 Al-Turjman F, Yadav S P, Kumar M, Yadav V & T

Stephan, Transforming Management with AI, Big-Data, and

IoT (Springer) 2022, https://doi.org/10.1007/978-3-030-

86749-2.

https://doi.org/10.1049/iet-ifs.2015.0385
https://doi.org/10.4018/978-1-5225-4100-4.ch005
https://doi.org/10.4018/978-1-5225-4100-4.ch005

