
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2023

Root Cause Analysis Using Graph Representation of Constraints Root Cause Analysis Using Graph Representation of Constraints

Ming-Ho Stewart Siu

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Siu, Ming-Ho Stewart, "Root Cause Analysis Using Graph Representation of Constraints", Technical
Disclosure Commons, (January 11, 2023)
https://www.tdcommons.org/dpubs_series/5628

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5628?utm_source=www.tdcommons.org%2Fdpubs_series%2F5628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Root Cause Analysis Using Graph Representation of Constraints

ABSTRACT

When several quantitative variables are related through constraints and objectives, it can

be difficult to understand why a certain quantity changes in magnitude after certain changes, or

why a certain number seems larger or smaller than expected (as compared to a reference value).

Large organizations which seek to optimize very large numbers of parameters to achieve

constraints such as supply-demand matching face such problems, where the relationships

between variables are controlled by a mixture of human processes and software algorithms. This

disclosure describes scalable, flexible frameworks and searching techniques that improve

transparency, e.g., enable root-cause analysis, for large families of variables. The techniques

enable the understanding of the difference between two data-generating flows (versions) with

comparable inputs, intermediate variables, and output variables.

KEYWORDS

● Root cause analysis

● Graph representation

● Business constraint

● Exact reasoning systems

● Machine learning

● Sensitivity analysis

● Heteroskedasticity

● Bayesian networks

● Linear programming

● Constraint solver

BACKGROUND

 When several quantitative variables are related through constraints and objectives, it can

be difficult to understand why a certain quantity changes in magnitude after certain changes, or

why a certain number seems larger or smaller than expected (as compared to a reference value).

2

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

Large organizations which seek to optimize very large numbers of parameters to achieve

constraints such as supply-demand matching face such problems, where the relationships

between variables are controlled by a mixture of human processes and software algorithms. Even

dedicated tools set up to provide specific explanations are difficult to maintain as the business

logic evolves.

 Exact reasoning systems and traditional knowledge bases represent data in terms of

discrete semantic relationships such that exact logical deductions can be performed on them [1,

2]. However, these are less useful for generating explanations for numerical values. Constraint

solvers such as linear programs can help in understanding numerical values, and indeed, it is

possible to calculate reduced costs of solver variables [3] through sensitivity analysis to

understand the causal impact of different variables. However, sensitivity analysis requires a

combinatorial number of full simulation runs with all the exact details of the solver and is

therefore computationally expensive [4].

 While machine learning techniques [5] can be used to learn entity relationships, make

inferences from learned results, and explain decisions, these don’t work well in situations with

little data. Once a graph or network is defined, causal inference can be traced from one node to

another. For example, if full conditional distributions are available, Bayesian-network techniques

[6] can be applied. However, conditional distributions tend to come from data and are difficult to

specify from domain knowledge.

Another type of explanatory inference comes from attributing neural network outputs to

individual neurons [7, 8]. However, neural network layers are directional, with each neuron's

dependence on others explicitly laid out, whereas general business variables can have hidden

relationships. Also, neutral network attribution typically requires that the attributed weights sum

3

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

to unity, while in practice overlapping reasons, as long as they are properly ranked, can provide a

satisfactory explanation.

DESCRIPTION

 This disclosure describes scalable and flexible frameworks and searching techniques that

improve transparency, e.g., enable root-cause analysis, for large families of variables as found in

large business use cases. The techniques enable generating an understanding of the difference

between two data-generating flows (versions) with comparable inputs, intermediate variables,

and output variables. One-shot, approximate explanations provide useful insights even under

incomplete information. Reasoning based on human-defined knowledge is permissible, even in

situations with little data or with heteroskedastic data.

Fig. 1: Root cause analysis using a graph representation of constraints

4

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

 Fig. 1 illustrates root cause analysis using a graph representation of constraints. Key

business logic is represented by constraint formulas in the variables of interest with annotations

about causal direction (102). Only linear constraints with constant coefficients are considered, as

more general constraints can be approximated by a first-order Taylor expansion.

Variables to be investigated are identified or defined (104). For example, these are

variables covered by the constraint formulas which have (perhaps substantially) different values

between the two versions, which are differences that users would like to understand. Such

starting point variables are denoted as X0. Actionable variables, e.g., variables whose values can

trigger a triage to an appropriate team, are defined (106). Such variables are referred to as root

causes and denoted by Xr.

The graph is populated with data corresponding to each variable in the two versions

(108). The graph is traversed to produce ranked search results for paths leading from each

variable-under-investigation to actionable variables (110). Optionally, users can further their

understanding by manually traversing the graph starting from any variable node in the search

result and inspecting neighboring variables. The constraint formulas can be updated as the

business evolves.

Definitions

 To describe in greater detail root cause analysis using a graphical representation of

constraints, certain definitions are made. Without loss of generality, at the first run, all variables

are assumed to be zero. The delta between the first run and an arbitrary second run is denoted by

the random variables X0, X1, X2,, Xn. The actual delta values for a particular second run, e.g.,

an instance of the random variables, are denoted x0, x1, x2, etc. A subset {Xr} of the variables is

defined as actionable, if

5

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

● they can be directly influenced by the user, e.g., they are not necessarily determined by

other variables; and

● there is enough associated metadata with them for the users to rank them by importance,

understand how to change them, and be assured of whether changes caused by them are

working as intended.

The impact on x0 attributed to xr along an ordered sequence of variables, denoted a(x0, x1, x2, ...,

xr), is defined recursively as follows:

a(xr) = xr

a(xr-i, xr-i+1, ..., xr) = xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a(xr-i+1, ...,

xr)].

Intuitively, the above recursion captures what the value of Xr-i would have been if the impact

from Xr-i+1 along the path had been taken away. An expectation operator captures the fact that the

values of the hypothetical run are not fully known and can potentially be non-deterministic.

 Further assuming that the change of one variable with respect to the next one is linear, we

can write kr-i, r-i+1 = (xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a(xr-i+1, ..., xr)]) / a(xr-i+1, ..., xr) as only

depending on xr-i and xr-i+1, in which case we have:

a(xr-i, xr-i+1, ..., xr) = kr-i, r-i+1 a(xr-i+1, ..., xr)

 The excess positive impact a+ is defined as follows only for paths with a(x0, ..., xi)>0 for

all i up to r:

a+(xr) = xr

a+(xr-i, xr-i+1, ..., xr) = min(xr-i, xr-i − E[Xr-i | Xr-i+1 = xr-i+1 − a+(xr-i+1, ..., xr)])

 = min(xr-i, kr-i, r-i+1 a+(xr-i+1, ..., xr))

 The excess positive impact captures the impact along the variables contributing to x0 in

the positive direction after cancellation with other factors contributing to Xr-i if they are net-

6

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

negative. This is useful to capture the impact in one direction if some other factors are expected

to cancel out the impact and the excess after cancelation is to be found. The excess negative

impact is defined similarly.

 Any ordered sequence of variable values {x0, x1,...,xr} is referred to as a path, denoted p.

Setup

 To enable root cause analysis, a bipartite graph is created from the relationships of the

variables as expressed within the constraints. Substantial and verifiable causes are identified, and

causal directions of influence of one variable upon another indicated. Variables are grouped by

correlation. These are described in greater detail below.

Bipartite graph

Fig. 2: A bipartite graph created out of the constraints between variables

 A bipartite graph (factor graph), illustrated in Fig. 2, is created by arranging constraints in

the form of a column of nodes and variables in another column of nodes. A column node

representing a constraint is connected to a variable node if the constraint includes the variable.

Constraints can be definitions of variables or actual restrictions (explicit or implicit in solvers) on

7

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

values that variables can take. As explained earlier, constraints are linear or can be made so using

Taylor approximations.

 A path connected by constraints is denoted as {x0, C01, x1, C12, …, xr}. In this context, a

constraint does not necessarily indicate that variables are restricted to take only certain numerical

values. The variables may include, for example, solver objectives, such as a total monetary cost

being minimized; a constraint merely relates the cost to constituents contributing to the cost.

Substantial and verifiable causes

 Substantial and verifiable causes are paths of interest p that connect x0 to an actionable

node xr in the graph such that

|a(p)| >= aTHRESHOLD;

length of path <= L; and

the path is verifiable by users in constant time.

 A substantial and verifiable cause is a requirement for the graph to be sufficiently

complex to include an interesting root cause without necessarily specifying all relationships

completely. This enables users to find useful results with only partially complete relational

specifications.

Causal direction

 Constraints can indicate whether a variable is causally influenced by another. For

example, a constraint Z = X1 + X2 + X3 with no limits on the values taken by Z can imply that Z

is influenced by X1, X2, and X3, while X1 isn’t influenced by Z or by X2. Such causal

directionality can be indicated in the graph. Causal directionality can be value-dependent and

8

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

approximate: for example, X1 can be influenced by Z or by X2 when Z is close to its lower/upper

bound but not otherwise.

Correlation grouping

 Variables that are a priori correlated (either positively or negatively) can be grouped

together. For example, if X1 and X2 are not independent of each other and are negatively

correlated, a constraint Z = X1 + X2 can be added, and X1 + X2 replaced throughout by Z.

Searching techniques

 With the above definitions and setup, the graph can be searched to produce ranked search

results for paths leading from each variable-under-investigation to actionable variables. Two

example search techniques include basic searching and strict searching, described in greater

detail below.

Basic searching

 For every constraint Cr-j, r-j+1 in the graph, evaluate ∂ r-j+1Xr-j such that if the constraint Cr-j,

r-j+1 is

Xr-j − kXr-j+1 + ... = 0, then

∂ r-j+1Xr-j = k,

unless the causal direction of the constraint clearly indicates that Xr-j cannot be influenced by Xr-

j+1, in which case

∂ r-j+1Xr-j = 0.

Under this condition, a naive chain-rule estimated impact aNAIVE (x0, x1, ... xr-i+1) is defined as

9

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

aNAIVE (x0, x1, ... xr-i+1) = xr-i+1 ∏j = i..r ∂ r-j+1Xr-j.

The basic search technique returns every path without cycle in the bipartite graph starting from

x0 such that:

● it ends at (causally starts from) an actionable node xr with path length <= L; and

● every intermediate node xr-i+1 is such that |aNAIVE(x0, x1, ... xr-i+1) | > ε.

A breadth-first search on the graph that prioritizes |aNAIVE(x0, x1, ... xr-i+1)| at every intermediate

node gives a ranking on the search results. A path p such that |a(p)| > aTHRESHOLD >> ε (as

described above in substantial and verifiable causes), can be found within the returned paths with

probability 1 − Prandom cancel(ε, L), where Prandom cancel(ε, L) is the probability of at least one node

xr-j+1 along the path being canceled by other terms in the constraint Cr-j, r-j+1, such that the net

effect of all terms, Xj-1, is less than ε. The parameters L and aTHRESHOLD can be used to control the

size of Prandom cancel(ε, L).

Strict searching

 Strict searching uses a stricter requirement, e.g., aNAIVE(x0, x1, …, xr-i+1) > aTHRESHOLD for

all intermediate nodes. Strict searching returns all and only the paths with excess positive impact

a+(p) > aTHRESHOLD, should any exist. From aTHRESHOLD < a+(p), it follows that

aTHRESHOLD < a+(x0, x1, ..., xr)

 = min(x0, k01 min(x1, k12 min(x2, ...))

 = min(x0, k01 x1, k01k12 x2, ...),

which is the same as requiring aNAIVE(x0, x1, ... xr-i+1) > aTHRESHOLD for all i if kr-i, r-i+1 can be

extracted from Cr-i, r-i+1 as the coefficient on Xr-j+1. The naive approach can fail if there are other

terms depending on Xr-j+1, but failures can be addressed as follows:

10

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

● If the other terms contribute to Xr-j in the same sign as Xr-j+1, treat those as separate paths

and set aTHRESHOLD appropriately. In the extreme cases, this may end up with a large

number of paths with a+(p) << x0, but such paths can still be useful for human

understanding. Further, variables can be redefined to reduce such paths.

● If the other terms contribute in the opposite sign, it may be that the true combined

contribution is less than aTHRESHOLD, but correlation grouping can be relied upon to ensure

that an intermediate variable with the net contribution appears instead. If the other terms

contribute in a way that exactly cancels the effect of Xr-j+1, causal directionality can be

relied upon to skip them. For example, given a constraint Z = X1 + X2 + X3, by definition,

a large and identical change in both Z and X2 has no effect on X1. Causal directionality

enables the tracing of Z to X1, X2, X3, but prevents tracing from X1 to other variables,

e.g., ∂Z X1 = 0, etc.

Practical considerations

 To understand a set of numbers, there may in practice be only one version of values for

variables, whereas the above formulation assumes two versions of values. In case a single

version of values is available, a synthetic comparison can be executed, e.g., variable values can

be compared against a naive expectation. Artificial values are synthesized throughout the

bipartite formula graph to construct a reference for comparison.

 For example, suppose a variable X is translated via a black box into a variable Y with the

constraints

Z = Y − 3X and

Z >= 0.

11

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

A synthetic reference can be obtained by setting Y = 3X and Z = 0, e.g., the deviation of the

variables from the base case of Z = 0 is analyzed.

 Actionable nodes can be flexibly defined so long as the definition is useful to the

investigator. If actionable nodes cannot be clearly defined, enabling users to traverse the bipartite

graph starting from a path that ends with a node such that |a(p)| > can already be useful. In the

special case where the outputs of solvers are to be understood, the objective function and its

constituents can be useful actionable nodes. For example, a variable x0 is large because the

projected profit, an objective that is being maximized, has gone up. The change in projected

profit, along with the metadata around the variables contributing to the projected profit, may

provide sufficient context for the users to take action. It also qualifies as an actionable node.

 Some advantages of the described techniques of root cause analysis include:

● Compared to custom curated views for explanations, the framework described herein is

declarative and automates human reasoning processes.

● The described framework is more maintainable: as the business evolves, only formulas in

the bipartite graph are updated, rather than step-by-step instructions to find explanations.

● Checking for data correctness and for logical consistency is greatly facilitated by the

bipartite graph.

● Compared to approaches to explanations based on statistical and machine learning, the

described techniques require little data to be useful. The techniques focus on capturing

human domain knowledge, which can be the result of collaboration by many teams, and

are particularly useful for cases when the data size is small or highly heteroskedastic.

● The techniques can be utilized by any organization with interconnected quantitative data

driven by human processes to organize information and make it more understandable.

12

Siu: Root Cause Analysis Using Graph Representation of Constraints

Published by Technical Disclosure Commons, 2023

CONCLUSION

This disclosure describes scalable, flexible frameworks and searching techniques that

improve transparency, e.g., enable root-cause analysis, for large families of variables. The

techniques enable the understanding of the difference between two data-generating flows

(versions) with comparable inputs, intermediate variables, and output variables.

REFERENCES

[1] “Reasoning system,” https://en.wikipedia.org/wiki/Reasoning_system accessed Aug. 19,

2022.

[2] “Knowledge graham” https://en.wikipedia.org/wiki/Knowledge_graph accessed Aug. 19,

2022.

[3] Martin, Richard Kipp. “Large scale linear and integer optimization: a unified approach.”

Springer Science & Business Media, 2012.

[4] Kwisthout, Johan, and Linda C. Van Der Gaag. “The computational complexity of sensitivity

analysis and parameter tuning.” arXiv preprint arXiv:1206.3265 (2012).

[5] Ji, Shaoxiong, et al. “A survey on knowledge graphs: Representation, acquisition, and

applications.” IEEE Transactions on Neural Networks and Learning Systems 33, no. 2 (2021):

494-514.

[6] Pearl, Judea. “Causality.” Cambridge university press, 2009

[7] Sun, Yi, and Mukund Sundararajan. “Axiomatic attribution for multilinear functions.” In

Proceedings of the 12th ACM conference on Electronic commerce, pp. 177-178. 2011.

[8] Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep

networks.” In International conference on machine learning, pp. 3319-3328. PMLR, 2017.

[9] “Factor graph,” https://en.wikipedia.org/wiki/Factor_graph accessed Aug. 19, 2022.

13

Defensive Publications Series, Art. 5628 [2023]

https://www.tdcommons.org/dpubs_series/5628

https://en.wikipedia.org/wiki/Reasoning_system
https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Factor_graph

	Root Cause Analysis Using Graph Representation of Constraints
	Recommended Citation

	tmp.1673419943.pdf.pVvPR

