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Root Cause Analysis Using Graph Representation of Constraints 

ABSTRACT 

When several quantitative variables are related through constraints and objectives, it can 

be difficult to understand why a certain quantity changes in magnitude after certain changes, or 

why a certain number seems larger or smaller than expected (as compared to a reference value). 

Large organizations which seek to optimize very large numbers of parameters to achieve 

constraints such as supply-demand matching face such problems, where the relationships 

between variables are controlled by a mixture of human processes and software algorithms. This 

disclosure describes scalable, flexible frameworks and searching techniques that improve 

transparency, e.g., enable root-cause analysis, for large families of variables. The techniques 

enable the understanding of the difference between two data-generating flows (versions) with 

comparable inputs, intermediate variables, and output variables. 
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BACKGROUND 

 When several quantitative variables are related through constraints and objectives, it can 

be difficult to understand why a certain quantity changes in magnitude after certain changes, or 

why a certain number seems larger or smaller than expected (as compared to a reference value). 
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Large organizations which seek to optimize very large numbers of parameters to achieve 

constraints such as supply-demand matching face such problems, where the relationships 

between variables are controlled by a mixture of human processes and software algorithms. Even 

dedicated tools set up to provide specific explanations are difficult to maintain as the business 

logic evolves. 

 Exact reasoning systems and traditional knowledge bases represent data in terms of 

discrete semantic relationships such that exact logical deductions can be performed on them [1, 

2]. However, these are less useful for generating explanations for numerical values. Constraint 

solvers such as linear programs can help in understanding numerical values, and indeed, it is 

possible to calculate reduced costs of solver variables [3] through sensitivity analysis to 

understand the causal impact of different variables. However, sensitivity analysis requires a 

combinatorial number of full simulation runs with all the exact details of the solver and is 

therefore computationally expensive [4].  

 While machine learning techniques [5] can be used to learn entity relationships, make 

inferences from learned results, and explain decisions, these don’t work well in situations with 

little data. Once a graph or network is defined, causal inference can be traced from one node to 

another. For example, if full conditional distributions are available, Bayesian-network techniques 

[6] can be applied. However, conditional distributions tend to come from data and are difficult to 

specify from domain knowledge. 

Another type of explanatory inference comes from attributing neural network outputs to 

individual neurons [7, 8]. However, neural network layers are directional, with each neuron's 

dependence on others explicitly laid out, whereas general business variables can have hidden 

relationships. Also, neutral network attribution typically requires that the attributed weights sum 
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to unity, while in practice overlapping reasons, as long as they are properly ranked, can provide a 

satisfactory explanation. 

DESCRIPTION 

 This disclosure describes scalable and flexible frameworks and searching techniques that 

improve transparency, e.g., enable root-cause analysis, for large families of variables as found in 

large business use cases. The techniques enable generating an understanding of the difference 

between two data-generating flows (versions) with comparable inputs, intermediate variables, 

and output variables. One-shot, approximate explanations provide useful insights even under 

incomplete information. Reasoning based on human-defined knowledge is permissible, even in 

situations with little data or with heteroskedastic data.  

 

Fig. 1: Root cause analysis using a graph representation of constraints 
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 Fig. 1 illustrates root cause analysis using a graph representation of constraints. Key 

business logic is represented by constraint formulas in the variables of interest with annotations 

about causal direction (102). Only linear constraints with constant coefficients are considered, as 

more general constraints can be approximated by a first-order Taylor expansion. 

Variables to be investigated are identified or defined (104). For example, these are 

variables covered by the constraint formulas which have (perhaps substantially) different values 

between the two versions, which are differences that users would like to understand. Such 

starting point variables are denoted as X0. Actionable variables, e.g., variables whose values can 

trigger a triage to an appropriate team, are defined (106). Such variables are referred to as root 

causes and denoted by Xr.  

The graph is populated with data corresponding to each variable in the two versions 

(108). The graph is traversed to produce ranked search results for paths leading from each 

variable-under-investigation to actionable variables (110). Optionally, users can further their 

understanding by manually traversing the graph starting from any variable node in the search 

result and inspecting neighboring variables. The constraint formulas can be updated as the 

business evolves. 

Definitions 

 To describe in greater detail root cause analysis using a graphical representation of 

constraints, certain definitions are made. Without loss of generality, at the first run, all variables 

are assumed to be zero. The delta between the first run and an arbitrary second run is denoted by 

the random variables X0, X1, X2, ...., Xn. The actual delta values for a particular second run, e.g., 

an instance of the random variables, are denoted x0, x1, x2, etc. A subset {Xr} of the variables is 

defined as actionable, if 

5

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628



● they can be directly influenced by the user, e.g., they are not necessarily determined by 

other variables; and 

● there is enough associated metadata with them for the users to rank them by importance, 

understand how to change them, and be assured of whether changes caused by them are 

working as intended. 

The impact on x0 attributed to xr along an ordered sequence of variables, denoted a(x0, x1, x2, ..., 

xr), is defined recursively as follows: 

a(xr)  =  xr 

a(xr-i, xr-i+1, ..., xr)  = xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a(xr-i+1, ..., 

xr)]. 

Intuitively, the above recursion captures what the value of Xr-i would have been if the impact 

from Xr-i+1 along the path had been taken away. An expectation operator captures the fact that the 

values of the hypothetical run are not fully known and can potentially be non-deterministic. 

  Further assuming that the change of one variable with respect to the next one is linear, we 

can write kr-i, r-i+1 = (xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a(xr-i+1, ..., xr) ]) / a(xr-i+1, ..., xr) as only 

depending on xr-i and xr-i+1, in which case we have: 

a(xr-i, xr-i+1, ..., xr) = kr-i, r-i+1 a(xr-i+1, ..., xr) 

 The excess positive impact a+ is defined as follows only for paths with a(x0, ..., xi)>0 for 

all i up to r: 

a+(xr) = xr 

a+(xr-i, xr-i+1, ..., xr) = min(xr-i, xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a+(xr-i+1, ..., xr)] ) 

 = min(xr-i, kr-i, r-i+1 a+(xr-i+1, ..., xr)) 

 The excess positive impact captures the impact along the variables contributing to x0 in 

the positive direction after cancellation with other factors contributing to Xr-i if they are net-
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negative. This is useful to capture the impact in one direction if some other factors are expected 

to cancel out the impact and the excess after cancelation is to be found. The excess negative 

impact is defined similarly. 

 Any ordered sequence of variable values {x0, x1,...,xr} is referred to as a path, denoted p. 

Setup 

 To enable root cause analysis, a bipartite graph is created from the relationships of the 

variables as expressed within the constraints. Substantial and verifiable causes are identified, and 

causal directions of influence of one variable upon another indicated. Variables are grouped by 

correlation. These are described in greater detail below.  

Bipartite graph  

 

Fig. 2: A bipartite graph created out of the constraints between variables 

 A bipartite graph (factor graph), illustrated in Fig. 2, is created by arranging constraints in 

the form of a column of nodes and variables in another column of nodes. A column node 

representing a constraint is connected to a variable node if the constraint includes the variable. 

Constraints can be definitions of variables or actual restrictions (explicit or implicit in solvers) on 
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values that variables can take. As explained earlier, constraints are linear or can be made so using 

Taylor approximations. 

 A path connected by constraints is denoted as {x0, C01, x1, C12, …, xr}. In this context, a 

constraint does not necessarily indicate that variables are restricted to take only certain numerical 

values. The variables may include, for example, solver objectives, such as a total monetary cost 

being minimized; a constraint merely relates the cost to constituents contributing to the cost. 

Substantial and verifiable causes 

 Substantial and verifiable causes are paths of interest p that connect x0 to an actionable 

node xr in the graph such that 

|a(p)| >= aTHRESHOLD; 

length of path  <= L; and 

the path is verifiable by users in constant time. 

 A substantial and verifiable cause is a requirement for the graph to be sufficiently 

complex to include an interesting root cause without necessarily specifying all relationships 

completely. This enables users to find useful results with only partially complete relational 

specifications. 

Causal direction 

 Constraints can indicate whether a variable is causally influenced by another. For 

example, a constraint Z = X1 + X2 + X3 with no limits on the values taken by Z can imply that Z 

is influenced by X1, X2, and X3, while X1 isn’t influenced by Z or by X2. Such causal 

directionality can be indicated in the graph. Causal directionality can be value-dependent and 
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approximate: for example, X1 can be influenced by Z or by X2 when Z is close to its lower/upper 

bound but not otherwise. 

Correlation grouping 

 Variables that are a priori correlated (either positively or negatively) can be grouped 

together. For example, if X1 and X2 are not independent of each other and are negatively 

correlated, a constraint Z = X1 + X2 can be added, and X1 + X2 replaced throughout by Z. 

Searching techniques 

  With the above definitions and setup, the graph can be searched to produce ranked search 

results for paths leading from each variable-under-investigation to actionable variables. Two 

example search techniques include basic searching and strict searching, described in greater 

detail below. 

Basic searching 

 For every constraint Cr-j, r-j+1 in the graph, evaluate ∂ r-j+1Xr-j such that if the constraint Cr-j, 

r-j+1 is  

Xr-j − kXr-j+1 + ... = 0, then 

∂ r-j+1Xr-j = k, 

unless the causal direction of the constraint clearly indicates that Xr-j cannot be influenced by Xr-

j+1, in which case  

∂ r-j+1Xr-j  =  0.  

Under this condition, a naive chain-rule estimated impact aNAIVE (x0, x1, ... xr-i+1) is defined as 
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aNAIVE (x0, x1, ... xr-i+1) = xr-i+1 ∏j = i..r ∂ r-j+1Xr-j. 

The basic search technique returns every path without cycle in the bipartite graph starting from 

x0 such that: 

● it ends at (causally starts from) an actionable node xr with path length <= L; and 

● every intermediate node xr-i+1 is such that |aNAIVE(x0, x1, ... xr-i+1) | > ε. 

A breadth-first search on the graph that prioritizes |aNAIVE(x0, x1, ... xr-i+1)| at every intermediate 

node gives a ranking on the search results. A path p such that |a(p)| > aTHRESHOLD >> ε (as 

described above in substantial and verifiable causes), can be found within the returned paths with 

probability 1 − Prandom cancel(ε, L ), where Prandom cancel(ε, L) is the probability of at least one node 

xr-j+1 along the path being canceled by other terms in the constraint Cr-j, r-j+1, such that the net 

effect of all terms, Xj-1, is less than ε. The parameters L and aTHRESHOLD can be used to control the 

size of Prandom cancel(ε, L ). 

Strict searching 

 Strict searching uses a stricter requirement, e.g., aNAIVE(x0, x1, …, xr-i+1) > aTHRESHOLD for 

all intermediate nodes. Strict searching returns all and only the paths with excess positive impact 

a+(p ) > aTHRESHOLD, should any exist. From aTHRESHOLD < a+(p ), it follows that  

aTHRESHOLD < a+(x0, x1, ..., xr) 

 =  min(x0, k01 min(x1, k12 min(x2, ... )) 

 = min(x0, k01 x1, k01k12 x2, ... ), 

which is the same as requiring aNAIVE(x0, x1, ... xr-i+1) > aTHRESHOLD for all i if kr-i, r-i+1 can be 

extracted from Cr-i, r-i+1 as the coefficient on Xr-j+1. The naive approach can fail if there are other 

terms depending on Xr-j+1, but failures can be addressed as follows: 

10

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023



● If the other terms contribute to Xr-j in the same sign as Xr-j+1, treat those as separate paths 

and set aTHRESHOLD appropriately. In the extreme cases, this may end up with a large 

number of paths with a+(p) << x0, but such paths can still be useful for human 

understanding. Further, variables can be redefined to reduce such paths. 

● If the other terms contribute in the opposite sign, it may be that the true combined 

contribution is less than aTHRESHOLD, but correlation grouping can be relied upon to ensure 

that an intermediate variable with the net contribution appears instead. If the other terms 

contribute in a way that exactly cancels the effect of Xr-j+1, causal directionality can be 

relied upon to skip them. For example, given a constraint Z = X1 + X2 + X3, by definition, 

a large and identical change in both Z and X2 has no effect on X1. Causal directionality 

enables the tracing of Z to X1, X2, X3, but prevents tracing from X1 to other variables, 

e.g., ∂Z X1 = 0, etc. 

Practical considerations 

 To understand a set of numbers, there may in practice be only one version of values for 

variables, whereas the above formulation assumes two versions of values. In case a single 

version of values is available, a synthetic comparison can be executed, e.g., variable values can 

be compared against a naive expectation. Artificial values are synthesized throughout the 

bipartite formula graph to construct a reference for comparison.  

 For example, suppose a variable X is translated via a black box into a variable Y with the 

constraints 

Z  =  Y − 3X and 

Z  >=  0. 
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A synthetic reference can be obtained by setting Y = 3X and Z = 0, e.g., the deviation of the 

variables from the base case of Z = 0 is analyzed. 

 Actionable nodes can be flexibly defined so long as the definition is useful to the 

investigator. If actionable nodes cannot be clearly defined, enabling users to traverse the bipartite 

graph starting from a path that ends with a node such that |a(p)| > can already be useful. In the 

special case where the outputs of solvers are to be understood, the objective function and its 

constituents can be useful actionable nodes. For example, a variable x0 is large because the 

projected profit, an objective that is being maximized, has gone up. The change in projected 

profit, along with the metadata around the variables contributing to the projected profit, may 

provide sufficient context for the users to take action. It also qualifies as an actionable node. 

 Some advantages of the described techniques of root cause analysis include: 

● Compared to custom curated views for explanations, the framework described herein is 

declarative and automates human reasoning processes.  

● The described framework is more maintainable: as the business evolves, only formulas in 

the bipartite graph are updated, rather than step-by-step instructions to find explanations. 

● Checking for data correctness and for logical consistency is greatly facilitated by the 

bipartite graph. 

● Compared to approaches to explanations based on statistical and machine learning, the 

described techniques require little data to be useful. The techniques focus on capturing 

human domain knowledge, which can be the result of collaboration by many teams, and 

are particularly useful for cases when the data size is small or highly heteroskedastic. 

● The techniques can be utilized by any organization with interconnected quantitative data 

driven by human processes to organize information and make it more understandable. 
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CONCLUSION 

This disclosure describes scalable, flexible frameworks and searching techniques that 

improve transparency, e.g., enable root-cause analysis, for large families of variables. The 

techniques enable the understanding of the difference between two data-generating flows 

(versions) with comparable inputs, intermediate variables, and output variables. 
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