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ABSTRACT
We embed linear and nonlinear parametrisations of beyond standard cosmological physics in the halo model reaction framework,
providing a model-independent prescription for the nonlinear matter power spectrum. As an application, we focus on Horndeski
theories, using the Effective Field Theory of Dark Energy (EFTofDE) to parameterise linear and quasi-nonlinear perturbations.
In the nonlinear regime we investigate both a nonlinear parameterised-post Friedmannian (nPPF) approach as well as a phys-
ically motivated and approximate phenomenological model based on the error function (Erf). We compare the parameterised
approaches’ predictions of the nonlinear matter power spectrum to the exact solutions, as well as state-of-the-art emulators, in
an evolving dark energy scenario and two well studied modified gravity models, finding sub-percent agreement in the reaction
using the Erf model at 𝑧 ≤ 1 and 𝑘 ≤ 5 ℎ/Mpc. This suggests only an additional 3 free constants, above the background and
linear theory parameters, are sufficient to model nonlinear, non-standard cosmology in the matter power spectrum at scales down
to 𝑘 ≤ 3ℎ /Mpc within 2% accuracy. We implement the parametrisations into ver.2.0 of the ReACT code: ACTio et ReACTio.

Key words: cosmology: theory – large-scale structure of the Universe – methods: analytical – methods: numerical

1 INTRODUCTION

Fundamental models of nature generally begin with an action, which
when combined with the principle of least action, gives us the tempo-
ral and spatial dynamics of the system. For the physical system that is
our Universe (U), the action is widely accepted to be the action asso-
ciated with general relativity (GR), the Einstein-Hilbert (EH) action,
together with a matter contribution and cosmological constant

𝑆𝑈 = 𝑆EH + 𝑆M =

∫
𝑑4𝑥

√−𝑔
[
𝑅

2𝜅2
− Λ

𝜅2

]
+ 𝑆M , (1)

where 𝜅2 = 8𝜋𝐺N, 𝐺N being Newton’s gravitational constant and 𝑅
is the 4-dimensional Ricci scalar that gauges the curvature of space-
time. 𝑆M is the action of the matter content of the Universe, usually
approximated by a perfect, pressureless fluid, but in general will
contain all Standard Model fields. Λ is the (cosmological) constant
that can appear naturally in a 4-dimensional action without violat-
ing preferred symmetries (see, for example, Fernandes et al. 2022).
This constant is measured to be non-zero by a suite of cosmological
probes such as the cosmic microwave background (CMB) radiation
(Aghanim et al. 2020), type 1a supernovae (Riess et al. 1998; Perl-
mutter et al. 1999), and optical galaxy surveys (see, for example,

★ E-mail:ben.bose@ed.ac.uk

Alam et al. 2021). This has led to the standard model of cosmology,
ΛCDM, where CDM stands for cold dark matter1.
Consistently, we would expect a non-zero cosmological constant

from quantum field theory (QFT) predictions, as all vacuum states
of standard model particle fields will contribute an energy density,
𝜌vac, to the Universe that appears as a constant in the model’s action.
Unfortunately, this results in one of the biggest problems in physics
(see Martin 2012, for a review). The first aspect of the problem
is that our naïve (QFT) predictions for the energy density of Λ is at
least 60 orders of magnitude larger than the (cosmological) measured
value2. We can still make a (fine) tuning of the ‘bare’ constant Λbare
in the potentials of these fields to cancel the other vacuum energy
contributions to yield the observed value for Λ.
One might be fine with this, after all QFTs are used to removing

divergences through renormalisation techniques. The real problem
is that we need to repeatedly fine tune every time a new energy
scale or particle field is considered which changes 𝜌vac (this can
also happen through phase transitions) (see Padilla 2015, for an
overview). In other words, the value of Λ, which is a low energy
physics parameter, is incredibly sensitive to the high energy physics,
which is not technically natural and in apparent opposition to ourwide
spread employment of effective field theories. These two aspects of

1 CDM is the primarymatter component in this model, outweighing baryonic
matter five fold according to cosmological and astrophysical measurements
such as the CMB.
2 This depends on the energy scales we are considering in the QFT calcula-
tion.
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2 B. Bose

the problem are often referred to collectively as the ‘cosmological
constant problem’.We refer the interested reader to the seminal paper
byWeinberg (1989) for a review and the famous no-go theoremwhich
implicitly delineates possible solutions to the problem.
Prospective solutions to these problems include gravitationally

screening the vacuum energy from our observations by using a scalar
field (for example, Charmousis et al. 2012; Appleby & Linder 2020;
Sobral Blanco & Lombriser 2020; Khan & Taylor 2022) or using
extra spacetime dimensions (for example, Burgess 2004). These so-
lutions would of course also need to produce a small residual energy
that can be used to explain our cosmological measurements, in par-
ticular those associated with an accelerated spatial expansion. This
distinct issue can be called the ‘dark energy problem’, which may
be explained through a variation in the fundamental constants of
nature such as Newton’s gravitational constant, or having the accel-
eration driven by a scalar field (see Thomas et al. 2022, for a general
parameterisation of such options).
The dark energy and cosmological constant problems motivate

a minimal extension of Equation 1 to include a single extra scalar
degree of freedom, 𝜙, which is both physically and theoretically ac-
ceptable, i.e., not allowing for negative energies for example, and can
encapsulate one or more cosmological constant problem solutions.
Such an extension is found in the well studied Horndeski (H) scalar-
tensor theory (Horndeski 1974). This is the most general, Lorentz-
covariant scalar-tensor theory in 4 spacetime dimensions that yields
second-order equations of motion, a basic condition for the physical
viability of the theory, i.e., it is ghost-free. A universe described by
Horndeski gravity is given as

𝑆𝑈 = 𝑆H + 𝑆M =

∫
𝑑4𝑥

√−𝑔[
𝐺2 (𝜙, 𝑋) − 𝐺3 (𝜙, 𝑋)�𝜙 + 𝐺4 (𝜙, 𝑋)𝑅

+ 𝐺4,𝑋 (𝜙, 𝑋) [(�𝜙)2 − (∇𝜇∇𝜈𝜙)2]
+ 𝐺5 (𝜙, 𝑋)𝐺𝜇𝜈∇𝜇∇𝜈𝜙

− 1
6
𝐺5,𝑋 (𝜙, 𝑋) [(�𝜙)3 − 3�𝜙(∇𝜇∇𝜈𝜙)2 + 2(∇𝜇∇𝜈𝜙)3]

]
+ 𝑆M , (2)

where each𝐺𝑖 (𝜙, 𝑋), 𝑖 = 2, 3, 4, 5 is a free function of the scalar field
𝜙 and its canonical kinetic term 𝑋 = −(𝜕𝜙)2/2, and 𝐺𝑖,𝑋 (𝜙, 𝑋) =
𝜕𝐺𝑖/𝜕𝑋 .
This opens up a very large theory space which needs to be trimmed

downwith observational data.We have very strong data constraints at
small spatial scales, i.e., within the Solar System and at astrophysical
scales (Will 1993; Will 2014), showing gravity is highly consistent
with GR in this regime. We also have high quality observational
data from cosmology, primarily from the CMB which is associated
with early cosmological times. This allows new theoretical mod-
els most phenomenological freedom at large temporal and spatial
scales as they must recover CMB and solar system observations. The
small spatial scale constraints can be evaded using so called screen-
ing mechanisms (see Koyama 2018; Burrage & Sakstein 2018, for
reviews) that force predictions of modified gravity models back to
those of GR locally, while early time measurements like the CMB
can easily be recovered through appropriate time evolution of 𝜙.
An obvious late time cosmological data set directly related to grav-

ity is the large scale structure of the Universe (LSS). A key summary
statistic of this is the two point correlation function or power spec-
trum (in Fourier space) of the cosmological matter field. A prime
science goal then becomes the production of accurate predictions of
the matter power spectrum in general theories beyond-ΛCDM. For
the Horndeski class of models, this is a nontrivial task as there are

an additional four free functions of space and time to contend with,
beyond the matter content and metric freedoms. Of course, one can
always choose particular forms for the 𝐺𝑖 (𝜙, 𝑋) and then produce
predictions for the 2-point correlations of matter. This approach al-
lows one to fully specify how matter should cluster at all physical
scales, and there aremany tools andmodels that do just that to varying
degrees of accuracy (Schmidt et al. 2010; Lombriser 2014; Arnold
et al. 2022; Cataneo et al. 2019; Bose et al. 2020b; Hernández-
Aguayo et al. 2022; Puchwein et al. 2013; Brax & Valageas 2013,
2014; Joudaki et al. 2022; Winther et al. 2017).
If on the other hand we choose not to specify a particular model,

we are required to parameterise both the linear and nonlinear scales
i.e., the large and small physical scales of LSS respectively. At linear
scales and for the Horndeski class of models, we can opt to perform
a Taylor expansion of the 𝐺𝑖 functions and truncate at some order.
Linear theory can then be characterised by a small number of free
functions of time but with no unique specification in the nonlinear
regime. This describes the approach of the Effective Field Theory of
Dark Energy (EFTofDE) by Gubitosi et al. (2013); Bloomfield et al.
(2013) (also see Frusciante & Perenon 2020, for a review). Note that
if we wish to be even more general than Horndeski we can directly
parametrise the linear relation between matter and the gravitational
potential.
On nonlinear scales, a parameterisation framework one can con-

sider is the nonlinear parameterised post-Friedmannian (nPPF),
which captures modified gravity or dark energy effects (Lombriser
2016). Both linear and nonlinear parameterisations then need to
be consistently embedded in some more comprehensive predictive
framework in order to be able to confront theory with LSS observa-
tions.
For past galaxy surveys the precision of the data did not call for

high accuracy in the power spectrum modelling, (as argued in Spu-
rio Mancini et al. 2019; Traykova et al. 2019). This changes with the
next generation of surveys (Stage-IV) such as Euclid3 (Laureĳs et al.
2011) and the Vera C. Rubin Observatory’s Legacy Survey of Space
and Time (LSST)4 (Ivezić et al. 2019). These surveys will provide a
significant reduction in statistical errors, errors which will be lowest
in the nonlinear regime.With such precision, we have the opportunity
to greatly constrain deviations to ΛCDM, including the well defined
model space within Equation 2. This is contingent on whether or not
we can accurately and efficiently map these deviations to the matter
power spectrum. Typically, to remain unbiased in our constraints on
Nature, O(1)% is quoted as being the target accuracy for theoretical
predictions (see Blanchard et al. 2020a, for example). But this is not
sufficient. We also require this map to be computationally efficient
enough to perform data analyses. Without accuracy, we forfeit trust
in our constraints. Without conciseness and efficiency we face major
computational issues.
This paper provides a balance that satisfies these criteria. We

mainly focus on the Horndeski class of models, embedding the
EFTofDE and nPPF approaches into the halo model reaction frame-
work (Cataneo et al. 2019; Giblin et al. 2019; Cataneo et al. 2020;
Bose et al. 2020a,b; Carrilho et al. 2022), which is able to predict the
nonlinear power spectrum for specified theories beyond-ΛCDM at
O(1)%-level accuracy. We also present a completely model indepen-
dent parametrisation of beyond-ΛCDM physics at nonlinear scales,
which can be combined with similar parametrisations for the Uni-
verse’s background expansion history and linear structure formation,

3 http://euclid-ec.org
4 https://www.lsst.org/
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Model independent nonlinear reaction 3

giving a parametrisation for general deviations to ΛCDM. Thus, this
work promotes the halo model reaction framework to being able to
perform model independent predictions, a key step in the search for
a more fundamental description of Nature in the cosmological, low
energy regime.
This paper is organised as follows: in section 2 we begin at the

observational end and look how to model the (halo model) reac-
tion. In section 3 we jump to the theoretical end, and look how we
can connect the ingredients of the reaction to an action of Nature,
together with any additional degrees of freedom characterising non-
linear physics. In section 4 we give an overview of the mapping
between the reaction and the parameterisations of gravity and dark
energy, along with some key simplifying approximations one can
consider. We also perform tests and provide motivations for these
approximations. Then, in section 5 we test the proposed parameteri-
sations by comparing to exact predictions as well as emulators based
on 𝑁-body simulations in an evolving dark energy scenario and two
representative non-standard models of gravity. In section 6 we sum-
marise our results and conclude. In the appendices we provide full
expressions for the linear and nonlinear parametrisations as well as
illustrative examples and comparisons within specific non-standard
models of gravity.

2 HALO MODEL REACTION

The leading order moment of the cosmological matter distribution is
the nonlinear matter power spectrum, 𝑃NL (𝑘, 𝑧). This Fourier space
quantity captures most of the matter clustering information at all
scales (see Bernardeau et al. 2002, for a review). Following the halo
model (see Cooray & Sheth 2002, for a review) based approach of
Cataneo et al. (2019), in a target theory of cosmology and gravity
this quantity can be modelled as

𝑃NL (𝑘, 𝑧) = R(𝑘, 𝑧)𝑃pseudoNL (𝑘, 𝑧) , (3)

where 𝑃pseudoNL (𝑘, 𝑧) is called the pseudo power spectrum. This is
defined as the power spectrum of aΛCDM universe but whose initial
conditions have been set so as to match the target, beyond-ΛCDM,
theory’s linear total matter power spectrum 𝑃𝐿 (𝑘, 𝑧) at some target
redshift, 𝑧. The reason for making such a definition is that it guaran-
tees the halo mass functions in the target and pseudo universes are
similar since they will have the same linear clustering by definition.
This results in a smoother transition between the clustering statistics
in the inter- and intra-halo regimes. This quantity can be modelled in
a number of ways, for example by using existing halo model based
fitting functions such as HMCode (Mead et al. 2015, 2016; Mead et al.
2021) or for target theories that only predict a redshift dependent, but
scale independent rescaling of the linear spectrum, ΛCDM-based
emulators such as EuclidEmulator2 (Euclid Collaboration et al.
2020) or bacco (Angulo et al. 2021) can be used by tuning the spec-
trum amplitude parameter to match the modified cosmology’s linear
spectrum.
The function R(𝑘, 𝑧) represents all the corrections to the pseudo

spectrum coming from nonlinear beyond-ΛCDM physics. Following
Cataneo et al. (2020); Bose et al. (2021) we can write this as

R(𝑘) =
(1 − 𝑓𝜈)2 𝑃 (cb)

hm (𝑘) + 2 𝑓𝜈 (1 − 𝑓𝜈) 𝑃 (cb𝜈)
hm (𝑘) + 𝑓 2𝜈 𝑃

(𝜈)
L (𝑘)

𝑃
pseudo
hm (𝑘, 𝑧)

,

(4)

with the subscript ‘hm’ standing for halo model, (m) ≡ (cb + 𝜈), cb

for CDM and baryons, 𝜈 for massive neutrinos and 𝑓𝜈 = Ω𝜈,0/Ω𝑚,0
being the massive neutrino energy density fraction at 𝑧 = 0. The ef-
fects of massive neutrinos are included linearly through the weighted
sum of the nonlinear cb halo model and linear massive neutrino spec-
tra following the findings of Agarwal & Feldman (2011). We note
that we do not considermassive neutrino effects in this work, but have
included them in the expressions to highlight the generality of this
approach (see Bose et al. 2021, for a study with massive neutrinos).
The individual components are given by

𝑃
(cb𝜈)
hm (𝑘) ≈

√︃
𝑃
(cb)
hm (𝑘)𝑃 (𝜈)

L (𝑘) , (5)

𝑃
(cb)
hm (𝑘) =

[
(1 − E)𝑒−𝑘/𝑘★ + E

]
𝑃
(cb)
L (𝑘) + 𝑃 (cb)

1h (𝑘) , (6)

𝑃
pseudo
hm (𝑘, 𝑧) =𝑃L (𝑘, 𝑧) + 𝑃

pseudo
1h (𝑘, 𝑧), (7)

where the parameters are given by

E(𝑧) = lim
𝑘→0

(1 − 𝑓𝜈)2𝑃 (cb)
1h (𝑘, 𝑧)

𝑃
pseudo
1h (𝑘, 𝑧)

, (8)

𝑘★(𝑧) = − 𝑘̄ ©­«ln


𝑇1 ( 𝑘̄ , 𝑧) ± 𝑇2 ( 𝑘̄ , 𝑧)
(1 − 𝑓𝜈)2𝑃 (cb)

L ( 𝑘̄ , 𝑧) (1 − E(𝑧))

ª®¬
−1

. (9)

We take the ‘+’ root if E > 1, otherwise we take the ‘-’ root. The 𝑇𝑖
terms are given by

𝑇1 (𝑘, 𝑧) = 𝑓 2𝜈 𝑃
(𝜈)
L (𝑘, 𝑧) + 𝑃pseudohm (𝑘, 𝑧)RSPT (𝑘, 𝑧)

− (1 − 𝑓𝜈)2 [E(𝑧)𝑃 (cb)
L (𝑘, 𝑧) + 𝑃 (cb)

1h (𝑘, 𝑧)] , (10)

𝑇2 (𝑘, 𝑧) =2
√︃
𝑓 2𝜈 𝑃

pseudo
hm (𝑘, 𝑧)𝑃 (𝜈)

L (𝑘, 𝑧)RSPT (𝑘, 𝑧) , (11)

where RSPT (𝑘, 𝑧) is the 1-loop standard perturbation theory (SPT)
(Bernardeau et al. 2002) prediction for the reaction given by Equa-
tion 4-7 but with the replacements 𝑃𝐿 (𝑘, 𝑧) → 𝑃1−loop (𝑘, 𝑧) and
𝑃𝐿 (𝑘, 𝑧) (cb) → 𝑃1−loop (𝑘, 𝑧) (cb) and E = 1. As in Cataneo
et al. (2019) the default scale where we calculate 𝑘★ is set to
𝑘̄ = 0.06 ℎ Mpc−1.
We see that Equation 4 depends on three general predictions for

beyond-ΛCDM theories: the 2-halo term which we have approxi-
mated by the linear power spectrum 𝑃L, the quasi-nonlinear power
spectrum given by the 1-loop perturbation theory power spectrum
𝑃1−loop, and the highly nonlinear power spectrum given by the 1-
halo term 𝑃1h. The computation of these quantities requires the
specification of the matter density fluctuations at different physical
scales. The first two regimes (linear and quasi-nonlinear) are per-
turbatively derived up to 3rd order in the linear density fluctuation
𝛿𝐿 , while the fully nonlinear quantity, 𝛿NL, can be obtained using
the assumptions of spherical collapse (Cooray & Sheth 2002). Both
these routes require us to solve differential equations representing
energy and momentum conservation on a cosmological background.
Our Universe’s spacetime metric is well described by the Friedman-
Lemaître-Robertson-Walker (FLRW) metric, whose background ex-
pansion is described by the Hubble parameter 𝐻 (𝑎) ≡ ¤𝑎/𝑎, where 𝑎
is the scale factor and an over-dot represents a derivative with respect
to the metric time 𝑡.
Further, the conservation equations rely on the relation between

the gravitational potential and the matter density fluctuation: the
Poisson equation. In particular, we consider the Poisson equation in
the perturbative limit, only valid up to quasi-nonlinear scales, as well

MNRAS 000, 1–20 (2022)
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as the fully nonlinear expression, valid at all scales

−
(

𝑘

𝑎𝐻 (𝑎)

)2
ΦQNL (𝒌, 𝑎) =

3Ωm (𝑎)
2

𝜇(𝑘, 𝑎) 𝛿QNL (𝒌, 𝑎) + 𝑆(𝒌, 𝑎) ,

(12)

−
(

𝑘

𝑎𝐻 (𝑎)

)2
ΦNL (𝒌, 𝑎) =

3Ωm (𝑎)
2

[1 + F (𝑘, 𝑎)] 𝛿NL (𝒌, 𝑎) , (13)

where Ωm (𝑎) = Ωm,0𝐻
2
0/(𝐻 (𝑎)2𝑎3), Ωm,0 being the total matter

fraction today. Φ is the gravitational potential in the time-time com-
ponent of the perturbed FLRWmetric. This can be identified with the
Newtonian gravitational potential in the non-relativistic limit, valid
for the curvatures and velocities we consider. The subscripts QNL
and NL denote ‘quasi-nonlinear’ and ‘nonlinear’ respectively. One
should further note that Equation 12 and Equation 13 also assume a
spherically symmetric density distribution.
The additional functions in Equation 12 and Equation 13 are as

follows: 𝜇(𝑘, 𝑎) characterises the linear modification to GR, F (𝑘, 𝑎)
is the nonlinear modification and 𝑆(𝒌, 𝑎) is a source term captur-
ing modifications at 2nd and 3rd order in the linear matter density
perturbations. The source term is given by (Bose & Koyama 2016)

𝑆(𝒌, 𝑎) =
∫

𝑑3𝒌1𝑑
3𝒌2

(2𝜋)3
𝛿D (𝒌 − 𝒌12)𝛾2 (𝒌1, 𝒌2, 𝑎)𝛿(𝒌1) 𝛿(𝒌2)

+
∫

𝑑3𝒌1𝑑
3𝒌2𝑑

3𝒌3
(2𝜋)6

𝛿D (𝒌 − 𝒌123)𝛾3 (𝒌1, 𝒌2, 𝒌3, 𝑎)

× 𝛿(𝒌1) 𝛿(𝒌2) 𝛿(𝒌3) , (14)

introducing two additional functions 𝛾2 & 𝛾3 characterising quasi-
nonlinear modifications to the Poisson equation (see Bose &Koyama
2016, for explicit expressions for these in the Horndeski class of
models). The functions 𝛾2, 𝛾3 and F all encode details regarding the
potential screening mechanism of the theory under consideration.
On this point, it is worth noting that for general theories beyond-
ΛCDM such mechanisms may not be present, in which case the
spherical density distribution approximation assumed in Equation 12
& Equation 13 may break down (Thomas 2020). For the modified
gravity models considered in this work, which have some method
of screening, this appears to be a reasonable approximation (Noller
et al. 2014). For a study of screened and unscreened models in the
Horndeski class see Noller et al. (2021).
In total, the halo model reaction, and so the nonlinear power spec-

trum, requires specification of four functions of space and time - one
for the background 𝐻 (𝑎), one for the linear regime 𝜇(𝑘, 𝑎), two
for the quasi-nonlinear regime 𝛾2 (𝒌1, 𝒌2, 𝑎) & 𝛾3 (𝒌1, 𝒌2, 𝒌3, 𝑎)
and finally one for the fully nonlinear regime F (𝑘, 𝑎). In princi-
ple these functions are not completely independent, and one should
have F → 𝜇 in the linear limit. We investigate the importance of
respecting this limit in section 5. Finally, we remind the reader that
all these functions are required to compute the key ingredients of R
(and hence 𝑃NL): 𝑃L, 𝑃1−loop and 𝑃1h.
The right half of Figure 1 summarises the map from background

and Poisson equations to the halo model reaction as described in
this section. The left half of the figure will be the focus of the next
section.

3 PARAMETRISATIONS

We now move away from the observational end and return to the
starting point, the fundamental action of Nature. In particular, here
we mostly focus on the Horndeski action given in Equation 2, but the
approach can be trivially extended to further generality.

As pointed out, given a specific form of the 𝐺𝑖 functions, the
explicit functional forms of 𝐻, 𝜇, 𝛾2, 𝛾3 and F can be directly
derived. But rather than specifying the full covariant theory, i.e., 4
free functions of space and time, we ultimately wish to parameterise
the action’s predictions for cosmological matter clustering in terms
of a few free constants.
To do this, we split LSS into three regimes: the background &

linear, quasi-nonlinear and the nonlinear. The background, linear
and quasi-nonlinear regimes will follow the well studied EFTofDE
program (Gubitosi et al. 2013; Bloomfield et al. 2013). For the non-
linear regime we will consider two different parameterisations. One
is the established nonlinear parameterised post-Friedmannian (nPPF)
approach (Lombriser 2016). The other parametrisation we propose
here is phenomenological and is based on somewell known screening
mechanisms. We begin by parameterising the background & linear
regime.

3.1 Background & Linear: Effective field theory of dark energy

Among the methods to generically parameterise beyond-ΛCDM
physics on cosmological scales, the methods of Effective Field The-
ory (EFT) have proven to be particularly useful. It is simply necessary
to determine which symmetries one wishes the action to have before
constructing various operators out of the fields and derivatives of the
fields. One can trust the predictions made with an EFT as long as it
is made at an energy scale below the ‘cutoff’ of the theory, beyond
which the validity of the EFT breaks down.
While not being an EFT in this strict sense, the EFTofDE is con-

structed in a similarmanner and is capable of describing the dynamics
of the cosmological background and perturbations in Horndeski the-
ory in a generic manner. The EFTofDE approach breaks time diffeo-
morphism invariance of the cosmological background by choosing
a particular gauge. By doing this one is able to form a theory out of
operators which only respect spatial diffeomorphism invariance.
In constructing the EFTofDE action one begins by foliating space-

time with constant-time hypersurfaces. Utilising the complete free-
dom one has in choosing the coordinates of the theory we can set the
scalar field to be only a function of time such that 𝜙(𝑥, 𝑡) → 𝜙(𝑡). In
particular, we can choose

𝜙 = 𝑡/𝜅2 . (15)

This choice is called the unitary gauge and in this gauge the scalar
field perturbations vanish, being absorbed into the time-time com-
ponent of the metric. The operators in the EFTofDE are the cosmo-
logical perturbations themselves. In the unitary gauge we are free to
include operators in the EFTwhich are only spatially diffeomorphism
invariant, such as 𝑔00.
Let us denote the normal vector to each spatial hypersurface as

𝑛𝜇 = −
𝜕𝜇𝜙√︁
−(𝜕𝜙)2

. (16)

The induced spatial metric of each hypersurface is then given by
ℎ𝜇𝜈 = 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈 . This allows us to include the extrinsic curvature
which is given by the projection of the derivative of the normal vector
along the the hypersurface, onto the hypersurface 𝐾𝜇𝜈 = ℎ𝜇𝜎∇𝜎𝑛𝜈 .
With the inducedmetric, one can also compute the intrinsic curvature
of each hypersurface given by the three-dimensional Ricci scalar
𝑅 (3) .
Collecting relevant combinations of the invariants under residual

spatial diffeomorphism symmetry gives the EFTofDE action, which
is capable of describing the dynamics of the background and linear
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𝐺2 (𝜙, 𝑋 )
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Figure 1. A rough schematic of the map from the Horndeski action in the EFTofDE parametrisation (𝐻, 𝛼𝑖 , 𝜉 𝑗𝑖 ) and nonlinear parameterisations (𝑝𝑖 or 𝑞𝑖)
to R(𝑘, 𝑡) . The yellow rectangles indicate the input functions of time (here parametrised by the scale factor 𝑎) or constants. The orange rectangles indicate
the modifications to the Poisson equation. 𝜇 (𝑘, 𝑎) is bi-coloured indicating we may choose to parametrise it directly instead of starting at the action level. We
provide the main sources in the literature for each piece of the map along with a dotted box roughly indicating their associated piece. Note that the solid arrows
can only reconstruct 𝐺𝑖 to the linear and quasi-nonlinear levels, which can in turn inform choices for 𝑝𝑖 . The 𝑝𝑖 provide the nonlinear complement in the 𝐺𝑖 .

perturbations of Horndeski theory. The action is given by (see, for
example, Kennedy et al. 2017)

𝑆𝑈,𝐿 = 𝑆 (0,1) + 𝑆 (2) + 𝑆𝑀 [𝑔𝜇𝜈 ,Ψ𝑚] , (17)

𝑆 (0,1) =
∫

𝑑4𝑥
√−𝑔

[
Ω(𝑡)
2𝜅2

𝑅 − Λ(𝑡) − 𝑐(𝑡)𝛿𝑔00
]
, (18)

𝑆 (2) =
∫

𝑑4𝑥
√−𝑔

[𝑀42 (𝑡)
2

(𝛿𝑔00)2 −
𝑀̄31 (𝑡)
2

𝛿𝐾𝛿𝑔00

− 𝑀̄22 (𝑡)
(
𝛿𝐾2 − 𝛿𝐾𝜇𝜈𝛿𝐾𝜇𝜈 −

1
2
𝛿𝑅 (3)𝛿𝑔00

)]
. (19)

where 𝑆𝑈,𝐿 represents the action of a Horndeski-universe that de-
scribes field dynamics up to the linear level in the matter and velocity
perturbations. The (0, 1, 2) represent the order in the perturbed quan-
tities.
In front of each term we include a free function of time

called an EFT coefficient, giving a total of six free functions,
{Ω(𝑡),Λ(𝑡), 𝑐(𝑡), 𝑀42 (𝑡), 𝑀̄

3
1 (𝑡), 𝑀̄

2
2 (𝑡)}. Once we specify a metric,

we also introduce any metric degrees of freedom. For FLRW this is
the scale factor 𝑎, or equivalently the Hubble parameter 𝐻 (𝑎). We
can then employ the field equation constraints, which in the FLRW
are the Friedmann equations

0 =𝜅2 (2𝑐 − Λ + 𝜌m) − 3𝐻2 (Ω + 𝑎Ω′) , (20)

0 =𝜅2Λ + 𝐻 [𝑎𝐻 ′(2Ω + 𝑎Ω′) + 𝐻 (3Ω + 3𝑎Ω′ + 𝑎2Ω′′)] , (21)

where we have dropped the time dependence in constituent parame-
ters for compactness, and use the scale factor to parameterise time. A
prime denotes a scale factor derivative and 𝜌m is the matter density
at 𝑎. The Friedmann equations reduce the number of free functions
describing the background and linear perturbations to five. Solving
these equations yields

𝑐(𝑎) = − 𝜌m
2

− 𝑎𝐻 [𝐻 ′(2Ω + 𝑎Ω′) + 𝑎𝐻Ω′′]
𝜅2

, (22)

Λ(𝑎) = − 𝐻 [𝑎𝐻 ′(2Ω + 𝑎Ω′) + 𝐻 (3Ω + 3𝑎Ω′ + 𝑎2Ω′′)]
𝜅2

. (23)

This means the free functions of the scale factor defining the back-
ground and linear theory would be {Ω, 𝐻, 𝑀42 , 𝑀̄

3
1 , 𝑀̄

2
2 }, which we

will refer to as the 𝑀-basis. We can alternatively write the Hubble
function as the solution to

𝐻 (𝑎) : 0 = (2Ω + 𝑎Ω′)𝐻 ′ + 𝑎𝐻Ω′′ + 𝜅𝜌m
𝑎𝐻

+ 2𝜅𝑐
𝑎𝐻

, (24)

if we wish to specify 𝑐 instead of 𝐻 for example.
Common in the literature is the 𝛼-basis {𝐻, 𝛼𝑀 , 𝛼𝐵 , 𝛼𝐾 , 𝛼𝑇 }

which has a clearer physical interpretation of the effects of each
function (see, for example, Bellini & Sawicki 2014). We provide the
map between the 𝛼- and 𝑀-bases5

𝛼𝑀 =
𝑎(𝑀2)′

𝑀2
, (25)

𝛼𝐵 = −
𝑎𝐻Ω′ + 𝜅2𝑀̄31

𝐻𝑀2𝜅2
, (26)

𝛼𝐾 =
2𝑐 + 4𝑀̄42
𝑀2𝐻2

, (27)

𝛼𝑇 = −
𝑀̄22
𝑀2

, (28)

where 𝑀2 = Ω 𝜅−2 + 𝑀̄22 . Note that one can alternatively specify 𝑀
2

and solve for 𝐻.
To end this section, another basis worth considering is the basis

introduced in Kennedy et al. (2018): {𝐻, 𝑀2, 𝑐2𝑠 , 𝛼, 𝛼𝐵0} (also see
Lombriser et al. 2019), which implicitly assumes 𝛼𝑇 = 0 (see sub-
section 4.3 for motivation). This basis allows for some simple priors
on the functions that ensure the theory has no ghost or gradient in-
stabilities, i.e., negative energies or imaginary sound speeds. We will
refer to this basis as the 𝑠-basis. The priors to ensure stability on
these functions are then simply 𝑀2, 𝑐2𝑠 , 𝛼 > 0, and 𝛼𝐵0 is constant6.
The map between the 𝑠- and 𝛼-bases is given by

𝑐2𝑠 =
2
𝛼

[ 𝑎𝛼′
𝐵

2
− (1 + 𝛼𝑇 )

(
1 − 𝛼𝐵

2

)2
+
(
1 + 𝛼𝑀 − 𝑎𝐻 ′

𝐻

) (
1 − 𝛼𝐵

2

)
− 𝜌m
2𝐻2𝑀2

]
, (29)

𝛼 =𝛼𝐾 + 3
2
𝛼2𝐵 , (30)

where 𝑐𝑠 is the speed of sound, while 𝛼𝐵0 = 𝛼𝐵 (𝑎 = 1) is the bound-
ary condition (𝛼𝐵’s value today) specified to solve the differential
equation given by Equation 29.

5 Note the factor of ‘−1/2’ difference in 𝛼𝐵 between our expression and that
of EFTCAMB (Frusciante et al. 2016) or Kennedy et al. (2018), for instance.
6 We note that this basis does not ensure the absence of a tachyonic instability
(Gsponer & Noller 2022).
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6 B. Bose

In what follows we will stick with the 𝛼-basis and implement this
as the default basis in the accompanying code ACTio et ReACTio.
We provide the explicit form of the linear modification to the Poisson
equation in this basis in subsection A1. We leave it to the user to
perform the transformation from their preferred basis to the 𝛼-basis,
and provide an accompanying notebook GtoPT.nb that performs
some of these transformations.

3.2 Quasi-nonlinear: Covariant theory map

To fully specify the halo model reaction, we need to go beyond the
linear matter perturbations. In particular, we also require the 2nd and
3rd order density perturbations to solve for the 1-loop power spectrum
enteringRSPT in Equation 10-11. This requires us to expand to fourth
order in the metric perturbation 𝛿𝑔00 and extrinsic curvature 𝛿𝐾𝜇𝜈
in Equation 17. This has been done in Cusin et al. (2018b) and has
been used to calculate the 1-loop spectrum in Cusin et al. (2018a).
Further, in Kennedy et al. (2017) the authors relate the EFTofDE
functions up to a given order to the corresponding covariant theory’s
Lagrangian 𝐺𝑖 functions as

𝐺𝑖 (𝜙, 𝑋) = 𝑔𝑖 (𝜙, 𝑋) + Δ𝐺𝑖 (𝜙, 𝑋) , (31)

where 𝑔𝑖 , 𝑖 ∈ {2, 3, 4, 5}, are well-defined functions of 𝜙, 𝑋 and the
lower order EFTofDE parameters, e.g., {𝐻, 𝛼𝑀 , 𝛼𝐵 , 𝛼𝐾 , 𝛼𝑇 }. The
other terms are given as

Δ𝐺2,3 =
∑︁
𝑛>2

𝜉
(2,3)
𝑛 (𝜙)

(
1 + 𝑋𝜅4

)𝑛
, (32)

Δ𝐺4,5 =
∑︁
𝑛>3

𝜉
(4,5)
𝑛 (𝜙)

(
1 + 𝑋𝜅4

)𝑛
, (33)

where Δ𝐺𝑖 are higher order corrections to the covariant action and
𝜉𝑖𝑛 (𝜙) are higher order EFTofDE functions, 𝑋 again being the scalar
field canonical kinetic energy term.
A particular covariant theory is specified once 𝜉𝑖𝑛 are given for

all 𝑛 ∈ N, but if we truncate at some order 𝑛𝑡 , we specify the
subset of Horndeski theories which are identical on scales described
by the EFTofDE up to 𝜉𝑖𝑛𝑡 . Up to 3rd order in the matter density
perturbation, we introduce 6 new functions with 𝑛𝑡 = 4. Together
with the background and linear order functions, this gives a total
of 11 free functions of time for the quasi-nonlinear scales. The 𝐺𝑖
given in Equation 31 can then be related to 𝜇, 𝛾2 and 𝛾3 by the map
provided in the Appendices of Bose & Koyama (2016); Takushima
et al. (2015).

In section A we provide the map between the 5 linear EFTofDE
functions in the 𝛼-basis and the linear modification to the Poisson
equation, 𝜇, used in Equation 12. The 2nd and 3rd order functions
𝛾2 and 𝛾3 (see Equation 14) are significantly more complicated but
can be derived by using the map from the EFTofDE to 𝐺𝑖 (𝜙, 𝑋)
provided in Kennedy et al. (2017) and then the 𝐺𝑖 (𝜙, 𝑋) to 𝛾2 & 𝛾3
given in Bose & Koyama (2016). The map, although not reproduced
here in full, is given in detail in a Mathematica notebook provided
in the ACTio et ReACTio repository, GtoPT.nb. This being said,
in section 4 we give support for the omission of 𝛾2 and 𝛾3 in the
calculation of R for moderate to low modifications to gravity, and
given the additional degrees of freedom we will introduce in the
nonlinear regime.
Having specified a route between the Horndeski action of nature

and the linear and 1-loop power spectra, 𝑃L (𝑘, 𝑎) & 𝑃1−loop (𝑘, 𝑎),
we now look at twomethods of parameterising clustering in the highly
nonlinear regime, characterised by the 1-halo term, 𝑃1h (𝑘, 𝑎). This

will then specify a full parameterisation of the halo model reaction
R, and consequently the nonlinear power spectrum, 𝑃NL (𝑘, 𝑎).

3.3 Nonlinear

The effects of modified gravity on the nonlinear cosmic structure
formation are captured by the effective deviation F from the grav-
itational constant in the nonlinear Poisson equation given in Equa-
tion 13 and the cosmological background evolution. Specifically, the
modified Poisson equation alters the evolution equation for the halo
top-hat radius 𝑅TH (see, for example, Schmidt et al. 2009). This
quantity gives an estimate for 𝛿NL, needed to compute the 1-halo
power spectrum. Here we discuss two parameterisations of F .

3.3.1 Nonlinear parametrised post-Friedmannian framework

Following the nPPF approach of Lombriser (2016), the effective
gravitational coupling for generic screening mechanisms and other
suppression effects can be decomposed as a function of scale 𝑟

1 + F (𝑎, 𝑟) = 𝐴 +
𝑁0∑︁
𝑖

𝐵𝑖

𝑁𝑖∏
𝑗

F𝑖 𝑗 , (34)

where F𝑖 𝑗 are some transition functions encapsulating screening or
other suppression effects such as a Yukawa suppression. 𝑁0 and
𝑁𝑖 characterise their respective number. In the fully screened limit,
the effective coupling reduces to 𝐴, typically unity, whereas it be-
comes 𝐵𝑖 in the fully unscreened limit, matching linear theory. To
parameterise these transitions, Lombriser (2016) adopted a gener-
alised form of the Vainshtein screening effect in the DGP braneworld
model (Dvali et al. 2000)

F ∼ 𝑏
(
𝑟

𝑟scr

)𝑎 𝑓 {[
1 +

( 𝑟scr
𝑟

)𝑎 𝑓 ]1/𝑏
− 1

}
, (35)

where 𝑟scr denotes the screening scale, which in general can be time,
mass, and environment dependent. The parameter 𝑎 𝑓 (not to be
confused with the scale factor) determines the radial dependence of
the coupling in the screening limit along with 𝑏 that characterises an
interpolation rate between the screened and unscreened limits.
Screening effects such as the chameleon (Li & Efstathiou 2012;

Khoury &Weltman 2004; Lombriser et al. 2014) symmmetron (Hin-
terbichler &Khoury 2010; Taddei et al. 2014), k-mouflage (Babichev
et al. 2009; Brax&Valageas 2014), andVainshtein (Vainshtein 1972;
Schmidt et al. 2010; Dvali et al. 2000) mechanisms as well as other
suppression effects such as the linear shielding mechanism (Lom-
briser & Taylor 2015b) or Yukawa suppression, can be analytically
mapped onto Equation 35 by matching expressions in the limits of
large and small 𝑟 and 𝑟 → 𝑟scr. The relevant expressions may be
found in Lombriser (2016). It is worth highlighting that the parame-
ters of Equation 35 for a given screening model may in principle be
directly read off from Equation 2 by employing the scaling method of
McManus et al. (2016) (also see Renevey et al. 2020) and counting
the powers of second and first spatial derivatives and the scalar field
potential. Note that the parameter 𝑏 may be understood as the choice
of transition template used to approximately cast the screening effect
into. Alternatively to Equation 35, one could also adopt other tran-
sition functions such as a hyperbolic tangent, a sigmoid or an error
function as we will propose in subsubsection 3.3.2. For DGP, the
choice of Equation 35 with 𝑏 = 2 becomes exact.
To implement Equation 35 in the spherical collapse model, one

replaces 𝑟/𝑟scr → 𝑦/𝑦scr, where 𝑦 is the normalised top-hat radius
(Equation B4). A single general element 𝑁0 = 𝑁1 = 1 can then
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be described by seven parameters (or functions) 𝑝1−7 in addition to
𝑝0 = 𝐴 (typically = 1). The first three, 𝑝1−3, determine 𝑎 𝑓 , 𝑏, and 𝐵.
The other four are used to generally capture possible time, mass, and
environmental dependencies of the dimensionless screening scale,
which can be modelled as (Lombriser 2016)

𝑦scr = 𝑝4𝑎
𝑝5 (2𝐺𝑁 𝐻0𝑀vir)𝑝6

(
𝑦env
𝑦h

) 𝑝7
, (36)

where 𝑦h and 𝑦env refer to the normalised radii of the the halo and
the environment respectively, 𝐻0 is the Hubble constant and 𝑀vir is
the virial mass of the halo7. In this way, we can simplify Equation 35
to (Lombriser 2016)

FnPPF = 𝑝1𝑝2
(1 + 𝑠𝑎 𝑓 )

1
𝑝1 − 1

𝑠𝑎 𝑓
, (37)

where

𝑎 𝑓 =
𝑝1

𝑝1 − 1
𝑝3 (38)

and 𝑠 = 𝑦scr/𝑦h. Note we have set 𝑝0 = 1. The parameters 𝑝1−7 can
be computed from theory and in many cases take on trivial values
(see subsection B2). It is worth highlighting here that the nPPF
formalism has also been implemented in 𝑁-body simulations and cast
into Fourier space (Hassani & Lombriser 2020), where it was shown
to accurately match simulations of exact model implementations.
Finally, we consider the large, linear scale limit of F . Equation 39

provides a parametrised function for the screening regime, where
we have a transition to GR from some large scale modification. In
this form, it does not capture any additional effects coming from say
Yukawa suppression, typical of chameleon theories. Such phenom-
ena may become relevant for the spherical collapse calculation at
early times or for very large halo masses. In order to correctly cap-
ture this, we could either model the Yukawa suppression as another
transition cast into Equation 37 or simply augment Equation 37 with
the linear modification 𝜇(𝑘, 𝑎) as

FnPPF = 𝑝1𝑝2
(1 + 𝑠𝑎 𝑓 )

1
𝑝1 − 1

𝑠𝑎 𝑓
× (1 − 𝜇( 𝑘̂ , 𝑎)) . (39)

In this case we also need to perform the Fourier transform of 𝜇( 𝑘̂ , 𝑎),
which is non-trivial. As a first order approximation, we parametrise
this with a simple scaling of the inverse of the comoving initial
top-hat radius 𝑅th as

𝑘̂ =
10𝑝8

𝑎2𝑦h𝑅th
, (40)

where the dimensionless constant 𝑝8 calibrates the Yukawa suppres-
sion. The Fourier transform can be made more sophisticated (see,
for example, Hassani & Lombriser 2020) but in section 5 we find
the impact of Yukawa suppression is negligible for the 𝑓 (𝑅) models
we consider, and so only include this augmentation for completeness.
Further, Equation 39would only bemeaningful for a non-trivial scale
dependent 𝜇(𝑘, 𝑎). For scale-independent theories one can absorb the
scaling provided by 𝜇(𝑎) in the 𝑝2 (𝑎) parameter of Equation 37.

7 Note that in ReACT we use the initial comoving top-hat radius, 𝑅th (see
subsection B4), as an input parameter instead of mass, related as 𝑀vir =
4𝜋𝜌̄m,𝑖 (1 + 𝛿𝑖) (𝑎𝑖𝑅th)3/3 ≈ 4𝜋Ωm,0𝜌crit𝑅3th/3 with the critical density
𝜌crit and 1 + 𝛿𝑖 ≈ 1.

3.3.2 Phenomenological parameterisation

With its full freedom, the nPPF parameterisation is a very flexible
way of modelling the nonlinear scales. It is able to capture various
specific covariant theories exactly or to high accuracy (see subsec-
tion B2 and section 5), and given a covariant theory, say from the
Horndeski class, we can map its nonlinear Poisson modification to
the 𝑝𝑖 parameters. On the other hand, if we remain agnostic about the
covariant theory, 8 additional parameters, some of which may also
be time dependent, poses computational issues as well as degrades
the amount of cosmological and gravitational information we can
extract due to degeneracies between these nuisance and the physical
parameters of interest.
With this in mind, we propose the following general and reduced

parameterisation of F based on the error function (Erf). We have
found this mimics the general profile of the effective gravitational
constant in various modified gravity theories. Essentially we wish to
capture a basic transition from unscreened to screened regimes. The
simple form we adopt is given by

FErf = Erf [𝑎𝑦h10𝐽 ] × (1 − 𝜇( 𝑘̂ , 𝑎)) , (41)

where as in the nPPF case, we use

𝑘̂ =
10𝑞4

𝑎2𝑦h𝑅th
, (42)

and

𝐽 = 𝑞1 − 𝑞2 log(𝑅th) + 𝑞3 log(𝑎𝑦env) . (43)

𝜇 is the linear modification to gravity. In the EFTofDE parameteri-
sation 𝜇 is given in Equation A1, but this can also be parametrised
more generally (see, for example, Silvestri et al. 2013; Kennedy et al.
2018; Srinivasan et al. 2021).
The Erf model introduces 4 free constants:

q1: This parametrises the screening scale and goes as its inverse.
q2: This gives the halo mass dependency of the screening scale.
q3: This gives the environment dependency of the screening scale.
q4: This calibrates any existing Yukawa suppression scale.

The time dependence ofFErf is fixed and so for a specified cosmology
and set of EFTofDE parameters, we only need to adjust the constants
{𝑞1, 𝑞2, 𝑞3, 𝑞4}. To provide some insight, we note the following
limits

lim
𝑞1→∞

1 + FErf = 𝜇 → Unscreened limit , (44)

lim
𝑞1→−∞

1 + FErf = 1→ GR limit , (45)

lim
𝑞2 ,𝑞3→0

1 + FErf → Vainshtein type models , (46)

lim
𝑞3→0

1 + FErf → k − mouflage type models , (47)

𝑞3 > 0 : 1 + FErf → chameleon type models , (48)

where we refer to the main types of screening mechanisms typical
of scalar-tensor theories (see subsubsection 3.3.1). Note that all pa-
rameters lose their meaning as 𝜇(𝑘, 𝑎) → 1, which in the EFTofDE
case is when the relevant parameters assume their GR values.
Given this, we can take 𝑞2 and 𝑞3 to be positive. Being exponents

of the top-hat radius and environment parameter, they are also not
expected to be very large, and as wewill see in section 5, they turn out
to be O(1). Further, since in the GR limit 𝜇 → 1, and so FErf → 0
irrespective of the value of 𝑞1, we can also take 𝑞1 to be positive. We
also find 𝑞1 to be an O(1) parameter.
Parameter 𝑞4, which calibrates the Yukawa suppression scale, is
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generally only relevant for theories where the linear growth factor,
or Poisson modification 𝜇, is scale-dependent. As we will show in
subsection 5.3, 𝑞4 does not appear to be relevant for the scales asso-
ciated with spherical collapse. We note 𝑞4 can in principle take on
negative values, pushing the Yukawa suppression to smaller scales.
As 𝑞4 → ∞ the Yukawa suppression scale also goes to infinity. We
leave its relevance for more general theories for a future work.

We provide a Mathematica notebook, Nonlinear.nb, with all
the forms of F considered in this paper along with comparisons.

Finally, the left half of Figure 1 summarises the map from
the parametrised action, together with additional parameters, to
the Poisson equation modifications as described in this section,
completing the map from action to reaction.

4 APPROXIMATIONS AND OVERVIEW

We have outlined a map that goes from the parameterised ac-
tion of nature and structure formation {𝐻}𝑏 , {𝛼𝑀 , 𝛼𝐵 , 𝛼𝐾 , 𝛼𝑇 }L,
{𝜉23 , 𝜉

2
4 , 𝜉
3
3 , 𝜉
3
4 , 𝜉
4
4 , 𝜉
5
4 }QNL & {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8}NL or

{𝑞1, 𝑞2, 𝑞3, 𝑞4}NL to the nonlinear effects on the power spectrum
R(𝑘, 𝑎), where ‘b’ stands for background, ‘L’ for linear, ‘QNL’ for
quasi-nonlinear and ‘NL’ for nonlinear. A schematic of this map is
given in Figure 1. An important point worth stressing is that our
nonlinear parametrisations are completely general, and not specific
to the Horndeski class of theories. They do however rely on 𝜇(𝑘, 𝑎),
which one can always choose to parametrise in a model independent
way.
Considering the Horndeski class for concreteness, the EFTofDE

and nonlinear parametrisations constitute a very large set of arbitrary
functions of time and constants. Despite it being significantly less
than the infinite number of theories contained within the Horndeski
class, it is still arguably too many for statistical data analyses, both on
computational and scientific grounds. Thankfully, as we will shortly
motivate, these sets can be yet reduced significantly.
To reduce or optimise the parameter space, we consider the fol-

lowing:

(1) We assume the quasi-static approximation (QS) for all perturba-
tive calculations (see Sawicki & Bellini 2015; Pace et al. 2021, for
example).

(2) We assume 𝛾2 = 𝛾3 = 0.
(3) Observational and theoretical constraints.
(4) Time parameterisations of EFTofDE functions, 𝛼𝑖 (𝑎).
(5) The parameterised nPPF (see Equation 39) or phenomenological
(see Equation 41) form of F is flexible enough to capture general
modifications to gravity.

In this section we will motivate approximations (1) - (4) with direct
reference to the accompanying code ACTio et ReACTio. Assump-
tion (5) will be addressed separately in section 5.

4.1 Quasi-static approximation

We begin by noting that the QS in linear theory can be easily avoided
by using a Boltzmann code such as EFTCAMB (Hu et al. 2014; Raveri
et al. 2014) to calculate the linear input spectrum or transfer func-

tion8. This option is available in our code, but the default setting
assumes a ΛCDM linear spectrum or transfer function at 𝑧 = 0 and
rescales it using the internally calculated growth functions of the
desired theory. This is done using the linear form of Equation 12 (see
Equation A1) which assumes the quasi-static approximation. Being
able to use a ΛCDM linear spectrum enhances the computational
efficiency of our code as it avoids a call to EFTCAMB. EFTCAMB is sig-
nificantly slower than CAMB (Lewis et al. 2000), which already takes
O(1) seconds to produce a linear spectrum. In this case one can also
use a linear spectrum emulator like CosmoPower (Spurio Mancini
et al. 2022) or bacco (Aricò et al. 2021), which takes O(0.1) sec-
onds to produce the linear spectrum. Note that one can also employ
CosmoPower to construct an emulator for the linear power spectrum
in the EFTofDE based on EFTCAMB output, overcoming the QS and
computational inefficiency issues.
Given the utility in using the QS, we want to get an idea of its

validity. In Figure 2 we show the effects of the QS at 𝑧 = 0 and 𝑧 = 1
for models with non-zero 𝛼𝐾 and 𝛼𝐵 (KGB Deffayet et al. 2010),
on the nonlinear spectrum as given by Equation 3. We use the halofit
(Takahashi et al. 2012) formula for 𝑃pseudoNL and assume a ΛCDM
background expansion, 𝐻 (𝑎) = 𝐻ΛCDM (𝑎) as well as no screening
effects, i.e., F = 𝜇 − 1 and 𝛾2 = 𝛾3 = 0.
We find that the QS is valid for these mild to moderate parameter

choices on scales of 𝑘 ≥ 0.1ℎ/Mpc. Upcoming surveys will probe
scales larger than this which may be an issue. Taking into account
cosmic variance assuming a galaxy survey volume similar to the ef-
fective volume of forthcoming surveys, 𝑉eff = 20 Gpc3/ℎ3 (Laureĳs
et al. 2011; Aghamousa et al. 2016; Blanchard et al. 2020b), the QS
is still a sub-dominant source of error for even extreme choices of 𝛼𝐵
and 𝛼𝐾 (see subsection 4.3). Note that time derivatives of the fields
drop out from the calculation of 𝜇 for 𝑘 → ∞ in Horndeski theo-
ries (Lombriser & Taylor 2015a; Pace et al. 2021). We note at small
scales, modelling inaccuracies and shot noise errors will arguably
dominate any inaccuracies incurred from using the QS.
We do however warn that the QS begins to break significantly for

beyond Horndeski theories (Lombriser & Taylor 2015a). For large
modifications to GR within Horndeski, we advise comparing the
resulting nonlinear spectrum with and without the QS against the
predicted errors on the specific data that is being analysed. Further,
we have implemented the following necessary condition for the QS
to hold in our code (Peirone et al. 2018)

𝑘

𝑎𝐻 (𝑎) > 𝑐
2
𝑠 (𝑎) , (49)

where 𝑐2𝑠 is given by Equation 29, with its violation producing a
warning prompt.

4.2 𝛾2 = 𝛾3 = 0 approximation

We begin by noting that setting 𝛾2 = 𝛾3 = 0 implies we have 𝑅SPT ≈
1 in Equation 10 as the 1-halo terms are subdominant. This forces
the argument of the logarithm in Equation 9 to be very close to
unity, giving a very large 𝑘star. Effectively, this is the same as setting
E = 1 in Equation 6. This is the choice we take when adopting this
approximation. We should remark that simply setting 𝛾2 = 𝛾3 = 0

8 The QS can be partly circumvented in the nonlinear regime, Equation 39
and Equation 41, by also using the prediction of 𝜇 (𝑘, 𝑎) taken from say
EFTCAMB.
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Figure 2.Ratio of the quasi-static approximated (QS) nonlinear spectrum to the exact calculation. We show the results for four EFTofDEmodels with {𝛼𝐾 , 𝛼𝐵 }
non-zero and all other 𝛼 parameters set to 0 and a ΛCDM background expansion, at 𝑧 = 0 (left) and 𝑧 = 1 (right). The exact calculation uses Equation 4
with an EFTCAMB linear spectrum while the QS uses Equation 4 with a rescaled ΛCDM linear spectrum using the modified growth equations, making use of
Equation A1. The orange band represents the error coming from cosmic variance assuming an effective survey volume of 𝑉eff = 20 Gpc3/ℎ3. We assume
F = 𝜇 − 1 and E = 1 in all nonlinear computations. The dotted lines mark 1% deviations which is an optimistic estimate on the modelling errors of the halo
model reaction framework.

leaves one slightly sensitive to the 𝑘star correction through the 1-
halo terms and consequently on the particular choice of halo mass
function.
Using the exact forms of 𝛾2 & 𝛾3 as described in subsection 3.2

is a big challenge. This is primarily for computational reasons as
it involves numerical time derivatives. Smoothness of such deriva-
tives is difficult to ensure and can affect results. In particular, the
exponential dependence of R on 𝑘★ (see Equation 4) makes it very
sensitive to inaccuracies in the 1-loop calculation. Further, the full
map to 𝛾2 & 𝛾3 from the EFTofDE would increase computational
time significantly, degrading our code’s ability to perform statistical
analyses on data.
To test the impact of setting 𝛾2 = 𝛾3 = 0 we compare Equation 4

with and without these terms switched on for two different theories of
gravity, DGP and the Hu-Sawicki 𝑓 (𝑅) model (Hu & Sawicki 2007).
The former is an instance of derivative or Vainshtein screening and
the latter of potential or chameleon screening, covering two main
types of screening mechanism.
This comparison is shown in Figure 3. We find that in the case of

DGP, the correction coming from the 1-loop computation is negli-
gible for small and moderate modifications to GR at all scales. On
the other hand, the corrections to the 𝑓 (𝑅) theory can be up to 1.5%
at 𝑧 = 0 for moderate modifications to GR. This may be acceptable
if these inaccuracies can be partially absorbed into the nonlinear
degrees of freedom. We explore this in section 5.

4.3 Observational and theoretical constraints

Firstly, we want to eliminate a range of 𝛼-parameter values that leads
to two pathological instabilities: ghost (i.e., negative kinetic energy)
and gradient (i.e., imaginary speed of sound). These constraints for
the Horndeski theories were first derived in De Felice & Tsujikawa
(2012). In terms of the 𝛼-functions, Bellini & Sawicki (2014) found
that the stability of the background requires

𝛼 > 0 , 𝑐2𝑠 ≥ 0 , (50)

from Equation 29 and Equation 30 for scalar modes, and

𝑀2 > 0 , 𝑐2𝑇 = 1 + 𝛼𝑇 ≥ 0 , (51)

for tensor modes of perturbations. An additional theoretical con-
straint is the stability of scalar modes in the presence of gravitational
waves of large amplitude, for instance, sourced by massive binary

systems (Creminelli et al. 2020). Mapped to the parameterisation
used in this work this requires the following bound (Noller 2020):

|𝛼𝑀 + 𝛼𝐵 | . 10−2 . (52)

Previously, it was argued that the constraining power of upcoming
cosmological surveys will allow us to pin down the 𝛼-parameters
at the O(0.1)-level (e.g., Frusciante et al. 2019). For the condition
above this implies that 𝛼𝑀 ≈ −𝛼𝐵 . However, in such forecasts
nonlinear scales were ignored with a typical highest mode around
𝑘max ≈ 0.15 ℎ Mpc−1. We speculate that this constraint may be
improved upon by inclusion of the nonlinear scales. Therefore, in
our code we treat 𝛼𝐵 and 𝛼𝑀 independently.
Secondly, onemay consider that the newphysics should notmodify

the speed of gravitational wave propagation (Lombriser & Taylor
2016; Abbott et al. 2017; Lombriser & Lima 2017; Creminelli &
Vernizzi 2017; Ezquiaga & Zumalacárregui 2017; Baker et al. 2017;
Sakstein & Jain 2017; Battye et al. 2018; de Rham &Melville 2018;
Creminelli et al. 2018), and so 𝛼𝑇 = 𝑀̄22 = 0. This luminality
condition has been argued to not be as clear cut a constraint through
EFT considerations (de Rham & Melville 2018; Baker et al. 2022)
as well as through the positivity bounds from high energy physics
(de Rham et al. 2021), so in our code we keep the 𝛼𝑇 dependence
in 𝜇. Subluminality, stated in the former references, follows from
the existence of a Wilsonian UV completion (Adams et al. 2006)
and dependence on the theory’s ‘cutoff’ scale. From Equation 29 it
can be seen that subliminality of scalar modes is guaranteed for large
values of 𝛼𝐾 , while for tensor modes subluminality requires 𝛼𝑇 < 0.
Superluminality, stated in de Rham et al. (2021), is a consequence
of the positivity bounds for scattering between scalar and matter
fields. Such positivity bounds require a unitary, causal, local UV
completion of our low-energy EFT theory. However, superluminality
does not necessary result in casual paradoxes (Babichev et al. 2008;
Burrage et al. 2012). In general, the notion of causality in terms of
the low-energy EFT is a rather subtle topic (for instance, see de Rham
& Tolley 2020; Reall 2021).
Thirdly, in the QS 𝛼𝐾 does not enter the equations of motion

(Bellini & Sawicki 2014). Therefore, it is completely unconstrained
in our approach, or for any model with 𝑐2𝑠 ≈ 1. However, in the
exact computation 𝛼𝐾 affects only the largest scales (see Figure 2),
which are dominated by cosmic variance. This can be a motivation
to not consider 𝛼𝐾 in data analyses, leaving only 𝛼𝑀 and 𝛼𝐵 in a
‘bare-bones’ case. We do not impose any of these reductions in our
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Figure 3. Ratio of the approximated reaction to the full calculation. The approximation assumes E = 1 in Equation 6 which is approximately equivalent to no
higher order perturbative, screening terms i.e, 𝛾2 = 𝛾3 = 0.We showHu-Sawicki 𝑓 (𝑅) gravity on the left and the normal branch of DGP on the right for varying
modifications to GR. For 𝑓 (𝑅) we show predictions for when the model parameter takes the value of | 𝑓𝑅0 | = 10−5 (moderate modification, blue), | 𝑓𝑅0 | = 10−6
(low modification, red) and | 𝑓𝑅0 | = 10−7 (very low modification, green). For DGP we show predictions for when the model parameter is Ωrc = 0.25 (moderate
modification, blue) and Ωrc = 0.01 (low modification, red). We also show the comparison over two redshifts, 𝑧 = 0 (solid lines) and 𝑧 = 1 (dotted lines).

Table 1. Theoretical and observational constraints on 𝛼-parameters from references in the right column. Theoretical constraints are coming from low-energy
(EFT) and high-energy (positivity bounds) physics. Note that 𝛼𝐾 is not constrained by data, hence the subluminality condition does not impose any constraining
power on the scalar mode perturbations. Also note the contradiction in the condition for GW propagation: subluminal versus superluminal speed. The positivity
bounds do not hold in general, they are derived for a quadratic subclass of Horndeski theories with𝐺3 = 𝐺5 = 𝐺5,𝑋 = 0 in Equation 2. Data driven constraints
strongly depend on the imposed theoretical priors and time-dependent parametrisation of 𝛼-functions. Here wemention only two prior-independent observational
constraints.

scalar tensor

no ghost 𝛼𝐾 + 32 𝛼
2
𝐵
> 0 𝑀2 > 0 Bellini & Sawicki (2014)Low gradient stability 𝑐2𝑠 ≥ 0 𝛼𝑇 ≥ −1

Energy (sub)luminality large 𝛼𝐾 𝛼𝑇 ≤ 0 de Rham & Melville (2018)
no GW-induced instability |𝛼𝑀 + 𝛼𝐵 | . 10−2 Creminelli et al. (2020)

High scalar-scalar scattering 𝛼𝐵 ≤ 2𝛼𝑇
1+𝛼𝑇 Melville & Noller (2020)

Energy scalar-matter scattering 𝛼𝑇 ≥ 0 de Rham et al. (2021)

Data GW propagation speed |𝛼𝑇 | ≤ 10−15 Abbott et al. (2017)
CMB and LSS |𝛼𝑀 |, |𝛼𝐵 | ≤ O(0.1) Spurio Mancini et al. (2019)

code and leave it to the user to specify well motivated priors on the
full set of EFTofDE parameters in their analyses.
Lastly, we note that there are a host of data driven constraints

that one can put on the EFTofDE parameters (Huang 2016; Bellini
et al. 2016; Noller & Nicola 2019a; Noller & Nicola 2019b; Spu-
rio Mancini et al. 2019; Melville & Noller 2020; Noller 2020;
de Rham et al. 2021). Such constraints strongly depend on the im-
posed theoretical priors and time-dependent parameterisation of the
𝛼-functions (see subsection 4.4). However, they all agree that the un-
certainties and values of the 𝛼-parameters are of order O(0.1). The
futureCMBandLSS surveys promise to improve the constraints up to
at least one order of magnitude 𝜎( |𝛼𝑖 |) ∼ O(0.01) (see, for example,
Abazajian et al. 2016). One may also assume a ΛCDM background,
well motivated by CMB data (e.g., Aghanim et al. 2020), and so set
𝐻 (𝑎) = 𝐻ΛCDM(a)9. We summarize the constraints discussed above
in Table 1.

4.4 Parameterising time dependence

Here, we look at how one can parameterise the time dependence
of the EFTofDE functions. To first order this can be approximated
by a Taylor expansion, 𝜃𝑖 (𝑎) ≈ 𝜃𝑖,0 + 𝜃𝑖, 𝑝 (1 − 𝑎), leaving at least

9 Our code defaults to this assumption, but there is the option to parameterise
the background too.

6 free constants characterising deviations from ΛCDM. In typical
data analyses, only a 1-parameter time dependence is considered.
For example, in Noller & Nicola (2019a) the authors consider the
following three parameterisations for the 𝛼𝑖 , 𝑖 ∈ {𝑀, 𝐵, 𝐾, 𝑇}

(1) :𝛼𝑖 (𝑎) = 𝑐𝑖ΩΛ (𝑎) , (53)
(2) :𝛼𝑖 (𝑎) = 𝑐𝑖𝑎 , (54)
(3) :𝛼𝑖 (𝑎) = 𝑐𝑖𝑎𝑛𝑖 , (55)

where 𝑐𝑖 and 𝑛𝑖 are free constants and ΩΛ (𝑎) is the ΛCDM cos-
mological constant energy density fraction as a function of time.
For a comprehensive list of various other time parameterisations see
Appendix B of Frusciante & Perenon (2020). These all draw on the
motivation that modifications should only become relevant at late
times. In our code, the default is set to (2) for all 𝛼𝑖 . We note that
such parametrisations may exclude well-known theories as shown
in Kennedy et al. (2018), which motivated the 𝑠-basis introduced in
subsection 3.1.
We can also adopt similar parametrisations for the background

𝐻 (𝑎), but a more general choice would be for example the Chevalier-
Polarski-Linder (CPL) parametrisation (Chevallier & Polarski 2001;
Linder 2003), which parametrises the dark energy equation of state
𝑤(𝑎) in terms of two free constants, {𝑤0, 𝑤𝑎} as

𝑤(𝑎) = 𝑤0 + 𝑤𝑎 (1 − 𝑎) , (56)

MNRAS 000, 1–20 (2022)



Model independent nonlinear reaction 11

which gives the following form for 𝐻 (𝑎)

𝐻2 (𝑎) = 𝐻20
(
Ωm,0𝑎

−3 +ΩΛ𝑒
−3

∫
(1+𝑤 (𝑎))d log 𝑎

)
. (57)

4.5 Parametrisation of F

The nPPF form for F given in Equation 39 captures dependencies
of the nonlinear modification to the Poisson equation on the relevant
variables, namely {𝑦h, 𝑎, 𝑀𝑣𝑖𝑟 , 𝑦env}. Being motivated by the form
of F in DGP (Equation B1), it can recover the DGP form given
appropriate choices for 𝑝𝑖 albeit with a non-trivial dependency of
𝑝2 on 𝑎 (see Equation B9). Equation 39 becomes approximate when
moving beyondDGP. On the other hand, the Erf form, Equation 41, is
completely phenomenological and is an approximation even in DGP.
Note that the nPPF is alsomore directly relatable to specific actions

and gravity models, in which case its degrees of freedom can be
significantly restricted. It is thus far more suitable when particular
models are being targeted for analysis. The Erf model on the other
hand is completely general and has no direct relation to specific
actions of gravity. It is thus more suitable when no specific model is
being targeted and we want to place constraints on general models of
gravity. In section 5 we test these two approximations in both DGP
and 𝑓 (𝑅) gravity.

4.6 Overview

With all these approximations and constraints, the arguable minimal
parameter space characterising deviations to ΛCDM is 3 free func-
tions of time and 4 constants. Without approximations or constraints,
the maximal is 18 free functions of time and a constant. Of course we
can also find intermediate reduced sets, such as using the nPPF but
with 𝛾2 = 𝛾3 = 0. Given we need to parameterise these functions of
time, the maximal set is currently an unfeasible parameter space to
probe comprehensively, both in terms of data processing as well as
parameter degeneracies which limits the amount of useful physical
information one can extract from the data.
Finally, we have focused on the Horndeski class of models, but

one can extend this to larger generality by considering for example
the growth index 𝛾 parametrisation for 𝜇(𝑎) (Peebles 1980; Linder
& Cahn 2007) (explicitly, see Eq. 47 of Kennedy et al. 2018) and
Equation 57 for 𝐻 (𝑎). Combined with the Erf model, this would
constitute a minimal set of 6 free constants for general modifications
toΛCDM.Thisminimalmodel-independent parametrisation has also
been implemented into the code.
We summarise these parameterisations in Table 2.

5 TESTING THE NONLINEAR PARAMETERISATIONS

In this section we compare the predictions for the halomodel reaction
R, using the various nonlinear parameterisations of modifications to
the Poisson equation outlined in subsection 3.3, to exact solutions
as well as state-of-the-art emulators within an evolving dark energy
scenario (wCDM), DGP and Hu-Sawicki 𝑓 (𝑅) gravity. Note that
the exact solutions for the reaction have in turn been themselves
compared to full 𝑁-body simulations in other works (see Cataneo
et al. 2019, for example), exhibiting O(1)% agreement. These mod-
els cover a fair range of theoretical and phenomenological features
typical of modified gravity and dark energy models, making them
good representatives and test cases.

We look to test predictions for R using Equation 39 (nPPF) and
Equation 41 (Erf) with 𝛾2 = 𝛾3 = 0 against the full calculation which
computes R using exact forms for 𝛾2, 𝛾3 and F (see Appendices of
Bose et al. 2020b, for all relevant expressions). We further employ
the EuclidEmulator2 emulator (Knabenhans et al. 2021) and the fofr
emulator (Winther et al. 2019) for the wCDM and 𝑓 (𝑅) cases respec-
tively. These emulators have been trained on high quality 𝑁-body
simulations and are 1-2% accurate within the scales we examine,
providing a good benchmark for our predictions. One should keep
in mind that the halo model reaction approach’s accuracy is limited
by the pseudo power spectrum employed. For example, if we use
HMCode2020 (Mead et al. 2021) for the pseudo, which is claimed to
be 2.5% accurate down to 𝑘 ≤ 10 ℎ/Mpc, we then expect any power
spectrum comparisons to then be ∼ 4.5% consistent with 𝑁-body at
𝑘 ≤ 3 ℎ/Mpc, which assumes the result of Cataneo et al. (2016),
i.e., that the exact solution for R is ∼ 2% accurate at these scales. In
the wCDM and DGP cases, both ΛCDM and 𝑃pseudoNL are computed
using the halofit fitting function (Takahashi et al. 2012), but the 𝑓 (𝑅)
case uses HMCode2020.
The computation of R requires us to solve the evolution equations

for the spherical top-hat radius parametrised by 𝑦h (Equation B4).
This necessitates the specification of F at all redshifts up to the
target redshift. We then should test approximations for F even at
high redshifts, which is done in subsection B3, where we compare F
at 𝑧 = 0, 1, 4. For comparisons of the halo model reaction, we only
consider 𝑧 = 0, 1 which are more observationally relevant.
We fit {𝑞1, 𝑞2, 𝑞3, 𝑞4} for the Erf model, FErf . In the nPPF case,

we do not fit all the 8 free parameters of FnPPF, and only consider
𝑝1 and 𝑝8, treating both as constants. In principle, and indeed for
unspecified theories of gravity, all 8 parameters will be fit to the data.
For the comparisons made here, 𝑝2−7 are fixed to the theoretically
predicted values quoted in section B. Fitting such a high dimensional
parameter space is beyond the scope of this paper.
In what follows we fit the free parameters by performing a least

square fit to the exact R prediction. We choose to fit our parametrised
models to the exact predictions forR, rather than the emulator predic-
tions for 𝑃NL (𝑘) for two reasons. First so as to test the ansatz for the
phenomenological screening and the consistency of the predictions
(see section B). Second, we do not want to assume anything about
the pseudo spectrum in these fits. To fit we minimise the following
merit function

𝑠2 =
max∑︁
𝑗=min

max∑︁
𝑖=min

[Rexact (𝑘𝑖 , 𝑧 𝑗 ) − Rapprox (𝑘𝑖 , 𝑧 𝑗 )]2

𝜎2
𝑖, 𝑗

, (58)

where we assume error bars on Rexact coming from cosmic variance
(Zhao 2014; Blanchard et al. 2020a; Mancarella et al. 2022) and a
constant systematic error added in quadrature

𝜎2𝑖, 𝑗 (𝑘, 𝑧) =
4𝜋2

𝑘2
𝑖
Δ𝑘𝑖𝑉𝑠, 𝑗

+ 𝜎2sys , (59)

where 𝑉𝑠, 𝑗 ∈ {0.3, 8} Gpc3/ℎ3 is taken to be a stage IV survey-like
volume for each bin 𝑧 𝑗 ∈ {0, 1} respectively (Laureĳs et al. 2011;
Aghamousa et al. 2016; Mancarella et al. 2022; Blanchard et al.
2020b). We fit in the range 𝑘min = 0.1 ≤ 𝑘𝑖 ≤ 3 = 𝑘max which
is the range over which the exact computation of R is 2% accurate
(Cataneo et al. 2019), sampling logarithmically, with Δ𝑘𝑖 being the
bin width. We take 𝜎sys = 0.02 to reflect the systematic error in the
parametrised reaction when compared to simulations by proxy of the
exact solution. The best fit parameter values are shown in Table 3.
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Table 2. A maximal, reduced and minimal set of parameters needed for a comprehensive nonlinear power spectrum analysis of the unrestricted theory space
of Equation 2, together with a proposed minimal set for more general theories. The Horndeski minimal set assumes 𝛼𝑇 = 𝛼𝐾 = 0 and Equation 43, while the
maximal and the reduced assume full freedom of Equation 39. Both reduced and minimal assume 𝛾2 = 𝛾3 = 0. The totals show the number of free functions of
time plus any free constants. We note 𝑞4 and 𝑝8 are found in section 5 to be likely irrelevant for the 1-halo computation, and so we do not consider them in the
reduced or minimal cases. We also note very tight constraints on 𝛼𝐵 − 𝛼𝑀 (see subsection 4.3) relevant to the minimal case.

Maximal Reduced Minimal (Horndeski) Minimal (general)

Background 𝐻 (𝑎) 𝐻 (𝑎) 𝐻 (𝑎) 𝑤0, 𝑤𝑎
Linear 𝛼𝑀 (𝑎) , 𝛼𝐵 (𝑎) , 𝛼𝐾 (𝑎) , 𝛼𝑇 (𝑎) 𝛼𝑀 (𝑎) , 𝛼𝐵 (𝑎) , 𝛼𝐾 (𝑎) , 𝛼𝑇 (𝑎) 𝛼𝑀 (𝑎) , 𝛼𝐵 (𝑎) 𝛾

Quasi-nonlinear 𝜉 23 (𝑎) , 𝜉
2
4 (𝑎) , 𝜉

3
3 (𝑎) , 𝜉

3
4 (𝑎) , 𝜉

4
4 (𝑎) , 𝜉

5
4 (𝑎) - - -

Nonlinear 𝑝1−7 (𝑎) + 𝑝8 𝑝1−7 (𝑎) 𝑞1, 𝑞2, 𝑞3 𝑞1, 𝑞2, 𝑞3

Total 18+1 12 3 + 3 constants 6 constants

Table 3. Best fit parameter values for the DGP and 𝑓 (𝑅) models. The fit is
performed to the exact solution for R in the range 0.1 ℎ/Mpc ≤ 𝑘 ≤ 3 ℎ/Mpc
and at 𝑧 = 0, 1 as described in the main text. For the Erf model, we do not
fit 𝑞2, 𝑞3 and 𝑞4 for DGP and for 𝑓 (𝑅) we find the quality of fit with and
without 𝑞4 is similar. For all fits we thus set 𝑞4 = 0. The nPPF is exact for
DGP and so we only consider 𝑓 (𝑅) , fixing all 𝑝2−7 to the values given in
Equation B10.

nPPF Erf

Ωrc 𝑝1 𝑝8 𝑞1 𝑞2 𝑞3

0.25 - - 0.76 0 0
0.01 - - 0.71 0 0

| 𝑓R0 | 𝑝1 𝑝8 𝑞1 𝑞2 𝑞3

10−5 3 -0.8 0.9 0.35 0.65
10−6 8.5 -0.5 1.65 0.7 2.45
10−7 5.65 -0.45 0.6 0.8 2.15

5.1 Evolving dark energy example: wCDM

Here we perform a sanity check that the general minimal model out-
lined in Table 2 produces consistent results for a wCDM cosmology,
and is at least as accurate as the exact solution. To do this we compare
a minimal model with CPL parameters 𝑤0 = −1.2 and 𝑤𝑎 = 0.4, and
a growth index of 𝛾 = 0.55 to the exact solution as well as predictions
from EuclidEmulator2 using the same CPL parameters. We further
set the nonlinear parameters of the Erf model (𝑞𝑖) to unity, but check
that they have no impact on the results as expected from Equation 41
(𝜇 ≈ 1 for 𝛾 = 0.55).
We show our results in Figure 4. We see that the minimal model

is both completely consistent with the exact solution which has no
nonlinear or linear modification to the Poisson equation, as well as
1% consistent with the emulator down to 𝑘 ≤ 2 ℎ/Mpc and 2%
down to 𝑘 ≤ 3 ℎ/Mpc. The minimal general model could feasibly
outperform the exact solution given its degrees of freedom. In a
future work we plan to check forecasted constraints and possible
biases on cosmological parameters for the minimal general model,
in full posterior estimation analyses employing 𝑁-body simulation
measurements.

5.2 Vainshtein example: DGP

For DGP the nPPF parameterisation reproduces the exact form of
F (Equation B1) for specific choices of the 𝑝𝑖 parameters (Equa-
tion B9). On the other hand, the Erf parametrisation (Equation 41) is
approximate and we fit the associated parameters. We note that DGP
has no Yukawa suppression at large scales and produces a constant
enhancement of the ΛCDM linear growth factor. This enhancement
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Figure 4. Top panel: The ratio of the 𝑤CDM nonlinear power spectrum to
the ΛCDM nonlinear power spectrum computed using the EuclidEmulator2
(black) and halofit together with the halo model reaction (see Equation 3) for
the minimal general model (blue) as outlined in the right most column of Ta-
ble 2.Middle panel: The ratio between theoretical and emulator predictions
for the ratio between wCDM to ΛCDM spectra, i.e., the ratio of blue to black
top panels curves. Bottom panel: The ratio of the exact halo model reaction
to the minimal general model. We plot the ratio for two observationally rel-
evant redshifts, 𝑧 = 0 (solid) and 𝑧 = 1 (dotted). We show these results for
𝑤0 = −1.2 and 𝑤𝑎 = 0.4. The minimal general model also has 𝛾 = 0.55 and
𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 1.

is controlled by the DGP degree of freedomΩrc ≡ 1/(4𝐻20𝑟
2
𝑐) where

𝑟𝑐 is the cross-over scale dictating where gravity goes from behaving
4-dimensionally to 5-dimensionally. We consider two levels of devi-
ation to ΛCDM: a moderate modification given by Ωrc = 0.25 and a
small modification given by Ωrc = 0.01.
We only fit 𝑞1 aswe do not have anymass, environment orYukawa-

suppression scale dependence, and so we set 𝑞2 = 𝑞3 = 𝑞4 = 0 in
this case. The best fit values of 𝑞1 are given in Table 3. Further, we
employ the exact form of 𝜇(𝑎) in Equation 41 (see appendices of
Bose et al. 2020b, for the explicit expression).
In the top panels of Figure 5 we show the ratio of a DGP power

spectrum to aΛCDM spectrumwith the same background expansion
history, normalised to unity at linear scales for easier comparisons of
nonlinear effects. The DGP spectrum is given by Equation 3. We see
the moderate modification gives up to a 6% deviation from ΛCDM

MNRAS 000, 1–20 (2022)



Model independent nonlinear reaction 13

(above the linear growth enhancement) for 𝑘 ≤ 3ℎ/Mpc while the
small modification can reach 2% over the same range of scales.
Reassuringly, in the bottom panels we find sub-percent agreement
between the Erf and exact predictions down to 𝑘 = 5 ℎ/Mpc, with a
smaller disagreement for the smaller deviation from ΛCDM.
One can further parameterise the time dependence of 𝑞1 which

would alleviate some of these deviations, but we find these differ-
ences to be more than acceptable given the relative size compared
to the modification to ΛCDM shown in the top panels. Moreover, a
large number of additional degrees of freedom will be introduced in
real data analyses such as intrinsic alignments and parameterisations
of baryonic physics. These will be degenerate to some level with
modified gravity effects (see Schneider et al. 2020, for example),
allowing lower accuracy demands in the modelling of R.
This additional time dependence is highlighted in FigureB1,where

we find that the Erf model can match the exact form of F extremely
well at a fixed redshift. Upon investigation, we found this dependence
to be highly degenerate with 𝑞2 which prompted us to not introduce
new freedom to the model, especially because we can achieve very
good fits already, even without 𝑞2.
Note we have not compared the parametrisedmodel to an emulator

nor simulations in this case. Given the excellent agreement with the
exact solution we can infer its accuracy is at least as good as the
exact solution, given it employs 3 additional degrees of freedom. We
remind the reader that the exact reaction was found to be 2% accurate
when compared to 𝑁-body simulations in Cataneo et al. (2019).

5.3 Chameleon example: Hu-Sawicki 𝑓 (𝑅)

For this theory we consider both the nPPF and Erf models for R,
and compare them to the exact solution (Equation B6) as well as
at the power spectrum level to the fofr emulator of Winther et al.
(2019). This model makes use of the chameleon screening mecha-
nism which exhibits an environmental and mass dependence. It also
has a Yukawa suppression which returns it to GR at large scales. The
additional degree of freedom is the value of the background scalar
field at 𝑧 = 0, 𝑓R0, which controls the level of deviation fromGR.We
consider three levels of deviation fromΛCDM, | 𝑓R0 | = 10−5 (moder-
ate modification), | 𝑓R0 | = 10−6 (low modification) and | 𝑓R0 | = 10−7
(very low modification). We note that the moderate 𝑓 (𝑅) modifica-
tion is already ruled out by data (see Cataneo et al. 2015; Desmond
& Ferreira 2020; Lombriser 2014; Brax et al. 2021, for example), but
provides a good flexibility test of the parameterisation.
In the nPPF case, we choose the theoreticallymotivated parameters

given in Equation B10. These emerge from a parameterised form of
𝑓 (𝑅) gravity (Lombriser et al. 2014) and so are approximate. 𝑝1 and
our new parameter 𝑝8 remain free. Treating them both as constants,
we fit them in the same way that we fit the Erf model’s parameters,
by minimising Equation 58. We note that the other nPPF parameters,
𝑝2 − 𝑝7, take on different forms for the chameleon screening and
Yukawa suppression regimes.We only consider the screening regime
which is more relevant for the spherical collapse calculation, and
rely on 𝜇( 𝑘̂ , 𝑎) appearing in Equation 39 to take care of the Yukawa
suppression.
Yukawa suppression is relevant for large masses, large 𝑦env or

small values of 𝑓R0. Given this, we do not expect 𝑝8 or 𝑞4 to be
relevant for spherical collapse where 𝑦h ≤ 𝑦env ≤ 1, and even
less for the 1-halo spectrum where the Sheth-Torman mass function
down-weights large masses (see, for example, Schmidt et al. 2009).
We verify this by performing two separate fits: the first only including
the parameter sets {𝑝1} and {𝑞1, 𝑞2, 𝑞3} for the nPPF and Erf model

respectively, while the second extending these sets to include 𝑝8 and
𝑞4 respectively.
Wefind that values of 𝑞4, 𝑝8 ≥ 0 negligibly change the goodness of

fit for the low and very low modification strengths, while sufficiently
negative values degrade the fit, which is expected as the Yukawa
scale begins to overlap with the screening scale. Further, we observe
only a marginal improvement at 𝑧 = 0 for | 𝑓R0 | = 10−5 in the Erf
case. Given this, all fits shown and quoted here set 𝑞4 = 0 for the
Erf case. In the nPPF case, we observe a moderate improvement for
| 𝑓R0 | = 10−5 and so keep 𝑝8. We report the best-fit parameters in
Table 3.
The 𝑓 (𝑅) results are shown in Figure 6 and Figure 7. We see the

moderate modification can reach a 20% deviation from ΛCDM for
𝑘 ≤ 3ℎ/Mpc while the low and very low modifications reach 10%
and 3% respectively. Both parameterisations dowell in modelling the
moderate modification case | 𝑓R0 | = 10−5, shown in Figure 6. The Erf
model prediction for R stays within 1% of the exact solution for 𝑘 ≤
3ℎ/Mpc. Similarly, the nPPF remains within 2% for 𝑘 ≤ 2ℎ/Mpc.
The situation improves for the lower modification cases, shown in
Figure 7. These comparisons exhibit sub-1% agreement between the
Erf (nPPF) model and exact solution for 𝑘 ≤ 5(3) ℎ/Mpc at 𝑧 = 0
and 𝑧 = 1.
All power spectra predictions are ∼ 3% consistent with the fofr

emulator which mainly demonstrates the accuracy of HMCode2020.
Interestingly, we find that the additional degrees of freedom within
the nPPF and Erf models are degenerate with possible inaccuracies
in the pseudo, even down to 𝑘 = 5 ℎ/Mpc. Again, we leave it to a
future work to see if these additional degrees of freedom can improve
constraining power on cosmological and gravitational parameters
while remaining unbiased.
Our comparisons indicate that for the Erf model, degeneracies

between 𝑞1−3 and 𝑞4 make the latter parameter unnecessary. We
note that the fit of 𝑞1−3 becomes insensitive to the value of 𝑞4 if it
is sufficiently large, here found to be 𝑞4 = 0. For the nPPF model,
the additional freedom provided by 𝑝8 is necessary to improve the
fit, but it does not help substantially for observationally viable values
of 𝑓R0. Further, we remind the reader that we do not know 𝑝2−7 a
priori for unspecified theories of gravity, and so the importance of
𝑝8 is likely to be minimal when considering these additional degrees
of freedom.
Lastly, we remark that the Erf model gives a good fit for a range of

values for 𝑞1−310. The values quoted in Table 3 are only the best fit
values, which are also very dependent on Equation 59. This makes it
hard to extract any further dependence on 𝑓R0 in Equation 41 (note
this already depends on 𝜇(𝑘, 𝑎)), which is also beyond the scope of
this parametrisationwhich aims to be general in terms of gravitational
degrees of freedom.

6 SUMMARY

In this paper we have presented a significant extension of the code
described in Bose et al. (2020b) which produces nonlinear correc-
tions to the matter power spectrum coming from beyond-ΛCDM
physics in the form of the halo model reaction R. In particular, we
have focused on implementing parameterisations of key equations,
in particular the background expansion history and the linear and
nonlinear Poisson equations.

10 Similar fits were found for O(0.1) values for these parameters.
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Figure 5. Top panels: The ratio of the DGP nonlinear power spectrum to the ΛCDM nonlinear power spectrum computed using halofit and the halo model
reaction (see Equation 3) for the exact (black) and Erf (blue) cases. We do not show the nPPF case as it reduces to the exact solution for specific choices of its
parameters. The Erf model assumes 𝛾2 = 𝛾3 = 0. We have normalised the ratio to unity at large scales for easier comparisons. Bottom panels: The ratio of
halo model reactions; the Erf model RErf to the exact solution. This is equivalent to the ratio of the top panel blue to black curves. We show these results for a
moderate modification, Ωrc = 0.25 (left) and a low modification, Ωrc = 0.01 (right). We plot the ratio for two observationally relevant redshifts, 𝑧 = 0 (solid)
and 𝑧 = 1 (dotted).
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Figure 6. Top panel: The ratio of the 𝑓 (𝑅) nonlinear power spectrum to
the ΛCDM nonlinear power spectrum computed using HMCode2020 and the
halo model reaction (see Equation 3) for the exact (grey), Erf (blue) and
nPPF (red) cases. The fofr emulator is also shown in black.Middle panel:
The ratio between theoretical and emulator predictions for the ratio between
𝑓 (𝑅) toΛCDM spectra, i.e., the ratio of grey, blue and red to black top panels
curves. Bottom panel: The ratio of halo model reactions; the parameterised
models to the exact solution. This is equivalent to the ratio of the top panel
coloured curves to the gray curves. Note that both parameterised models have
𝛾2 = 𝛾3 = 0. We plot the ratio for two observationally relevant redshifts,
𝑧 = 0 (solid) and 𝑧 = 1 (dotted). We show these results for a moderate
modification, | 𝑓R0 | = 10−5. The orange bands indicate the 2% region which
is the current absolute accuracy of the exact R.

For the linear scales and background we have considered the effec-
tive field theory of dark energy (EFTofDE) while for the nonlinear
scales we have considered two distinct parameterisations, a nonlinear
parameterised post-Friedmannian (nPPF) based model and a more
phenomenological model based on the error function (Erf). Together,
these give a general parameterisation of the nonlinear matter power
spectrum in Horndeski models. We neglect loop corrections in these
parameterisations but leave these as viable additions and we provide
theoretical and numerical means of deriving these for the Horn-
deski class of theories. This being said, we remark that the nonlinear
parametrisations are completely general, and so to move beyond the
Horndeski class it is sufficient to parametrise only the background
expansion history and the linear modification to the Poisson equa-
tion. Further, the nonlinear parametrisations also have unscreened
limits, and so we are not restricted to theories exhibiting screening.
In summary, this work presents a fast, accurate and highly general
nonlinear power spectrum predictor for non-standard models of grav-
ity and cosmology including massive neutrinos, parameterised with
a minimal set of free, physically meaningful constants.

We have tested these parameterisations against the full solutions
for R in three beyond-ΛCDM models, wCDM, Hu-Sawicki 𝑓 (𝑅)
and DGP gravity. This has identified a minimal set of 3 free func-
tions of time and 3 dimensionless, positive, O(1) dimensionless
constants, which can replicate the exact solutions to within 1% at
𝑘 ≤ 5ℎ/Mpc and at 𝑧 ≤ 1 for modifications to GR within current
data constraints and within the Horndeski class. This level of im-
precision is sub-dominant to the 2% accuracy currently achieved by
the reaction method at these scales (Cataneo et al. 2019, 2020), and
further to the inaccuracies in current pseudo spectrum prescriptions
(Bose et al. 2021; Carrilho et al. 2022). We have seen that the ad-
ditional parameters have some degree of degeneracy with pseudo
spectrum inaccuracies, which may improve the scales of validity for
the nonlinear power spectrum 𝑃NL as predictedwithin the halomodel
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Figure 7. Same as Figure 6 for a low modification, | 𝑓R0 | = 10−6 (top) and a
very low modification, | 𝑓R0 | = 10−7 (bottom). Note that the fofr emulator for
| 𝑓R0 | = 10−7 gives the ΛCDM prediction and so we omit the middle panel.

reaction framework. We thus suspect that this minimal parametrisa-
tion is acceptable for upcoming Stage IV cosmic shear analyses given
the flexibility of the nonlinear parameterisation and the many other
nuisance degrees of freedom entering a real data analyses, such as
those characterising baryonic physics or intrinsic galaxy alignments
(see, for example, Tröster et al. 2021).
The Erf model is also highly model independent, capturing the

basic phenomenology of screening mechanisms. It can thus be suit-
able for analyses targeting general deviations from ΛCDM. For
example, one may perform a model independent analysis combin-
ing the Erf parametrisation with the linear theory growth index 𝛾-
parametrisation (Peebles 1980; Linder&Cahn 2007) (also see Eq. 47
of Kennedy et al. 2018) and say the background parametrisation of
Chevallier & Polarski (2001); Linder (2003), giving 6 free constants
characteristing general deviations from ΛCDM in the matter power
spectrum at a wide range of scales. On the other hand, the nPPF

approach is complementary as it can be directly related to specific
actions of Nature, making it very suitable when we look to constrain
more specific classes of theories.
In future work we will test the robustness of the minimal param-

eterisation, and forecast constraints on deviations to ΛCDM by per-
forming full Markov chain Monte Carlo (MCMC) analyses on mock
data of the cosmic shear spectrum. Consistency and accuracy checks
can also be performed using recently developed parametrised modi-
fied gravity simulations (Hassani&Lombriser 2020; Srinivasan et al.
2021; Fiorini et al. 2021; Wright et al. 2022; Brando et al. 2022). On
this note, our code is as fast as the original ReACT and so is capable
of running MCMC analyses. Despite its appreciable baseline speed,
we aim to make this even faster by creating emulators based off halo
model reaction predictions using the recently released CosmoPower
code (Spurio Mancini et al. 2022) which will highly optimise such
analyses. It is a future plan to also perform real data analyses on cur-
rently available cosmic shear data to constrain deviations to ΛCDM
using the general minimal parametrisation given in Table 2.
It is currently an ongoing project to also extend the halo model

reaction to redshift space and biased tracers in a vein similar to
Bose et al. (2020a). We also plan to include interacting dark energy
parametrisations (Gleyzes et al. 2015; Skordis et al. 2015), a scenario
where essentially one decouples the baryons from ΛCDM modifi-
cations, contrary to the scenario considered in this paper where all
matter is coupled to the scalar field.
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APPENDIX A: LINEAR POISSON MODIFICATIONS

A1 Horndeski in the 𝛼-basis

The linear modification to the Poisson equation in the Horndeski
class of EFTofDE, under the quasi-static approximation, and in the
𝛼-basis, {𝐻, 𝛼𝑀 , 𝛼𝐵 , 𝛼𝐾 , 𝛼𝑇 }, is given by

𝜇(𝑘, 𝑎) = 2
𝜅2

𝑓1 (𝑎) + 𝑓2 (𝑎)𝑎2/𝑘2

𝑓3 (𝑎) + 𝑓4 (𝑎)𝑎2/𝑘2
, (A1)

where the constituent functions are given by

𝑓1 =𝐵2𝐶3 − 𝐶1𝐵3 , (A2)
𝑓2 =𝐵2𝐶𝜋 , (A3)
𝑓3 =𝐴1 [𝐵3𝐶2 − 𝐵1𝐶3 (𝑘, 𝑎)]

+ 𝐴2 [𝐵1𝐶1 − 𝐵2𝐶2]
+ 𝐴3 [𝐵2𝐶3 − 𝐵3𝐶1] , (A4)

𝑓4 =[𝐴3𝐵2 − 𝐴1𝐵1]𝐶𝜋 . (A5)

Finally, we give the 𝐴, 𝐵 and 𝐶 functions in terms of the 𝛼-basis as
(Pogosian & Silvestri 2016)

𝐴1 =2𝑀2 , (A6)

𝐴2 =𝛼𝐵𝐻𝑀
2 , (A7)

𝐴3 =0 , (A8)

𝐵1 = − 1
𝑐2
𝑇

, (A9)

𝐵2 =1 , (A10)

𝐵3 =
(−𝛼𝑀 + 𝛼𝑇 )𝐻

𝑐2
𝑇

, (A11)

𝐶1 = − 𝐵3𝑀2𝑐2𝑇 , (A12)

𝐶2 =
𝐴2
2
, (A13)

𝐶3 =𝑐 +
𝐻𝑀2

2

[
− 2𝛼𝑇 𝐻 + 𝛼2𝑀 𝑐

2
𝑇 𝐻 + 𝑎𝐻𝛼′𝐵 + 𝑎𝐻𝛼′𝑀

+ 𝑎𝛼𝑇 𝐻𝛼′𝑀 + 2𝑎𝛼𝑇 𝐻 ′ + 𝑎2𝛼′𝑇 𝐻
′ + 𝛼𝐵 [(1 + 𝛼𝑀 )𝐻 + 𝑎𝐻 ′]

+ 𝛼𝑀 [𝐻 (1 − 𝛼𝑇 + 2𝑎𝛼′𝑇 ) + 𝑎𝑐
2
𝑇 𝐻

′] + 𝑎2𝐻𝛼′′𝑇
]
, (A14)

𝐶𝜋 = − 1
4
𝑎𝐻

[
12𝑐𝐻 ′ + 𝐻𝑀2 (6𝛼2𝑀 𝑐

2
𝑇 𝐻𝐻

′

+ 6𝛼𝐵 (2𝑎(𝐻 ′)2 + 𝐻 [(4 + 𝛼𝑀 )𝐻 ′ + 𝑎𝐻 ′′])

+ 𝛼𝑀 (𝑐2𝑇 (12𝑎(𝐻
′)2 − 𝑅̄′) + 6𝐻 (2(2𝑐2𝑇 + 𝑎𝛼′𝑇 )𝐻

′ + 𝑎𝑐2𝑇 𝐻
′′))

+ 𝑎[12(𝛼𝑇 + 𝑎𝛼′𝑇 ) (𝐻
′)2

− 𝛼′𝑇 𝑅̄
′ + 6𝐻 (𝐻 ′(𝛼′𝐵 + 𝑐2𝑇 𝛼

′
𝑀 + 5𝛼′𝑇 + 𝑎𝛼′′𝑇 ) + 𝑎𝛼

′
𝑇 𝐻

′′)])
]
,

(A15)

where 𝑐2
𝑇
= (1+𝛼𝑇 ) and 𝑅̄ is the background Ricci scalar. The 𝑐(𝑎)

parameter (Equation 22) in the 𝛼-basis is given by

𝑐(𝑎) = −𝑀2
[ 3𝐻20Ω𝑚,0
2𝑎3𝜅2𝑀2

+ 1
2
𝐻

(
𝑎𝐻 ′[(2 + 𝛼𝑀 )𝑐2𝑇 + 𝑎𝛼′𝑇 ]

+ 𝐻 (𝑐2𝑇 [(𝛼𝑀 − 1)𝛼𝑀 + 𝑎𝛼′𝑀 ] + 2𝑎𝛼𝑀𝛼′𝑇 + 𝑎2𝛼′′𝑇 )
)]
,

(A16)

where we have used 𝜌𝑚 = 3𝐻20Ω𝑚,0/(𝜅
2𝑎3), with Ω𝑚,0 being the

matter density fraction today and 𝐻0 = 𝐻 (𝑎 = 1) is the Hubble
constant.
We note that in our code we make the redefinition 𝑀2𝜅2 =

𝑀2/𝑚20 → 𝑀2 where 𝑚20 ( is the Planck mass. Further, we com-
ment on the flexibility offered here. One can choose to specify any
two of {𝛼𝑀 , 𝑀2, 𝐻}. If 𝐻 is specified then either 𝛼𝑀 or 𝑀2 must
also be specified, with the third function given by the relation in
Equation 25. If 𝐻 is not specified, then we must solve the Friedmann
equations to obtain𝐻. As a default in our code,𝐻 is specified and it is
assumed that the specified expressions for 𝛼𝑀 and𝑀2 are consistent
with Equation 25.
We can also take the small scale (𝑘 → ∞) limit of Equation A1

to get a simpler expression valid at scales where the QS is a safer
approximation and formodels exhibiting negligible scale dependence
in the linear growth. This is given by

𝜇∞ =
1

𝑀2𝜅2

(
1 + 𝛼𝑇 + 𝛽𝜉

)
, (A17)
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where

𝛽𝜉 =
2
𝑐2𝑠𝛼

(
𝑐2𝑇
𝛼𝐵

2
+ 𝛼𝑀 − 𝛼𝑇

)2
(A18)

with 𝑐2𝑠 and 𝛼 and 𝛼 given by Equation 29 and Equation 30.

A2 Example: Hu-Sawicki 𝑓 (𝑅)

In this section we derive the relevant EFTofDE parameters and linear
Poissonmodification for the Hu-Sawicki form of 𝑓 (𝑅) gravity (Hu&
Sawicki 2007). This exercise is also performed in theGtoPT notebook
provided in the ACTio-ReACTio github repository.
The action in 𝑓 (𝑅) gravity is given by

𝑆 =

∫
𝑑4𝑥

√−𝑔 1
2𝜅2

(
𝑅 + 𝑓 (𝑅)

)
≈
∫

𝑑4𝑥
√−𝑔 1

2𝜅2
(
𝑅 + 𝑓 (𝑅̄) + 𝑓𝑅 (𝑅̄) (𝑅 − 𝑅̄)

)
=

∫
𝑑4𝑥

√−𝑔 1
2𝜅2

(
(1 + 𝑓𝑅)𝑅 + 𝑓 − 𝑓𝑅 𝑅̄

)
, (A19)

where 𝑓𝑅 = 𝑑𝑓 (𝑅)/𝑑𝑅 and we have performed a Taylor expansion in
the second line. We can then map this action onto the functions given
in Equation 2 together with an identification of the scalar degree of
freedom 𝜙 ≡ (1 + 𝑓𝑅)/𝜅2 (de Felice et al. 2011):

𝐺2 = − 1
2𝜅2

(𝑅̄ 𝑓𝑅 − 𝑓 ), 𝐺3 = 0, and 𝐺4 =
1
2𝜅2

(1 + 𝑓𝑅) .
(A20)

If we now write down the action in the ADM formalism and use
the Gauss-Codazzi relation, we can compare to Equation 18 and
Equation 19 to get

Ω = (1 + 𝑓𝑅), Λ =
1
2𝜅2

( 𝑓 − 𝑅̄ 𝑓𝑅), 𝑐 = 𝑀̄22 = 𝑀̄31 = 𝑀42 = 0 .

(A21)

Using Equation 25 - Equation 27 we have

𝛼𝑀 =
𝑎 𝑓 ′
𝑅

1 + 𝑓𝑅
, (A22)

𝛼𝑇 = 0 , (A23)

𝛼𝐵 = −
𝑎 𝑓 ′
𝑅

1 + 𝑓𝑅
, (A24)

𝛼𝐾 = 0 , (A25)

with

𝑀2 =
(1 + 𝑓𝑅)
𝜅2

, (A26)

where a prime denotes a scale factor derivative. When substituting
into the expressions in Appendix A1 we get the following solution
for 𝜇 (Equation A1)

𝜇 =
1

1 + 𝑓𝑅

[
1 +

( 𝑘
𝑎

)2 1
3Π̃(𝑘, 𝑎)

]
, (A27)

where

Π̃(𝑘, 𝑎) =
(
𝑘

𝑎

)2
+ (1 + 𝑓𝑅)

𝑅̄ 𝑓

3
, (A28)

and

𝑅̄ 𝑓 ≡ 𝑑𝑅̄

𝑑𝑓𝑅
= 𝑓 −1𝑅𝑅

(
=
𝑅̄′

𝑓 ′
𝑅

)
. (A29)

In the Hu-Sawicki model we have the following choice for 𝑓 (𝑅)

𝑓 (𝑅) = −𝑚2 𝑐1 (𝑅/𝑚2)𝑛

𝑐2 (𝑅/𝑚2)𝑛 + 1
, (A30)

where in this work we set the index 𝑛 = 1 and the mass scale 𝑚2,
𝑐1 and 𝑐2 are free parameters to be constrained by data. Taking the
derivative of Equation A30 with respect to 𝑅 and the high curvature
limit (𝑅 � 𝑚2) gives

𝑓𝑅 = − 𝑐1
𝑐22

(𝑚2
𝑅

)2
. (A31)

By rearranging this equation and evaluating at the background level at
𝑎 = 1 (today),we can apply the following standard reparameterisation

𝑐1
𝑐22

= − 𝑓𝑅0
( 𝑅̄0
𝑚2

)2
, (A32)

where 𝑓𝑅0 is the background value of 𝑓𝑅 evaluated today and is a free
parameter governing the level of modification to ΛCDM at the level
of structure formation. Substituting Equation A32 into Equation A31
gives

𝑓𝑅 = 𝑓𝑅0
( 𝑅̄0
𝑅

)2
. (A33)

Further, we have

𝑓𝑅𝑅 = −2 𝑓𝑅0
( 𝑅̄0
𝑅

)2 1
𝑅
. (A34)

Using the background expression for 𝑓𝑅𝑅 in Equation A29 and sub-
stituting into Equation A28 gives

Π̃(𝑘, 𝑎) =
(
𝑘

𝑎

)2
+ (1 + 𝑓𝑅)

1
6| 𝑓𝑅0 |

𝑅̄3

𝑅̄20
. (A35)

Now if we approximate the background to be close to ΛCDM, as
supported by observations and by construction for | 𝑓R0 | � 1, we
have

𝑅̄ ≈ 3
𝐻20
𝑎3

(
Ω𝑚,0 + 4𝑎3ΩΛ,0

)
, (A36)

where ΩΛ,0 = 1 −Ω𝑚,0 for a flat ΛCDM universe. Taking 𝑎 = 1 we
have the curvature today

𝑅̄0 ≈ 3𝐻20
(
4 − 3Ω𝑚,0

)
. (A37)

Finally substituting 𝑅̄ and 𝑅̄0 in Equation A35 we get the expression
for 𝜇 as it appears in ACTio-ReACTio (Bose et al. 2020b)

𝜇 = 1 +
( 𝑘
𝑎

)2 1
3Π(𝑘, 𝑎) , (A38)

with

Π(𝑘, 𝑎) =
(
𝑘

𝑎

)2
+ Ξ(𝑎)3

2 𝑓0 (4 − 3Ωm,0)2
, (A39)

Ξ(𝑎) =
Ωm,0 + 4𝑎3ΩΛ,0

𝑎3
, (A40)

where 𝑓0 = | 𝑓R0 |/𝐻20 .
We make the crucial note here that in the derivation above we have

over-constrained our system. Namely we have specified all of Ω, 𝑐
as well as set 𝐻 = 𝐻ΛCDM. If we use Equation A22-Equation A26
together with 𝐻 = 𝐻ΛCDM we find that 𝑐 ≠ 0 and we don’t recover
Equation A38. This follows directly from the fact that 𝐻ΛCDM is
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not an exact solution for the Friedmann equations in 𝑓 (𝑅) which
implicitly assumes 𝑐 = 0.
In our code we give the option to over constrain by specifying

𝑐(𝑎). Alternatively, one can code in the Friedmann equations and
solve for 𝐻 (𝑎). This of course increases computational inefficiency.
To partially alleviate this issue, we can also place the additional
constraint on 𝑐2𝑠 (𝑎) instead of 𝑐 which has well motivated physical
priors (see text around Equation 29). The relationship between 𝑐2𝑠 (𝑎)
and 𝑐(𝑎) is derived from Equation 29 and Equation A16. It is given
explicitly in the GtoPT notebook as well as the Actio-Reactio
source code.
The derivation of the 2nd and 3rd order modifications to the Pois-

son equation (see Equation 14) from the ADM decomposed action
requires us to go to higher order in the metric perturbations. We do
not do this here as we omit these corrections from our code due to
computational difficulty and the low level of impact they have on
the final nonlinear power spectrum (see Section 5). However, in the
providedMathematica notebook, GtoPT, one can go from a specified
𝐺𝑖 of the Horndeski Lagrangian to 𝜇, 𝛾2 and 𝛾3 following the map
given in Bose & Koyama (2016). We provide a number of examples
in that notebook and refer the reader to Bose et al. (2020b); Bose &
Koyama (2016) for the forms of 𝜇, 𝛾2 and 𝛾3 in DGP and Hu-Sawicki
𝑓 (𝑅) gravity.

APPENDIX B: NONLINEAR POISSON MODIFICATIONS

B1 Exact forms

We provide the exact forms for the nonlinear modification to the
Poisson equation (see Equation 13) in DGP and 𝑓 (𝑅) gravity, which
are reproduced from Bose et al. (2020b).
The modification in DGP is given by (Schmidt et al. 2010)

FDGP =
2

3𝛽(𝑎)

√
1 + 𝑠3 − 1
𝑠3

, (B1)

where11

𝑠 =

[ 2Ω𝑚,0 (𝛿 + 1)
9𝑎3𝛽(𝑎)2Ω𝑟𝑐

] 1
3
, (B2)

𝛿 being the nonlinear over-density given by

𝛿 = 𝑦−3 (1 + 𝛿𝑖) − 1 , (B3)

with 𝛿𝑖 being the initial over-density and

𝑦 ≡ 𝑅TH/𝑎
𝑅𝑖/𝑎𝑖

, (B4)

𝑅TH and 𝑅𝑖 being the physical halo top-hat radius at the target scale
factor 𝑎 and the initial scale factor 𝑎𝑖 respectively. Ωrc ≡ 1/(4𝐻20𝑟

2
𝑐)

where 𝑟𝑐 is the cross-over scale and is the free parameter of the
theory governing the level of modification. Finally, 𝛽(𝑎) is given by

𝛽(𝑎) ≡ 1 + 𝐻

𝐻0

1
√
Ωrc

(
1 + 𝑎𝐻

′

3𝐻

)
. (B5)

The fully nonlinear modification in Hu-Sawicki 𝑓 (𝑅) is given by
(Lombriser et al. 2014)

FfR = min
[
𝑂 −𝑂2 + 𝑂

3

3
,
1
3

]
, (B6)

11 We note a typo appearing in Eq. C7 of Bose et al. (2020b) where 𝛿 should
have been (𝛿 + 1) .

where

𝑂 =
𝑓0𝑦ℎ𝑎(3Ω𝑚,0 − 4)2

Ω𝑚,0 (𝑅𝑖/𝑎𝑖)2
×
[
𝐺̃ (𝑦env) − 𝐺̃ (𝑦h)

]
, (B7)

and

𝐺̃ (𝑦) =
[
Ω𝑚,0
(𝑦𝑎)3

+ 4 − 4Ω𝑚,0
]−2

, (B8)

where 𝑦ℎ is the quantity solved for using 𝑓 (𝑅) halos whereas 𝑦env
is that solved for in the environment, which is approximated by
performing the same calculation but with 𝑓0 = 0.

B2 nPPF forms

We also reproduce the nPPF expressions for both of these theories
from Lombriser (2016). In DGP we have the following values for the
𝑝𝑖 parameters in Equation 39

𝑝1 = 2, 𝑝2 = 1, 𝑝3 =
3
2
,

𝑝4 (𝑎) = 2
(Ωm,0
4Ωrc

1
9𝛽(𝑎)2

)1/3
, 𝑝5 = −1, 𝑝6 = 0,

𝑝7 = 0 , (B9)

which reproduce Equation B1 exactly. Note if using Equation 37 we
simply set 𝑝2 = 1

3𝛽 (𝑎) .
On the other hand, the Hu-Sawicki 𝑓 (𝑅) parameterisation is not

exact but is closely matched by the following parameters in the
screening regime (Lombriser 2016) for a given choice of 𝑝1 (us-
ing Equation 39)

𝑝2 = 1, 𝑝3 = 7,

𝑝4 = 2Ω
1/3
m,0

[
(Ωm,0 + 4(1 −Ωm,0)−2

𝑝1
3| 𝑓R0 |

]1/𝑝3
,

𝑝5 = −1, 𝑝6 =
2
3𝑝3

, 𝑝7 = −6
7
, (B10)

where we used 𝛼 = 1/(𝑛 + 1) = 0.5 (Lombriser et al. 2014) in
Equation 5.6 of Lombriser (2016). Again, if using Equation 37 we
set 𝑝2 = 13 .

B3 Comparisons

Here we provide some comparisons of the approximate expressions
for F given by the nPPF model (Equation 39) and the Erf model
(Equation 41) against the exact expressions in DGP (Equation B1)
and 𝑓 (𝑅) (Equation B6). Since the nPPF form is exact for DGP, we
only compare it in the 𝑓 (𝑅) case. Unless otherwise stated, the fits
are performed as described in section 5 and shown in Table 3.

B3.1 DGP

In Figure B1 we show the nonlinear modification to the Poisson
equation, 1+ F , in DGP for Ωrc = 0.25 and Ωrc = 0.01 as a function
of top-hat radius parameter 𝑦h. We plot the exact solution given by
Equation B1 given as solid curves to the best fit Erf model given
as dashed curves. We see an additional redshift dependence of the
screening scale becoming important for high 𝑧. As modifications to
GR are expected to be small at high redshift, this deviation may not
be so important, which is supported by Figure 5. We have performed
a fit of this redshift dependence and find it behaves very well as a
power law, with an O(0.1) exponent (specifically ≤ 0.15), which
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Figure B1. The modification to the Poisson equation 1+ F (see Equation 13)
in DGP gravity for Ωrc = 0.25 (left) and Ωrc = 0.01 (right). We plot the
modifications as a function of normalised halo top-hat radius parameter for
three different redshifts, 𝑧 = 0 (red), 𝑧 = 1 (green) and 𝑧 = 4 (blue). The
solid curves are the exact solution while the dashed curves are made using a
single parameter fit to the exact R using Equation 41 (see Table 3).

is first of all small and second of all degenerate with 𝑞2 and 𝑞3,
meaning the model likely has sufficient freedom to very well capture
a DGP type of modification to gravity without biasing cosmological
or gravitational constraints.

B3.2 Hu-Sawicki 𝑓 (𝑅)

Here we check that the nPPF and Erf models can qualitatively repro-
duce the exact form of F (Equation B6) across all scales, masses and
environments for Hu-Sawicki 𝑓 (𝑅) gravity.
Before showing the results, we make a note on the best fitting pa-

rameters for the Erf model. We find that the fits in Table 3, performed
by fitting the exact prediction for the reaction R, do not give a very
good agreement when comparing to the exact form of F . In partic-
ular, we find that the mass dependence parameter, 𝑞2, seems to be
underestimated when fitting R. This parameter dictates the left hand
slope in the contour plots in this section. Such a discrepancy may be
due to a number of factors including a missing redshift dependency,
the details of the fit, degeneracies with 𝑞3 and failings of the power
law description. We find a better by-eye fit for FErf across redshifts
𝑧 = 0, 1, 4 and all values of 𝑓R0 is 𝑞2 = 0.85. All other parameters
are as in Table 3 unless otherwise stated.
In Figure B2 we show 1 + F for the exact (top panels), the Erf

(middle panels) and the nPPF (lower panels) cases with | 𝑓R0 | = 10−5,
characterising a moderate modification to ΛCDM. We do not show
the | 𝑓R0 | = 10−6, 10−7 cases which are qualitatively similar.
To check the effects of Yukawa suppression, we set 𝑦env = 1,

which is the maximum value considered in the spherical collapse
computation. We then plot F as a function of dimensionless top-hat
radius parameter 𝑦h and halomass,which shows the screening regime
and the onset of Yukawa suppression. For large masses and redshifts,
screening occurs at larger physical scales while Yukawa suppression

occurs at smaller scales. In all cases, the Yukawa suppression is only
mildly relevant for 𝑦h → 𝑦env and very large masses. The nPPF best
fit value of 𝑝8 gives a wrong Yukawa suppression scale, which is
likely due to its global fit over all values of 𝑦env. Similarly, the Erf
best fit screening scale, 𝑞1, is also underestimated, likely for the same
reasons.
Further, the nPPF shows a good match for the redshift dependence

of the screening scale, while the Erf fit does significantly worse. We
recall the nPPF uses a theoreticallymatched power law for this depen-
dence (see Equation 36 and Equation B10), while this dependence is
fixed for the Erf case.
In Figure B3 we show 1 + F for | 𝑓R0 | = 10−5, with 𝑦env = 0.3,

again for all cases. We find a good qualitative agreement between
the nPPF and exact solutions. On the other hand, the comparisons
again show there is an inaccurate redshift dependency in the screening
scale of the Erf model, set by 𝑞1. This was also seen in the DGP case.
Despite this, the flexibility of the model still allows us to produce
very accurate results at the power spectrum level (see Figure 6) and
so we do not feel introducing new freedom is warranted. We leave
this issue to be further investigated in future work.

B4 A note on notation

We would like to briefly discuss the inconsistency in the notation
of previous related publications. The physical top-hat radius is de-
noted by 𝑅TH in Cataneo et al. (2020); Bose et al. (2020b), 𝑟 in
Carrilho et al. (2022), 𝑅 in Schmidt (2010) and 𝜉 in Lombriser et al.
(2014). From the definition of the physical top-hat radius and the
conservation of mass 𝑀 = 4𝜋𝜌̄m (𝛿+1)𝑅3TH/3 the expression for the
nonlinear over-density is correctly given in Equation B3. Note the
corresponding typos in the definition of the nonlinear over-density
of Cataneo et al. (2020); Bose et al. (2020b); Carrilho et al. (2022)
in Equations. 34, B3 and 28 respectively. The connection between
the physical top-hat radius and the initial comoving radius 𝑅th 12
of the over-density is linear 𝑅TH (𝑎𝑖) = 𝑅𝑖 = 𝑎𝑖𝑅th initially but
then due to the nonlinear evolution of the over-density it becomes
𝑅TH (𝑎) = 𝑦𝑎𝑅th. This nonlinear evolution is encoded in the non-
linear scale factor 𝑦𝑎 with 𝑦 given in Equation B4. Note that the
expression for F in 𝑓 (𝑅) gravity in Equation A2 of Cataneo et al.
(2020) and Equation. C15 of Bose et al. (2020b) is taken from Lom-
briser et al. (2014) and includes 𝑅TH which should be replaced by
𝑅th = 𝑅𝑖/𝑎𝑖 . While F in nDGP model from Schmidt (2010) is
correctly given in these ReACT papers.

This paper has been typeset from a TEX/LATEX file prepared by the author.

12 Denoted Rth in the ReACT code.
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Figure B2. The modification to the Poisson equation 1 + F (see Equation 13) in Hu-Sawicki 𝑓 (𝑅) as a function of log10 (𝑀 ) and top-hat radius parameter 𝑦h.
We set | 𝑓R0 | = 10−5 and 𝑦env = 1. The top panels show the exact solution, the middle panels show the phenomenological solution based on the error function
and the bottom panels show the nPPF function. The left most column shows the functions for 𝑧 = 0, themiddle for 𝑧 = 1 and the right most column for 𝑧 = 4.
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Figure B3. Same as Figure B2 but with 𝑦env = 0.3.
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