
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2023

SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

PANNEER PERUMAL
Visa

BALASAHEB RAOSAHEB DENGALE
Visa

CHARAN RAMIREDDY
Visa

DILSHAD T
Visa

MANJUNATH Y
Visa

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
PERUMAL, PANNEER; DENGALE, BALASAHEB RAOSAHEB; RAMIREDDY, CHARAN; T, DILSHAD; Y,
MANJUNATH; and SAXENA, ADITYA, "SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER",
Technical Disclosure Commons, (January 09, 2023)
https://www.tdcommons.org/dpubs_series/5626

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5626?utm_source=www.tdcommons.org%2Fdpubs_series%2F5626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Inventor(s) Inventor(s)
PANNEER PERUMAL, BALASAHEB RAOSAHEB DENGALE, CHARAN RAMIREDDY, DILSHAD T,
MANJUNATH Y, and ADITYA SAXENA

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/5626

https://www.tdcommons.org/dpubs_series/5626

15

TITLE: “SYSTEM AND METHOD FOR BUILDING

CONTAINER CLUSTER”

VISA

PANNEER PERUMAL

BALASAHEB RAOSAHEB DENGALE

CHARAN RAMIREDDY

DILSHAD T

MANJUNATH Y

ADITYA SAXENA

2

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

16

TECHNICAL FIELD

[001] The present subject matter relates to a field of cloud computing, more particularly, but

not exclusively to a system and method for building container clusters.

BACKGROUND

[002] Recently, there is a rise in leveraging cluster-based architectures to deploy and manage

applications in cloud. A computer cluster is a group of two or more computers, or nodes, that

run in parallel to achieve a common goal. This allows workloads consisting of a high number

of individuals, parallelizable tasks to be distributed among the nodes in the cluster. As a result,

these tasks can leverage the combined memory and processing power of each computer to

increase overall performance.

[003] The clusters are designed to minimize latency and prevent bottlenecks in node-to-node

communication. Thus, there are multiple clusters built across datacenters and network zones to

minimize latency and manage applications in the cloud. However, building of new clusters for

adding capacity, or upgrading old clusters involve complexities due to multiple vendors,

products, internal integration with storage, network, cybersecurity, cloud view, and the like.

Further, in existing systems, the clusters are built manually and is time-consuming. As such,

there is no automated method using which new clusters may be added or managed for

deploying the applications.

[004] The information disclosed in this background of the disclosure section is only for

enhancement of understanding of the general background of the invention and should not be

taken as an acknowledgement or any form of suggestion that this information forms the prior

art already known to a person skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[005] The accompanying drawings, which are incorporated in and constitute a part of this

disclosure, illustrate exemplary embodiments and, together with the description, serve to

explain the disclosed principles. In the figures, the left-most digit(s) of a reference number

identifies the figure in which the reference number first appears. The same numbers are used

3

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

17

throughout the figures to reference like features and components. Some embodiments of device

or system and/or methods in accordance with embodiments of the present subject matter are

now described, by way of example only, and with reference to the accompanying figures, in

which:

[006] Figure 1 illustrates an exemplary environment for building container clusters, in

accordance with some embodiments of the present disclosure;

[007] Figure 2 illustrates a sequence diagram for building container clusters, in accordance

with some embodiments of the present disclosure; and

[008] Figure 3 illustrates a block diagram of an exemplary computer system for implementing

embodiments consistent with the present disclosure.

[009] The figures depict embodiments of the disclosure for purposes of illustration only. One

skilled in the art will readily recognize from the following description that alternative

embodiments of the structures and methods illustrated herein may be employed without

departing from the principles of the disclosure described herein.

DESCRIPTION OF THE DISCLOSURE

[010] In the present document, the word "exemplary" is used herein to mean "serving as an

example, instance, or illustration." Any embodiment or implementation of the present subject

matter described herein as "exemplary" is not necessarily to be construed as preferred or

advantageous over other embodiments.

[011] While the disclosure is susceptible to various modifications and alternative forms,

specific embodiment thereof has been shown by way of example in the drawings and will be

described in detail below. It should be understood, however that it is not intended to limit the

disclosure to the particular forms disclosed, but on the contrary, the disclosure is to cover all

modifications, equivalents, and alternative falling within the spirit and the scope of the

disclosure.

[012] The terms “comprises”, “comprising”, or any other variations thereof, are intended to

cover a non-exclusive inclusion, such that a setup, device, or method that comprises a list of

4

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

18

components or steps does not include only those components or steps but may include other

components or steps not expressly listed or inherent to such setup or device or method. In other

words, one or more elements in a device or system or apparatus proceeded by “comprises… a”

does not, without more constraints, preclude the existence of other elements or additional

elements in the device, system, or apparatus.

[013] The terms "an embodiment", "embodiment", "embodiments", "the embodiment", "the

embodiments", "one or more embodiments", "some embodiments", and "one embodiment"

mean "one or more (but not all) embodiments of the invention(s)" unless expressly specified

otherwise.

[014] The terms "including", "comprising", “having” and variations thereof mean "including

but not limited to", unless expressly specified otherwise.

[015] The present disclosure discloses a method and system for building container clusters.

Generally, the container clusters are built manually and building of new container clusters for

adding capacity or upgrading old container clusters involves complexity. The complexity is

due to multiple vendors, products, network, cybersecurity and the like. Thus, manually building

container clusters is time-consuming. To overcome the above problem, the present disclosure

automates the process of building container clusters. The present disclosure automates the

process of hardening base operating system/kernel. Further, present disclosure installs vendor

platforms, configure network and storage as per user requirement. The present disclosure

manages distribution of traffic/client connects by using load balancer without any manual

intervention. Thereafter, the present disclosure performs end-to-end validations of the

container cluster. Thus, the present disclosure reduces time consumption for building container

cluster by automating the process.

[016] Figure 1 illustrates an exemplary environment 100 for building container clusters for

managing application. The environment 100 includes a container management system 101, and

a cluster node 1021, 1022, …., 102n (hereafter referred as plurality of cluster nodes 102). The

container management system 101 may be implemented within a datacentre. The datacentre is

a facility that provides shared access to applications and data using a complex network,

compute, and storage infrastructure. In an embodiment, the container management system 101

may be implemented through self-service portal such as – CloudView Scalable Run™ /

5

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

19

IMAGE (API gateway for infrastructure), and the like. These implementations may obtain

required information from source control and users ansible tower® to trigger the building on

the plurality of cluster nodes 102. In an embodiment, the ansible tower® is a web-based

solution that is utilised to provision underlying infrastructure of environment, virtualized hosts,

hypervisors, network devices, and the like. In an embodiment, the ansible tower is utilised for

automating the task of creating the container. This includes setting up base nodes with required

packages like Docker®, Simple input/output (Sio) package, selinux and so on. In an

embodiment, automation may also include configuring base cluster with minimal nodes and

adding new nodes as worker nodes. The automation may apply standard configurations such

as, authentication with Light Weight Directory Access Protocol (LDAP), storage integration

for block / file system storage with Kubernetes®, network integration with calico™/cilium™

and so on. Further, the container management system 101 may validate end to end with sample

application for deploying cluster/node to application. Further, each of the plurality of cluster

nodes 102 comprise pods and containers. A pod may refer to a group of one or more containers,

with shared storage and network resources, and a specification related to running the

containers. The plurality of cluster nodes 102 may also be referred as worker machines that run

containerized applications. The containerized applications are applications that run in isolated

runtime environment called the containers. The containers encapsulate an application as a

single executable package of software that bundles application code together with all of the

related configuration files, libraries, and dependencies required for it to operate. The plurality

of cluster nodes 102 host the pods. The pods are designed to support multiple cooperating

processes (containers) on a cluster. The container management system 101 manages the

containers that resides on the plurality of cluster nodes 102. In an embodiment, the container

management system 101 may build and manage new containers which may be added based on

user requirement. Further, the container management system 101 may include one or more

processor 103, I/O interface 104, and a memory 105. In some embodiments, the memory 105

may be communicatively coupled to the one or more processors 103. The memory 105 stores

instructions, executable by the one or more processors 103, which, on execution, may cause

the container management system 101 to build and manage container clusters, as disclosed in

the present disclosure. In an embodiment, the memory 105 may include one or more modules

106 and data 107. The one or more modules 106 may be configured to perform the steps of the

present disclosure using the data 107, to provide an automated process for building and

6

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

20

managing container clusters. In an embodiment, each of the one or more modules 106 may be

a hardware unit which may be present outside the memory 105 and coupled with the container

management system 101. The container management system 101 may be implemented in a

variety of computing systems, such as, a laptop computer, a desktop computer, a Personal

Computer (PC), a notebook, a smartphone, a tablet, e-book readers, a server, a network server,

a cloud-based server, and the like. In an embodiment, the container management system 101

may be a dedicated server or may be a cloud-based server.

[017] Initially, based on the user requirement, a new container cluster may be added to the

plurality of cluster nodes 102. The user requirement may include, but is not limited to, adding

capacity, deploying new application, products, and the like. In an embodiment, the container

management system 101 may automate hardening of the base operation system/kernel. The

hardening of the kernel is a process of implementing security measures and patching for

operating system to reduce security risk by eliminating potential attack vectors. The container

management system 101 may install vendor platforms from stash and maintain the installed

vendor platforms as infrastructure as a code. In an embodiment, configuration files related to

the plurality of cluster nodes 102 may be stored in source control system such as, the stash for

version control. In an embodiment, the stash may be a source of truth (i.e., a single point of

reference) and may be utilised during installation of vendor platforms. Further, the container

management system 101 may configure network and storage for adding the new container

based on the user requirement. Then, the container management system 101 may obtain and

configure load balancer Virtual Internet Protocol (VIP) without any manual intervention. In an

embodiment, initially before building container clusters, shared wildcard load balancers are

created by load balancer team. Thereafter, information related to the plurality of cluster nodes

102 may be stored in the source control system like stash. The container management system

101 may be configured to fetch the information during automation process of building cluster

containers to configure the plurality of cluster nodes 102. The load balance VIP is utilised to

distribute client connections to backend servers. In an embodiment, the load balancer VIP of

the container management system 101 may track availability of pods of the plurality of cluster

nodes 102 to sort/assign a request for a specific service. Further, the container management

system 101 performs an end-to-end validation by deploying test application and validating the

test application. In an embodiment, extensive automation may deploy sample application on

each node in the plurality of cluster nodes 102 and validate if it’s working end-to-end. In an

7

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

21

embodiment, the container management system 101 may also perform steps to validate storage

/ network integrations, and the like.

[018] Figure 2 illustrates a sequence diagram for building container clusters, in accordance

with some embodiments of the present disclosure. The container clusters are shared resources

where one or multiple applications may be deployed which may span across multiple network

zones. In an embodiment, the container cluster is created with multiple physical servers along

with storage and network resources. The configurations for the clusters may be stored in the

source control system such as, stash and referred by automations. The automations perform a

set of activities based on type of node in sequential order with multiple nodes in parallel. Some

of the activities may include storage, state of the build with facts, installing base OS packages

like SIO, systats, selinux, Docker® etc. Cluster may first build the master nodes to create base

minimal clusters and continue to add new workers to this cluster. This may perform cluster

specific actions like LDAP configurations for users authentications, calico configurations for

network, Pod Security Policies (PSP) install for security hardening, and the like. In Figure 2,

initially, the container management system 101 may receive an image as input. The image may

be referred as a container image. The container image is a static file with executable codes that

may be used to create a container on a computing system. In an embodiment, the container

image may be a set of instructions or a template to build/create the container. The container

image is then provided to an ansible tower job. In an embodiment, the ansible tower® is a web-

based solution that is utilised to provision underlying infrastructure of environment, virtualized

hosts, hypervisors, network devices, and the like. In an embodiment, the ansible tower is

utilised for automating the task of creating the container. Further, the container management

system 101 may perform clone clustering configuration. That is, the container management

system 101 may copy configuration information of original cluster to use as a basis for creating

a new cluster to run the container. The container management system 101 may generate or

configure memory usage for the new cluster. Further, the container management system 101

may initiate the process of building the container cluster. Firstly, the container management

system 101 may download and install a Docker Enterprise Edition (EE). The Docker EE is

designed for enterprise development for building, shipping. and running business-critical

applications. After installing the docker EE, the container management system 101 may install

Simple input/output (Sio) package. The Sio package is utilised for reading and writing binary

data in Sio structures called record and block. The container management system 101 may then

8

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

22

copy relevant Docker trusted Registry (DTR) certificates. In an embodiment, the DTR may be

installed to securely store and manage images used in the applications. Further, the content

management system 101 may check the type of operating system. In an embodiment, if the

operating system is a Red Hat® Linux®, then selinux settings is applied. While if the operating

system is a Debian®, selinux setting is not applied. The selinux may be a kernel security

module to manage access policies related to resources like file system. The container

management system 101 may install and enable systat package. The systat package is a

statistics and statistical graphics software package for monitoring system resources, their

performance and usage activities. The container management system 101 may apply patches

for Grand Unified Bootloader (GRUB) configuration. The GRUB is a tool for booting and

loading operating system kernels. The container management system 101 may adjust vm.max-

map-count and download latest kubectl®. In an embodiment, the kubectl® is a Kubernetes

command-line tool that allows to run commands, deploy applications, inspect, and manage

cluster resources, and the like. The container management system 101 deploys Universal

Control Plane (UCP) in primary master node. Further, the container management system 101

applies UCP Tom's Obvious Minimal Language (TOML) configuration file and adjusts

Lightweight Directory Access Protocol (LDAP) configuration on the UCP. The LDAP

provides communication language that application use to communicate with directory service

servers. The TOML may be designed to map unambiguously to a hash table. Further, the

TOML may be easy to parse into data structures in different languages. In an embodiment, the

UCP TOML may be UCP configuration file for the plurality of cluster nodes 102. The container

management system 101 may add manager nodes and worker nodes. Further, the container

management system 101 may copy and enable a job for daily UCP-backup. The container

management system 101 downloads client-bundle in UCP-primary and apply Pod Security

Policies (PSPs). The PSPs is a cluster-level resource that controls the actions that a pod can

perform and access. Further, the container management system 101 may copy calico setup and

configuration files and apply labels to each of the plurality of cluster nodes 102. Calico is an

open-source networking and network security solution for containers, virtual machines, and

native host-based workloads. Further, the container management system 101 may check type

of Container Network Interface (CNI). If the CNI type is calico-vxlan, the container

management system 101 may install calico vxlan type CNI and apply calico vxlan

configuration. In an embodiment, if the CNI type is BGP-peer, the container management

9

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

23

system 101 may install CNI of type BGP-peer and apply BGP-peer configuration for each node.

Further, the container management system 101 may restart docker service. Thereafter, the

container management system 101 may perform basic validation and update status for the

image.

Computing System

[019] Figure 3 illustrates a block diagram of an exemplary computer system 300 for

implementing embodiments consistent with the present disclosure. In an embodiment, the

computer system 300 is used to implement the container management system 101 for building

container cluster. The computer system 300 may include a central processing unit (“CPU” or

“processor”) 302. The processor 302 may include at least one data processor for executing

processes in Virtual Storage Area Network. The processor 302 may include specialized

processing units such as, integrated system (bus) controllers, memory management control

units, floating point units, graphics processing units, digital signal processing units, etc.

[020] The processor 302 may be disposed in communication with one or more input/output

(I/O) devices 309 and 310 via I/O interface 301. The I/O interface 301 may employ

communication protocols/methods such as, without limitation, audio, analog, digital,

monaural, RCA, stereo, IEEE-1394, serial bus, universal serial bus (USB), infrared, PS/2,

BNC, coaxial, component, composite, digital visual interface (DVI), high-definition

multimedia interface (HDMI), radio frequency (RF) antennas, S-Video, VGA, IEEE 802.n

/b/g/n/x, Bluetooth, cellular (e.g., code-division multiple access (CDMA), high-speed packet

access (HSPA+), global system for mobile communications (GSM), long-term evolution

(LTE), WiMax, or the like), etc.

[021] Using the I/O interface 301, the computer system 300 may communicate with one or

more I/O devices 309 and 310. For example, the input devices 309 may be an antenna,

keyboard, mouse, joystick, (infrared) remote control, camera, card reader, fax machine, dongle,

biometric reader, microphone, touch screen, touchpad, trackball, stylus, scanner, storage

device, transceiver, video device/source, etc. The output devices 310 may be a printer, fax

machine, video display (e.g., cathode ray tube (CRT), liquid crystal display (LCD), light-

emitting diode (LED), plasma, Plasma Display Panel (PDP), Organic light-emitting diode

display (OLED) or the like), audio speaker, etc.

10

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

24

[022] In some embodiments, the computer system 300 may consist of the container

management system 101. The processor 302 may be disposed in communication with a

communication network 311 via a network interface 03. The network interface 303 may

communicate with the communication network 311. The network interface 303 may employ

connection protocols including, without limitation, direct connect, Ethernet (e.g., twisted pair

10/100/1000 Base T), transmission control protocol/internet protocol (TCP/IP), token ring,

IEEE 802.11a/b/g/n/x, etc. The communication network 311 may include, without limitation,

a direct interconnection, local area network (LAN), wide area network (WAN), wireless

network (e.g., using Wireless Application Protocol), the Internet, etc. Using the network

interface 303 and the communication network 311, the computer system 300 may communicate

with a plurality of cluster nodes 312 to provide automation process for building container

cluster. The network interface 303 may employ connection protocols include, but not limited

to, direct connect, Ethernet (e.g., twisted pair 10/100/1000 Base T), transmission control

protocol/internet protocol (TCP/IP), token ring, IEEE 802.11a/b/g/n/x, etc.

[023] The communication network 311 includes, but is not limited to, a direct interconnection,

an e-commerce network, a peer to peer (P2P) network, local area network (LAN), wide area

network (WAN), wireless network (e.g., using Wireless Application Protocol), the Internet,

Wi-Fi, and such. The first network and the second network may either be a dedicated network

or a shared network, which represents an association of the different types of networks that use

a variety of protocols, for example, Hypertext Transfer Protocol (HTTP), Transmission Control

Protocol/Internet Protocol (TCP/IP), Wireless Application Protocol (WAP), etc., to

communicate with each other. Further, the first network and the second network may include

a variety of network devices, including routers, bridges, servers, computing devices, storage

devices, etc.

[024] In some embodiments, the processor 302 may be disposed in communication with a

memory 305 (e.g., RAM, ROM, etc. not shown in Figure 3) via a storage interface 304. The

storage interface 304 may connect to memory 305 including, without limitation, memory

drives, removable disc drives, etc., employing connection protocols such as, serial advanced

technology attachment (SATA), Integrated Drive Electronics (IDE), IEEE-1394, Universal

Serial Bus (USB), fibre channel, Small Computer Systems Interface (SCSI), etc. The memory

11

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

25

drives may further include a drum, magnetic disc drive, magneto-optical drive, optical drive,

Redundant Array of Independent Discs (RAID), solid-state memory devices, solid-state drives,

etc.

[025] The memory 305 may store a collection of program or database components, including,

without limitation, user interface 306, an operating system 307, web browser 308 etc. In some

embodiments, computer system 300 may store user/application data, such as, the data,

variables, records, etc., as described in this disclosure. Such databases may be implemented as

fault-tolerant, relational, scalable, secure databases such as Oracle ® or Sybase®.

[026] The operating system 307 may facilitate resource management and operation of the

computer system 300. Examples of operating systems include, without limitation, APPLE

MACINTOSH® OS X, UNIX®, UNIX-like system distributions (E.G., BERKELEY

SOFTWARE DISTRIBUTIONTM (BSD), FREEBSDTM, NETBSDTM, OPENBSDTM, etc.),

LINUX DISTRIBUTIONSTM (E.G., RED HATTM, UBUNTUTM, KUBUNTUTM, etc.), IBMTM

OS/2, MICROSOFTTM WINDOWSTM (XPTM, VISTATM/7/8, 10 etc.), APPLE® IOSTM,

GOOGLE® ANDROIDTM, BLACKBERRY® OS, or the like.

[027] In some embodiments, the computer system 300 may implement a web browser 308

stored program component. The web browser 308 may be a hypertext viewing application,

such as Microsoft Internet Explorer, Google Chrome, Mozilla Firefox, Apple Safari, etc.

Secure web browsing may be provided using Hypertext Transport Protocol Secure (HTTPS),

Secure Sockets Layer (SSL), Transport Layer Security (TLS), etc. Web browsers 308 may

utilize facilities such as AJAX, DHTML, Adobe Flash, JavaScript, Java, Application

Programming Interfaces (APIs), etc. In some embodiments, the computer system 300 may

implement a mail server stored program component. The mail server may be an Internet mail

server such as Microsoft Exchange, or the like. The mail server may utilize facilities such as

ASP, ActiveX, ANSI C++/C#, Microsoft .NET, Common Gateway Interface (CGI) scripts,

Java, JavaScript, PERL, PHP, Python, WebObjects, etc. The mail server may utilize

communication protocols such as Internet Message Access Protocol (IMAP), Messaging

Application Programming Interface (MAPI), Microsoft Exchange, Post Office Protocol (POP),

Simple Mail Transfer Protocol (SMTP), or the like. In some embodiments, the computer

system 300 may implement a mail client stored program component. The mail client may be a

12

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

26

mail viewing application, such as Apple Mail, Microsoft Entourage, Microsoft Outlook,

Mozilla Thunderbird, etc.

[028] Embodiments of the present disclosure discloses a container management system and

method for automating the process of building container cluster without manual intervention.

[029] Embodiments of the present disclosure reduces the time consumption for building

container cluster.

[030] Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer-readable

storage medium refers to any type of physical memory on which information or data readable

by a processor may be stored. Thus, a computer-readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) to perform steps or stages consistent with the embodiments described herein. The

term “computer-readable medium” should be understood to include tangible items and exclude

carrier waves and transient signals, i.e., be non-transitory. Examples include Random Access

Memory (RAM), Read-Only Memory (ROM), volatile memory, non-volatile memory, hard

drives, Compact Disc (CD) ROMs, DVDs, flash drives, disks, and any other known physical

storage media.

media.

[031] The described operations may be implemented as a method, system or article of

manufacture using standard programming and/or engineering techniques to produce software,

firmware, hardware, or any combination thereof. The described operations may be

implemented as code maintained in a “non-transitory computer readable medium,” where a

processor may read and execute the code from the computer readable medium. The processor

is at least one of a microprocessor and a processor capable of processing and executing the

queries. A non-transitory computer readable medium may include media such as magnetic

storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs,

DVDs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs,

PROMs, RAMs, DRAMs, SRAMs, Flash Memory, firmware, programmable logic, etc.), etc.

Further, non-transitory computer-readable media may include all computer-readable media

except for a transitory. The code implementing the described operations may further be

13

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

27

implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array

(PGA), Application Specific Integrated Circuit (ASIC), etc.).

[032] The illustrated steps are set out to explain the exemplary embodiments shown, and it

should be anticipated that ongoing technological development will change the manner in which

particular functions are performed. These examples are presented herein for purposes of

illustration, and not limitation. Further, the boundaries of the functional building blocks have

been arbitrarily defined herein for the convenience of the description. Alternative boundaries

can be defined so long as the specified functions and relationships thereof are appropriately

performed. Alternatives (including equivalents, extensions, variations, deviations, etc., of those

described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings

contained herein. Such alternatives fall within the scope and spirit of the disclosed

embodiments. Also, the words "comprising," "having," "containing," and "including," and

other similar forms are intended to be equivalent in meaning and be open ended in that an item

or items following any one of these words is not meant to be an exhaustive listing of such item

or items or meant to be limited to only the listed item or items. It must also be noted that as

used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural

references unless the context clearly dictates otherwise.

[033] Furthermore, one or more computer-readable storage media may be utilized in

implementing embodiments consistent with the present disclosure. A computer readable

storage medium refers to any type of physical memory on which information or data readable

by a processor may be stored. Thus, a computer readable storage medium may store

instructions for execution by one or more processors, including instructions for causing the

processor(s) to perform steps or stages consistent with the embodiments described herein. The

term “computer readable medium” should be understood to include tangible items and exclude

carrier waves and transient signals, i.e., are non-transitory. Examples include random access

memory (RAM), read-only memory (ROM), volatile memory, non-volatile memory, hard

drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.

[034] Finally, the language used in the specification has been principally selected for

readability and instructional purposes, and it may not have been selected to delineate or

14

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

28

circumscribe the inventive subject matter. Accordingly, the disclosure of the embodiments of

the disclosure is intended to be illustrative, but not limiting, of the scope of the disclosure.

[035] With respect to the use of substantially any plural and/or singular terms herein, those

having skill in the art can translate from the plural to the singular and/or from the singular to

the plural as is appropriate to the context and/or application. The various singular/plural

permutations may be expressly set forth herein for sake of clarity.

15

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

29

SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

ABSTRACT

The present disclosure provides a method and container management system for building

container cluster. The container management system based on user requirement may automate

hardening of operating system and configure network and storage for adding new container.

The container management system obtains and configures load balancer VIP without any

manual intervention. Thereafter, the container management system performs end-to-end

validation by deploying test application and validating the test application. Thus, the present

disclosure reduces time consumption for building container clusters based on the user

requirement.

16

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

30

1/3

100

CONTAINER MANAGEMENT

SYSTEM

101

 PROCESSOR

103

I/O INTERFACE

104

MEMORY 105

CLUSTER

NODE

1021

.

CLUSTER

NODE

1022

CLUSTER

NODE

102n

 MODULES

106

 DATA

107

Figure 1

17

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

15

2/3

Figure 2

18

PERUMAL et al.: SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER

Published by Technical Disclosure Commons, 2023

15

3/3

COMPUTER SYSTEM 300

I/O INTERFACE

301

PROCESSOR

 302

NETWORK

INTERFACE

303

STORAGE INTERFACE 304

MEMORY 305

USER INTERFACE

 306

OPERATING SYSTEM

307

WEB BROWSER

308

INPUT DEVICES

 309

OUTPUT

DEVICES 310

COMMUNICATION NETWORK

311

CLUSTER

NODE

3121

 .CLUSTER

NODE

3122

CLUSTER

NODE

 312n

Figure 3

19

Defensive Publications Series, Art. 5626 [2023]

https://www.tdcommons.org/dpubs_series/5626

	SYSTEM AND METHOD FOR BUILDING CONTAINER CLUSTER
	Recommended Citation
	Inventor(s)

	tmp.1672987187.pdf.TQo6V

