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ABSTRACT

Meyers, Rachel E., Virtual mosaic knots. Master of Science (Mathematics), December, 2022, 
Sam Houston State University, Huntsville, Texas.

The study of knots and links is a main focus of the mathematical branch of topology. 

Classical knot theory studies knots embedded in 3-dimensional real space and has been a 

primary field of study since the 1 960’s. Virtual knot theory, first introduced by Kauffman in 

1999, studies knots embedded in thickened surfaces. Lomanoco and Kauffman introduced 

mosaic diagrams in order to build a quantum knot system in 2008. In 2009, Garduño extended 

these mosaic diagrams to include virtual knots. In order to represent knots on surfaces, 

Ganzell and Henrich introduced virtual mosaic knot theory in 2020 by placing knots onto 

𝑛 × 𝑛 polygonal representations of surfaces. We extend the idea of virtual mosaic knot theory 

to include virtual rectangular mosaics, a placement of virtual knots onto 𝑛 × 𝑚 polygonal 

representations of surfaces, as well as row mosaics, a placement of virtual knots onto 1 × 𝑚 

polygonal representations of surfaces. In this thesis, we introduce virtual rectangular mosaics 

and give two rectangular mosaic invariants called the tile number and row number. Included 

as an appendix, we give a complete row mosaic tabulation of knots with 8 or fewer crossings 

and virtual knots up to 4 crossings.

KEY WORDS: Topology; Knot Theory; Virtual knots; Mosaic knots
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CHAPTER I

INTRODUCTION

1.1. Classical Knots

Knot theory is thought to have been first i n troduced i n  t h e 1 8 th c e ntury b y  a  French 

mathematician named Alexandre-Theophile Vandermonde. However, it was not until the 

19th century that Carl Friedrich Gauss made the first steps towards the mathematical theory 

that we know today.

A knot is a simple closed curve in three-dimensional space which can be described as an 

injective function, 𝐾 := 𝑆1 ↩→ 𝑆3. The image has no loose ends, no starting or ending points, 

and no self-intersections. Typically, we view a knot as a projection onto R2. This projection 

is called a knot diagram. Examples of knot diagrams are shown in Figure 1. We study knots 

up to isotopy, which allows for twisting and stretching but not breaking the knots. The first 

and second knots in Figure 1 are both the unknot, also referred to as the trivial knot. The 

unknot is the only knot that bounds an embedded disk in 3-space.

Figure 1. Example of knot diagrams.

Knots are composed of a single connected component, meaning a knot is one closed loop

that passes under and over itself. Choosing a point anywhere on the knot and tracing the knot,

we will always return to the starting point. A link is a finite union of pairwise nonintersecting

knots, 𝐿 = 𝐾1 ∪ · · · ∪𝐾𝑛. In this way, a knot can be considered a 1-component link. Two

examples of simple links are given in Figure 2.
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Figure 2. Example of links.

Two knot diagrams are called equivalent or isotopic if they can be physically manipulated

(rotated, bent, twisted, stretched, etc.), without splitting and reconnecting the component,

so that one looks identical to the other. Reidemeister moves are local modifications, which

means we apply them on a smaller part of the knot diagram, leaving the rest of the diagram

unchanged. There are three such moves, shown in Figure 3. Two knot diagrams represent

equivalent knots if and only if they can be related by a finite sequence of Reidemeister moves.

Figure 3. Reidemeister moves

Figure 4 shows an example of performing knot isotopy via the Reidemeister moves. What

seems like a complicated knot is actually equivalent to the unknot. Each diagram in the figure

differs from the next by one Reidemeister move. The crossing number of a knot, denoted

𝑐(𝐾), is the number of crossings the knot has.
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Figure 4. Example using Reidemeister moves.

A link can be given an orientation by assigning a direction of travel around each loop [6].

An example of an oriented knot is shown in Figure 5.

Figure 5. Example of an oriented knot.

Given an oriented knot we can define the sign of a crossing, c, denoted 𝑠𝑖𝑔𝑛(𝑐) to be either

positive or negative according to Figure 6. Note that the overstrand in a positive crossing has

positive slope.

Figure 6. Sign of a crossing.

A knot is considered alternating if there is a pattern of under, over, under, over, etc. when

following the orientation and tracing the knot.
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1.2. Surfaces

In topology, a surface Σ is a two-dimensional manifold - a space that locally looks like the 

real plane. Every surface has a genus which can be thought of as the number of holes. Figure 

7 has some examples of surfaces and their corresponding genus. There are non-orientable 

surfaces, such as the Mobius band or the Klein bottle, which means the surface has 1 side, 

and there are orientable surfaces which have two distinct sides. A classical result in topology 

is that surfaces can be classified according to their orientability and g enus. However, we will 

only consider orientable surfaces.

Figure 7. Examples of surfaces.

Some surfaces can be represented by polygons. Starting with a 2𝑛-sided polygon, label

the edges {𝑎1, . . . , 𝑎𝑛} where each edge label appears exactly twice. In the form of an arrow,

each edge label is given a direction. Using the edge labelings and matching the arrows, we

can "glue" paired edges. This quotient space is a closed surface. This is defined in [7]. An

example of this is shown in Figure 8. In this example we would read off the edge labeling,

starting with the 𝑎 on the left, as a boundary word, 𝑎𝑏𝑎−1𝑏−1, where the inverse notation

describes a backwards arrow on the edge. The surface in Figure 8 is called the torus and it is

an orientable surface of genus 1.
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Figure 8. Example of the torus represented as a polygon.

The polygon represents an orientable surface if and only if the second occurrence of each

edge labeling has the arrow pointed in the opposite direction of the first label. Reading off the

boundary word, we would have each edge 𝑎𝑖 appear as 𝑎𝑖 once and 𝑎−1
𝑖

once [7]. Furthermore,

a polygon represents a surface with positive genus if and only if its boundary word contains 

a pattern of the form 𝑎 .  .  .  𝑏 .  .  .  𝑎−1 .  .  .  𝑏−1 [[7]Theorem 6.14].

1.3. Virtual Knots

We usually study knots as objects in the 3-sphere, 𝑆3. However, knots can be embedded in 

any 3-dimensional space. Virtual knots and virtual links are embedded on thickened surfaces,∑
×[0, 1]. These knots can contain crossings that are not formed by a part of the component

passing over and under itself. An example of a knot and link embedded on a thickened surface

along with their corresponding virtual diagrams are illustrated in Figure 9.

Figure 9. A knot and link embedded on a thickened torus.

The dotted segments represent where the components wrap around the meridian resulting

in two parts of the components lying on different sides of the surface, which can only happen
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on a surface with positive genus. This creates a crossing in where a dotted segment and a

solid segment intersect. These crossings are called virtual crossings. The corresponding

knot diagram for a virtual knot with a virtual crossing will have a crossing that does not have

under or overstrand, and a circle around the crossing. Figure 10 is an example of a virtual

knot on a genus 2 surface.

Figure 10. Knot on genus 2 surface.

As with classical knots, we can determine which virtual knots are equivalent up to isotopy

using virtual Reidemeister moves. These moves are analogous to the classical ones, along

with a fourth move as pictured in Figure 11.

Figure 11. The four virtual Reidemeister moves.

Figure 12 shows the two “forbidden moves”; these moves pass an arc behind or in front

of a virtual crossing. However, forbidden moves do not preserve the virtual knot, and so are

forbidden.



7

Figure 12. The forbidden moves.

1.4. Gauss Codes and Gauss Diagrams

Gauss diagrams provide a way of encoding knot information. Given an oriented knot 

diagram, we can create a Gauss diagram and, given a Gauss diagram, we can recover the 

corresponding knot. Beginning with an oriented knot:

1. Choose a base point on the knot, label each crossing from 1 to 𝑛 in order they are

passed.

2. Label each crossing with the sign of that crossing.

3. Label the outside of a circle, in a counterclockwise direction, the order of crossings in

which they are passed through when starting, and ending at the base point of the knot.

4. Then insert arrows which start at one end of the circle to the other. The arrow points

away from the label when going over the crossing, and towards the label when going

under.

5. Each arrow is then labeled, at the tail, with the sign of the crossing.

An example of going from an oriented knot to a Gauss diagram is shown in Figure 13.
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Figure 13. A knot and its corresponding Gauss diagram.

Using the Gauss diagram or the labeled knot diagram we can obtain the Gauss code.

Start at the first crossing and list out the order of the crossings starting and ending at the base

point of the knot diagram, or listing the order of the crossings from the Gauss diagram in a

counterclockwise order. Thus, in this example, the order is as follows:

1 2 3 4 5 1 2 5 4 3.

Each crossing appears exactly twice in the Gauss code - once for going over and once for

going under. To complete the Gauss code, each time the crossing appears in the sequence

add in the under (U) and overstrand (O) information. Therefore, the complete Gauss code for

this example is

U1 O2 O3 U4 O5 O1 U2 U5 O4 U3.

Another way this could be written is

-1 2 3 -4 5 1 -2 4 -3,

where each U from the previous notation is a negative sign. Given a Gauss diagram, a knot is

alternating if consecutive arrow heads are facing the opposite way when moving around the

circle, and no two consecutive arrows point in the same direction. If a Gauss diagram has all

non intersecting arrows, then the Gauss diagram is of the unknot.
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1.5. Intersection Index Polynomial

Knot invariants are equivalence relations which assign a given knot a characteristic that 

is then used to distinguish it from other knots. For any knot invariant 𝛼 and knots 𝐾 and 

𝐾′, if 𝛼(𝐾) ≠ 𝛼(𝐾′), then 𝐾 and 𝐾′ are not isotopic. Such an invariant is the intersection 

index polynomial. We describe an algorithm for computing the intersection index polynomial 

from a knot diagram as defined in [ 6 ]. Given a knot diagram 𝐾 , and a crossing 𝑑  we smooth 

crossing 𝑑 as in Figure 14.

Figure 14. Smoothing a crossing.

Note that smoothing a crossing changes the knot; in particular, smoothing a crossing in

a knot diagram produces a 2-component link. When following the orientation of a link, the

smoothing is labeled with a 1 on the left side and a 2 on the right side. Let 𝐶𝑑 be the set of

classical crossings in the virtual link diagram that involve both components after crossing 𝑑

is smoothed. Then each crossing in 𝐶𝑑 is assigned a ±1 in Figure 15. Component 2 on the

left results in a +1 and component 1 on the left results in a −1.

Figure 15. Crossings that involve two components.
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For a virtual knot diagram K, and a crossing 𝑑, the intersection index 𝑖(𝑑) is the sum

of the values 𝛼(𝑥) for all classical crossings 𝑥 ∈ 𝐶𝑑 , where 𝛼(𝑥) is the ±1 that is dependent

on the crossings involving both components. Therefore, 𝑖(𝑑) =
∑︁
𝑥∈𝐶𝑑

𝛼(𝑥). Figure 16 is an

example of computing the intersection index of a virtual knot with 4 classical crossings

labeled {𝑎, 𝑏, 𝑐, 𝑑}.

Figure 16. Example of calculating the intersection index.

The intersection index polynomial, 𝑝𝑡(𝐾), for a virtual knot 𝐾 with diagram 𝐷 is the sum

over all classical crossings 𝑑 in 𝐷 of the polynomial 𝑠𝑖𝑔𝑛(𝑑)(𝑡 |𝑖(𝑑)| −1). Therefore, we have

the following:

𝑝𝑡(𝐾) =
∑︁
𝑑∈𝐷

𝑠𝑖𝑔𝑛(𝑑)(𝑡 |𝑖(𝑑)| −1).
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Recall 𝑠𝑖𝑔𝑛(𝑑) is the sign of the crossing defined in section 1.1. Therefore, using the

computed intersection index of each crossing, the knot in the previous example has the

following intersection index polynomial:

𝑝𝑡(𝐾) = (1)(𝑡3−1)+ (1)(𝑡 |−1| −1)+ (1)(𝑡 |−1| −1)+ (1)(𝑡 |−1| −1)

= 𝑡3−1+ 𝑡 −1+ 𝑡 −1+ 𝑡 −1

= 𝑡3 +3𝑡 −4.

This polynomial is invariant of the virtual Reidemeister moves and thus a true invariant

[6].



12

CHAPTER II

MOSAIC KNOTS

2.1. Classical Mosaic Knots

Mosaic knots, introduced by Lomanoco and Kauffman in [9], place a  knot diagram onto 

an 𝑛 × 𝑛 grid of suitably connected tiles, where the tiles form a knot diagram and all the 

arcs on the tiles connect. Mosaic knots are formed from the 11 tiles illustrated in Figure 17. 

Figure 18 gives examples of mosaic knots.

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10

Figure 17. Mosaic tiles.

Figure 18. Examples of mosaic knots.

The mosaic number of a knot, 𝐾, denoted 𝑚(𝐾), is the smallest integer 𝑛 for which 𝐾 can 

be represented by an 𝑛 × 𝑛 mosaic.

2.2. Virtual Mosaics

Ganzell and Henrich extended the definition of mosaic knots to include virtual k n ots. A 

virtual mosaic, defined i n  [ 5 ], i s  a n  𝑛 × 𝑛  a r ray o f  s tandard m osaic t i les, t ogether w i th an 

identification o f t he 4 𝑛 edges o f t he a rray b oundary, t hat forms a  knot o r l ink d iagram on a 

closed, orientable surface. The genus of the surface will also be the genus of the mosaic. 

Figure 19 shows the virtual trefoil represented on a 2 × 2 virtual mosaic. Virtual crossings are 

created by intersections coming from the outer edge identification. Furthermore, a  classical
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knot can be realized as a virtual mosaic in which the edge identifications do not intersect

when connected.

Figure 19. Virtual trefoil on virtual mosaic

The virtual mosaic number of a knot, K, denoted𝑚𝑣(𝐾), is the smallest integer 𝑛 for which

𝐾 can be represented by an 𝑛×𝑛 virtual mosaic. An efficient way to place a knot on a mosaic

is to use the Gauss Code. In placing the knot on the mosaic, it is helpful to keep in mind

the crossings that precede or follow a particular crossing in the subsequence, as well as the

maximum subsequence in which no crossings are repeated. However, different projections of

the same knot have different Gauss codes resulting in different lengths of subsequences that

have no crossings repeated.

Proposition 1. [[5]] The figure-8 knot does not fit on a 2×2 mosaic.

Proof. First, we assign an orientation to the knot and a base point, Figure 20.

Figure 20. Oriented and labeled figure-8 knot.
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Tracing the knot we obtain the following Gauss code:

-1 2 -3 1 -4 3 -2 4.

This is an alternating knot and moreover every Gauss code representation must have a

sequence of four consecutive crossings. In this case 2 -3 1 -4 is one of the times there are

four distinct crossings in a row with no repetition. Therefore, at some point in the sequence,

we pass through all four crossings before coming to a crossing already accounted for. Using

this information, we will prove by contradiction that the figure-8 knot, which has a minimum

of four crossings, has virtual mosaic number 3. Figure 21 will illustrate this process.

Figure 21. Finding virtual mosaic number for the figure 8 knot.

Suppose the figure-8 knot did fit on a 2× 2 mosaic. Then since this knot is alternating

we would need an alternating pattern of 𝑇9 and 𝑇10 tiles as in Figure 21. Without loss of

generality, we can choose an edge and label it 𝑎 (in this example we started with the top left

hand corner). To avoid creating a set of links label the edge directly below 𝑎 with a new label,

namely 𝑏, as shown in Figure 21. Since this knot is alternating, and the first 𝑏 is placed at

an understrand, we need the other 𝑏 at an edge where the strand is going over. However, to

prevent virtual crossings there must be no edges between a given pair or an even amount of

edges between them. Therefore, the second 𝑏 can only be placed directly to the right of the

first as shown in Figure 21. Consequently, the top right label must then be a new label, 𝑐, or
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we would create a set of links. We have also now created the sequence of four consecutive

crossings. There are only two open spots to put the second 𝑐, and these are the top right tile

next to the first or the bottom left next to 𝑏. Putting 𝑐 in the top right allows for a Reidemeister

one move. Hence, the second 𝑐 must be placed in the bottom left corner. Lastly, in Figure 21

we have both 𝑑’s on the right side of the mosaic and put in the last 𝑎.

However, connecting the outer edges results in a Reidemeister one move in the top left

hand corner where the 𝑎 labels connect. Therefore, we can reduce the diagram to a 3 crossing

diagram. Hence, the virtual mosaic number of the figure-8 knot is 3 and this is illustrated in

Figure 22. □

𝑎 𝑏 𝑏

𝑎

𝑐

𝑑

𝑑𝑐𝑒

𝑓

𝑓

𝑒

Figure 22. Figure-8 knot on a 3×3 mosaic.

The following is a result from [5] which provides a relationship between the classical

mosaic number and the virtual mosaic number of a given knot.

Proposition 2. [[5], Proposition 1] For a link, 𝐿, let 𝑚(𝐿) be the classical mosaic number

and 𝑚𝑣(𝐿) the virtual mosaic number. For a link or a nontrivial knot, 𝑚𝑣(𝐿) ≤ 𝑚(𝐿)−2.

Proof. Given a classical mosaic, since there are no 𝑇9 or 𝑇10 tiles in the first or last rows and

columns, we can delete those and identify the edges to represent the original connections.

Then label edges that do not have connections with matched pairs. □
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Figure 23 provides an example of this proposition using the 72 knot. However, this

inequality is not sharp since 𝑚(72) = 6 and 𝑚𝑣(72) = 3, as illustrated in Figure 24.

−→ −→

𝑎 𝑎 𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

Figure 23. Going from a 6×6 classical mosaic to 4×4 virtual mosaic.

𝑎 𝑏 𝑏

𝑐

𝑑

𝑑

𝑐𝑒𝑒

𝑎

𝑓

𝑓

Figure 24. The 72 knot on a 3 × 3 mosaic.

2.3. Classical and Virtual Mosaic Moves

In the introduction, we introduced Reidemeister moves, which are used to relate equivalent 

knot diagrams. Since we study knots up to isotopy, it is necessary to have the same ability on 

a mosaic. Therefore, in this section, we give a collection of mosaic moves introduced in [5], 

that preserve knot type. Note in the following illustrations the light gray arcs are arcs that may 

or may not be on the mosaic. The dotted arcs represent a different tile that could also be there 

instead of the solid black line, so that each move represents several possible configurations. 

Each of these moves can be rotated or reflected on a different position of the mo sa ic. If there 

are no edge identifications on the mosaic move then the move can be performed on the edge 

or in the middle of the mosaic. Moves with labeled edges must be done on the edge. The first
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two sets of moves pertain to the interior of the mosaic and the last set are for virtual mosaics.

The last set is the only set which involves the edge identifications.

The planar isotopy moves are shown in Figure 25. These moves are performed by

replacing the tiles and replicate the local modifications done with classical knots, i.e. bending,

stretching, shifting etc. For example, the 𝑃1 move slides the segment from the top left tile to

the bottom right tile.

𝑃1←−−−→ 𝑃2/𝑃3←−−−→

𝑃4←−−−→ 𝑃5←−−−→

𝑃6←−−−→ 𝑃7←−−−→

𝑃8/𝑃9←−−−→ 𝑃10/𝑃11←−−−→

Figure 25. List of planar isotopy moves.

The next set of moves are tile replacements that imitate the Reidemeister moves, these are

shown in Figure 26.
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𝑅1/𝑅
′
1←−−−→

𝑅2/𝑅
′
2←−−−→

𝑅′′2 /𝑅
′′′
2←−−−−→

𝑅
(𝑛)
3←−−−→

Figure 26. Reidemeister moves on a mosaic.

Surface isotopy moves, shown in Figure 27, allow for local modifications that involve

the switching of outer edge identifications along with the strands on associated tiles. In the

following diagrams, when one edge identification is switched with another edge identification,

we must preserve the connections. To do so, we replace the tiles in a way that moves the

strand and places it with the corresponding edge identification. For example, in the 𝑆𝐼3 move

the edge identifications 𝑎 and 𝑥 are switched. Accordingly, the strand in which 𝑎 is the

connection must follow.
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𝑥 𝑥
SI1←−−−→

𝑥 𝑥

𝑥 𝑦 𝑧

𝑥

𝑦

𝑧

SI2←−−−→

𝑥 𝑦 𝑧

𝑥

𝑦

𝑧

𝑎 𝑥 𝑥
SI3←−−−→

𝑥 𝑥 𝑎

𝑎 𝑥 𝑥
SI4←−−−→

𝑥 𝑥 𝑎

𝑥 𝑥

𝑎
SI5←−−−→

𝑎 𝑥

𝑥

𝑥 𝑥

𝑎
SI6←−−−→

𝑎 𝑥

𝑥

𝑥 𝑥

𝑎
SI7←−−−→

𝑎 𝑥

𝑥

𝑥 𝑦

𝑦

𝑥

SI8←−−−→

𝑥 𝑦

𝑦

𝑥

𝑥 𝑦

𝑦

𝑥

SI9←−−−→

𝑥 𝑦

𝑦

𝑥

Figure 27. List of surface isotopy moves.
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2.4. Stabilizations & Destablizations

Virtual knots and links viewed as knot diagrams on surfaces have moves that allow us 

to represent them on surfaces of different g e nera. There a re a lso moves we can perform on 

virtual mosaics that achieve the same goal. We call them stabilization and destabilization 

moves. These are shown in Figure 28.

𝑥

𝑦
Stab1←−−−→

𝑦

𝑥

𝑥 𝑦
Stab2←−−−→

𝑦 𝑥

𝑥

𝑦
Stab3←−−−→

𝑦

𝑥

𝑥 𝑦
Stab4←−−−→

𝑦 𝑥

Figure 28. Stabilization and destabilization moves.

2.5. Mosaic Injection & Ejection

The following moves, introduced in [5], enlarge or shrink a mosaic without changing the 

knot type or genus. Let V(𝑛) denote the set of virtual 𝑛-mosaics. If 𝑉 (𝑛) ∈ V(𝑛), then the 

𝑖 𝑗-entry (row 𝑖, column 𝑗) of 𝑉 (𝑛) is denoted by 𝑉 (𝑛). In [5], Ganzell and Henrich define an
𝑖 𝑗

injection with the following function.

The standard virtual mosaic injection

] : V(𝑛)→ V(𝑛+2)
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𝑉 (𝑛) ↦→𝑉 (𝑛+2)

will be defined as

𝑉
(𝑛+2)
𝑖 𝑗

=



𝑉
(𝑛)
𝑖 𝑗

if 0 ≤ 𝑖, 𝑗 < 𝑛

𝑇5 if 𝑖 < 𝑛, 𝑗 ≥ 𝑛, and 𝑉 (𝑛)
𝑖,𝑛−1 ∈ {𝑇2,𝑇3,𝑇5,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇6 if 𝑖 ≥ 𝑛, 𝑗 < 𝑛, and 𝑉 (𝑛)
𝑛−1, 𝑗 ∈ {𝑇1,𝑇2,𝑇6,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇0 otherwise,

where the new boundary edges are labeled in adjacent pairs. The reverse process is called an

ejection.

This function, however, contains errors, not all tiles get mapped correctly depending on

the type of injection. In order to have one function that works for all injections we modified

the function given above.

Definition 3. Define a mosaic injection as

𝑉
(𝑛+2)
𝑖 𝑗

=



𝑉
(𝑛)
𝑖 𝑗

if 𝑖 ∉ 𝛼, 𝑗 ∉ 𝛽

𝑇5 if 𝑗 ∈ 𝛽 and 𝑉 (𝑛)
𝑖, 𝑗∗−1 or 𝑉 (𝑛)

𝑖, 𝑗∗ ∈ {𝑇2,𝑇3,𝑇5,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇6 if 𝑖 ∈ 𝛼, and 𝑉 (𝑛)
𝑖∗−1, 𝑗 or 𝑉 (𝑛)

𝑖∗, 𝑗 ∈ {𝑇1,𝑇2,𝑇6,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇0 otherwise.

Where the new rows created in the injection 𝛼1, 𝛼2 and the new columns 𝛽1, 𝛽2. Further, 𝑖∗

and 𝑗∗ are the values of the injection (]𝑖∗ 𝑗∗).

Figure 29 illustrates an example of an injection and how to label the columns and rows.



22

0
𝑎

1
𝑏

2
𝑏

𝑎

𝑐

𝑑

𝑑𝑐𝑒

2 𝑓

1 𝑓

0 𝑒
]12↦−−→

0
𝑎

1
𝑏

𝛽1
𝑤

𝛽2
𝑤

2
𝑏

𝑎

𝑥

𝑥

𝑐

𝑑

𝑑𝑦𝑦𝑐𝑒

2 𝑓

1 𝑓

𝛼2 𝑧

𝛼1 𝑧

0 𝑒

Figure 29. An ]12-injection

It is possible to have an injection where 𝑖∗ and/or 𝑗∗ are 0. In this case the new rows or

columns are placed above row 0 or to the left of column 0. Note this function also gives

redundant values for such injections along with injections where 𝑖∗ or 𝑗∗ is equal 𝑛. For

example let 𝑗∗ = 0. Then, looking at the 𝑇5 tile conditions we have 𝑉 (𝑛)
𝑖, 𝑗∗−1 = 𝑉

(𝑛)
𝑖,−1. However,

𝑉𝑛
𝑖,−1 is not a tile from the original mosaic since 𝑗 should only take on values from 0 to 𝑛−1.

Since the new function provides two different tiles in which to refer back to, we are still able

to use the function, and correctly map the tiles.
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CHAPTER III 

VIRTUAL RECTANGULAR MOSAICS 

3.1. Virtual Rectangular Mosaics

In this section we extend the definition of virtual mosaic knots to include those that are 

not square. This minimizes the amount of tiles necessary and provides a more efficient way 

of representing knots.

Definition 4  . A   virtual rectangular m  osiac is a  n 𝑚  × 𝑛 array o  f standard m   osaic tiles, together 

with a   n identification o      f the 2  𝑚 + 2  𝑛 edges o  f the array boundary that forms a knot or link 

diagram o  n a closed, orientable surface.

The virtual trefoil has virtual mosaic number 2 and must have four tiles to be represented 

on a square mosaic. However, we can achieve a representation of the virtual trefoil using 

only two tiles. This is illustrated in Figure 30. As a consequence of using rectangular 

mosaics, a new invariant other than the virtual mosaic number is needed.

𝑏 𝑏

𝑐

𝑎𝑐

𝑎

Figure 30. Virtual trefoil on rectangular mosaic.

Definition 5. The tile number of a virtual mosaic, denoted 𝑇𝑣(𝐾), is the number of tiles

necessary to represent a knot on a mosaic.

Therefore, the virtual trefoil has tile number 2 or𝑇𝑣(𝐾) = 2. A lower bound for tile number

is the classical crossing number since classical crossings are the only crossings on the mosaic

grid. We show there are families of knots whose tile number is equal to their crossing number.

This requires defining the following special type of rectangular mosaic.
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Definition 6. A row mosaic is a 1×𝑛 mosaic with an identification of the 2𝑛+2 edges of the

array boundary that forms a knot or link diagram on a closed, orientable surface.

An example of a row mosaic representing the classical knot 71 is shown in Figure 31. As

seen in the example, all the crossings are in a single horizontal row.

𝑑 𝑐 𝑐 𝑏 𝑏 𝑎 𝑎

𝑑

𝑒ℎℎ𝑔𝑔𝑓𝑓

𝑒

Figure 31. A row mosaic representation of the 71 knot.

We define a new invariant specific to row mosaics.

Definition 7. The row number of a knot 𝐾 , denoted 𝜌(𝐾), is the minimum number of tiles

necessary to represent a knot on a row mosaic.

We show that every classical knot can be presented on a row mosaic. In 2008, the

following theorem was introduced by Adams, Shinjo, and Tanka [3].

Theorem 8. [[3], Theorem 1.2] Every knot has a projection that can be decomposed into two

sub-arcs such that each sub-arc never crosses itself.

An example of a knot decomposed into two sub-arcs is shown in Figure 32.

Figure 32. The Figure 8 knot decomposed into two sub-arcs that do not cross them-
selves.

In 2018, Owad expanded this result in [10].
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Theorem 9. [[10], Theorem 2.5] Every knot has a diagram that is composed of a single

straight strand and collection of semicircles, all with their centers on the straight strand.

This theorem provides a direct connection between a specific type of knot diagram and

row mosaics. Moreover, this connection leads to several results including families of knots

that can be represented by a row mosaic where the row number is equal to the crossing number.

Figure 33 shows one of the sub-arcs can be straightened out while the other is composed of

semicircles where their centers meet along the straightened sub-arc. Therefore, we have a

knot diagram where all the crossings are in a straight line.

Figure 33. The Figure 8 knot with the grey arc bent to be straight.

These type of knot diagrams are called straight, or the knot is said to be in straight position.

If the knot in straight position realizes its crossing number, then the knot is called perfectly

straight. Some knots, however, have straight diagrams where the number of crossings is

greater than the number of crossings in the reduced knot diagram. An example is shown in

Figure 34. The number of crossings it takes for a knot to be in the straight position is called the

straight number, denoted 𝑠𝑡𝑟(𝐾). An algorithm to put a knot into straight position is shown

in [11]. Figure 34 is also an example of using the algorithm which takes the gray strand and

lifts it up under the horizontal line and then back under putting the knot into straight position.
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Figure 34. Knot 932 on the left with 9 crossings reduced and not in straight position.
On the right the 932 with 10 crossings in straight position.

Proposition 10. Every classical knot can be put on a row mosaic. For a knot𝐾 , 𝑠𝑡𝑟(𝐾)= 𝜌(𝐾).

Proof. Since every knot can be put into straight position, we can represent each crossing

with a 𝑇9 or 𝑇10 crossing tile. Then using edge identifications, preserve the connections

of the semicircles. Therefore, every classical knot 𝐾 can be put on a row mosaic and

𝑠𝑡𝑟(𝐾) = 𝜌(𝐾). □

Proposition 11. Given the minimal row mosaic representing a classical knot, the genus of

the mosaic is 0.

Proof. Suppose we have a minimal row mosaic of a classical knot. Then this knot is also

in straight position. By Theorem 7, the outer edge identifications produce a collection of

semicircles. Furthermore, by Theorem 6, these semicircles do not cross one another. A

general mosaic with 𝑛 crossings and 2𝑛+2 edge identifications is shown in Figure 35.

𝛼1 𝛼2 𝛼3

𝛼2𝑛−2𝛼2𝑛−1𝛼2𝑛

𝛼0 · · ·

𝛼𝑛−2 𝛼𝑛−1 𝛼𝑛

𝛼𝑛+1

𝛼𝑛+2𝛼𝑛+3𝛼𝑛+4

Figure 35. An 𝑛-crossing 1×𝑛 mosaic.
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A surface will only have positive genus if two pairs split one another in the sequence, i.e.

𝛼𝑖 · · ·𝛼 𝑗 · · ·𝛼𝑖 · · ·𝛼 𝑗 . However, if the outer edges have such pairs we have the following

which produces a virtual crossing. Thus, there are no pairs that interlock and hence, the

genus of the mosaic is zero. □

We can combinatorially tabulate row mosaics for alternating knots with a fixed row

number by using an alternating pattern of 𝑇9 and 𝑇10 tiles, and then considering all possible

edge labelings. We are able to manually produce a knot table for all classical knots with 8

crossings or fewer. This table is included in the appendix.

To find all the different combinations of the outer edge identifications we use a python

program that gives every balanced combination of 𝑛 sets of parenthesis. This means before

closing a pair of parenthesis, all parenthesis inside the pair must also be closed. For example,

the string (()(())) would translate to 𝑎𝑏𝑏𝑐𝑑𝑑𝑐𝑎. This ensures the edge identifications, when

connected, do not produce crossings off the mosaic. Then we can narrow down the list by

taking out the combinations where the edge identifications produce a link. An exhaustive

search of all edge pairings was used to create the row mosaic table.

Example 12. Consider in cases, a 6-crossing knot on a 2×3 mosaic and note all knots with

6-crossings are alternating. First, there are 10 edge identifications. Therefore, to find all the

possible edge identifications, produce all the combinations of 5 sets of balanced parenthesis.

In Figure 36, looking at the outer edge identifications, if 1 is identified to 2, 2 identified to

7, 3 identified to 6, 10 identified to 4 or 9 identified to 5, we get at least a two component
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link. Thus, the combinations where those positions in the string are equal can be thrown out.

Another way links can be produced are with 2 side by side edge identifications being equal

along with the ones directly across from them being equal. An occurrence of this appears in

Figure 36, when 1 is identified to 2 and 8 identified to 7. The last types of strings we can

rule out are those that produce a Reidemeister 1 move, such as 1 and 10 being equal. After

narrowing down the list of combinations, we can check the remaining candidates to see which

ones produce a knot and if so which one.

1 2 3

4

5

678

9

10

Figure 36. A 2×3 mosaic with no identifications.

Using this tabulation, we observe the following:

Proposition 13. If a knot 𝐾 has 7 crossings or fewer the row number is equal to the crossing

number, 𝜌(𝐾) = 𝑐(𝐾).

Proof. Using the method above, we were able to find a row mosaic representation for each

knot and provide a table of these knots in the appendix. The proposition can be checked

manually. □

Proposition 14. All virtual knots that have up to and including 4 crossings have a row number

equal to the crossing number and the genus of the mosaic is the same as the knot.

Proof. Looking at a knot table of every virtual knot with four crossings or less, each one has

a sequence of 𝑛 consecutive crossings where 𝑛 is the crossing number. Therefore, these knots
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can be represented by a row mosaic with 𝜌(𝐾) = 𝑛. After identifying a row mosaic for a given

virtual knot, we can identify the surface obtained by following the boundary identifications,

as in [7]. In each case, there exists a row mosaic representation where the genus of the row

mosaic is equal to the genus of the knot, as given in [2]. There is a table of these virtual knots

included in the appendix. □

Proposition 15. Other families of knots where 𝜌(𝐾) = 𝑐(𝐾):

1. All torus knots 𝑇𝑝,𝑞.

2. All 𝑛-pretzel knots.

3. All 2-Bridge knots 𝐾𝑝/𝑞 where the continued fraction of 𝑝/𝑞 has length less than 6.

Proof. These knots are perfectly straight proven in [10], hence 𝜌(𝐾) = 𝑐(𝐾). □

Definition 16. Let 𝑚 be the maximum number of crossings in a knot diagram, or the longest

subsequence, in a Gauss code representing a knot diagram, in which no crossing is repeated.

Proposition 17. Given a knot diagram or Gauss, code the 𝜌(𝐾) ≤ 2𝑟(𝑚 + 1)− 1 where 𝑟 is

the remaining number of crossings not included in the longest subsequence with no repeated

crossings.

Proof. This is a direct result from Lemma 3.1 in [10], which states 𝑠𝑡𝑟(𝐾) ≤ 2𝑟(𝑚 + 1)− 1.

Since 𝑠𝑡𝑟(𝐾) = 𝜌(𝐾), we have the same result for row number. □

Note that equivalent knot projections may not have the same value for 𝑚. This means two

projections for equivalent knots with the same amount of crossings may not both be able to

be represented by a row mosaic. The following proposition is a result of Proposition 15.

Proposition 18. Given a classical knot, 𝐾 , if 𝑚 = 𝑐(𝐾) then 𝜌(𝐾) = 𝑐(𝐾).
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Proof. By Proposition 15, 𝜌(𝐾) ≤ 2𝑟(𝑚 +1)−1. Assuming 𝑚 = 𝑐(𝐾) implies 𝑟 = 0. Hence,

𝜌(𝐾) ≤ 20(𝑐(𝐾)+1)−1

≤ 𝑐(𝐾)+1−1

≤ 𝑐(𝐾).

Since𝐾 is a classical knot all crossings must be represented by a tile, thus 𝜌(𝐾)= 𝑐(𝐾). □

Adams et al.[1] introduced diagrams representing knots where their crossings are stacked.

These diagrams are called petal diagrams. An example of such diagram is shown in Figure

37. The number of petals it takes to represent a given knot is called the petal number.

Figure 37. Petal diagram of a trefoil knot.

A relationship between straight number and petal number is given in [10]. We can use

the to establish the following.

Proposition 19. For a knot with 𝜌(𝐾) = 𝑛, 𝑝(𝐾) ≤ 3𝑛.

Proof. Let 𝑝(𝐾) denote the petal number, then given a knot where 𝑠𝑡𝑟(𝐾) = 𝑛, 𝑝(𝐾) ≤ 3𝑛.

Since 𝜌(𝐾) = 𝑠𝑡𝑟(𝐾), it follows that 𝑝(𝐾) ≤ 3𝑛. □

Even though every knot has a row mosaic, a row mosaic does not always minimize the

tile number.
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Proposition 20. There exist knots such that 𝜌(𝐾) > 𝑇𝑣(𝐾).

Proof. The 1088 knot are one of these knots. The row number for this knot is 12, however

the tile number is 10 since this knot fits on a 2×5 virtual mosaic. Both representations are

shown in Figure 38.

𝑔 𝑎 𝑏 𝑐 𝑒 𝑓 𝑓 𝑒 𝑑 𝑑 𝑐 𝑏

𝑎

𝑚𝑚𝑔ℎ𝑖𝑗𝑘𝑙𝑙𝑘𝑗𝑖

ℎ

𝑑 𝑐 𝑎 𝑏 𝑏

𝑎

𝑐

𝑑𝑒𝑓𝑔𝑔

𝑓

𝑒

Figure 38. The 1088 knot on a row and 2×5 mosaic.

□

There are also knots whose tile number can be realized on both a row mosaic, and a virtual

rectangular mosaic. The 63 knot is an example of such and both representations are shown

in Figure 39. The only other alternating knot with 8 crossings or less where the tile number

can be realized on a row mosaic and a virtual rectangular mosaic is the 815 knot.

𝑐 𝑑 𝑑 𝑐 𝑏 𝑎

𝑓

𝑔ℎℎ𝑔𝑓𝑎

𝑏

𝑐 𝑐 𝑏

𝑎

𝑑

𝑒𝑒𝑑

𝑎

𝑏

Figure 39. The 63 knot represented on a row mosaic and rectangular mosaic.
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This leads to the following question. Given a knot what is the smallest 𝑚 × 𝑛 virtual

rectangular mosaic that can realize the knot if 𝑚,𝑛 are both greater than 1? Using the

exhaustive method explained in Example 10, we are able to provide a partial answer to this

question. The only classical knots that fit on a 2× 3 virtual mosaic are 31,41, and 52. The

only alternating knots that fit on a 2×4 mosaic are 51,61,62,74,75,76,77 and 815. These are

included in a table in the appendix.

The following was an open question proposed in [5]. By Proposition 1, 𝑚𝑣(𝐾) ≤ 𝑚(𝐾)−2

for nontrivial 𝐾 , but sometimes this inequality is strict. If equality does not always hold, is

there a fixed integer 𝑟 for which𝑚𝑣(𝐾)+𝑟 ≥ 𝑚(𝐾)−2? Here 𝑟 measures how far the inequality

in the proposition is off by, and we provide a partial answer to this question by giving values

of 𝑟 for knots with 10 or fewer crossings.

Proposition 21. For knots with more than 3 crossings up to and including knots with 8 or 10,

𝑟 = 1.

Proof. The lowest𝑚𝑣(𝐾) in the set of knots with 3 < 𝑐(𝐾) ≤ 8 is 3 ([5]), and the highest𝑚(𝐾)

is 6 ([8]). Therefore, subbing in 2 for 𝑟 in the inequality we get 3+1 ≥ 6−2. For knots with

10 crossings, 𝑚(𝐾) ∈ {6,7} ([4]). Therefore, 𝑚𝑣(𝐾) ∈ {4,5}. Again using the lowest 𝑚𝑣(𝐾)

and the highest 𝑚(𝐾) and plugging those values into the inequality we get 4+1 ≥ 7−2. □

Proposition 22. For knots with 9 crossings, 𝑟 = 2.

Proof. The lowest 𝑚𝑣(𝐾) of a 9 crossing knot is 3 ([4]) and the highest 𝑚(𝐾) is 7. Therefore,

3+2 ≥ 7−2. □

From this we can conclude that the set of all knots with 10 or fewer crossings have 𝑟 = 2.
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3.2. Rectangular Mosaic Injections

For square mosaics, an injection has to insert two rows and two columns to preserve 

squareness. However, this is not the case for rectangular mosaics. Rectangular mosaics allow 

for the insertion of only two rows or only two columns. Therefore, we modify the injection 

function to define a  row injection, and a  column i n jection. For the following definitions 𝑥 is 

used to denote there is no injection in a row or column.

Definition 2 3 . A  r ow i n jection, 𝑉 𝑖 𝑥 , i n jects t wo r ows a f ter t he 𝑖 𝑡 ℎ r ow, 𝑖  = 0, . . . , 𝑚  a nd is 

defined as

𝑉
((𝑚+2)×𝑛)
𝑖𝑥

=



𝑉
(𝑚×𝑛)
𝑖 𝑗

if 𝑖 ∉ 𝛼

𝑇6 if 𝑖 ∈ 𝛼 and 𝑉𝑖∗−1, 𝑗 or 𝑉𝑖∗, 𝑗 ∈ {𝑇1,𝑇2,𝑇6,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇0 otherwise.

Figure 40 gives an example of a 𝑉1𝑥 row injection.

0
𝑎

1
𝑏

2
𝑏

𝑎

𝑐

𝑑

𝑑𝑐𝑒

2 𝑓

1 𝑓

0 𝑒
𝑉1𝑥↦−−→

0
𝑎

1
𝑏

2
𝑏

𝑎

𝑥

𝑥

𝑐

𝑑

𝑑𝑐𝑒

2 𝑓

1 𝑓

𝛼2 𝑧

𝛼1 𝑧

0 𝑒

Figure 40. A 𝑉1𝑥-injection

Definition 24. A column injection, 𝑉𝑥 𝑗 , inserts two columns after the 𝑗 𝑡ℎ column, 𝑗 = 0, . . . , 𝑛

is defined as
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𝑉
(𝑚×(𝑛+2))
𝑥 𝑗

=



𝑉
(𝑚×𝑛)
𝑖 𝑗

if 𝑗 ∉ 𝛽

𝑇5 if 𝑗 ∈ 𝛽 and 𝑉𝑖, 𝑗∗−1 or 𝑉𝑖, 𝑗∗ ∈ {𝑇1,𝑇2,𝑇6,𝑇7,𝑇8,𝑇9,𝑇10}

𝑇0 otherwise.

An example of a column injection is shown in Figure 41.

0
𝑎

1
𝑏

2
𝑏

𝑎

𝑐

𝑑

𝑑𝑐𝑒

2 𝑓

1 𝑓

0 𝑒
𝑉𝑥2↦−−→

0
𝑎

1
𝑏

𝛽1
𝑤

𝛽2
𝑤

2
𝑏

𝑎

𝑐

𝑑

𝑑𝑦𝑦𝑐𝑒

2 𝑓

1 𝑓 𝑧

0 𝑒

Figure 41. A 𝑉𝑥2-injection

3.3. Intersection Index Polynomial of Virtual Knot Mosaics

In this section we extend the computation of virtual knot invariants to virtual knot mosaics 

by intersection index polynomial can be computed on a mosaic. Recall this invariant involves 

smoothing each classical crossing according to orientation. To represent this computation on 

a mosaic we use oriented 𝑇7,𝑇8,𝑇9, and 𝑇10 tiles. Each 𝑇9 or 𝑇10 representing a crossing 𝑐 will 

be positive or negative depending on 𝑠𝑖𝑔𝑛(𝑐). These are shown in Figure 42.

𝑇−9 𝑇+9 𝑇−10 𝑇+10 𝑇−9 𝑇+9 𝑇−10 𝑇+10

Figure 42. Oriented crossing tiles.
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Note using the first four tiles and rotating them, we can can obtain the last four. Smoothing

these tiles requires oriented𝑇7 and𝑇8 tiles, and this is shown in Figure 43. Recall a smoothing

produces two components. Therefore, following orientation, the component on the left is 1

and the component on the right is 2.

−→ ←−

𝑇−9 𝑇7 𝑇+10

−→ ←−

𝑇+9 𝑇8 𝑇−10

−→ ←−

𝑇−9 𝑇7 𝑇+10

−→ ←−

𝑇+9 𝑇8 𝑇−10

Figure 43. Smoothing oriented crossing tiles.

Now that we have shown an analogous algorithm for smoothing each crossing, we can

realize the intersection index polynomial of a virtual knot on a virtual mosaic. First, assign

an orientation to the mosaic. Then for each crossing tile, take an oriented 𝑇9 or 𝑇10 tile and

replace it with the corresponding oriented 𝑇7 or 𝑇8 tile. Figure 44 provides an example of

computing the intersection index polynomial on a row mosaic.

Example 25. This knot is oriented from left to right and uses the edge identifications to travel

around the knot. Using the computed weights of the crossings above we get

𝑝𝑡(𝐾) = −𝑡3−3𝑡 +4
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.
𝑑 𝑐 𝑏 𝑎

𝑑

𝑒𝑎𝑏𝑒

𝑐

𝑑 𝑐 𝑏 𝑎

𝑑

𝑒𝑎𝑏𝑒

𝑐

𝑑 𝑐 𝑏 𝑎

𝑑

𝑒𝑎𝑏𝑒

𝑐

𝑖(1) = 3 𝑖(2) = −1

𝑑 𝑐 𝑏 𝑎

𝑑

𝑒𝑎𝑏𝑒

𝑐

𝑑 𝑐 𝑏 𝑎

𝑑

𝑒𝑎𝑏𝑒

𝑐

𝑖(3) = −1 𝑖(4) = −1

Figure 44. Example of computing the intersection index polynomial on a virtual
mosaic.

Therefore, in a way, computing invariants of a virtual knot represented by a virtual mosaic

is more efficient. Especially for an invariant such as the intersection index polynomial, where

the only crossings necessary for the computation are classical crossings, which happen to be

the only crossings on the virtual mosaic.

We can also use mosaic knots to help find families with similar characteristics. For

example nontrivial knots containing some or all crossings with weight zero. These knots

have 𝑝𝑡(𝐾) = 0. Figure 45 shows two knots with similar patterns and all crossings have

weight zero. These knots are also not the unknot.
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𝑐 𝑏 𝑏 𝑎 𝑎

𝑐

𝑓𝑒𝑑𝑓𝑒

𝑑

𝑐 𝑔 𝑔 𝑏 𝑏 𝑎 𝑎

𝑐

𝑓𝑒𝑑ℎℎ𝑓𝑒

𝑑

Figure 45. Knots whose crossings are all weight zero and are not the unknot.



38

CHAPTER IV

OPEN PROBLEMS

Question 1. The non-alternating knots with 8 crossings do not fit on a 2× 4 virtual mosaic

that has alternating tiles since there there can be no crossings off the mosaic. Can these three

knots be put on a 2×4 mosaic? There would have to be two 𝑇9 or 𝑇10 tiles next to one another.

Question 2. We showed how to compute one invariant on a mosaic. However, are there other

invariants in which a mosaic would make it easier to compute by hand or easier to code?

Question 3. Would computing invariants using mosaic knots help find knots with similar

characteristics? For example nontrivial knots containing some or all crossings with weight

zero?
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APPENDIX

The following tables are included:

1. Row mosaics for all classical knots up to 8 crossings.

2. Row mosaics for all virtual knots up to and including 4 crossings.

3. All classical alternating knots with 8 crossings or fewer that fit on a 2× 3 or 2× 4

virtual mosaic.

All of the knots in this appendix were checked using Miller’s programs

knotfolio (https://kmill.github.io/knotfolio/) and

virtual knotfolio (http://tmp.esoteri.casa/virtual-knotfolio/).

.1 Row Mosaics of Knots 31 to 821

b a a

b

cdd

c

c b a a

b

cdee

d

c b b a a

c

dffee

d

31 41 51

c a b b a

c

ffdee

d

d c b b a a

c

dggeff

e

52 61

d c a b b a

c

deggff

e

c d d c b a

f

ghhgfa

b

62 63
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d c c b b a a

d

ehhggff

e

d a c c b b a

d

hhggeff

e

71 72

d d c b b a a

c

ehhfggf

e

d a c c b b a

d

hhefggf

e

73 74

d a b c c b a

d

hheggff

e

e e d c b a a

b

cfghhgf

d

75 76

e d c a b b a

c

defghhg

f

e d c c b b a a

d

eiihhfgg

f

77 81

e e d d c b a a

b

cfgiihhg

f

e d d c b b a a

c

eiifhhgg

f

82 83

e e d c b b a a

c

diifghhg

f

e d a c c b b a

d

iiefhhgg

f

84 85
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e d d c b b a a

c

efhiihgg

f

e d c c a b b a

d

efgiihhg

f

86 87

e e d c a b b a

c

dfgiihhg

f

e e d c a b b a

c

dfiighhg

f

88 89

e d b c c b a a

d

eiifghhg

f

d e e d c b a a

b

cfhiihgg

f

810 811

e c d d c b a a

b

ehiihfgg

f

e d a b c c b a

d

eiifghhg

f

812 813

e d a b c a b a

d

iiefghhg

f

d e e d c b a a

b

fghiihgf

c

814 815

f f e d b c c b a a

d

gkkhijjihg

e

f e d c a b b a

c

defghiih

g

816 817

f e c d d c b a a b

e

fgjkkjhiih

g

e d a c c b b a

d

iiefhhgg

f

818 819
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e e d c b a a b

c

fghiihgf

d

e e d c a b b a

c

fghiihgf

d

820 821

.2 Row Mosaics of Virtual knots up to 4 crossings

a b

a

cb

c

c b a

c

dad

b

c b a

c

dda

b

c b a

c

dad

b

2.1,g = 1 3.1,g = 2 3.2,g = 1 3.3,g = 2

c b a

d

cad

b

c b a

c

dab

d

b a a

b

cdd

c

c b a

c

bdd

a

3.4,g = 2 3.5,g = 1 3.6,g = 0 3.7,g = 1

d c a b

a

ebde

c

e d b a

c

bcea

d

d c b a

b

eeda

c

4.1,g = 2 4.2,g = 2 4.3,g = 2

d c b a

b

eeda

c

d c b a

b

eade

c

d c b a

e

beda

c

4.4,g = 2 4.5,g = 2 4.6,g = 2

d c b a

e

beda

c

d c b a

b

eade

c

d c b a

c

edae

b

4.7,g = 2 4.8,g = 2 4.9,g = 2



45

d c b a

c

edea

b

c a b a

e

dced

b

d c b a

e

cdea

b

4.10,g = 2 4.11,g = 2 4.12,g = 1

b c b a

c

edea

d

b c b a

e

cdea

d

d e b a

c

edea

b

4.13,g = 2 4.14,g = 2 4.15,g = 2

d c b a

c

edae

b

c a b a

e

dced

b

a c b a

c

edeb

d

4.16,g = 2 4.17,g = 2 4.18,g = 2

b c b a

c

edae

d

b c b a

e

cdea

d

b a b a

e

dced

c

4.19,g = 2 4.20,g = 2 4.21,g = 2

d c b a

d

beae

c

b c b a

d

eaed

c

d c b a

e

bdae

c

4.22,g = 2 4.23,g = 2 4.24,g = 2

d c b a

d

beea

c

d c b a

d

eabe

c

a c b a

d

beed

c

4.25,g = 2 4.26,g = 2 4.27,g = 2
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d c b a

e

dabe

c

d c b a

b

edea

c

d b b a

b

edae

c

4.28,g = 2 4.29,g = 2 4.30,g = 2

b c b a

e

deda

c

b c b a

ec

b c a b

a

dede

c

4.31,g = 2 4.32,g = 2 4.33,g = 2

d c b a

b

deae

c

a c b a

e

dedb

c

d c b a

e

deab

c

4.34,g = 2 4.35,g = 2 4.36,g = 1

d c b a

d

eeab

c

d c b a

d

eaeb

c

d c b a

d

beae

c

4.37,g = 1 4.38,g = 2 4.39,g = 2

c b a a

c

eded

b

b c b a

d

eead

c

d c b a

e

bdae

c

4.40,g = 2 4.41,g = 2 4.42,g = 2

c b a a

c

deed

b

d c b a

d

beea

c

d c b a

d

eabe

c

4.43,g = 1 4.44,g = 2 4.45,g = 2



47

d c b a

d

eeba

c

d c b a

e

dabe

c

d c b a

b

edae

c

4.46,g = 2 4.47,g = 2 4.48,g = 2

d c b a

b

edea

c

b c b a

e

dead

c

b c b a

e

deda

c

4.49,g = 2 4.50,g = 2 4.51,g = 2

a c b a

b

eded

c

a c b a

b

eedd

c

d c b a

b

daee

c

4.52,g = 2 4.53,g = 1 4.54,g = 2

d c b a

b

eade

c

d c b a

e

beda

c

c a b a

e

dced

b

4.55,g = 2 4.56,g = 2 4.57,g = 2

d c b a

c

edae

b

b a b a

e

dced

c

b c b a

c

edea

d

4.58,g = 2 4.59,g = 2 4.60,g = 2

c b b a

e

cded

a

d c b a

e

dceb

a

c b a a

c

eded

b

4.61,g = 2 4.62,g = 2 4.63,g = 2
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d c b a

c

deeb

a

c b a a

d

eced

b

d c b a

e

bdae

c

4.64,g = 1 4.65,g = 1 4.66,g = 2

b c b a

d

eaed

c

b c b a

d

eead

c

b c b a

e

deda

c

4.67,g = 2 4.68,g = 2 4.69,g = 2

d c b a

b

edea

c

d c b a

b

edae

c

b c a b

a

eded

c

4.70,g = 2 4.71,g = 2 4.72,g = 2

c b a a

e

cedd

b

a c b a

e

bedd

c

a c b a

b

eedd

c

4.73,g = 1 4.74,g = 2 4.75,g = 1

d c b a

e

beda

c

d c b a

b

eade

c

d c b a

d

beae

c

4.76,g = 2 4.77,g = 2 4.78,g = 2

d c b a

e

bdae

c

d c b a

d

eabe

c

d c b a

e

dabe

c

4.79,g = 2 4.80,g = 2 4.81,g = 2
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d c b a

d

eeac

b

d c b a

d

eaec

b

c a b a

d

eecd

b

4.82,g = 2 4.83,g = 2 4.84,g = 2

d c b a

c

eade

b

a c b a

d

eedc

b

d c b a

d

eaec

b

4.85,g = 2 4.86,g = 1 4.87,g = 2

d c b a

e

cade

b

d c b a

c

eade

b

d c b a

e

daec

b

4.88,g = 2 4.89,g = 2 4.90,g = 2

d c b a

d

eabc

e

d c b a

d

ecab

e

d c b a

d

eceb

a

4.91,g = 1 4.92,g = 1 4.93,g = 2

c a b a

c

eedd

b

d c b a

d

caee

b

d c b a

d

eeac

b

4.94,g = 1 4.95,g = 1 4.96,g = 2

d c b a

d

eaec

b

d c b a

c

eade

b

a c b a

c

eedd

b

4.97,g = 2 4.98,g = 2 4.99,g = 1
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c b a a

c

deeb

d

d c b a

d

beec

a

d c b a

d

eebc

a

4.100,g = 1 4.101,g = 1 4.102,g = 1

d c b a

c

bede

a

d c b a

c

eedb

a

a c b a

c

eedd

b

4.103,g = 2 4.104,g = 1 4.105,g = 1

c e b a

e

cadd

b

d c b a

e

daec

b

c c b a

d

eeda

b

4.106,g = 1 4.107,g = 2 4.108,g = 0

.3 Alternating Knots that fit on 2×3 and 2×4 Virtual Mosaics

c b a

a

b

cde

e

d

a b b

a

d

eed

c

c

d f f e

e

d

ccbb

a

a

31 41 51

c b b

a

a

cee

d

d

a b b a

f

f

cdee

d

c

c c b a

f

f

eedd

a

b

52 61 62
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c c b

a

d

eed

a

b

c b a a

f

f

bcee

d

d

b b a a

d

f

feed

c

c

63 74 75

c b a a

b

c

effe

d

d

c b a a

b

c

deff

e

d

c b a a

b

c

effe

d

d

76 77 815
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Grader for SHSU Mathematics and Statistics Department Spring 2020

· Graded assignments and quizzes for a professor. Along with grading, when
COVID made us move online, made answer keys for the professor’s assign-
ments, and quizzes.

Math Tutor at Tutor’s Station April 2019 - Present

· Tutored a variety of math courses from junior high to college along with
GRE, TSI and SAT math prep.

ACHIEVEMENTS

Glenda J. St. Andrie Scholarship recipient
Mozelle Powell Spanish Scholarship recipient
Graduate Achievement Scholarship recipient
Dean’s List at Sam Houston Spring 2020
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President’s List Spring 2020
GUIA Fellow Fall 2020, Spring 2021, Fall 2021, Spring 2022
President of AMS SHSU chapter Fall 2021-Spring 2021
Outstanding Graduate Student award recipient Spring 2022

PROFESSIONAL ORGANIZATIONS

American Mathematical Society (AMS) - President of SHSU Chapter
Fall 2021-Spring 2022
Pi Mu Epsilon - Spring 2022

REFERENCES

References are available upon request.
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