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Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements
on stabilizers to discretize the error syndromes into a finite set, and fast unitary gates are applied to recover the
corrupted information. Quantum error correction (QEC) based on continuous measurement, known as continuous
quantum error correction (CQEC), in principle, can be executed faster than DQEC and can also be resource
efficient. However, CQEC requires meticulous filtering of noisy continuous measurement data to reliably extract
error syndromes on the basis of which errors could be detected. In this paper, we show that by constructing a
measurement-based estimator (MBE) of the logical qubit to be protected, which is driven by the noisy continuous
measurement currents of the stabilizers, it is possible to accurately track the errors occurring on the physical
qubits in real time. We use this MBE to develop a continuous quantum error correction (MBE-CQEC) scheme
that can protect the logical qubit to a high degree, surpassing the performance of DQEC, and also allows QEC
to be conducted either immediately or in delayed time with instantaneous feedbacks.

DOI: 10.1103/PhysRevResearch.4.033207

Generally speaking, quantum error correction (QEC) is
a solution to preserve a quantum state from environmen-
tal decoherence and is essential for achieving fault-tolerant
quantum computation, cryptography, and quantum communi-
cations [1–5]. The essence of QEC is to redundantly encode
the quantum information of a qubit in several entangled qubits
which collectively form a so-called logical qubit that exhibits
a longer lifetime than individual component physical qubits.
The logical qubit lies in a two-dimensional subspace of the
Hilbert space of the physical qubits, and the interaction be-
tween the qubits and their environment causes an orthogonal
rotation of the collective state of the physical qubits out of this
subspace. By simultaneously measuring a set of operators, this
rotation can be detected and corrected without changing the
encoded logical qubit state. Such operators are selected parity
operators in the Pauli group, called the stabilizer generators,
the eigenvalues of which are known as the error syndromes
[2,3,6]. In canonical QEC methods, which we will refer to
as discrete quantum error correction (DQEC), these operators
are measured projectively and reveal the discrete error syn-
dromes, and this classical information is subsequently used
to correct qubit errors via fast unitary gates [7,8]. To achieve
fault-tolerant quantum computation, it is important that the
probability of an erroneous rotation of the logical qubit is
below a critical threshold value [9,10]. In recent years, DQEC
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has been demonstrated experimentally in various platforms
such as in ion traps [11–13], diamond nitrogen vacancy (NV)
centers [14], and superconducting circuits [15–22].

A less explored alternative to DQEC is to utilize continu-
ous quantum error correction (CQEC) methods, with the first
few studies dating back to the early 2000s, coauthored by one
of the authors of this paper [23–27]. In CQEC, instead of
discrete projective measurements of the stabilizer generators,
these generators are continuously and weakly measured, and a
quantum feedback control Hamiltonian is used for continuous
error correction. One early seminal result demonstrated how
single bit-flip errors can be corrected using CQEC provided
one knows the conditional moments of the error syndromes,
which, alas, is not practically feasible [23]. This is because
when we perform a weak measurement on the stabilizers, we
no longer have direct access to the exact syndrome signals,
since they are now masked by the measurement noise that is
necessarily added to the measured signal. Likewise, in previ-
ous research in these directions, the continuous measurement
records of the syndrome measurements were smoothed with
various filter kernels so that the exact signal of the error
syndromes could be extracted from the noisy measurement
records. Expectedly, this performed suboptimally given that it
is not possible to isolate the signal from noise for any realistic
situation [25,28–32]. Following a similar strategy for filtering
noisy data, CQEC has been demonstrated experimentally for
the first time in a superconducting circuit platform last year
[32].

Unlike DQEC, which relies on projective measurements,
CQEC eliminates the need to use ancilla qubits to measure
the stabilizer operators by weakly measuring the physical
qubits, and allows faster measurements and error detection,
thereby greatly reducing the likelihood of undetected errors
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[27]. Furthermore, CQEC can be advantageous when the con-
trol resources are limited and the performance of the feedback
can be improved by optimizing the operational parameters
[25]. However, as mentioned above, previous methods to per-
form CQEC suffered from their inability to correctly identify
when errors occur as the continuous measurement signals
necessarily contain noise [25,31,32]. In this paper we show
how to overcome this and push the capabilities of the CQEC
far beyond the abilities of the standard DQEC. To achieve
this, we equip the CQEC with a real-time measurement-based
estimator (MBE), which can detect and correct errors rapidly
without filtering or smoothing of the measured data. We refer
to this scheme of continuous error correction as MBE-CQEC.
This gives a practical solution for realizing the theoretical
proposal of Ahn et al. [23], without using filters for signal
processing of the measurement records [25,32]. Finally, we
show that the corrective action need not be instantaneous, but
can be delayed and corrected whenever required, a feature we
call delayed error correction (DEC).

The generalized MBE is constructed as follows. Let us
consider that the internal dynamics of the real system R
is described by the Hamiltonian H and that its conditional
density matrix is ρR

c (t ) under continuous measurement of
the operator AR = A. This can be described by the quantum
stochastic master equation (SME) [27,33,34]

dρR
c (t ) = −i[H, ρR

c (t )]dt + γD[c]ρR
c (t )dt

+ κD[A]ρR
c (t )dt + √

κηH[A]ρR
c (t ) dW R(t ).

(1)

Here, A = A/A0 is a dimensionless operator corresponding
to the physical observable A scaled suitably by A0 to make
it dimensionless and is known as the measurement operator,
which is measured at a measurement rate of κ . The first term
on the right-hand side represents the coherent evolution of the
system. The second term gives the environmental decoherence
at a rate γ with the collapse operator c, and the third term
gives the measurement back action due to the measurement of
A, where D[A]ρ = AρA† − 1

2 (A†Aρ + ρA†A) represents the
decoherence superoperator. The last term is the stochastic dif-
fusion term with dW (t ) being the Wiener noise increments. H
is a superoperator given by H[A]ρ = Aρ + ρA† − ρ tr[Aρ +
ρA†], and η ∈ (0, 1] is the measurement efficiency. The mea-
surement records, dQR(t ), are given by the summation of
the conditional mean of the measurement operator and the
corresponding random noise component of the measurement,

dQR(t ) = 〈AR(t )〉cdt + 1√
4κη

dW R(t ). (2)

The dynamics of the estimator E is modeled following the
modified SME,

dρE
c (t ) = −i[H, ρE

c (t )]dt+γD[c]ρE
c (t )dt+κD[A]ρE

c (t )dt

+ 2κη[dQR(t ) − 〈AE (t )〉cdt]H[A]ρE
c (t ). (3)

In essence, the noise of the estimator E is modeled based on
the noisy measurement records of the real system R. In the
context of the present work for correcting bit-flip errors of
the three-qubit code, we would have c = {XII, IX I, XIX } and
A = {ZZI, IZZ, ZIZ}.

FIG. 1. The proposed protocol for CQEC using the
measurement-based estimator (MBE) scheme. The real system
R (left) consists of a logical qubit comprising three physical qubits
with an encoded unknown quantum state |ψR〉L = α|000〉 + β|111〉,
which we want to protect from bit-flip errors. The estimator E (right)
is a simulation (computer) of the stochastic dynamics of the real
system R modeled similarly but with a different initial quantum
state |ψE 〉L = α′|000〉 + β ′|111〉, where α′ �= α and β ′ �= β and
where α, β (α′, β ′) are unknown (known). For generality, we will
initialize the estimator E state at |ψE〉L = 1|000〉. One executes
separate continuous measurements of the three syndrome generators
on the real system R, and the resulting time-varying classical
signals [dQZZI (t ), dQIZZ (t ), dQZIZ (t )] drive the stochastic dynamics
of the estimator E quantum dynamics. Although the estimator
E cannot learn about the unknown encoded quantum state, any
errors appearing in the real system R are faithfully reproduced in
the estimator E . By monitoring the appearance of bit flips in the
estimator E , one applies a feedback Hamiltonian F (t ) which applies
the appropriate correction in a continuous manner with control
strengths λ j on the individual physical qubits in the real system R.

The proposed MBE-CQEC scheme is shown schematically
in Fig. 1. The real system R (left) with the initial state ρR

consists of a logical qubit comprising three physical qubits we
take to be a system in the laboratory, where one continuously
measures the stabilizer operators ZZI , IZZ , and ZIZ , where
the third stabilizer operator is redundant and can be omitted in
principle. We consider an estimator E of the system, with the
initial state ρE , as a numerical simulator on a fast computer
(on the right in Fig. 1), whose purpose is to detect the errors
on the qubits occurring in the real system R based on the
real-time measurement records. The estimator E also acts as
a controller to apply an appropriate feedback Hamiltonian to
the real system R: F (t ) = λ1(t )XII + λ2(t )IX I + λ3(t )IIX ,
where X denotes a Pauli-X operator and λq(t )’s are the feed-
back strengths.

At the heart of the MBE-CQEC lies the fact that for
the measurement of the stabilizer operators, the estimator
E can perfectly follow the conditional means of the stabi-
lizers [〈ZZI〉c(t ), 〈IZZ〉c(t ), and 〈ZIZ〉c(t )] when it is fed
the continuous, albeit noisy syndrome measurement records
[dQZZI (t ), dQIZZ (t ), dQZIZ (t )]. In Figs. 2(a)–(c), we show
these for the real system R (blue, with slightly thicker lines for
visibility) and the estimator E (orange) for a single quantum
trajectory, where the estimator E dynamics is driven by the
syndrome measurement currents of the real system R. The
perfect match of these values entails the power of the approach
we are going to formulate for QEC, which offers a strategy to
extract the conditional means of the error syndromes using
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FIG. 2. (a)–(c) The time evolution of the conditional means of the three error syndromes for the real system R (in blue, linewidth slightly
increased for visibility) and the estimator E (orange) under the MBE scheme (without error correction) that explains the essence of the protocol
of the proposed CQEC scheme. Essentially, the MBE scheme allows us to use a computer simulation driven by the continuous measurement
currents of the real system R to perform real-time quantum error tracking that permits real-time QEC. (d) Instead of using the conditional means
of the syndromes we find that the MBE has access to the full real-time effects of errors on each simulated physical qubit and this information
can permit us to perform error correction. Information about the evolution of the Pauli-Zq operator for the physical qubit q, 〈Zq(t )〉, scaled by
its initial absolute value |〈Zq(0)〉| for one of the physical qubits of the estimator E (orange) is compared, as an example, with the corresponding
evolution of the same of the real system R (blue). (e) The absolute values of the instantaneous differences 
〈Zq(t )〉 = 〈Zq(t )〉 − 〈Zq(0)〉 scaled
by their initial values 〈Zq(0)〉 follow one another for the respective qubits of the real system R and the estimator E . (f) The fidelity of the
particular physical qubit, Fq (red), as well as of the logical qubit, F (green), with respect to the initial state to be preserved is shown for the
bit-flip errors demonstrated in (a)–(e). Thus the change in fidelity of the physical qubits can be directly monitored by computing the values
of |〈Zq(t )〉 − 〈Zq(0)〉| for each of the qubits of the estimator E , which sets the bit-flip error detection protocol of the proposed MBE-CQEC
scheme. (g)–(i) The performance of the MBE-CQEC scheme is showcased in terms of the logical qubit fidelity for a single trajectory to show
how the errors are corrected once they are detected, based on the above error detection protocol (g); also shown are the fidelities of each
physical qubit (h) and the feedbacks on the individual qubits to correct the corrupted information at appropriate times (i). For these analyses,
we set the initial logical qubit state as |ψR〉L = |111〉 to maximize the contrast of fidelity drop under bit-flip error. For these plots, we have
used κ/γ = 800 and λ/γ = 600.

continuous measurement instead of projective von Neumann
measurement and without any signal filtering. This would
allow CQEC to operate at the optimum level of performance
using the error syndromes directly while outperforming the
DQEC protocols [1,23,25,27], thus making it a perfect mar-
riage between the DQEC and CQEC techniques.

While the perfect computation of the real-time conditional
error syndromes with the proposed MBE scheme provides op-
timal error correction with continuous measurements, we will
show in the following that we can use yet another error detec-
tion protocol that depends on the time evolution of the Pauli-Z
operator of the estimator E physical qubits q, conditioned on
the measurement records of the real system R. This protocol
will have the benefit of performing CQEC with a significant
time delay solely based on measurement data obtained from
the real qubit measurements, and it will have additional bene-
fits, which we will discuss later. In Fig. 2(d), we compare the
time evolution of the 〈Zq(t )〉 (only one of the physical qubits
is shown as an example) of the instantaneous density matrix
of the real system R, ρR(t ), and the estimator E , ρE (t ), where

the estimator E is evolved according to the MBE scheme dis-
cussed above. As expected, the expectation value 〈Zq(t )〉 for
the real system R (in blue) and that for the estimator E (in or-
ange) are different, as the initial states are different. However,
when normalized by their absolute values before measure-
ment, 〈Zq(0)〉, they undergo similar changes. As shown in
Fig. 2(e), the instantaneous differences 
〈Zq(t )〉 = 〈Zq(t )〉 −
〈Zq(0)〉 scaled by their initial values 〈Zq(0)〉 follow one an-
other for the respective qubits of the real system R and the
estimator E . In Fig. 2(f), the fidelity of that particular physical
qubit q, Fq(t ) = 〈ψ (0), trq(ρ(t ))ψ (0)〉 (red), where trq(ρ(t ))
is the partial trace of the logical qubit density matrix on the
qth Hilbert space, and the code-space fidelity of the logical
qubit, F (t ) = 〈ψL(0), ρ(t )ψL(0)〉 (green), are shown, from
which, by comparing with Fig. 2(e), it is observed that the
drop in fidelity of the individual qubits is directly related
in a one-to-one fashion to |
〈Zq(t )〉/|〈Zq(0)〉| of the real R
and estimator E systems. This fact can be utilized to detect
flipping of the qubits deterministically, as an error in a qubit
would mean simply |
〈Zq(t )〉| > ε|〈Zq(0)〉| on the estimator
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FIG. 3. (a) The net fidelity of the logical qubit averaged over an ensemble of at least 100 trajectories under the proposed MBE-CQEC
scheme for different choices of measurement strength κ in units of the qubit bit-flip error rate γ is shown with the feedback strengths λ = κ ,
for reasons demonstrated in (b). The time evolutions up to ten lifetimes of the qubit (10/γ ) are corrected. Also shown are the fidelities for the
DQEC (cyan) and one-physical-qubit error (violet) for comparison. On the left of (a) the zoomed-in portion within t = 1/γ is shown. While
DQEC fails completely beyond a few lifetimes of the qubit (one-qubit error), the MBE-CQEC protocol outperforms it significantly. (b) The
performance of the CQEC scheme for different choices of the feedback strength λ for a fixed κ/γ = 800. It shows that λ ∼ κ is a decent
choice for overall high fidelity in the long-time limit. (c) The performance of the scheme for nonideal choices of measurement efficiencies η,
showing that the drop in fidelity relative to the case of ideal measurement efficiency, η = 1, is not significantly large for reasonable values of
η.

E , where ε = 1.05 is a small tolerance to error detection. Nat-
urally, ε = 2 would signify a complete flip, while ε = 0 would
signify a complete preservation of the state. For the estimator
E , we can fix the initial logical state of the qubit at the reset
conditions, |ψ〉EL = |000〉, for simplicity and generality. For
more details of the error detection protocol, see the Appendix.

Using the above approach of error detection, we next go
on to the implementation of the MBE-CQEC protocol. In
Fig. 2(g), we demonstrate our CQEC scheme by applying it to
a quantum trajectory evolved over one lifetime of a physical
qubit (t = 1/γ ). It can be seen how well the scheme works
in correcting the bit-flip errors, quickly restoring the logical
qubit after an error is detected, as detected by the error syn-
dromes in Figs. 2(a)–(c). In Fig. 2(h), the individual fidelities
of the physical qubits are shown, and the times of the applied
feedbacks on respective qubits are shown in Fig. 2(i). There is
hardly any drop in fidelity for this particular trajectory under
MBE-CQEC within this time span.

In order to evaluate the performance of the scheme cor-
rectly in a statistical sense, we apply it to an ensemble of
quantum trajectories and average over it, the results of which
are shown in Fig. 3 in terms of average code-space fidelity,

F̄ = 1/N
∑N

i=1 Fi, of the logical qubit, where N represents
the number of trajectories for the ensemble average and Fi

is the code-space fidelity of the ith trajectory, as defined ear-
lier. While the feedback strength λ can be tuned in principle
within a trajectory, we have used a constant value, λ0 ∼ κ ,
for simplicity, which means that λ can only take the values
of 0 or λ0. In Fig. 3(a), we show how larger values of the
continuous measurement rate κ yield an overall higher fidelity
in the long-time limit for the encoded state. The time limit
considered is 10 times the single-qubit lifetime (10/γ ). We
have found that a feedback strength of λ ∼ κ is a good choice
that leads to an overall higher fidelity when averaged over
hundreds of trajectories. The performance of DQEC is also
shown for comparison, which shows that the MBE-CQEC
scheme outperforms DQEC for κ > 10γ . Another useful
measure that is typically checked and useful for fault tolerance
is the so-called one-qubit error fidelity, shown as a solid violet
curve, which saturates at 2/γ in the long-time limit. DQEC
fails completely beyond about t ∼ π/γ , whereas with the
MBE-CQEC scheme, the infidelity is maintained within 1–4%
for higher values of κ over ten lifetimes of a physical qubit.
A zoomed-in view of the plot, focusing on the performance
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within one lifetime of a physical qubit, is shown on the left
of Fig. 3(a). The final fidelities for κ = 1000γ and 800γ

are 99.857 and 99.578%, respectively, at t = 1/γ . Thus it
is not necessarily useful to keep pushing the value of κ any
further, as the above fidelities are not significantly different
in magnitude. Recent developments in quantum technologies,
particularly those based on superconducting hardware, allow
experimentalists to go beyond the conventional regimes of
weak coupling [32,35,36]. In this spirit, we will consider
κ/γ = 800 for further analyses in the rest of this paper. In
Fig. 3(b), we evaluate the proposed CQEC scheme for differ-
ent choices of λ/γ while keeping κ/γ = 800. This reveals
that λ ∼ κ is a relatively decent choice to preserve overall
fidelities in the long-time limit. Next, we evaluate the perfor-
mance of the protocol for inefficient measurements (η < 1),
shown in Fig. 3(c) relative to the ideal case, η = 1. It is
observed that the scheme is fairly robust for η > 0.5, and the
drop in fidelity is not huge.

Now, we will discuss a distinct feature of the proposed
MBE-CQEC scheme facilitated by the error detection and
correction scheme discussed above. We find that we can delay
the correction until some later time when it is more conve-
nient. We call this feature delayed error correction (DEC).
This is facilitated by the proposed error detection scheme
based on computation of the Pauli-Z operator expectation
value on the physical qubit q of the estimator E model un-
der the MBE scheme. This allows us to keep track of the
changes in |〈Zq(t )〉 − 〈Zq(0)〉|/|〈Zq(0)〉| on the real system R
qubits indirectly by monitoring the same on the estimator E
qubits (see discussions at the beginning of this paper and in
the Appendix). For instance, within a trajectory of total time
1/γ , we can abstain from doing any error correction until a
later time, say, t = 0.9/γ . Based on the measurement records
of the real system R, the estimator E can follow the errors
that happened on the qubits, and the errors can be rightfully
detected and corrected using the proposed MBE-CQEC proto-
col, shown for an example trajectory in Fig. 4(a). The same for
an ensemble of trajectories is shown in Fig. 4(b). This shows
how the fidelity drops significantly to a very low value without
error correction, but how the error is corrected instantly at
t = 0.9/γ just monitoring the estimator E 〈Z (t )〉 on individual
qubits.

Finally, we will address the long-time fidelity drop issue
despite error correction using our MBE-CQEC code, and
possibilities of using fine-tuned feedback controls. We have
found that the choice of the feedback strength λ plays a key
role in maintaining code-space fidelity for longer durations.
To demonstrate this, we first simulate a trajectory that un-
dergoes bit-flip errors, as shown in Fig. 4(c), and save the
noise signal, in order to test the effect of different feedback
strengths on exactly the same dynamics. For this simulation,
we use κ/γ = 800 as before. Now, we use our CQEC scheme
with λ = κ , for which we see that the fidelity could not be
preserved beyond t ∼ 0.2/γ , shown in Fig. 4(d). Applying the
same for λ = 5κ/4 leads to a further drop in fidelity [Fig. 4(e)]
at that point. This can be corrected perfectly, however, with
λ = 3κ/4 [Fig. 4(f)]. Hence the reason for the drop in fidelity
with time can be attributed to the instantaneous choices of the
feedback strengths. Although, in the discussion for Fig. 3(c),
we had found that λ ∼ κ serves as a decent choice of feedback
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FIG. 4. (a) and (b) demonstrate the delayed error correction
(DEC) allowed by the MBE-CQEC scheme, where the error correc-
tion can be deferred until a later time. In these simulations, we do not
apply any error correction till t = 0.9/γ , after which the errors are
detected based on the proposed error detection scheme and faithfully
corrected. (a) An example trajectory shows how the error is corrected
at t = 0.9/γ . (b) The same as (a), but averaged over many trajecto-
ries, which shows how the overall fidelity drops until the errors are
corrected. (c)–(f) Explanation of the fidelity drop with the CQEC
protocol based on the MBE scheme: (c) The fidelity variation in time
without CQEC (λ = 0) is shown for a particular quantum trajectory
for κ/γ = 800; (d) the same when used for CQEC using λ = κ ,
which reveals that the error at t ∼ 0.2/γ could not be corrected fully;
(e) the same as (d), but for λ = 5κ/4, for which the error correction is
even worse at that particular instance; (f) the errors getting perfectly
corrected for λ = 3κ/4.

strength, in principle fine-tuning it will improve the achievable
fidelity in the long-time limit. Optimizing the values of λ j (t ),
however, may not be a trivial task.

In this paper, we have formulated an innovative approach
of realizing bit-flip QEC that can be regarded as one of
the most optimal error-correcting methods in the literature
and is called the measurement-based estimation scheme for
continuous quantum error correction (MBE-CQEC). While
traditionally used methods of QEC are based on projective
measurements, the current proposal utilizes continuous mea-
surements at its core and thus falls under CQEC. While
CQEC, in principle, can be carried out in much quicker
time intervals, the biggest problem is the absence of true
error syndromes as these signals get masked by the mea-
surement noises. In our proposed method of CQEC, based
on a measurement-based estimation scheme, the best of both
QEC and traditional CQEC techniques could be achieved. In
addition, a bit-flip error detection scheme was formulated that
can be operated in delayed time. In practical scenarios, each
gate carries intrinsic error, which, albeit being small, accumu-
lates in time and poses a challenge to achieve fault-tolerant
quantum computation. The delayed CQEC method can be
advantageous in this particular context, where the intervals
of successive error correction steps can be kept significantly
high. Also note that for the analysis in this paper, we assume
that the encoding was done perfectly. However, MBE-CQEC

033207-5



SANGKHA BORAH et al. PHYSICAL REVIEW RESEARCH 4, 033207 (2022)

is expected to be resilient to small encoding errors thanks to
the perfect emulation of the individual qubit errors and the
way the errors are detected based on Pauli-Z expectation value
deviation.

Finally, while the method works optimally with the distinc-
tive features of delayed QEC, the bottleneck would come from
numerical expenses when one tries to extend to more qubits,
as the Hilbert space dimension would grow as 2N , where N
is the number of qubits. In addition, for best performance
the detector should exhibit high response bandwidth. While
phase-shift errors can be corrected as bit-flip errors by moving
to the computational basis of qubits, the inclusion of both
errors in a single code, e.g., the 9-qubit Shor code, will be
limited drastically by the computational effort required to
solve the estimator E dynamics in real time. In this context, the
use of a compact representation of the states, e.g., the matrix
product states, could be useful.

In conclusion, we have proposed an approach for doing
bit-flip error correction that performs optimally. It not only re-
moves the limitations of canonical projective QEC techniques,
but also can be used to correct errors in delayed time based on
all the previous measurement records, which can be a most
welcome factor for its experimental realization.
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APPENDIX

Quantum continuous measurement and feedback con-
trol. In contrast to von Neumann measurements, where a
measurement operator (observable) is projectively measured
collapsing the state into an eigenstate, continuous mea-
surements are weak measurements where the observable is
monitored in real time without perturbing the state of the
system significantly, so that the collapse is gradual. These
types of measurements are useful to observe the process of
collapse of a state and to engineer feedback to control its
dynamics. In fact, it can be shown that a projective measure-
ment is equivalent to an infinite number of continuous weak
measurements carried out over an infinitesimally small time
interval. Such a continuous measurement protocol leads to
the conditional evolution of the density matrix based on noisy
measurement outcomes given by

dρc(t ) = − i[H, ρc(t )]dt + κD[A]ρc(t )dt

+ √
κH[A]ρc(t )dW (t ), (A1)

where ρc denotes the conditional density matrix of the system
described by the Hamiltonian H . A = A/A0 is a dimen-
sionless operator corresponding to the physical observable
A scaled suitably by A0 and is known as the measurement
operator, which is measured at a measurement rate κ (κ de-
notes the rate at which the information is extracted). The first
term of the above equation on the right-hand side represents

the coherent evolution of the system. The second term on
the right-hand side gives the measurement back action due
to the measurement of A, where D[A]ρ = AρA† − 1

2 (A†Aρ +
ρA†A) represents the decoherence superoperator. The last
term is the stochastic diffusion term with dW (t ) being the
Wiener increments, which are Gaussian-distributed random
variables with zero mean and represent memoryless white
noise, 〈dW (t )dW (τ )〉 = δ(t − τ ). H is a superoperator given
by H[A]ρ = Aρ + ρA† − ρ tr[Aρ + ρA†]. Equation (A1) is
known as the stochastic master equation (SME). The measure-
ment records dQ(t ) are given by

dQ(t ) = 〈Ac(t )〉dt + 1√
4κ

dW (t ), (A2)

where 〈Ac(t )〉 denotes the conditional mean of the measure-
ment operator A (dimensionless) at time t , which is nothing
but the signal, and the last term represents the measurement
noise associated with it.

Each evolution of the density matrix, ρc(t ), in time, fol-
lowing the SME in Eq. (A1), represents a quantum trajectory,
which can be manipulated and controlled by using appropriate
feedback to the Hamiltonian in real time. If the feedback
Hamiltonian F (t ) is based on the conditional state ρc(t ) or the
conditional mean 〈Ac(t )〉 of the measurement operator, then
the SME with the feedback Hamiltonian is given by

dρc(t ) = − i[H, ρc(t )]dt + κD[A]ρc(t )dt

+ √
κH[A]ρc(t )dW (t ) − i[F (t ), ρc(t )]dt . (A3)

For nonideal measurement efficiency η and in the presence of
the environmental decoherence, it becomes

dρc(t ) = − i[H, ρc(t )]dt + γD[c]ρc(t )dt + κD[A]ρc(t )dt

+ √
κηH[A]ρc(t )dW (t ) − i[F (t ), ρc(t )]dt, (A4)

where γ is the environmental decoherence rate with collapse
operator c. The expression for the continuous measurement
record in the presence of η gets modified to

dQ(t ) = 〈Ac(t )〉dt + 1√
4ηκ

dW (t ). (A5)

Discrete quantum error correction. Generally speaking,
QEC is a method to protect an unknown state of an open
quantum system. However, in the context of quantum com-
puting, we will consider qubits interacting with environmental
decoherences. In contrast to classical bit errors, there are two
sources of errors, bit and phase flips. To correct bit-flip errors,
stabilizer codes are used, while phase errors can be corrected
similarly to the bit-flip errors but in a rotated basis (Hadamard
basis) of the physical qubits [1]. Stabilizer codes are repetition
codes, where the unknown state of the qubit is mapped onto
a tensor space of a larger Hilbert space of multiple qubits as
entangled states. Such an entangled unit of qubits is called a
logical qubit. For example, in the three-qubit repetition code,
the unknown state of the qubit is mapped onto three physical
qubits, on which single bit-flip errors can be corrected,

|0〉 → |000〉 ≡ |0〉L, (A6)

|1〉 → |111〉 ≡ |1〉L. (A7)
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Here, the states |0〉L and |1〉L are the basis states for the
QEC code, and the space spanned by them is called the code
space. The elements of the code space are known as the code
words. If the state of a physical qubit is |ψ〉 = α|0〉 + β|1〉, it
is encoded to two more physical qubits as |ψ〉L = α|000〉 +
β|111〉, with α2 + β2 = 1. The time evolution of the density
matrix of the logical qubit under bit-flip errors caused by the
environment decoherences, at a characteristic rate of γ , is
described by

dρ(t ) = γ (D[XII] + D[IX I] + D[IIX ]) ρ dt . (A8)

This is equivalent to assuming that the environment causes
independent bit flips of each physical qubit at Poisson-
distributed times with rate γ .

The essence of QEC is that the state of the logical qubit
|ψ〉L is unknown to us, except, however, the code space, and
we need to preserve it without losing the initial fidelity and
without any knowledge of the elements, α and β, of the state.
In this situation, it is possible to measure a few special ob-
servables that determine the parities of the neighboring qubits
without giving any information about the state of the qubits
themselves. In the three-qubit code, there are three possible
such operators, given by M1 = ZZI , M2 = IZZ , and M3 =
ZIZ , where the third operator can be considered redundant.
As M2

j = I, these operators have two possible eigenvalues
±1. The pair of eigenvalues (m1, m2) for the simultaneous
measurements of M1 and M2 gives the bit-flip error happening
on a given qubit, provided no two qubits are flipped at the
same time. Such one-qubit flips can be corrected by applying
unitary X gates to the qubit on which the flip happened. Typi-
cally, to achieve this, the syndrome operators are projectively
measured, and errors are corrected based on the follow-
ing conditions of the outcomes (m1, m2): (i) (−1,+1) →
XII , (ii) (−1,−1) → IX I , (iii) (+1,−1) → IIX , and (iv)
(−1,+1) → none. We will refer to QEC based on projective
measurement as discrete quantum error correction (DQEC)
from now on.

In order for DQEC to work, it is important to make the
assumption that there are no multiple flips of the qubits
happening simultaneously, and that no single-flip errors are
missed. Given the fact that projective measurements require
significant time between each measurement, while the envi-
ronment acts to degrade the qubits continuously, DQEC can
never be conducted perfectly, and the error correction perfor-
mance drops significantly over time. Theoretically speaking,
if we consider each error to be detected perfectly, the con-
tribution of simultaneous bit flips can be relatively small for
low environmental decoherences γ , as the theoretical fidelity
of the error-corrected logical state with DQEC with respect to
the initial state is given by [23]

FDQEC(t ) = 1
4 (2 + 3e−2γ t − e−6γ t ). (A9)

The drop in fidelity due to the bit-flip errors in a single qubit
without error correction is given by

F1(t ) = 1
2 (1 + e−2γ t ), (A10)

and that of three qubits is given by F3(t ) = F1(t )3. This essen-
tially means that FDQEC(t ) ∼ F1(t ) when t � π , which shows
how quickly the DQEC performance drops.

Continuous quantum error correction. CQEC differs from
DQEC in multiple aspects: in the way the measurements
are performed on the syndrome operators, how the errors
are detected, and how the errors are corrected. Instead of
projective measurements, CQEC utilizes continuous weak
measurements of the syndrome operators, discussed above.
The conditional evolution of the state of the logical qubit
undergoing bit-flip errors, continuous measurements, and
feedback is modeled using the SME as

dρc(t ) = γ (D[XII] + D[IX I] + D[IIX ])ρcdt

+ κ (D[ZZI] + D[IZZ] + D[ZIZ])ρcdt

+ √
κ (H[ZZI]dW1 + H[IZZ]dW2

+ H[ZIZ]dW3)ρc

− i[F (t ), ρc]dt, (A11)

where the stochastic time-varying measurement records of the
stabilizer generators are given by

dQ1(t ) = 〈ZZI〉cdt + 1√
4κ

dW1(t ), (A12)

dQ2(t ) = 〈IZZ〉cdt + 1√
4κ

dW2(t ), (A13)

dQ3(t ) = 〈ZIZ〉cdt + 1√
4κ

dW3(t ). (A14)

Here, F (t ) is the feedback Hamiltonian given by

F (t ) = λ1(t )XII + λ2(t )IX I + λ3(t )IIX, (A15)

where λi(t )’s are, in principle, time-dependent control param-
eters which depend on the conditional means of the error
syndromes. For example, the following feedback scheme was
proposed by Ahn et al. [23] for CQEC:

λ1(t ) = λ(1 − 〈ZZI〉c)(1 + 〈IZZ〉c)(1 − 〈ZIZ〉c), (A16)

λ2(t ) = λ(1 − 〈ZZI〉c)(1 − 〈IZZ〉c)(1 + 〈ZIZ〉c), (A17)

λ3(t ) = λ(1 + 〈ZZI〉c)(1 − 〈IZZ〉c)(1 − 〈ZIZ〉c), (A18)

where λ is a feedback strength of the order of the measurement
rate κ . The feedback function F (t ) described above makes use
of the conditional means of the syndrome operators, and thus,
to perform CQEC ideally, we require detailed information
about the time dependence of the conditional means of the
syndrome generators. However, the conditional means are not
available from the measurement records [Eqs. (A12)–(A14)]
directly as these quantities are masked by measurement noise
that is a fundamental component of all quantum measure-
ments. The signal-to-noise ratio of such measurements can
be typically quite poor. For practical purposes, researchers
have previously used temporal filters to recover these con-
ditional means from the noisy measurement records, with
some filters possessing nonuniform temporal weights, bias-
ing up the most recent records to avoid any lags or delays
[25,28,31,32]. Of course, real-world devices already have lim-
its on their response bandwidths. The effects of additional
software or hardware filtering to smooth out the noisy mea-
surement records will also degrade the signal or conditional
means. However, if somehow we happen to know the condi-
tional means in real time perfectly, the CQEC scheme would
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perform optimally for bit-flip correction under the assumption
that no two or more qubits flip simultaneously in a three-qubit
stabilizer code. In the following, we show how our proposed
measurement-based estimator (MBE) scheme allows us to
achieve this. We refer to this MBE method of CQEC as the
MBE-CQEC scheme.

The MBE-CQEC scheme. We now describe a scheme that
can perform faithful real-time estimation of any dynamical
changes affecting the logical qubit. This MBE scheme will
play a crucial role in detecting the bit-flip errors perfectly
and therefore in applying the appropriate feedback λ j (t ), in
a manner, as we will show, that achieves ultrahigh levels of
protection of the unknown quantum state. Let us denote the
laboratory-based quantum system that we wish to protect as
the real system R, and our estimator system E is a numerical
or computational model of the real system R, shown schemat-
ically in Fig. 1 in the main text. We consider that the internal
dynamics of this real system R is described by the Hamil-
tonian HR = H and its conditional density matrix is given
by ρR

c under continuous measurement via the measurement
operator AR = A (dimensionless). This can be described by
the SME described above as

dρR
c (t ) = − i

[
H, ρR

c (t )
]
dt + γD[c]ρR

c (t )dt

+ κD[A]ρR
c (t )dt + √

κH[A]ρR
c (t ) dW R(t ),

(A19)

where the superscript R is used to represent the real laboratory
system R. The measurement record, dQR(t ), is given by
the summation of the conditional mean of the measurement
operator and the corresponding random noise component of
the measurement,

dQR(t ) = 〈AR(t )〉cdt + 1√
4κ

dW R(t ). (A20)

Now, we make an estimator E of the real system R on a com-
puter with the same physical model (HE = HR = H), and the
continuous measurement of the same observable (AE = AR =
A), but start the estimator E dynamics with a known initial
state, ρE (0), which might be different from the initial state of
the real system R. The dynamics of this estimator E can be
modeled as

dρE
c (t ) = − i[H, ρE

c (t )]dt + γD[c]ρE
c (t )dt + κD[A]ρE

c (t )dt

+ √
κH[A]ρE

c (t ) dW E (t ). (A21)

We now can slave the dynamics of this estimator E model to
the dynamics of the real system R by setting the estimator E
noise dW E (t ) as

dW E (t ) =
√

4κ[dQR(t ) − 〈AE (t )〉cdt], (A22)

where the conditional mean 〈AE (t )〉c is obtained from the
estimator E , which is readily available without any extrane-
ous noise. Thus the dynamics of the estimator E follows the
measurement records of the real system R as

dρE
c (t ) = − i

[
H, ρE

c (t )
]
dt + γD[c]ρE

c (t )dt + κD[A]ρE
c (t )dt

+ 2κ[dQR(t ) − 〈AE (t )〉cdt]H[A]ρE
c (t ). (A23)

Let us now consider that the real system R consists
of a logical qubit comprising three physical qubits with

an encoded unknown quantum state |ψR〉L = |ψR〉α,β
L =

α|000〉 + β|111〉, which we want to protect from bit-flip er-
rors. The estimator E is modeled similarly but with a different
initial quantum state |ψE〉L = |ψE〉α′,β ′

L = α′|000〉 + β ′|111〉,
where α′ �= α and β ′ �= β. Whereas the values of α′ and β ′ can
be chosen, α and β for the real system R can be any possible
values not known to us. The conditional mean in the real sys-
tem R is unknown as it is masked by the measurement noise
as already stated. However, for the syndrome operators, being
parity operators, the measurement signals (error syndromes)
are independent of the coefficients (α and β) of the logical
state |ψ〉L = α|000〉 + β|111〉 and only depend on the code
space (|000〉 and |111〉). The unperturbed syndrome values
〈Gi〉Rc and 〈Gi〉Ec at t = 0 satisfy

〈Gi〉Ec (0) = 〈Gi〉Rc (0) = 1. (A24)

Here, Gi represents the ith stabilizer operator. Now using
Eq. (A23), the estimator E can be propagated to the next time
step after a measurement time interval of dt using the mea-
surement current from the real system R but the conditional
means from the estimator E . For the second step, the noise
signal can be correctly recovered as 〈Gi〉Ec (dt ) = 〈Gi〉Rc (dt ),
which can be either +1 or −1 unlike Eq. (A24), and similarly
the process is repeated in time steps of dt for the estimator E
for subsequent times. Such an estimator E that is fed with real-
time measurement records can correctly emulate the dynamics
of all the errors happening on the real system R for each quan-
tum trajectory. One can extract the error syndromes of the real
system R by merely looking at the estimator E conditional
syndrome values, which are readily available. This solves
the main problem of CQEC codes, where it is otherwise not
possible to isolate the error syndromes from the measurement
noise. The scheme is abbreviated as MBE-CQEC, standing for
measurement-based estimator scheme for continuous quantum
error correction, and is shown schematically in Fig. 1 in the
main text.

The MBE-CQEC scheme described above gives us a smart
way of computing the error syndromes within a continuous
measurement process, which allows us to correct bit-flip er-
rors in real time in more rapid time intervals than DQEC
codes [1] or using Eqs. (A16)–(A18). In the following we
show how the estimator system has real-time tomographic
information about the errors happening to individual qubits,
and we can use this to devise an alternative correction scheme.
This scheme is not based on the conditional means of the
stabilizer operators, but instead on the deviation of 〈Z (t )〉 of
the qubits in the estimator E relative to their original values at
t = 0, which is described below.

In the main text, we have shown how the absolute devi-
ation of the expectation value of the Pauli-Z operator of the
physical qubit q of the estimator E , |
〈Zq(t )〉 = 〈Zq(t )〉 −
〈Zq(0)〉|, scaled by its initial unperturbed value |〈Zq(0)〉|,
i.e., |
〈Zq(t )〉|/|〈Zq(0)〉|, follows the same in the real system
R. This constitutes the backbone of the error detection and
correction proposal presented in this paper. To understand it
better, let us consider a physical qubit q with state given by
|ψ〉 = α|0〉 + β|1〉. The initial expectation value Zq without
measurement is 〈Zq(0)〉 = β2 − α2. A flip of the qubit at
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time t > 0 will mean 〈Zq(t )〉 = α2 − β2, such that the abso-
lute deviation from its initial state is given by |〈
Zq(t )〉| =
2|β2 − α2|. The ratio |
〈Zq(t )〉|/|〈Zq(0)〉| = 2, which means
a complete flip. Similarly, |
〈Zq(t )〉|/|〈Zq(0)〉| = 0 would
mean absolutely no flipping. For any other change ε in be-
tween, |
〈Zq(t )〉|/|〈Zq(0)〉| = ε. The estimator E qubit can
be modeled with α = 1 and β = 0, i.e., at the reset condition,
for convenience, which means 〈Zq(0)〉 = 1 for the estimator E
qubit. Under the same noise measurement signals, dW E

s (t ) =
dW E

s , where s = (ZZI, IZZ, ZIZ ) denote the syndrome oper-
ators under measurement of the three physical qubits of the
real system R, a change in |
〈ZR

q (t )〉|/|〈ZR
q (0)〉| on qubit q

by an amount ε will underpin similar changes in the estimator

E qubits, |
〈ZE
q (t )〉(t )|/|〈ZE

q (0)〉|, i.e.,

|
〈ZE
q (t )〉|

|〈ZE
q (0)〉| = |
〈ZR

q (t )〉|
|〈ZR

q (0)〉| = ε(t ). (A25)

Thus we can use the following condition on the estimator
system to detect a bit-flip error on qubit q and correspondingly
apply the feedback Hamiltonian after a time δt ,

λq(t + δt ) =
{
λq if |〈ZE

q (t )〉 − 〈ZE
q (0)〉| > ε|〈ZE

q (0)〉|
0 otherwise,

(A26)
where λq ∼ κ and ε is a tolerance slightly higher than 1, which
we choose to be ε = 1.05.
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