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ABSTRACT
One of the geophysical techniques most frequently utilized

in the oil and gas (O&G) sector for hydrocarbon prospect-
ing is seismic reflection. The seismic reflection technique
is essential for an estimate the location and volume of gas
accumulations in various onshore fields. However, this tech-
nique generates a large amount of data, and its data ac-
quisitions are noisy. Thus it takes a while to analyze and
interpret seismic data. Computational techniques based on
machine learning have been proposed considering Direct Hy-
drocarbon Indicators (DHIs) to assist geoscientists in such
activities. In this paper, we describe a method to detect
gas accumulations based on the Particle Swarm Optimiza-
tion (PSO) algorithm and the Vision Transformer neural
network (ViT). In the best scenario, the proposed method
achieved a sensitivity of 88.60%, a specificity of 99.56% and
an accuracy of 99.37%. We present some tests performed
on Parnáıba Basin and Netherlands F3-Block fields. Thus,
it demonstrates that the proposed method is promising for
assisting specialists in gas exploration tasks.

CCS Concepts
•Computing methodologies → Image segmentation;
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1. INTRODUCTION
Seismic reflection is one of the most used geophysical meth-

ods in the oil and gas (O&G) industry to extract information
related to geological structures, lithology and rock proper-
ties [24, 9, 5]. Moreover, that method also has been used
to estimate the location and volume of gas accumulations,
contributing to reducing exploration risks.

Processing these type of data requires a lot of time and
effort from qualified teams that choose a geological model
after analyzing several potential scenarios. However, the
time necessary to perform the seismic data interpretation is
not compatible with the short deadlines imposed by the in-
dustry [27]. For this reason, various studies have developed
methods that integrate seismic attribute extraction with ma-
chine learning algorithms [17, 31], considering supervised
methods and a labeled dataset. In this scenario, the features
are constituted of samples (values or derived seismic prop-
erties) that are coupled with the appropriate class name.
This method was used to detect geological faults in seismic
images [17] using a texture descriptor to extract seismic at-
tributes associated with a Support Vector Machine (SVM).
The seismic attributes with neural networks can be found
in [31], who used 12-dimensional attributes and a Multi-
Layer Perceptron (MLP) to detect fault lines.

Concerning the object of study addressed in this research,
which is the detection of potential natural gas accumula-
tions, there are few related works in the literature. Among
these works stands out the work proposed by [7]. This work
presents a method for automatic detection and delimita-
tion of the natural gas region in seismic images (2D) us-
ing MLP-Mixer and U-Net. The proposed method obtained
competitive results with an F1-score of 84.18%, an accuracy
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of 99.6%, a sensitivity of 86.85%, and specificity of 99.79%,
using the seismic imaging database named Netherlands F3-
Block [30].

Furthermore, a study using a Long Short-Term Memory
(LSTM) deep learning model [27] proposed a new method-
ology to detect DHIs in seismic data using a time series
approach. In this study, they transform 3D cube seismic
data from Netherleands F3-block to temporal seismic traces.
Thus, each seismic trace was divided into patches that are
the entrance to the LSTM network, and its outputs indicate
the presence or absence of gas. The results achieved, eval-
uated by the indices of sensitivity, specificity, accuracy, and
AUC were 97.1%, 96.83%, 97.1%, and 99.2%, respectively.

Lately, a transfer learning technique in an LSTM model
[26] was proposed to expand the existing classifier and ap-
ply it to a different type of seismic surveys in the Parnáıba
Basin. Moreover, in order to check that methodology based
on seismic trace, other networks based on different archi-
tectures were developed using an improved encoder-decoder
LSTM [4] and a Transformer neural network [10]. All those
networks have been implemented in ALINE, a computa-
tional tool for the assessment of gas accumulations [25]. In
the best scenario, the proposed method obtained 97.62%
of accuracy, 90.28% of sensitivity, 97.67% of specificity and
98.84% of AUC.

Recently, a Deep Transformer Neural Network (Time2Vec
Transformer)[11] was proposed to detect the probability of
the existence of hydrocarbons in seismic images of the Park
of the Hawks. In this work, seismic images 2D composed the
dataset. The images were decomposed into one-dimensional
time series that fed a Transformer neural network. This net-
work had its input layer modified for a temporal embedding
(Time2Vec). In addition, a fully connected layer replaced its
transformer decoder output. The proposed method was able
to detect DHI and help specialists in this task that demands
time and human effort with less time and greater precision.
The best results had an accuracy of 98.87%, a sensitivity of
96.12%, a specificity of 98.92%, and an area under the ROC
curve (AUC) of 97.52%.

We present an improved method for identifying possible
gas accumulations using the Vision Transformer (ViT) Neu-
ral Network in this paper. ViT is a classification neural
network based on the original Transformer, which was first
proposed to solve natural language processing (NLP) chal-
lenges [12]. Furthermore, we apply the Particle Swarm Op-
timization (PSO) algorithm to optimize the ViT model hy-
perparameters. [21, 19]. The results show that our proposal
improves the accuracy of the Transformer neural network
and increases its efficiency by reducing the spent computa-
tional time.

Therefore, the present work proposes a 2D method capa-
ble of detect potential gas accumulations in reflection seis-
mic images, using a Vision Transformer Neural Network and
Particle Swarm Optimization (PSO). In this way, it is ex-
pected to help specialists in the task of delimiting gas re-
gions. Then, the key contributions of this work are sum-
marized as follows: (a) this study develops a method ca-
pable to direct detect hydrocarbons indicators using Vision
Transformer; (b) It optimizes the Vision Transformer hyper-
parameters using an evolutionary algorithm.

This paper is organized as follows: Section 2 presents the
materials used and the proposed method. Section 3 discusses
the experiments performed out to validate our research. Fi-

nally, our conclusions and future works are presented in Sec-
tion 4.

2. MATERIALS AND METHOD

2.1 Datasets
Diverse samples are required to develop a robust method.

In this study, we use seismic data from very different sources.
The first set of seismic data comes from the F3-block of the
North Sea [30]. The second is a set of reflection seismic
images from Brazil’s northeast region [8].

The first seismic dataset used to support the proposed
method is the Netherlands Offshore F3-Block public 3D seis-
mic survey. This dataset is available in the dGB Earth Sci-
ences Open Seismic Repository (1987), maintained by dGB
Earth Sciences. The Netherlands F3 is located in the Dutch
offshore portion of the Graben Central basin, situated ap-
proximately 180 km off the Dutch coast [30] (Figure 3).

The dataset is 384 km2 in size, with 651 inlines and 951
crosslines, a time interval of 1848ms, a sample rate of 4ms,
and a bin size of 25m [30]. The research is being conducted
on the Dutch coast of the North Sea. In addition to the orig-
inal 3D seismic, the repository includes filtered versions of
the data, acoustic impedance cubes, some already computed
seismic attributes, four wells with markers and geophysical
profiles (F02-1, F03-1, F03-4, F06-1), and eight correspond-
ing seismic horizons [30, 18, 29].

To manually locate the gas pockets and their possible in-
dicators, the specialist used information in addition to the
available cube and other accessible information. Along with
the original seismic data, impedance cubes and good geo-
physical profiles played significant roles in labeling the grid
input [30, 27, 29]. Expert input is essential for proper train-
ing and validation steps of the deep learning algorithm and
for evaluating the methodology [27]. However, the AI cube
does not present information for the entire seismic record,
and the primary concentration of gas indicators is almost re-
stricted near the sigmoidal strata [30, 2]. In this sense, the
seismic images were cropped to a region of interest, avoiding
possible noisy data imputation and misleading gas labeling,
thus improving the quality of neural network training [27].

The second seismic dataset used in this research is from
the Paleozoic Parnaba Basin. The Basin is a typical oval-
shaped intracratonic basin formed on a continental basement
during the South American Platform Stabilization Stage.
It is situated between the Amazonic Craton and the Bor-
borema Province [3, 8]. It extends more than 600,000 km2

and has a depocenter with a thickness of over 3,500 m [8].
The Poti Formation sandstones with good poroperm char-

acteristics in the basin serve as the primary reservoirs in six
of the seven existing fields in the Parnáıba Basin [8]. The
major producing area is known as the ‘Parque dos Gaviões’
translated as ‘Park of the Hawks Field’ in a reference to
the native Brazilian hawk species that the fields are named
(Figure 2).

The available data consists of 380 seismic sections located
at the Park of the Hawks Field area. The database was pro-
vided and labeled by Eneva S.A., a Brazilian energy com-
pany. These data were collected at various time intervals
with varying climate, geology, acquisition procedure, and
other external factors. As a result, the data are numerous
and heterogeneous.

First, we employed a data preparation method, and then
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Figure 1: Steps of the proposed method

Park of the Hawks Park of the Hawks

Figure 2: Park of the Hawks Field [8]

we used the Vision Transformer model to detect possible gas
accumulations in seismic images. Figure 1 depicts each of
these steps, with more information provided in the following
sections.

2.2 Preprocessing
First, we performed a data preprocessing step in the seis-

mic images from the two sources (Netherlands and Parnaiba
Basin). First, we applied initial processing to the Nether-
lands F3 dataset, as it is a three-dimensional cube, to decom-
pose it into 2D images perpendicular (crossline) and paral-
lel (inline) to the direction in which the data were acquired

Figure 3: Location of the F3 3D survey in the North Sea,
Netherlands offshore [30]

(Figure 4).
Then, ENEVA geoscientists delimited the Regions of In-

terest (ROI) that may contain gas accumulation based on
field data, drilled exploratory wells, and inference. Besides,
the ROI is individual to each image and defines a region
with seismic patterns that the model may learn to detect gas
or non-gas dividing structures. Subsequently, using a fixed
window size, we use a sliding window technique to extract
patches over ROIs. Finally, Particle Swarm Optimization
(PSO) sets the window size that produces the best results.
The Table 3 presents the window size hyperparameters op-
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Cube 2D Seismic image

Figure 4: Cube transformation for 2D seismic imaging

timization by PSO per dataset.
After the patch generation step, there is an imbalance

between gas and non-gas patches at an average ROI ra-
tio of 1:234 to the Parnaiba Basin and a ratio of 1:531
to the Netherlands F3-block. This sample imbalance can
negatively impact the model’s performance in learning the
correct gas patterns. For this reason, we perform the un-
dersampling technique [14] in patches of the predominant
class (non-gas) to exclude some random samples to obtain
a 1:4 ratio of gas to non-gas samples in both sources. The
1:4 ratio produced the best results without compromising
computational resources.

2.3 Gas detection using Vision Transformer
After data preparation, the seismic patches are classified

as gas or non-gas using the ViT model. The ViT archi-
tecture employed in this research is illustrated in Figure 5.
The architecture consists of an Embedding layer, a stack
of Transformer blocks, and a Multilayer Perceptron (MLP).
The Embedding layer transforms a 2D image into flattened
token sequences, keeping its positional information, to feed
the stacked Transformer blocks. A standard Transformer
encoder consists of multi-head self-attention layers alternat-
ing with MLP blocks. Besides, there is a Layernorm in the
block beginning and residual connections at the end of each
Transformer block. Finally, an MLP layer is responsible for
classifying the samples based on the stacked Transformer
blocks output.

ViT has a few variants (ViT-Base, Vit-Large, and ViT-
Huge) [13] that differ due to specific hyperparameters: Lay-
ers, Hidden Size D, MLP Size, Dropout e Heads. The Lay-
ers hyperparameter represents the depth of the network and
indicates the number of stacked Transformer encoders. Hid-
den Size (D) is the dimension that the two-dimensional in-
put samples will be flattened through a linear projection.
MLP Size represents the number of neurons in the hidden
layer. Dropout is used in MLP to solve the problem of over-
adjusting training, and Heads is the number of attention

layers present in the Transformer’s encoder.
At last, we use PSO to optimize the ViT model’s hyperpa-

rameters. We chose PSO because it provides a high-quality
solution in less time, has more efficient agility features, and
is potentially more efficient than other optimization tech-
niques. [21, 19]. Table 4 and 5 summarize the results of the
hyperparameters optimization method.

The model generates a binary classification of gas and
non-gas, which we use to reconstruct the final seismic im-
age. In the final image, we aggregate the output values
associated with the same coordinate. At end, the generated
image is then normalized between 0 and 1. The validation
metrics listed below were used to assess the efficacy of the
method adopted: accuracy (Acc), sensitivity (Sens), speci-
ficity (Spec), and area under roc curve (AUC) [15].

2.4 Parameter optimization using PSO
The PSO algorithm is one of the most well-known meta-

heuristics. It was first proposed by [16] as a solution method-
ology for continuous nonlinear problems. The PSO algo-
rithm is an evolutionary technique inspired by the agglom-
eration and collaboration behavior of biological populations
[16]. Since the original introduction in 1995, there have been
minor adjustments and refinements to the PSO, but the fun-
damental principles have remained.

The PSO aims for an optimal solution by iteratively chang-
ing the velocities and positions of the particle according to
the particle and flight experiences of the group, guiding them
to the location of Gbest and Pbest in subsequent iterations.
Gbest corresponds to the optimal value of fitness of the pop-
ulation achieved by any particle, while Pbest corresponds
to the optimal value of fitness of the particle achieved so
far [20]. Figure 6 illustrates the movement of PSO particles.

Also, PSO can generate a high-quality solution within a
shorter calculation time and exhibiting more effective sta-
ble convergence characteristics than other optimization tech-
niques. Moreover, there are fewer control parameters to ad-
just, and it is more efficient in maintaining the diversity of
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Figure 5: Vision Transformer architecture [13]

Figure 6: PSO Particle Movement

The best global solution

Particle

the swarm as all the particles use the information related
to the most successful particle (Gbest particle) to enhance
themselves. For this reason, we chose the PSO to optimize
the Vision Transformer model hyperparameters [20].

The Vision Transformer hyperparameters used for opti-
mization are those described in Subsection 2.3: Hidden Size
D, Layers, Heads, MLP Size, Dropout. A five-position vec-
tor represents a PSO particle, which each vector position
represents one of the hyperparameters mentioned. Each pa-
rameter requires a search space, which is simply denoted by
the limits of the maximum and minimum values that can
be assumed. For the Hidden Size D, a set of values were
defined as 128, 256, 512, and 1024. The Layer depth were
set as integer values between one and six. Then for the head
parameters, discrete thresholds were defined between eight
and thirty and six. Afterward, the dropout, a continuous
threshold was defined between zero and one. Finally, a dis-

crete threshold between 128 and 1024 was set. Furthermore,
to allow the PSO algorithm to evolve, a fitness function was
required.

The fitness of each particle was evaluated using the re-
sults obtained by the Vision Transformer model, which op-
erated on the validation subset according to the selected
parameters. Here, we explain the weighting method used
in fitness. The main purpose of weighting is to maintain a
balance between sensitivity and precision; for this, we used
the F-score [28] to obtain superior models in the detection of
potential natural gas accumulations. This fitness is defined
as Equation 1.

Fitness = F − Score = 2 ∗ Pre ∗Rec

Pre + Rec
(1)

where Pre = TP
TP+FP

and Rec = TP
TP+FN

. True positive

(TP) indicates the correctly detected cases. False positive
(FP) denotes the negative cases mistakenly detected as pos-
itive. True negative (TN) refers to the truly detected neg-
ative cases. False negative (FN) denotes the positive cases
mistakenly detected as negative.

After defining a particle, its thresholds, and its fitness
function, the following steps were performed [21]:

• Step 1: A population of ten random particles was cre-
ated. Then, the fitness function of each particle was
computed.

• Step 2: Each particle traveled circularly through the
search space at an initial speed, as established in the
previous step. For each iteration, the optimal local
particle was sought. The best overall result represents
the current best particle. The speeds were also up-
dated during this step.

• Step 3: After the speed was calculated and updated,
the particles flew in the search space at this new speed.

• Step 4: The best location and best overall result were
updated to the best position, according to the fitness
function.
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• Step 5: The search stop condition was checked. If the
fitness function of the particle was optimal, the search
was interrupted. Otherwise, we returned to Step 2.

At the end of this optimization, we obtained the best Vi-
sion Transformer parameters of the model validation step.
Finally, a test database was applied, and validation metrics
were extracted to calculate the method’s robustness.

3. RESULTS AND DISCUSSION
In this section, we show the training environment, the re-

sult of each step, and the performance of the method in the
case study. The proposed method was implemented by us-
ing the Python language. We mainly used the Keras deep
learning library [6] with tensorflow-gpu [1] as the back-end.
Also, we use a python library pyswarm [23] to perform the
Particle Swarm Optimization. The computer used in the ex-
periments consists of an Intel Core i7-9700K 4.20 GHz CPU,
24 GB of RAM, and Nvidia GeForce RTX 2070 super graph-
ics card, running on the Windows 11 operating system. The
split of the seismic images 2D dataset for the experiments is
described in Table 1 and 2.

Table 1: Park of the Hawks seismic images division
Dataset Train Validation Test
Black 15 2 4
Real 14 2 5

White 24 4 7
Red 7 1 2
All 60 9 18

Table 2: F3-block seismic images division
Dataset Train Validation Test
Inline 391 130 130

Crossline 571 190 190
All 962 320 320

We can see that the datasets differ in terms of the quantity
of images that can be used for training, validation, and test-
ing. As a result of the large number of training samples, the
results may vary depending on the number of representative
individuals in each dataset.

Then, the experiments conducted to validate the suggested
method are then shown. First, the results are provided
independently for each dataset, then according to the use
of PSO, and finally, the results are compared to other ap-
proaches.

Table 3: PSO Window size optimization hyperparameters
Dataset With Height Step size

Park of the Hawks 20 20 1
F3-Block 64 64 3

3.1 Results per datasets
Following base splitting, the next step is to extract patches

from each ROI for each image in each dataset. For this,
Fixed window size patches were extracted from each image
based on the size indicated by the PSO (Table 3). It is

then under sampled to maintain a 1:4 ratio for each gas and
non-gas patch (Section 2.2).

After the patches have been extracted, the ViT model is
trained to classify them as gas or non-gas. As highlighted
in Section 2.3, ViT hyperparameters have been optimized
by PSO (Table 4 and 5). Table 6 and 7 describe the results
produced by applying the method to the described datasets.

Table 4: Optimized hyperparameters of the ViT model using
PSO (Park Of The Hawks)

Hidden Size D Layers Heads MLP Size Dropout
256 3 20 512 0.125

Table 5: Optimized hyperparameters of the ViT model using
PSO (Netherlands F3-Block)

Hidden Size D Layers Heads MLP Size Dropout
512 4 24 1024 0.25

Table 6: Results per dataset (Park of The Hawks)
Dataset Sen (%) Spec (%) Acc (%) AUC (%)
Black 37.63 89.29 88.29 63.46
Real 50.13 94.29 93.29 72.21

White 58.02 88.77 88.29 73.39
Red 67.49 96.85 96.20 82.17
All 75.14 96.14 95.60 85.64

Table 7: Results per dataset (Netherlands F3-Block)
Dataset Sen (%) Spec (%) Acc (%) AUC (%)
Inline 75.03 98.88 98.11 86.95

Crossline 77.44 98.65 97.90 88.05
All 88.60 99.56 99.37 94.08

We noticed that specificity and accuracy scores more than
88% were produced in ”all” dataset. The Gavião Black
dataset, on the other hand, produced a poor sensitivity
in comparison to the others. This conclusion can be at-
tributable to the low and varied quality of seismic data. [27].

However, we observed that when we train ”all” of the
dataset together in the Park of the Hawks, the results yield
the best metrics. This is justified by an increase in data vari-
ability, which allows the ViT to better learn the patterns of
differentiation across classes, increasing the network’s gener-
alization capacity and yielding metrics of 75.14% sensitivity,
96.14% specificity, 95.60% accuracy, and 85.64% AUC. Fur-
thermore, the same phenomenon appears in the F3-Block,
where, when joining all datasets, the metrics present higher
outcomes, such as 88.60% , 99.37%, 99.56%, and 94.08%,
sensitivity, accuracy, specificity, and AUC, respectively.

3.2 Results: Vit with PSO and without
It is worth mentioning that the use of PSO for hyperpa-

rameter optimization is helpful because the search for these
parameters is time-consuming and subject to large varia-
tion given the search space; nevertheless, by utilizing PSO,
we can identify them automatically and increase the ViT
performance even further. Thus, in order to validate the
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PSO efficiency, we give Table 8, which shows the outcomes
obtained by ViT with its default hyperparameters and op-
timized by the PSO across all datasets.

Table 8: Results with and without PSO
Dataset Sen (%) Spec (%) Acc (%) AUC (%)

Vit 63.81 90.20 89.44 77.01
Vit + PSO 75.14 96.14 95.60 85.64

We can see that the use of PSO provided a significant
improvement in validation metrics. Where sensitivity has
improved by more than 11%, this means that more gas re-
gions are being found. Furthermore, the specificity improves
by almost 6%, which shows that with the use of PSO the
method produced fewer false positives. Thus, we emphasize
that the use of PSO for ViT optimization was essential to
produce promising results.

3.3 Comparison with other approaches
In this section, we present a comparison of the results

achieved in the ‘All dataset’ with the work proposed by [27]
that uses LSTM and we also trained and tested a LeNet-
5 [22] network to validate the effectiveness of ViT in relation
to a conventional CNN. The Table 9 and 10 displays the
results.

Table 9: Results with other approaches (Park of the Hawks)
Approach Sen (%) Spec (%) Acc (%) AUC (%)

LSTM 52.99 96.69 93.97 74.84
LeNet-5 30.54 93.61 90.57 62.08

Vit + PSO 75.14 96.14 95.60 85.64

Table 10: Results with other approaches (Netherlands F3-
Block)

Approach Sen (%) Spec (%) Acc (%) AUC (%)
LSTM 62.51 98.39 97.42 80.45

LeNet-5 49.54 98.84 96.69 74.37
Vit + PSO 88.60 99.56 99.37 94.08

We observed that the proposed method surpasses the other
comparatives in relation to sensitivity. We highlight once
again the sensitivity metric as being crucial, given the impor-
tance of gas detection. Compared to LeNet-5, our method
outperforms all validation metrics, showing its generaliza-
tion power compared to a conventional CNN. On the other
hand, the work of [27] presents metric of specificity slightly
higher than the proposed method. However, it is worth not-
ing that our method produces greater sensibility and accu-
racy in the gas class, which demonstrates greater robust-
ness.

3.4 Case study
To evaluate the results achieved in the proposed method,

we define four case studies. In the first and second case, the
model can detect the gas reservoir effectively. In the third
and fourth case, the model presents some deficiencies in gas
reservoir detection results.

In Figure 7 and 8, we can see six cases that had good
results in detecting gas reservoirs. However, some false pos-
itives are generated (in red), the method can distinguish the

aimed region (in blue), which can facilitate the analysis of
the data by an expert. Thus, these cases demonstrate that
the proposed method is promising for both quantitative and
qualitative results. It is worth mentioning that several sim-
ilar results were found across all datasets.

A

B

C

Figure 7: Case Study 1: (a), (b) and (c) represent three
different seismic images. In red, it represents false positives.
In blue, the true positives. In green, false negatives. Park of
the Hawks dataset

A

B

C

Figure 8: Case Study 2: (a), (b) and (c) represent three dif-
ferent seismic images. In red, it represents false positives. In
blue, the true positives. In green, false negatives. Nether-
lands F3-Block dataset

The third and fourth case study are illustrated in Figure 9
and 10. Then, in these cases, we can assume that the pro-
posed method cannot detect some potential gas reservoirs.
Although the model identified some of the targeted regions,
the majority of the gas reservoir regions were not detected
(in green). Furthermore, ViT confuses the gas prediction
with similar locations, resulting in false-positive predictions.

It is important to note that data analysis is not an easy
task. As a result, it necessitates professional knowledge and
is time-consuming. As a result, we believe that the proposal,
when combined with the expert’s data analysis knowledge,
can be a better technique of discovering potential gas reser-
voirs.

3.5 Comparison with related works
After the presentation of the proposed method results,

a comparative analysis of the these results achieved with
the results of the related works was carried out. For a
more rigorous comparison, the results obtained in the pro-
posed method were compared with related works that seek
the same objective, the detection of potential gas accumu-
lations. In Table 11, we present information on the tech-
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A

B

C

Figure 9: Case Study 3: (a), (b) and (c) represent three
different seismic images. In red, it represents false positives.
In blue, the true positives. In green, false negatives. Park of
the Hawks dataset

A

B

C

Figure 10: Case Study 4: (a), (b) and (c) represent three
different seismic images. In red, it represents false positives.
In blue, the true positives. In green, false negatives. Nether-
lands F3-Block dataset

niques, datasets, and a summary of the results found in re-
lated works and the proposed method.

3.6 Advances and limitations of the method
Because it proposes a new and automated method to the

detection of potential natural gas accumulations, our method
offers a series of merits and advances, of which we highlight
the main ones as follows:

1. It offers an automated method, developed using two
different sources, public databases (Subsection 2.1).
The diversity of the databases simulates the real spe-
cialist context, and their publicity makes the method
amenable to comparison.

2. Because the reflection sesmic images databases differ
and are not standardized in either the data-acquisition
or examination processes, the images present numer-
ous patterns. Thus, our proposed method implements
a crucial stage of image preprocessing; despite its sim-
plicity, this is necessary for the successful execution of

the entire method.

3. To the best of our knowledge, this is the first method
to use Vision Transformer combined with a PSO op-
timization algorithm to detect potential natural gas
accumulations.

4. Automated methods have been studied by many re-
searchers; however, these methods always encounter a
parameterization barrier. This is no different for the
Vision Transformer model, which features a range of
parameters. Thus, we proposed a PSO to automat-
ically optimize these parameters and bypass the pa-
rameter selection step.

5. All of these steps increase the method’s utility. The
present study obtained results comparable to those
found in the literature and proposes an innovative new
method to detect potential natural gas accumulations
in reflection seismic images.

6. The proposed method, using Vision Transformer and
PSO, achieved a maximum a sensitivity of 88.60%, a
specificity of 99.56% and an accuracy of 99.37%. These
results indicate the method’s potential.

However, as with any computational method, it has some
limitations. We highlight these as follows:

1. Our method did not propose a new deep architecture.
We used the existing architectures and demonstrated
their effectiveness for capturing deep features. We be-
lieved that developing a new architecture will further
improve results.

2. The present method indicates the region that presents
gas or no t in a reflection seismic image. However, the
proposed method need a specialist assistence to define
the Region of Interest. Adding a segmentation step to
identify the Region of Interest could further help gas
exploration professionals.

4. CONCLUSION
In this work a method for detecting gas using seismic

data has been proposed. A ViT Transformer network opti-
mized by PSO was presented for this purpose. The proposed
method used a two-dimensional approach with an architec-
ture based on attention processes, which was originally de-
veloped to solve difficulties in natural language processing
but has since been adapted to other domains such as image
processing. The proposed method comprises of improving
and adjusting the settings of the ViT Transformer using an
evolutionary algorithm to better adapt it to pattern detec-
tion in seismic images.

The proposed method produces promising outcomes. The
approach was effective for gas detection, with sensitivity
comparable to other models investigated in the literature.
The use of PSO to optimize ViT hyperparameters was also
a significant step, resulting in an improvement in all valida-
tion measures. As a result, it is thought that the proposed
method, when combined with professional practice, can be
significant for gas detection.

As future work, we recommend testing the method on
more datasets, as the model may not have reached its full
generality given the limitations and variability of the data.
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Table 11: Comparison with related works
Method Seismic Database Sen (%) Spec (%) Acc (%) AUC (%)

MLP-Mixer and U-Net [7] Netherlands F3-Block 86.85 99.79 99.6 93.27
Time2Vec Transformer [11] Park of the Hawks 96.12 98.92 98.87 97.52
LSTM [26] Park of the Hawks 90.28 97.67 97.62 96.32
LSTM [27] Netherlands F3-Block 97.1 96.83 97.1 97.67
Proposed method (Vit + PSO) Netherlands F3-Block 88.60 99.56 99.37 94.08
Proposed method (Vit + PSO) Park of the Hawks 75.14 96.14 95.60 85.64

Besides, we suggest creating a method for determining the
ROI to transform the method into a fully automated ap-
proach. Also, an adaptation of ViT so that it works with a
semantic segmentation network to improve the performance
of the results already achieved by ViT-Seismic. Finally, an-
other possible improvement would be to combine the 1D
information with the 2D information achieved by ViT.
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