
 

 

 

 

 

 
 

 
 

 

 

 

 

Optimisation Method for Training 

Deep Neural Networks in Classification 

of Non- functional Requirements 

 

 

Maliha Sabir 

School of Engineering, 
 

Division of Computer Science and Informatics 

 
 

 

A Thesis submitted in partial fulfilment of the 

requirements of London South Bank University for the degree of 

Doctor of Philosophy 

 

September 2022 



ii 

 

 

 

Dedication 

 

 

This is dedicated to my lovely husband, who has always believed in me, even when I didn’t 

believe in myself. 

(Maliha Sabir) 



iii 

 

 

 

Acknowledgements 

 

 

First and foremost, I thank Allah Almighty for providing me with the strength, health, and 

capabilities required to complete this thesis. 

I'd want to show my gratitude to the following people, without whom I would not have been 

able to complete this study. 

My esteemed supervisor, Prof. Ebad Banissi, for his tremendous support, meetings and chats 

with him was crucial in motivating me to look outside the box to produce a comprehensive 

and objective critique. 

In addition, I'd want to thank Dr Mike Child and Dr Christos Chrysoulas for their guidance, 

review, and input on my study. I am grateful to all the panel members and the research board 

for enabling me to complete my studies at London South Bank University. 

My heartfelt thanks to my parents (Sheikh Sabir Hussain and Saeeda Sabir) for everything 

they've done for me and my husband Mehtab Qureshi for his love, patience, and unwavering 

support. Finally, I'd like to thank my children Hashim and Parizah for never failing to inspire 

me. 



iv 

 

 

 

Declaration 

 

 

I confirm that the work provided in this thesis is the result of my original effort. I believe it 

does not contain any previously published or authored work unless an appropriate 

acknowledgement is stated in the text. I also declare that no substantial portion of my 

dissertation has been submitted, or is currently being submitted, for any degree, diploma, or 

other qualification at London South Bank University or any other University, except as stated 

in the Preface and specified in the text. 

However, certain items have been presented at international conferences. Finally, the work 

adheres to the mandated word restriction set forth by the relevant degree committee. 

 

 

 

 

 

 

 
(Signed) ................... Maliha Sabir 

 

(Date)........................ 20/09/2022 



v 

 

 

 

Abstract 

 

 

Non-functional requirements (NFRs) are regarded critical to a software system's success. The 

majority of NFR detection and classification solutions have relied on supervised machine 

learning models. It is hindered by the lack of labelled data for training and necessitate a 

significant amount of time spent on feature engineering. 

In this work we explore emerging deep learning techniques to reduce the burden of feature 

engineering. The goal of this study is to develop an autonomous system that can classify NFRs 

into multiple classes based on a labelled corpus. In the first section of the thesis, we standardise 

the NFRs ontology and annotations to produce a corpus based on five attributes: usability, 

reliability, efficiency, maintainability, and portability. In the second section, the design and 

implementation of four neural networks, including the artificial neural network, convolutional 

neural network, long short-term memory, and gated recurrent unit are examined to classify 

NFRs. 

These models, necessitate a large corpus. To overcome this limitation, we proposed a new 

paradigm for data augmentation. This method uses a sort and concatenates strategy to combine 

two phrases from the same class, resulting in a two-fold increase in data size while keeping the 

domain vocabulary intact. We compared our method to a baseline (no augmentation) and an 

existing approach Easy data augmentation (EDA) with pre-trained word embeddings. All 

training has been performed under two modifications to the data; augmentation on the entire 

data before train/validation split vs augmentation on train set only. Our findings show that as 

compared to EDA and baseline, NFRs classification model improved greatly, and CNN 

outperformed when trained using our suggested technique in the first setting. However, we 

saw a slight boost in the second experimental setup with just train set augmentation. As a result, 

we can determine that augmentation of the validation is required in order to achieve acceptable 

results with our proposed approach. We hope that our ideas will inspire new data augmentation 

techniques, whether they are generic or task specific. Furthermore, it would also be useful to 

implement this strategy in other languages. 



vi 

 

 

 

 

 

Table of Contents 

Dedication ............................................................................................................................................... ii 

Acknowledgements ............................................................................................................................... iii 

Declaration ............................................................................................................................................ iv 

Abstract .................................................................................................................................................. v 

List of Tables ......................................................................................................................................... xi 

List of Figures ....................................................................................................................................... xii 

List of Symbols ..................................................................................................................................... xv 

List of Abbreviations and Acronyms ................................................................................................. xvii 

List of Publications ........................................................................................................................... xviii 

Chapter 1 Introduction .......................................................................................................................... 1 

1.1 Overview _______________________________________________________________ 1 

1.2 Motivation ______________________________________________________________ 2 

1.2.1 Shortcomings in Existing Solutions ______________________________________ 4 

1.3 Key Contributions ________________________________________________________ 4 

1.3.1 Domain Corpus for Non-functional Requirements (NFRs) _____________________ 5 

1.3.2 A Multi-Class Classification System for Non-functional Requirements ___________ 5 

1.4 Methodology ____________________________________________________________ 6 

1.5 Thesis Outline ___________________________________________________________ 8 

Chapter 2 Fundamentals of Automatic Classification for Non-Functional Requirements ................ 9 

2.1 Related Work ____________________________________________________________ 9 

2.2 Corpus for Software Requirement __________________________________________ 13 

2.3 Text Preparation for Requirement Classification ______________________________ 16 

2.3.1 Feature Selection Techniques for Requirement Classification _________________ 18 

2.3.2 Dimensionality Reduction Techniques for Requirement Classification ___________ 20 



vii 

 

 

2.4 Training Machine Learning Algorithms for Requirement Classification ____________ 22 

2.4.1 Supervised Learning Approach_________________________________________ 23 

2.4.2 Unsupervised Learning Approach ______________________________________ 27 

2.4.3 Semi-Supervised Learning Approach ____________________________________ 28 

2.4.4 NLP Rule-Based Approach ___________________________________________ 28 

2.5 Requirement Classification and Performance Evaluation ________________________ 30 

2.6 Summary ______________________________________________________________ 33 

Chapter 3 Corpus Design for Non-Functional Requirements ............................................................ 34 

3.1 An Ontology for Non-Functional Requirements ________________________________ 34 

3.1.1 Mapping User Requirements into Non-functional Requirements _______________ 35 

3.1.2 Challenges Faced by NFRs in Requirement Engineering _____________________ 36 

3.1.3 The Role of Corpus in NLP ___________________________________________ 37 

3.2 Single Label NFRs Corpus Design __________________________________________ 38 

3.2.1 Sampling for NFRs _________________________________________________ 38 

3.2.2 Data Collection for Corpus ___________________________________________ 39 

3.3 Gold Standard Multi-Label NFR Corpus Design ______________________________ 40 

3.3.1 Corpus Annotation Through Crowdsourcing ______________________________ 41 

3.3.2 Data for a Multi-label NFR Corpus _____________________________________ 42 

3.3.3 Annotation Framework Design and Settings ______________________________ 43 

3.4 Experiment (Corpus Annotation Procedure) __________________________________ 45 

3.4.1 Evaluation of Results ________________________________________________ 46 

3.5 Conclusion and Future Recommendations ___________________________________ 47 

3.6 Summary ______________________________________________________________ 48 

Chapter 4 Background and Experimental Settings for Deep Neural Networks .............................. 49 

4.1 Background of Deep Neural Network for Text Classification ____________________ 49 

4.2 Distributed Word Representation in Neural Networks __________________________ 51 

4.2.1 Word2Vec Embedding Generation ______________________________________ 52 

4.2.2 Transfer Learning __________________________________________________ 53 

4.3 Feedforward Neural Network ______________________________________________ 54 

4.3.1 Artificial Neural Networks (ANNs) _____________________________________ 54 



viii 

 

 

4.3.2 Convolution Neural Network (CNN) ____________________________________ 55 

4.4 Recurrent Neural Network (RNN) __________________________________________ 57 

4.4.1 Long-Short Term Memory (LSTM) _____________________________________ 58 

4.4.2 Gated Recurrent Unit (GRU) __________________________________________ 59 

4.5 Classification Layer ______________________________________________________ 60 

4.5.1 Activation function _________________________________________________ 60 

4.5.2 Loss Function _____________________________________________________ 61 

4.5.3 Back-propagation ___________________________________________________ 62 

4.6 Optimisation in Deep Learning Architectures _________________________________ 63 

4.6.1 Scholastic Gradient __________________________________________________ 63 

4.6.2 ADAM Optimiser __________________________________________________ 63 

4.6.3 Adaptive Methods __________________________________________________ 64 

4.7 Regularisation in Deep Learning ____________________________________________ 65 

4.7.1 Drop out __________________________________________________________ 65 

4.7.2 Early Stopping _____________________________________________________ 65 

4.7.3 Weight decay ______________________________________________________ 66 

4.7.4 Data Augmentation _________________________________________________ 66 

4.8 Summary ______________________________________________________________ 67 

Chapter 5 Framework Design for an NFR Classification System .................................................... 68 

5.1 . Problem Formulation ___________________________________________________ 68 

5.2 Training Configuration for a Baseline Classification Model ______________________ 69 

5.2.1 Corpus for Training _________________________________________________ 70 

5.3 Training Configuration for DNNs ___________________________________________ 72 

5.3.1 ANN Representation Learner __________________________________________ 73 

5.3.2 CNN Representation Learner __________________________________________ 74 

5.3.3 GRU Representation Learner __________________________________________ 75 

5.3.4 LSTM Representation Learner _________________________________________ 75 

5.4 Classification ___________________________________________________________ 76 

5.4.1 Hyperparameter Settings _____________________________________________ 77 

5.4.2 Hardware and Software Settings _______________________________________ 77 



ix 

 

 

5.4.3 Performance Metrics ________________________________________________ 77 

5.5 Experimental Results _____________________________________________________ 77 

5.6 Summary ______________________________________________________________ 81 

Chapter 6 Custom Data Augmentation Approach and Experimentation ........................................ 82 

6.1 Background ____________________________________________________________ 82 

6.2 Custom Data Augmentation (CDA) Approach _________________________________ 85 

6.3 Training Configuration for DNNs with Data Augmentation and Pretrained Word 

Embeddings _______________________________________________________________ 87 

6.3.1 Pre-trained Word Embeddings _________________________________________ 88 

6.3.2 Hardware/ Software Settings __________________________________________ 88 

6.4 Experimental Results _____________________________________________________ 89 

6.5 Analysis of Classification Models ___________________________________________ 91 

6.6 Summary ______________________________________________________________ 92 

Chapter 7 Extended Experiment and Detailed Analysis of Results .................................................. 93 

7.1 Background ____________________________________________________________ 93 

7.2 Training Configuration for a Baseline Classification Model ______________________ 94 

7.2.1 Experimental Results ________________________________________________ 95 

7.3 Training Configuration for DNNs with Data Augmentation on the Train Set _______ 95 

7.3.1 Experimental Results ________________________________________________ 96 

7.4 Training Configuration for CNN with Custom Data Augmentation on 

Train/Validation Sets Separately _______________________________________________ 99 

7.4.1 Experimental Results ________________________________________________ 99 

7.5 Analysis of CNN Classification Model _______________________________________ 99 

7.5.1 Convergence of the CNN Network ____________________________________ 101 

7.6 Generalisability of the CNN Classifier for NFRs ______________________________ 103 

7.6.1 CNN Results for Custom Data Augmentation on the Entire Corpus ___________ 103 

7.6.2 CNN Results for Custom Data Augmentation on the Train Set Only ___________ 103 

7.6.3 CNN Results for Custom Data Augmentation on the Train/Validation set Separately 

104 

7.7 Summary _____________________________________________________________ 106 

Chapter 8 Conclusion, Limitations, and Future
ix
Recommendations ............................................ 107 



x 

 

 

8.1 Summary of the Thesis __________________________________________________ 107 

8.2 Limitations of the Study _________________________________________________ 110 

8.3 Unexpected Results _____________________________________________________ 111 

8.4 Future Recommendations ________________________________________________ 112 

References .......................................................................................................................................... 114 

Appendix- A: ...................................................................................................................................... 133 

Appendix- B: ...................................................................................................................................... 138 

Appendix- C: ...................................................................................................................................... 139 

Appendix- D: ...................................................................................................................................... 140 

Appendix- E: ...................................................................................................................................... 141 



xi 

 

 

 

List of Tables 

 

 
Table 2- 1: Class-wise Representation of the PROMISE Dataset ...........................................................14 

Table 2- 2: Class wise representation of Concordia corpus ....................................................................15 

Table 2- 3: Preprocessing Technique for Requirement Classification .....................................................17 

Table 2- 4: Feature Annotation Techniques for Requirement Classification ..........................................18 

Table 2- 5: Feature annotation techniques for requirement classification ...............................................18 

Table 2- 6: Dimensionality Reduction Techniques for Requirement Classification ...............................22 

Table 2- 7: Feature Learning Techniques for Machine Learning Classifiers ..........................................29 

Table 2- 8: Analysis of the Performance Measures for the Classification of Requirements ....................32 

 

 

Table 3- 1: Mapping user requirements into FRs, NFRs, and Constraints .............................................. 36 

Table 3- 2: A comparative representation of software quality models ................................................... 38 

Table 3- 3: Definition of selected Non-functional requirements ............................................................ 39 

Table 3- 4: Class-wise distribution of requirements in Custom NFRs corpus ......................................... 40 

Table 3- 5: Dependency among NFRs ................................................................................................... 43 

Table 3- 6: Results from Cohen's Kappa agreement ............................................................................... 47 

 

 

 
Table 5- 1: Class-wise Distribution for Custom NFRs Corpus _______________________________70 

Table 5- 2: Conversions of NFRs Sentence into Sequences _________________________________71 

Table 5- 3: Step-by-Step Conversion of Sentences into Sequence and Padding __________________72 

Table 5- 4: Comparison of Various Representation Learning Approaches based on Statistical 

Performance Measure ______________________________________________________________79 

 

 
Table 6- 1: A Class-wise Distribution of Augmented Data Samples for the NFR corpus .......................88 

Table 6- 2: Comparative Analysis of the Results Among the Baseline, EDA, and CDA Approaches 91 

 

 

 
Table 7- 1: Data Distribution for the Custom NFR corpus with Augmented Data_________________95 

Table 7- 2: Comparative Analysis of the Results Among the Baseline, EDA, and CDA Approaches 98 

Table 7- 3: Comparative Analysis of the Results for CNN Augmented with the CDA Approach on 

Train Sets vs Train/validation sets ___________________________________________________ 100 



xii 

 

 

 

List of figures 

 

 

Figure 1- 1: Conceptual Framework for Classification of NFRs _______________________________5 

Figure 1- 2: A Flowchart for Framework Design __________________________________________7 

Figure 3- 1: MAMA Framework ............................................................................................................41 

Figure 3- 2. Recruitment of Annotators .................................................................................................43 

Figure 3- 3. Annotation Specification and Guidelines (a) ......................................................................44 

Figure 3- 4. Annotation Specifications and Guidelines (b) .....................................................................44 

Figure 3- 5. Annotation Specifications and Guidelines (c) .....................................................................45 

Figure 3- 6. Corpus Annotation Framework Design Procedure ..............................................................46 

Figure 4- 1: Representation of Word2Vec Embeddings CBOW and Skip-gram Model (Mikolov et al. 

2013) __________________________________________________________________________52 

Figure 4- 2: Single Label Perceptron vs Multilabel Perceptron (Camuñas-Mesa et al., 2019) _______54 

Figure 4- 3: A Simple Architecture of Artificial Neural Network (Rahman et al, 2019) ____________55 

Figure 4- 4: A layered Architecture of Convolution Neural Network (Phung and Rhee, 2019) ______56 

Figure 4- 5: An Illustration of Long-Short term Memory (Chung et al. 2016) ___________________58 

Figure 4- 6: An Illustration for GRU (Figure Source: Chung et al. 2016) _______________________59 

Figure 4- 7: An Internal Function Involved in Classification (Tzanis and Alimissis, 2021) _________60 

Figure 5- 1: Framework for NFR Classification, including Phases of Pre-processing, Embedding 

Generation, Feature Learning, and Classification _________________________________________69 

Figure 5- 2: Transformations from Sentences to Word Embeddings and Features ________________73 

Figure 5- 3: ANN Architecture for NFR Classification _____________________________________73 

Figure 5- 4: CNN Architecture for NFR Classification _____________________________________74 

Figure 5- 5: GRU Architecture for NFR Classification _____________________________________75 

Figure 5- 6: LSTM Architecture for NFR classification ____________________________________76 

Figure 5- 7: Word Cloud Generation for the Words in the Corpus ____________________________78 

Figure 5- 8: Convergence Plots Concerning the Number of Epochs Vs Accuracy for the Baseline 

Models _________________________________________________________________________80 

Figure 5- 9: Convergence Plots Concerning the Number of Epochs Vs Loss for the Baseline Model 80 



xiii 

 

 

Figure 6- 1: A framework representing the procedure for Custom data augmentation _____________86 

Figure 7- 1: Convergence Plots Concerning the Number of Epochs for Accuracy with the Baseline 

Models _________________________________________________________________________97 

Figure 7- 2. Convergence Plots Concerning the Number of Epochs for Loss with the Baseline Models 

 97 

Figure 7- 3: Convergence Plots Concerning the Number of Epochs for Accuracy on the Trainset with 

EDA and Pre-trained Word Embeddings _______________________________________________97 

Figure 7- 4: Convergence Plots Concerning the Number of Epochs for Loss on the Trainset with EDA 

And Pre-trained Word Embeddings ___________________________________________________97 

Figure 7- 5: Convergence Plots Concerning the Number of Epochs For. Accuracy on the Trainset with 

CDA and Pre-trained Word Embeddings _______________________________________________98 

Figure 7- 6: Convergence Plots Concerning Several Epochs for Loss on the Trainset with CDA and 

Pre-trained Word Embeddings _______________________________________________________98 

Figure 7- 7: CNN Convergence with Only Train Set Augmentation __________________________ 102 

Figure 7- 8: CNN Convergence with Both Train/Validation Augmentation Performed Individually 102 

Figure 7- 9: CNN Convergence with Train/Validation Augmentation Performed Before Data Split 102 

Figure 7- 10: Confusion Matrix for CNN Results for Custom Data Augmentation on the Entire Corpus 

 105 

Figure 7- 11: Confusion Matrix for CNN Results for Custom Data Augmentation on the Train Set Only 

 105 

Figure 7- 12: Confusion Matrix for CNN Results for Custom Data Augmentation on Train/Validation 

Set Separately ___________________________________________________________________ 105 



xiv 

 

 

 

List of Equations 

 

 
Eq2- I __________________________________________________________________________31 

Eq2- II _________________________________________________________________________31 

Eq2- III _________________________________________________________________________31 

Eq2- IV _________________________________________________________________________32 

 

 

Eq3- I __________________________________________________________________________46 

 

 

Eq4- I __________________________________________________________________________53 

Eq4- II _________________________________________________________________________62 

Eq4- III _________________________________________________________________________62 

 

 

Eq5- I __________________________________________________________________________68 

Eq5- II _________________________________________________________________________69 

Eq5- III _________________________________________________________________________69 



 

xv 

 

 

 

List of Symbols 

 

 

 
D Dataset 

𝐴𝑚 Measure to estimate the quality of the agreement among 

annotators 

𝑃𝑜 Probability of observed agreement 

𝑃𝑒 Probability of expected agreement 

R Set of real numbers 

𝛾 Classification Function 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

{C1, C2, C3,….Cn} Set of labels 

N Set of Natural numbers 

log Logarithm with base e 

S An arbitrary set 

x Input space 

yˆ Output space 

 

∅ Learnable parameter 

Q Augmented dataset 



 

xvi 

 

 

𝑡~ Predicted Class label 

  

𝑅𝑀 Extracted Representation 

{𝑥1𝑥2𝑥3, … . . , 𝑥𝑁} Set of requirements 

∅𝑒𝑎𝑛𝑑 𝛽𝑒 Weights 

𝑓(ℎ𝑖) Activation Function 

r Reset gate 

z Update gate 

𝜎𝑧 Classification function 

𝑗𝑐 Predicted class 

 

  



xvii 

 

 

List of Abbreviations and Acronyms 

 

 

 

 
FRs 

 

NFRs 

Functional requirement/s 
 

Non-functional requirement/s 

RB Rule-Based 

ML Machine Learning 

NN Neural Network 

DNN Deep Neural Network 

NLP Natural language processing 

SL Supervised Learning 

USL Un-Supervised Learning 

ANN Artificial Neural Network 

CNN Convolution Neural Network 

GRU Gated Recurrent Unit 

LSTM Long-Short Term Memory 

CBOW Continuous Bag of Word 

DA Data Augmentation 

GSC Gold Standard Corpus 

SRS Software Requirement Specification 

EDA Easy Data Augmentation 

CDA Custom Data Augmentation 



xviii 

 

 

List of Publications 

 

 
The following papers are based on the research presented in this thesis. They have all been 

peer review and published. 

 

 

• Sabir, M., Banissi, E., Child, M. (2022). Custom Data Augmentation Technique 

(A Deeper Insight). In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F. (eds) 

Information Systems and Technologies. 

• Sabir, M., Banissi, E., Child, M. (2021). A Deep Learning-Based Framework for 

the Classification of Non-functional Requirements. In: Rocha, Á., Adeli, H., 

Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications 

in Information Systems and Technologies. 

• Sabir, M., Chrysoulas, C., Banissi, E. (2020). Multi-label Classifier to Deal with 

Misclassification in Non-functional Requirements. In: Rocha, Á., Adeli, H., Reis, 

L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in 

Information Systems and Technologies. 



1 

 

 

Chapter 1 Introduction 

 

 
1.1 Overview 

In software engineering, requirements are used to describe the framework for the 

software system along with any limits on the development process. The method of 

elicitation and formulation of those specifications is called requirement engineering. 

These specifications include a framework for consensus on what to do with the 

software system, and a basis for evaluation, verification, and enhancement. 

Requirement engineering process provides an estimation of implementation costs and 

schedules. Requirement analysts encounter two types of requirements: functional 

requirements (FRs), which describe the functions, tasks, or behaviours that a system 

must support and non-functional requirements (NFRs), which represent a system’s 

particular qualities (Rahman, 2013). 

Stakeholders use natural language to express their requirements. However, NFRs are 

abstractly evoked (Wilson, 1999). FRs are the main focus for the developers, while 

NFRs are left unaddressed (Barmi, 2011). In practice, various design and architectural 

decisions depend on NFRs (Matoussi, 2008; Felfernig, 2012), resulting in increased 

project failure rates (Rao, 2011; Rahman, 2013). According to Lawrence (2001), NFRs 

are rated as one of the ten most significant risks in requirement engineering. Many 

software systems have faced cost and schedule overruns due to poor handling of NFRs 

(Rao & Gopichand, 2011). Examples of poor NFR management include the London 

ambulance system (Finkelstein, 1996), the Starbucks electronic system (Miners, 2015), 

and electronic health records in England (Bertman, 2010), all of which failed due to 

issues with performance, dependability, and usability, among other things. The 

identification of NFRs is extremely important in the realm of requirement engineering. 

In practice, the discovery and analysis of NFRs is mostly a manual process that is time- 

consuming and subject to the will and interest of the client or developers. The field of 

requirement mining, on the other hand, has developed as an active area of research 

with a variety of automated and semi-automated techniques being offered for eliciting, 

analysing, and tracing FRs and NFRs. 



Introduction 

2  

 

Automatic identification and classification methods help to save time and effort for 

requirement engineers by reducing the amount of manual work required to process 

NFRs. This study proposes an automated classification of NFRs based on multiple 

classes using deep learning techniques. Timely detection of NFRs and complete 

identification of requirements will benefit stakeholders in a practical way, such as 

facilitating the prioritisation of requirements, better management of resources (which 

will help to achieve increased customer satisfaction), and more valuable and higher 

quality products, and ultimately, more substantial organisational competitiveness. 

The remainder of this chapter is organised as follows. Section 1.2 describes the 

motivation for this study based on limitations of the existing solutions. Section 1.3 

presents contribution of this study. The research methodology is described in section 

1.5, and finally, the thesis structure is outlined in section 1.5. 

1.2 Motivation 

Today, the ability of machines to interpret and extract information from natural 

language is one of the central areas of research in artificial intelligence. Natural 

language processing (NLP) is a term used to describe a study that aids computers in 

solving problems, including text classification, machine translation, natural language 

generation, reading comprehension, and sentiment analysis. 

Automatic requirement classification is becoming increasingly popular because it can 

save time invested in the manual labelling of requirements, thus increasing 

transparency in requirements engineering process. Software requirement classification 

differs from other forms of text classification, such as spam detection, language 

identification, and sentiment analysis, where the labels assigned to the text do not 

represent semantic information (Griffiths et al., 2007). The labelling of software 

requirements, on the other hand, should be based on semantic characteristics since the 

label captures some semantic or topical information (Joachims, 2002). 

Previously, this task has been addressed mainly using machine learning techniques. 

Traditional supervised machine learning algorithms necessitate a significant amount 

of feature engineering effort, which can be time-consuming. During the last several 

years, deep neural network (DNN) approaches have advanced to the point where  

 



Introduction 

3  

 

models based on neural networks may give state-of-the-art classification predictions 

using features that have been directly learned from data (LeCun et al., 2015; Sze et al., 

2017). There is an increasing amount of work in this discipline with visual data. 

The field of NLP is presently being overtaken by deep learning (DL) based solutions 

with the help of neural networks (NNs). However, these solutions have significant 

drawbacks. First, they generally require a significant amount of labelled data. Model 

overfitting and poor performance are also major concerns since the vast dynamic range 

of features may not be helpful in classification (Krizhevsky et al., 2017). The goal of 

this research is to investigate the concept of data augmentation in the pre-processing 

of DNNs to tackle the problem of data sparsity for the classification of NFRs and word 

embeddings in order to enrich the model with semantic knowledge. According to the 

notion of data augmentation, changing data to train a neural network can help the 

network perform better (Cagli et al., 2017). Data augmentation has proven successful 

in a variety of deep learning tasks ranging from image classification (Krizhevsky et al., 

2017) to speech recognition (Graves, 2014; Amodei et al., 2016; Shorten and 

Khoshgoftaar, 2019). However, approaches that can be utilised for images and sounds 

are not acceptable for text due to the risk of losing the meaning of a sentence. This 

work primarily focuses on the augmentation of textual data and proposes a new data 

augmentation approach that helps to bridge this gap. Furthermore, in the case of data 

sparsity, transfer learning techniques have emerged as a suitable option (Perera and 

Patel, 2019). This study makes use of pre-trained word embeddings to train the DNNs. 

The classification of software requirement is undoubtedly an area of interest not only 

in academia but also in industry. The findings of this study can be used as a reference 

or guideline for developers and researchers interested in this domain. 

1.2.1 Shortcomings in Existing Solutions 

In the literature, two standard approaches (i) a rule-based (RB) approach and (ii) 

machine learning (ML) techniques were discovered as viable options for requirement 

classification. RB techniques use a set of hand-crafted linguistic rules to group text into 

different classes. However, these techniques require in-depth subject knowledge and a 

significant amount of effort on the part of specialists to develop rules. It is more 

difficult to maintain and upgrade these systems. As the number of rules increases,  



Introduction 

4  

 

adding a new rule may render the current ones ineffective. ML-based techniques can 

address these challenges by using supervised ML algorithms to automatically derive 

rules from pre-labelled data. ML involves the collection of requirements, 

classifications, and the validation of these classifications. In relevant studies, SVM and 

Nave Bayes were extensively utilised in ML-based classification, and they have been 

demonstrated to produce good outcomes, outperforming RB approaches (Binkhonain 

and Zhao, 2019). However, these methodologies are impractical and have several 

shortcomings, including (i) the absence of NFR representation, (ii) the restriction of a 

domain corpus, (iii) the constraints of feature training, (iv) the inability to handle 

multiclass/multi-label classification, and (v) overfitting and generalisation. 

1.3 Key Contributions 

This thesis aims to design an optimal framework for the classification of non- 

functional requirements that includes a unique method of data augmentation, word2vec 

embeddings, and a deep learning model based on a newly created NFR corpus. 

Figure 1- 1 shows the conceptual framework for this study. More specifically, the 

study’s contributions are divided into two phases motivated by the size of training data 

necessary for deep learning-based systems and the limitation of a domain corpus. 

 
 

Figure 1- 1: Conceptual Framework for Classification of NFRs 

 

 

 



Introduction 

5  

 

1.3.1 Domain Corpus for Non-functional Requirements (NFRs) 

This study proposes two approaches for creating a corpus of NFRs. 1) it seeks to 

construct a corpus dedicated to NFRs; to the best of our knowledge, this will be the 

first corpus in this field to include a representative sample. 

As an extension to this, 2) it proposes a framework for developing a multi-label corpus 

for NFRs. Software requirements have not been explored as multi-label classifications, 

and one obvious reason for this is the unavailability of such domain corpus. Therefore, 

the proposed framework may be used as a resource for future research. 

1.3.2 A Multi-Class Classification System for Non-functional Requirements 

This research also presents a DNN-based methodology for dealing with multiclass 

classification problems. Usually, these models are trained with a huge commercial 

dataset; the idea is to benefit from the strength of these models with a small dataset. It 

would be interesting to discover which state of the art models are capable of learning 

with a smaller dataset. This can form a core reference point for future research in this 

field. 

As evident from the literature, DNNs require a large corpus, which is practically 

difficult to obtain within the scope of this study. Therefore, this work explores another 

strategy to deal with data sparsity in the form of pre-trained word embedding and data 

augmentation to optimise the NFR classification system. 

This research presents a unique data augmentation technique that enhances data size 

while retaining domain knowledge. It would be fascinating to investigate how pre- 

trained word embedding and a data augmentation technique affect the learning of the 

neural networks. The results of this study could benefit future researchers in drawing 

knowledge based on the impact of the adopted methodology. 

1.4 Methodology 

It has been determined that the research methodology will investigate and evaluate a 

series of techniques directed at the classification of non-functional requirements to 

achieve the research goal and provide a solution to the associated research issues, as 

described in the previous sections. The start point for the study is simply to apply  



Introduction 

6  

 

straightforward, well-established, standard DNNs for the classification task at hand. 

The purpose is to provide a benchmark against which other proposed techniques can 

be compared and assessed. 

For the experimentation, the study will assess the performance of four state-of-the-art 

DNNs, artificial neural network (ANN), convolution neural network (CNN), long- 

short term memory (LSTM), and gated recurrent unit (GRU). 

When it comes to the second strategy, it is also conjectured that using some data 

augmentation that synthetically generates more data and pre-trained embeddings that 

transfer knowledge learned from a previous large corpus to a domain of interest will 

help to train the classifier. 

The study further creates a set of research objectives that will be addressed through 

experimentation and analysis to build and develop an efficient multiclass NFR 

classification system, as shown in Figure 1- 2. 

 

 
 

Figure 1- 2: A Flowchart for Framework Design 
  



Introduction 

7  

 

 

▪ To obtain a single label NFR corpus based on a representative sample. 

▪ To design a framework for building a multilabel gold standard NFR corpus. 
 

▪ To design a deep learning model most appropriate for the classification of 

NFRs. 

▪ To investigate the effect of pre-trained word embeddings and data augmentation 

approach over the performance of the baseline NFR classification system. 

▪ To analyse the generalisability of the designed NFR classification system over the 

selected NFRs. 

The overall performance of the proposed framework will be evaluated using standard 

metrics used for multiclass classification problems, including precision, recall, and F1- 

score. The main findings will be analysed based on the research aim and objectives, 

comparison between neural networks, word embeddings, and data augmentation 

approach. 

1.5 Thesis Outline 

This thesis is organised as follows: Chapter 2 provides some background on the 

classification of FRs/NFRs and current state-of-the-art techniques used in text 

classification. It provides an insight on the existing corpus in the NFR domain, the 

formal NLP rule-based approach, the machine learning approach, feature selection 

techniques, and finally, a discussion about the limitations of existing studies. 

Chapter 3 addresses the first two research objectives and provides the theoretical 

background for defining NFRs. It discusses the representative sample for NFRs and, 

based on that sample, it creates an NFR corpus that is further utilised in the experiments 

in this study. It also presents a framework for obtaining a gold standard in multi-label 

NFR corpus annotation. Finally, the results for annotation are presented at the end of 

this chapter. Chapter 4 provides the background for deep neural networks, specifically 

ANN, CNN, GRU and LSTM, for text-based classification, and the application of word 

embedding, and transfer learning are analysed for the given classification task. It 

discusses various hyperparameter tuning and overfitting issues in deep neural networks.  

  



Introduction 

8  

 

Chapter 5 consists of experiments based on the research questions of the proposed 

classification approach. It focuses on the experimental setting, corpus, word 

embedding and representation model. Chapter 6 provides an insight into the data 

augmentation in the deep learning domain, extending to the practical implementation 

of the proposed data augmentation approach. Chapter 7 presents the results and 

analysis based on the experiments performed in Chapters 5 and 6. Furthermore, 

Chapter 8 discusses shortcomings of the current study and proposes future directions 

for potential improvements. 



9 

 

 

Chapter 2 Fundamentals of Automatic Classification for Non- 

Functional Requirements 

 

 
Automatic text classification is a well-studied topic in the field of natural language 

processing. The development of NLP techniques has embarked in to the classification 

of functional and non-functional requirements to manage user specifications into pre- 

determined classes. 

This chapter provides an in-depth study of the relevant literature. Section 2.2 provides 

step wise guide for the reader through the classification process in terms of dataset and 

feature selection strategies. It further explores the use of a rule-based method and 

machine learning approaches to classify requirements. 

2.1 Related Work 

Text classification was introduced as a research topic by Maron (1961) and has become 

an important issue in information science due to increased attention over the last two 

decades. Traditionally, text classification models have been trained with labelled data 

in a supervised setting. Text classification is the activity of assigning a label to a piece 

of text (document/sentence) from a predefined set of semantic tags (Zha & Li,2017). 

Different applications include indexing documents to regulate vocabulary, filtering 

irrelevant content, categorising web pages, email management, genre detection, and 

many others. Text classification is now a prevalent practice because most content is 

digitally generated and processed. Company and personal correspondence, scientific 

and entertaining posts, conferences, and patient data are just a few examples of 

electronic text collections. These enormous text data require automatic storage and 

retrieval methods provided by text classification. 

The classifier's goal in text classification is to learn a classification function (or model). 

For example, consider a dataset of 'D' documents and a set of 'C' classes/labels, which 

makes a set of records of training datasets represented as (D; C). This categorisation 

task might be single-label or multi-label. The single label can be further classified as  



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

10  

 

binary or mutually exclusive classes and multi-class classification. For example, X 

belongs to the dataset “D”, and the class “C” represents a set of classes C1 and C2. In 

binary, X can be classed as either a C1 or a C2. In the multiclass scenario, however, 

there are the additional labels C1, C2, C3, ... Cn, and X can be classified in any but one 

of the supplied labels. 

On the other hand, in multi-label categorisation, an instance may be associated with 

numerous labels at the same time. In the preceding example, X can belong to C1, C2, 

or more classes at the same time. 

This section presents work related to the detection and classification of FRs and NFRs. 

Seventeen (17) studies have been reviewed for this analysis; ML techniques have been 

found in 13 selected studies, whereas four have adopted the RB approach. These 

algorithms fall into three types, comprising eight supervised learning (SL), three 

unsupervised learning (USL), and two semi-supervised learning (SSL) approaches, as 

presented in Table A- 1. 

A noticeable contribution to identify NFRs from structured and unstructured 

documents was first presented by Cleland-Huang et al. (2006), who developed a 

classifier that employs a list of keywords to classify NFRs from requirement 

documents obtained from Siemens Logistics and Automotive Organization. In another 

study by Cleland-Huang et al. (2007), an improved iterative approach was presented 

to classify security, performance, and usability. After conducting a series of tests, the 

proposed NFR classifier was proved to be unable to identify all of the NFRs, yet it 

emerged as a starting point for various studies in this domain. 

Hussain et al. (2008) suggested a supervised automated process of detecting NFR 

sentences by using a text classifier equipped with a part-of-speech (POS) tagger for 

both binary and multi-class NFR classification. The classifier makes use of syntactic 

features and keyword characteristics for training. The results reported in this paper 

outperformed the recent work in the field and achieved a higher accuracy of 98.56% 

using 10-folds-cross-validation over the same data used in the literature.  

Another study by Zhang et al. (2011) employed n-grams, individual words, and multi- 

word expressions (MWEs) as index terms at various levels of linguistic semantics  



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

11  

 

features to identify FRs and NFRs. The classifier is thus an SVM with a linear kernel. 

Soon after that, Slankas and Williams (2013) built an NFR locator utilising KNN, 

SVM, and Naive Bayes methods. When using a word vector representation of the 

NFRs, an SVM was twice as effective compared to the Naïve Bayes classifier. 

Furthermore, a KNN classifier with a unique distance metric outperformed the optimal 

Naïve Bayes classifier. Misclassifications were made as a result of the tool, and 

generalisability concerns were also present. Slankas discovered that some NFR 

qualities are linked to particular traits. 

A supervised learning-based approach for mining and classifying FRs and NFRs in 

agile software development was proposed by Sunner and Bajaj (2016). A genetic 

algorithm was utilised with a neural network to classify FRs and NFRs from multiple 

documents. The approach was compared with a model based on SVM, and the results 

indicated that the cluster neuro-genetic approaches outperform SVM and RBF kernels, 

according to the findings. However, there isn't any real-world application for this 

research. Thus, it can't be evaluated for usefulness. 

Kurtanovic and Maalej (2017) developed and tested a multiple supervised machine 

learning technique based on meta-data, lexical, and syntactic characteristics, including 

usability, security, operational, and performance criteria. Many feature extraction and 

feature selection strategies were employed to improve the accuracy of classification 

algorithms by Abad et al. (2017). Using the tera-PROMISE repository, a study found 

that pre-processing an existing classification technique enhanced its performance. 

Mahmoud (2017) proposed a semi-supervised approach for extracting software 

requirements based on an SVD model used with cosine similarity to classify FRs and 

NFRs. When working with the Tera PROMISE dataset, he used different 

representation models, including the trigram, bigram representations, and the LSA 

with cosine distance. He also tried out the TF-IDF model. Promising results were 

observed when cosine similarity was implemented with the trigram. Casamayor et al. 

(2010) proposed a semi-supervised technique based on user feedback, iteratively 

collecting data using an expectation maximisation strategy to develop a classifier for 

NFRs. For the initial training of the binary classifier, the technique utilises a multinomial 

naive Bayes classifier with expectation maximisation (EM) and claims to achieve  



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

12  

 

better results than the supervised approach discussed earlier.A semi-supervised 

semantic similarity-based technique based on the word2vec model and prominent 

keywords was developed by Younas et al. (2019) to automatically detect NFRs. The 

PROMISE-NFRs dataset was used for this investigation. NFRs identification based on 

semantics was a suitable starting point; however, the results are modest and require 

additional investigation, as the manual identification of indicator terms is not only 

labour intensive but also makes the detection of NFRs dependent on the keywords, so 

there are chances that it will not be able to produce the same effect with other datasets. 

Similarly, the results are dependent on the word2vec model, which is based on 

Wikipedia vocabulary. 

With the use of a clustering algorithm, Mahmoud and Williams (2016) suggested an 

unsupervised technique that uses the semantic meaning of the texts in question to detect 

NFRs. A systematic analysis of a series of word similarity methods and clustering 

techniques was used to generate semantically cohesive clusters of FR words. These 

clusters were then classified into various categories of NFRs based on their semantic 

similarity to basic NFR labels. The results show that this approach worked well for 

FRs on data from SafeDrink, SmartTrip, and BlueWallet. 

Recently Baker et al. (2019) conducted the first study to adopt a state-of-the-art ANN 

and CNN for the classification of NFRs. The PROMISE dataset was used in the 

experiment. Their dataset contained five classes. Their results show that CNN 

produced better results than ANN. However, inexperience and a lack of pragmatism 

are evident in the tool's design. 

RCNL is a multilayer ontology established by Vlas and Robinson (2012) that utilises 

a keyword-based approach that uses generic English grammar at the lower levels for 

the discovery of requirements and uses two parsing schemes to implement the design. 

They compared the result of their study with that of Cleland (2006). 

Wen ontology language was used to classify the requirement into ISO/IEC 9126 

ontology classes by Rashwan et al. (2013) using an SVM. The ISO 9126 quality model 

was used by Singh et al. (2016) to identify and classify NFRs and their subcategories. 

Based on thematic role and NFR incidence, an RB classifier is proposed to classify 

NFRs in this work. Two corpora were used to examine the findings. The results  



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

13  

 

indicate there are more highly scored sentences in the PROMISE corpus than in the 

Concordia Corpus. Sharma et al. (2014) proposed a technique to detect NFRs based on 

syntactic and semantic elements by parsing the requirements. Here, the presence of 

certain combinations of relationships among the specified feature as pattern-based 

rules. 

Using the requirement sentence-based classification algorithms of FSKNN, Badave et 

al. (2015) proposed an automated system for identifying non-functional requirements 

(NFRs) that incorporates semantic factors such as term development by hypernym and 

measurement of semantic relatedness between the term and each category of quality 

aspects based on ISO / IEC 9126. 

The studies discussed in this section have revealed a general process for classifying 

NFRs. There are three primary stages to this method: 1) the text preparation phase, 

which entails pre-processing the requirements and extracting meaningful features from 

it; 2) the learning phase, which incorporates the RB or ML approach; and 3) the 

evaluation phase, which implies evaluating the approach of an ML algorithm to 

classify NFRs. All these phases of text classification are discussed in the following 

section in this chapter. 

2.2 Corpus for Software Requirement 

The term corpus (plural corpora1) was introduced by Sinclair (1998) and refers to an 

electronic collection of authentic texts or speeches produced and preserved in a machine-

readable format by language speakers. Later, there was considerable discussion regarding 

the fundamental objective as well as the design criteria for a corpus. McEnery et al. 

(2006)1 argue that it is a set of text-based standards, and it should be machine-readable, 

authentic, and representative of a specific language or variety. The term “automatic” 

refers to the classification of software requirements based on two common approaches: 

rule-based (RB) approaches and machine learning (ML) based techniques. The ML-based 

systems produce better results as compared to RB approaches.  

1 McEnery (2003) pointed out that corpuses is perfectly acceptable as a plural form of corpus. 

  



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

14  

 

However, previous studies lack theoretical evidence for including certain NFR 

categories for classification, and one open challenge is limitation of the NFR corpus. 

Only two datasets exist, namely, the PROMISE dataset (Cleland-Huang et al., 2007) 

and the Concordia corpus (Rashwan et al., 2013), which contain attributes of FRs and 

NFRs. The PROMISE corpus comprises 15 SRS documents created by MSc students 

at DePaul University. It has 255 FRs and 370 NFRs, which expand to the following 

categories: functionality, availability, fault tolerance, legal, look and feel 

maintainability, operational, performance, portability, scalability, security, and 

usability. In this dataset, the NFRs do not have equal training examples foe each 

attribute. 

Table 2- 1: Class-wise Representation of the PROMISE Dataset 

 

Requirements in the PROMISE Dataset No. of Samples 

Availability 21 

Fault tolerance 10 

Legal 13 

Look and feel 38 

Maintainability 17 

Operational 62 

Performance 54 

Portability 1 

Scalability 21 

Security 66 

Usability 67 

Functional 255 

Total Sample Size 625 

 

Table 2- 1 shows the class-wise sample distribution in the PROMISE dataset; 

disproportionate samples in a dataset can create bias in the training phase. The NFR



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

15  

 

 

characteristics that were chosen to be a part of the PROMISE dataset are not the critical 

NFR attributes that would be required to describe the whole domain of the dataset. 

Furthermore, this corpus has a misclassification when it comes to labelling 

requirements (Mahmoud, 2017). Each of the requirement sentences in this corpus is 

composed of a single type of requirement sentence. After some time, this corpus was 

upgraded and renamed as the improved PROMISE corpus to reflect the new 

information. On the other hand, in the Concordia corpus, NFRs are classified based on 

a requirements ontology, modelled using the Web Ontology Language (OWL). Within 

the intra-model dependence perspective, there are several distinct types of NFRs 

divided into sub-categories according to the ISO 9126 standard. Functional 

requirements (FR), external and internal quality (accessibility, accuracy, 

configurability, dependability, efficiency, functionality, maintainability, portability, 

reliability, security and usability/utility), constraints, and non-functional requirements 

are the four significant categories classified by the Concordia RE corpus, as shown in 

Table 2- 2. 

Table 2- 2: Class wise Representation of Concordia Corpus 
 

Doc. NR FR CO US SE EF FU RE Total 

1 59 17 26 7 1 1 0 1 112 

2 114 32 20 7 10 1 1 2 187 

3 180 54 14 6 8 4 1 1 268 

4 191 19 21 0 2 3 13 5 254 

5 213 23 13 8 2 5 1 0 265 

6 1365 642 16 0 34 0 0 0 2057 

Total 2122 787 110 28 57 14 16 9 3140 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

16  

 

 

It is intended to be used as an annotation exercise for the entire SRS text that has been 

prepared, where the SRS document was used as input and then annotated on a sentence-

by-sentence basis based on the categorisation described above. The Concordia corpus 

was created for a specific platform (the GATE annotation platform), which makes it 

undesirable to academics working on different platforms. 

2.3 Text Preparation for Requirement Classification 

The accuracy of the classification system is directly related to how clean and accurate 

data is used for training (Breck et al., 2019). Text pre-processing and feature selection 

are two procedures that are considered essential to obtain a refined dataset. This step 

takes textual requirements as input and applies different NLP techniques to pre-process 

the data. It is the first stage in dealing with datasets. According to Agarwal and Yu 

(2009), these steps involve techniques that help refine and clean the data to support the 

algorithm to speed up identifying keywords without disturbing the original syntax of 

the sentence. These can range from basic syntactic routine pre-processing to more 

complex semantic feature extraction approaches dependent on the requirement. Table 

2- 3 shows the pre-processing techniques used in related studies and defines the most- 

used feature and techniques to cleanse the data. It includes syntactic features (i.e., stop 

word removal, stemming, lemmatisation). These ensure that documents are processed, 

non-alphabetic characters and mark-up tags are discarded, stop words are removed, 

and morphological stemming is performed. Most of the studies used more than one 

pre-processing operation on their data, as shown in the last column of Table 2- 3. 

Another technique used frequently in the related studies as part of speech (POS) 

tagging, categorised as advanced text categorisation pre-processing. This technique 

performs parsing (a syntactic procedure in which the POS information and 

dependencies of sentences are collected) to annotate the text into different segments 

like subject, verb, and object of the sentence. 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

17  

 

 

Table 2- 3: Preprocessing Technique for Requirement Classification 
 

Feature Technique Source 

Tokenisation Words, keywords, phrases, symbols (Casamayor et al., 2010; Kurtanovic and Maalej, 2017; Sunner 

and Bajaj, 2016) 

Stop word 

removal 

Removing words that do not convey 

any meaning 

(Casamayor et al., 2010; Kurtanovic and Maalej, 2017; Sunner 

and Bajaj, 2016) 

Stemming Convert into a root form (Casamayor et al., 2010; Hussain et al., 2008; Kurtanovic and 

Maalej, 2017; Rashwan et al., 2013; Sunner and Bajaj, 2016) 

Lemmatisation Removing inflectional endings (Kurtanovic and Maalej, 2017; Sharma et al., 2014; Slankas 

and Williams, 2013) 

Temporal 

tagging 

Selecting time, weight, and dates as 

features 

(Abad et al., 2017; Casamayor et al., 2010; Kurtanovic and 

Maalej, 2017; Sunner and Bajaj, 2016) 

POS tagging Labelling as a subject, verb, or object 

to different parts of the sentence 

(Abad et al., 2017; Hussain et al., 2008; Kurtanovic and 

Maalej, 2017; Vlas and Robinson, 2012) 

Semantic features are another type of pre-processing that selects token or phrase-level 

features from the text to annotate (Haury et al., 2011). They remove unnecessary 

components from a text to improve the algorithm's execution speed as well as the 

classification accuracy and precision (Challita et al., 2016). Table 2- 4 provides the 

description of feature annotation and its adoption in different studies in the related 

literature. Like semantic role labelling, chunking, named-entity recognition, and N- 

gram appeared as the most commonly used techniques. These techniques are based on 

annotating the text on a single word or multiple words that are considered a 

representative feature of that text. In an N-gram model, each of the n consecutive 

tokens is regarded as a separate dimension. The N-gram was used to select the most 

meaningful word (unigram) or group of words (bigram or multi-word expression) that 

uniquely characterise the sentence. When each token is viewed as a different 

dimension, hyperspace is called a unigram. N-grams can be used alone or with 

dimensionality reduction methods (described in section 2.5). Compared to other 

semantic feature annotation strategies (Mahmoud, 2017; Zhang et al., 2011), N-gram 

was superior at detecting semantic dependence between words. At the same time, some 

unique features like a singular unit, phrasal unit (Kurtanovic and Maalej, 2017), and 

entity tagging were also seen in practice (Abad et al., 2017). 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

18  

 

 

Table 2- 4: Feature Annotation Techniques for Requirement Classification. Table 2- 4 

describes various feature annotation techniques and their functionality. It is significant 

to note that some of these techniques work at different levels of text, requiring the use 

of other techniques as a prerequisite for their effectiveness. 

Table 2- 5: Feature Annotation Techniques for Requirement Classification 
 

Scheme Description Pre-requisite Annotation level Source 

Chunking Delimiter based approach POS tagging Phrase level (Vlas and Robinson, 

2012 

Semantic 

role labelling 

Thematic role labelling POS tagging Syntactic labels (Singh et al., 2016) 

Ngram Labelling one, two or three 

words in the sentence 

POS tagging Unigram, Bigram, 

or trigram 

(Zhang et al., 2011; 

(Mahmoud, 2017) 

Named entity 

recognition 

Identification of keywords POS tags, chunk tags, 

prefix, and suffix 

Token level 
(Hussain et al., 2008; 

(Abad et al., 2017) 

 

2.3.1 Feature Selection Techniques for Requirement Classification 

The basic idea of this process is to adopt a simple and efficient approach to reach a 

smaller but discriminative feature set. In the feature selection technique, a subset of 

original features is selected (Walowe Mwadulo, 2016). These selected components are 

then used to train and test the classifiers. For instance, in the case of POS tagging, only 

the tagged part of the requirement is used, and the remaining text is discarded. 

Similarly, in the N-gram, the part of the text that covers the N-gram is used for training. 

This process then converts those selected features into vectors using statistical 

techniques. The association between each input variable and the target variable is 

evaluated using the statistic. The choice of statistical measures for both the input and 

output variables is dependent on the data type, and the input variables with the 

strongest correlation with the target variable are selected. This process reduces the 

training time and overfitting by preserving data characteristics for interpretability 

(Tomar and Agarwal, 2014). These are used in combination with the ML algorithm to 

improve the accuracy of classification (Varghese, 2012). 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

19  

 

 

The feature selection can be either unsupervised or supervised. Unsupervised feature 

selection techniques ignore the target variable by removing redundant variables using 

correlation, whereas supervised methods are transformed based on three techniques. 

Wrapper, filter, and embedded techniques are used to extract features from the text in 

supervised methods. According to a comparative study by Wu (2016), the wrapper 

method selects features based on classifier performance. A predictive model is used to 

add one feature at a time in each round. 

On the contrary, the filters extract features from the data without learning them. 

Instead, selecting the subset of features based on a user-specified threshold, assuming 

that features with a higher variance will have more useful information (Wu, 2016). 

Still, it does not take account of the relationship between feature variables. In related 

studies, Zhang et al. (2011) used information gained to train the ML algorithm. Filter 

methods are generally faster than wrappers (Haury, 2011). Whereas, wrappers require 

cross-validation for each feature, making them computationally expensive (Khalid and 

Nasreen, 2014). By contrast, the filter approach is computationally efficient, as they 

work independently from the classifier. 

Finally, certain machine learning algorithms automatically select features. These could 

be referred to as intrinsic or embedded feature selection methods. This includes 

techniques like Lasso's penalised regression model and decision trees, including 

random forest. Embedded methods learn which features contribute best to the accuracy 

of the model while the model is being created (Mirończuk and Protasiewicz, 2018) and 

reduces the degree of overfitting or variance of a model by adding more bias (Khalid 

and Nasreen, 2014). 

In previous studies, Hussain et al. (2008) and Kurtanovi (2017) used a decision tree as 

a classification algorithm to create an embedded ability to find the best feature. 

Embedded approaches are faster than wrappers in computation, but they produce 

classifier-specific choices that may not work with any other classifier (Wu, 2016). 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

20  

 

2.3.2 Dimensionality Reduction Techniques for Requirement Classification 

After data cleansing and feature selection, the next step involves converting the text 

into a machine-readable format. Like feature selection, dimensionality reduction 

techniques reduces the number of random variables that are under consideration based 

on features extracted from the original feature set (Zena M. Hira and Gillies, 2015). 

The difference is that feature selection chooses which features to maintain or eliminate 

from the dataset, whereas dimensionality reduction generates new input features by 

projecting the data. As a result, dimensionality reduction is an alternative instead of a 

subset of feature selection. It performs transformation of the features so that the 

original features are not reversible, as some uncorrelated and superfluous information 

is lost (Varghese, 2012). 

The related literature is analysed using either feature selection techniques or the 

dimensionality reduction techniques described below. Instead of the original values, 

the new collection of characteristics results in different values. This method can be 

further divided into linear methods and non-linear methods. 

The extraction of features is performed so that the transformation of the original 

characteristics is not reversible, as some uncorrelated and unnecessary information is 

lost (Varghese, 2012). The most commonly used dimensionality reduction methods are 

those that apply linear transformations like those described in Table 2- 6. These include 

principal component analysis (PCA) and linear discriminant analysis (LDA), as well 

as the non-linear GDA and kernel PCA. 

2.2.3.1 Principal component analysis (PCA) 
 

According to Jolliffe and Cadima (2016), PCA is an unsupervised machine learning 

approach for finding the single best subspace of a given dimension using orthogonal 

transformation. PCA linearly maps the data to maximise its variance in the low- 

dimensional representation (Sorzano et al., 2010) by decreasing the number p of 

associated variables by a large factor to a smaller number k of orthogonal variable 

(k<p). The results of PCA depend on the scaling of the variables. The applicability of 

PCA is limited by certain assumptions made in its derivations. 



Fundamentals of Automatic Classification for Non-Functional Requirements 
    

21  

 

 

2.2.3.2 Linear discriminant analysis (LDA) 
 

LDA is typically used for multi-class classification. It is assumed that words with 

comparable meanings will appear in similar sections of text (Sun et al., 2017). LDA 

seeks a linear combination of input features that optimise class separability, whereas 

PCA attempts to discover a set of orthogonal components of maximum variance in a 

dataset. However, the data should be regularly distributed to avoid LDA constraints. 

The dataset should also contain known class labels; however, PCA does not require 

class labels. 

2.2.3.3 Singular value decomposition (SVD) 
 

It performs a transformation utilising truncated singular value decomposition (SVD). 

This works well with sparse data, where many rows have zero values. In contrast, PCA 

works well with dense data. Another significant distinction between truncated SVD 

and PCA is that SVD factorisation is performed on the data matrix, whereas PCA is 

performed on the covariance matrix. 

2.2.3.4 Kernel PCA 
 

Kernel PCA is the non-linear variant of standard PCA. Kernel PCA is beneficial for 

non-linear datasets where traditional PCA is ineffective. 

In kernel PCA, input is initially passed through a kernel function, which temporarily 

projects the input into a higher-dimensional feature space and separates classes 

linearly. The data is then projected into a lower-dimensional space using the standard 

PCA algorithm. Kernel PCA converts non-linear data into a lower-dimensional space 

that may be used with linear classifiers in this fashion. 

2.2.3.5 Generalised discriminant analysis (GDA) 
 

GDA deals with nonlinear discriminant analysis using the kernel function operator. 

The GDA method converts input vectors into a high-dimensional feature space. 

Support vector machines are similar to the underlying idea (Baudat and Anouar, 2000). 



Fundamentals of Automatic Classification for Non-Functional Requirements 

22 

    

 

 

2.2.3.6 Latent semantic analysis (LSA)/ Latent Semantic Analysis (LSI) 
 

It is a method of examining relationships between a group of documents and the terms 

they include by producing a set of concepts connected to the documents and terms in 

NLP, specifically distributional semantics. 

LSA assumes that words with similar meanings will appear in similar texts. A massive 

chunk of text is converted into a matrix where the rows show all the unique terms in 

the document and the columns represent each document. As a mathematical approach, 

SVD reduces the number of rows while maintaining the similarity structure within the 

columns. The cosine of the angle generated by any two columns is then used to 

compare documents. Closer values to 1 indicate very similar documents, whereas 

values closer to 0 indicate very different documents. Mahmoud (2017) used LSA with 

cosine similarity. 

Table 2- 6: Dimensionality Reduction Techniques for Requirement Classification 
 

Dimensionality 

Reduction 

Feature Selection Analysis Source 

PCA Linear, Filter, Unsupervised 

learning 

Orthogonal transformation (Mahmoud, 2017) 

SVD model Nonlinear, 

Unsupervised/Filter 

Probability model for taxonomy learning (Hussain et al., 2008; 

Kurtanovic and Maalej, 

2017) 

LSA/LSI Linear Unsupervised based on 

SVD 

Latent semantic analysis is a technique for 

file representation and the cosine similarity 

measure 

(Casamayor et al., 2010; 

Mahmoud, 2017; Singh 

et al., 2016) 

GDA Non-linear Feature projection into the low dimension (Singh et al., 2016) 

LDA Linear, Unsupervised Identify topics that the documents contain 

based on specific probabilities 

(Kurtanovic and Maalej, 

2017) 

 

2.4 Training Machine Learning Algorithms for Requirement Classification 

 

The training objective is to adapt the model to the training set while generalising new 

data. The dataset is separated into two groups for analysing the results of the supervised 

learning (SL) algorithm: the training set and the validation set.  

  



Fundamentals of Automatic Classification for Non-Functional Requirements 

23 

    

 

 

The SL algorithms are trained with a training set and tested on a validation set that it 

has never seen before. A learning algorithm is prepared to learn from the training data 

and predict class labels for unseen data. The learning algorithm's performance is 

analysed based on its ability to generalise to the validation set. 

2.4.1 Supervised Learning Approach 

Supervised learning (SL), often known as inductive learning (Chen et al., 2014), is 

based on a methodology that involves training with labelled data to learn unique 

parameters (features, patterns, or functions). These algorithms find relationships 

between input and labels to optimise the classification accuracy of unseen data. 

In general, SL classifiers build a mapping function that can be either parametric or non-

parametric. A learning approach that summarises data using a set of fixed-size 

parameters is called parametric learning. On the other hand, non-parametric machine 

learning is an algorithm that does not make strong assumptions regarding the mapping 

function. Non-parametric methods seek to best fit the training data in constructing the 

mapping function (Kumar and Sahoo, 2012) while maintaining some ability to 

generalise to unseen data. It is unnecessary to select the appropriate characteristics; 

non-parametric techniques are the best option in situations where feature selection is 

difficult. They differ from the parametric model in that they make assumptions that are 

not dependent on the training data. 

Naïve Bayes can be parametric or non-parametric depending on how the probability's 

densities are estimated and represented. Decision trees (DTs) and K-Nearest neighbour 

(KNN) take the non-parametric approach as such; they can fit a large number of 

functional forms, whereas support vector machines (SVMs) and simple neural 

networks (NNs) are parametric depending on what we are learning regarding the values 

of the network parameters or the high dimensional hyperplane. 

2.4.1.1 Naïve Bayes (NB) 
 

According to Lewis (1998), the Bayes theorem is the heart of the NB algorithm. With 

the support of statistical functions, it underpins a simple but powerful approach with 

the assumption of independence between features given the class label. It calculates 

https://www.sciencedirect.com/topics/computer-science/learning-algorithm


Fundamentals of Automatic Classification for Non-Functional Requirements 

24 

    

 

 

 

the likelihood of an input that is important to a particular pre-defined class (Feng et al., 

2013; Berrar, 2019; Barber, 2011, pg-203). The output of NB is based on a Bayesian 

probabilistic model that assigns a posterior class probability to an instance: P (Y=yj| 

X=xi). An instance is assigned to the class with the highest posterior probability.The 

simple NB classifier uses these probabilities to assign an instance to a class. This 

equation calculates the probability of Y based on the input features X. 

𝑃 (Y|X) = 𝑃(X|Y) ∗ 𝑃(𝑌)|𝑃(𝑋) Eq2- I 

 
The purpose of NB is to pick the most likely class Y. Argmax is an operation that finds 

the argument that gives the maximum value from a target function. 

NB can take on one of three types in practice, multinomial, Bernoulli, or Gaussian. 

Multinomial NB assumes that each P(xn|y) follows a multinomial distribution and is 

mainly used in classification documents to look at the frequency of words. Bernoulli 

is similar to multinomial, except it works with Boolean problems. Gaussian NB is 

based on the assumption that continuous values are samples from Gaussian 

distribution. NB holds strong assumptions about feature independence, which 

sometimes causes overfitting and an increased computation time (Murphy, 2012, pg- 

84). This algorithm has been used in three of the related studies in this domain 

(Cleland-Huang et al., 2007; Casamayor et al., 2010; Slankas and Williams., 2013). 

2.4.1.2 Expectation maximisation 
 

Expectation maximisation (EM) is an unsupervised clustering algorithm. It is an 

iterative approach to calculating maximum likelihood estimation in problems with 

missing data using probabilistic functions (Kamal et al., 2006), especially when some 

data items remained unobserved in the first place. EM works iteratively in two steps, 

the expectation step (E) and the maximisation step (M). EM is used as an alternative 

to gradient descent. In a related study, Casamayor (2010) used requirements that 

received feedback from the analysts as labelled requirements in combination with EM 

and NB to classify NFRs. 



Fundamentals of Automatic Classification for Non-Functional Requirements 

25 

    

 

 

 

2.4.1.3 Decision tree (DT) 
 

A decision tree is one of the classification techniques. Three types of nodes make up 

an established tree: the “root node”, the “internal node”, and the leaf to depict each 

possible result of a decision making in each possible outcome. In DTs, nodes represent 

features (attributes), branches represent a decision (rule), and leaf nodes represent 

outcomes (discrete and continuous). 

A logic-based algorithm is used to model datasets in hierarchical structures using an 

if/else argument (Baharudin et al., 2010). The algorithm separates a set of data into 

smaller subsets for training while also building an associated decision tree 

incrementally. The root node, also known as the top node, is the best predictor for a 

tree’s decision-making when there are no incoming or outgoing edges. On the other 

hand, internal nodes have at least one incoming and outgoing edge. A leaf node with 

no outgoing edges indicates a categorization or final judgment. 

Every node in the tree is made up of either decision nodes that contain words or “leaves” 

that correspond to the split point that yields the greatest information gain (IG) for a 

particular set of data (Gini or entropy in this example) (Dhurandhar and Dobra, 2008). 

The branches carry the weight of each term in the document. 

The deeper the tree, the more complicated a DT may be in its decision rules, and the 

more fit the model is to the real world. In addition, the complexity of a tree will tend 

to affect the correctness of a choice made by the tree when it is used to make decisions. 

DTs are much more convenient for making classifications involving decision-making 

because they can compute both categorical and numerical data, are easily accessible 

and interpretable, require less calculation, and are capable of illustrating whether the 

relationship between dependent and independent variables is computationally low- 

cost. From the related literature two studies were found based on and decision tree 

(Hussain et al., 2008; Lu and Liang, 2017). 

2.4.1.3 Support vector machine (SVM) 
 

The SVM algorithm is based on statistical learning theory and the structural risk 

minimisation principle from the Vapnik–Chervonenkis (VC) dimensions. These 

statistical functions are referred to as the kernel. Different SVM algorithms use 



Fundamentals of Automatic Classification for Non-Functional Requirements 

26 

    

 

 

 

different kernel functions that project the data into a higher dimensional domanial 

space, where it is more likely to be linearly separable. 

In their most basic form, SVMs learn linear functions by constructing a hyperplane 

with the most considerable distance to any class’s nearest training-data point (Vapnik 

and Lerner, 1963). The goal of structural risk minimisation is to establish a hypothesis 

‘h’ by defining a notion of similarity, even in very high-dimensional domains, with 

little computing cost. 

SVMs have the potential to generalise from the hypothesis space in the presence of a 

range of features because the complexity of the hypothesis is controlled using the 

margin rather than the number of features. As SVMs are trained by selecting support 

vectors that are further apart, they are independent of the dimensionality of the feature 

space. It suggests a heuristic for selecting good parameter settings for the learner. 

SVMs can, however, be used to learn polynomial classifiers, basic radial function 

(RBF) networks, and three-layer sigmoid neural nets by simply plugging in an 

appropriate kernel function. Text classification can be done with a linear p lines kernel 

in one dimension. Compared to naïve Bayes, SVMs are robust when working with 

high-dimensional data. 

SVMs are considered shallow architectures, as they typically apply only one or two 

(non-linear SVM) transformations on top of their inputs; this limits their ability to 

capture hidden relationships. In related studies, SVM is identified as the most useful 

technique for classifying requirements (Zhang et al., 2011; Rashwan et al., 2013; 

Slankas and Williams, 2013; Sunner and Bajaj, 2016;). 

2.4.1.5 Nearest neighbours (K-NN) 
 

The K-NN statistical technique is utilized to calculate the correlation between the test 

data and the new instance to determine the nearest data point. As the name suggests, it 

uses K nearest neighbours (data points) to estimate the class or continuous value for 

the new data point (Baharudin et al., 2010). The data points with the shortest distance 

in feature space from a new data point are used to make decisions where K is the 

number of such data points considered during the implementation of the algorithm. As 

a result, while utilizing the KNN method, the distance metric and the K value are two 

key factors. 



Fundamentals of Automatic Classification for Non-Functional Requirements 

27 

    

 

 

 

The most-used distance measure is Euclidean distance. Others include hamming 

distance, Manhattan distance, and Minkowski distance, depending on the problem. 

When predicting a new data point's class/constant value, it uses all the data points in 

the training set to locate the new data point in the K nearest neighbours and their class 

labels in feature space. Finally, the class that is selected is the one that obtains the 

majority of data points from K’s nearest neighbour. In the related literature, three 

studies used KNN for classification, but Casamayor et al. (2010) received the highest 

accuracy among the three, with 70% accuracy in classifying NFRs (Casamayor et al., 

2010; Slankas and Williams, 2013; Badave et al., 2015). 

2.4.1.6 Neural networks (NN) 
 

Neural Networks typically form a layered architecture where each layer links with the 

previous layer to capture relationships in the inputs of the last layer (Mcculloch and 

Pitts, 1990). These layers carry some weights that multiply their information, and the 

connected layers transform the calculated inputs to produce a correspondent output. 

The neural network has not yet been introduced to effectively classify NFRs. Neural 

networks were used in this domain for the first time by Sunner and Bajaj (2016), but 

the study is naïve and lacks practicality. 

2.4.2 Unsupervised Learning Approach 

An ML algorithm draws inferences from the data by clustering data into different 

clusters without labelled responses (Usama et al., 2017). These algorithms use input 

requirement documents to drive structure by looking at the inputs' relationship. K 

means and hierarchical clustering are used within the domain of this study. 

2.4.2.1 Hierarchical clustering 
 

Hierarchical clustering is an iterative algorithm that forms a large cluster by merging 

similar elements in a dataset into a cluster that ends in a set of clusters. Each of the 

clusters is distinct from the others. However, the objects within each cluster are broadly 

similar to each other. Its training takes each observation as a separate cluster and 

produces a dendrogram based on a distance function that shows the hierarchical 

relationship between them. It then combines similar objects to form a cluster iteratively 



Fundamentals of Automatic Classification for Non-Functional Requirements 

28 

    

 

 

 

until all the clusters are merged. Mahmoud and Williams (2016) used a hierarchical 

clustering algorithm using lists of keywords, including pre-defined NFR categories, to 

determine which cluster belonged to which NFR category. On the other hand, Abad et 

al. (2017) performed training without pre-defined data and got the worst performance 

compared to results obtained from supervised learning studies. 

2.4.2.2 K-Means 
 

K-means is an iterative technique that divides documents into clusters (K) based on 

their random classification. The K-means function is used to iteratively assign the 

nearest cluster of K-clusters to each data point in space using the K-means function. 

Sunner and Bajaj (2016) conducted an experiment using K means feature weighting 

and found that the results were stronger than those obtained with SVM. 

2.4.3 Semi-Supervised Learning Approach 

The semi-supervised learning approach contains approaches for supervised and 

unsupervised learning in one framework. This sort of learning uses a small amount of 

labelled data and many unlabelled data during the training phase. Previously labelled 

samples are mixed with unlabelled examples to assign labels. This unlabelled data 

compensates for the impact of a lack of labelled data on classifier accuracy. These 

solutions iteratively use the SL algorithm for both labelled and unlabelled data. The 

labelled data was used to train the classifier and then applied to more unlabelled criteria 

to determine classification accuracy. Two of the three primary studies used this 

algorithm, whereas the others used another technique. 

2.4.4 NLP Rule-Based Approach 

The classic approach in natural language processing (NLP) for text classification is 

rule-based (Afrin and Litman, 2018). RB classifiers classify data using a collection if 

/then rule (Kang et al., 2013). The rule is an expression made of the conjunction of 

characteristics. The rule consequent is based on a positive or negative classification 

and is directly learned from the data (Xu et al., 2017). It is similar to DT, where 

collections of rules model the dataset. However, RB classifiers allow overlaps in 



Fundamentals of Automatic Classification for Non-Functional Requirements 

29 

    

 

 

 

decision space, while DT is strictly hierarchical. The RB approaches are easy to 

interpret and give the owners complete control of adding new rules or removing 

existing rules. These approaches require deep domain knowledge and extensive effort 

in order for experts to curate rules. However, these systems are harder to maintain and 

improve once the size of rules grows. Adding a new rule could lead to the 

ineffectiveness of existing ones. It is seen that there are limited rules to define the 

relationship between words, specifically in the context of handling security, usability, 

and maintainability (Sharma et al., 2014), which can result in the wrong classification. 

Moreover, the rule-based approach has limited generalisability (Vlas and Robinson, 

2012). 

Table 2- 7: Feature Learning Techniques for Machine Learning Classifiers 
 

Learning 

Techniques 

Algorithm Analysis Source 

Information gain Decision tree Measures the reduction in entropy (Zhang et al., 2011) 

Distance function clustering filter, KNN Sequential minimal optimisation (SMO) (Rashwan et al., 2013; 

Sharma et al., 2014) 

Expectation 

maximisation 

Wrapper/unsupervised 

Naïve Bayes 

Expectation–maximization (EM) algorithm is 

an iterative method to find the maximum 

likelihood. Estimation in problems with 

missing data. 

(Kurtanovic and Maalej, 

2017) 

Unweighted Pair 

Group Method 

with Arithmetic 

mean (UPGMA) 

Hierarchical clustering 

method, K-means 

Hierarchical clustering algorithms 

Phylogenetic reconstruction dealt 

(Singh et al., 2016) 

Smoothed 

/Unsmoothed 

probability 

measure 

(SPM)/UPM 

Decision tree Probability measure to rank features (Hussain et al.,2008) 

TF/IDF Rule-based Latent semantic analysis is a technique for 

file representation and the cosine similarity 

measure. TF-IDF and bag-of-words are 

methods to represent a document as a vector. 

(Casamayor et al., 2010; 

Singh 2016; Mahmoud, 

2017) 

Kernel function, 

SMO 

SVM The kernel is a statistical function that takes 

data and converts it into the desired format. 

(Slankas and Williams, 

2013) 



Fundamentals of Automatic Classification for Non-Functional Requirements 

30 

    

 

2.5 Requirement Classification and Performance Evaluation 

Once text pre-processing is performed and a classification algorithm has been selected, 

the next phase is to train the algorithm for the given dataset. The performance of the 

ML algorithm is evaluated using a validation set, which is generally distinct from the 

training set. Most studies in the related literature employed K cross-validation 

procedures to validate the classifier performance (Hussain et al., 2008; Baker et al., 

2019). K-cross validation is a typical method that divides data into distinct K-folds at 

random. The data size of each K-fold is the same; one is utilised for testing, while the 

others are used for training. The learning process is repeated K times to generate a 

single result, after which the average of the K results is calculated. Most of the studies 

used 60% of the dataset for training and 40% for testing. On the other hand, 

unsupervised learning research used the same data for testing and training. 

A classification model predicts the probability of belonging to a specific class for each 

data item in the validation set. In the case of binary classification, a threshold is usually 

applied to decide which class has to be predicted for each item. While in the multi- 

class case, there are various possibilities; among them, the highest probability value is 

selected mostly based on a mathematical function, for instance, softmax. 

Performance measurements are required to assess the algorithm's ability, such as 

precision, recall, accuracy, and F-score. These metrics are based on the confusion 

matrix, since it encloses all the relevant information about the algorithm and 

classification rule performance. The confusion matrix is a cross table that records the 

number of occurrences between two raters, the true/actual classification and the 

predicted classification. In the binary case, it only considers the positive class (meaning 

the true negative elements have no importance), while in the multi-class case, it 

considers all the classes one by one and, as a consequence, all the entries of the 

confusion matrix. The details of these techniques are given below.



Fundamentals of Automatic Classification for Non-Functional Requirements 

31 

    

 

Precision 

 

Precision refers to the number of relevant records retrieved from the total number of 

irrelevant and relevant records. In the context of text classification, true positive 

represents the text classified as positive by the model that actually belonged to that 

class, while false positives are the elements that have been classified as positive by 

the model but that are actually negative and do not relate to the given label. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq2- II 

Recall 

 

Recall is a measure of classification that is referred to as an accurate positive rate. In 

recall, a false negative is a piece of text that has been classed as negative by the model 

that is actually positive. In other words, the model fails to find relatedness with a label 

as true. Recall demonstrates the ability of the model to find the positive units in the 

dataset. This is essential, as classification aims to recognise all requirements. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
 
Eq2- III 

Accuracy 
 

Accuracy is a primary criterion for evaluating multi-class classification performance. 

It is calculated straight from the confusion matrix and represents the correct overall 

predictions by the model on the entire dataset. Accuracy is calculated as the fraction 

of true positive components divided by positively predicted units. True positives are 

the elements that the model has labelled as belonging to the positive class; 

simultaneously, a true negative is an outcome where the model correctly predicts the 

negative class. True positives and true negatives are the elements correctly classified 

by the model and lie on the main diagonal of the confusion matrix. The denominator 

also considers all the elements outside of the main diagonal that have been incorrectly 

classified by the model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Eq2- IV 



Fundamentals of Automatic Classification for Non-Functional Requirements 

32 

    

 

F1 score 
 

F1 score evaluation measures combine precision and recall by providing an average of 

the two values. The F1 score is widely used for measuring performance for multi-class 

 

classification. F1 score lies between 0-1, where 0 is the worst value and 1 is the best 

value. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑃 ∗ 𝑅

𝑃 + 𝑅
) 

 
 
Eq2- V 

 

Table 2- 8: Analysis of the Performance Measures for the Classification of Requirements 

Precision Recall F1-Score Study 

12.40% 76.70% ---- (Cleland-Huang et al., 

2007) 

97% 1% ---- (Hussain et al., 2008) 

97.80% 100% ---- (Rashwan et al., 2013) 

72.80% 54.40% 62% (Slankas and Williams, 

2013) 

73.9% 54.7% ---- (Ramadhani et al., 2015) 

98% 96% ---- (Singh et al., 2016) 

86.86% 86.97% ---- (Sunner and Bajaj, 2016) 

70% 70% 0 (Kurtanovic and Maalej, 

2017) 

98.00% 98.00% 98% (Abad et al., 2017) 

92.85% 81.25% 86.66% (Mahmoud, 2017) 

50% 41% 42% (Younas et al., 2019) 

82%-94 76%-97% 82%-92% (Baker et al., 2019) 

 



Fundamentals of Automatic Classification for Non-Functional Requirements 

33 

    

 

Table 2- 8 describes participating studies' performances in terms of precision, recall, 

and F1-score. Following a thorough examination of the literature, it was found that 

POS tagging and Ngram were considered to be best among all other features. In a 

comparative study, one-word features resulted in higher recall for classifying NFRs. 

Kurtanovic and Maalej (2017) compared their work with Cleland-Huang et al. (2007), 

using a keyword-based approach to achieve a precision of 0.974. At the same time, 

Hussain et al. (2008) outperformed the result of Cleland-Huang et al. (2007), achieving 

an accuracy of 98.56% using the same data. Slankas and Williams (2013) proposed an 

NFR locator that effectively extracted relevant NFRs. SMO turned out to be highly 

effective when compared with Naïve Bayes. However, the SVM was seen as the best 

classifier among all studies. 

2.6 Summary 

This chapter presented an overview of the significant components of the requirements 

classification system that were pertinent to this thesis. This included a brief explanation 

of requirement classification, emphasising single label and multi-label classifications. 

Following that, we discussed the various models used to identify and categorise 

functional and non-functional requirements. Moreover, we fully explained the text 

categorisation technique, followed by a more in-depth examination of the various 

forms of machine learning and rule-based training. The chapter came to a close with an 

analysis of the various classification systems in use. 



 

 

Chapter 3 Corpus Design for Non-Functional Requirements 

 

 
Most state-of-the-art solutions for non-functional requirement classification are based 

on supervised machine learning models trained on manually annotated samples. 

However, these strategies have drawbacks like 1) a lack of theoretical representation 

for NFRs and 2) the unavailability of an open-source domain corpus. This chapter tries 

to close this gap by addressing these issues, as one of the contributions of this thesis. 

The chapter starts with defining the ontology for NFRs in the context of requirement 

engineering and highlights some of the challenges faced when handling these 

requirements. Section 3.2 presents a single label NFR corpus. It is further extended in 

section 3.3 to design a crowd-based framework for corpus annotation to create a 

multilabel gold standard corpus. The formulation of the experiment is shown in section 

3.4. 

3.1 An Ontology for Non-Functional Requirements 

Ontology is a term that refers to a common understanding of any domain of interest. It 

is commonly envisioned as classes (concepts), relations, functions, axioms, and 

instances. In requirement engineering (RE), NFRs are considered conditions over 

functional requirements. Some descriptions to express NFRs have been chosen for this 

study. 

• “The functions and services that the system offers come with certain limitations. 

These include time, standards, and development” (Sommerville, 2007). 

• “A description of a software system's characteristic or feature that a should 

demonstrate or a limitation that it should adhere to, except an observable 

behaviour” (Wiegers and Beatty, 2013). 

• “NFRs are the requirements that pertain to a quality concern that the functional 

prerequisites do not cover” (Pohl and Rupp, 2015). 



35 

Corpus Design for Non-functional Requirements 

 

 

Quality requirements, quality attributes, non-behavioural requirements, “ilities”, or 

soft objectives are all terms used to describe NFRs (Chung, 2000). 

It also suffers from both terminological and theoretical conflict, making them 

contradictory and synergistic. For example, Roman (1985) defined NFRs as constraints 

on the interface, performance, operation, life cycle, finances, and politics. According 

to Chung et al. (2000), NFRs are defined by more than 150 terms. Douglas (2010) 

defined NFRs in terms of their performance, compatibility, and secrecy, as well as their 

efficiency, flexibility, reliability, integrity, maintainability, portability, and usability. 

As seen, there is an ambiguity in defining NFRs; similarly, there is no standardised 

method for determining whether or not NFRs have been met. Instead, they are often 

met to varying degrees of success. 

Philosophers and researchers have been highlighting NFRs as an essential entity for 

consideration. However, there is a long-persistent debate among them regarding the 

NFRs considered essential for the success of a software project. 

Each NFR attribute impacts software systems at some stage, leading to many 

architectural decisions (Felfernig et al., 2012) and requiring expertise, tools, and 

resources (Zhang et al. 2013). This diversity of NFRs indeed leads to a divergent 

classification of NFRs, which is practically not possible. Therefore, this study attempts 

to find a sample for the representation of NFRs. In the following section, the NFR 

hierarchy will first be identified. Then, we will investigate critical NFRs based on the 

software quality model’s perspective. 

3.1.1 Mapping User Requirements into Non-functional Requirements 

Stakeholder requirements are written in natural language, detailing the services and 

limitations they expect their system to provide (Sommerville, 2007). User 

requirements are unclear and can be perplexing. As a result, these are transformed into 

system requirements, which comprise a complete description of the system services, 

technical specifications, and design descriptions, as well as any conditions or 

constraints. Functional requirements are more specific and to-the-point than system 



36 

Corpus Design for Non-functional Requirements 

 

 

requirements, describing how a system should respond to a certain action or input. 

Every functional need has one or more non-functional requirements connected with it. 

Non-functional requirements might arise from the fulfilment of one functional 

requirement, whereas constraints are limits on the conditions (Sommerville, 2007). To 

elaborate further, a user requirement is provided as an example in Table 3- 1. 

Table 3- 1: Mapping User Requirements into FRs, NFRs, and Constraints 
 

Requirement Type Example 

User requirements Any user who selects an option on the page should only make one click. 

System requirements The system should be interactive. 

Functional requirements Users should be able to select an option on the page. 

Non-functional requirements Efficiency 

Constraints Number of clicks 

 

3.1.2 Challenges Faced by NFRs in Requirement Engineering 

Stakeholders specify the design of the system and the limitations to the development 

process in the form of requirements described in natural language (Wilson et al., 1997). 

Stakeholder requirements could have properties of FRs and multiple different NFRs 

simultaneously (Dabbagh and Lee, 2014). The requirement analyst must identify those 

aspects and transform the operational need into a complete system specification and 

document in a formal software requirement specification document (SRS) (Cabral and 

Sampaio, 2008). The elicitation and formulation of the aforementioned specifications 

are called requirements engineering (Pohl and Rupp, 2015). All requirements are 

refined and documented clearly in those SRS documents that contain FRs and NFRs 

belonging to a software system. It works as a framework for consensus on what to do 

with the software system, a basis for evaluation, verification, enhancement, and 

estimation of implementation costs and schedules. 

These requirements are interdependent with each other and may result in structural 

interdependencies, costs, or value interdependencies (Dahlstedt and Persson, 2003). 

There are also associations where one NFR helps to ensure another NFR. On the other 



37 

Corpus Design for Non-functional Requirements 

 

 

hand, one requirement will clash with another if they cannot coincide. Decisions made 

against one criterion have either a favourable or negative effect on other needs. 

(Tabassum et al., 2014). Prior to incorporating these needs into the design process, it 

is critical to identify what is essential (Felfernig et al., 2012). However, it appears that 

FRs are the primary focus, with NFRs being ignored (Barmi and Ebrahimi, 2011), 

which results in increased project failure rates. 

3.1.3 The Role of Corpus in NLP 

Automatic classification of software requirements has emerged as an increasingly 

exciting activity over the last decade through the use of machine learning techniques 

and rule-based approaches. These tasks largely depend on the domain corpus, a set of 

machine-readable text, and it should be authentic and representative of a specific 

language/domain (McEnery and Gabrielatos, 2006). Mainly supervised machine 

learning tasks require an annotated corpus (Tomanek et al., no date), as the evaluation 

of algorithms are based on those meaningful annotations (Silberztein, 2020). Human 

annotators add new information into the raw data (Hovy and Lavid, 2010) based on 

linguistic theory and guidelines (Pustejovsky and Stubbs, 2013). The recent trends in 

corpus development in NLP (Akhondi et al., 2014; Deleger et al., 2014; Mitrofan et 

al., 2018) suggest that an annotated corpora of gold standards are required for the 

development and evaluation of NLP systems (Mitrofan et al., 2018). Data is annotated 

independently by more than one annotator, and an inter-annotator agreement is 

computed to ensure quality (Wissler et al., 2014). This can help to minimise 

inconsistency and noisy annotation (Bhowmick et al., 2008) and improve supervised 

learning algorithms' performances (Zhao and Zhao, 2019). This chapter aims to define 

a representative sample for NFRs to create: 1) A single-label annotated NFR corpus 

and 2) A gold standard multi-label NFR corpus. The diversity of NFRs indeed leads to 

a divergent, practically impossible classification of NFRs. Therefore, it is vital to find 

critical NFRs that are considered necessary for the success of most software systems. 

This study uses software quality models to draw this sample and creates a single label 

representative NFR corpus based on requirements extracted from the SRS documents. 

This chapter further proposes a framework to create a gold standard multi- label NFR 

corpus that could identify various NFRs embedded within one requirement 



38 

Corpus Design for Non-functional Requirements 

 

 

and later be used to train a multi-label classifier system. Recently, crowdsourcing has 

emerged as a prevalent practise for this purpose. This practice gathers workers to one 

place where they can annotate the corpus according to the given research problem 

(Geiger, 2011) via dedicated platforms (Ghezzi et al., 2018). 

3.2 Single Label NFRs Corpus Design 

This section addresses the first objective of this study, which is to obtain a 

representative corpus for Non-functional Requirements. It begins with investigating 

the NFRs from the perspective of the software quality model to find the most critical 

NFR attributes. 

3.2.1 Sampling for NFRs 

To measure quality, various studies have put forth their quality measurement models. 

The most popular of them are the quality model of Boehm (Boehm et al., no date), the 

quality model of McCall (McCall et al., 1977), the quality model of FURPs (Florac et 

al., 1997), the quality model of Dromey (Dromey, 1995), and the ISO 9126 model, 

which was revised in 2007 and renamed ISO 25010 (ISO/ IEC CD 25010. 2008). These 

quality models are considered the basic models. To select the representative sample 

that could be generalised to the whole domain (Biber, 1993 a.p.244), the common 

NFRs in these models are conceived and described in Table 3- 2. 

Table 3- 2:A Comparative Representation of Software Quality Models 
 

NFRs Boehm McCall ISO9126 FURPS Dromey ISO25010 Ranking 

Reliability 1 1 1 1 1 1 6 

Usability 0 1 1 1 1 1 5 

Portability 1 1 1 0 1 1 5 

Maintainability 1 1 1 1 1 1 6 

Efficiency 1 1 1 1 0 1 5 



39 

Corpus Design for Non-functional Requirements 

 

 

The terms NFR and quality attributes are used interchangeably. All NFRs are listed in 

the left-most columns. While the sw quality models are mentioned in the top row, the 

remainder of the table contains entries against those NFRs in the cells. The availability 

of an NFR against a model is indicated by a "1", whereas the absence of an NFR is 

indicated by a "0". The NFRs common in at least five out of these six models have 

been selected as the sample in this study. Five NFRs, namely, reliability, usability, 

maintainability, portability, and efficiency are recognised as a representative sample 

from these quality models. 

 
Table 3- 3: Definition of Non-functional Requirements 

 

Category Definition 

Efficiency To be able to perform the same functionality every time under any conditions. 

Maintainability To be able to make changes in a system in the future. 

Portability To use the system from one platform (hardware/software) to another. 

Reliability To be able to perform a specified function for a specified period. 

Usability To use a system with ease, effectiveness, and a user-friendly manner. 

The selected NFR attributes are defined in Table 3- 3. These definitions will be used 

later in the study to train the annotators to achieve a gold standard annotated corpus. 

3.2.2 Data Collection for Corpus 

The first-hand data collection directly from stakeholders involved various limitations 

and ethical issues. Therefore, the software requirement specification (SRS) document 

is used as a data source. These SRS documents were downloaded from an online 

repository called SCRIBD with paid access. These requirements expand to five 

representative NFRs: efficiency, reliability, portability, maintainability, and usability. 

The requirements have been manually extracted from SRS documents. Moreover, SRS 

documents related to different software system domains are selected, providing 

diversity in the vocabulary used to define the requirements. Nevertheless, this selection 

is dependent on the available SRS documents on that online platform. According to 

our interpretation, this is the first dataset in the NFR domain designed on representative 



40 

Corpus Design for Non-functional Requirements 

 

 

samples (Pustejovsky and Stubbs, 2013). The table given below describes the 

requirement samples in our NFR corpus, which we named custom NFR corpus. Table 

3- 4 provides the class-wise distribution of NFR samples for this corpus. 

 
Table 3- 4: Class-Wise Distribution of Requirements in Custom NFR corpus 

 

Category Samples 

Efficiency 480 

Maintainability 240 

Portability 156 

Reliability 191 

Usability 417 

Total number of Samples 1484 

As an output of this stage, it delivers a representative domain corpus for NFRs 

containing 1484 samples of requirements related to five NFRs: efficiency, 

maintainability, portability, reliability, and usability. 

3.3 Gold Standard Multi-Label NFR Corpus Design 

The development of the gold standard corpus is performed systematically and consists 

of three phases. It starts with the development of annotation guidelines, followed by 

the recruitment of annotators, and finally, an evaluation of the outcomes. To supervise 

the corpus annotation, a MAMA framework from the MATTER-MAMA has been 

used, as shown in Figure 3- 1 (Pustejovsky and Stubbs, 2013). MAMA (Model- 

Annotate, Model-Annotate) is an iterative process in which the annotators provide 

guidelines to perform annotations. These guidelines can be revised based on the 

annotation results until the required quality is achieved.



41 

Corpus Design for Non-functional Requirements 

 

 

 

 
 
 

Figure 3- 1: MAMA Framework 

 

The word “guidelines” Dipper et al.,(2004) applies to all knowledge, including 

linguistic theory, a derived model of an interesting phenomenon that describes how the 

specification should be applied to linguistic artefacts (Pustejovsky and Stubbs, 2013). 

A data item may be ambiguous and can fall into many categories. The annotations can 

be performed at different levels (Gries and Berez, 2017). However, in this experiment, 

sentence-level tagging has been performed based on the categories (e.g., reliability, 

efficiency, portability, usability, and maintainability) to a set of requirements. More 

than one label can be selected, as the objective is to create a multi- label corpus. 

3.3.1 Corpus Annotation Through Crowdsourcing 

Traditionally, domain-specific experts are hired with the transparency of the task, and 

they are remunerated for their services. However, expert-based acquisition is 

challenging. Hiring an expert is costly, and as this research is not externally funded, it 

limits this choice; it was also challenging to find suitable experts and raised many 

ethical issues. Moreover, it could introduce bias in the selection of an expert. Recently 

crowdsourcing 1has emerged as a prevalent practice for this purpose. Crowdsourcing 

gathers workers in one place where they can annotate the corpus according to the given 

 
 

1 Jeff Howe of Wired magazine (Howe, 2006) first used the phrase, a combination of the terms “crowd” and 

“outsourcing”, to refer to companies that performed a role by employees or hired employees to outsource a task to 

many people, particularly when enabled by online tools and venues. 



42 

Corpus Design for Non-functional Requirements 

 

 

research problem based on an online platform (Geiger et al., 2011). Crowdsourcing is 

typically carried out on dedicated platforms such as Amazon Mechanical Turk 1or 

Figure Eight 2(Davis 2011), which enables interaction between contributors worldwide 

by providing a platform where many tasks can be distributed to human workers. The 

results are then aggregated together. An ethical assessment based on the PAPA 

(privacy, accuracy, property, and accessibility) approach (Mason, 1986) was 

conducted to perform this experiment. The use of the crowdsourcing approach 

involved minimum risk; therefore, an online platform Figure-eight tool was selected to 

perform annotation for the NFR corpus. 

3.3.2 Data for a Multi-label NFR Corpus 

The requirements extracted from SRS documents are exactly related to one class/label. 

These are in processed form, and the requirement analyst has invested time and effort 

in identifying and documenting them. At the same time, an automated requirement 

identification system aims to identify stakeholder requirements from raw data at the 

earliest stages of software development. The literature requirements in the raw form 

contain multiple functional and non-functional aspects. Labels are drawn based on the 

dependencies among NFRs mentioned in Table 3- 5. Based on this dependency 

relationship requirements are merged together to create a multi-label corpus. 

 

The process starts by picking the data and manually mixing different requirements. We 

selected 200 samples from each NFR category and modifies them to represent multiple 

labels using the methods described and exemplified in Table 3- 5. 

 

 

 

 

 

 

 
 

1 
https://www.mturk.com/ 

 

2 https://appen.com/ The Figure-eight technology platform employs machine learning-assisted annotation methods 

to generate the high-quality training data that models require to perform in the real world (the platform is now called 

Appen and is under new administration.) Facebook, Twitter, Cisco Systems, GitHub, Mozilla, eBay, and Toyota 

are among the companies that use the platform. It facilitates the recruitment of annotators as well as the rapid 

expansion of annotation projects at a cheap cost and in a user-friendly manner). 

https://www.mturk.com/
https://appen.com/


43 

Corpus Design for Non-functional Requirements 

 

 
 

Table 3- 5: Dependency Among NFRs 
 

NFRs Dependency Relation NFRs 

Reliability Require Maintainability 

Reliability, Conflict Efficiency, Usability 

Portability Cost Usability, Maintainability, Efficiency 

Usability Value Efficiency 

 

3.3.3 Annotation Framework Design and Settings 

The platform has built-in templates related to various annotation tasks, including 

sentiment analysis, search relevance, image annotation, data categorisation, data 

collection, enrichment, etc. The template that best suits the problem at hand is data 

categorisation for text. 

 

Recruitment of Annotators 
 

The process is performed by annotators who decide based on both raw data and some 

information offered as instructions (Pustejovsky and Stubbs, 2013). The list given in 

Figure 3- 2 describes the criteria for the recruitment of the annotators. 

 
 

Figure 3- 2. Recruitment of Annotators 



44 

Corpus Design for Non-functional Requirements 

 

 

The job was open for worldwide crowd annotators on this platform. The members with 

expert level 3 were selected for this task. 

Specifications and Guidelines 

 

To begin the work of requirement annotation, specifications in the form of the 

participating categories' definitions are supplied (reliability, usability, maintainability, 

efficiency, and portability). A clear description of the job, unlabelled corpus file, and 

a set of rules were uploaded on the platform as shown in Figure 3- 3 , Figure 3- 4 and 

Figure 3- 5 respectively. 

 

 
Figure 3- 3. Annotation Specification and Guidelines (a) 

 

 

Figure 3- 4. Annotation Specifications and Guidelines (b) 



45 

Corpus Design for Non-functional Requirements 

 

 

 

 

 
 

Figure 3- 5. Annotation Specifications and Guidelines (c) 

 

3.4 Experiment (Corpus Annotation Procedure) 

The experiment adopts a linguistic corpus construction scheme MAMA framework 

suggested by (Pustejovsky and Stubbs, 2013). The dataset consists of 1000 artificially 

generated sentences. The job was initiated with 100 samples of data which consist of 

80% original requirements representing a single label and 20% artificially generated 

requirements. This initial set was used to train annotators. Once they became familiar 

with the job, the remaining artificially generated data were launched on the platform. 

The recruitment process starts with a test question containing a mixture of requirements 

belonging to all NFRs. Eleven human annotators showed interest in this test question 

to qualify for this job of assigning categories to requirements independently. Three 

participants who passed the test were selected for this job. The data was distributed 

between annotators, such that all three annotators annotated each requirement. Figure 

3- 6 shows the steps involved in the procedure. 

 
 



46 

Corpus Design for Non-functional Requirements 

 

 
 

Figure 3- 6. Corpus Annotation Framework Design Procedure 

3.4.1 Evaluation of Results 

It is a process of analysing the results obtained from the annotators. The outcome is 

determined by applying the gold standard determination algorithm to the data given by 

three annotators to assess the accuracy of the annotation. The correct labelled set for 

requirements is decided by the inter-annotator agreement score calculated using 

Cohen’s Kappa (Fleiss et al., 1969). 

𝐴𝑚 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 

Eq3- I 

A label is true if two out of three annotators agree on the same label. Randomly 

assigning items to a collection of categories, the observed agreement (Po) is the 

percentage of items agreed on the label, for instance, by both of the annotators. The 

expected agreement (Pe) is the percentage of items on which agreement is expected by 

chance among the annotators. While 𝐴𝑚 is measured to estimate the quality of the 

corpus, after predicted or chance agreement is taken out of the equation, it represents 

the percentage of agreement. Table 3- 6 shows the agreement between the pair of 

Dataset 

a b c 

 

Evaluation 

 

Guidelines 

 

Gold Standard 



47 

Corpus Design for Non-functional Requirements 

 

 

annotators. All three annotators performed the task of annotation independent of each 

other, which resulted in 285 total annotations given by the annotators. 

 
Table 3- 6: Results from Cohen's Kappa Agreement 

 

Annotator pair Po Pe Am Value 

A-B 0.68 0.53 0.31 

B-C 0.62 0.52 0.20 

C-A 0.64 0.526 0.24 

 

It is evident from Table 3- 6 that the highest agreement was found between annotators 

A and B, followed by C and A, whereas the lowest agreement was between B and C. 

However, the agreement value ranged between 0.2-0.31, which is considered a fair 

agreement according to Cohen’s Kappa calculator. According to MAMA (Pustejovsky 

and Stubbs, 2013) framework, at this point, requirements can be given back to 

annotators with revised instructions to improve Am value. The instruction and 

guidelines can be revised until the desired agreement is achieved. Later, the corpus can 

train a classifier for multi-label classification. 

3.5 Conclusion and Future Recommendations 

Section 3.4 suggested a framework to identify multi-label aspects of NFRs to create a 

multi-label gold standard corpus using a crowdsourcing web-based platform. The 

judgements were provided by three annotators using the figure-eight platform. 

The annotation findings are based on inter-annotator agreements as determined by 

Cohen's Kappa. This methodology is intended to be iterative, and the initial findings 

indicate reasonable agreement between the annotators. However, the experiment 

demonstrates a variety of difficulties associated with utilising web-based platforms for 

domain-specific activities since they require advanced expertise from researchers and 

crowd annotators. Regrettably, the current study's examination is confined to a single 

repetition. One obvious reason for abandoning this experiment is its unavailability, 



48 

Corpus Design for Non-functional Requirements 

 

 

since the platform was taken over by new administration and confined to commercial 

usage only during the trial. Additionally, it was impossible to obtain a multi-label result 

in the initial iteration. The annotators worked on a single label (all annotators chose a 

single label for each need); this might be owing to the lack of direct contact between 

the researcher and the annotators. The annotators could only learn by referring to the 

job's instructions and specifications. 

Many things can be improved in the context of a gold standard multi-label corpus, such 

as 1) how guidelines and rules are defined, 2) two-way communication for improved 

training, 3) a reliable platform for useful annotations, and 4) annotators with domain 

knowledge. 

3.6 Summary 

Corpus annotation is a vast topic of study. It is the first attempt to our knowledge to 

develop a representative corpus and a multilabel corpus in the domain of NFRs. 

The contribution of this chapter is a representative domain corpus for NFRs termed the 

custom NFRs corpus, which is based on a sample chosen from software quality models. 

It has 1484 sentences divided into five NFR categories: efficiency, usability, reliability, 

portability, and maintainability. This corpus may train machine learning models to 

discover and categorize non-functional relationships. It will also be made public to 

stimulate more study. 

Additionally, it offered an iterative strategy for obtaining a gold standard multi-label 

corpus for NFRs via a crowdsourcing platform on the web (figure-eight). The 

technique used three annotators, and the results were determined using Cohen's Kappa 

calculator. The initial data analysis reveals a high degree of agreement between the 

annotators. This study, however, is confined to a single repetition. The ultimate goal is 

to inspire future researchers to 1) train machine learning-based natural language 

processing systems and.2) assess the performance of natural language processing 

systems. 



 

 

Chapter 4 Background and Experimental Settings for Deep 

Neural Networks 

 

 
One of the drawbacks of traditional machine learning approaches for detecting NFRs 

is that features must be defined and retrieved manually or with the help of feature 

selection algorithms. Deep neural networks offer the advantage of not necessitating the 

creation of hand-crafted features. They could be able to learn semantic characteristics 

from word embeddings using context information during the training phase. These 

techniques are now the most successful solutions in the fields of image and audio 

classification, as well as natural language processing. 

This chapter starts with a description of the deep neural network design appropriate for 

the classification of NFRs. Word embedding is discussed in Section 4.2, which leads 

to the supervised neural networks presented in Section 4.3. The classification process 

is described in section 4.4. The chapter concludes with an examination of how a model's 

architecture influences its representational capability, as well as hyperparameter and 

optimisation strategies. 

4.1 Background of Deep Neural Network for Text Classification 

Artificial intelligence (AI) encompasses machine learning as a subset that tries to 

create intelligent systems. DNNs can learn from data on their own, recognise patterns, 

and make decisions with little or no human intervention. 

Supervised and unsupervised are two primary approaches in machine learning. The 

distinction is in the use of prior knowledge, which is represented by ground truth 

signals. Supervised learning aims to develop a mapping function that is the most 

accurate approximation of the link between the inputs and outputs in the data while 

employing ground truth values for samples. On the other hand, unsupervised learning 

is concerned with the underlying structure of the learning data rather than with the 

provision of output labels. Supervised learning is frequently used when it comes to 



50 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

classification or regression tasks. However, unsupervised learning deals with tasks like 

clustering, representation learning (dimension reduction), density estimation, and other 

similar activities. In supervised learning applications, methods such as logistic 

regression, naive Bayes, support vector machines, artificial neural networks, and 

random forests are often employed. 

Algorithms like k-means clustering, principal component analysis, autoencoders, and 

restricted Boltzmann machines are examples of unsupervised learning approaches. 

Specifically, in the context of this research, the focus is on the implementation of 

supervised learning in neural networks that are applied to textual data. DNNs have 

been effectively applied to natural language processing (NLP) tasks in recent years 

(Bengio et al., 2003; Collobert and Weston, 2008; Mikolov et al., 2013). 

In 1943, neurologist Warren McCulloch and logician Walter Pitts created a relatively 

simplified first computational model of a neuron, in which they attempted to 

comprehend how the brain forms highly complex patterns by employing numerous 

linked fundamental cells (or neurons). The McCulloch-Pitts model serves as the 

foundation for neural network theory (McCulloch and Pitts, 1943; Piccinini, 2004). 

Frank Rosenblatt made the next big development in the perceptron (Rosenblatt, 1958), 

which was announced in 1958. Neural networks use advanced mathematical models to 

handle data in a variety of ways to automatically learn and extract characteristics, 

resulting in improved accuracy and overall performance. These NNs are designed to 

approximate a specific function of interest, such as constructing an NFR classifier. 

Such function maps an NFR’s input x to a category ̂ y. The model structure is primarily 

composed of three components (from input to output): (a) the word embedding layer, 

(b) the representation layer, and (c) the classification layer. In other words, a neural 

network is a collection of interconnected units with each link acting as a synapse and 

each unit having the form and function of a neuron. During the transmission of 

information between neurons, each synapse carries a weight that multiplies its inputs, 

and each neuron attached to it modifies the multiplied inputs to generate a 

correspondent output. In the following sections, each of these components is described 

in detail, particularly in terms of text classification, making it appropriate for the task 

at hand. 



51 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

4.2 Distributed Word Representation in Neural Networks 

Embedding is a fancy way of saying numerical values for words. Word embedding is 

a feature learning technique in which each vocabulary word or phrase is mapped to an 

N-dimensional vector of actual values. Word embeddings typically provide standard 

input representations of deep learning models, replacing traditional feature 

engineering. Multiclass text classification methods are commonly based on the bag- 

of-word representations technique discussed in Chapter 2. One of the fundamental 

limitations of such practices is that words are treated as independent features and do 

not retain any contextual information. However, an alternative method employing deep 

learning models for text classification can extract context-sensitive features from raw 

text. The development of distributed representations of words (Mikolov et al., 2013; 

Pennington et al., 2014), phrases (Socher et al., 2012) and sentences (Le and Mikolov, 

2014; Kiros et al., 2015) has accompanied the success of deep learning-based natural 

language processing systems in recent years. 

The distributed representations are real-valued vectors that flexibly represent the 

natural language's semantics. To address this issue utilising NFRs, this study provides 

a framework for the current situation that blends word2vec embeddings with deep 

learning to handle the problem. 

Distributed representations, specifically “word embeddings”, follow a distributional 

hypothesis, which states that words that appear in similar situations have the same 

meaning. Consequently, each word is given a real-valued vector; furthermore, the 

vector space in which the words are stored is predetermined. Learning vector 

representations of words based on context have shown to be a success for neural 

networks (Bengio et al., 2003; Mikolov et al., 2010). Therefore, each word is mapped 

to a real-valued vector in a predefined vector space. On the other hand, each dimension 

in the bag-of-words representation of a sentence represents a word. When the 

document and/or vocabulary expands in size, these local representations become 

excessively sparse (many zeros). Additionally, the bag-of-words model does not 

account for word order, and the words are presented in a sequence. 



52 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

4.2.1 Word2Vec Embedding Generation 

Word to vector representation is a predictive model used to compute and generate a 

high-quality vector model created by Google in 2013 (Mikolov et al., 2013). The 

word2vec technique is used to represent the sentence in two ways, as shown in Figure 

4- 1. 

 
 

Figure 4- 1: Representation of Word2Vec Embeddings CBOW and Skip-gram Model (Mikolov et al. 2013) 
 

Word embeddings starts with a vocabulary that stores all the corpus's unique words. 

The predicted outcome is calculated based on the context of the window size for the 

words (Levy and Goldberg, 2014). Figure 4- 1 shows word2vec's single-layer shallow 

neural network design, which is trained from scratch for the given dataset. Word2vec 

face two limitations: 1) sparse training data and 2) a large number of trainable 

parameters. Another option is to employ word embeddings that have been pre-trained 

on big datasets to capture semantic and syntactic information, which makes these 

models capable of boosting the performance of a classifier. Word embeddings are 

currently available for various techniques, including continuous skip-gram, continuous 

bag-of-words (CBOW), GloVe, and fast text (Bojanowski et al., 2017). 

Continuous bag-of-words learns embeddings by predicting the current word based on 

its context. A basic CBOW model attempts to find a word based on previous words to 

find associations and similarities between terms in the text corpus. The input and output  



53 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

layers share the same weight matrix (Mikolov et al., 2013). Unlike the traditional 

bag-of-words paradigm, CBOW uses a constantly distributed representation of the 

context. CBOW is more efficient with frequent words (Naili et al., 2017). The 

continuous skip-gram model (Skipgram) predicts the context words using the centre 

word. It tries to maximise a word's classification based on another term in the same 

sentence (Mikolov et al., 2013). These two architectures lower the complexity to 

𝑁𝐷 + 𝐷 log(𝑉)𝑎𝑛𝑑 𝐶 (𝐷 + 𝐷 log(𝑉)) 

 

Eq4- I 

For each training word per epoch, where N is the number of words in the context, V is 

the size of the vocabulary, C is the maximum distance of the words. More precisely, it 

uses each current word as an input to a log-linear classifier with a continuous projection 

layer and predicts words within a specific range and after the present word. The target 

word's input is fed; in this case, the hidden layer remains the same, and the neural 

network output layer is repeated numerous times to satisfy the desired amount of 

background terms. Skip gram is more efficient with infrequently used words (Naili et 

al., 2017). In semantic analogy tasks, skip-gram substantially surpasses representations 

generated by CBOW, whereas, in syntactic analogy tasks, skip-gram and CBOW 

perform equally. 

4.2.2 Transfer Learning 

It is expensive to train word embedding with large amounts of data. A different 

technique ensures that high-performance learners are trained with data from different 

domains that are more readily available. Transfer learning, or domain adaptation, are 

terms used to describe this method (Perera and Patel, 2019). The network is trained on 

out-of-distribution data first, then fine-tuned on domain-specific training data (Wolfe 

and Lundgaard, 2020). The final activation score is thresholded to determine novelty. 

These earnings could be either weights or embeddings. In the case of this research, 

learnings are the embeddings, and this concept is known as pre-trained word 

embeddings. 



54 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

4.3 Feedforward Neural Network 

Feedforward neural networks are those that do not form a cycle of connections. A 

single-layer perceptron (SLP) shown in Figure 4- 2(a) is the most basic type of 

feedforward neural network, as it has no hidden layer, and the inputs are connected 

directly to the outputs. 

 

 
Figure 4- 2:Single Label Perceptron vs Multilabel Perceptron (Camuñas-Mesa et al., 2019) 

 

These SLPs can be stacked to form a multi-layer perceptron (MLP). An MLP's 

structure can be thought of as a series of layers, as shown in Figure 4- 2(b). It consists 

of three layers: an input layer that processes data; hidden layers that do mathematical 

computations on the input data to learn relationships; and an output layer that predicts 

output based on the learned relationships. Stochastic gradient descent with back- 

propagation can be used to train MLPs (Rumelhart et al. 1986). 

4.3.1 Artificial Neural Networks (ANNs) 

Artificial neuron networks (ANNs) are also known as feed-forward neurons. ANN tries 

to replicate the human brain's ability to self-learn in terms of adaptivity, defect 

tolerance, nonlinearity, and mapping improvement (Wang et al., 2018). It processes 

inputs only in the forward direction, through various input nodes, until it makes it to  

 



55 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

the output node. ANNs are made up of neurons with weights between them, and 

throughout the learning process, they modify the weights depending on an error signal 

(or feedback) to obtain the desired output for a particular input. In the simplistic form 

of ANN, hidden nodes are optional, making their functioning more useful. 

As shown in Figure 4- 3 

 

 
Figure 4- 3:A Simple Architecture of Artificial Neural Network (Rahman et al, 2019) 

 

ANNs were developed and used for image recognition and, more recently, for natural 

language processing (Abiodun et al., 2018). 

4.3.2 Convolution Neural Network (CNN) 

Convolutional neural networks (CNNs) were first built based on Fukashima’s 

neurocognition (Fukushima, 1980; Fukushima and Miyake, 1982). The name CNN is 

derived from the convolution operation in mathematics and signal processing. 

However, because of the limits of computer hardware for network training, it was not 

widely employed at first. In the 1990s, a gradient-based learning technique was used 

to solve the declining gradient problem and create highly optimised weights (LeCun et 

al.,1989). Feature extractors and a classifier are the two fundamental components of a 

CNN's overall architecture, as shown in Figure 4- 4.  

  



56 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

A series of convolution and pooling pairs constitute the feature extraction layers, which 

are followed by a few fully connected layers that form the classification (Baker et al., 

2017; Hadji and Wildes, 2018). It is a sort of feed-forward neural network that uses 

"convolutional filters" to improve performance. Each word is turned into a weighted 

vector with user-defined dimensions. A feature map is created by grouping the output 

nodes from the convolution and max-pooling layers (Krizhevsky, 2014). Features 

transmitted from lower-level layers are used to create higher-level features. In the 

convolutional and max-pooling techniques, the dimensions of features are lowered as 

they propagate to the highest layer, depending on the size of the kernel. The CNN's last 

layer is fed into a classification layer, which is a fully connected network. Similar to 

feed-forward neural networks, convolutional neural networks can also be trained using 

standard backpropagation (LeCun et al., 1989). 

 

 
Figure 4- 4: A layered Architecture of Convolution Neural Network (Phung and Rhee, 2019) 

 

Following that, researchers improved CNNs even further and reported cutting-edge 

outcomes in various recognition tasks. CNN was first exploited to create a semantic 

representation of the textual domain. Collobert et al. (2011) were pioneers of the use 

of CNNs for NLP tasks such as POS tags, chunks, and named-entity tags. Later CNNs 

were used for sentiment/opinion mining (Kalchbrenner et al., 2014; Kim, 2014) and in 

relation extraction (Zeng et al., 2014; dos Santos et al., 2015) with fairly balanced class 

distributions. The successful implementation of CNNs in the NLP domain makes it 

useful in mining semantic clues in contextual windows. CNN requires a broad set of  

 



57 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

labelled data, making it challenging for the researcher to adopt data sparsity. CNN has 

a disadvantage in that it is unable to model long-distance contextual information while 

maintaining sequential order in its representations (Hu et al., 2015; Kalchbrenner et 

al., 2014). 

4.4 Recurrent Neural Network (RNN) 

RNNs were defined by Rumelhart et al. (1988; Elman, 1990) as "supervised neural 

networks". RNNs use internal memory to recollect their prior input every time a new 

input is brought into the network. As a result, they simulate sequential information 

through a series of feedback loops that recur over time. It does the same task for each 

sequence element, with the outcome decided by previous calculations, which generates 

a fixed-size vector to represent a series. 

RNNs differ from feed-forward neural networks in that they can handle variable-length 

sequences in both input and output. RNNs can swap features collected over many time 

steps and record relationships in the sequential input to account for the direct flow of 

information. They can recall and reuse prior knowledge computations by applying 

them to the next element in the input sequences. RNNs are capable of capturing the 

fundamental sequential nature of language units such as letters, phrases, and even 

sentences, among other things. The semantical meaning of a sentence is inferred from 

the words that came before it in the sentence. They are capable of modelling text of 

varying lengths, including highly long phrases, paragraphs, and even whole 

manuscripts (Tang et al., 2015). In the NLP area, it has been effectively used for tasks 

such as point of sale tagging (Zhang et al., 2016) and, more recently, text classification 

(Chen et al., 2017) and multimodal sentiment analysis (Zhang et al., 2017), among 

others (Poria et al., 2017). As a result of these capabilities, the RNN has become a 

well-known neural architecture for solving sequential tasks, such as language 

modelling (Mikolov et al., 2010; Peters et al., 2018), named entity recognition (Ma and 

Hovy, 2016), relation extraction (Vu et al., 2016; Gupta et al., 2019), textual similarity 

(Gupta and Schütze, 2018), and sentiment analysis (Tang et (Zhang and Lapata, 2014). 

  



58 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

Gradient descent with back-propagation through time (BPTT) is the usual approach 

for training an RNN (Rumelhart and McClelland, 1986). However, the vanishing 

gradient problem affects RNN networks. Its descendants, such as long short-term 

memory (LSTM) and gated recurrent units (GRUs), overcame this restriction by 

efficiently back-propagating error gradients (Hochreiter and Schmidhuber, 1997). 

4.4.1 Long-Short Term Memory (LSTM) 

Hochreiter and Schmidhuber (1997) suggested that long short-term memory (LSTM) 

is a form of RNN (Elman, 1993). An LSTM unit has a "memory" cell that can keep its 

state value for an extended period. It uses a gating mechanism with three non-linear 

gates: an input, an output, and a forget gate. Since most NLP tasks depend on words 

or other elements, such as phonemes or sentences, it is helpful to remember the 

previous details when processing new ones (Mikolov et al., 2015). 

LSTM can use long memory as the input to the hidden layer of the activation function. 

Input data is pre-processed to reshape data for the embedding matrix. The LSTM, 

which contains cells, is the next layer, followed by a completely connected layer. 

Unlike the vanilla RNN, LSTM enables the error to backpropagate through an infinite 

number of time phases. Figure 4- 6 illustrates how LSTM works with a gating 

mechanism. LSTM has three gates. The gating mechanism is what allows LSTMs to 

explicitly model long-short term dependencies. As shown in Figure 4- 5, the network 

learns how its memory should behave by learning the parameters for its gates. Each 

vanilla LSTM module comprises a central value that acts as memory c t at time t. Input 

gate I t, output gate o t, and forget gate f t are all available. Combinations of c t, input 

x t, and output h t-1 result in these gates. The gated input and gated c t-1 produce a 

new value, c t. The output gate o t controls the module's c t output. 



59 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 
Figure 4- 5: An Illustration of Long-Short term Memory (Chung et al. 2016) 

 

Many changes have been made to the LSTM unit since its conception to increase its 

performance. SGD with BPTT can be used to train weight matrices and bias vectors. 

LSTM has been adopted by several state-of-the-art NLP systems, such as dialogue 

systems (Sutskever et al., 2014), tweet encoding (Wang et al., 2015), and language 

modelling (Shen et al., 2018). Due to the four-times increase in the number of 

parameters compared to a simple RNN, LSTMs have higher memory needs. LSTMs 

use many memory cells. Therefore, they have a far greater computational complexity. 

4.4.2 Gated Recurrent Unit (GRU) 

GRU (Chung et al., 2014) is a slightly simpler variant of the LSTM. The cell state and 

concealed states are combined into a single memory content. Other than that, the GRU 

has no control over the memory content's accessibility to other network units. A GRU 

has two gates: a reset gate that determines how to integrate the incoming input with the 

old memory and an update gate that specifies how much of the last memory should be 

kept. Figure 4- 6 shows the gating mechanism. A gating mechanism, like an LSTM, 

learns long-term dependencies, but it is different from LSTM due to an output gate 

with controlled exposure. 

 

Figure 4- 6: An Illustration for GRU (Figure Source: Chung et al. 2016) 
 



60 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

GRU has shown competitive performance but suffers from vanishing gradient 

problems via a gating mechanism. 

4.5 Classification Layer 

 

The feature maps in the final layer are represented as vectors, with scalar values 

supplied to the fully linked layers as they are combined. The output is generated with 

the association of an activation function. Figure 4- 7 describes the classification 

process in a DNN, where x1, x2, and xm represent the input values, w1, w2, and wm are 

the weights calculated in the internal layers and ∑ represents the sum of those values. 

A classification layer receives a sum of weights from the internal layers and predicts a 

value of Y with the help of an activation function. 

 

 
Figure 4- 7: An Internal Function Involved in Classification (Tzanis and Alimissis, 2021) 

 

4.5.1 Activation function 

The DNN's output layer might be considered the final layer. Linear, sigmoid, Tanh, 

and SoftMax are employed as output layers in the DNN for classification. It determines 

how close the parameters are to the training and validation data's ground truth labels. 

4.1.5.1 Softmax Classifier 
 

The softmax function is the gradient log normaliser of the categorical probability 

distribution (Joo et al., 2019). It begins the same way as the standard layer, which 

forms the weighted inputs for the DNN. The framework is made to return N values, 

one for each category in the classification.  

 



61 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

task. The softmax function is used to normalise the outputs by requiring the input 

values of the last layer to be positive and their total to be 1. Each number in the softmax 

function's output is interpreted as the likelihood of belonging to each class. Linear and 

sigmoid activation functions are ineffective for multi-class classification problems. 

Softmax, on the other hand, can be utilised to solve probabilistic multiclass 

classification issues (Zhu et al., 2020). 

4.1.5.2 Rectified Linear Unit (ReLU) 
 

The rectified linear unit (ReLU) was first proposed by Nair and Hinton 2010 as an 

activation function (Nair and Hinton, 2010). In deep learning, the ReLU outperforms 

the Sigmoid and Tanh activation functions in terms of performance and generalisation. 

The ReLU depicts a nearly linear function, preserving the features of linear models. 

When the input value is positive, the derivative of the input is always 1. As a result, it 

addresses the vanishing gradient problem (Zeiler et al., 2013). 

4.1.5.3 Hyperbolic Tangent Function (Tanh) 
 

The Tanh function's key benefit is that it generates zero-centred output that has a range 

of -1 to 1. It aids the back-propagation process in comparison to the sigmoid function 

(Nwankpa et al., 2018). The tanh function, on the other hand, could not solve the 

sigmoid functions' vanishing gradient problem (Karlik and Olgac, 2011). The function 

has been utilised primarily on neural networks with recursion and provides higher 

training performance for multi-layer neural networks in the field of Speech and natural 

language processing. 

4.5.2 Loss Function 

In a neural network, a loss is nothing more than the predicted error of the network, and 

the mechanism used to compute the loss is referred to as the Loss Function. Put another 

way, the loss is utilised in the calculation of the gradients. In addition, gradients are 

employed to update the weights of the neural network. When a model is parametrized 

and then translated into the real domain, the loss function (also known as a cost 

function) is computed as a function. It assesses how inaccurate the current valuation of 

the parameters is at the time of the measurement. For faulty forecasts, the loss function  



62 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

should return high values, whereas, for successful predictions, the loss function should 

return low values. Optimisation processes are approaches for determining the input 

that will result in the lowest amount of loss. 

4.2.5.1 Cross-Entropy 
 

Cross entropy loss, also called logistic regression loss, is an alternative measurement 

of a probability distribution. In order to assess the performance of a neural network 

model, the cross-entropy function allows the network to evaluate such minor errors 

(Mannor et al., 2005). The averaged cross-entropy is represented as a loss function that 

can interpret the softmax classifier. The cross-entropy between actual distribution p 

and a predicted distribution q is represented as: 

H(p, q) = − ∑x p(x) log q(x) 

 

Eq4- II 

Hence, the task of the softmax classifier is to minimise the cross-entropy between the 

actual distribution and the predicted distribution. 

In summary, the softmax classifier can be interpreted in a probability view. Given a 

sample (xi, yi) and parameters W, it can compute the normalised probability: 

Where 𝑓yi is the score predicted by the model with weights W. Therefore, the 

normalised probabilities are computed by exponentiating the values and dividing by 

the sum of all values. In some circumstances, the error function e reflects some 

assumptions about the data distribution as well as an adequate notion of quality (Golik 

et al., 2013). Minimising cross-entropy refers to increasing the likelihood of the correct 

label or decreasing the dissimilarity between the network distribution estimation and 

the suitable distribution to approach c. 

4.5.3 Back-propagation 

Backpropagation is a popular approach for training feedforward neural networks. It 

computes the gradient of the loss function for the network weights for a single input-  

 

P(yi|xi ; W) = efyi|∑je
fj 

 

Eq4- III 



63 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

output pair at the time of training a neural network. Usually, gradient descent, or 

stochastic gradient descent, trains multilayer networks and updates weights to 

minimise the loss. After introducing the loss function, the neural network can learn 

with gradient descent. The loss function represents the error function, and the weights 

are the function's variables. The gradients of the error function with respect to the 

weights are called error gradients. It passes out the output from the activation function 

to the next hidden layer. When the result differs significantly from the actual value, the 

process of determining the error value and updating the weights to adjust those biases 

based on that value is known as backpropagation. 

4.6 Optimisation in Deep Learning Architectures 

An optimiser guides the weights associated with layers in order to reduce loss while 

forecasting the labels for training and validation data. The optimiser is used to adjust 

weights based on the loss experienced during the network's training stage. Training 

accuracy is typically higher than validation accuracy. The overfitting phenomenon 

occurs when the discrepancy between the two accuracies is too significant (Cogswell 

et al., 2016). Put another way, the DNN utilises its weights to memorise the training 

set instead of looking for distinguishing traits that might help it learn. The DNN’s 

sophisticated design is another contributing factor to overfitting. Regularisation 

approaches can be used to make the DNN as complex as desired while limiting 

overfitting (Kukaka et al., 2017; Minar and Naher, 2018). Because of this, it supports 

the use of simple models to generalise previously unobserved data points (Nusrat and 

Jang, 2018). 

4.6.1 Scholastic Gradient 

The scholastic gradient is an expansion of the gradient descent. A variation of gradient 

descent known as stochastic gradient descent (SGD) has been widely employed in 

CNNs. During each epoch of the gradient descent, the algorithm calculates the gradient 

and updates the network weights before evaluating the output of each single data point 

in the training set. Instead of single data points, mini batches can be used to reduce the  

 



64 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

gradient variability. Even if the training set contains only a few hundred photos, 

calculating the gradient descent will take considerable time. A tiny random sample 

from a training set is used to estimate the gradient decline in the SGD. 

4.6.2 ADAM Optimiser 

To calculate each parameter's adaptive learning rates, the ADAM (Adaptive Moment 

Estimation)-Optimiser is one of the most prominent adaptive step size approaches 

(Kingma and Ba, 2017). ADAM is a more complex version of stochastic gradient that 

preserves an average of past gradients as well as an exponentially declining average of 

past squared gradients, similar to the momentum approach (Perin and Picek, 2021). 

4.6.3 Adaptive Methods 

There are two primary adaptive method approaches. Structural stabilisation changes 

the adaptive parameters in hidden layers, such as neuron numbers (Liu and Liao, 2014). 

Structural stabilisation can be approached from two directions. Structural stabilisation 

starts from a small network and increases layer numbers or utilises neuron numbers in 

the training process to arrive at a significant neural network architecture. The other is 

to start from an extensive network and prune out layers or neurons in the training 

process to achieve the optimal neural network architecture (Gupta and Raza, 2018). 

The architecture of a deep learning network is determined by selecting 

hyperparameters for each layer (Caselles-Dupré et al., 2018). The majority of deep 

learning algorithms explicitly provide hyperparameters that regulate various aspects 

such as memory and execution cost. Levy et al. (2015) illustrated that careful 

optimisation of hyperparameters is often more important than the chosen embedding 

algorithm itself. 

The primary goal of hyperparameter selection is to fine-tune a model's capacity to 

match the difficulty of the target task. Since it is impossible to learn from the training 

set, a setting is often modelled as a hyperparameter (Aghaebrahimian and Cieliebak, 

2019). Usually, the hyperparameters are determined by human intuition, experience or 

trial and error (Andonie, 2019). There are two primary approaches to selecting and  

 



65 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

optimising hyperparameters: manual and automatic selection (Chan et al., 2013). The 

decision to use one over the other usually reflects a trade-off between a deep 

understanding of the model needed to manually pick hyperparameters versus the high 

cost of computing required by automated selection algorithms (Luo, 2016). Some 

typical hyperparameters must always be considered (Hutter et al., 2019). These include 

1) Learning rate: the learning progress of a model in a way that can be used to 

optimise its capacity, 2) Number of hidden units: The number of hidden units is vital 

to regulating model representative capacity, 3) Division of the dataset: For a complete 

epoch, the data set is separated into training and validation sets. It is helpful to compute 

and compare the training and validation accuracy after each epoch is completed. An 

unpredictable number of settings can play the role of hyperparameters for specific 

models (Balaprakash et al., 2018). The number and divergence of hyperparameters in 

machine learning algorithms are precise to each model. 

4.7 Regularisation in Deep Learning 

In general, in the context of refining model design, certain solutions are given to reduce 

overfitting. A pooling layer is regularly added between successive convolutional layers 

to minimise the spatial size of the representation and the number of parameters. To 

provide more information, a favourable explicit regularisation type is adopted. In all 

training data, a dropout layer is employed to eliminate neuron interactions and gain 

more robust features. 

4.7.1 Drop out 

Drop out is a helpful tool to enhance generalisability (Srivastava et al.,2014). The first 

technique, known as naïve or straightforward drop-out, was proposed to remove the 

connections between deep layers. The key idea is to drop neural network units 

randomly during training to prevent units from being too co-adapted (Hernández- 

García and König, 2018). Applying dropout means randomly dropping a unit out or 

temporarily removing it from the network. This zeros the activation of randomly 

selected nodes with a certain probability during the training process. It also helps avoid  

 



66 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

overfitting in DNNs, another differential feature of the neural network. It disables some 

neurons at each training iteration to prevent them from being too dependent on each 

other. 

4.7.2 Early Stopping 

The model's accuracy in fitting unseen data is evaluated after each epoch when using 

iterative gradient descent to train a neural network. Early stopping is a technique that 

is introduced if the model's performance on the validation data is not improving 

(Prechelt, 1998; Song et al., 2020). Early stopping stops the model's training process 

before reaching the lowest training error, thereby ensuring that the variance of the 

estimator is not too high. 

4.7.3 Weight decay 

The capacity of a neural network to generalise depends on the balance between training 

examples and the system's complexity. A way to restrict a network and thereby reduce 

its complexity is to limit weight growth by some form of weight loss (Krogh and Hertz, 

1992). This is commonly done by L2 regularisation, which adds a penalty for high 

weights to the network's cost function. Weight decay, on the other hand, is an extra 

term in the weight update rule that causes weights to fall exponentially to zero without 

any other changes. The cost function can be controlled to effectively restrict the 

number of free parameters in the model to prevent overfitting. A practical course of 

action to apply a regularisation term to the energy function is to design a Gaussian zero 

average overweight, similar to changing the cost function. The regularisation term L2- 

norm is used to penalise huge weight values; the weight-decay coefficient can be used 

to directly adjust the regularisation effect (Nakamura and Hong, 2019). The weight- 

decay coefficient can be adjusted by hand or learned through Bayesian optimisation; 

layer-wise weight-decay has just recently been addressed. 

4.7.4 Data Augmentation 

Data augmentation is a method of artificially producing data from the existing training 

data by making small adjustments to the dataset (Wong et al., 2016). According to 

Taylor and Nitschke (2018), it is common knowledge that misalignment might lead to  



67 

 

 

Background and Experimental Settings for Deep Neural Networks 

 

 

a shortage of data on the adversary's side. Second, the DA is controlled, which means 

that the data deformations are chosen and thus fully defined. As a result, the 

classification problem's complexity can be determined to its entire extent. 

4.8 Summary 

The literature on deep neural networks and text classification was reviewed in Section 

4.1. Section 4.2 presented techniques related to word representation and transfer 

learning. Section 4.3 and 4.4 defines the neural networks, multi-layer perceptron model 

as well as feed forward and recurrent neural networks elated to this study. Moreover, 

classification of DNN, some output functions, back propagation process and gradient 

of different levels were highlighted in Section 4.5. 

In deep learning architectures optimisation is an issue, various approaches to 

addressing this are described in Section 4.6. Lastly some regularisation strategies were 

discussed towards the end of this chapter. 



 

 

Chapter 5 Framework Design for an NFR Classification System 

 

 
The goal of this chapter is to develop a suitable architecture based on deep 

learning techniques for the classification of NFRs. It provides step-by-step details for 

the design and implementation of these neural networks, while highlighting the 

possible benefit of using a framework that eliminates the need for human based feature 

engineering. 

The chapter begins with a problem statement and a possible solution. Section 5.2 

provides the detailed design of the architecture. The model's implementation is given 

in Section 5.3. This chapter concludes with the preliminary results obtained from the 

experiment. 

5.1 . Problem Formulation 

The aim of this study is to design an optimal framework for the classification of NFRs 

that includes a method of data augmentation, word2vec embeddings, and a deep 

learning model based on a representative NFR corpus. The problem of NFR 

representation has been formulated as a multi-class classification. 

For the given repository of requirements, Let X = {x1, x2, x3, … xN} is a set of N 

requirements, such that each requirement is defined as; x ∈ 𝑅𝐷where D is the maximum 

length of the dataset. In the case of supervised learning, the problem is to estimate a 

function fe that transforms the requirement into M-dimensional latent space as: 

z = fe(x, θe, βe) 

 

Eq5- I 

where z ∈ 𝑅𝑀 is the extracted representation 𝜃𝑒 and 𝛽𝑒 are the weights and biases of 

the estimation function fe, respectively. These representations are then associated with 

different categories using a softmax classification defined as: 



69 

 

 

Framework Design for an NFR Classification system 

 

 

 

t ̃= σ(z) 

 

 
Eq5- II 

 
Function fe is learned by minimising the error between actual label t and predicted 

class label �̃� using: 

Jc = −∑ t logt ̃+ 

 

 
Eq5- III 

For an automatic NFR classification, this study proposes to use four-phase-deep neural 

network frameworks starting with 1) pre-processing, 2) embedding generation, 3) 

feature learning, and 4) classification, as shown in Figure 5- 1. 
 

Figure 5- 1: Framework for NFR Classification, including Phases of Pre-processing, Embedding 

Generation, Feature Learning, and Classification 

 

5.2 Training Configuration for a Baseline Classification Model 

This section formalises the proposed approach for NFR classification, one of the 

contributions of this thesis mentioned in the introduction of this chapter. It provides 

the step-by-step procedure to train four deep neural networks: CNN, ANN, GRU, and 

LSTM, to design a classifier for this experiment. 



70 

 

 

Framework Design for an NFR Classification system 

 

 

5.2.1 Corpus for Training 

This experiment uses a benchmark text corpus for NFRs that has recently been 

developed1. The corpus consists of 1484 sentences taken from the SRS documents. 

Table 5- 1: Class-wise Distribution for Custom NFRs Corpus 
 

Category Total Samples 

Efficiency 480 

Maintainability 240 

Portability 156 

Reliability 191 

Usability 417 

Total Documents 1484 

The corpus consists of five classes: efficiency, maintainability, portability, reliability, 

and usability. Each category contains a different number of sentences. The class-wise 

distribution of samples has been mentioned in Table 5- 1. The data ratio between the 

training and validation sets remains 80:20 for all four DNNs. 

5.1.2.1 Pre-processing 
 

Pre-processing is required for the initial phase of training, which is to refine the data. 

In section 2.4 of Chapter 2, various pre-processing approaches were addressed. This 

experiment does not necessitate any of the syntactic or semantic labelling outlined 

earlier. However, some essential data cleansing is still required. Therefore, a word 

embedding strategy is used for semantic learning in this study. 

 

 

 

 

 

 

 
 

1 NFRs Corpus created because of research question 1, details can be found in Chapter 3. 



71 

 

 

Framework Design for an NFR Classification system 

 

 

5.1.2.2 Sequence Generation 

As neural networks could take only numbers as input, training deep learning models 

on the given dataset requires the sentences to transform into sequences of numeric 

values. Numeric values are taken from the dictionary indices generated for all the 

corpus words. For this purpose, the sentences are then tokenised into words 

considering white spaces as delimiters and replaced with the characters with small 

letters for each word. In addition, it filters out the list of punctuation marks, including 

``! #$%& () *+, -. /: ;<=>? @ [] \^ _` {|} ~ \t\n" from the sentences. The dictionary of 

the corpus is generated so that a unique index number represents each word. These 

indices are used to convert sentences into sequences. The total number of unique words 

in the dictionary plus a stop word (usually placed at index 0) comprises the vocabulary 

of the corpus. An example of the sentence conversion into sequences is shown in Table 

5- 2. 

Table 5- 2: Conversions of NFRs Sentence into Sequences 

 

 
5.1.2.3 Sequence Padding 

 

DNNs are best suited for a limited set of inputs. However, due to the variety of terms 

used in different sentences, the length of sequences in this scenario varies dramatically. 

As a result, the maximum length of a phrase in the corpus is determined as 46, and pad 

zeros are assigned to sequences that are shorter than 46. Table 5- 3 shows an example 

of the post-padding method that is adopted in this study. 



72 

 

 

Framework Design for an NFR Classification system 

 

 

 
Table 5- 3: Step-by-Step Conversion of Sentences into Sequence and Padding 

 

 

5.1.2.4 Embedding Generation 
 

After sequence generation the next step is to acquire embeddings of these sequences. 

Word embeddings techniques were discussed in the previous chapter in section 4.3. 

This experiment uses word2vec skip-gram model where these word embeddings are 

trained from scratch on the custom NFR corpus. 

5.3 Training Configuration for DNNs 

Deep neural networks used for NLP include the embedding layer as the first layer of 

the system. Second layer receive embeddings of the sentences to learn discriminant 

features of the text by transforming them from embedding space to feature space. For 

multiclass classification, a feature for each text is discovered to maximise the 

probability of belongingness to the actual class. Principally, gradient descent with 

backpropagation executes this successfully. Figure 5- 2 is created to illustrates the 

transformation of sentences to word embeddings and their representative features. It is 

important to note that features in each sentence are mapped to multiple semantic 

concepts expressed by distributed words. As a result, one or more semantic notions are 

included in a single class. 



73 

 

 

Framework Design for an NFR Classification system 

 

 

 
 

 

 

Figure 5- 2: Transformations from Sentences to Word Embeddings and Features 

 

As feature learners, this experiment employs four neural networks: ANN, CNN, GRU, 

and LSTM. Each network's details are listed below. 

5.3.1 ANN Representation Learner 

After the embedding layer, a five-layer ANN with 1024, 512, and 256 units in each 

first, second, and third layer is formed, as illustrated in Figure 5- 3. 

 

 

 

Figure 5- 3: ANN Architecture for NFR Classification 



74 

 

 

Framework Design for an NFR Classification system 

 

 

Before the first dense layer, a global max-pooling layer was utilised to provide a one- 

dimensional output from the embedding layer. Two more dense layers of 64 and 5 

neurons were employed to generate the classifier's output. 

5.3.2 CNN Representation Learner 

This representation explores the development of features with context information 

between the words retained with 1D convolution in combination with ReLU. 
 

 

 

Figure 5- 4: CNN Architecture for NFR Classification 

 
activations. Figure 5- 4 shows four layers with an increasing number of filters from 64 

to 512 that have been used in this network. To obtain a low dimensional feature, the 

filter size of 5 is reduced to 3 in the other layers. A global max pooling is applied to 

the features before feeding them to the two dense layers for classification. 



75 

 

 

Framework Design for an NFR Classification system 

 

5.3.3 GRU Representation Learner 

Recurrence plays a significant role in sequenced input. Therefore, this architecture 

explores the performance of a GRU-based feature learner employing 4 GRU layers 

followed by Tanh activation. A similar strategy used in CNN that increases units in 

each GRU layer is applied here, as shown in Figure 5- 5. Global max pooling with two 

dense layers concludes the feature learning network for classification. 

 

 

 

Figure 5- 5: GRU Architecture for NFR Classification 

 



76 

 

 

Framework Design for an NFR Classification system 

 

5.3.4 LSTM Representation Learner 

LSTMs have recently beaten GRU-based networks' performance for many 

applications, including action recognition. In this experiment, LSTM-based feature 

learners have been used. Additionally, this network uses a dropout of 0.4 in each LSTM 

layer, as shown in Figure 5- 6. 

 

Figure 5- 6: LSTM Architecture for NFR classification 

 

 

5.4 Classification 

In related literature, well-known classifiers, such as Naive Bayes and SVM, were used 

to classify requirements. However, the softmax classifier has proven superior in 

multiclass classification problems. To categories the NFRs, this experiment uses a 

softmax activation in the dense layer of the feature learner. While the loss between 

correct and predicted class labels is reduced using categorical cross-entropy loss. The 

use of neurons equal to the number of classes in the dataset proved significant in this 

experiment. 

 



77 

 

 

Framework Design for an NFR Classification system 

 

 

5.4.1 Hyperparameter Settings 

Hyperparameter tuning was discussed in Chapter 4, section 4.4. For the experimental 

setting in this experiment all DNNs have similar hyper-parameter configurations. For 

instance, an Adam optimiser was used to optimise all the networks with an initial 

learning rate of 0.001 and a rating decay of 0.2. Additionally, this experiment uses 

early stopping criteria, which causes the training process to cease after ten consecutive 

epochs of no improvement as opposed to using a predetermined number of epochs. 

5.4.2 Hardware and Software Settings 

All the experiments were conducted on a system with an Intel Core 2.80 GHz i7- 

7700HQ processor with 16 GB RAM and Nvidia GeForce GTX 1050Ti GPU. All the 

experiments were performed using Python 3.6.5 and TensorFlow 1.12.0. 

5.4.3 Performance Metrics 

This experiment evaluates the effect of learning on four deep neural networks, and the 

model’s ability to learn and predict the classification results from the given data is 

assessed based on two parameters: accuracy 1and loss2. Convergence graphs are 

generated to check the convergence rate of different approaches and plot the variation 

of loss and accuracy concerning increasing epochs. Furthermore, precision, recall, and 

f1-score is used as key indicators to evaluate the performance of the proposed 

framework for the NFR corpus. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1 Accuracy is the ratio of number of correct predictions to the total number of input samples. 
2 Loss is false classifications 

 

  



78 

 

 

Framework Design for an NFR Classification system 

 

 

5.5 Experimental Results 

As these models require an extensive training set, it would be interesting to see which 

model can learn and produce a satisfactory result with a small dataset, such as a custom 

NFR corpus. The aim here is to avoid overfitting when the DNN experiences a large 

difference in the performance over the training set compared to the validation set. 

experiment aims to minimise this gap and achieve higher accuracy for the classification 

of NFRs. 

To provide a get a good picture of the NFR corpus to the reader, it is converted into a 

word cloud. Figure 5- 7 shows terms in the corpus generated after tokenisation and 

stop-word removal. The magnitude of each phrase (or two linked words) indicates how 

frequently a word appears in the corpus. For example, the most-used words in the 

corpus from the given figure are “user” and “system”. Other words (i.e., “easy”, 

“easily”, “must”, “help”, and “product”) have also been used extensively in the corpus. 

 
 

 

 

Figure 5- 7: Word Cloud Generation for the Words in the Corpus 

 
In terms of training accuracy and loss, CNN outperformed all four neural networks but 

accuracy decreased to the '60s for the validation set. Further investigation reveals that 

LSTM failed to perform well on such data due to many trainable parameters and 

insufficient data to train. However, the GRU network outperformed other neural 

networks on the validation set. Figure 5- 9 shows how the validation loss for GRU and  



79 

 

 

Framework Design for an NFR Classification system 

 

 

ANN approaches 1.66 and 1.70 respectively. The LSTM network, on the other hand, 

sees a significant increase. In Figure 5- 8, similar behaviour has been noticed for the 

accuracy of these networks. 

It is clear that LSTM was underperforming. In addition to the four models Conv- 

LSTM, a hybrid architecture that combines CNN and LSTM, was examined. 

Convolution layers are utilised to extract features, which are then fed into the LSTM. 

Table 5- 4 demonstrates that it began to function better under these network 

parameters, although no noticeable benefit was observed. 

 
Table 5- 4: Comparison of Various Representation Learning Approaches based on Statistical 

Performance Measure 

 
 

Representation 

Learner 

Augmentation Precision Recall F1-Score 

ANN None 0.62 0.62 0.61 

CNN None 0.61 0.60 0.60 

GRU None 0.67 0.68 0.67 

LSTM None 0.06 0.25 0.10 

Conv-LSTM None 0.44 0.46 0.44 



 

 

Framework Design for an NFR Classification system 

 

 

  
 

Figure 5- 8: Convergence Plots Concerning the Number of Epochs Vs Accuracy for the 

Baseline Models 

Figure 5- 9: Convergence Plots Concerning the Number of Epochs Vs Loss for 

the Baseline Model 



 

 

Framework Design for an NFR Classification system 

 

5.6 Summary 

This chapter explored the design considerations necessary for constructing an effective 

DNN based classifier. This chapter's focus was initially established as a multiclass 

classification, which was subsequently operationalised as an experiment. It showed 

how to categorise NFRs using DNNs. Furthermore, statistical measurements were 

utilised to evaluate the performance of the created models. Under the recommended 

settings, CNN and GRU outperformed ANN and LSTM, as shown in Table 5.1. The 

provision of an effective approach to stabilise the classification system is explained in 

this chapter, which is an important contribution of this thesis. 



82 

 

Chapter 6 Custom Data Augmentation Approach and 

Experimentation 

 

 
The previous chapter demonstrated the classification of NFRs using four deep neural 

networks. The results indicate that, while some neural networks are capable of 

minimising validation loss, on average, they do not converge to a superior solution. 

This chapter discusses the issue of overfitting and motivates the use of a data 

augmentation strategy to solve data sparsity in deep learning-based classification. This 

chapter provides a major contribution to the research by investigating the effect of the 

data augmentation scheme to improve the performance of the baseline NFR 

classification system. 

Section 6.1 provides a background to the data augmentation approach. It discusses 

work related to text augmentation techniques and the design considerations that must 

be addressed when developing an effective optimisation algorithm. Section 6.2 

proposes a new data augmentation approach to probe DNNs for effectively classifying 

NFRs. The chapter further extends the investigation and formulate the training of the 

DNN models under these modifications. Lastly, it concludes with the results of the 

experiment. 

6.1 Background 

Data augmentation (DA) is a method of artificially producing new data by making 

minor adjustments to the existing training data (Wong et al., 2016). This study adopts 

data augmentation (Taylor and Nitschke, 2018) among other regularisation strategies 

(described in chapter 4 in section 4.6) for two main reasons. First, the deformation 

leads to an increase in acquisitions. Second, the data augmentation is controllable, the 

data modifications are chosen, and the data is thus precisely defined. It is, therefore, 

possible to fully determine the addition of complexity induced to the classification 

problem. DA inflates the dataset size artificially by either data warping or 

oversampling. Existing data is warped in such a way that the label is preserved. 



83 

Custom Data Augmentation Approach and Experimentation 

 

Whereas oversampling generates synthetic instances and adds them to the training set 

(Wong et al., 2016). 

Text augmentation is a relatively recent field that has evolved to deal with overfitting 

in DNN based text classification. The current data augmentation methods that are 

widely used in NLP are covered in this section. 

A study by Zhang et al. (2016) uses a thesaurus to replace words with their synonyms 

to improve the training performance of a character-level convolutional neural network. 

Rosario (2017) classifies short texts based on SVM. Whereas our work focuses on 

requirement classification based on a sentence level and concentrates on deep learning- 

based techniques. 

Quijas (2017) proposed data augmentation techniques that use shuffling, noise 

injection, and paddling techniques to augment the textual data, to train convolutional 

and recurrent neural networks for text classification. 

A year later, Kobayashi (2018) proposed an approach suggesting contextual 

augmentation which replaces the words in a sentence by its counterparts generated 

with a bi-directional language model. The experiment was performed with RNN and 

CNN trained across multiple datasets with favourable results. 

Another work proposed by Coulombe (2018) is based on textual noise, spelling errors, 

synonyms replacement, paraphrase generation (using regular expressions or syntax 

trees), and back-translation techniques to generate more data. 

Abulaish and Sah (2019) proposed a data augmentation approach that combines n- 

grams and LDA techniques to identify class-specific phrases to augment the corpus. 

They have evaluated the performance of the convolutional neural network on an 

original and augmented corpus and obtained positive results. 

In another study, an easy data augmentation technique (EDA) was proposed using 

operations such as synonym replacement, random insertion, random swap, and random 

deletion. The researchers experimented with five tasks. Their findings imply that when 

training on smaller datasets, EDAs can enhance performance and decrease overfitting. 

Moreover, this study claims to improve performance for convolutional and recurrent 

neural networks (Wei and Zou, 2019). 



84 

Custom Data Augmentation Approach and Experimentation 

 

In data augmentation, usually only the training set (containing images/videos/text) is 

augmented to address ML data thirsty algorithms (Wang et al., 2017). Nevertheless, 

lately, DA has emerged as a common practice to apply test-time augmentation (Ayhan 

and Berens, 2018; Shanmugam et al., 2020). The primary objective to augment test 

data is to reduce variance but not make the test data bigger or more accurate. However, 

this is typically so that the input data from the test set resemble the input data from the 

training set. For instance, in the case of the training images, AlexNet (Krizhevsky et 

al., 2017) and ResNet (Wang et al., 2021) performed the 10-crop technique in training 

and performed augmentation on the testing set. The training images were cropped in 

different locations/offsets. In contrast, only a single centred crop was performed at test 

time or in the second approach, and an average was taken after multiple random crops. 

In previous studies, data augmentation was primarily performed with noise injections 

(Quijas, 2017), rotations, reverse translation, swapping, and random deletion (Wei and 

Zou, 2019). Techniques like these may lose valuable data and information. 

A domain-specific method is another way of using a synonym thesaurus. These 

techniques were employed based on co-occurrence or semantic networks to create a 

synonym thesaurus. DA that uses a thesaurus replaces domain jargon or keywords with 

synonyms. Such strategies may be suitable for language-related tasks, which depend 

on an external dictionary. However, they require a long computation time and a high 

cost of implementation relative to performance gain (Zhang et al., 2016; Kobayashi, 

2018). Furthermore, in a lexical-based method or the hand-crafted system, a domain 

expert develops a thesaurus (i.e., WordNet) by hand. Others, such as (Kobayashi 2018) 

bi-directional translations, can maintain the sense of the sentence but lose the jargon 

specific to the domain. 

The real need for data augmentation lies in a domain-specific task, where it is 

expensive to gain a large corpus. However, the existing techniques of data 

augmentation in the text domain lack practices to handle domain knowledge. This gap 

provides a motivation for this study to discover a new technique to handle domain- 

specific data. The proposed approach is inspired by the data augmentation technique 

in practice in the image domain. 



85 

Custom Data Augmentation Approach and Experimentation 

 

Blending photos by averaging their pixel values is a rather counterintuitive technique 

to data augmentation. The images formed by doing so do not appear to be beneficial 

to a human viewer. 

In a study, Ionue (2019) demonstrated how sample matching can be turned into a useful 

enhancement approach. He randomly cropped and flipped images horizontally, 

resulting in a jumbled image that was used to train a classification model. The new 

image's label was like the original image, which was chosen at random. Another 

finding of the study was that merging photos from the full training set rather than 

instances strictly belonging to the same class yielded superior outcomes. This sample 

pairing creates a dataset of size N2+N from a size N training set. 

Similar to this, Summer and Dinneen (2019) further explored the notion of combining 

images in an unintuitive way into a new training set using nonlinear methods. In like 

manner, Liang et al. (2018) employed GANs to create mixed images. Mixed images 

reduced training time and increased the variety of GAN samples in the training 

outcomes. Takahashi and Matsubara (2020) have demonstrated another method of 

picture mixing in which photos are randomly cropped, and the cropping is 

concatenated to produce new images. However, this strategy has a severe flaw in that 

it makes no sense from a human perspective. 

6.2 Custom Data Augmentation (CDA) Approach 

A new data augmentation strategy has been suggested, which is inspired by a query 

expansion process (Porter et al., 2020). It manipulates the data points themselves, in 

the creation of fresh data points resulting into a more comprehensive dataset. 

This approach uses a “sort and concatenate” strategy for this purpose. The set of 

sentences from a class is sorted and then concatenated to the original sentences. As a 

result, it combines two sentences from each group to form more sentences. The class 

label is then assigned to the newly generated sentence. It is expected that mixing the 

requirements can keep the sentence semantic and maintain the syntactic structure. By 

adding information generated from a distinct set of requirements, this augmentation 

provides value to the base data. It can also significantly improve data quality by 



86 

Custom Data Augmentation Approach and Experimentation 

 

reducing the amount of manual human input needed to add third-party libraries. Figure 

6- 1 describes the process involved in this augmentation in the proposed approach. 

 

 
Figure 6- 1: A Framework Representing the Procedure for Custom Data Augmentation 

 

This section presents a formalism for the custom data augmentation approach. It 

transforms the NFRs corpus to a distribution 𝑄, used for training instead. 

Steps for custom data augmentation (CDA) approach: 

 
Input: Original dataset D 

Output: Augmented dataset Q 

Divide D into N classes 

Sort O in ascending order as Aa 

 

Concatenate O with Aa as OAa (Where O remains unchanged) 
 

Sort O in descending order as Bd 

 

Concatenate O with Bd as OBd (Where O remains unchanged) 
 

Concatenate OAa and OBd 

 

Repeat steps 2 to 7 until it reaches N. 

 

 
In the example described above, let ‘D’ denotes a dataset. Where ‘N’ represents the 

number of classes. ‘D’ can be divided with requirements Rn in each class, where n is 

the limit of the number of sentences for concatenations in each group. It takes one 

subset from the original data ‘O’. and creates Aa when sorted in ascending order and 



87 

Custom Data Augmentation Approach and Experimentation 

 

. 

Bd when in descending order. When performing a transformation on requirements, 

Rn,‘O’ remains unchanged. Lastly, all subsets are combined to develop Q. 

This process represents the generic augmentation procedure; requirements belonging 

to every label/class have been concatenated within the same category to form a new 

set of samples in a dataset. Merging the content of one requirement with another one 

affects the entirely new requirements with the characteristic of both requirements. 

The next step is to determine how the number of generated augmented sentences per 

original sentence yield performance boosts. The proposed approach increases the size 

of data in N2 This dataset will be divided into a subset of equal size. Furthermore, it 

will be synthetically increased to double its size for every subset. 

6.3 Training Configuration for DNNs with Data Augmentation and Pretrained 

Word Embeddings 

This section presents an experiment to operationalise the proposed data augmentation 

approach. Similar to the baseline experiment, it trains four DNN architectures for the 

classification of NFRs. The pre-processing and sequence padding have been performed 

in similar manner. This experiment uses two data augmentation techniques: 

1) easy data augmentation (EDA) and 2) the newly proposed custom data augmentation 

(CDA). The EDA approach used random insertion, deletion, random, swap, and 

synonym replacement operations. The CDA technique, on the other hand, concatenates 

two sentences from the same class to create more samples from that class. Both 

strategies were used to supplement the data over the whole corpus. Then, in each case, 

80% of the augmented data was utilised for training, and the remaining 20 % was used 

for validation. The distribution for the augmented data is provided in Table 6- 1. 



88 

Custom Data Augmentation Approach and Experimentation 

 

 

Table 6- 1: A Class-wise Distribution of Augmented Data Samples for the NFR corpus 

 

Category Original Data Data augmented with EDA Data augmented with CDA 

Efficiency 480 1920 960 

Maintainability 240 960 480 

Portability 156 624 320 

Reliability 191 764 382 

Usability 417 1668 834 

Total Documents 1484 5936 2976 

 

6.3.1 Pre-trained Word Embeddings 

In the baseline experiment, skipgram word embeddings were used. The NFRs corpus 

was used to train this skipgram model from the start. This experiment, however, 

employed a pre-trained weight on the Eng-CoNLL 17 corpus and finetune them while 

learning the feature representations for the provided data. 

The Conference on Computational Natural Language Learning (CoNLL) is a 

collaborative effort to learn dependency parsers for a variety of languages in a real- 

world scenario without the use of gold-standard input annotations (Zeman et al., 2017). 

All the test sets used the same annotation scheme, which was called universal 

dependencies. The major purpose of the challenge was to learn syntactic dependency 

parsers that can be employed in a real-world setting and can handle a wide range of 

typologically diverse languages. These embeddings used 100-dimensional pre-trained 

word2vec continuous skip-gram vectors trained for an English CoNLL17 corpus with 

a vocabulary size of about 4.02 million words and fine-tuned the pre-trained weight on 

the NFRs augmented data. 

6.3.2 Hardware/ Software Settings 

The experiment is performed with the same neural network architecture as the previous 

one, but with a new augmented data distribution, as shown in Table 6- 1. After 



89 

 

 

 

Custom Data Augmentation Approach and Experimentation 

 

 

initialising the embedding layer with pre-trained weights, the embedding layer is left 

trainable to maintain the accelerated pace of convergence. Instead of employing a fixed 

number of epochs an early stopping criterion is used, which terminates the training 

process if there are no improvements for ten consecutive epochs. All the networks were 

optimised using an Adam optimiser with an initial learning rate of 0.001 and a rating 

decay of 0.2 

6.4 Experimental Results 

The results of the baseline NFR classification model designed in Chapter 5 showed 

that there was not enough data to train the designated embedding layer. Therefore, to 

solve this issue, this chapter introduced a data augmentation strategy. Additionally, 

pre-trained word embedding technique is employed in this experiment. In section 6.3, 

an experiment was conducted with pre-trained skip-gram word embeddings, and the 

entire corpus was augmented before splitting into a train/validation set with two data 

augmentation strategies: state of the art EDA and newly proposed CDA, respectively. 

In this section the results are evaluated based on accuracy and loss on the training and 

validation sets. Most of the models perform well on the training set. However, the 

problem under analysis is in generalising on the validation dataset and minimising the 

loss. The results obtained from the EDA approach shows, this modification could not 

drastically improve the results; however, the training time was reduced. Figure 6- 4 

shows the accuracy and loss values while indicating that CNN and GRU pre-emptively 

stopped under 20 epochs. However, in the instance of the CDA approach, it was 

discovered that, in addition to the ANN, CNN, and GRU networks that were already 

performing well, the LSTM network also performed well with this augmentation 

technique. However, until the first ten epochs, it showed no signs of learning, as shown 

in Figure 6- 5. 



 

 

 

Custom Data Augmentation Approach and Experimentation 

 

 

 

 

Figure 6- 2: Convergence Plots Concerning Several Epochs for Accuracy on Entire 

Corpus with EDA and Pre-trained Word Embeddings 

 

 

Figure 6- 4: Convergence Plots Concerning Several Epochs for Accuracy on the Entire 

Corpus with CDA and Pre-trained Word Embeddings 

Figure 6- 3: Convergence Plots Concerning the Number of Epochs for Loss on 

Entire Corpus with EDA and Pre-trained Word Embeddings 

 

 

 
Figure 6- 5: Convergence Plots Concerning Several Epochs for Loss on the 

Entire Corpus with CDA and Pre-trained Word Embeddings 

 

 

 

 

 

 

90 



 

 

 

Custom Data Augmentation Approach and Experimentation 

 

6.5 Analysis of Classification Models 

The efficacy of the proposed method relies on the data augmentation technique, data 

distribution set for augmentation, word embedding, and model’s architecture. These 

models' results are calculated based on precision, recall, and f1-score. 

Table 6- 2: Comparative Analysis of the Results Among the Baseline, EDA, and CDA Approaches 

 
 

Method Baseline Model with skip-gram 

trained from scratch 

EDA Approach with Pre-trained 

Embeddings 

CDA Approach with Pre-trained 

Embeddings 

 

Precision 

 

Recall 

 

F1-score 

 

Precision 

 

Recall 

 

F1-score 

 

Precision 

 

Recall 

 

F1-score 

 

CNN 

 

0.61 

 

0.60 

 

0.60 

 

0.89 

 

0.88 

 

0.88 

 

0.95 

 

0.96 

 

0.95 

 

GRU 

 

0.67 

 

0.68 

 

0.67 

 

0.86 

 

0.86 

 

0.86 

 

0.93 

 

0.94 

 

0.93 

 

ANN 

 

0.62 

 

0.62 

 

0.62 

 

0.88 

 

0.88 

 

0.88 

 

0.95 

 

0.94 

 

0.94 

 

LSTM 

 

0.06 

 

0.25 

 

0.15 

 

0.84 

 

0.85 

 

0.85 

 

0.87 

 

0.89 

 

0.88 

In the baseline experiment, the results from Table 6- 2 suggest that GRU generalised 

extremely well with minimum loss over the validation set, which indicates that it can 

work with a small dataset such as a custom NFR corpus. In contrast, the LSTM fails 

to perform with a small dataset. However, CNN also performed satisfactorily. 

Furthermore, by closely observing the results, it is concluded that using augmentation 

in a combination of pretrained embedding improves the results from the baseline 

model. At the same time, neural networks such as GRU and CNN performed well with 

EDA based augmentation used with pre-trained word embeddings. Table 6- 2 shows 

that the same representation outperformed all the previous approaches when used with 

the CDA approach. The model's overall performance for EDA improved from the 60s 

to 80s. Whereas, the CDA approach achieved the highest results for CNN, reaching 

95% for the classification of NFRs. At the same time, LSTM appeared to be the worst- 

performing model in each experiment. The CDA method resulted in a 2x increase in 

data. However, in EDA, this was not feasible. As previously stated, the CDA technique 

retains domain vocabulary, which provides some evidence that the pre-trained model 



92 

 

 

 

Custom Data Augmentation Approach and Experimentation 

 

 

learned greater semantic relatedness in the custom enhanced corpus. However, with 

supplemented data using EDA, its actions (random deletion/random insertion) 

provided more data but could not retain sentence semantic relatedness; this is shown 

in this experiment as pre-trained word embeddings could not recognise a comparable 

pattern. As a result, the CDA strategy outperformed the EDA and baseline models, 

even with fewer enhanced samples. 

6.6 Summary 

At the chapter's outset, a thorough examination of existing data augmentation was 

presented. In Section 6.2, an innovative method of custom data augmentation was 

proposed with possible benefits of combining data augmentation frameworks with 

transfer learning. 

This chapter discussed how to apply the custom data augmentation strategy as an 

optimisation technique for addressing the issue of data sparsity and overfitting while 

training DNNs. The performance of the baseline classifier and EDA was compared 

when training DNN models on the NFRs corpus. This chapter made a significant 

contribution in terms of a data augmentation by describing a practical approach for 

stabilising DNNs for the classification of NFRs. The results in Table 7-3 showed that 

the suggested method is more successful than the EDA approach and baseline classifier 

under the proposed settings 



93 

 

Chapter 7 Extended Experiment and Detailed Analysis of 

Results 

 

 
This chapter discusses the effects of two methods of data augmentation and pre-trained 

word embeddings on an NFR classification system. Previously, for DNN training, the 

data augmentation technique was used under a different data distribution where the full 

corpus was enhanced before being separated into train/validation sets. In contrast, this 

chapter explores an alternative method to data augmentation in order to develop a 

classification system for NFRs. Additionally, it gives a comprehensive analysis of the 

results using a variety of statistical performance measures for the various experimental 

setups mentioned in this thesis and explores this study's final objective to analyse the 

generalisability of the designed NFR classification system for the selected NFRs. 

A discussion on all previous experiments performed in Chapters 5, and 6, are discussed 

and analysed in section 7.1. Section 7.2 explores an alternative optimisation approach 

in the form of a new experiment. Section 7.3 extends the investigation to the best- 

performing model based on all experiments and further explores the generalisability of 

the model, hence, finally providing the classification insight for each NFR attribute. 

7.1 Background 

This chapter provides an extended experiment to optimise the design and develop an 

automatic system to classify non-functional requirements in multiple classes based on 

deep learning techniques. DNNs require a large, annotated corpus and are prone to 

overfitting; therefore, to overcome these shortcomings, a unique approach for data 

augmentation named custom data augmentation (CDA) approach was proposed in 

chapter 6. In the initial experiment, data augmentation was performed on the entire 

NFR corpus before splitting the data into train/validation sets to acquire a set of 

sentences that belong to a consistent niche. The performances were analysed based on 

the comparison among the baseline model (no augmentation) and a state-of-the-art 

EDA with pre-trained word embeddings on Eng-CoNLL 17 corpus. The overall results  



94 

Extended Experiment and Detailed Analysis of Results 

 

indicate that all the DNNs improved with both data augmentation strategies. However, 

the proposed CDA approach performed relatively well compared to the EDA due to 

its significantly rich class representative data. 

These experiments address the multiclass classification based on the custom NFRs 

corpus, which appears to have an imbalanced distribution of samples against each 

class. When a simple train/validation split is performed randomly, it is basic machine 

learning nature to divide the train and validation set disregarding the distribution or 

proportion of the classes. There is a chance that all variations of one data will end up 

in the same set, which can cause bias in the results. Therefore, a counterstrategy in the 

second round of the experiment is adopted to ensure that this technique is valid. In this 

chapter, the study aims to perform a train/validation split manually. According to the 

results from the previous experiment, the CNN turned out to be the best performing 

model; therefore, the CNN's convergence and learning behaviour will also be studied 

under the new settings, and a comparison with previous results will be provided in 

detail. 

7.2 Training Configuration for a Baseline Classification Model 

To perform an experiment for NFR classification, the same four deep neural networks, 

ANN, CNN, GRU, and LSTM, were selected, along with the custom NFR corpus. In 

this experiment, the difference is that the corpus is manually divided into training and 

validation sets based on the 80 and 20 ratios. Table 2 provides the train/validation 

distribution used in this experiment. 

To design a baseline classifier, DNNs were designed with the original train set shown 

in Table 7- 1, with skip-gram word embeddings trained from scratch. All these DNNs 

were tested with the original validation set. When data is manually divided into 

train/validation sets, it ends up in a train/validation set different from the 

train/validation split that was automatically performed in Chapter 5, section 5.3. 



95 

Extended Experiment and Detailed Analysis of Results 

 

Table 7- 1: Data Distribution for the Custom NFR corpus with Augmented Data 
 

Category Original 

Data 

Original 

Training Set 

Custom 

Augmented 

Training Set 

EDA 

Training Set 

Original 

Testing Set 

Custom 

Augmented 

Testing Set 

Efficiency 480 384 768 1536 96 192 

Maintainability 240 192 384 768 49 98 

Portability 156 124 248 496 32 64 

Reliability 191 152 304 608 39 78 

Usability 417 330 660 1320 84 168 

Total samples 1484 1182 2364 4738 300 600 

 

7.2.1 Experimental Results 

The classifier results can be seen in Table 7- 2 An interesting finding is that GRU 

performed better than other models with such a small dataset, and it is observed that 

LSTM appeared to be the least favourable for this task. These results are in line with 

the results from Table 6- 2, where these DNNs were trained with data distributed 

automatically between train and validation sets. The accuracy falls at approximately 

50% for ANN, CNN, and GRU training. 

7.3 Training Configuration for DNNs with Data Augmentation on the Train Set 

Similar to the previous experiment this approach aims to see if any data augmentation 

strategy, specifically the CDA technique can help to boost the performance of the 

proposed classification model. The augmentation is performed on the training set only 

to validate the efficacy of the suggested approach. Whereas, the original validation set, 

as stated in the Table 7- 1 is used for testing the model’s performance. 

In the case of the EDA, training samples were increased from 1182 to 4738, whereas, 

with the CDA approach, they increased to 2364 from 1182. An original validation set, 

which is the most convenient method in ML, is used for validation. This experiment 



96 

Extended Experiment and Detailed Analysis of Results 

 

uses the same pre-trained word embeddings as the previous experiments performed in 

section 6.3. 

7.3.1 Experimental Results 

The results for the experiment can be seen from Table 7- 2 which shows that in a case 

where only the training set is augmented, the EDA-based approach does not give any 

boost to the results. With the introduction of this augmentation strategy, only the 

performance of LSTM was improved over the baseline model. On the other hand, the 

CDA approach performed better than EDA in the previous settings (as can be seen 

from 6.3), and CNN outperformed all the previous results for the classification of 

NFRs. However, in the current approach shown in Table 7- 2 using data augmentation 

on training set alone is marginally better in some cases than not using data 

augmentation. The model using the baseline and EDA approach produced similar 

results for GRU, but the performance appeared to be declined when trained with the 

CDA approach. Contrastingly, for ANN, CNN, and LSTM, a slight improvement was 

observed. The results show that even when using the same pre-trained word 

embeddings, DNNs could not generalise under this data distribution. These deep 

learning models could not identify and learn features on the validation data, as there is 

absence of the same representation found and learned from the training data. Overall, 

CNN trained with CDA approach turned out to be favourable under both data situations 

with these settings. Therefore, the classification of NFRs is analysed based on the CNN 

model. 



 

 

Extended Experiment and Detailed Analysis of Results 

 

  

 

Figure 7- 1: Convergence Plots Concerning the Number of Epochs for Accuracy with 

the Baseline Models 

 

 

Figure 7- 3:Convergence Plots Concerning the Number of Epochs for Accuracy on the 

Trainset with EDA and Pre-trained Word Embeddings 

Figure 7- 2. Convergence Plots Concerning the Number of Epochs for Loss with 

the Baseline Models 

 

 
Figure 7- 4: Convergence Plots Concerning the Number of Epochs for Loss on the 

Trainset with EDA And Pre-trained Word Embeddings 



 

 

Extended Experiment and Detailed Analysis of Results 

 

 

 

 

Figure 7- 5: Convergence Plots Concerning the Number of Epochs For. Accuracy on 

the Trainset with CDA and Pre-trained Word Embeddings 

Figure 7- 6: Convergence Plots Concerning Several Epochs for Loss on the 

Trainset with CDA and Pre-trained Word Embeddings 

 

Table 7- 2: Comparative Analysis of the Results Among the Baseline, EDA, and CDA Approaches 

 

Model No Augmentation, No Pretrained Embeddings EDA with Pre-trained Embeddings Custom Augmentation with Pre-trained Embeddings 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 

ANN 0.50 0.49 0.49 0.48 0.42 0.45 0.48 0.46 0.47 

CNN 0.48 0.49 0.49 0.44 0.43 0.43 0.51 0.44 0.48 

GRU 0.53 0.55 0.54 0.51 0.50 0.50 0.47 0.48 0.47 

LSTM 0.03 0.16 0.09 0.45 0.41 0.43 0.47 0.46 0.46 

 

 

 

 

 

 

 

98 



 

 

Extended Experiment and Detailed Analysis of Results 

 

 

7.4 Training Configuration for CNN with Custom Data Augmentation on 

Train/Validation Sets Separately 

To check whether the entire classifier training and testing process was adequately 

developed, another experiment was conducted with CNN. In this experiment, the CNN 

was trained with the data augmented with the CDA approach, where the validation set 

was also separately augmented with the same approach. Table 7- 1 shows that the 

amount of data increased for training and testing split for each class using Custom data 

augmentation. 

7.4.1 Experimental Results 

In this section, data augmentation is performed on the NFR corpus with the manual 

distribution of the corpus into train and validation sets where both sets were augmented 

separately. Table 7- 3 shows the results for this approach; it increased the model's 

performance by an average factor of 10% giving us the precision of 0.59, recall of 0.55, 

and F1-score of 0.57. These results suggest that to produce better results, the validation 

set also requires some level of augmentation to find a similar feature to the training set. 

7.5 Analysis of CNN Classification Model 

This section compares and evaluates the effectiveness and performance of the data 

augmentation under two distributions for the NFR corpus. As identified in the previous 

section and shown in Table 6- 2, CNN with pre-trained embedding appeared to be the 

best classifier for NFRs when the entire corpus was augmented with the CDA 

approach. This comparison aims to present an analysis to explore how NFRs 

(efficiency, reliability, usability, maintainability, and portability) were individually 

learned by the CNN classifier. The efficacy of CNN performance when trained with 

pre-trained word embedding and data augmentation performed on a different set of 

data with CDA approach to provide answers to the last objective of this thesis. 



 

 

Extended Experiment and Detailed Analysis of Results 

 

 
Table 7- 3: Comparative Analysis of the Results for CNN Augmented with the CDA Approach on Train Sets vs Train/validation sets 

 

 

 
Non-functional 

requirements 

 
 

CNN results for CDA on the entire corpus 

CNN Results for CDA with manual data distribution 

CNN Results with CDA on train/validation sets separately CNN Results with CDA on the train set only 

Precision Recall F1-Score Precision Recall F1-score Precision Recall F1-score 

Efficiency 0.95 0.98 0.97 0.64 0.65 0.65 0.45 0.50 0.47 

Maintainability 1 0.92 0.96 0.57 0.54 0.56 0.60 0.24 0.42 

Portability 0.88 1 0.94 0.90 0.58 0.74 0.67 0.37 0.52 

Reliability 0.93 0.98 0.95 0.19 0.12 0.15 0.28 0.43 0.36 

Usability 0.98 0.92 0.95 0.63 0.85 0.74 0.57 0.64 0.61 

Average 0.95 0.96 0.95 0.59 0.55 0.57 0.51 0.44 0.48 



 

 

Extended Experiment and Detailed Analysis of Results 

 

Finally, Table 7- 3 compares the CNN results for the classification of all five NFRs. 

The performance of the CNN with the previous approach reached 95% precision. In 

contrast, it reached only 50% when only the train set was augmented. However, it 

slightly improved, reaching nearly 60% when the validation set was also augmented 

with the CDA approach. 

Another interesting observation from these results is that when tested with original data 

and when the validation set was augmented separately, CNN showed similar learning 

behaviour concerning all classes, reaching its highest recall for usability in both cases. 

Similarly, portability reached the highest precision under both settings as compared to 

the rest of the classes, whereas when trained with augmented data before dividing it 

into train/validation sets, CNN seemed to have completely different behaviour. Only 

88% of positive class predictions that belong to the positive class were created out of all 

positive examples in the dataset, where portability received 100% recall, but appeared 

with the lowest f1score, balancing the concerns of both accuracy and recall. 

7.5.1 Convergence of the CNN Network 

The comparison of the convergence rate of the CNN trained with the previous 

approach and the one presented in this chapter can be seen in the following figures. 

Figure 7- 7 gives a clear indication that the CNN could not minimise the loss for 

validation when only the validation set was augmented with the CDA approach. Figure 

7- 8 describes the results from the experiment where augmentation was performed on 

both train/validation sets individually. Finally, Figure 7- 9 shows the results of the 

previous approach where data was augmented before being divided into the 

train/validation sets. The figure shows that the CNN converged around the 40th epoch, 

achieving the minimum validation loss. 



102 

 

 

Extended Experiment and Detailed Analysis of Results 

 

 

 
 

Figure 7- 7: CNN Convergence with Only Train Set Augmentation 

 

 

Figure 7- 8: CNN Convergence with Both Train/Validation Augmentation Performed Individually 

 

 

Figure 7- 9: CNN Convergence with Train/Validation Augmentation Performed Before Data Split 



103 

 

 

Extended Experiment and Detailed Analysis of Results 

 

 

7.6 Generalisability of the CNN Classifier for NFRs 

This section delves deeper into the outcomes of a CNN-acquired confusion matrix, 

comparing the results from the experiments in which the train/validation split has been 

acquired before augmentation without augmenting the test set versus the one in which 

the test set has also been augmented, as shown in Figure 7- 11 and Figure 7- 12 While 

Figure 7- 10 represents the previous approach with superior results in which the 

augmentation has been carried out before train/test split using the CDA approach. 

To gain a closer understanding of the results, in this section, a confusion matrix is used 

to evaluate the category-wise performance for the classification over the best 

performing classifier. This confusion matrix demonstrates the difference between 

ground truth labels and the predicted labels of the experiment for each class. Another 

thing that is quite visible through confusion matrices is the number of misclassified 

samples in each category. Looking closely at the confusion matrix, the values given in 

diagonal represent the correctly classified sample, also known as the true positive. 

7.6.1 CNN Results for Custom Data Augmentation on the Entire Corpus 

This experiment achieved 592 samples in the validation set as a result of 

train/validation split after data augmentation. It can be seen from the confusion matrix 

that 22 out of 592 samples were incorrectly classified, spreading over various NFRs 

classes, as evident from Figure 7- 10. Upon further analysis, it was observed that 

classes, (i.e., maintainability and usability) had the most inaccurate predictions. In 

contrast, efficiency and reliability had only minor errors. Portability was learned 

extremely well; not a single sentence belonging to this class was classified incorrectly. 

7.6.2 CNN Results for Custom Data Augmentation on the Train Set Only 

To investigate whether the relative data augmentation approach is not constrained to 

data selection, augmentation was only performed on the training set using the CDA 

approach. Table 7- 3 compares the results, showing that the earlier method achieves a 

relatively higher result. 



104 

 

 

Extended Experiment and Detailed Analysis of Results 

 

 

Figure 7- 11 reveals that usability received the highest true positive. Out of a total of 

84 usability samples, 55 were accurately classified. However, usability was confused 

with efficiency 24 times. Only 48 instances were classified successfully, while it was 

misclassified as reliability 26 times. 

7.6.3 CNN Results for Custom Data Augmentation on the Train/Validation set 

Separately 

The Figure 7- 12 shows the result for these settings. The CNN learned features to 

identify usability and correctly classified it 142 out of 168 times. Efficiency was 

correctly classified 124 times from 192 samples. efficiency was classified as reliability 

28 times. The worst performance is observed with reliability, which was incorrectly 

classified as usability the most frequently. 

An interesting observation from these two confusion matrices is that the CNN learned 

all five classes similarly under both data variations. The overall performance 

improvement is observed due to the increment in the size of the data validation sample. 

This indicates that CNN based model can even produce improved results if the train 

and validation set have more data; hence more learnable features can produce higher 

results. The overall results indicate that data augmentation alone on the train set does 

not work well in this situation. The CNN cannot learn the relationship between the 

two, and the validation set is considered entirely new for the classifier. In second 

scenario, where the CNN was trained and tested with data augmented on both 

(train/validation) sets, it started to improve, though not to the level of the first 



 

 

Extended Experiment and Detailed Analysis of Results 

 

 

 

 
 

 

 

Figure 7- 10: Confusion Matrix for CNN Results for Custom 

Data Augmentation on the Entire Corpus 

Figure 7- 11: Confusion Matrix for CNN Results for Custom Data 

Augmentation on the Train Set Only 

Figure 7- 12: Confusion Matrix for CNN Results for Custom 

Data Augmentation on Train/Validation Set Separately 



 

 

Extended Experiment and Detailed Analysis of Results 

 

experiment's findings. In conclusion, these models need some augmentation on the 

validation set to find relationships to improve classification results. 

Another influencing factor on the performance of these models is the imbalanced 

number of instances in the dataset, as this imbalance affects the overall accuracy of the 

classifier. It is seen that the classes with more samples were learned better than those 

with a smaller number of examples. 

7.7 Summary 

This chapter explored the design considerations necessary for constructing an 

effective DNN based classification model and demonstrated how to optimise this 

approach using a data augmentation technique. The chapter began by implementing a 

new approach for classifying NFRs based on two data augmentation methods applied 

to the training set exclusively. Using this alternate formulation, it was demonstrated 

that CDA outperforms EDA with marginal difference. Compared to the prior approach, 

which enriched the full corpus before separating it into training and validation sets, the 

earlier method was shown to be more successful, even though both methods use 

identical pre-trained word embeddings and DNN architectures.



107 

 

Chapter 8 Conclusion, Limitations, and Future 

Recommendations 

 

 
A synopsis of the study and the contributions of this thesis are outlined in this last 

chapter. A critical study of the completed work is carried out, with an emphasis on the 

strengths and shortcomings of the research. It also emphasises potential future 

advancements in this discipline and the direction in which researchers in this rapidly 

expanding field are moving. 

Section 8.1 summarises the approaches that have been presented based on the aim and 

objectives of this research. The critical findings of the study conducted are discussed 

in Section 8.2. Finally, in section 8.3, various future research directions are suggested. 

8.1 Summary of the Thesis 

Chapter 1 initially proposed the multiclass classification of NFRs for this research. 

This chapter described the motivation for this study and the research objectives to be 

further investigated later in the study. 

Chapter 2 provided an extensive literature review of existing methods used to classify 

FRs and NFRs. The literature was discussed in terms of four aspects of classification: 

the corpus, feature engineering techniques, representation algorithms used for training, 

and evaluation parameters used to analyse the classification results. 

Chapter 3 provided a theoretical background in defining NFRs. This chapter helped 

to identify critical NFRs that served as base labels for this study. It further collected 

data to create an NFR corpus, and finally, it presented a framework for corpus 

annotation to obtain the gold standard through a crowdsourcing approach. 

Chapter 4 discussed a detailed background for the deep learning model, architecture 

design, and hyperparameters specific to the experiment. 

In Chapter 5, four deep learning models under the specified network parameters were 

trained to design a baseline classifier. 



108 

 

 

Conclusion Limitations and Future Recommendations 

 

 

Chapter 6 addressed a background and related work for text augmentation to provide 

the theoretical background for the proposed method. Pre-trained word embeddings 

were introduced as part of a data augmentation strategy. The proposed augmentation 

approach and EDA approach were used to augment the NFRs corpus, which was then 

followed by another round of tests to assess the implications of the representation 

model performance. 

In Chapter 7, A revised experiment was performed under manual data distribution of 

the corpus. All the experiments performed in chapter 6 were evaluated and compared 

against the research aim (described in chapter 1). 

It is noted that the focus of this thesis was on the use of deep learning models to classify 

non-functional requirements. The core idea presented in this thesis is 1) The creation 

of domain corpus for non-functional requirements and 2) A multi-class classification 

system for NFRs. 

This thesis included a range of experiments to address the study objectives listed 

below. As a result, related to the presentation of a response to the research aim, the 

following key findings were reached: 

 

The NFRs used in this study were found in at least five of the six basic software quality 

models: Dromey's, FURPS/FURPS+, ISO9126, ISO 52010, Boehm, and McCall's. As 

a result, this study came up with five NFRs: reliability, usability, maintainability, 

portability, and efficiency. Data was acquired from an online library (SCRIBD) in the 

form of Software requirements specification (SRS) documents, and then requirements 

for these selected classes were manually extracted from these SRS documents. As a 

result, the Custom NFRs corpus was created. 
 

The study proposed a framework for crowdsourcing the creation of a gold standard 

multi-label NFR corpus.  

  

Objective 1: To obtain a single-label NFR corpus based on a representative sample. 

 

 

Objective 2: To design a framework for building a gold standard multilabel NFR 

corpus. 



109 

 

 

Conclusion Limitations and Future Recommendations 

 

 

The experiment was performed using an online crowdsourcing platform to annotate 

the NFRs. The task was assigned to three annotators with the data and instructions. 

Finally, the gold standard quality was determined using Cohen's Kappa calculator 

based on inter-annotator agreement. Regrettably, this experiment is restricted to one 

iteration owing to the figure-eight platform's unavailability. However, the theoretical 

contribution of this task is still significant. It emphasises that while crowdsourcing 

systems are cost-effective for generic annotation tasks, using them for domain-specific 

problems poses hurdles. 
 

The experiment involves four neural networks to create a classification system for 

NFRs: ANN, CNN, GRU, and LSTM. The distribution of datasets was kept consistent 

throughout all networks. The findings indicated that GRU performed better on the 

training set and generalised similarly well on the validation set when trained with such 

a small dataset. LSTM, on the other hand, appeared to be the least suitable for this 

purpose. 
 

This experiment addresses the constraints regarding the size of the NFR corpus while 

using word embeddings for semantic feature learning. To enhance the efficacy of the 

feature learning process the suggested data augmentation technique using pre-trained 

word embeddings. This experiment used the NFR corpus augmented with CDA and 

EDA, as well as skip gram word embeddings pretrained on the Eng-CoNLL corpus to 

train four neural networks. 

The entire training was conducted under two modifications in the augmentation 

process; 1) the entire corpus was augmented before diving into the train/validation set. 

2) Only the train set was augmented. 
 

The results suggests that the first approach, when these pre-trained embeddings were 

used with EDA, this modification not only improved the results, but the training time  

 

Objective 3: To design a deep learning architecture most appropriate for the 

classification of NFRs. 

Objective 4: To investigate the effect of data augmentation approach and pretrained 

word embeddings over the performance of the baseline NFR classification system. 



110 

 

 

Conclusion Limitations and Future Recommendations 

 

 

was also reduced. Even with a smaller number of generated augmentations, the 

proposed CDA approach performed reasonably well in comparison to the EDA-based 

system due to its significantly rich class representative data. The CNN trained with 

CDA, and pre-trained embeddings outperformed all the previous results for the 

classification of NFRs. 

On the other hand, in the second experiment, we only saw a minor difference in 

comparison to the baseline and EDA On further investigation, when the validation set 

was also supplemented with the CDA technique, a modest improvement was noticed 

for CNN. 
 

The corpus was separated into two sets to measure classification performance: a 

training set and a validation set. All models were trained with varied settings, word 

embeddings, and hyperparameter tunings on the training set before being tested on the 

other set. The accuracy and loss for both the training and validation sets were used to 

calculate their classification performance. For each NFR class, a confusion matrix was 

utilised to assess the findings based on precision, recall, and F1-score. 

Under the first data augmentation settings, it achieved a 96% precision overall for CNN 

with the CDA approach. Efficiency received the highest F1 score. The recall is affected 

by maintainability and usability, as these two NFR attributes had the most inaccurate 

predictions, while efficiency and reliability had the least errors. At the same time, 

portability had the highest recall value. When only the train set was augmented, the 

results could only fall to the 50th percentile range. 

8.2 Limitations of the Study 

All of the experiments in this thesis contributed significantly to the work at hand; yet 

some of them produced unexpected findings or revealed something new. According to 

the researcher’s knowledge, this was the first attempt in this sector to generate a 

multilabel NFR corpus. Additionally, the study used a crowdsourcing tool to select the 

gold standard annotations. The annotation of the NFRs was based on the judgement of 

three annotators', and the annotation quality was determined by an inter-annotator  

Objective 5: To analyse the generalisability of the designed NFR classification system 

over the selected NFRs. 



111 

 

 

Conclusion Limitations and Future Recommendations 

 

 

agreement. However, the experiment was pre-emptively suspended due to the 

platform's unavailability. The findings of the first iteration indicate that annotators did 

not adhere to standards and failed to categorise the supplied requirements using 

multiple labels. Therefore, it resulted with annotations based on a single label. 

Additionally, the agreement achieved is fair according to Cohen’s kappa scale; 

indicating that there are chances to obtain higher agreement if the process is repeated 

with improved guidelines. 

1. Two data augmentation techniques were used in this study; however, the class 

imbalance is not addressed through any of these data augmentation techniques. 

The CDA approach that was tested doubled the data size. However, it does not 

address how to balance samples for each class, which means that even after 

augmentation, the class with a smaller number of samples in the original data 

will have a smaller number of instances. 

2. One of the significant drawbacks of the CDA approach is that it can't effectively 

supplement datasets with a small number of documents per category. One of 

the reasons is that it principally depends on the combinations of the records to 

develop new records. In contrast, data with fewer records is not expected to 

generate many unique varieties. 

8.3 Unexpected Results 

One unexpected finding of the research was that LSTM failed to perform under both 

experiments. Although the training dataset was imbalanced, in the experiment with 

data augmentation on the entire corpus, it was observed that portability had the least 

number of samples for training. It was surprising that portability was learned extremely 

well, with not a single sentence belonging to this class classified incorrectly. Another 

intriguing observation in the same experiment was that the LSTM network performed 

satisfactorily when using the CDA technique in combination with pre-trained 

embeddings. However, no learning behaviour was observed until the first ten epochs. 

For EDA, we noticed that CNN and GRU early stopped under 20 epochs. 

  



112 

 

 

Conclusion Limitations and Future Recommendations 

 

 

Unfortunately, when only the train set was augmented, none of the data augmentation 

techniques performed well. However, some improvements were observed when the 

test set was also augmented separately for CNN. 

8.4 Future Recommendations 

The research described in this thesis has indicated several promising directions for 

future research. There are numerous areas where more work may be done to improve 

classification or expand the study to include other corpora, data augmentation, and 

classification models. 

• Experiment the Custom Data Augmentation Approach with Alternate 

Corpus 

The CDA techniques are presented in Chapter 5. It suggests a new algorithm that 

increased the corpus's size yet kept the domain vocabulary. Future research will find it 

intriguing to see if the proposed approach provides equally better results with a variable 

dataset length. 

• Improvements in Design of a Gold standard Corpus Annotation 
 

The suggested framework for corpus annotation was designed using a crowdsourcing 

web-based platform, which brought many challenges. Corpus annotation is an 

incredibly vast field of research, and it is not only a time-consuming task, but it 

demands high skills for both researcher and crowd annotators. However, in the context 

of a gold standard corpus, many things can be improved, such as 1) how guidelines 

and rules are defined, 2) two-way communication for improved training, 3) the use of 

a reliable platform for useful annotations, and 4) annotators with domain knowledge. 

Therefore, it is predicted that this will give another fertile area for future research. 

• Techniques to Handle Unbalanced Data 
 

The study produced a corpus based on representative samples of NFRs and has more 

examples for each class than the previous corpus in this domain. However, it still has 

unbalanced samples in this corpus; the proposed CDA approach does not address this 

issue. Therefore, future research should focus on developing a more efficient approach 

to solve the problem of uneven data. 

  



113 

 

 

Conclusion Limitations and Future Recommendations 

 

 

• Classification of Software Requirement through Multi-label Classification 
 

The methodologies given in this thesis for examining classification methods for NFRs 

were based on multiclass classification. However, the researcher views software 

needsas a multi-label problem, which has yet to be addressed in multilabel 

classification. Although this study started with creating a multi-label corpus, it was not 

successfully completed. Therefore, due to the complexity of the nature of this problem, 

it has not been addressed in this study. Consequently, it is suggested that future work is 

required to address this issue comprehensively. It would be fascinating to discover the 

effect of deep learning models for the classification of FRs and multiple NFRs when the 

training is performed with the multi-label corpus. 



References 

114 

 

 

 

 

References 

 

 
Abad, Z. S. H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G. and Schneider, K. (2017) What 

Works Better? A Study of Classifying Requirements, ArXiv:1707.02358 [Cs]. 

Available from: http://arxiv.org/abs/1707.02358 [Accessed 28 September 2020]. 

 

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. and Arshad, H. 

(2018) State-of-the-art in artificial neural network applications: A survey, Heliyon, 

4 (11), pp. e00938. DOI: 10.1016/j.heliyon. 2018.e00938. 

 

Abulaish, M. and Sah, A. K. (2019) A Text Data Augmentation Approach for Improving 

the Performance of CNN, in: 2019 11th International Conference on 

Communication Systems & Networks (COMSNETS). Bengaluru, India: IEEE, pp. 

625–630. 

 

Afrin, T. and Litman, D. (2018) Annotation and Classification of Sentence-level Revision 

Improvement, in: Proceedings of the Thirteenth Workshop on Innovative Use of 

NLP for Building Educational Applications. New Orleans, Louisiana: Association 

for Computational Linguistics, pp. 240–246. 

 

Agarwal, S. and Yu, H. (2009) Automatically classifying sentences in full-text biomedical 

articles into Introduction, Methods, Results and Discussion, Bioinformatics, 25 

(23), pp. 3174–3180. DOI:10.1093/bioinformatics/btp548. 

 

Aghaebrahimian, A. & Cieliebak, M. (2019), Hyperparameter tuning for deep learning in 

natural language processing, CEUR Workshop Proceedings. 

https://doi.org/10.21256/zhaw-18993 

 

Andonie, R. (2019) Hyperparameter optimisation in learning systems, Journal of 

Membrane Computing, 1 (4), pp. 279–291. DOI:10.1007/s41965-019-00023-0. 

 

Badave, M., Casamayor, A., Godoy, D., Campo, M., Chung, L., Cleland-Huang, J., et al. 

(2015) Classification of Non-Functional Requirements Using Semantic-FSKNN 

http://arxiv.org/abs/1707.02358


References 

115 

 

 

 

 

Based ISO/IEC 9126, TELKOMNIKA (Telecommunication Computing 

Electronics and Control), 13 (4), pp. 1456. DOI:10.12928/telkomnika. v13i4.2300. 

 

Baharudin, B., Lee, L. H. and Khan, K. (2010) A Review of Machine Learning 

Algorithms for Text-Documents Classification, Journal of Advances in Information 

Technology, 1 (1), pp. 4–20. DOI:10.4304/jait.1.1.4-20. 

 

Baker, B., Gupta, O., Raskar, R. and Naik, N. (2017) Accelerating Neural Architecture 

Search using Performance Prediction, ArXiv:1705.10823 [Cs]. Available from: 

http://arxiv.org/abs/1705.10823 [Accessed 10 November 2020]. 

 

Baker, C., Deng, L., Chakraborty, S. and Dehlinger, J. (2019) Automatic Multi-class Non- 

Functional Software Requirements Classification Using Neural Networks, in: 2019 

IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 

Milwaukee, WI, USA: IEEE, pp. 610–615. 

 

Balaprakash, P., Salim, M., Uram, T. D., Vishwanath, V. and Wild, S. M. (2018) 

DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks, in: 

2018 IEEE 25th International Conference on High Performance Computing (HiPC). 

Bengaluru, India: IEEE, pp. 42–51. 

 

Baudat, G. and Anouar, F. (2000) Generalized Discriminant Analysis Using a Kernel 

Approach, Neural Computation, 12 (10), pp. 2385–2404. 

DOI:10.1162/089976600300014980. 

 

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C (2003) A Neural Probabilistic 

Language Model, pp. 19. 

 

Biber, D. (1993) Representativeness in Corpus Design, pp. 31. 

 
Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2017) Enriching Word Vectors 

with Subword Information, ArXiv:1607.04606 [Cs]. Available from: 

http://arxiv.org/abs/1607.04606 [Accessed 10 November 2020]. 

http://arxiv.org/abs/1705.10823
http://arxiv.org/abs/1607.04606


References 

116 

 

 

 

 

Breck, E., Polyzotis, N., Roy, S., Whang, S. E. and Zinkevich, M. [no date] Data 

Validation for Machine Learning, pp. 14. 

 

Cagli, E., Dumas, C. and Prouff, E. (2017) Convolutional Neural Networks with Data 

Augmentation Against Jitter-Based Countermeasures, in: Fischer, W. and Homma, 

N. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. Cham: 

Springer International Publishing,10529, pp. 45–68. 

 

Casamayor, A., Godoy, D. and Campo, M. (2010) Identification of non-functional 

requirements in textual specifications: A semi-supervised learning approach, 

Information and Software Technology, 52 (4), pp. 436–445. DOI: 

10.1016/j.infsof.2009.10.010. 

 

Caselles-Dupré, H., Lesaint, F. and Royo-Letelier, J. (2018) Word2Vec applied to 

Recommendation: Hyperparameters Matter, ArXiv:1804.04212 [Cs, Stat]. 

Available from: http://arxiv.org/abs/1804.04212 [Accessed 10 November 2020]. 

 

Challita, N., Khalil, M. and Beauseroy, P. (2016) New feature selection method based on 

neural network and machine learning, 2016 IEEE International Multidisciplinary 

Conference on Engineering Technology (IMCET), pp. 81–85. 

DOI:10.1109/IMCET.2016.7777431. 

 

Chan, S., Treleaven, P. and Capra, L. (2013) Continuous hyperparameter optimisation for 

large-scale recommender systems, in: 2013 IEEE International Conference on Big 

Data. Silicon Valley, CA, USA: IEEE, pp. 350–358. 

 

Chen, G., Ye, D., Xing, Z., Chen, J. and Cambria, E. (2017) Ensemble application of 

convolutional and recurrent neural networks for multi-label text categorization, in: 

2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, 

USA: IEEE, pp. 2377–2383. 

 

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. (2014) DaDianNao: A 

Machine-Learning Supercomputer. DOI:10.1109/MICRO.2014.58. 

http://arxiv.org/abs/1804.04212


References 

117 

 

 

 

 

Cheng, H. G. and Phillips, M. R. (2014) Secondary analysis of existing data: opportunities 

and implementation, 26 (6), pp. 5. 

 

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014) Empirical Evaluation of Gated 

Recurrent Neural Networks on Sequence Modeling, ArXiv:1412.3555 [Cs]. 

Available from: http://arxiv.org/abs/1412.3555 [Accessed 10 November 2020]. 

 

Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J. (2000) Non-Functional Requirements 

in Software Engineering. Boston, MA: Springer US. DOI:10.1007/978-1-4615- 

5269-7. 

 

Cleland-Huang, J., Settimi, R., Xuchang Zou and Solc, P. (2006) The Detection and 

Classification of Non-Functional Requirements with Application to Early Aspects, 

in: 14th IEEE International Requirements Engineering Conference (RE’06). 

Minneapolis/St. Paul, MN: IEEE, pp. 39–48. 

 

Cleland-Huang, J., Settimi, R., Zou, X. and Solc, P. (2007) Automated classification of 

non-functional requirements, Requirements Engineering, 12 (2), pp. 103–120. 

DOI:10.1007/s00766-007-0045-1. 

 

Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L. and Batra, D. (2016) Reducing 

Overfitting in Deep Networks by Decorrelating Representations, pp. 13. 

 

Collobert, R. and Weston, J. (2008) A Unified Architecture for Natural Language 

Processing: Deep Neural Networks with Multitask Learning, pp. 8. 

https://doi.org/10.1145/1390156.1390177 

 

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P. (2011) 

Natural Language Processing (Almost) from Scratch, NATURAL LANGUAGE 

PROCESSING, pp. 45. 

 

Coulombe, C. (2018) Text Data Augmentation Made Simple by Leveraging NLP Cloud 

APIs, pp. 33. 

http://arxiv.org/abs/1412.3555


References 

118 

 

 

 

 

Dhurandhar, A. and Dobra, A. (2008) Probabilistic Characterization of Random Decision 

Trees, 9 (10), pp. 28. 

 

Dipper, S., Götze, M., & Skopeteas, S., (2004) Towards user-adaptive annotation 

guidelines. Presented at the COLING Workshop on Linguistically Interpreted 

Corpora (LINC-2004), Geneva, Switzerland. 

 

Santos, C. N. dos, Xiang, B. and Zhou, B. (2015) Classifying Relations by Ranking with 

Convolutional Neural Networks, ArXiv:1504.06580 [Cs]. Available from: 

http://arxiv.org/abs/1504.06580 [Accessed 18 November 2020]. 

 

Elman, J. L. (1993) Learning and development in neural networks: the importance of 

starting small, Cognition, 48 (1), pp. 71–99. DOI:10.1016/0010-0277(93)90058-4. 

 

Feng, P.-M., Ding, H., Chen, W. and Lin, H. (2013) Naïve Bayes Classifier with Feature 

Selection to Identify Phage Virion Proteins, Computational and Mathematical 

Methods in Medicine, 2013, pp. 1–6. DOI:10.1155/2013/530696. 

 

Fukushima, K. (1980) Neocognitron: A self-organizing neural network model for a 

mechanism of pattern recognition unaffected by shift in position, Biological 

Cybernetics, 36 (4), pp. 193–202. DOI:10.1007/BF00344251. 

 

Fukushima, K. and Miyake, S. (1982) Neocognitron: A new algorithm for pattern 

recognition tolerant of deformations and shifts in position, Pattern Recognition, 15 

(6), pp. 455–469. DOI:10.1016/0031-3203(82)90024-3. 

 

Gao, B. and Pavel, L. (2018) On the Properties of the Softmax Function with Application 

in Game Theory and Reinforcement Learning, ArXiv:1704.00805 [Cs, Math]. 

Available from: http://arxiv.org/abs/1704.00805 [Accessed 18 November 2020]. 

 

Golik, P., Doetsch, P. and Ney, H. (2013) Cross-Entropy vs. Squared Error Training: A 

Theoretical and Experimental Comparison, pp. 6. 

http://arxiv.org/abs/1504.06580
http://arxiv.org/abs/1704.00805


References 

119 

 

 

 

 

Griffiths, T. L., Steyvers, M. and Tenenbaum, J. B. (2007) Topics in semantic 

representation., Psychological Review, 114 (2), pp. 211–244. DOI:10.1037/0033- 

295X.114.2.211. 

 

Gupta, P. and Schütze, H. (2018) LISA: Explaining Recurrent Neural Network Judgments 

via Layer-wIse Semantic Accumulation and Example to Pattern Transformation, in: 

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and 

Interpreting Neural Networks for NLP. Brussels, Belgium: Association for 

Computational Linguistics, pp. 154–164. 

 

Gupta, P., Yaseen, U. and Schütze, H. (2019) Linguistically Informed Relation Extraction 

and Neural Architectures for Nested Named Entity Recognition in BioNLP-OST 

2019, in: Proceedings of the 5th Workshop on BioNLP Open Shared Tasks. Hong 

Kong, China: Association for Computational Linguistics, pp. 132–142. 

 

Gupta, T. K. and Raza, K. (2018) Optimising Deep Neural Network Architecture: A Tabu 

Search Based Approach, pp. 15. 

 

Hadji, I. and Wildes, R. P. (2018) A New Large Scale Dynamic Texture Dataset with 

Application to ConvNet Understanding, in: Ferrari, V., Hebert, M., Sminchisescu, 

C., and Weiss, Y. (eds.) Computer Vision – ECCV 2018. Cham: Springer 

International Publishing,11218, pp. 334–351. 

 

Haury, A. C., Gestraud, P. and Vert, J. P. (2011) The influence of feature selection 

methods on accuracy, stability, and interpretability of molecular signatures, PLoS 

ONE, 6 (12), pp. 1–12. DOI: 10.1371/journal.pone.0028210. 

 

Hernández-García, A. and König, P. (2018) Do deep nets really need weight decay and 

dropout? ArXiv:1802.07042 [Cs]. Available from: http://arxiv.org/abs/1802.07042 

[Accessed 10 November 2020]. 

 

Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory, Neural 

Computation, 9 (8), pp. 1735–1780. DOI:10.1162/neco.1997.9.8.1735. 

http://arxiv.org/abs/1802.07042


References 

120 

 

 

 

 

Hovy, E. and Lavid, J. (2010) Towards a ‘Science’ of Corpus Annotation: A New 

Methodological Challenge for Corpus Linguistics, pp. 26. 

 

Hu, B., Tu, Z., Lu, Z., Li, H. and Chen, Q. (2015) Context-Dependent Translation 

Selection Using Convolutional Neural Network, in: Proceedings of the 53rd Annual 

Meeting of the Association for Computational Linguistics and the 7th International 

Joint Conference on Natural Language Processing (Volume 2: Short Papers). 

Beijing, China: Association for Computational Linguistics, pp. 536–541. 

 

Hussain, I., Kosseim, L. and Ormandjieva, O. (2008) Using Linguistic Knowledge to 

Classify Non-functional Requirements in SRS documents, in: Kapetanios, E., 

Sugumaran, V., and Spiliopoulou, M. (eds.) Natural Language and Information 

Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,5039, pp. 287–298. 

 

Hutter, F., Kotthoff, L. and Vanschoren, J. (eds.) (2019) Automated Machine Learning: 

Methods, Systems, Challenges. Cham: Springer International Publishing. 

DOI:10.1007/978-3-030-05318-5. 

 

Inoue, H. (2018) Data Augmentation by Pairing Samples for Images Classification, 

ArXiv:1801.02929 [Cs, Stat]. Available from: http://arxiv.org/abs/1801.02929 

[Accessed 17 September 2020]. 

 

Joachims, T. (2002) Optimising Search Engines using Clickthrough Data, pp. 10. DOI: 

https://doi.org/10.1145/775047.775067. 

 

Jolliffe, I. T. and Cadima, J. (2016) Principal component analysis: a review and recent 

developments, Philosophical Transactions of the Royal Society A: Mathematical, 

Physical and Engineering Sciences, 374 (2065), pp. 20150202. 

DOI:10.1098/rsta.2015.0202. 

 

Joo, W., Lee, W., Park, S. and Moon, I.-C. (2019) Dirichlet Variational Autoencoder, 

ArXiv:1901.02739 [Cs, Stat]. Available from: http://arxiv.org/abs/1901.02739 

[Accessed 11 November 2020]. 

http://arxiv.org/abs/1801.02929
http://arxiv.org/abs/1901.02739


References 

121 

 

 

 

 

Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) A Convolutional Neural 

Network for Modelling Sentences, in: Proceedings of the 52nd Annual Meeting of 

the Association for Computational Linguistics (Volume 1: Long Papers). Baltimore, 

Maryland: Association for Computational Linguistics, pp. 655–665. 

 

Karlik, B. and Olgac, A. V. (2011) Performance Analysis of Various Activation Functions 

in Generalized MLP Architectures of Neural Networks, pp. 13. 

 

Kamal, N., Andrew, M. and Tom, M. (2006) Semi-Supervised Text Classification Using 

EM, in: Chapelle, O., Scholkopf, B., and Zien, A. (eds.) Semi-Supervised Learning. 

The MIT Press, pp. 32–55. 

 

Kang, N., Singh, B., Afzal, Z., van Mulligen, E. M. and Kors, J. A. (2013) Using rule- 

based natural language processing to improve disease normalization in biomedical 

text, Journal of the American Medical Informatics Association, 20 (5), pp. 876– 

881. DOI:10.1136/amiajnl-2012-001173. 

 

Khalid, S. and Nasreen, S. (2014) A Survey of Feature Selection and Feature Extraction 

Techniques in Machine Learning, (October 2016). 

DOI:10.1109/SAI.2014.6918213. 

 

Kilimci, Z. H. and Akyokus, S. (2018) Deep Learning- and Word Embedding-Based 

Heterogeneous Classifier Ensembles for Text Classification, Complexity, 2018, pp. 

1–10. DOI:10.1155/2018/7130146. 

 

Kim, Y. (2014) Convolutional Neural Networks for Sentence Classification, in: 

Proceedings of the 2014 Conference on Empirical Methods in Natural Language 

Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 

1746–1751. 

 

Kingma, D. P. and Ba, J. (2017) Adam: A Method for Stochastic Optimisation, 

ArXiv:1412.6980 [Cs]. Available from: http://arxiv.org/abs/1412.6980 [Accessed 

12 November 2020]. 

http://arxiv.org/abs/1412.6980


References 

122 

 

 

 

 

Kobayashi, S. (2018) Contextual Augmentation: Data Augmentation by Words with 

Paradigmatic Relations, in: Proceedings of the 2018 Conference of the North 

American Chapter of the Association for Computational Linguistics: Human 

Language Technologies, Volume 2 (Short Papers). New Orleans, Louisiana: 

Association for Computational Linguistics, pp. 452–457. 

 

Krizhevsky, A. (2014) One weird trick for parallelizing convolutional neural networks, 

ArXiv:1404.5997 [Cs]. Available from: http://arxiv.org/abs/1404.5997 [Accessed 

11 October 2020]. 

 

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2017) ImageNet classification with deep 

convolutional neural networks, Communications of the ACM, 60 (6), pp. 84–90. 

DOI:10.1145/3065386. 

 

Krogh, A. and Hertz, J. A. (1992) A Simple Weight Decay Can Improve Generalization, 

pp. 8. 

 
Kukačka, J., Golkov, V. and Cremers, D. (2017) Regularization for Deep Learning: A 

Taxonomy, ArXiv:1710.10686 [Cs, Stat]. Available from: 

http://arxiv.org/abs/1710.10686 [Accessed 10 November 2020]. 

 

kumar, Y. and Sahoo, G. (2012) Analysis of Parametric & Non-Parametric Classifiers for 

Classification Technique using WEKA, International Journal of Information 

Technology and Computer Science, 4 (7), pp. 43–49. 

DOI:10.5815/ijitcs.2012.07.06. 

 

Kurtanovic, Z. and Maalej, W. (2017) Automatically Classifying Functional and Non- 

Functional Requirements Using Supervised Machine Learning, pp. 6. 

 

Lecun, Y. (1998) Gradient-Based Learning Applied to Document Recognition, 

PROCEEDINGS OF THE IEEE, 86 (11), pp. 47. 

 

LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep learning, Nature, 521 (7553), pp. 436– 

444. DOI:10.1038/nature14539. 

http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1710.10686


References 

123 

 

 

 

 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. and 

Jackel, L. D. (1989) Backpropagation Applied to Handwritten Zip Code 

Recognition, Neural Computation, 1 (4), pp. 541–551. 

DOI:10.1162/neco.1989.1.4.541. 

 

Levy, O. and Goldberg, Y. (2014) Dependency-Based Word Embeddings, in: 

Proceedings of the 52nd Annual Meeting of the Association for Computational 

Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for 

Computational Linguistics, pp. 302–308. 

 

Lewis, D. D. (1998) Naive (Bayes) at forty: The independence assumption in information 

retrieval, in: Nédellec, C. and Rouveirol, C. (eds.) Machine Learning: ECML-98. 

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 4–15. 

 

Liu, Y. and Liao, S. (2014) Preventing Over-Fitting of Cross-Validation with Kernel 

Stability, in: Calders, T., Esposito, F., Hüllermeier, E., and Meo, R. (eds.) Machine 

Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer 

Berlin Heidelberg, pp. 290–305. 

 

Lu, M. and Liang, P. (2017) Automatic Classification of Non-Functional Requirements 

from Augmented App User Reviews, in: Proceedings of the 21st International 

Conference on Evaluation and Assessment in Software Engineering - EASE’17. 

Karlskrona, Sweden: ACM Press, pp. 344–353. 

 

Luo, G. (2016) A review of automatic selection methods for machine learning algorithms 

and hyper-parameter values, Network Modeling Analysis in Health Informatics and 

Bioinformatics, 5 (1), pp. 18. DOI:10.1007/s13721-016-0125-6. 

 

Ma, X. and Hovy, E. (2016) End-to-end Sequence Labeling via Bi-directional LSTM- 

CNNs-CRF, ArXiv:1603.01354 [Cs, Stat]. Available from: 

http://arxiv.org/abs/1603.01354 [Accessed 10 November 2020]. 

 

Mahmoud, A. and Williams, G. (2016) Detecting, classifying, and tracing non-functional 

software requirements, Requirements Engineering, 21 (3), pp. 357–381. 

DOI:10.1007/s00766-016-0252-8. 

http://arxiv.org/abs/1603.01354


References 

124 

 

 

 

 

Mahmoud, M. (2017) Software Requirements Classification using Natural Language 

Processing and SVD, International Journal of Computer Applications, 164 (1), pp. 

7–12. DOI:10.5120/ijca2017913555. 

 

Mairiza, D., Zowghi, D. and Nurmuliani, N. (2009) Managing Conflicts among Non- 

Functional Requirements, pp. 10. 

 

Mannor, S., Peleg, D. and Rubinstein, R. (2005) The cross-entropy method for 

classification, in: Proceedings of the 22nd international conference on Machine 

learning - ICML ’05. Bonn, Germany: ACM Press, pp. 561–568. 

 

Maron, M. E. (1961) Automatic Indexing: An Experimental Inquiry, Journal of the ACM, 

8 (3), pp. 404–417. DOI:10.1145/321075.321084. 

 

Mcculloch, W. S. And Pitts, W. (1990) A Logical Calculus of The Ideas Immanent in 

Nervous Activity, 52 (1–2), pp. 17. 

 

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of Word 

Representations in Vector Space, ArXiv:1301.3781 [Cs]. Available from: 

http://arxiv.org/abs/1301.3781 [Accessed 10 November 2020]. 

 

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M. and Ranzato, M. (2015) Learning Longer 

Memory in Recurrent Neural Networks, ArXiv:1412.7753 [Cs]. Available from: 

http://arxiv.org/abs/1412.7753 [Accessed 10 November 2020]. 

 

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. and Khudanpur, S. (2010) Recurrent 

Neural Network Based Language Model, pp. 4. 

 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013) Distributed 

Representations of Words and Phrases and their Compositionality, pp. 9. 

 

Minar, M. R. and Naher, J. (2018) Recent Advances in Deep Learning: An Overview, 

ArXiv:1807.08169 [Cs, Stat]. DOI:10.13140/RG.2.2.24831.10403. 

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1412.7753


References 

125 

 

 

 

 

Mirończuk, M. M. and Protasiewicz, J. (2018) A recent overview of the state-of-the-art 

elements of text classification, Expert Systems with Applications, 106, pp. 36–54. 

DOI: 10.1016/j.eswa.2018.03.058. 

 

Naili, M., Chaibi, A. H. and Ben Ghezala, H. H. (2017) Comparative study of word 

embedding methods in topic segmentation, Procedia Computer Science, 112, pp. 

340–349. DOI: 10.1016/j.procs.2017.08.009. 

 

Nakamura, K. and Hong, B.-W. (2019) Adaptive Weight Decay for Deep Neural 

Networks, ArXiv:1907.08931 [Cs, Stat]. Available from: 

http://arxiv.org/abs/1907.08931 [Accessed 12 November 2020]. 

 

Nair, V. and Hinton, G. E. (2010) Rectified Linear Units Improve Restricted Boltzmann 

Machines, pp. 8. 

 

Nematzadeh, A., Meylan, S. C. and Griffiths, T. L. (2017) Evaluating Vector-Space 

Models of Word Representation, or The Unreasonable Effectiveness of Counting 

Words Near Other Words, pp. 6. 

 

Nusrat, I. and Jang, S.-B. (2018) A Comparison of Regularization Techniques in Deep 

Neural Networks, Symmetry, 10 (11), pp. 648. DOI:10.3390/sym10110648 

 

Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. (2018) Activation Functions: 

Comparison of trends in Practice and Research for Deep Learning, 

ArXiv:1811.03378 [Cs]. Available from: http://arxiv.org/abs/1811.03378 

[Accessed 17 January 2022]. 

 

Ormandjieva, O. (2013) Ontology-Based Classification of Non-Functional Requirements 

in Software Specifications: A new Corpus and SVM-Based Classifier, (ii). 

DOI:10.1109/COMPSAC.2013.64. 

 

Perera, P. and Patel, V. M. (2019) Deep Transfer Learning for Multiple Class Novelty 

Detection, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR). Long Beach, CA, USA: IEEE, pp. 11536–11544. 

http://arxiv.org/abs/1907.08931
http://arxiv.org/abs/1811.03378


References 

126 

 

 

 

 

Perin, G. and Picek, S. (2021) On the Influence of Optimisers in Deep Learning-based 

Side-channel Analysis, pp. 22. 

 

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, 

L. (2018) Deep contextualized word representations, ArXiv:1802.05365 [Cs]. 

Available from: http://arxiv.org/abs/1802.05365 [Accessed 10 November 2020]. 

 

Peters, M., Neumann, M., Zettlemoyer, L. and Yih, W. (2018) Dissecting Contextual 

Word Embeddings: Architecture and Representation, pp. 11. 

 

Pohl, K. and Rupp, C. (2015) Requirements engineering fundamentals: a study guide for 

the certified professional for requirements engineering exam, foundation level, 

IREB compliant. Second edition. Santa Barbara, CA: Rocky Nook. 

 

Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A. and Morency, L.-P. (2017) 

Context-Dependent Sentiment Analysis in User-Generated Videos, in: Proceedings 

of the 55th Annual Meeting of the Association for Computational Linguistics 

(Volume 1: Long Papers). Vancouver, Canada: Association for Computational 

Linguistics, pp. 873–883. 

 

Porter, N. D., Verdery, A. M. and Gaddis, S. M. (2020) Enhancing big data in the social 

sciences with crowdsourcing: Data augmentation practices, techniques, and 

opportunities, PLOS ONE, 15 (6), pp. e0233154. DOI: 

10.1371/journal.pone.0233154. 

 

Prechelt, L. (1998) Early Stopping | but when? pp. 15. 

 
Pustejovsky, J. and Stubbs, A. (2013) Natural language annotation for machine learning. 

Sebastopol, CA: O’Reilly Media. 

 
Quijas, J. (2017) Analysing the Effects of Data Augmentation and Free Parameters for 

Text Classification with Recurrent Convolutional Neural Networks, pp. 54. 

 

Ramadhani, D. A., Rochimah, S. and Yuhana, U. L. (2015) Classification of Non- 

Functional Requirements Using Semantic-FSKNN Based ISO/IEC 9126, 

http://arxiv.org/abs/1802.05365


References 

127 

 

 

 

 

TELKOMNIKA (Telecommunication Computing Electronics and Control), 13 (4), 

pp. 1456. DOI:10.12928/telkomnika. v13i4.2300. 

 
Rashwan, A., Ormandjieva, O. and Witte, R. (2013) Ontology-Based Classification of 

Non-functional Requirements in Software Specifications: A New Corpus and SVM-

Based Classifier, in: 2013 IEEE 37th Annual Computer Software and Applications 

Conference. Kyoto, Japan: IEEE, pp. 381–386. 

 

Roman (1985) A taxonomy of current issues in requirements engineering, Computer, 18 

(4), pp. 14–23. DOI:10.1109/MC.1985.1662861. 

 

Rosario, R. R. (2017) A dissertation submitted in partial satisfaction of the requirements 

for the degree Doctor of Philosophy in Statistics, pp. 210. 

 

Rumelhart, D. E. and McClelland, J. L. (1986) Parallel distributed processing: 

explorations in the microstructure of cognition. Cambridge, Mass: MIT Press. 

 

Sabir, M., Chrysoulas, C. and Banissi, E. (2020) Multi-label Classifier to Deal with 

Misclassification in Non-functional Requirements, in: Rocha, Á., Adeli, H., Reis, 

L. P., Costanzo, S., Orovic, I., and Moreira, F. (eds.) Trends and Innovations in 

Information Systems and Technologies. Cham: Springer International Publishing, 

pp. 486–493. 

 
Sharma, V. S., Ramnani, R. R. and Sengupta, S. (2014) A framework for identifying and 

analyzing non-functional requirements from text, in: Proceedings of the 4th 

International Workshop on Twin Peaks of Requirements and Architecture - 

TwinPeaks 2014. Hyderabad, India: ACM Press, pp. 1–8. 

 

Silberztein, M. (2020) Using Linguistic Resources to Evaluate the Quality of Annotated 

Corpora, pp. 11. 

 

Singh, P., Singh, D. and Sharma, A. (2016) Rule-based system for automated 

classification of non-functional requirements from requirement specifications, in: 

2016 International Conference on Advances in Computing, Communications and 

Informatics (ICACCI). Jaipur, India: IEEE, pp. 620–626. 



References 

128 

 

 

 

 

Slankas, J. and Williams, L. (2013) Automated extraction of non-functional requirements 

in available documentation, 2013 1st International Workshop on Natural Language 

Analysis in Software Engineering, NaturaLiSE 2013 - Proceedings, pp. 9–16. 

DOI:10.1109/NAturaLiSE.2013.6611715. 

 

Sommerville, I. (2007) Software engineering. 8th ed. Harlow, England; New York: 

Addison-Wesley. 

 

Song, H., Kim, M., Park, D. and Lee, J.-G. (2020) How does Early Stopping Help 

Generalization against Label Noise? ArXiv:1911.08059 [Cs, Stat]. Available from: 

http://arxiv.org/abs/1911.08059 [Accessed 11 November 2020]. 

 

Sorzano, C. O. S., Vargas, J. and Pascual, A. (2014) A survey of dimensionality reduction 

techniques, pp. 35. 

 

Sun, D., Zhao, S., Zhang, Z. and Shi, X. (2017) A match method Based on Latent 

Semantic Analysis for Earthquake hazard Emergency Plan, Isprs - International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, XLII-2/W7, pp. 137–141. DOI:10.5194/isprs-archives-XLII-2-W7-137- 

2017. 

 

Sunner, D. and Bajaj, H. (2016) Classification of Functional and Non-functional 

Requirements in Agile by Cluster Neuro-Genetic Approach, International Journal 

of Software Engineering, and Its Applications, 10 (10), pp. 129–138. 

DOI:10.14257/ijseia.2016.10.10.13. 

 

Sutskever, I., Vinyals, O. and Le, Q. V. (2014) Sequence to Sequence Learning with 

Neural Networks, ArXiv:1409.3215 [Cs]. Available from: 

http://arxiv.org/abs/1409.3215 [Accessed 18 November 2020]. 

 

Sze, V., Chen, Y.-H., Yang, T.-J. and Emer, J. (2017) Efficient Processing of Deep Neural 

Networks: A Tutorial and Survey, ArXiv:1703.09039 [Cs]. Available from: 

http://arxiv.org/abs/1703.09039 [Accessed 25 September 2020]. 

http://arxiv.org/abs/1911.08059
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1703.09039


References 

129 

 

 

 

 

Tabassum, M. R., Md. Saeed Siddik, Shoyaib, M. and Khaled, S. M. (2014) Determining 

interdependency among non-functional requirements to reduce conflict, in: 2014 

International Conference on Informatics, Electronics & Vision (ICIEV). Dhaka, 

Bangladesh: IEEE, pp. 1–6. 

 

Takahashi, R., Matsubara, T. and Uehara, K. (2020) Data Augmentation using Random 

Image Cropping and Patching for Deep CNNs, IEEE Transactions on Circuits and 

Systems for Video Technology, 30 (9), pp. 2917–2931. 

DOI:10.1109/TCSVT.2019.2935128. 

 

Tang, D., Qin, B. and Liu, T. (2015) Document Modeling with Gated Recurrent Neural 

Network for Sentiment Classification, in: Proceedings of the 2015 Conference on 

Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association 

for Computational Linguistics, pp. 1422–1432. 

 

Taylor, L. and Nitschke, G. (2018) Improving Deep Learning with Generic Data 

Augmentation, in: 2018 IEEE Symposium Series on Computational Intelligence 

(SSCI). Bangalore, India: IEEE, pp. 1542–1547. 

 

Tissier, J., Gravier, C. and Habrard, A. (2017) Dict2vec: Learning Word Embeddings 

using Lexical Dictionaries, in: Proceedings of the 2017 Conference on Empirical 

Methods in Natural Language Processing. Copenhagen, Denmark: Association for 

Computational Linguistics, pp. 254–263. 

 

Tomanek, K., Wermter, J. and Hahn, U. (2007) An Approach to Text Corpus Construction 

Which Cuts Annotation Costs and Maintains Reusability of Annotated Data, pp. 10. 

 

Tomar, D. and Agarwal, S. (2014) A Survey on Pre-processing and Post-processing 

Techniques in Data Mining, International Journal of Database Theory and 

Application, 7 (4), pp. 99–128. DOI:10.14257/ijdta.2014.7.4.09. 

 

Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.-L. A., Elkhatib, Y., Hussain, A. and Al- 

Fuqaha, A. (2017) Unsupervised Machine Learning for Networking: Techniques, 



References 

130 

 

 

 

 

Applications and Research Challenges, ArXiv:1709.06599 [Cs]. Available from: 

http://arxiv.org/abs/1709.06599 [Accessed 5 August 2019]. 

 

Vapnik, V. N. and Lerner, A. Y. (1963) Recognition of Patterns with help of Generalized 

Portraits, pp. 8. 

 

Varghese, N. (2012) A Survey of Dimensionality Reduction and Classification Methods, 

International Journal of Computer Science & Engineering Survey, 3 (3), pp. 45–54. 

DOI:10.5121/ijcses.2012.3304. 

 

Vlas, R. E. and Robinson, W. N. (2012) Two Rule-Based Natural Language Strategies 

for Requirements Discovery and Classification in Open-Source Software 

Development Projects, Journal of Management Information Systems, 28 (4), pp. 

11–38. DOI:10.2753/MIS0742-1222280402. 

 

Vu, N. T., Adel, H., Gupta, P. and Schütze, H. (2016) Combining Recurrent and 

Convolutional Neural Networks for Relation Classification, in: Proceedings of the 

2016 Conference of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies. San Diego, California: 

Association for Computational Linguistics, pp. 534–539. 

 

Walowe Mwadulo, M. (2016) A Review on Feature Selection Methods for Classification 

Tasks, International Journal of Computer Applications Technology and Research, 

5 (6), pp. 395–402. DOI:10.7753/IJCATR0506.1013. 

 

Wang, D., He, H. and Liu, D. (2018) Intelligent Optimal Control with Critic Learning for 

a Nonlinear Overhead Crane System, IEEE Transactions on Industrial Informatics, 

14 (7), pp. 2932–2940. DOI:10.1109/TII.2017.2771256. 

 

Wang, J.-H., Liu, T.-W., Luo, X. and Wang, L. (2018) An LSTM Approach to Short Text 

Sentiment Classification with Word Embeddings, pp. 10. 

 

Wei, J. and Zou, K. (2019) EDA: Easy Data Augmentation Techniques for Boosting 

Performance on Text Classification Tasks, in: Proceedings of the 2019 Conference 

on Empirical Methods in Natural Language Processing and the 9th International 

http://arxiv.org/abs/1709.06599


References 

131 

 

 

 

 

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, 

China: Association for Computational Linguistics, pp. 6381–6387. 

 

Wiegers, K. E. and Beatty, J. (2013) Software requirements. Third edition. Redmond, 

Washington: Microsoft Press, s division of Microsoft Corporation. 

 

Wolfe, C. R. and Lundgaard, K. T. (2020) E-Stitchup: Data Augmentation for Pre- 

Trained Embeddings, ArXiv:1912.00772 [Cs, Stat]. Available from: 

http://arxiv.org/abs/1912.00772 [Accessed 10 November 2020]. 

 

Wong, S. C., Gatt, A., Stamatescu, V. and McDonnell, M. D. (2016) Understanding data 

augmentation for classification: when to warp? ArXiv:1609.08764 [Cs]. Available 

from: http://arxiv.org/abs/1609.08764 [Accessed 11 November 2020]. 

 

Wu, J., Gupta, S. and Bajaj, C. (2016) Higher Order Mutual Information Approximation 

for Feature Selection, ArXiv:1612.00554 [Cs]. Available from: 

http://arxiv.org/abs/1612.00554 [Accessed 18 November 2020]. 

 

Xu, X., Zheng, J., Yang, J., Xu, D. and Chen, Y. (2017) Data classification using evidence 

reasoning rule, Knowledge-Based Systems, 116, pp. 144–151. DOI: 

10.1016/j.knosys.2016.11.001. 

 

Younas, M., Wakil, K., N., D., Arif, M. and Mustafa, A. (2019) An Automated Approach 

for Identification of Non-Functional Requirements using Word2Vec Model, 

International Journal of Advanced Computer Science and Applications, 10 (8). 

DOI:10.14569/IJACSA.2019.0100871. 

 

Young, T., Hazarika, D., Poria, S. and Cambria, E. (2017) Recent Trends in Deep 

Learning Based Natural Language Processing, ArXiv:1708.02709 [Cs]. Available 

from: http://arxiv.org/abs/1708.02709 [Accessed 17 February 2019]. 

 

Zeman, D., Popel, M., Straka, M., Hajic, J., Nivre, J., Ginter, F., et al. (2017) CoNLL 

2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, 

in: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw 

http://arxiv.org/abs/1912.00772
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1612.00554
http://arxiv.org/abs/1708.02709


References 

132 

 

 

 

 

Text to Universal Dependencies. Vancouver, Canada: Association for 

Computational Linguistics, pp. 1–19. 

 

Zena M. Hira and Gillies, D. F. (2015) A Review of Feature Selection and Feature 

Extraction Methods Applied on Microarray Data, Advances in Bioinformatics, 

2015 (1). DOI:10.1155/2015/198363. 

 

Zeng, D., Liu, K., Lai, S., Zhou, G. and Zhao, J. (2014) Relation Classification via 

Convolutional Deep Neural Network, pp. 10. 

 

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., et al. (2013) On 

rectified linear units for speech processing, in: 2013 IEEE International Conference 

on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada: IEEE, pp. 

3517–3521. 

 

Zhang, W., Yang, Y., Wang, Q. and Shu, F. (2011) An empirical study on classification 

of non-functional requirements, … of the 23rd International Conference on …, 

(January). 

 

Zhang, X. and Lapata, M. (2014) Chinese Poetry Generation with Recurrent Neural 

Networks, in: Proceedings of the 2014 Conference on Empirical Methods in Natural 

Language Processing (EMNLP). Doha, Qatar: Association for Computational 

Linguistics, pp. 670–680. 

 

Zhang, X., Zhao, J. and LeCun, Y. (2016) Character-level Convolutional Networks for 

Text Classification, ArXiv:1509.01626 [Cs]. Available from: 

http://arxiv.org/abs/1509.01626 [Accessed 16 September 2020]. 

 

Zhu, Q., He, Z., Zhang, T. and Cui, W. (2020) Improving Classification Performance of 

Softmax Loss Function Based on Scalable Batch-Normalization, Applied Sciences, 

10 (8), pp. 2950. DOI:10.3390/app10082950. 

http://arxiv.org/abs/1509.01626


 

 

Appendix- A: Comparison of Existing Methods for Requirements Classification 
 

 

Table A- 1: Comparison of Existing Methods for Requirements Classification 
 

Selected Feature Algorithm NFR attributes Dataset Tool Study 

Keywords, 

 
Indicator term 

SIG (soft goal 

interdependency graph) 

1FR 9 NFR attributes PROMISE corpus, Integrated engineering toolset (IET) under 

development at Siemens Logistics and Automation plant 

Un-known (Cleland et al., 2007) 

Five Syntactic features, 

Nine POS based features, 

keyword features, 

Smoothed/Unsmoothed Probability Measure, 

(SPM)/ (UPM) 

Decision tree PROMISE corpus 15 SRS problem statements, all from different domains, with 

a total of 765 sentences: 495 (65%) of them were annotated as 

“NFR”, while 270 (35%) of them as “FR”. 

Stanford Parser (equipped with 

Brill’s POS tagger, 

Morphological stemmer) 

(Hussain et al., 2008) 

Users feedback Expectation maximisation, 

TF/IDF 

Naïve Bayesian 

KNN, 

Expectation maximisation 

with naïve bayes/tfidf 

1FR 11 NFR attributes PROMISE corpus Porter algorithm for stemming (Casamayor et al., 2010) 

Ngram (one word), 

Multiword expression, 

Information gain (IG) 

SVM 12 NFR attribute PROMISE1 corpus Un-known (Zhang et al., 2011) 



134 

 

 

 

Multilevel ontology-based design 

POS Tagging, SAO approach 

Delimiter based approach 

Rule base (RCNL) 

Classifier 

Binary classification Dataset from Source forge GATE JAPE (Vlas and Robinson, 

2012) 

Ontology-based SVM+OWL ontology 7 NFR attributes Concordia corpus, 3064 sentences GATE (Rashwan et al., 2013) 

Distance function KNN classifier 

Multinomial-naïve Bayes 

Sequential minimal 

optimisation (SMO) 

9 NFR attributes in 

addition reliability, 

recoverability. 

performance and 

scalability as a single 

category 

78access control and 

audit measured as 

separate entity from 

security 

11 EHR document 

PROMISE corpus 

CCHIT Ambulatory Requirements 

iTrust 

Weka (Slankas and Williams, 

2013) 

Syntactic and Semantic pattern, Fully rule based. 6 NFR attributes 

extracted and redefined 

from PROMISE 

categories 

PROMISE Corpus1 Java JRE 1.6, 

 
wordnet for lemma generation 

(Sharma et al., 2014) 



135 

 

 

 

Semantic factors, K distance function from 10 to 

55 

KNN classifier 

Nearest neighbours 

Multilabel NFR 

attributes 

PROMISE corpus 

 
Itrust, CCHIT, World Vista US Veterans Health Care System 

Documentation, Online Project Marking System SRS, 

Mars Express Aspera-3 Processing and Archiving Facility 

SRS. 

Un-known (Ramadhani et al., 2015) 

Thematic role Rule based system for 

annotation 

1FRl+11 NFR attributes PROMISE and Concordia GATE, JAPE rules, ANNIE 

tokenizer, POS tagger, chunker, 

snowball stemmer, 

, Multilingual Noun Phrase 

Extractor (MuNPEx) 

GATE Morphological Analyzer, 

Number Tagger (for tagging 

numbers), Measurement Tagger 

(Singh et al., 2016) 

Tokenisation, Stop-word removal, stemming, TF- 

IDF, RBF kernel with SVM, UPGMA with K- 

means 

K-means, SVM, Neural 

network with genetic 

algorithm 

Unknown PROMISE, EU Procurement online system Python, MATLAB (Sunner and Bajaj, 2016) 



136 

 

 

 

Semantics of FR to identify Quality concerns, LSI, 

Vector space model 

Unsupervised approach 

 
Hierarchical clustering 

algorithm 

security, performance, 

accessibility, accuracy, 

portability, safety, legal, 

privacy, reliability, 

availability, and 

interoperability 

SafeDrink, SmartTrip and BlueWallet Java API WordNet, Open NLP 

lemmatizer 

Porter stemmer 

WordNet 

 

 

(Mahmoud and 

Williams, 2016) 

POS Taggin, Ngram, uni, bi, and trigram Decision Tree 1FR 11 NFR attributes PROMISE Un-known (Kurtanovic and Maalej, 

2017) 

POS, Temporal Tagging, Entity Tagging Naïve Bayes LDA, BTM 

 
Hierarchical, K-Means, 

Hybrid 

1FR 11 NFR attributes Tera-PROMISE Java, Weka (Abad et al., 2017) 

Five representation models TF, TF-IDF, TFIDF- 

CF, Bigram and Trigram, LSA with cosine 

distance 

SVD model with NLP FR, A=Availability, L = 

Legal, LF = Look and 

feel, MN = 

Maintainability, O = 

Operational, PE = 

Performance, SC = 

Scalability, SE = 

Security, US = Usability, 

Used tera PROMISE dataset which includes, PROMISE, 

Itrust, CCHIT, World Vista US Veterans Health Care System 

Documentation, Online Project Marking System SRS, Mars 

Express Aspera-3 Processing and Archiving Facility SRS. 

Eclipse for Java and Java SE 

Development Kit 7u79 

(Mahmoud, 2017) 



137 

 

 

 

  FT = Fault tolerance, and 

PO = Portability 

   

Keywords, Similarity distance Word2vec 1FR 11 NFR attributes PROMISE corpus Unknown (Younas et al., 2019) 

Unsupervised Learning ANN, CNN Maintainability, 

operability, performance, 

security, and usability 

PROMISE corpus Unknown (Baker et al., 2019) 



 

 

 

Appendix- B: Corpus Design 
 

 

Table A- 2: Steps to Design a Gold Standard Corpus 
 

 

 
1 Initialize r where D∈ dataset 

 
2 Define guideline and rules for participants a, b, c ∈n, worker ids 

 
3 Create test as ‘t’ for participants, if a, b, c ∈ n pass test ‘t’ then move to step4 else exit. 

 
4 Select a, b, c ∈n 

 
5 for each r ∈ D do 

 

6 For each label li ∈L do 
 

7 U= set of annotators who have assigned li label to r. 
 

8 W= set of annotators who have not assigned li for r. 
 

9 If cardinality(U)>cardinality(W) then 

 

10 Assign li to r 
 

11 J=J+1 where J∈U 

 
12 End 

 
13 Else if cardinality(U)< cardinality(W) 

 
14 Then 

 

15 Do not assign li to r. 
 

16 J=J+1 where j ∈W 

 
17 End 

 
18 Else if then 

 

19 Assign label li to r 
 

20 End 

 
21 ENDS 

 
End 

 

D represents the dataset, whereas r denotes the requirements belonging to D. A, b, and 

c are the annotators, whereas ‘t’ denotes the test question. If a participant passes the 

test 't’, select it as annotator and grant it access to the complete annotation task. The U 

is the annotator who assigns the label ‘li’ to a requirement ‘r.’ (where li is the label or 

pair of labels). If two out of three annotators assign a label ‘li’ to a requirement ‘r’ then 

label it as li otherwise, do not consider it as true. 

Input: Data, Guidelines 

 
Output: Gold standard Annotated Corpus 



Appendix- C: The Custom Augmentation Approach   

 

 

Table A- 3: The Custom Augmentation Approach 

 

‘A’ Sorted set (Ascending order) 
  

1 System can handle user different request 

at same time 

  

  

Augmented subset (OAa)  

Augmented subset 

(OAaOBd) 

2 The system shall refresh the display 

every 60 seconds. System can handle user different request 

at same time The system should perform 
every task in less than 6 seconds. 3 The system should perform every task 

in less than 6 seconds.   

  

The system shall refresh the display every 
60 seconds User login time must be less 

than 1 minutes 

System can handle user 

different request at same time 

The system should perform 
every task in less than 6 

seconds. 

4 User login time must be less than 1 

minutes 

. ………….. The system should perform every task in 

less than 6 seconds System can handle 

user different request at same time An …………. The system shall refresh the 

display every 60 seconds User 

login time must be less than 1 

minutes 

 
User login time must be less than 1 

minutes  The system shall refresh the 
display every 60 seconds 

‘O’ Original set 
 

 

The system should perform 

every task in less than 6 
seconds System can handle 

user different request at same 

time 

The system should perform every task in less 

than 6 seconds. 

……………… 

OAa 

User login time must be less than 1 minutes  

  

System can handle user different request at 

same time 

 User login time must be less 

than 1 minutes The system 

shall refresh the display every 
60 seconds  

The system shall refresh the display every 60 
seconds 

 
 

 

  

 
Augmented subset (OBd) 

 

The system should perform 

every task in less than 6 

seconds User login time must 

be less than 1 minutes. 
On 

 

‘B’ Sorted set (Descending order)  
 

 
User login time must be less 

 

 
 

The system should perform every task in 

less than 6 seconds User login time must be 

less than 1 minutes. 

than 1 minutes The system 

should perform every task in 

less than 6 seconds. 

1 User login time must be less than 1 

minutes 

2 The system should perform every task in 

less than 6 seconds. 
User login time must be less than 1 minutes 
The system should perform every task in 

 
System can handle user 

different request at same time 

The system shall refresh the 

display every 60 seconds 
less than 6 seconds.   

3 The system shall refresh the display  

 

 every 60 seconds System can handle user different request at 
The system shall refresh the 

display every 60 seconds 
System can handle user 

different request at same time 

same time The system shall refresh the 

display every 60 seconds 4 System can handle user different request 

at same time 
 

The system shall refresh the display every 

60 seconds System can handle user 

different request at same time 

 

Bn ……………. 
OAaOBd 

 

OBs 

 



140 

Appendix- C: The Custom Augmentation Approach   

 

It was observed in the previous experiment that the LSTM network was performing 

satisfactorily when trained with CDA and pre-trained word embeddings. However, it 

was not showing any learning behaviour until the first ten epochs. To make fair 

comparison in these section three modifications have been made to check whether the 

LSTM network used previously would converge in the longer run. 

• Training Configuration for LSTM with CDA Approach 

To validate the performance of LSTM model. Few modifications were performed in 

the form of some hyperparameter tuning such 1) Extended the number of epochs, 2) 

Reduce the number of nodes (from 256 to 64) in the second layer of network to check 

if it effects the performance and, 3) Modification in the learning rate. The same data 

distribution was used for this experiment as was done for the one under the section 6.3. 

and the data augmentation was performed with the CDA approach. 

• Experimental results for LSTM 
 

The observation is shown in the Figure A- 1, when the number of epochs were 

increased the LSTM not only converged but has achieved extraordinarily good results 

reaching to 94% classification score at validation loss of 0.275. 

Astonishingly, it was observed that by reducing the number of nodes, the network 

converged earlier without losing the performance. The total number of parameters 

decreased from 568,029 to 195,549 as can be seen from Figure A- 2. 

With the change in learning rate, it was found that initial learning rate won’t affect the 

final accuracy of the LSTM network at all. 

From the Figure A- 3, it is evident that it stared improving but still when compared it 

did not outperform the other three models. It is important to mention here that these 

experiments on LSTM have been performed only for CDA approach. 



141 

 

 

 
  

Appendix- D: Revised Experiment for LSTM Network with CDA Approach 
 

 

 
 

 

 

 

 

 

  

Figure A- 1: LSTM Convergence with Increased Number of Epochs 

Figure A- 2: LSTM Convergence with Reduced Nodes 

Figure A- 3: LSTM Convergence with Modified Settings 



142 

 

 

 
  

Appendix- E: Results for DNNs based on Accuracy and Loss for Convergence Graph 
 

 

Table A- 4: Comparison of Various Representation Learning Approaches Based on Training/Validation Accuracy and 

Loss 
 

Representation 

Learning 

 

Augmentation 

 

Skip-gram Embeddings Training Validation 

Accuracy Loss Accuracy Loss 

 

CNN NONE From Scratch 

   

1.74 95.44 0.1 60.27 

EDA Pre trained on Eng-CONLL17 

   

0.42 97.32 0.06 87.85 

CDA Pre trained on Eng-CONLL17 

   

0.19 100 0 96.28 

 

GRU NONE From Scratch 

   

1.66 94.93 0.11 62.23 

EDA Pre trained on Eng-CONLL17 

   

0.37 95.53 0.10 86.84 

CDA Pre trained on Eng-CONLL17 

   

0.17 99.79 0.4 94.93 

 

ANN None From Scratch 

   

1.70  93.41   0.20   56.57  

EDA Pre trained on Eng-CONLL17 

   

0.34 96.20 0.07 87.68 

CDA Pre trained on Eng-CONLL17 

   

0.17 99.96 0.001 94.76 

 

LSTM NONE From scratch 

   

0.42 97.32 0.06 87.85 

EDA Pretrained on Eng-CONLL17 

   

0.37 92.53 0.10 86.84 

CDA Pretrained on Eng-CONLL17 

   

0.35 97.51 0.09 89.02 
 



143 

 

 

 
  

Appendix- E: Results for DNNs based on Accuracy and Loss for Convergence Graph 
 

 

Table A- 5: Comparison of Various Representation Learning Approaches Based on Training/Validation 

Accuracy and Loss for Revised Experiment 

 
 

Representation 

Learning 

 

Augmentation 

 

Skip-gram Embeddings Training Validation 

Accuracy Loss Accuracy Loss 

 

CNN NONE From Scratch 97.0 0.729 50.00 34.699 

 

EDA Pre trained on Eng- 

CONLL17 

 

86.30 
 

40.00 
 

48.30 
 

34.66 

 

CDA Pre trained on Eng- 

CONLL17 

 

88.58 

 

37.15 

 

60.83 

 

10.78 

 

GRU NONE From Scratch 92.74 0.11 52.33 29.20 

 

EDA Pre trained on Eng- 

CONLL17 

 

95.00 

 

11.66 

 

51.33 

 

29.20 

 

CDA Pre trained on Eng- 

CONLL17 

 

100 
 

0.001 
 

51.67 
 

49.13 

 

ANN None From Scratch 95.36 0.991 48.00 35.67 

 

EDA Pre trained on Eng- 

CONLL17 

 

96.20 

 

0.07 

 

47.68 

 

34.01 

 

CDA Pre trained on Eng- 

CONLL17 

 

99.92 

 

0.039 

 

48.00 

 

38.66 

 

LSTM NONE From scratch 78.14 59.75 51.33 17.68 

 

EDA Pretrained on Eng- 

CONLL17 

 

92.53 

 

0.10 

 

56.84 

 

37.20 

 

CDA Pretrained on Eng- 

CONLL17 

 

78.14 

 

59.75 

 

51.33 

 

17.68 

 

 

The relevant code and NFR Corpus is available at: 

https://github.com/maliha212/CUSTOM-NFRs-Corpus 


