
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

12-31-2022 

Modeling of quad-station module cluster tools using petri nets Modeling of quad-station module cluster tools using petri nets 

Aung Nay 
New Jersey Institute of Technology, an553@njit.edu 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Computer Engineering Commons, Dynamics and Dynamical Systems Commons, and the 

Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Nay, Aung, "Modeling of quad-station module cluster tools using petri nets" (2022). Theses. 2096. 
https://digitalcommons.njit.edu/theses/2096 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/281?utm_source=digitalcommons.njit.edu%2Ftheses%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.njit.edu%2Ftheses%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2096?utm_source=digitalcommons.njit.edu%2Ftheses%2F2096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

MODELING OF QUAD-STATION MODULE CLUSTER TOOLS 
USING PETRI NETS 

by 
Aung Nay 

The semiconductor industry is highly competitive, and with the recent chip shortage, the 

throughput of wafers has become more important than ever. One of the tools that the 

industry has deployed is to use of quad-station modules instead of the traditional single-

station modules that allow for higher throughput and better wafer consistency by 

processing multiple wafers at the same time and distributing work. The industry trend is 

to use multiple transfer chamber robots to stack the quad-station modules in a series, 

particularly for etch products. In this work, the quad-station cluster tool wafer movement 

is modeled by using Petri net as a process-bounded system. The system analysis and 

simulations are performed by using timed and colored Petri nets. The results are useful to 

deepen our understanding of the discrete-event dynamics of quad-station module cluster 

tools and offer the highly needed insight into their efficient and deadlock-free operation. 

 



MODELING OF QUAD-STATION MODULE CLUSTER TOOLS 
USING PETRI NETS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Aung Nay 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Thesis  
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Master in Computer Engineering 
 

Department of Electrical and Computer Engineering 
 
 

December 2022 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE 
 

MODELING OF QUAD-STATION MODULE CLUSTER TOOLS 
USING PETRI NETS 

 
Aung Nay 

 
 
 
 
 
Dr. Mengchu Zhou, Dissertation Advisor     Date 
Distinguished Professor of Electrical and Computer Engineering, NJIT 
 
 
 
 
Dr. Tao Han, Committee Member      Date 
Associate Professor of Electrical and Computer Engineering, NJIT 
 
 
 
 
Dr. Xiwang Guo, Committee Member     Date 
Associate Professor of Computer and Communication Engineering College, Liaoning 
Petrochemical University, Fushun, 113001, P R. China 
 
 
 
 
 
 
 



iv 

BIOGRAPHICAL SKETCH 

Author: 

Degree: 

Date:  

Date of Birth:  

Place of Birth: 

Aung Nay 

Master 

December 2022 

Undergraduate and Graduate Education: 

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2022

• Bachelor of Arts in Economics,
The Ohio State University, Columbus, OH, 2007

Major: Computer Engineering 



 

v 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my partner in good and bad, ✊! 
 
 
 



 

vi 

 
ACKNOWLEDGMENT 

 
This work would not have been possible without Prof. Mengchu Zhou’s 

inspiration, direction, and guidance. I am very much in debt to Prof. Zhou for his 

generosity, for the opportunities he has freely shared, and for being a great teacher who 

hooked me into the subject matter more than any other teacher I have ever had.  

I am also very thankful to Dr. Side Zhao for giving me a glimpse into the 

semiconductor industry with a warm welcome and opening the door to a wonderful world 

full of good human beings.  

I would also like to thank the committee members: Prof. Xiwang Guo and Prof. 

Tao Han, for being so generous and helping with the process. 

I am very grateful to all my friends who worked with me along this learning 

journey: Megha, Salman, Aftab, Cynthia, Ravi, and Brendan.  

I want to thank my mom and dad for giving me opportunities to build 

foundational knowledge and developing my ability to persevere.  

Most importantly, I thank the most important individual in my life, my wife, Aye. 

She has been a constant source of support, encouragement, and joy through challenges. 

She inspires me to aspire to be a little better every day. I cannot imagine my life without 

Aye. 

 

 



 

vii 

 
TABLE OF CONTENTS 

 
Chapter Page 

1    INTRODUCTION……............................………………..…………………………. 1 

 1.1  Overview ……..………………………………...……………………………… 1 

 1.2  Cluster Tool Background …………….…………………………...………….... 
 

2 

2 PETRI NET OVERVIEW …..………….…………………………………………... 4 

 2.1  Petri Net Basics ………………………………...……………………………… 4 

 2.2  A Marked Petri Net Formal Definition …………………………...………….... 
 

6 

 2.3  Anti-Place Definition ……………………………...……………...………….... 
 

7 

3 CLUSTER TOOL OVERVIEW …………………………………….……………... 9 

 3.1  Description of Cluster Tool ..………………………………………………...… 9 

4 PETRI NET MODELS OF CLUSTER TOOLS ……..…..………….……………... 11 

 4.1  Modeling Resource-Oriented Model …..…………………………...………….. 11 

 4.2  Finite-Capacity Petri Net ………...……………………………...………….….. 14 

 4.3  Notations ...……...………………………………………………………….….. 14 

  4.3.1  Places ……………………………..………………………………..…… 14 

  4.3.2  Transitions ……………………………………………..…....................... 16 

  4.3.3  Anti-Places .…………………….……………………………..…............ 16 

  4.3.4  Time Durations .………………..……………………………..…............ 16 

5 SIMULATION AND ANALYSIS …………..…………..………….……………... 18 

 5.1  Simulation and Analysis Overview …...…………………..……………….….. 18 

 5.2  Steady-State ...……...……………………………………………………….….. 19 



 

viii 

TABLE OF CONTENTS 
(Continued) 

 
Chapter Page 

 5.3  Initial Transient Process ...………………………………………………….….. 26 

 5.4  Final Transient Process ...……….………………………………………….….. 31 

6 CONCLUSION .…………….……………………………………………………... 34 

APPENDIX A  GRAPHS & PROGRAM …………………………………………….. 
 

36 

APPENDIX B  TINA INSTRUCTIONS ……………….....…………………………... 41 

APPENDIX B  CPN TOOLS INSTRUCTIONS ……………….……………………... 42 

REFERENCES ………………………………………………………………………... 43 

 



 

ix 

 
LIST OF TABLES 

 
Table Page 

4.1  Time Durations For Different Activities In The Cluster Tool.…..………………. 17 

 



 

x 

 
LIST OF FIGURES 

 
Figure Page 

2.1  Petri net example with two states on making lemonade.………..………….……. 
 

5 

2.2  Anti-place example.…………………..………………………………………….. 
 

8 

3.1  Quad-station cluster tool for modeling...…..………...…....……………….…….. 10 

4.1 Steady-state Petri net for a single process module.…..…………………………... 12 

4.2 Steady-state Petri net for a single process module using a static recipe.………… 13 

5.1 Steady-state Petri net.…………………………………………………...………... 20 

5.2 Steady-state Petri net only for PM2 and PM4.………………….....…...………... 21 

5.3 Steady-state Petri net only for PM1 and PM5.…………………..………...…….. 24 

5.4 Analysis of steady-state Petri net in TINA.……………………….……………... 26 

5.5 Initial transient process Petri net.………………………………………………… 29 

5.6 Analysis of initial transient process Petri net in TINA.………………………….. 31 

5.7 Final transient process Petri net.……………….………………………………… 32 

5.8 Analysis of final transient process Petri net in TINA.…………………………… 33 

A.1 Petri net graph memory usage.…………………………………………………… 40 

 



 

xi 

 
LIST OF VIDEOS 

 
Figure Page 

5.1  Clip of video for steady-state simulation using CPN Tools available at 
https://www.youtube.com/watch?v=BX6NO9hwBk4 …..……..………….……. 
 

22 

5.2  Clip of video for steady-state simulation of only PM2 and PM4 using CPN 
Tools available at https://www.youtube.com/watch?v=ghXFskXlHFE ……….... 
 

23 

5.3  Clip of video for steady-state simulation of only PM1 and PM5 using CPN 
Tools available at https://www.youtube.com/watch?v=IwZA9bdtHsI ………..... 
 

 
23 

5.4 Clip of video for steady-state simulation of a standard recipe with delayed 
tokens using CPN Tools available at 
https://www.youtube.com/watch?v=GHcqyrRj64A ………………….……..…... 
 

 
 

25 

5.5 Clip of video for steady-state simulation of a static recipe with priority 
transitions using CPN Tools available at 
https://www.youtube.com/watch?v=DSTGq8cbDKw ………………………….. 
 

 
 

25 

5.6 Clip of video for initial transient process with a different number of wafers and 
cases simulation using CPN Tools available at 
https://www.youtube.com/watch?v=jQFtO3G_wu4 ...………....……………….. 
 

 
 

30 

5.7 Clip of video for final transient process simulation using CPN Tools available at 
https://www.youtube.com/watch?v=xnXOXkpKfcg …...……………………...... 
 

 
33 

   

 



 
 

1 

CHAPTER 1 

INTRODUCTION 

The semiconductor industry is highly competitive, and with the recent chip shortage, the 

throughput of wafers has become more important than ever. One of the tools that the 

industry has widely deployed is to use quad-station modules instead of the traditional 

single-station modules that allow for higher throughput and better wafer consistency by 

processing multiple wafers simultaneously. The industry trend is to use multiple transfer 

chamber robots to stack the quad-station modules in a series, particularly for etch products. 

In this work, the quad-station cluster tool wafer movement is modeled by using Petri nets. 

As a process-bounded system, such a cluster tool is described via timed and colored Petri 

nets. Its detailed analysis and simulations are conducted in this thesis work. 

 

1.1 Overview 

This thesis work models a production semiconductor quad-station process module cluster 

tool by using Petri net. The model is then analyzed for reachability, boundedness, liveness, 

and reversibility by using TINA and simulated for wafer movements by using CPN Tools. 

This is an exploration to see if Petri net scheduling can be pragmatically implemented in a 

production environment. Currently, the industry uses a heuristic rule-based approach to 

schedule cluster tools as it is flexible, extensible, and provides near or quasi-optimal 

solutions. However, it relies on a developer's experience and creativity. Any mature ruleset 

for a new tool configuration is derived through trials and errors and, as such, compromises 

the quality and reliability of the scheduler component in its initial stage. As tool complexity 

increases, the complexity of the scheduler component becomes higher and higher. Using 



 
 

2 

the Petri Nets is not an outright rejection of a heuristic approach. In fact, Petri Nets can be 

used in conjunction with various heuristic approaches, according to [6] [14]. 

 

1.2 Cluster Tool Background 

Cluster tools process wafers for the fabrication of micro-electric components using 

automated robotic manufacturing systems. [9] [10] [15] [19] [20] Cluster tools are systems 

that allow for the transfer of wafers process modules (PMs), buffers, and loadlocks. They 

can be used for the parallel process of multiple wafers for improved throughput. The 

general configuration of a cluster tool includes multiple PMs, one or more transfer 

chambers, and loadlocks. Beyond the loadlocks, the system is operated under a vacuum 

environment using one or more robotic arm(s) to prevent contamination or other undesired 

reactions. 

 Until recently, due to limited floor space in fabs, cluster tools tend to have no more 

than six process modules, which tend to be single-station process modules. However, with 

the need for higher productivity and throughput, quad-station process modules are being 

introduced with some cluster tools supporting up to ten process modules. 

 In a typical operation, unprocessed wafers are transferred to the cluster tools in 

FOUPs (Front Opening Unified Pods). FOUPs generally hold 25 wafers. Most cluster tools 

have the capacity to handle multiple FOUPs. Upon the arrival of FOUP to a cluster tool, 

the unprocessed wafers are transferred by the atmosphere robotic arm(s) into the loadlock, 

which are airlocks that reduce the pressure to vacuum for the transfer chamber and PM 

operations. In some systems, aligners are used to align the wafers to the proper orientation 

for processing purposes.  



 
 

3 

 Once the wafers are in the transfer chamber, they are quickly moved to the 

appropriate PM for the recipe that is being used. Some recipes call for PM revisits, meaning 

that the wafer will visit a specific PM more than once. Once processing is complete, the 

wafers are removed from the system through the loadlocks back to the FOUPs. In some 

processes, there are time constraints on how long a wafer can remain in the PM, and there 

are also some requirements for stay uniformity for quality control purposes.  

 Depending on the process, PMs generally need to be cleaned after each operation, 

with non-zero cleaning time. Quad-station modules have an advantage here as the PM only 

needs to be clean after processing four wafers instead of one. Quad stations also break 

down the operation into four sub-operations, improving the uniformity of wafers. 

In the process, the graph aspect of the reachability graph is also explored and can 

be found in the Appendix. The rest of the document is organized as follows. Chapter 2 

describes cluster tools in general and introduces why quad-station modules are being used. 

Chapter 3 goes over the basic definitions of Petri nets. Chapter 4 is the description of the 

cluster tool being modeled. Chapter 5 is the Petri net model of the cluster tool. Chapter 6 

is the simulation and analysis of the Petri net model. And chapter 7 concludes the thesis. 

 

 

  



 
 

4 

CHAPTER 2 

PETRI NET OVERVIEW 

Petri nets are one of the modeling tools available to simulate, evaluate, and model 

different mechanisms, operations, and procedures [7] [8]. Petri Nets bring the 

mathematical and graphical aspects of modeling different scheduling problems in event-

driven systems. 

 

2.1 Petri Net Basics 

It supports the representation of asynchronous, sequential, and concurrent operations 

through the structure and dynamics of discrete event systems. [5] We can model the flow 

of information and controls in systems using Petri nets. And most importantly, we can use 

the analytical properties of Petri net, such as reachability, boundedness/safeness, lightness, 

and reversibility, to understand the problems better. [5] Petri nets are directed bipartite 

graphs with places and transitions with static (inputs and outputs) and dynamic (executions 

and events) properties. There are many variants of the "basic" Petri nets, which include 

extensions and abbreviations. Some variants of notes include edge types, which allow for 

extended control of the systems; time, which allows for performance analysis; color, which 

allows for model attributes; and hierarchy, which allows for the structuring of models. [13] 

 As we can see in Figure 2.1, the concept of Petri net is easy to follow. Let's say you 

have the following items: 4 cups of water, 3 cups of sugar, and 2 cups of lime juice. We 

want to make lemonade and then serve the lemonade in glasses (not equivalent to a cup) 

that you recently bought. According to a simple google search, the lemonade recipe calls 

for 3 cups of water, 1 cup of sugar, and 1 cup of lime juice. Once you make lemonade, you 



 
 

5 

will get a total of 6 glasses of lemonade. All this information can be seen in State 0 of 

Figure 2.1. The tokens (dots) that are in the input places (circles) to the transition 

(rectangle) tell us how many resources we have. Based on the arc weights, we can evaluate 

if we can even attempt to make lemonade (this is called whether the transition can be 

enabled or not). We can say the transition is enabled if we have enough resources to make 

lemonade. That does not mean we will make lemonade. It just means that we have the 

resources to make lemonade. If we did make lemonade (that is firing the transition), we 

would get six glasses of lemonade. State 0 is the state prior to firing the transition, meaning 

the event of making lemonade, and State 1 is the state after firing the transition. In State 1, 

we can see that we have used up 3 cups of water, a cup of sugar, and lime juice each. We 

now also have six glasses of lemonade. 

 

Figure 2.1 Petri net example with two states on making lemonade. 

 
  



 
 

6 

2.2 A Marked Petri Net Formal Definition 

The general marked Petri Net [11] [17] [21] can be described formally as follows. A 

marked Petri net (𝑃𝑁)	𝑍	 = 	 (𝑃, 𝑇, 𝐼, 𝑂,𝑚) is a five-tuple where: 

• 𝑃 = {𝑝!, 𝑝", . . . , 𝑝#}. 𝑛 > 0, is a finite set of places pictured by circles; 
 

• 𝑇 = {𝑡!, 𝑡", . . . , 𝑡#}. 𝑛 > 0, is a finite set of places pictured by bars, with          
𝑃 ∪ 𝑇 ≠ ∅ and 𝑃 ∩ 𝑇 ≠ ∅; 
 

• 𝐼: 𝑃 × 𝑇 → 𝑁, is an input function that defines the set of directed arcs from 𝑃 
to 𝑇 where 𝑁 = {0,1,2, . . . }; 
 

• 𝑂: 𝑃 × 𝑇 → 𝑁, is an output function that defines the set of directed arcs from 𝑇 
to 𝑃; 
 

• 𝑚:𝑃 → 𝑁, is a marking whose 𝑖 th component represents the number of tokens 
in the 𝑖 th place. An initial marking is denoted by 𝑚_0. Tokens are represented 
by dots. 

 
The four-tuple (𝑃, 𝑇, 𝐼, 𝑂) is called a Petri Net structure that defines a directed graph 

structure.  

Enabling: 𝑡 is enabled at marking 𝑚 

• if ∀	𝑝 ∈ 𝑃,𝑚(𝑝) ≥ 𝐼(𝑝, 𝑡). 

Note: If 𝐼(𝑝, 𝑡) = 0, the above equation holds regardless of 𝑚(𝑝). If t has 𝑘 

input places, 𝑘 such relations must hold simultaneously. 

Enabling means that if a place belongs to the Petri net in question, there need to be 

enough tokens in the place that is required by the transition's input. For example, if the 

transition input requires two tokens, the place needs to have at least two tokens to enable 

the transition. The most important thing to note here is that just because a transition is 

enabled does not mean it would necessarily fire. It just has the potential to fire. 

Firing: An enabled transition t at m can fire, yielding a new marking m' such that  

• ∀	𝑝 ∈ 𝑃,𝑚′(𝑝) = 𝑚(𝑝) − 𝐼(𝑝, 𝑡) + 𝑂(𝑝, 𝑡) 



 
 

7 

This is applicable to all Petri nets. 

The firing means that when an enabled transition fires, it will create a new state 

(m'). The change between the old state (m) and the new state (m') is for each of the places 

that are related to this particular transition, one must take away the tokens that are required 

for firing the transition and add the tokens that are the result of the firing of the transition. 

This means that when a transition has been enabled, the transition can fire. 

 

2.3 Anti-Place Definition 

The definition of an anti-place [2] is such that it has a corresponding original place with 

two transitions that are inputs and outputs for the place. As shown in Figure 2.2, we have 

𝑝$, place, and the anti 𝑝$, anti-place. The transition 𝑡$ has outputs going into 𝑝$, and the 

transition 𝑡% has inputs from 𝑝$ in Petri net without anti-place. To create an anti-place and 

impose a capacity limit on 𝑝$, we must first create an anti-place, anti 𝑝$, then connect arcs 

from anti 𝑝$ to 𝑡$ and from 𝑝% 	to anti 𝑝$. The key thing here is that the weight of the arc 

goes from anti 𝑝$ to 𝑡$ must match the arch going from 𝑡$ to 𝑝$, and the arc goes from 𝑡$ 

to anti 𝑝$ must match the arch going from 𝑝$ to 𝑡%. They are accounting for the tokens 

going in and out of 𝑝$. Then, we must place tokens in anti 𝑝$ such that 𝑀(𝑎𝑛𝑡𝑖	𝑝$) =

𝐾(𝑝$) − 𝑀(𝑝$), meaning the finite capacity we are imposing on 𝑝$ is equal to the total 

number of tokens in 𝑝$ and anti 𝑝$. (If we have colored tokens going from 𝑡$ to 𝑝$ and to 

𝑡%, we must make sure that the tokens go from and to anti 𝑝$ are either uncolored or of a 

different color.) By adhering to the total number of tokens, there can only be a maximum 

of 𝐾(𝑝$) tokens at 𝑝$. We can use this approach to limit the capacity of not just a single 

place but also multiple places that are capped by a pair of transitions. 



 
 

8 

 

 

Figure 2.2 Anti-place example. 

 

 

 

 

 

 

  



 
 

9 

CHAPTER 3 

CLUSTER TOOL OVERVIEW 

The cluster tool being modeled is a semiconductor production unit used for 3D NAND 

production by various storage manufacturers. 

 

3.1 Description of Cluster Tool 

As shown in Figure 3.1, it has four quad-station process modules, two transfer chambers 

with dual arms with a single hinge in each, a buffer with five slots for wafers, an 

atmosphere arm that operates between carrier handlers and the airlocks, and an aligner. In 

this study, we assume that the scheduling time is process-bound, the wafers have a single 

recipe, and all PMs run the same recipe. The raw wafers from the carrier handlers are 

picked up by the atmosphere arm and are aligned prior to being inserted into the loadlocks. 

Once the wafers enter the vacuum chamber, they visit a single PM. Depending on the PM 

being visited, the path taken by the wafer differs in the initial and final transient processes. 

However, during the steady-state, all wafers travel the same path through the vacuum 

buffer; that is, the wafer travels as follows: Carrier Handler -> Aligner -> Loadlock -> 

Vacuum Buffer -> PM -> Vacuum Buffer -> Loadlock -> Carrier Handler. The single-arm 

robot handles the transfer operation between the carrier handler and the loadlock, including 

the aligner. As for the transfer operation between the loadlock, PMs, and the vacuum 

buffer, they are handled by the dual-arm robots in transfer chambers 1 and 2. Transfer 

chamber 2 is responsible for transfer operations between the vacuum buffer and either PM2 

or PM4, while transfer chamber 1 is utilized for transfer operations between the loadlocks, 

vacuum buffer, and either PM1 or PM5. All the PMs are quad-station modules (QSM), and 



 
 

10 

the vacuum buffer has a capacity for five wafers. The aligner can align only one wafer at a 

time.  

 

Figure 3.1 Quad-station cluster tool for modeling. 

 

  

 

 

 

  



 
 

11 

CHAPTER 4 

PETRI NET MODELS OF CLUSTER TOOLS 

In this section, we model the cluster tool described in Chapter 3, which is a cluster tool 

with quad-station processing modules. 

 

4.1 Modeling Resource-Oriented Model 

Modeling using Resource-Oriented Petri net [13] is split into three categories: 

1. steady-state 

2. initial transient process (batch begin)  

3. final transient process (batch end). 

For this particular model, the process is neither multi-visit nor repeating, meaning 

the wafer only has to visit one PM and exits after the process. Hence, the Petri net combines 

four resource-oriented Petri nets for each PMs with a cyclic process. The four Petri nets, 

when combined, share resources, including the robotic arms, vacuum buffer, loadlocks, 

and atmosphere components. (Please see below for "Notations.") In this single PM steady-

state Petri net, as you can see in Figure 4.1, at PMi, there is a swap operation [5] of wafers 

between PMi and the vacuum buffer whereby an unprocessed wafer is picked up from the 

vacuum buffer, then a processed wafer is removed from the PMi, and an unprocessed wafer 

is inserted into the PMi, after which the processed wafer is placed into the vacuum buffer. 

There are two different operations with the loadlock: a swap operation and a single wafer 

operation. During the swap operation, a processed wafer is placed into the outbound 

loadlock, and an unprocessed wafer is picked up from the inbound loadlock. There is also 

an independent process of transferring processed wafers to the outbound loadlock and 



 
 

12 

unprocessed wafers from the inbound loadlock. In addition, the atmosphere arm handles 

the transfer of wafers between the loadlocks, aligner, and the FOUP. This description is for 

the standard recipe process in which a single wafer is moved into the PM at a time, and the 

individual wafer(s) are processed separately.  

 

Figure 4.1 Steady-state Petri net for a single process module. 

In contrast, Figure 4.2 describe the model in which we can use the static recipe 

process that processes four wafers at a time. One thing we should note here is that we are 

only using one token for the robot arms (𝑡𝑐! and 𝑡𝑐%), which generally is associated with 

single-arm robots. However, in our case, the dual-arm robots are used in single operations 

to either swap or simple transfers. Hence, the use of a single token for the robot arms. In 



 
 

13 

this Petri net model, the weight of the arcs for the transfer operation with PMi is 1, meaning 

we are just modeling for a single robot with dual arms with dedicated arms for processed 

and unprocessed wafers. To change this into a single robot with quad arms with dual 

processed and unprocessed arms, we can simply change the transfer operation arc weights 

and swap place capacity to 2. For such a change, we can also assume that the aligner can 

align two wafers simultaneously for model simplification. 

Note: All Petri net analyses are done in TINA (Time petri Net Analyzer), and visual 

simulations are done in CPN Tools. 

 

Figure 4.2 Steady-state Petri net for a single process module using a static recipe. 

 
  



 
 

14 

4.2 Finite-Capacity Petri Net 

A finite capacity Petri net (𝑃𝑁)𝑍 = (𝑃, 𝑇, 𝐼, 𝑂,𝑚, 𝐾) is a six tuple where, in addition to 

the same five definitions of the tuples as above: 

𝐾: 𝑃 → 𝑁 − {0} is a capacity function where 𝐾(𝑝) represents the maximal number of 

tokens that 𝑝	can hold 

Enabling of a finite capacity Petri net: 𝑡	is enabled at marking 𝑚: 

• If ∀𝑝 ∈ 𝑃, the following two conditions must hold true: 

o 𝑚(𝑝) ≥ 𝐼(𝑝, 𝑡) and 

o 𝐾(𝑝) ≥ 𝑀(𝑝) − 𝐼(𝑝, 𝑡) + 𝑂(𝑝, 𝑡) 

The firing definition remains the same as the prior definition above. 

The main difference between a finite capacity Petri net and a Marked Petri net is 

that places that have a finite limit have a capacity limit for the places, meaning if the change 

in the number of tokens, by firing a transition, exceeds the limit of the place, the transition 

would not be enabled to begin with. 

 

4.3 Notations 

Below are the notations used for the model, including its places, transitions, and anti-

places, as well as their conditions, capacities, and some definitions. The last sub-section 

also includes the table for the time durations of activities and operations. 

Let ℕ# = {1,2,4,5} and Ω#_𝑛 = ℕ# ∪ {0}. 

4.3.1 Places 

Places are represented by circles. They model resources, buffers, conditions, or states. 



 
 

15 

• 𝑓: FOUP/Carrier Handler 
 

• 𝑎: Aligner with 𝐾(𝑎) = 1 
 

• 𝑎𝑡𝑚: Atmosphere Arm 
 

• 𝑙!: InboundLoadlock 𝐾(𝑙!) = 1 
 

• 𝑙": Outbound Loadlock 𝐾(𝑙") = 1 
 

• 𝑡𝑐!: Transfer Chamber 1 (with dual-arm robot) with 𝐾(𝑡𝑐!) = 1 
 

• 𝑡𝑐": Transfer Chamber 2 (with dual-arm robot) with 𝐾(𝑡𝑐!) = 1 
 

• 𝑏& and 𝑏': These are virtual vacuum buffers for unprocessed and processed wafers, 
respectively, where 𝐾(𝑏&) + 𝐾(𝑏') = 5. They are, in fact, a single unit with five 
wafer capacities. 

 
• 𝑝%( models the pre-processing condition at 𝑝𝑚% , 𝑖 ∈ ℕ#, where ℕ# = {1,2,4,5} with 

𝐾(𝑝%() = 4 
 

• 𝑝%)models the condition post-processing conditions at 𝑝𝑚% , 𝑖 ∈ ℕ#, where     ℕ# =
{1,2,4,5} with 𝐾(𝑝%)) = 4 

 
• 𝑠%& models the movement of the unprocessed wafer during the swap operation, as 

well as the wait time, at 𝑝𝑚_𝑖, 𝑖 ∈ Ω_𝑛, where ℕ# = {0,1,2,4,5} with 𝐾(𝑠%&) = 1 
 

• 𝑠%' models the movement of the processed wafer during the swap operation, as well 
as the wait time, at	𝑝𝑚_𝑖, 𝑖 ∈ Ω_𝑛, where ℕ# = {0,1,2,4,5} with 𝐾(𝑠%') = 1 

 

4.3.2 Transitions 

Transitions are represented by rectangles. They model events, transformations, or 

transportations. 

• 𝑠%! models the beginning of the swap process between a processed and unprocessed 
wafer at	𝑝𝑚% , 𝑖 ∈ Ω_𝑛, where ℕ# = {0,1,2,4,5} 
 

• 𝑠%)models end of the swap process between a processed and unprocessed wafer at	
𝑝𝑚% , 𝑖 ∈ Ω_𝑛, where ℕ# = {0,1,2,4,5}  

 
• 𝑝𝑚% models the processing of wafers at	𝑝𝑚% , 𝑖 ∈ Ω_𝑛, whereℕ# = {1,2,4,5}  

 



 
 

16 

• 𝑙!𝑣 and 𝑣𝑙": models the movement of a wafer from loadlock to the vacuum buffer 
and vice versa 

 
• 𝑎𝑙!: models the movement of a wafer from the aligner to the loadlock 

 
• 𝑓𝑎: models the movement of a wafer from the FOUP to the aligner 

 
• 𝑙"𝑓: models the movement of a wafer from the loadlock to the FOUP 

4.3.3 Anti-Places 

Anti-Places are capacity control for corresponding places. The anti-places are not shown 

in the Petri net model images. But only in the simulation videos, as the CPN Tools does 

not support finite capacity Petri nets. 

• 𝑡𝑎: anti-place for aligner 

• 𝑡𝑙!: anti-place for loadlock 1 

• 𝑡𝑙": anti-place for loadlock 2 

• 𝑡𝑏: anti-place for the combined places of 𝑏&, buffer for unprocessed wafers, and 𝑏', 
buffer for processed wafers 
 

4.3.4 Time Durations 

The time durations for different activities in the cluster tools are defined as follows in table 

4.1. It includes different robot activity times and the corresponding wait times, as well as 

other components and their processing time and their wait times. 

  



 
 

17 

Table 4.1 Time Durations For Different Activities In The Cluster Tool 

Symbol Transition 
or Place Action Duration 

allowed 
𝜇   Any robot arm movement  
𝜎  𝑠!", 𝑠!#  Simple swap operation at PMi  

𝜔!$  𝑠!%, 𝑠!&  Robot wait time at swap operation at PMi [0, 𝛾]  
𝜔!&  𝑝!"  Robot wait time at the beginning of swap operation at PMi [0,∞]  
𝜔!'  𝑝!#  Robot wait time at the end of the swap operation [0,∞]  

𝜔!(  
𝑙)𝑣, 𝑣𝑙*, 𝑎𝑙), 
𝑙*𝑓 Robot wait time at loadlock [0,∞]  

𝜔!"  𝑎𝑙), 𝑓𝑎 Robot wait time at aligner [0,∞]  
𝜔!+  𝑓𝑎  Robot wait time at FOUP [0,∞]  
𝜏!  𝑝𝑚!  Wafer being processed and waiting in PMi [𝑎! , 𝑎! + 𝛿!]  
𝜆  𝑙), 𝑙* Loadlock time  
𝜌  𝑎  Aligner time  
𝜁  𝑝𝑚!  PMi processing completion time  

𝜁!#  𝑝𝑚!#  Processing completion time at the first PM used in the 
initial transient process  

𝜋   (4𝜇 + 𝜆 + 𝜔!( + 𝜌 + 𝜔!" +𝜔!$ +𝜔!& +𝜔!') time for each 
wafer to get from FOUP to PMi 

 

𝜀  𝑝𝑚!  PMi processing time  
 

  



 
 

18 

CHAPTER 5 

SIMULATION AND ANALYSIS 

In this section, the Petri net model described in Chapter 4 is analyzed and simulated using 

TINA and CPN Tools, respectively. 

 

5.1 Simulation and Analysis Overview 

For analysis, TINA (Timed petri Net Analyzer) is used specifically to check for 

reachability, boundedness, liveness, and reversibility. The reachability graph of a Petri net 

provides a fundamental basis for the dynamic properties of a system. It allows us to 

determine whether our modeled system can attain a specific state due to a required 

functional behavior with a single or a sequence of events. It can also be used to check if 

there are any deadlocks in the system. In a bounded PN, the reachability problem is 

decidable, but the complexity is exponential. For boundedness, a Petri net is considered 𝑘-

bounded or bounded if the number of tokens in each of the places is less than or equal to 

𝑘, which is a finite value. The boundedness of the system allows us to determine if there 

are overflows in the system. A system's liveness tells us if there are any deadlocks in the 

system. If a system is not live, it means that there are deadlocks. However, there are 

different levels of liveness with regard to how many times a transition in a Petri net can 

fire, which ranges from 1 to 𝑘, where 𝑘	 = every iteration. The reversibility of a PN tells 

us that the modeled system can go back to the original state of the system prior to firing of 

transition using a series of firings. 

CPN Tools is one of the very useful tools to simulate Petri nets. CPN Tools can 

work with colored and timed Petri nets. It also uses a dialect of SML (Standard Markup 



 
 

19 

Language) to add additional functionality and control. However, it is no longer maintained, 

and some existing bugs hinder its use. Yet, for certain usages, omitting certain 

functionalities, it can still be a great tool. It is also the tool with the best documentation, 

although it can be outdated and irrelevant. The developers have moved on to Access/CPN 

tool, which is another Petri net tool based on CPN Tools but has significantly less 

functionality. CPN Tools was used as a visual simulator of wafer movement. 

 The wafers in the simulations are shown with changing green rectangles with rows 

of values. Each row has three distinct pieces of information: 

• quantity of wafers of specific status and availability 

• status of the wafer, whether it is unprocessed or processed (shown with 

either '𝑢' or '𝑝') 

• time, in seconds, at which the wafer is available/ready 

The format of the notation is as follows, split by ‘′’ and '@.' 

Quantity'WaferStatus@Time 

In some cases, the transition 𝑥$ is used to simulate the cyclic nature of the system. 

Each timed transition has a set constant delay specified by the prefix@+. There are 

additional places with finite tokens and arcs to model to finite capacity. There are also some 

inhibitor arcs that model a form of control. 

 

5.2 Steady-State 

The steady-state is defined as meeting the following conditions in the Petri net: 

• 𝑀(𝑝%)) = 𝐾(𝑝%)) = 4, 𝑖 ∈ ℕ#, where ℕ# = {1,2,4,5} 

• 𝑀(𝑡𝑐%) ≥ 1, 𝑖 ∈ ℕ*, where ℕ* = {1,2} 

• 𝑀(𝑎𝑡𝑚) = 𝑀(𝑡𝑎) = 1  



 
 

20 

• 𝑀(𝑡𝑙%) = 1, 𝑖 ∈ ℕ*, where ℕ* = {1,2} 

• 𝑀(𝑡𝑏) = 5  

Each iteration of the steady-state starts at 𝜁%) − 𝜋. There is also an assumption that 

𝜀 ≥ 16𝜋. The process of the steady-state as defined in the single PM, firing of 𝑠%(, 𝑖 ∈ ℕ#, 

where ℕ# 	= 	 {1,2,4,5), transitions will depend on the availability of the processed wafers 

from each PM, which in turn is based on the optimized initial transient process, as the 

system is considered process bounded. This is straightforward for PM2 and PM4 as the arm 

is not shared with any other process. However, for PM1 and PM5, the arm is shared with 

the transfer operations in which wafers are moved from loadlocks to the vacuum buffer. 

 

Figure 5.1 Steady-state Petri net. 



 
 

21 

As you can see in Figure 5.2, we can consider PM2 and PM4 as a sub-case, and is 

are much simpler to work with. Assuming a constant flow of unprocessed wafers into the 

vacuum buffer, as the wafer processing of each PM completes, the respective 𝑠_𝑖𝑎 

transition will fire and output wafers into the vacuum wafer, which is 𝐾(𝑏'𝑏𝑝) + 𝐾(𝑏&) =

5. We can even consider this as a system with two PMs without a buffer for simplicity. 

The availability of processed wafers will determine the order of the process, which is 

determined by the initial transient process. In Video 5.1, we see the simulation of the sub-

net in which only PM2 and PM4 are considered, along with the buffers as the input and 

output of wafers.  

 

Figure 5.2 Steady-state Petri net only for PM2 and PM4. 

There are delays associated with different transitions. Each swap transition has a 

delay of 8, and the PM transitions have a delay of 1800. The 𝑥$ transition does not have 

any delays. The key thing to note in this simulation is the availability of wafers at PM4. 

They are not available until time 200. This relative delay in the availability of the wafers 

at PM4 and PM2 allows us to operate this Petri net without any further controls. This setup 

consistently transfers four wafers to each PM, even though it is a standard recipe model. 

This would change once we simulate the whole system, and we will observe a behavior 



 
 

22 

more consistent with the standard recipe, meaning the wafers will be inserted and processed 

one at a time across different PMs. 

 

Video 5.1 Clip of video for steady-state simulation using CPN Tools available at 
https://www.youtube.com/watch?v=BX6NO9hwBk4. 
 

We can also break down the steady-state Petri net into a subnet with only PM1 and 

PM5. If we look at Figure 5.3, we see that it behaves almost like a system with three PMs, 

where the buffer acts like a PM that does not require any processing, and wafers are 

immediately available. In addition, the input of wafers is available from two sources: PM1 

and PM5 are fed by the buffers, while the buffer is fed by the loadlocks. In Video 5.3, we 

see a delay of 200 being deployed for PM5, which allows us to have this PM without 

additional control. The swap at loadlock automatically happens whenever there is an 

unprocessed wafer in the inbound loadlock and a processed wafer in the vacuum buffer. 

Again, even though this is a standard recipe model, it consistently transfers four wafers to 

each PM and alternates between PM1 and PM5. When we combine everything and look at 



 
 

23 

the whole system, the control mechanism required for it gets slightly different based on 

whether we would like to use a standard or static recipe.  

 

Video 5.2 Clip of video for steady-state simulation of only PM2 and PM4 using CPN Tools 
available at https://www.youtube.com/watch?v=ghXFskXlHFE. 
 

 

Video 5.3 Clip of video for steady-state simulation of only PM1 and PM5 using CPN Tools 
available at https://www.youtube.com/watch?v=IwZA9bdtHsI. 
 



 
 

24 

 

Figure 5.3 Steady-state Petri net only for PM1 and PM5. 

When considering the standard recipe, the first approach of using delays for 

simulating the availability of the processed wafers from the PMs starts with processing 

each wafer. For example, all four wafers from PM1, in Video 5.4, are available at time 100. 

However, as it is a free choice Petri net, the system will randomly pick any of the PMs with 

the available processed wafer to swap. When we look at the static recipe model, using 

delays for the availability of the wafers does not work as the Petri net behaves in a manner 

similar to the standard recipe and transfers individual wafers to different PMs based on 

their availability. However, this is addressed using the transition priority, as shown in 

Video 5.5. The 𝑠%( transitions have different priorities, meaning since the system is process 

bounded, the priority transitions behave like a control system in which the wafer transfers 

are iterated through different PMs in the order of priority. 



 
 

25 

 

Video 5.4 Clip of video for steady-state simulation of a standard recipe with delayed tokens 
using CPN Tools available at https://www.youtube.com/watch?v=GHcqyrRj64A. 
 

 

Video 5.5 Clip of video for steady-state simulation of a static recipe with priority 
transitions using CPN Tools available at 
https://www.youtube.com/watch?v=DSTGq8cbDKw. 
 
 



 
 

26 

 

Figure 5.4 Analysis of steady-state Petri net in TINA. 

 As shown in Figure 5.4, the steady-state Petri net is bounded, live and reversible. 

TINA also generated the reachability states, as shown. There are 243,475 states in total, 

with 1,564,560 transitions generated from 27 places with 19 transitions. One thing to note 

here is that the states are being minimized with the use of only four wafers in the FOUP. 

By increasing the number of wafers in the FOUP, the number of states and transitions will 

increase while maintaining its properties of boundedness, liveness, and reversibility. 

 

5.3 Initial Transient Process 

The initial transient process brings the system to meet steady-state conditions. All the PMs 

prior to the initial transient process are empty. Depending on how many wafers are to be 

loaded, there are four different cases to consider having an optimal start. Even though the 

cluster tool has a dual robot arm, for this process, it will behave as though it is operating 

with a single arm. The objective of the initial transient process is the minimize the time 

taken to fill the pipeline of wafers into the system to either achieve the steady-state or 



 
 

27 

initiate the final transient process, depending on the number of wafers that need to be 

processed. There is a specific strategy to deploy, as there are two distinct durations to get 

the wafers to different PMs. 

The first type of operation for loading wafers is the one involving PM1 and PM5, in 

which the wafer is: 

1. unloaded from the FOUP and loaded into the aligner by the atmosphere 
robot (𝜔%( + 2𝜇 + 𝜔%+) 
 

2. unloaded from the aligner, after alignment, and loaded into the inbound 
loadlock by the atmosphere robot (𝜌 + 𝜔%( + 2𝜇 + 𝜔%,) 

 
3. unloaded from the inbound loadlock and loaded into PM1 or PM5 by the 

transfer chamber 1 robot (𝜆 + 𝜔%, + 2𝜇 + 𝜔%') 
 

The second type of operation for loading wafers is the one involving PM2 and PM4, 

in which the wafer is: 

1. unloaded from the FOUP and loaded into the aligner by the atmosphere 
robot (𝜔%( + 2𝜇 + 𝜔%+) 
 

2. unloaded from the aligner, after alignment, and loaded into the inbound 
loadlock by the atmosphere robot (𝜌 + 𝜔%( + 2𝜇 + 𝜔%,) 

 
3. unloaded from the inbound loadlock and loaded into the vacuum buffer by 

the transfer chamber 1 robot (𝜆 + 𝜔%, + 2𝜇 + 𝜔%-) 
 

4. unloaded from the vacuum buffer and loaded into the PM2 or PM4 by the 
transfer chamber 2 robot (𝜔%- + 2𝜇 + 𝜔%') 

 
Ceteris paribus, with other conditions remaining the same, the second type of 

operation takes 2𝜇 longer, as 𝜔%- = 0, than the first and holds the key to the strategy on 

how to place wafers when minimizing the initial transient process. Since we are working 

with quad station modules, depending on the number of wafers involved, the process has 

repetitions, yet it is not cyclic as it is in a steady-state. 

Let the number of wafers to be processed be 𝑤. 



 
 

28 

Case 1 (𝑤 ≤ 8): The wafers can be loaded into either PM1 and/or PM5, with a 

priority for filling a single PM first. In this case, the system will not enter the steady-state 

and proceed to the final transient process after this. 

Case 2 (8 < 𝑤 ≤ 12): The key here is the 2𝜇 time difference between the two types 

of operations. To do so efficiently, we need to schedule the first type of operation (meaning 

use either PM1 or PM5) first, followed by the second type of operation (meaning use either 

PM2 or PM4). Then alternate back to the first type of operation with the use of either PM1 

or PM5. The system will not enter the steady-state in this case either and execute the final 

transient process. 

Case 3 (12 < 𝑤 < 16): For this case, there needs to be at least a single alternating 

event between the two different operations when scheduling the first 2 PMs. Some 

examples: PM1 → PM2 → PM4 → PM5 or PM2 → PM1 → PM4 → PM5.This will take 

advantage of the 2𝜇 time difference. The system will not enter the steady-state in this case 

either and execute the final transient process afterward. 

Case 4 (𝑤 ≥ 16): In this case, all the PMs would be filled. However, as in case 3, 

we need to alternate between the two operations when scheduling the first 2 PMs. The 

system will then meet the conditions of the steady-state when all the PMs are filled. It will 

then be followed by the final transient process when the new wafers run out. 

 



 
 

29 

 

Figure 5.5 Initial transient process Petri net.  

The Petri net being used is a separate and modified version of the standard recipe 

Petri net. It keeps the wafer input elements. At each PM, we have an additional transition 

(𝑖𝑡%) and an additional place (𝑖𝑘%), 𝐾(𝑖𝑘%) = 4 and 𝑖 ∈ ℕ#, where ℕ# = {1,2,4,5}. The 

transition models the transfer operation of wafers to the PM, and the place models the finite 

capacity control of a quad station module. We can think of this as a sub-system with distinct 

and compartmentalized behavior for filling the pipeline, mostly to achieve the steady-state, 

at which point, the steady-state Petri net will be used. 



 
 

30 

 

Video 5.6 Clip of video for initial transient process with a different number of wafers and 
cases simulation using CPN Tools available at 
https://www.youtube.com/watch?v=jQFtO3G_wu4. 
 

As shown in Figure 5.6, the initial transient process Petri net is bounded but not 

live nor reversible. It is not expected to be either live or reversible as the task is to fill the 

system with wafers, and it has a specific end condition at which the net will be switched 

over to a steady-state or final transient process. TINA also generated the reachability states, 

as shown. There are 4,459,125 states in total, with 30,034,000 transitions generated from 

19 places with 11 transitions. Although it is a simpler net relative to the steady-state, it does 

have significantly more states in comparison to the steady-state due to the use of more 

wafers in the FOUP for the analysis. 



 
 

31 

 

Figure 5.6 Analysis of initial transient process Petri net in TINA. 

 

5.4 Final Transient Process 

The final transient process winds down the system from the steady-state. The process needs 

to meet the following condition: 𝑀(𝑓) = 𝑀(𝑎) = 𝑀(𝑙!) = 𝑀(𝑏&) = 0 What this means 

is that there are no more new wafers in either the FOUP, aligner, inbound loadlock, or 

buffer. Once this condition is met, for the system, based on the availability of the processed 

wafers, the wafers would be removed. As we can see in Video 5.7, as the processed wafers 

become available, each is removed from the system. (In the simulation, there are additional 

places (𝑓𝑡%' and 𝑡𝑓𝑡%) and transitions (𝑓𝑡%*) to simulate the staggering availability of wafers 

that will be produced by the steady-state.) 



 
 

32 

 

Figure 5.7 Final transient process Petri net. 

As shown in Figure 5.8, the final transient process Petri net is bounded but not live 

nor reversible. It is also a simpler system relative to the steady-state and the initial transient 

process. TINA also generated the reachability states, as shown. There are 23,125 states in 

total, with 104,000 transitions generated from 10 places and 6 transitions. 



 
 

33 

 

Figure 5.8 Analysis of final transient process Petri net in TINA. 

 

Video 5.7 Clip of video for final transient process simulation using CPN Tools available 
at https://www.youtube.com/watch?v=xnXOXkpKfcg. 
  



 
 

34 

CHAPTER 6 

CONCLUSION 

The scheduling component of a semiconductor cluster tool is an expansive endeavor that 

requires highly experienced developers and engineers and a task that is growing in 

complexity every day. It is also the least researched area in the semiconductor industry. [4] 

As such, there could be undiscovered optimizations and improvements that might exist that 

have not been researched. Petri nets are one of the areas that could use more investment.  

So far, Petri net scheduling of the cluster tool works well as long as the 

configuration of the cluster tool is static. However, that is not the reality of the 

semiconductor industry. The configurations of cluster tools are constantly changing with 

the desire for different behavior. That would require constant redevelopment of a new Petri 

net model, which is not trivial, without the ability to fully leverage the existing models. As 

the Petri net model increases in size, the computational complexity also increases 

exponentially, which is not tenable in the long term as the complexity of the cluster tools 

increases. 

 Modeling production cluster tools with real-world non-elegant requirements take 

away the elegance of existing theoretical solutions. Another area that requires exploration 

is the efficacy of switching between Petri net models for scheduling a heuristic rule-based 

approach. The relative computational and development cost should be researched.  

 On the other hand, Petri net models can be a great tool to deploy along with the 

heuristic rule-based approach at the launch of a new tool or configuration, as the model can 

explore the states that might or might not be encountered by developers as part of the testing 

and trial-and-error process. The Petri net model can catch the deadlocks, and other 



 
 

35 

undesirable states, mathematically. A Petri net model can be a foundation from which the 

developers' experience and creativity can evolve from, shortening the development time 

and allowing for the delivery of a more mature ruleset to market at launch. 

  



 
 

36 

APPENDIX A 

GRAPHS & PROGRAM 

Based on Dr. Zhao's insight into Petri net's ability to see over the horizon to make decisions 

on scheduling, the reachability graph was explored to calculate strongly connected 

components using Tarjan's algorithm, nodes of n-walks, and the shortest path using 

Dijkstra's algorithm. Google Colab for Python notebook was used, and the Network-X 

package was leveraged. The work is shared at:  

https://drive.google.com/drive/folders/18KzRtacbeJT1OnDbhKEW1Mq54SHGN6Lj. 

The motivation of the Python notebook is an exercise to take the output files from 

TINA and create multi-directed graphs, which we can use to get strongly connected 

components, shortest paths between states, and states of n-walk. We also wanted to filter 

the results using the number of tokens at different places to identify good or bad states. In 

general, any code cell is dependent on the prior code cells. Each code cell can be run 

independently, assuming all dependent cells have been run before. 

The notebook has nine sections: 

1. Overview 

2. Libraries 

3. File Import 

4. Parsing Input 

5. Make Graph 

6. States Filter 

7. Strongly Connected Components  

8. N-Walks from a Node 



 
 

37 

9. Shortest Path(s) 

The input file is imported as a dataframe from Google Drive by mounting Google 

Drive. If running this notebook locally, please comment out the Google Drive mount code 

and change that path to the appropriate input file that you would like to use. The input file 

is the output of the TINA Marking Graph (option-R). (Note: Please make sure to scroll all 

the way to the end of the TINA output prior to saving to ensure the full text is saved from 

TINA.) 

For parsing, the input text file that is generated has three lines for each state; the 

first line gives us the state index. The second line gives us the different tokens for each 

marking/state. If the marking place has no tokens, it is not listed. If it has a single token, 

the name of the place is listed. If it has more than one token, the place name has a suffix *, 

which is followed by an integer. The third line gives us the transitions. Each available 

transition has the transition with a suffix "/", followed by the target state. 

This section has five parts: 

i. parse_props function: this function takes a list in and returns a dictionary 

ii. parse_file function: this function parses the input file and returns a tuple 

of node_list (tuple of nodes and labels), place_dict (dictionary for 

markings with places and tokens), and dead_list (list of dead states). 

iii. formatting node_list for a more human-readable format. The code is 

commented out, and its use is optional. 

iv. dict_to_dffunction: converts the dictionary to a dataframe, then replaces 

the NaNs with 0s and typecasts it into int 



 
 

38 

v. this part prints out the dead state list. The code is commented out, and 

its use is optional. Only applicable when there are dead states in the 

input file. 

NetworkX library is used to make a multi-directed graph, G, of the reachability 

graph using the node_list from the previous section (parse_file function). There are three 

optional code cells: 

i. prints the number of nodes and edges 

ii. draws the graph (Due to the size of the graph, it is not very usable.) 

iii. exports the graph into a .gexf format which can be read by the Gephi 

application to draw graphs. 

States Filter is an optional section that takes the props_df generated by diet_to_df 

from the parsing input section and filters using the number of tokens in places. The first 

two code cells give us basic information about the dataframe to edit the filter. 

For Strongly Connected Components, the program takes the multi-directed graph, 

G, from the NetworkX section and gets basic information about the G graph in terms of 

SCCs: how many there are, the length of each, and the largest SCC in the G graph using 

Tarjan's algorithm. 

Based on the information gathered above, the n-walk function can be used to get 

the dataframe of nodes and their associated state information of states that are a certain 

distance from the source node, given a graph. 

Based on the information gathered above, get the list of all available shortest paths, 

using Dijkstra's algorithm, from a source state to a target state. 

 



 
 

39 

Memory usage was measured with both psutil and tracemalloc. psutil measures the 

memory usage by the Python interpreter, and tracemalloc measures the Python dynamic 

memory allocation on the heap. 

In Figure A.1, we can see both psutil and tracemalloc outputs for each function. For 

each function, we have a psutil that gives us the line-by-line memory usage with increments 

and occurrences. This is followed by current and peak memory usage by tracemalloc. For 

example, the function run_nx, which uses NetworkX to add edges and their corresponding 

labels, has incremental memory usage of (43.3 + 774.7 MiB) as per psutil, while 

tracemalloc shows that the function uses 648.25 MiB at peak.  

The get_sec function, which gets the number of strongly connected components 

(SCC), their length(s), and printing the largest SCC, use 63.23 MiB at peak, according to 

tracemalloc, with only 0.6 MiB use according to psutil. The n-walk and shortest path 

functions also use 63.23 and 0.03 MiB, respectively, at peak. 

 



 
 

40 

 

Figure A.1 Petri net graph memory usage 

  



 
 

41 

APPENDIX B 

TINA INSTRUCTION 

Link to TINA manual https://projects.laas.fr/tina/manuals/tina.html 

During my work, the most used function in TINA is building the reachability graph 

(marking graph). This can be found at Tools> State Space Analysis> -R (with the 

liveness analysis option checked). If we set the output to default kts (.ktz), it generates a 

text file in a new window. It lists the number of places and transitions. Then it gives us 

the analysis of boundedness, liveness, and reversibility. This is then followed by the 

states and transitions information. First is the count of states and transitions. This is then 

followed by props, which are the elements of the states and transitions. It is then followed 

by psets, which is the flow information. Then we get the number of live and dead states 

and transitions. The text file that is generated has three lines for each state. The first line 

gives us the state index. The second line gives us the different tokens for each 

marking/state. If the marking place has no tokens, it is not listed. If it has a single token, 

the name of the place is listed. If it has more than one token, the place name has a suffix 

‘*’, which is followed by an integer. The third line gives us the transitions. Each available 

transition has the transition with a suffix‘/’, followed by the index of the target state. 

Note: We can save the file as a text file. However, to get the full list, we have to scroll all 

the way to the end of the document prior to saving it. Otherwise, only a partial list will be 

saved as a .ktz file. However, you can rename the file as .txt during or after saving the 

file. 

  



 
 

42 

APPENDIX C 

CPN TOOLS INSTRUCTION 

Link to CPN Tools documentation http://cpntools.org/2018/01/16/documentation-2/ 

For this exploration purpose, CPN Tools was used as a visual simulator of wafer 

movement. The simulation files are shared at: 

https://drive.google.com/drive/folders/18KzRtacbeJT1OnDbhKEW1Mq54SHGN6Lj. 

.cpn file that simulates the wafer flow of batch-begin, batch-end, and steady-state. 

The simulation is not a circular process. It will only process the number of wafers specified 

in the cu place. To change the number of wafers in cu, you can click on the value to the top 

right of the cu place, which is usually an integer followed by ‘'u’, and change the integer 

value to the number of the wafer you would like to simulate. You can also click on the cu 

place and press tab to cycle through the parameters of it and change the integer value. 

To simulate, please drag the word Simulation from the menu on the left-hand side onto the 

darker blue area of the application on the right. It will open the Simulation menu. Please 

press the play button to simulate. The play button has a number below it that specify how 

many steps it will execute. You can change it by right-clicking on the play button to Set 

Options for the play button. You can use the rest of the control buttons to control the 

simulation, including simulating one step at a time. 

  



 
 

43 

REFERENCES 

[1] B. Berthomieu, F. Vernadat, and S. dal Zilio, "TINA toolbox - TIme petri Net 
Analyzer - by LAAS/CNRS," TINA Toolbox. 
https://projects.laas.fr/tina/index.php (accessed Jul. 12, 2022). 

 
[2] CPN Tools, "Anti places/limit places – CPN Tools," CPN Tools, Jan. 11, 2018. 

https://cpntools.org/2018/01/11/anti-places-limit-places/ (accessed Jun. 11, 2022). 
 
[3] CPN Tools, "CPN Tools – A tool for editing, simulating, and analyzing Colored Petri 

nets," CPN Tools. https://cpntools.org (accessed Dec. 13, 2022). 
 
[4] J. W. Fowler, "Scheduling Problems in Semiconductor Wafer Fabrication Facilities: 

Part 1," https://schedulingseminar.com/, Mar. 03, 2022. 
https://www.youtube.com/watch?v=5ZCtbU1VR3s (accessed Mar. 04, 2022). 

 
[5] B. Hrúz and M. Zhou, Modeling and Control of Discrete-event Dynamic Systems. 

Springer Science & Business Media, 2007. 
 
[6] O. Kilincci, "A Petri net-based heuristic for simple assembly line balancing problem 

of type 2," The International Journal of Advanced Manufacturing Technology, 
vol. 46, no. 1–4, pp. 329–338, Jan. 2010, doi: 10.1007/s00170-009-2082-z. 

 
[7] C. A. Petri, “Kommunikation mit Automaten,” Dissertation, Universität Hamburg, 

1962. 
 
[8] C. Petri and W. Reisig, "Petri net," Scholarpedia, vol. 3, no. 4, p. 6477, 2008, doi: 

10.4249/scholarpedia.6477. 
 
[9] Y. Qiao, M. Zhou, N. Wu, Z. Li, and Q. Zhu, "Closing-Down Optimization for 

Single-Arm Cluster Tools Subject to Wafer Residency Time Constraints," IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 11, pp. 
6792–6807, Nov. 2021, doi: 10.1109/tsmc.2020.2964032. 

 
[10] J. Wang, H. Hu, C. Pan, Y. Zhou, and L. Li, "Scheduling dual-arm cluster tools with 

multiple wafer types and residency time constraints," IEEE/CAA Journal of 
Automatica Sinica, vol. 7, no. 3, pp. 776–789, May 2020, doi: 
10.1109/jas.2020.1003150. 

 
[11] S. Wang et al., "Computation of an emptiable minimal siphon in a subclass of Petri 

nets using mixed-integer programming," IEEE/CAA Journal of Automatica 
Sinica, vol. 8, no. 1, pp. 219–226, Jan. 2021, doi: 10.1109/jas.2020.1003210. 

 
[12] Wikipedia Contributors, "Petri net," Wikipedia, Nov. 08, 2019. 

https://en.wikipedia.org/wiki/Petri_net (accessed Nov. 18, 2021). 
 



 
 

44 

[13] N. Q. Wu and M. Zhou, "A Closed-Form Solution for Schedulability and Optimal 
Scheduling of Dual-Arm Cluster Tools With Wafer Residency Time Constraint 
Based on Steady Schedule Analysis," IEEE Transactions on Automation Science 
and Engineering, vol. 7, no. 2, pp. 303–315, Apr. 2010, doi: 
10.1109/tase.2008.2008633. 

 
[14] H. H. Xiong and M. Zhou, "Scheduling of semiconductor test facility via Petri nets 

and hybrid heuristic search," IEEE Transactions on Semiconductor 
Manufacturing, vol. 11, no. 3, pp. 384–393, Aug. 1998, doi: 10.1109/66.705373. 

 
[15] F. Yang, N. Wu, Y. Qiao, M. Zhou, and Z. Li, "Scheduling of Single-Arm Cluster 

Tools for an Atomic Layer Deposition Process With Residency Time 
Constraints," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 
47, no. 3, pp. 502–516, Mar. 2017, doi: 10.1109/tsmc.2015.2507140. 

 
[16] Z. Zhao, S. Liu, M. Zhou, D. You, and X. Guo, "Heuristic Scheduling of Batch 

Production Processes Based on Petri Nets and Iterated Greedy Algorithms," IEEE 
Transactions on Automation Science and Engineering, vol. 19, no. 1, pp. 251–
261, Jan. 2022, doi: 10.1109/tase.2020.3027532. 

 
[17] M. Zhou and K. Venkatesh, Modeling, Simulation, and Control of Flexible 

Manufacturing Systems : A Petri Net Approach. Singapore: World Scientific, 
1999. 

 
[18] M. Zhou and N. Wu, System Modeling and Control with Resource-Oriented Petri 

Nets. New York: CRC Press, 2017. 
 
[19] Q. Zhu, M. Zhou, Y. Qiao, and N. Wu, "Petri Net Modeling and Scheduling of a 

Close-Down Process for Time-Constrained Single-Arm Cluster Tools," IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 3, pp. 389–
400, Mar. 2018, doi: 10.1109/tsmc.2016.2598303. 

 
[20] Q. Zhu, Y. Qiao, N. Wu, and Y. Hou, "Post-processing time-aware optimal 

scheduling of single robotic cluster tools," IEEE/CAA Journal of Automatica 
Sinica, vol. 7, no. 2, pp. 597–605, Mar. 2020, doi: 10.1109/jas.2020.1003069. 

 
[21] R. Zurawski and M. Zhou, “Petri Nets and Industrial Applications: A Tutorial,” 

IEEE Transactions on Industrial Electronics, vol. 41, no. 6, pp. 567–583, 1994, 
doi: 10.1109/41.334574. 


	Modeling of quad-station module cluster tools using petri nets
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Petri Net Overview
	Chapter 3: Cluster Tool Overview
	Chapter 4: Petri Net Models of Cluster Tools
	Chapter 5: Simulation and Analysis
	Chapter 6: Conclusion
	Appendix A: Graphs & Program
	Appendix B: Tina Instruction
	Appendix C: CPN Tools Instruction
	References

	List of Tables
	List of Figures
	List of Videos

