
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Teaching, Leadership & Professional Practice
Faculty Publications

Department of Teaching, Leadership &
Professional Practice

2003

Development and evaluation of a lesson authoring tool for Development and evaluation of a lesson authoring tool for

AutoTutor AutoTutor

Suresh C. Susarla

Amy B. Adcock

Richard Van Eck
University of North Dakota, richard.vaneck@und.edu

Kristin N. Moreno

Art Graesser

Follow this and additional works at: https://commons.und.edu/tlpp-fac

Recommended Citation Recommended Citation
Suresh C. Susarla, Amy B. Adcock, Richard Van Eck, et al.. "Development and evaluation of a lesson
authoring tool for AutoTutor" (2003). Teaching, Leadership & Professional Practice Faculty Publications.
22.
https://commons.und.edu/tlpp-fac/22

This Conference Proceeding is brought to you for free and open access by the Department of Teaching, Leadership
& Professional Practice at UND Scholarly Commons. It has been accepted for inclusion in Teaching, Leadership &
Professional Practice Faculty Publications by an authorized administrator of UND Scholarly Commons. For more
information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/tlpp-fac
https://commons.und.edu/tlpp-fac
https://commons.und.edu/tlpp
https://commons.und.edu/tlpp
https://commons.und.edu/tlpp-fac?utm_source=commons.und.edu%2Ftlpp-fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/tlpp-fac/22?utm_source=commons.und.edu%2Ftlpp-fac%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

Development and evaluation of a lesson
authoring tool for AutoTutor

Suresh C. Susarla
Department of Psychology, University of Memphis

ssusarla@memphis.edu

Amy B. Adcock
College of Education, University of Memphis

aadcock@memphis.edu

Richard N. Van Eck
College of Education, University of Memphis

rvaneck@memphis.edu

Kristen N. Moreno
Department of Psychology, University of Memphis

kmoreno@memphis.edu

Art Graesser
Department of Psychology, University of Memphis

a-graesser@memphis.edu

Abstract: This paper describes the process of developing an Electronic Performance
Support System (EPSS) for AutoTutor 3D. The new architecture of AutoTutor 3D
has four models: Domain model, Student model, Tutor model and Interface model.
To date, the complexity of authoring the scripts used by AutoTutor has presented a
significant challenge. Creation of a tool to simplify this process gives us the ability
to disseminate AutoTutor across many different domains. The tool was created
using a rapid prototyping approach and incorporates real world case based scenarios
based on actual teacher experience with the tool, and a point-and-query help system.
This tool and the model for its design may inform the development of similar EPSSs
in the future.

1. Introduction

AutoTutor is a computerized tutor developed by the Tutoring Research Group (TRG)
at the Institute for Intelligent Systems at the University of Memphis. AutoTutor serves as a
learning scaffold that assists students in expressing verbal content through discourse
processing acts such as pumps, hints, prompts, etc. It simulates the discourse patterns and
pedagogical strategies of a human tutor [1]. Currently AutoTutor has working versions in
two different subject domains: computer literacy and physics. While many of the technical
challenges to implementing agent systems like AutoTutor have been solved, it remains a
significant challenge to generate the content which is used to deliver the instruction. This
content is represented in AutoTutor via the curriculum scripts. Generating these scripts has

until now required not only domain knowledge of the content to be taught, but also
knowledge of the architecture of AutoTutor. For example, script authors not only had to
construct instructional materials but also had to include any necessary codes required for
the system. If systems like AutoTutor are to be disseminated widely across environments
and domains, it is necessary to find ways to support developers of content in the process of
generating curriculum scripts. This paper describes the developmental process of an
automated system to create domain general curriculum scripts for use in the next version of
AutoTutor (AutoTutor 3D).

2. Architecture of AutoTutor 3D

The current version of AutoTutor 3D differs significantly from previous versions in
architecture, although the basic modules and functionality remain the same. AutoTutor 3D
utilizes a hub and spoke infrastructure similar to the galaxy communicator infrastructure
developed by DARPA [2]. A central hub acts as messenger to the connected modules (see
Figure 1).

There are five modules connected to the central hub 1) Client module 2) Speech Act
Classifier (SAC) module 3) Assessments module 4) Dialog module and 5) Log module. In
addition to these modules, there are four supporting utilities: the Latent Semantic Analysis,
Parser, Question Answering, and the Curriculum Script Utilities.

Modules and utilities differ from each other in that while modules interact with each
other via the hub, utilities provide things needed for different modules during that
communication process. Utilities are available to all the modules, but not all modules use
all the utilities. For instance, the LSA utility is primarily used by the SAC module and the
Assessments module.

3. Communication between modules

There is a state object that is a common tablet that every module will write on. The
information that is written in the state object will be shared among the modules to use when
needed. The Hub controls this flow. The process is triggered by the Client module. After
initializing a tutoring session, the client module will write the student's response to the state
object, and this is then passed over to the SAC. The SAC then parses and classifies the
input and puts the parse, question content, and classification into the state table. This is then
passed to the Assessments module. The Assessment module calculates the new
information, repeated information and average contribution. For local assessments it
calculates the verbose length and expectation coverage. These global variables are then put
into the state table and passed over to the hub. The dialog module then collects this state
object and calculates the next topic, subtopic from the assessments. It also keeps track of
the dialogue history and feedback data. Finally, it puts the next dialog move into the state
object. At the same time log modules collect the state object and send the copy of the object
to the log database. After all the modules have made their contribution for a student turn,
the client module sees the state table and continues with the appropriate dialog move (from
the state table).

AutoTutor uses this modular approach to take in and assess input from the student to
create a tutoring session tailored to each student’s individual needs. The architecture of
AutoTutor 3D is primarily static; the only element that needs to be altered to extend the
usability of the system is the curriculum script utility. This utility uses scripts written by the
instructor to deliver pedagogically appropriate information to the learner. These scripts

must adhere to a pre-defined structure and syntax in order for the curriculum script utility to
communicate with the different modules during the tutoring session. This structure and
syntax has been driven by the needs of AutoTutor rather than the needs of individual script
authors. As a result, these scripts remain difficult for those unfamiliar with AutoTutor to
develop.

Figure 1. Hub and Spoke modular infrastructure in AutoTutor 3D.

Scripts are composed of thirteen main components. These components (e.g., the
question, summary, hints, prompts, and assertions) are used by AutoTutor to deliver
content and serve as the basis of judgment of the corresponding student responses. For
example, the problem first presented to the student is referred to as the question. There is
also an ideal answer, which is what AutoTutor is hoping the student will create in response
to the problem. It is unlikely that the student will generate this answer immediately,
however, so AutoTutor (via the script) looks for different pieces of the ideal answer
(expectations and concepts) and delivers a series of hints, prompts, and assertions for each
of these main ideas, depending on student contributions and responses.

These scripts have traditionally been written as text documents, with each component
wrapped in syntactic tags that allow AutoTutor to identify the different elements of the
script. For instance, the question might be identified using the tag \question-1, the ideal
answer identified with the tag \ideal-1, and the hints, prompts, and assertions identified
with phint-1, pprompt-1, and pelab-1, respectively. An example of a complete script is
included in Appendix A. AutoTutor 3D now stores the components of these scripts in a
database rather than in a text file, but each must still be created and stored correctly. Until
now, this has required familiarity with the AutoTutor architecture and script syntax.

This paper will describe the development and validation of a tool for the automated
creation of scripts to be used by the curriculum script utility in AutoTutor.

4. Statement of the problem

Because of the improved functionality associated with the new modular architecture,
it is now feasible to distribute AutoTutor to a wider audience. This distribution will allow
educators to create a customized tutoring interaction suitable for deep level questions in any
domain, and for any learner. But if tutoring systems like AutoTutor are to be successful,
they must not only be accessible to everyone, they must also be easy to use. While the
majority of AutoTutor is automatic and takes place in the background, the curriculum
scripts must still be generated by subject matter experts (SMEs), most of whom it can be
assumed will have little knowledge (and little desire to acquire more) of AutoTutor and the
script syntax. Further, as evidenced by the current iteration of the AutoTutor architecture, it
is possible that new functionality and improvements will require changes in the nature of
these scripts (e.g., moving from text-based scripts to a database). Even if SMEs were to
learn the structure and syntax for scripts today, they may have to learn new formats the next
time around.

What is needed is a tool that, on the front end, speaks the language that SMEs are
likely to understand (pedagogy and instructional strategies) and, on the back end, the
language that the architecture of the system requires. In this sense, we need a translation
tool to help SMEs communicate with AutoTutor (or whatever system we are working
with). Not only does this make it possible for more people to develop curriculum scripts,
but also ensure that when and if things change, the tool developers need only modify the
back end of the tool, and the SME never sees any change.

Intelligent tutoring system authoring tools have been in existence for some time (e.g.,
Murray, 1998 [3]; Macias & Castells, 2001 [4]; Toole & Heift, 2002 [5]). These tools
commonly take advantage of a fully developed expert module and provide maximum
flexibility and choice for the script designer (Murray, 1999 [6]). This scenario is not unique
to the needs of pedagogical agent systems. The corporate world has long made use of tools
like this to help people make decisions, judgments, and diagnoses that would otherwise be
difficult or impossible to make. These tools are called, collectively, Electronic Performance
Support Systems (EPSSs) (Gery 1991 [7]; Raybould 1990 [8]).

EPSSs most often appear as coaches or wizards that ask the user a series of questions
in a language they understand, and use their responses to generate decisions (business) or
diagnoses (health). It is possible to use the same approach to help novices develop products
(in this case, curriculum scripts), that they would not otherwise be able to generate.
Because we know what the curriculum scripts should look like, we can design an EPSS that
speaks to SMEs in their own language and use their responses to generate the scripts in the
language AutoTutor (or whatever tool) expects and understands.

The weak link in this process lies in our ability to develop a tool that SMEs in all
domains can interact with successfully, both in terms of ease of use and accuracy of the
resultant script. While we understand the requirements of the system, knowing what makes
sense to the SME is not so easily determined without significant input from different SMEs.
A good tool will use the language, examples, and approach that is most familiar to the
SME, and will strike a good balance between the amount of help (coaching) that is
presented automatically vs. under the SMEs control. EPSSs incorporate what we
traditionally think of as 'help' into the tool itself. But if the tool is to be used by experts and
novices alike, the amount of help the SME requires up front (i.e., that is built in) will vary.
A good EPSS should present just enough help for an expert user, but provide access to
additional help for more novice users. The key lies in determining where to draw this line.
One way to do this lies in the use of rapid prototyping.

Rapid prototyping is widely used in engineering and in the development of software.
In this model, iterative prototypes of the final product are developed, beginning with low

• Now that you have generated a hint and a prompt for this sentence, the system needs to know
what to say to the student if they still don’t get it. This is called an assertion. A good assertion is
simply the sentence restated in a more conversational style.

• For example, one expectation for the pumpkin problem we have been using as an example is
“The runner and the pumpkin are moving with constant horizontal velocity.” Our assertion for
this (after the student has not gotten the hint and the prompt correct), might be “The man and the
pumpkin have the same horizontal velocity before and after the pumpkin is released.”

• Type your assertion in the box below.

fidelity prototypes (e.g., mock-up models, text-based outlines and descriptions of
functionality) and progressing to the final product. Along the way, user feedback is
incorporated in a controlled, systematic evaluation process. This prevents major (i.e.,
expensive) changes late in the development cycle.

Rapid prototyping has also been proposed for use in developing instructional products
(Tripp & Bichelmeyer, 1990 [9]). In addition to the advantages mentioned above, rapid
prototyping of instructional products can be useful when the designers do not have the
domain expertise needed to develop the tool up front. Because an EPSS of the nature we
have described here could be seen to straddle the worlds of both instruction and software,
this model was adapted for the development of the ASAT. Creating low fidelity prototypes
and putting them before SMEs who represent different aspects of the target audience
allowed us to refine the content and find a good balance between the help that is embedded
in the tool and that which is under the SMEs control. It also allowed us to capture useful
information (examples, analogies, etc.) which could then be incorporated into the help
systems we included in the tool. In the ASAT, there are two basic types of help under the
SMEs control (i.e., not automatically presented as part of the coaching, interview
technique): A case study of a hypothetical script author and A series of contextual help
questions linked to their corresponding questions, called point & query (Graesser et al,
1992 [10]). Terminology definitions are also provided through hot-linked text that brings
up definitions throughout the tool.

The process began with the creation of paper-based scripts representing the content of
the proposed authoring system, including examples and directions for interacting with the
interface. Figure 2 shows an excerpt of the paper-based scripts used in the tool. These were
delivered as paper-based documents that were read one page at a time by a SME with no
teaching experience. Think aloud protocol and interview were used to collect data, which
was then used to revise the content and to generate the help systems content.

The modified scripts were then integrated into the EPSS using Macromedia
Authorware. An additional one-to-one evaluation was then conducted with an expert high
school teacher with 20 years of teaching experience. Data from this second stage were used
not only to revise the content, but also to generate additional content for the case study and
built-in point-and-query help system. The tool was modified again based on this
information, and a version was created for additional testing and evaluation with
approximately 20 SMEs with varying teaching experience.

Figure 2. Excerpt from paper based script.

Ms. Smith now needs to identify the important words in the outlined statements from the previous section.
She thinks of the words she might give as a vocabulary list if she were teaching the entire class. These are
the important words the system needs to make sure the student has the correct content knowledge. The
scripting tool gives her the opportunity to review the statements and pick out important words.

5. Integrated help systems

6. Case-based help

The case-based help system is essentially a case study replicating the process that a
teacher would go through to create a curriculum script using the tool. The scenario was
created through an analysis of think aloud protocols with actual teachers during the
evaluation process. Problems and solutions with the terminology, interface, or concepts
were used to generate the case study components, which were then incorporated into an
overall composite scenario. This scenario is accessible at any time during the authoring
process.

Figure 3. Excerpt from the case study.

7. Point and Query

The Point and Query (P&Q) (Graesser et al, 1992 [10]) is a list of question-answer
units that can be accessible from any part of the tool. These are context sensitive Frequently
Asked Questions (FAQ’s). In the tool the P&Q list of questions is available through a help
button. When the user clicks the button, a list of questions linked to the page they are on
appears. Users can click on one of the question and get answers to that specific one. Figure
4 shows an excerpt from the P&Q system.

Figure 4. Excerpt from the P&Q.

8. Glossary

The glossary is designed to provide precise definitions for terminology in the script
authoring process. In the authoring tool, certain terms are hyperlinked to a window that
gives the definition of the term.

9. Current and future plans

10. Evaluation

Version 1 of the tool is set for a series of one-to-one evaluations during June of 2003.
Twenty teachers will generate simple scripts on the electoral process using the tool.
Responses from these evaluations will be used to refine the language and content of the tool
and to generate additional content for the help systems. After revisions from each of these
evaluations are completed, the tool will be used by several SMEs with different experience
and from different domains to verify that the tool will be suitable for anyone who wants to
develop a script for use with AutoTutor.

11. Functionality

In order for this, or any similar tool to be truly effective, it must allow for refinement
of the scripts based on teacher and student feedback. During this and all future uses of the
tool in script generation, data from the application of those scripts within the AutoTutor
architecture will be tracked and presented to the script author. In particular, the system will
track common answers and concepts made by students during the tutoring dialog. Based on
criteria such as frequency, the more common responses will be presented to the script
author during future sessions for the their possible inclusion in the script.

Ultimately, the goal is to automate as many of these processes as possible. Future
versions may include automatic hint and prompt generation, and alternative teaching or
instructional strategies. While this tool is designed primarily for the creation of scripts to be
used with AutoTutor, it could easily be adapted for use with any tutoring system that makes
use of hints and prompts. Additionally, if any tutoring system is to be successful (i.e.,
widely used), it must be accessible and simple enough for anyone to use. This tool, and the
approach used during its development, may serve as a good model for future developers.

References

[1] Graesser, A.C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., & TRG (1999). AutoTutor: A
simulation of a human tutor. Journal of Cognitive Systems Research, 1, 35-51.

[2] DARPA Communicator (1998). Retrieved April 2003 from the World Wide Web: http://fofoca.mitre.org/
[3] Murray, T. (1998). Authoring knowledge based tutors: Tools for content, instructional strategy, student

model, and interface design. Journal of the Learning Sciences, 7(1), 5-64.
[4] Macias, J.A. & Castells, P. (2001). An authoring tool for building adaptive learning guidance systems on the

web. Unpublished manuscript.
[5] Toole, J. & Heift, T. (2002). The Tutor Assistant: An authoring system for a web-based intelligent language

tutor. Computer Assisted Language Learning, 15(4), 373-386.
[6] Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International

Journal of Artificial Intelligence in Education, 10, 98-129.
[7] Gery, G. (1991). Electronic performance support systems: How and why to remake the workplace through

the strategic application of technology. Boston, MA: Weingarten Publications.
[8] Raybould, B. (1990). Solving human performance problems with computers. Performance & Instruction,

29(11), 4-14.
[9] Tripp, S., & Bichelmeyer, B. (1990). Rapid prototyping: An alternative instructional design strategy.

Educational Technology Research & Development, 38(1), 31-44.
[10] Graesser, A.C., Langston, M.C., & Lang, K.L., (1992) Designing educational software around questioning

Journal of Artificial Intelligence in Education 3, 235-241

Acknowledgements

This research was supported by grants from the National Science Foundation (REC 0106965) and the Department
of Defense Multidisciplinary University Research Initiative (MURI) administered by the Office of Naval
Research under grant N00014-00-1-0600. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of ONR or NSF.

Appendix A

Sample Curriculum Script

\ topic Pumpkin
\topic_abbrev HW
\topic_phase Early
\topic_normal_time 1800

\didactic_content-1 \easy

\info-1
\question-1 <speakStyle PosNeutral>Suppose a runner is running in a straight
line at constant speed, <pause 150> and the runner throws a pumpkin
straight up. <pause 300> Where will the pumpkin land? <pause 300> Explain.

\ideal-1 The runner and the pumpkin are moving with constant horizontal
velocity. When the runner throws the pumpkin upward only vertical forces are
acting on the pumpkin. Because only vertical forces are acting on the
pumpkin, there is no horizontal acceleration. The initial horizontal
velocity of the pumpkin, which is the same as the runner, will not change.
The pumpkin will travel up and down vertically and move at the same constant
horizontal velocity as the runner, and as a result the pumpkin will land
back in the runner's hands.

\concept-1 constant velocity
\concept-1 same velocity
\concept-1 same speed
\concept-1 constant speed
\concept-1 same horizontal velocity
\concept-2 constant velocity
\concept-2 constant speed
\concept-2 zero force
\concept-2 zero net force
\concept-2 constant velocity
\concept-2 zero acceleration
\concept-2 net force
\concept-2 horizontal forces
\concept-2 force
\concept-2 forces
\concept-3 vertical forces
\concept-3 vertical
\concept-4 vertical
\concept-4 vertical velocity
\concept-4 vertical velocities
\concept-4 constant horizontal velocity
\concept-4 horizontal velocity
\concept-4 horizontal speed
\concept-4 zero acceleration
\concept-5 man
\concept-5 same destination
\concept-5 same place
\concept-5 guy
\concept-5 runner
\concept-5 woman
\concept-5 girl
\concept-5 gal
\concept-5 boy
\concept-5 hands

\concept-5 runner’s hands
\concept-5 his hands
\concept-5 her hands
\concept-6 velocity
\concept-6 velocities

\pgood-1-1 The pumpkin has the same horizontal velocity as the runner before
it is released.

\pelab-1-1 The man and the pumpkin have the same horizontal velocity before
and after the pumpkin is released.

\phint-1-1-1 <speakStyle PosNeutral>What can you say about the horizontal
velocity of the runner and the pumpkin?
\phintc-1-1-1 The horizontal velocities are the same.

\phint-1-1-2 <speakStyle PosNeutral>What is the horizontal velocity of the
pumpkin before it is thrown?
\phintc-1-1-2 The same as that of the runner.

\phint-1-1-3 <speakStyle PosNeutral> What is the horizontal velocity of the
pumpkin after it is released?
\phintc-1-1-3 The same as that of the runner.

\pprompt-1-1-1 <speakStyle PosNeutral>The velocity of the pumpkin and the
runner \emp\ are <pause 200> \pit=140\ the? \Rst\<clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-1-1 The same.
\ppromptk-1-1-1 Same

\pprompt-1-1-2 <speakStyle PosNeutral>The horizontal velocity of the pumpkin
is the same \emp\ as <pause 200> \pit=140\ the? \Rst\<clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-1-2 The same as the runner.
\ppromptk-1-1-2 runner

\pprompt-1-1-3 <speakStyle PosNeutral>The release of the pumpkin does not
change \emp\ \spd=80\ \pit=100\ the \Rst\<clip Proclivity_Slient><clip
gaze*>
\ppromptc-1-1-3 change its horizontal velocity.
\ppromptk-1-1-3 horizontal velocity

\pgood-1-2 If an object is moving with constant velocity, it must be
experiencing zero net force.

\pelab-1-2 If zero force is acting on the pumpkin in the horizontal
direction, then the pumpkin will maintain a constant horizontal velocity.

\phint-1-2-1 <speakStyle PosNeutral>What happens to the horizontal velocity
of the pumpkin if there is zero horizontal force acting on the pumpkin?
\phintc-1-2-1 The horizontal velocity of the pumpkin remains the same.

\phint-1-2-2 <speakStyle PosNeutral>If the pumpkin's velocity is constant,
what can we say about the horizontal forces acting on the pumpkin?
\phintc-1-2-2 There is zero net horizontal force acting on the pumpkin.

\phint-1-2-3 <speakStyle PosNeutral>What happens if forces are applied on a
pumpkin moving with constant velocity?
\phintc-1-2-3 The velocity of the pumpkin begins to change.

\pprompt-1-2-1 <speakStyle PosNeutral>If there are zero forces acting on the
pumpkin horizontally, then the horizontal velocity of the pumpkin \emp\
<pause 200> \spd=100\ remains? \Rst\<clip Proclivity_Slient><clip gaze*>
\ppromptc-1-2-1 remains constant.
\ppromptk-1-2-1 constant

\pprompt-1-2-2 <speakStyle PosNeutral>If there are zero horizontal forces
acting on the pumpkin, then we know there will be no change \emp\ in the
<pause 200> \pit=140\ pumpkin's? \Rst\<clip Proclivity_Slient><clip gaze*>
\ppromptc-1-2-2 the horizontal velocity of the pumpkin.
\ppromptk-1-2-2 horizontal velocity

\pprompt-1-2-3 <speakStyle PosNeutral>If the pumpkin is moving with constant
velocity then there \emp\ is <pause 200> \pit=140\ zero? \Rst\<clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-2-3 zero net force
\ppromptk-1-2-3 zero force

\pprompt-1-2-4 <speakStyle PosNeutral>If the pumpkin accelerates in any
direction there must \emp\ be <pause 200> \pit=140\ a? \Rst\<clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-2-4 there must be a net force acting on it
\ppromptk-1-2-4 net force

\pgood-1-3 Vertical forces acting on the pumpkin do not affect the
horizontal velocity of the pumpkin.

\pelab-1-3 The horizontal velocity of the pumpkin is not affected by
vertical forces; vertical and horizontal forces act independently of one
another.

\phint-1-3-1 <speakStyle PosNeutral>Which velocities can’t be affected by
vertical forces acting on the pumpkin?
\phintc-1-3-1 Horizontal velocities.

\phint-1-3-2 <speakStyle PosNeutral>Forces in which direction will have no
effect on the horizontal velocity?
\phintc-1-3-2 Vertical forces.

\phint-1-3-3 <speakStyle PosNeutral>Does the horizontal velocity change if
only vertical forces act on the pumpkin?
\phintc-1-3-3 The horizontal velocity remains the same.

\phint-1-3-4 <speakStyle PosNeutral>In which direction should a force be
applied, if we want to change pumpkin's horizontal velocity?
\phintc-1-3-4 The horizontal direction.

\pprompt-1-3-1 <speakStyle PosNeutral>Horizontal velocity is not affected by
forces \emp\ that are <pause 200> \spd=140\ applied? \Rst\<clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-3-1 applied vertically.

\ppromptk-1-3-1 Vertically

\pprompt-1-3-2 <speakStyle PosNeutral>If a vertical force is added onto an
object, its horizontal velocity \emp\ still <pause 200> \spd=140\ remains?
\Rst\<clip Proclivity_Slient><clip gaze*>
\ppromptc-1-3-2 remains the same.
\ppromptk-1-3-2 same

\pprompt-1-3-3 <speakStyle PosNeutral>A vertical force cannot affect \emp\
an object’s <pause 200> \spd=140\ \Rst\<clip Proclivity_Slient><clip gaze*>
\ppromptc-1-3-3 horizontal motion
\ppromptk-1-3-3 horizontal

\pgood-1-4 After the pumpkin is thrown, it will only have vertical forces
acting on it.
\pelab-1-4 After the pumpkin is thrown, it will only respond to the vertical
forces acting on it and the horizontal velocity is not affected.

\phint-1-4-1 In which direction are the only forces are acting on the
pumpkin after it is thrown?
\phintc-1-4-1 Vertical.

\phint-1-4-2 How is the horizontal velocity affected by the application of
vertical forces to the pumpkin?
\phintc-1-4-2 The horizontal velocity remains constant (is unaffected).

\pprompt-1-4-1 After it is thrown, the only forces acting on the pumpkin
\emp\ are \spd=90\ the? \Rst\ <clip Proclivity_Slient><clip gaze*>
\ppromptc-1-4-1 the vertical forces
\ppromptk-1-4-1 vertical

\pprompt-1-4-2 With the application of vertical forces on the pumpkin, the
horizontal velocity \emp\ stays \spd=90\ the? \Rst\ <clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-4-2 the horizontal velocity stays the same
\ppromptk-1-4-2 same

\pgood-1-5 The runner and the pumpkin cover the same horizontal distance.
\pelab-1-5 Because they have the same constant horizontal velocity, the
pumpkin and the man will cover the same distance.

\phint-1-5-1 If an object has a constant horizontal velocity, what can you
say about the horizontal forces acting on it?
\phintc-1-5-1 There are no horizontal forces acting on it. If there are any
they must add up to zero net force.

\phint-1-5-2 If an object has no net horizontal force acting on it, what can
you say about the horizontal speed of the object?
\phintc-1-5-2 The horizontal speed of the object remains constant.

\phint-1-5-3 If two objects are traveling at constant horizontal speed from
the same starting point and for the same amount of time, what can you say
about their final destination?
\phintc-1-5-3 It will be the same.

\pprompt-1-5-1 If there is no net horizontal force acting on an object, the
horizontal velocity of the \emp\ object \spd=90\ remains? \Rst\ <clip
Proclivity_Slient><clip gaze*>

\ppromptc-1-5-1 the horizontal velocity remains constant
\ppromptk-1-5-1 constant

\pprompt-1-5-2 When the horizontal velocity of an object remains constant,
the horizontal speed of the \emp\ object \spd=90\ remains? \Rst\ <clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-5-1 the speed remains the same
\ppromptk-1-5-1 same

\pgood-1-6 The pumpkin will land in the runner’s hands
\pelab-1-6 Because the pumpkin and the runner are moving at the same
horizontal speed, the pumpkin will land in the runner’s hands.

\phint-1-6-1 What can you say about the pumpkin’s final location?
\phintc-1-6-1 The pumpkin lands in the runner’s hands

\phint-1-6-2 Where will the pumpkin be in relation to the runner’s hands?
\phintc-1-6-2 The pumpkin will be in the runner’s hands

\pprompt-1-6-1 Because of their constant horizontal velocity, the runner’s
hands and the pumpkin will be at the \emp\ \spd=90\ same? \Rst\ <clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-6-1 same horizontal speed
\ppromptk-1-6-1 speed

\pprompt-1-6-2 Because there were no changes in the pumpkin’s horizontal
speed, it will land in \emp\ the \spd=90\ runner’s \Rst\ <clip
Proclivity_Slient><clip gaze*>
\ppromptc-1-6-2 runner’s hands
\ppromptk-1-6-2 hands

\good-1 The horizontal velocities of the runner and the pumpkin are the same
before and after the pumpkin is thrown.
\good-1 The velocities of the runner and the pumpkin horizontally constant.
\good-1 The horizontal velocities of the pumpkin and the runner are the
same.
\good-1 The horizontal velocity of the pumpkin is the same as the runner.
\good-1 The runner and the pumpkin have the same horizontal velocities.
\good-1 The horizontal velocity of the runner is the same as the pumpkin's.
\good-1 Zero force is needed to keep an object going with constant velocity.
\good-1 The velocity of the pumpkin in the horizontal direction is constant.
\good-1 The velocity of the pumpkin horizontally is constant.
\good-1 Zero horizontal forces are acting on the pumpkin.
\good-1 Vertical forces acting on the pumpkin do not affect its horizontal
velocity.
\good-1 The horizontal velocity of the pumpkin is not affected by vertical
forces.
\good-1 Vertical and horizontal motion are independent of each other.
\good-1 The vertical forces acting on the pumpkin are independent of the
horizontal velocity of the pumpkin.
\good-1 Horizontal velocity is not affected by vertical forces acting on the
pumpkin.
\good-1 The runner and the pumpkin travel the same horizontal distance since
they are moving with the same horizontal velocity.

\bad-1-1 The horizontal velocities of the runner and the pumpkin are

different.
\bbad-1-1 The horizontal velocity of the runner is different from the
horizontal velocity of the pumpkin.
\splice-1-1 <speakStyle PosNeutral>The horizontal velocity of the runner and
the pumpkin do not differ. <clip gaze*>

\bad-1-2 The pumpkin is slowing down.
\bad-1-2 The pumpkin is speeding up.
\bad-1-2 The horizontal velocity of the pumpkin is slowing down.
\bad-1-2 The horizontal velocity of the pumpkin is slowing down.
\bbad-1-2 The horizontal velocity of the pumpkin is changing.
\splice-1-2 <speakStyle PosNeutral>Zero force is acting on the pumpkin
horizontally since it is traveling with constant horizontal velocity. <clip
gaze*>

\bad-1-3 The horizontal velocity of the pumpkin depends on the vertical
forces acting on the pumpkin.
\bbad-1-3 The horizontal velocity of the pumpkin changes as a result of the
vertical forces.
\splice-1-3 <speakStyle PosNeutral>The horizontal velocity of the pumpkin is
independent of the vertical forces acting on the pumpkin. <clip gaze*>

\bad-1-4 The pumpkin will land behind the runner because the runner keeps
moving and the pumpkin does not.
\bad-1-4 The pumpkin will land behind the runner because it will slow down
horizontally.
\bad-1-4 The pumpkin will land ahead of the runner because vertical forces
cause it to speed up.
\splice-1-4 Vertical forces do not affect the horizontal velocity or
horizontal speed of an object.

\mconcept-1-1 Because no horizontal forces are acting on the pumpkin, the
horizontal velocity will steadily decrease causing the pumpkin to land
behind the runner.
\mcorrect-1-1 no horizontal force is required to maintain a constant
horizontal speed.
\mverq-1-1 If the runner speeds up will the pumpkin land behind the runner's
hand a little bit, next to the runner, or in front of the runner?
\mverqc-1-1 The horizontal speed is not affected because horizontal velocity
remains constant if zero horizontal force is applied to the object.
\mhint-1-1-1 What is the horizontal force applied to the pumpkin after it
leaves the runner's hands?
\mhintc-1-1-1 Zero horizontal force is applied to the pumpkin after it is
thrown.
\mhint-1-1-2 Because there are no horizontal forces acting on the pumpkin to
change the horizontal speed, what horizontal path will the pumpkin take in
relation to the runner?
\mhintc-1-1-2 It will be the same as the runner.

\mcorrect-1-2 Vertical and horizontal forces act independently of one
another. The gravitational force is the vertical force and will not affect
the horizontal velocity.
\mverq-1-2 If a stronger runner throws the pumpkin, will the pumpkin land
behind the runner's hands, in front of the runner's hands or in the runner’s
hands?
\mverc-1-2 Because vertical forces have no effect on horizontal motion, the
pumpkin will land in the runner’s hands.
\mhint-1-2-1 If an object is following a vertical velocity and an additional

vertical force is applied, what will happen to the horizontal velocity?
\mhintc-1-2-1 It will not change.
\mhint-1-2-2 What would happen to the vertical path of the pumpkin if
additional horizontal force were applied?
\mhintc-1-2-2 It would not change.

\summary-1 <speakStyle PosNeutral>The horizontal velocity of the pumpkin is
the same as the runner. <pause 300> Zero force is needed to keep an object
going with constant velocity. After it is thrown, only vertical forces are
acting on the pumpkin. The horizontal velocity of the pumpkin is constant
and is independent of the vertical forces acting on the pumpkin. <pause 300>
Therefore, the pumpkin will land back in the hands of the runner. <pause
300><unload>

	Development and evaluation of a lesson authoring tool for AutoTutor
	Recommended Citation

	tmp.1673569569.pdf.JpbdH

