Edinburgh Research Explorer

Dargent: A Silver Bullet for Verified Data Layout Refinement

Citation for published version:

Chen, Z, Lafont, A, O'Connor, L, Keller, G, McLaughlin, C, Jackson, V & Rizkallah, C 2023, 'Dargent: A
Silver Bullet for Verified Data Layout Refinement', Proceedings of the ACM on Programming Languages,
vol. 7, no. POPL, 47. https://doi.org/10.1145/3571240

Digital Object Identifier (DOI):
10.1145/3571240

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the ACM on Programming Languages

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 01. Feb. 2023

https://doi.org/10.1145/3571240
https://doi.org/10.1145/3571240
https://www.research.ed.ac.uk/en/publications/9cd07c95-498f-4a0c-a78a-7ce6b6407711

t.)

Check for
Updates

DARGENT: A Silver Bullet for Verified Data Layout Refinement

ZILIN CHEN, UNSW Sydney, Australia

AMBROISE LAFONT, University of Cambridge, UK

LIAM O’CONNOR, University of Edinburgh, UK

GABRIELE KELLER, Utrecht University, Netherlands

CRAIG MCLAUGHLIN, UNSW Sydney, Australia
VINCENT JACKSON, University of Melbourne, Australia
CHRISTINE RIZKALLAH, University of Melbourne, Australia

Systems programmers need fine-grained control over the memory layout of data structures, both to produce
performant code and to comply with well-defined interfaces imposed by existing code, standardised protocols or
hardware. Code that manipulates these low-level representations in memory is hard to get right. Traditionally,
this problem is addressed by the implementation of tedious marshalling code to convert between compiler-
selected data representations and the desired compact data formats. Such marshalling code is error-prone and
can lead to a significant runtime overhead due to excessive copying. While there are many languages and
systems that address the correctness issue, by automating the generation and, in some cases, the verification
of the marshalling code, the performance overhead introduced by the marshalling code remains. In particular
for systems code, this overhead can be prohibitive. In this work, we address both the correctness and the
performance problems.

We present a data layout description language and data refinement framework, called DARGENT, which
allows programmers to declaratively specify how algebraic data types are laid out in memory. Our solution is
applied to the CoGENT language, but the general ideas behind our solution are applicable to other settings.
The DARGENT framework generates C code that manipulates data directly with the desired memory layout,
while retaining the formal proof that this generated C code is correct with respect to the CoGeNT functional
semantics. This added expressivity removes the need for implementing and verifying marshalling code, which
eliminates copying, smoothens interoperability with surrounding systems, and increases the trustworthiness
of the overall system.

CCS Concepts: « Software and its engineering — Formal software verification; Specification languages;
Operating systems; Data types and structures.

Additional Key Words and Phrases: certifying compiler, data refinement, systems programming

ACM Reference Format:

Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent Jackson, and Chris-
tine Rizkallah. 2023. DARGENT: A Silver Bullet for Verified Data Layout Refinement. Proc. ACM Program. Lang.
7, POPL, Article 47 (January 2023), 27 pages. https://doi.org/10.1145/3571240

Authors’ addresses: Zilin Chen, UNSW Sydney, Australia, zilin.chen@student.unsw.edu.au; Ambroise Lafont, University
of Cambridge, UK, ael62@cam.ac.uk; Liam O’Connor, University of Edinburgh, UK, Loconnor@ed.ac.uk; Gabriele Keller,
Utrecht University, Netherlands, g.k keller@uu.nl; Craig McLaughlin, UNSW Sydney, Australia, c.mclaughlin@unsw.edu.au;
Vincent Jackson, University of Melbourne, Australia, vjjac@student.unimelb.edu.au; Christine Rizkallah, University of
Melbourne, Australia, christine.rizkallah@unimelb.edu.au.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART47

https://doi.org/10.1145/3571240

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-0854-2464
HTTPS://ORCID.ORG/0000-0002-9299-641X
HTTPS://ORCID.ORG/0000-0003-2765-4269
HTTPS://ORCID.ORG/0000-0003-1442-5387
HTTPS://ORCID.ORG/0000-0002-1323-8566
HTTPS://ORCID.ORG/0000-0002-8737-4202
HTTPS://ORCID.ORG/0000-0003-4785-2836
https://doi.org/10.1145/3571240
https://orcid.org/0000-0003-0854-2464
https://orcid.org/0000-0002-9299-641X
https://orcid.org/0000-0003-2765-4269
https://orcid.org/0000-0003-1442-5387
https://orcid.org/0000-0002-1323-8566
https://orcid.org/0000-0002-8737-4202
https://orcid.org/0000-0003-4785-2836
https://doi.org/10.1145/3571240
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571240&domain=pdf&date_stamp=2023-01-11

47:2 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

1 INTRODUCTION

In the realm of software systems, such as device drivers, file systems, and network stacks, precise
control over the data layout of objects is crucial for compatibility and performance. Specifically,
controlling the composition of objects in memory on a bit- and byte-level can avoid the need for
translation or deserialisation at the boundaries between on-medium and in-memory data which
frequently arise from interacting with standardised protocols or hardware. These systems are often
implemented in the C language, in part because it offers low-level features to give fine-grained
control over data layout. Unfortunately, to maintain good performance, the C programmer must
throw away the conceptual abstraction of the data type, and instead focus on the low-level details
of bits and bytes. This low-level code contains many subtle bit-twiddling operations which, apart
from being difficult to manually verify, are also tedious and error-prone to implement.

To maintain the higher-level structure of a program without sacrificing performance, we want to
use a language with a high-level semantics, but with facilities for specifying the low-level memory
layout of heap-allocated objects. While most high-level languages use fixed heap layouts, there has
been recent progress on language-based support for user-defined memory layouts [Cronburg and
Guyer 2019; Vollmer et al. 2019]. These languages, however, do not provide verified correctness of
their translations.

In this paper, we present DARGENT, a language for describing data layouts of high-level algebraic
datatypes along with a data refinement framework for automatically verifying the correctness of the
compiled C code with respect to those layout descriptions. We build on the CoGenT language and
refinement framework [O’Connor et al. 2021]. CoGENT is designed for the implementation of high-
assurance low-level systems components as pure mathematical functions operating on algebraic
data types. COGENT’s certifying compiler co-generates a C program and Isabelle/HOL [Nipkow
et al. 2002] theorems witnessing a proof that the C program refines an Isabelle/HOL embedding of
the CoGENT source program [Rizkallah et al. 2016].

While there is a very long line of prior work on data description languages [Back 2002; Fisher
and Gruber 2005; McCann and Chandra 2000; Ramananandro et al. 2019; Slind 2021; van Geest and
Swierstra 2017; Wang and Gaspes 2011; Ye and Delaware 2019], and the data layout descriptions
used in DARGENT do indeed look similar to those used in such languages, there is a fundamental
difference: These languages are designed for synthesising data (de)serialisation functions (also
sometimes referred to as data marshalling/unmarshalling functions, encoders/decoders, or parsers
and pretty-printers for low-level data), which convert data stored in a low-level, sequential format
in some storage medium to a high-level, structured representation in memory and vice versa.
They are primarily used for the interaction and communication between different programming
languages (e.g. a foreign function interface) or systems (e.g. data transmission over the network). In
this context, code to transform back-and-forth between the two representations is still necessary.

DARGENT, on the other hand, is intended to solve a different problem. The DARGENT data layout
descriptions grant programmers the ability to dictate to the CoGENT compiler how it should lay
out the algebraic data types used by the COGENT program itself. The compiler generates code
that works directly with data laid out according to the programmer’s specifications, as well as
Isabelle/HOL proofs showing that it has done so correctly.

Depending on the application, DARGENT therefore can either eliminate entirely or reduce the need
for data (de)serialisation code, be it manually written or automatically derived, when interacting
with the external world. Because algebraic data types can be represented directly in their binary
data formats with DARGENT, the programmer does not need to decode raw data first into some other
in-memory representation in order to operate on it as a data type. Eliminating these (de)serialisation

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:3

steps naturally results in more concise and readable code, better performance, and easier informal
and formal reasoning.

This additional power in expressiveness can also be used to improve the performance of the
compiled CoGENT code, e.g. by having smaller memory footprints or a specialised memory layout
optimal for the underlying architecture, independent of the interoperation between languages or
systems. It also enables COGENT programmers to directly write code that is binary-compatible with
native C programs.

CoGENT is readily amenable to an extension for prescribing data layouts and fine-tuning the
compilation of algebraic data types by virtue of its lack of a runtime system and direct compilation
to C. Before DARGENT, it simply adopted the layout conventions of the underlying C compiler.
The introduction of DARGENT into the framework enabled improvements to some outstanding
inefficiencies in the prior design, such as a reduced reliance on deserialisation code within file
system implementations [Amani et al. 2016] and directly representing device register formats as
data types. Furthermore, we have extended the COGENT compiler so as to preserve the benefits
of CoGeENT’s high-level type system and semantics. The upshot is our compiler automatically
translates read and write operations on heap-allocated objects to take account of their particular
data layout. The translation’s correctness is guaranteed by the enhanced data refinement theorem.
This paper describes, to the best of our knowledge, the first framework that is able to leverage data
layout specifications for generating bit-level accessors with formal correctness guarantees.

Contributions

This paper realises the vision set out previously [O’Connor et al. 2018]. We make the following
contributions:

e The design and implementation of DARGENT (Section 3), a data layout language for controlling
the memory layout of algebraic data types, down to the bit level. We formalise a core calculus
and its static semantics in Isabelle/HOL [Nipkow et al. 2002], and discuss the compilation
process;

e An extension to the COGENT verification framework (Section 4) to automatically verify the
translation of high-level read/write accesses (known as getters and setters) to explicit offsets
within a well-defined memory region;

e An extended suite of examples (Section 5 and Section 6) demonstrating the utility of DARGENT
in the context of device drivers.

All the results described in this paper, including the case studies we present, are associated with
formal proofs in Isabelle/HOL. These materials are packaged as a virtual machine image, which
is publicly available [Chen et al. 2022a]. It is derived from a development branch of the CogenT
project repository (https://github.com/au-ts/cogent).

2 AN OVERVIEW OF COGENT

CoGeNT [O’Connor 2019; O’Connor et al. 2016, 2021] is a higher-order, polymorphic, purely
functional programming language, in the tradition of the pure subsets of languages such as Haskell
or ML. Programs are expressed as mathematical functions operating on algebraic data types. Unlike
Haskell or ML, however, COGENT is designed for implementing low-level systems code where
manual memory management is essential for performance reasons. As such, COGENT has no garbage
collection mechanism and heap (de)allocations are explicit in the language.

The CoGeNT language is equipped with a uniqueness type system [Barendsen and Smetsers 1993;
Wadler 1990], enabling a seamless transition from a purely functional semantics to an impera-
tive semantics and a compilation strategy to generate efficient low-level C code. The certifying

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://github.com/au-ts/cogent

47:4 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

Types T u= T (primitive types)
I 0 (unit)
| « (type variables)
| {fi:7n}s (records)
| (A (variants)
| K7is (abstract types)
| ...

Primitive types T == Un | Bool (n=1...64)

Field names 5 f

Constructors 5 A

Sigils s = OO

® = WO

(lists are represented by overlines)

Fig. 1. The syntax of COGENT types

compiler automatically produces a formal proof [Rizkallah et al. 2016] that its generated C code
refines an Isabelle/HOL embedding of the COGENT program’s functional semantics. COGENT was
used to implement two real-world file systems and to verify the correctness of key file system
operations [Amani et al. 2016]. This section summarises aspects of CoGENT and its verification
framework that are relevant to our work.

2.1 CoGEeNT’s Uniqueness Types System

Uniqueness type systems ensure that each linear object in memory is uniquely referenced. Con-
sequently, updates to these objects in a purely functional language can be compiled as in-place
destructive updates, without the need for copying [Wadler 1990]. In CoGENT, we call the type of
objects that are subject to the uniqueness restrictions linear types, and the rest non-linear types.
Roughly speaking, any object that resides in the heap or contains pointers to other heap-objects —
and is not read-only (explained later) — is linear; otherwise it is non-linear. In the generated C code,
all pointers address heap memory. This is because COGENT’s verification framework depends on
the AutoCorres library [Greenaway et al. 2014], which does not support stack pointers. Therefore,
we can summarise the linearity of an object simply as: A linear object is behind a pointer and/or
contains pointers.
As a simple COGENT example, consider the following code.

type Bag = { count : U32, sum : U32 }

addToBag : (U322, Bag) — Bag
addToBag (x, bag {count = ¢, sum = s}) = bag {count = c + 1, sum=5s + x }

The first line declares a linear record type Bag, which is a record comprised of two 32-bit unsigned
words. In the addToBag function, we retrieve the value of the two fields by pattern matching and
update both fields of the record according to the given input. It is compiled to a C function that
takes as input a pointer to a bag structure and updates it in place, because the uniqueness type
system ensures that the Bag object is uniquely referenced.

The syntax of (a relevant subset of) COGENT’s types is given in Figure 1. COGENT primitive types
include the n-bit unsigned integer types, Un (where n = 1...64), and booleans (Bool). Among the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:5

Un types, we call them word-sized integers (or simply words) when n € {8, 16,32, 64}. Algebraic data
types can be formed using record and variant types (aka. tagged unions). Furthermore, COGENT
supports declaring abstract types with their definitions provided in C. CoGENT employs a structural
type system, meaning that compound types, as well as their subtyping relations, are defined solely
by their structure and the structure of their components. Names given to types such as Bag above
are type synonyms—mere abbreviations for better cosmetics.

CoGENT’s type system distinguishes between boxed and unboxed types through a sigil annotation
on the type. The boxedness of a type characterises how an object is referenced—by-value or by-
pointer. An object of a boxed type (sigil (b)) is accessed via its pointer. Because in COGENT, all
pointers address heap memory, a boxed object must reside in the heap. An object of an unboxed
type (sigil @) is accessed by value and either resides in the stack or is embedded inside a larger
data structure in the heap. In the latter case, when the object is accessed, it will be copied by-value
to a stack variable. The sigil is only used in the COGENT core calculus. For example, the type Bag
we showed earlier is desugared to {count : U32, sum : U32} (b), as it is a boxed record.

The uniqueness and the boxedness of a type are concerned with different aspects of memory
locations. The uniqueness relates to what kind of memory the object references (linear or non-
linear), whereas the boxedness of an object determines how its memory is referenced (by-value or
by-pointer). Since all pointers in COGENT point to the heap, any boxed object must be linear (with
the same caveat that it must not be read-only) because it is directly behind a pointer. The converse
is not true though. A typical counter-example is a stack-allocated structure that contains pointers;
this structure is linear but unboxed.

Records and abstract types can be either boxed or unboxed. Primitive types and variant types,
however, can only be unboxed. For this reason, primitives and variants do not include a sigil. For a
boxed type, CoGENT allows further fine-grained control of accessibility: A boxed type can either be
writable (with sigil W) or read-only (with sigil (r)). When a type has a read-only sigil, even though
it is behind a pointer or contains pointers, it becomes non-linear—this is the caveat we mentioned
earlier in this section. This read-only object can be shared analogously to how a variable can be
immutably borrowed in the type system of Rust [Klabnik and Nichols 2022, § 4.2].

Before DARGENT, the COGENT compiler used a pre-defined code generation algorithm to compile
data types to C. A record type in COGENT was mapped to a C struct, with the fields laid out in the
order in which they are declared in the type. The mapping for variant types, on the other hand,
was less direct: COGENT’s verification tool chain does not support C unions, so variants were also
represented as structs in C, containing a field for a tag, and a field for each alternative’s payload.

Applying such a fixed code generation scheme is no surprise for a typical high-level functional
language, whose implementation details are hidden from the language users. But COGENT is not just
a functional language, it is also a systems language where the exact low-level representation of data
types is relevant to programmers. This fixed code generation algorithm often resulted in suboptimal
or undesired representations of COGENT types in C, and users of the CoGeNT language had to
know about the implementation details of the code generator in order to write C code that directly
interfaces with COGENT programs. In situations where the COGENT program needs to interoperate
with existing C components, say, when developing an operating system component that interfaces
with the Linux kernel headers, glue code was required to translate between representations, resulting
in development and run-time overhead. Also, problematically, as this glue code depended on the
representation choices made by the COGENT compiler, future versions of the compiler could break
previously working code due to changes in the code generation scheme.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:6 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

2.2 The Verification Framework

In addition to a programming language, COGENT is also a verification framework realised in
Isabelle/HOL, based on certifying compilation. Compiling a COGENT program results in multiple
components:

(1) a C program,

(2) an Isabelle/HOL shallow embedding of the COGENT program,

(3) an Isabelle/HOL deep embedding of the COGENT program,

(4) an Isabelle proof of refinement between the C program and the Isabelle shallow embedding.

The last item relies on the AutoCorres library [Greenaway et al. 2014] to generate a representation
of the C code in Isabelle/HOL. More precisely, the AutoCorres library abstracts the C semantics via
a SIMPL [Schirmer 2005] formal language into a monadic embedding in Isabelle/HOL.

This compilation process provides an indirect way of formally verifying properties about the
generated C program. The user first proves the desired properties about the Isabelle shallow
embedding. This manual proof should follow by simple equational reasoning about HOL terms by
applying term rewriting tactics provided by the theorem prover. Then, the automatic refinement
proof between the C code and the shallow embedding transports the proven properties to the C
program. In short, COGENT’s verification framework reduces complicated low-level verification on
the C program to a simple high-level equational proof.

The compiler-generated refinement proof between the C code and the Isabelle shallow embedding
is composed of several smaller correspondence proofs. When the compiler generates the shallow
embedding of the COGENT program in Isabelle, it also generates a deep embedding representing
the abstract syntax of the COGENT program. Two semantics are assigned to the deep embedding: a
purely functional value semantics, and a stateful update semantics, with pointers, memory states,
and in-place field updating. It is proved once-and-for-all that these two semantics are equivalent
for any well-typed COoGENT program. As part of the certifying compilation, the compiler produces
a refinement proof between the shallow embedding and the deep embedding with value semantics,
and a refinement proof between the deep embedding with update semantics and the monadic C
embedding obtained from AutoCorres. Chaining the three correspondence lemmas results in a
correspondence between the shallow embedding and the C program, stating that the C program is
a refinement of the COGENT program’s semantics (see Figure 2).

3 DARGENT

We have designed and implemented a data layout description language called DARGENT, which
describes how a COGENT algebraic data type may be laid out in (heap) memory, down to the bit
level. Layout descriptions in DARGENT are transparent to the shallow embedding of COGENT’s
semantics, but they influence the definition of the refinement relation to C code generated by the
compiler. In Section 4, we describe in more detail the extensions to our verification framework to
accommodate the DARGENT layout descriptions. Here, we focus on the language definition. Firstly,
we give an informal overview of DARGENT’s language features.

3.1 An Informal Introduction to DARGENT

DARGENT offers the possibility to assign any boxed COGENT type a custom layout describing how
an object of that type should be stored in the heap. A boxed type assigned with a custom layout
is compiled to a C struct with a single field: an array of 32-bit words.! This array represents the

IThroughout the paper, unless we explicitly specify the size, the term “word” always refers to unsigned integer types of 1

byte, 2 bytes, 4 bytes or 8 bytes and the actual size is usually less relevant in the discussion. It does not necessarily imply
pointer-sized words. We discuss the implications of the choice of the word size later in Section 3.5.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:7

Shallow Embedding

(pure functions)

’ Value Semantics ‘

Deep
Embedding

’ Update Semantics ‘

C Code
(via AutoCorres)

Fig. 2. The CoGENT refinement framework.

type Example = {
struct : #{a : U32,b : Bool}, -- nested embedded record
ptr: {c: U8}, -- pointer to another record
sum: (AU16 | B U8) -- variant type

}

Fig. 3. COGENT type example

COGENT type: It can be deemed as untyped in C, but the DARGENT description contains enough
information to access individual parts of the type correctly. How data is laid out in memory is
purely a low-level concern, and it does not affect the functional semantics of a COGENT program in
any way. In other words, COGENT functions are parametric over the layouts of types. Under the
hood, the CoGENT compiler generates custom getters (and setters) in C, retrieving (and setting) the
relevant parts of the object from its array representation.

As an example, consider the COGENT type in Figure 3. This record consists of three fields: struct,
ptr and sum. The type of the struct field is an unboxed record, denoted by the leading # symbol.
This field is embedded inside the parent Example record. The ptr field is a boxed record, and is
stored somewhere else in the heap, referenced by a pointer in the Example type. The last field sum
has a variant type, with two alternatives tagged A and B respectively. This variant is unboxed
(recall that there is no boxed variant in COGENT) and is stored in the heap inside the parent record.

A layout for this record type must specify where each field is located in the word array. Over-
lapping is not allowed, except for the payloads of the two constructors of the variant type, since
only one of them is relevant at each time, depending on the tag value. The layout must also specify
what the tag values for the variant constructors A and B are. We will give a layout to this type after
a short introduction to the DARGENT language constructs.

In Figure 4 we present the surface syntax for DARGENT. A layout expression is a description of the
usage of some (heap) memory. It only describes the low-level view of a memory region—it is not

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:8 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

record {f; : £;}
variant (£) {A; (n;) : &}

Sizes s u= nB|nb|s+s

Layout expressions ¢ :u= s (block of memory)
| x (layout variable)
| pointer (pointer layout)
| L% (another layout)
| tats (offset operator)
| ¢after f (relative location)
| fusingw (endianness)
|
|

Declarations d == layoutLXx;=¢
Layout names > L

Endianness w == BE|LE
Natural numbers > nm

Fig. 4. The syntax of the DARGENT surface language

associated to any particular algebraic data type. From this perspective, DARGENT descriptions are
independent of COGENT types. As we will shortly see, however, a given COGENT type can only be
laid out in certain ways, which places restrictions on which layouts can be assigned to a given type.

When specifying a layout, two pieces of information are relevant: How much space a component
occupies in memory and where it is placed in relation to the overall heap object in which it is
contained. Primitive types, such as integer types and booleans, are laid out as a contiguous block
of memory of a particular size. For example, a contiguous 4-byte block would be an appropriate
layout for the 32-bit word type U32. A block of memory is specified as a size expression, which can
be in bytes (B), bits (b), or additions of smaller sizes. Additionally, memory blocks of word size (e.g.
1 byte, 2 bytes, 4 bytes and 8 bytes) can be given an endianness (BE or LE), with the using keyword.

Components of boxed type are represented as pointers, and thus must be described with the
special pointer layout, and not as a chunk of memory. This special layout improves readability of
code, and also allows for some portability: The pointer layout will have different sizes according to
the host machine’s architecture.

Layouts for record types use the record construct, which contains sub-expressions for the memory
layout of each field. As we can specify memory blocks down to the individual bits, we can naturally
represent records of boolean values as a bit field:

layout Bitfield = record {x : 1b,y : 1b at 1b, z : 1b at 2b}

Here the at operator is used to place each field at a different bit offset, so that they do not overlap.
If two record fields have overlapping layouts, the description is rejected by the compiler.

The at operator can be applied to any layout expressions, which will shift the entire expression
by the specified amount. Alternatively, the after operator can be used in a record layout:

layout Bitfield = record {x : 1b,y : 1b after x, z : 1b after y}

so that a later field is placed right after the previous one. This saves the programmer from calculating
the concrete offset. When no offset (at or after) is given, it will by default place the field after the
previous one.

Layouts for variant types use the variant construct. It firstly requires a layout expression for the
tag. Then, for each constructor in the variant, a specific tag value needs to be assigned, followed by

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:9

0B 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B 16B

Fig. 5. The ExampleLayout, visualised.

a layout expression for the payload of that constructor. When one alternative is taken, the memory
used by another alternatives becomes irrelevant, which is why the memory for the payloads can
overlap. Additionally, DARGENT allows for zero-sized payloads. For instance, the Maybe a type,
defined as (Just a | Nothing ()), may be given a layout in which the payload for constructor
Nothing does not occupy any memory.

Similar to COGENT types, DARGENT expressions are also structural. Layout synonyms can be
defined using the layout keyword, just as COGENT type synonyms are defined using the type
keyword. For example,

layout FourBytes = 4B

defines a layout synonym FourBytes, which is definitionally equal to 4B on the right hand side.
Layout and type synonyms can take parameters.
We can now give a DARGENT description to the Example type in Figure 3 (assuming a 64-bit
architecture):
layout ExampleLayout = record {
struct : record {a: 4B, b: 1b},
ptr : pointer at 8B,
sum : variant (1b)
{A(0) : 2B at 1B, B(1) : 1B at 1B} at 5B
}

Figure 5 gives a pictorial illustration of this memory layout. In the layout above, it is worth noting
that the offsets (at 1B) for the two payloads of A and B are in relation to the beginning of the sum
field, which is 5 bytes (5B) from the beginning of the top-level structure. We can equivalently write
variant (1b at 5B) {A(0) : 2B at 6B, B(1) : 1B at 6B} at OB for the sum field without changing its
layout.

At this point, this layout is still independent of the COGENT type, and the compiler will only
check that this layout definition is wellformed: that it does not have overlapping fields, that the
tag values are distinct, and so on. To associate a layout to a type, we add a layout keyword to the
type language of CoGENT. For this example, the type Example layout ExampleLayout describes the
type Example laid out according to the description in ExampleLayout. The compiler will check that
ExamplelLayout is an appropriate layout for the COGENT type Example. We will talk more about the
wellformedness and matching rules later in Section 3.4. To eliminate verbosity, a type synonym
can be given to the layout-annotated type above.

We make the design choice of having DARGENT layouts be defined independently of CoGENT
types, and only relating them afterwards with the layout keyword. This design may seem sub-
optimal, as some common information is duplicated in both the types and the layouts, and matching
them requires a set of dedicated typing rules (as we will see in Figure 8). We make this design
decision for several reasons.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:10 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

Firstly, while the COGENT type structure is central to the functional semantics of any COGENT
program and reasoning about its functional correctness, the exact layout of algebraic data types is
just an implementation detail, totally irrelevant to the top-level Isabelle/HOL embedding of the
COGENT program, and whose correctness is guaranteed by the automatic C refinement proof that
the CoGENT compiler produces. Thus, type structure and layout are conceptually separate.

Secondly, this approach is more flexible and amenable to future extensions. Currently, as we
will see in Figure 8, the layout-type matching is fairly restricted: e.g. a U16 type has to occupy
2 bytes (2B) in memory, and a record type has to be laid out in accordance with a record layout.
In the future, several extensions could be made to relax this matching relation. For example, it is
technically valid to store a smaller type in a larger memory area, say, a U16 type in a memory region
of 4 bytes, or a record type in a contiguous chunk of memory that is big enough. Some heuristics
can be implemented in the compiler to decide how to arrange underspecified layouts. This feature
can be useful in improving programmers’ productivity, permitting the omission of layout details
for unimportant parts of a type. Also, as there is ongoing work towards adding refinement types
to CoGENT [Paradeza 2020], a refined type could possibly be laid out in a smaller memory area.
For instance, {v : U16 | v < 2} can be laid out in a memory area as small as 1 bit. None of these
extensions would be easy to implement if the layout information was baked into the types.

Thirdly, separating layouts and types encourages modularity. Developers using the COGENT
language can write programs without needing to worry about the detailed layout of types, and are
still able to prove functional correctness of their code against some high-level specification and
ship their code to end users. The end users, with the knowledge of the particular target architecture
and environment, can decide the layouts and plug them into the COGENT programs.

Finally, although our design requires a dedicated set of rules for checking the layout-type
matching, it significantly simplifies compiler engineering in the long term. The COGENT compiler is
very large, and the layout-type matching checker only constitutes a small part of the typechecker.
The compiler not only compiles COGENT programs to C, but also generates information for various
Isabelle proof tactics, numerous embeddings of the program in Isabelle and Haskell [Chen et al.
2022b]. A lot of these embeddings are only concerned with types, and not layouts. If the layouts and
types were merged, any changes to the layout implementation would require changes to various
irrelevant parts of the compiler.

3.2 Layout Polymorphism

We extend COGENT’s existing parametric polymorphism mechanism to support layout polymorphism.
This feature allows users to abstract over the layout that they would like to assign to a certain
type. In a CoGeNT function signature, layout variables, just as type variables, can be universally
quantified. These layout variables may be constrained, similarly to type constraints in Haskell,
which require that a layout variable matches a type.? For example, in the code snippet below,

type Pair t = {fst: t,snd : t}

layout LPair I = record {fst : [,snd : [at 4B}

freePair : ¥(t,1 :~ t). Pair t layout LPair I — ()
we define a parametric type synonym Pair t and layout synonym LPair [, and an abstract poly-
morphic function that operates on such a pair. In the function’s type, we require layout / to be
compatible with type ¢, so that the LPair [is always a valid layout expression for type Pair t. Layout-

polymorphic functions may be explicitly applied to layouts, akin to explicit type applications. For
example, freePair[U32]{FourBytes} instantiates ¢ to U32 and [to FourBytes. If the type/layout

2A formal definition of layout matching is discussed in Section 3.4.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:11

Bit ranges r

Offsets o € N

Layouts t == () (unit layout)
| 1o (primitive layout)
| x{o} (layout variable)
| record {m}
| variant (¢) {A; (n;): &}

Field names > f

Constructors > A

Endianness «© == BE|LE|ME

Fig. 6. The syntax of the DARGENT core language

application is incompatible, as for instance in freePair[U8]{1b}, where 1b is not big enough to
store the U8, the typechecker will reject such a program. The typechecker also ensures that any
instantiation of I produces layouts that are wellformed. For example, if [is instantiated with 8B, it
will render LPair [ill-formed, as the snd field will overlap with the fst. This can be rectified by
using the after relative location (or leaving the location implicit) instead, which will automatically
place the snd field right after fst.

Layout polymorphism is necessary to retain the full generality of type polymorphism in the
presence of DARGENT, as demonstrated by the example above. Layout polymorphism also facilitates
code reuse in several scenarios: (1) It can be used in programs that are architecture-agnostic. For
the same program running on different architectures, the same algebraic datatype may be laid out
differently according to the hardware it runs on. These datatypes are not necessarily part of the API,
as developers tend to design interfaces in an architecture-independent manner and these types thus
have uniform layouts across different architectures. However, datatypes that are internal to the
program can be represented with appropriate layouts to best suit the architecture and the respective
C compiler for better performance. (2) Besides architectural differences, layout polymorphism
allows types to be reused more broadly across different applications. For instance, colours are a
general concept independent of the application. One common way to logically represent a colour is
the ARGB model. However, the actual low-level layouts for the logical ARGB value vary. Commonly
used layouts include ARGB32 and RGBA32, and other layouts also exist. In this case, developers
can simply define an ARGB colour type with a polymorphic layout to be determined at use-sites.
(3) Layout polymorphism also facilitates software engineering practices. For example, developers
can start with the default layout without a DARGENT annotation, and incrementally optimise the
program to use more compact and efficient DARGENT layouts. In this case, they simply instantiate
the layouts differently, without needing to re-define the types. Benchmarking is another use case:
developers can easily have the same type with different instantiations side-by-side to study their
performance differences.

3.3 The DARGENT Core Calculus

The DARGENT surface language is desugared into a smaller core calculus, whose syntax is outlined
in Figure 6. The core calculus is the language on which the verification is based. As can be seen in
Figure 6, layouts consist fundamentally of bit ranges, which describe which bits in memory are
used to store each piece of data. The definition of bit ranges is omitted, because our core calculus is

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:12 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

parametric over the exact bit range representation—at different points in the compilation pipeline,
bit ranges are represented differently, to suit the purpose of that particular phase of the compilation.

Bit ranges are annotated with an endianness to form a primitive layout in our core language.
When the endianness is not specified in the surface language, a machine endianness will be given by
default, written ME in core. When C code is generated, a subroutine will be invoked to determine
the machine endianness, so that the C code works as intended. In this paper, when the endianness
is unimportant, we will omit the subscript from r,,.

When the surface layout expressions are first desugared, the bit ranges are represented as
BitRange (o, s), which is a pair of natural numbers, indicating the offset (o bits) from the beginning
of the top-level heap object in which it is contained, as well as the range occupied (s bits). In
BitRange (o, s), we require s > 0; zero-sized layouts can use the empty layout () instead.

Layout variables are given the form x{o}, since we must remember to apply the offset after
instantiation—when x is instantiated, it will be shifted to the right by o bits. The other core layouts
are very similar to their counterparts in the surface language.

In summary, the desugarer converting the surface layout expressions to the core calculus must
perform the following tasks:

e expand layout names to layout definitions;

e translate size expressions into bit ranges;

e compute offsets relative to the beginning of the top-level heap object;

e insert explicit layout applications to any layout-polymorphic function calls.

DARGENT is used for describing the layout of heap memory. To cover all the heap memory that
is addressable from an object, it suffices to attach a layout description to each pointer that the
object contains. In the Example type that we showed earlier in Section 3.1, the layout annotation
ExampleLayout is attached to the Example type, which is a boxed type. That layout description
contains all the information about how the fields should be laid out, in particular the unboxed fields
struct and sum which also reside in the heap. For the boxed field ptr, however, the description in
ExampleLayout does not extend beyond the indirection—it only knows that ptr is a pointer but it is
oblivious to the memory layout behind ptr. To prescribe the layout for {c : U8}, a separate layout
annotation should be attached to this type, e.g. {c : U8} layout record {c : 1B}.

Recall that, if an object is referenced by-pointer, it has a boxed type. This means that in the core
calculus, data layouts only need to be attached to boxed sigils and nothing else. We modify the
definition of sigils as follows:

Sigils s == @ | ® | ©

If the sigil is boxed (either writable or read-only), it can carry a DARGENT layout. We use (0), as
a notational convenience when we do not wish to distinguish its mutability. When the layout
annotations are left out, the type will be compiled with the default layout chosen by the compiler.

3.4 The Static Semantics with DARGENT

COGENT’s static semantics, along with some meta-properties of the type system such as type
preservation, are formalised in Isabelle/HOL (O’Connor et al. [2016, 2021] give more details). In this
section, we explain how these formal proofs and definitions are extended to account for DARGENT.

In the original CoGENT typing judgement A;T F e : 7, we have the set of polymorphic type
variables A in the context. Each entry in A also includes a set of constraints for that type variable,
which may enforce, for example, a type variable represent only types that are shareable. When
these type variables are instantiated, these constraints are checked. We also have a wellformedness

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:13

Simplified types 7 == T |pointer | ()| a|{fi: %} | {(Aid)|...

Fig. 7. The syntax of simplified types

judgement on types, A + 7 wf, which ensures that all type variables are in scope in A and that the
type structure of 7 respects the linearity constraints in A.

With DARGENT, the typing judgement must additionally ensure that COGENT types match their
assigned layouts (Figure 8) and that the layouts are wellformed (Figure 9). Because COGENT has
polymorphic type and layout variables, however, these additional constraints cannot always be
immediately ensured when typechecking locally. Thus, we extend the COGENT typing judgement
A; G T F e : 7 and wellformedness judgement A; C + 7 wf to include an additional set of layout
constraints C. It is a set of pairs (¢,) denoting that the layout £ must be capable of representing
type 7. When the types and layouts are instantiated, these matching constraints are checked.

The type in the context C is simplified, denoted as 7, because any type structure beyond the
single heap object described by the layout ¢ is irrelevant. This means that all boxed types, which are
all uniformly represented as a pointer to another heap object, can be treated simply as a primitive
machine word when matching with layouts. The syntax of (a subset of) simplified types is given in
Figure 7 (cf. Figure 1). Types are simplified by replacing all boxed components of the type with the
newly introduced pointer type constant.

3.4.1 Typing Rule for Records with Layouts. We are now ready to present the main typing rule that
is added for DARGENT: wellformedness of boxed records with custom layouts.

f; distinct for each i: A;C + 7; wf

£ wf {~ {fl 3 fl} (f, {fl 3 fl}) € CR

A;C+{f; = 1 }b, wf

ECWF

The first two premises in this rule are similar to those in COGENT, the next three premises are
added to account for DARGENT. The layout wellformedness judgement, £ wf, ensures that field
layouts do not overlap (Figure 9). The last two premises require the type to match the layout
(Figure 8) and ensure that this is tracked in the set of constraints, respectively. In practice, we use a
variant of the rule RECWF where the layout constraint is only tracked in C if the type or the layout
are polymorphic.

3.4.2 Specialisation. COGENT’s type preservation proof relies on type specialisation maintaining
welltypedness [O’Connor et al. 2016, Lemmas 3 and 4]. With DARGENT, we need to adapt these
statements as follows.

LEMMA 3.1 (SPECIALISATION LEMMAS). Let p; be a list of types and ¢; be a list of layouts. Let a;
denote the list of type variables declared in A.
Then, A;C + r wf and A; C;T + e : T respectively imply

N;C' v t[pi/a £ /%] wi;
N C"sTlpifa, €/%5] b elpi/a, €/%5] - tlpi /@, /%],
under the following conditions:

e foreachi, A',C’ + p; wf;

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:14 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

t~7

bits (T) = s i =
) PriMTYMATCH b%ts (Un) n
BitRange (o0,s) ~ T bits (Bool) =1

M is the pointer size

BoxepTyMATcH ———VARMATCH
BitRange (o, M) ~ pointer x{o} ~ 7

for each i: ¢ ~ 7;

UNITMATCH URECORDMATCH

0~0 record {f; : ;} ~ {f; : ©;}
for each i: £; ~ 7;

variant (s) {A; (0;) : &} ~ (A; T3)

VARIANTMATCH

Fig. 8. Matching relation between layouts and types

¢ wf

BiTRANGEWF UNITWF —— VARWF
BitRange (o,s) wf () wf x{o} wf

for each i: £; wf
for each i # j: taken(#;) N taken(¢;) =0
record {f; : £;} wf
for each i: £; wf v; <2° taken(#;) N taken(BitRange (o0,s)) =0
for eachi # j: v; # v;
variant (BitRange (o,s)) {A; (v;) : &} wf

where taken(f) € N returns the set of bit positions that £ occupies (defined recursively).

URECORDWF

VARIANTWF

Fig. 9. Wellformed layouts

e for each pair (¢,%) € C such that A + 7 wf, the following statements hold?
~ £[¢;/%7) wi;
- 0[/5%5) ~ ¢lpi/@);
- (tle/x5). Tl pifai]) € C.

In this lemma, [p;/a;, £;/X;] denotes the simultaneous substitution replacing both type variables
@; and layout variables x;, and I' is a typing context environment.

Informally, the two conditions mean that the pair (p;, £;) of type and layout lists defines a valid
substitution from A; C to A’; C’. They also appear in the typing rule for specialising polymorphic
functions. The second one is new and enforces that for each pair (¢,7) € C that is wellformed
(in the sense that type variables appearing in 7 are in A), the substituted constraint is satisfied
and remembered in the set of constraints C’. This last requirement can in fact be dropped if the
substituted constraint is closed.

3The condition A + # wf is required to support a stronger induction hypothesis. As always, the gory details are in the
machine-checked proofs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:15

3.5 Compiling Records: Custom Getters and Setters

Currently, records are the only built-in types in COGENT that can be boxed. We therefore use records
as an example to discuss how DARGENT layouts influence the generated C code.

Without custom layouts, a COGENT record is directly compiled to a C struct with as many fields
as the original record: If T = {a : A, b : B}, then [T] is a pointer type to struct {[A] a;[B] b;},
where [[-]] denotes the compilation of COGENT types to C types.

The DARGENT extension to the compiler relies on the observation that we are free to choose
what a CoGENT boxed record is compiled to as long as we provide getters and setters for each field,
since they account for all the available COGENT operations on boxed records. Assigning a custom
layout £ to a CoGENT record T results in a C type that we denote by [T]);, consisting of a C struct
with a fixed-sized array of words as a single field. The implementation chooses the word size to
be 32 bits, primarily because most COGENT programs we develop are targeting 32-bit embedded
systems, but this is not fundamental to the design and can be easily made configurable to any word
size. It is worth mentioning that this does not mean that a layout has to be a neat multiple of 32
bits in size. It is absolutely valid to have a record layout like record {a : 1B, b : 3b}, 11 bits in total.
When this layout is embedded in another layout, e.g. record {x : record {a : 1B, b : 3b},y : 2B}, the
remaining bits after the field b will be used by the following field y, without any implicit padding.

The getters and setters for each field are generated according to the layout. If a top-level boxed
record T contains a field a : A, the C prototypes are

[A] get_a ([T]e t);
void set a ([T], t.[A] a);

Note that [A]), the return type of the getter (and similarly for the second argument of the setter
function) does not involve the layout £. If A is a boxed type, then [A] is a pointer to the type A, whose
layout is dictated by the layout information stored in A’s sigil, independent of £. If A is unboxed, the
getter function is the point at which we convert the low-level custom representation governed by
the layout ¢ into a standard representation of A, so that the value of the field a can be inspected by
the rest of the program. As an example, consider the struct field in Figure 3. Roughly, the generated
C getter has prototype struct { U32 a; bool b; } get_struct (Example * t), where Example
is a C structure with a single field consisting of a fixed-sized array spanning 16 bytes.

Getters and setters are generated recursively following the structure of the involved field types.
The process typically involves generating auxiliary “nested setters and getters” that directly manip-
ulate the data array based on the value of the nested field (such as a or b in the example of Figure 3),
and similarly for getters. For example, the getter and setter for the struct field of Figure 3 are
roughly implemented as follows:

// the data array
typedef struct Example { U32[4] data } Example;

struct field struct { U32 a; bool b; };

// setter for the struct field

void set struct(Example * d, struct field struct v){
// calls to nested setters
set struct a(d, v.a);
set struct b(d, v.b);

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:16 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

// getter for the struct field
struct field struct get struct(Example * d){

// calls to nested getters

return (struct field struct){.a = get struct a(d), .b = get struct b(d)};
3

As can be seen, a getter function (or similarly a setter) incurs a data format conversion: It turns the
low-level data format into a high-level typed value in C. Therefore getting and passing around a large
unboxed type can be expensive at run-time. In practice though, if the program is carefully designed
and implemented, and the programmer only passes the minimal structures needed to external
functions, there is a good chance that an optimising C compiler is able to eliminate unnecessary
data conversions. COGENT allows programmers to annotate functions with a CINLINE pragma, so
that the inline modifier is generated in the C code, exposing more optimisation opportunities.

3.5.1 Invalid Bit Patterns. Calling a getter on an external word array can lead to unexpected
behaviours when the data format is invalid. This can happen when variant types are involved,
if the value in the tag part does not match any tag values declared in the DARGENT layout. Any
undefined tag values will be treated as the last constructor’s tag. For example, if the layout of a
variant is variant (2b) {A(0) : 1B, B(1) : 2B, C(2) : 4B} and the tag value seen in the data format is
3, which does not match any defined tag values but also fits in the 2-bit space reserved for the tag,
it will be deemed as the last alternative, namely C.

DARGENT is not a low-level data parsing language, nor an interface language, therefore the
generated C getters do not check for validity, and assume that the input is valid. Users of the
language are responsible for checking the validity of any incoming data.

3.5.2 Required Properties of Getters and Setters. As mentioned above, the compilation of a COGENT
record type T to C can be arbitrary as long as getters and setters are provided. When it comes to
formally verifying the compiled C program, these getters and setters are expected to compose well:

(1) setting a field does not affect the result of getting another field;
(2) getting a set field should return the set value (or at least an equivalent value).

These properties are explained in Section 4.3. It is worth mentioning that, somewhat unintuitively,
extending the verification framework to account for DARGENT does not require proving that the
generated getters and setters are accessing data at the locations specified by the layout.

3.6 Implementation

As mentioned in Section 3.3, the DARGENT core calculus initially represents a bit range as a pair
of integers denoted by BitRange (o, s), where o indicates the offset (in bits) to the beginning of
the top-level datatype in which it is contained, and s indicates how many bits it occupies. This
representation is concise and easy to work with when typechecking the core language. Such a
representation, however, does not necessarily lend itself to an easy code generation algorithm.
Therefore we have another step to convert each bit range into a list of aligned bit ranges tailored
for C code generation. Each aligned bit range is essentially a word.

An aligned bit range AlignedBitRange (w, o, s) is a triple of integers, where w is the word-offset
to the top-level datatype, o is the bit-offset inside this word, and s is the number of bits occupied.
Each aligned bit range contains the information of how the bits in each word is used. The generated
C getter/setter consists of a series of statements, each operating on one word via bitwise operations.
Each such C statement is generated according to one aligned bit range. This one-to-one mapping

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:17

simplifies C code generation. Because of the deployment of aligned bit ranges, it is easy for us to
choose an appropriate word size (namely the size of the aligned bit ranges) specifically tailored for
the application in question. This flexibility is important for low-level programming (see Section 5.1
for a concrete example) and for high performance.

4 THE VERIFICATION FRAMEWORK WITH DARGENT

As we have demonstrated, DARGENT affects both the formalisation of the type system and the
C code generation of the compiler. Moreover, it also affects the generated correspondence proof
between the C code and the pure shallow embedding in Isabelle/HOL. For this proof, only the
refinement between COGENT’s stateful update semantics and the generated C code must change.
Above this low-level layer, the functional embeddings of CoGENT still use high-level algebraic
types, regardless of the specified layouts. In the following subsections, we discuss the extensions to
the verification framework regarding:

(1) the correspondence between CoGENT record values and C flat arrays;
(2) the correspondence between record operations in COGENT and C;
(3) the compositional properties of generated getters and setters;

(4) the correspondence between generated getters/setters and the specified layout.

These extensions to the verification framework not only ensure that the C code generated by the
compiler is a refinement of the CoGeNT code, but also prove that COGENT types are laid out in C
correctly according to the programmer’s DARGENT specification. Again, all the results we present
in this section are developed and checked in Isabelle/HOL.

The verification of any software system must assume the correctness of a trusted computing base.
In CoGENT systems, this trusted computing base is largely comprised of externally provided C
code [O’Connor et al. 2016]. While the CoGeNT framework allows for manual verification of this
C code [Cheung et al. 2022], with DARGENT we eliminate large swathes of this C code entirely,
specifically the so-called “glue code” which translates between data formats. This reduces the size
of the TCB without imposing any additional verification burden.

4.1 Relating Record Values

The correctness of compilation is justified by a refinement proof that states that a simulation
relation, called a refinement relation, holds between the source language and the target language.
The refinement relation from the CoGENT update semantics and the compiled C program is defined
in terms of a relation between CoGENT values (in the sense of the update semantics) and C values.
Without DARGENT, this value relation is straightforward for records: A CoGENT record relates
to a C structure with the same fields, such that each CoGeNT field is itself value-related to the
corresponding C field.

With layouts, a COGENT record now relates to (essentially) a flat word array, and each CoGENT
field relates to the result of applying the relevant custom getter to the array. This requires an
appropriate embedding of our getters in Isabelle. To this end, we have implemented an Isabelle/ML
procedure that imports the C getters and setters generated for each field using the AutoCorres
library, which produces a monadic, shallow HOL embedding that models the semantics of the C
functions. Our ML procedure then simplifies these embeddings to pure Isabelle functions. We call
these simplified functions direct getters and direct setters. These direct getters and setters allow a
simple statement of the compositional properties between getters and setters, detailed in Section 4.3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:18 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

4.2 Relating Record Operations

Without DARGENT, records directly compile to C structures, so it is trivial to relate COGENT
record operations to their compiled C versions and show that they correspond. With layouts, the
correspondence proof becomes slightly more involved, since it relates getting or setting fields in
COGENT to calling custom getters or setters in C. These correspondence statements are proved
automatically by custom tactics we have developed which exploit the compositional properties of
getters and setters, detailed in the next section, as well as the relation between their monadic and
direct embeddings.

4.3 Verifying the Custom Getters and Setters

To relate COGENT record operations and operations on a C array arr that models the record type,
getters and setters are expected to obey the following compositional laws schematically summarised
below. Given an arr array that models a record type:

[Roundtrip] If a CoGENT value x relates to a C value o, then it must also relate to the C value
get_a (set_a arr v). This is a weakening of the more intuitive roundtrip statement get_a
(set_a arr v) = o, which does not always hold: As a counterexample, consider a boolean field.
Since C does not natively provide such a 1-bit type, booleans are typically represented using a
single byte U8. But a custom getter for a boolean field would always return 0 or 1, picking the
relevant bit as specified in the layout. Thus, we obtain a counter-example by taking v = 3.
[Frame] For distinct fields a and b, get_a (set b arr v) is equal to get_a arr.

These statements are subject to typing constraints that we do not detail for brevity.

4.4 Ensuring Getters and Setters Comply with Layouts

As noted before, our compiler correctness certificate does not require that our generated getters and
setters actually respect the layout specification—only that they satisfy the compositional properties
stated previously. Thus, it remains to ensure that the generated getters and setters comply with
data layouts specified by the user.

To this end, we generate specifications for getters in the deep embedding of CoGENT, returning
CoGeNT values (in the update semantics) from a word array, according to the layout. More specifi-
cally, we implemented a generic getter uval_from array as a recursive function in Isabelle that
takes as input a COGENT type, a DARGENT layout, a word array?, and retrieves the value of the field
of the given CoGENT type from the word array according to the given field layout.

We designed tactics to automatically show that generated getters respect this specification. More
precisely, given a field b of CoGENT type 7 with associated layout ¢, the tactics prove that for any
word array a that has a valid format according to the layout, get_b a relates touval from arrayzfa
in the sense of the value relation, where get_b is the direct getter.

We have not yet done the same for setters, although the compositional properties we verify,
together with the correctness of getters, already provide some formal guarantees. Additionally, we
also automatically prove explicitly that setters do not flip any bit that is outside the field layout.

4.5 Endianness

Since COGENT relies on the AutoCorres library, which does not support big-endian architectures
yet, we assume that the machine is little-endian. Therefore, only big-endian annotations need to be
seriously accounted for: Big-endian fields of type U16, U32, and U64 require reversing the bytes on
retrieval and setting. This reversal is performed in dedicated optimised functions. As an example,
here is the code for reversing the bytes in a U32:

4Each of these inputs is of a suitable type inductively defined in Isabelle.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:19

static inline u32 swap u32(u32 v) {
v = ((v << 8) & OXFFOOFFOO) | ((v >> 8) & OxFFOOFF);
return (v << 16) | (v >> 16);

}

This additional reversal step does not require any extension to the proof tactics for the compositional
properties of getters and setters described in Section 4.3, as they proceed first by unfolding all
involved function definitions and applying an automated simplifier for bitwise operations, which
can automatically prove that these swap operations are an involution. Recall that the value relation
described in Section 4.1 is defined based on our generated custom getters, which already take
endianness into account, so the value relation also naturally takes endianness into account.

The proof described in Section 4.4, that our getters respect the given layout, also must accommo-
date endianness. Specifically, we use a purely functional HOL embedding of the swap function to
specify getters of big-endian values. Because our HOL embedding follows the C implementation
closely, our proof tactics also need no extension for big-endian fields to prove correctness of getters.

We also prove as a sanity check that these swap functions are correct, in the sense that they
reverse the byte order.

5 APPLICATIONS

In this section, we showcase how DARGENT helps in developing and formally verifying systems
code via some small examples, the full source code of which is available in the supplementary
material.

5.1 Power Control System

To demonstrate the improved readability of programs that DARGENT offers, we reimplemented the
power control system for the STM32G4 series of ARM Cortex microcontrollers by ST Microelectron-
ics, based on a C implementation from LibOpenCM3°, an open-source low-level hardware library
for ARM Cortex-M3 microcontrollers. The original C file® is about one hundred lines long, and
consists of eight functions of a few lines each that perform some bitwise operations on the device
register. The CoGENT implementation is a bit smaller as each function is now one line long. The
most involved part is the DARGENT layout itself, which is derived from the hardware specifications
of the device.

The 32-bit power control register holds several pieces of information, each occupying a certain
number of bits in the register. We define the register as a record type in COGENT and use DARGENT
to prescribe the placement of each field. With a DARGENT layout, the functions in the power control
code no longer involve bitwise operations, but merely set values to individual fields. For example,
the function to set the voltage output scaling bit in C:

void pwr set vos scale(enum pwr vos scale scale) {

uint32_t reg32;

reg32 = PWR_CR1 & ~(PWR_CR1 _VOS _MASK << PWR _CR1 VOS SHIFT);
reg32 |= (scale & PWR_CR1_VOS MASK) << PWR CR1 VOS SHIFT;
PWR CR1 = reg32;

Shttp://libopencm3.org/
®http://libopencm3.org/docs/latest/stm32g4/html/pwr_8c_source.html

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

http://libopencm3.org/
http://libopencm3.org/docs/latest/stm32g4/html/pwr_8c_source.html

47:20 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

translates to the COGENT function setting the vos field in the record:

pwr set vos scale : (Crl, Vos scale) —Crl
pwr set vos scale (reg, scale) = reg { vos = scale }

It can be seen from this example that CoGeNT allows systems programmers to write code on an
abstract level, while retaining low-level control of the implementation details with DARGENT.

5.2 Bit Fields

In systems code, there is a regular pattern consisting of declaring a structure whose fields have
non-standard bit widths, as in the following example taken from a CAN driver’ where the first
field is an identifier on 29 bits.

struct can id {
uint32_t id:29;
uint32 t exide:1;
uint32_t rtr:1;
uint32_t err:1;

Y
Although this is not supported by the AutoCorres library [Greenaway et al. 2014] on which the
CoGENT verification framework is based, we can simulate this feature using DARGENT.

The last three fields are one bit long and can thus be handled with a COGENT boolean type. In
order to cover the 29-bit field, we can use a primitive 29-bit integer U29. These non-word-size
integers are a new extension we added to CoGeNT for this purpose, and consisted only of a dozen
changed lines of code. We compile such integers to the smallest standard integer type that can
contain the type, since the C language does not natively support such types. For instance, U7 is
compiled to U8, while U20 is compiled to U32. Thanks to the extension of the value relation (see
Section 4.1) to those new types, compiled COGENT programs maintain the invariant that C values
always fit in the narrower bit-width. With a DARGENT layout, we can define a COGENT version of
the above C structure:

type CanId = { id : U29, exide : Bool, rtr : Bool, err : Bool }
layout record { id : 29b, exide : 1b, rtr : 1b, err : 1b}

Bit fields can play an important role in systems programming. This example demonstrates that
DARGENT not only allows programmers to store data in a compact manner, but also provides a
principled way to reason about C bit fields without needing to extend our C verification tools to
support the bit field feature in C.

5.3 Custom Getters and Setters

Suppose we are writing a COGENT system that must work on a complicated, externally defined
C structure that involves many fields, but the CoGENT component is only concerned with a few
specific fields.

Because DARGENT makes all record accesses go through getter and setter functions, we can reuse
this mechanism by providing custom getter and setter functions in C, that extract (or write to) the
relevant fields inside the large C structure. Then, we can represent this large C structure as a simple
CoGENT record with only the relevant fields. The custom getters and setters provided by the user
must compose well (see Section 4.3).

https://github.com/seL4/camkes-vm-examples/blob/89f5d7b7ac373¢8e9f000e80b91611e561358ef6/apps/Arm/odroid_vm/
include/can_inf.h#L34

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://github.com/seL4/camkes-vm-examples/blob/89f5d7b7ac373c8e9f000e80b91611e561358ef6/apps/Arm/odroid_vm/include/can_inf.h#L34
https://github.com/seL4/camkes-vm-examples/blob/89f5d7b7ac373c8e9f000e80b91611e561358ef6/apps/Arm/odroid_vm/include/can_inf.h#L34

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:21

We have successfully applied this approach on a small example, where the C structure has the
same fields as the original COGENT type, extended with an additional field. Whilst this example
is contrived, this feature does have real application: It makes it possible to inherit pre-defined
C data structures. For example, in a previous COGENT implementation of a Linux ext2fs driver,
Amani et al. [2016] had to define their own COGENT Ext2Inode type which corresponds to the
standard C struct ext2_inode type, but did not include fields that were irrelevant to the CoGeNT
implementation, such as certain unsupported file modes and spinlocks. This required tedious
glue code to marshal back-and-forth between the representations. Using this technique, the stan-
dard C struct ext2_inode can be used directly as the representation of the Ext2Inode type, thus
eliminating this glue code entirely.

6 VERIFICATION OF A TIMER DEVICE DRIVER

In this section, we present a formally verified COGENT timer driver (available in the supplemen-
tary material), that we ran successfully on an ODROID hardware, based on the selL4 operating
system [The selL4 developers 2022]. The formal verification was conducted in Isabelle/HOL. Our
formalisation took advantage of the fact that the shallow embedding of the COGENT program in
Isabelle remains simple, as the layouts are fully transparent to the functional semantics of the
COGENT program.

Our CoGENT implementation is based on a C driver® consisting of an interface for two timers,
called A and E, provided by the device. Both implementations are about the same size (260 LoC,
excluding type and layout declarations). The driver can be used to:

e measure elapsed time since its initialisation, using the device timer E, and

e generate an interrupt at the end of a (possibly periodic) countdown, using the device timer A.
The driver consists of four functions:

e meson_init initialises the device register;

e meson_get time returns the elapsed time since the initialisation (in nanoseconds);

e meson_set timeout sets the countdown value, making it possibly periodic;

e meson_stop_timer stops the countdown.

The driver state is passed around as a C structure called meson_timer_t, consisting of the location of
the device registers in memory and a boolean flag remembering whether the countdown is enabled.

6.1 Using DARGENT

In the original C implementation, operations on the timer registers are largely based on bitwise
operations, which are unintuitive to read, error-prone, and more difficult to prove correct. Modelling
the timer registers as algebraic data types, like records and sum types, makes the program easier
to read and to reason about, while DARGENT still allows us control over low-level representation
details. With DARGENT, the timer register can be defined as:

type Meson timer reg = {
timer _a en : Bool,
timer a : U32,
timer_a mode : Bool,
timer a input clk : Timeout timebase,
timer e : U32,
timer e hi : U32,

8https://github.com/seL4/util_libs/blob/c446df1f1a3e6aal418a64asfadblec615eae3c4/libplatsupport/sre/plat/odroidc2/
meson_timer.c

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c#L13
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c#L29
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c#L29
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c#L59
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/plat_include/odroidc2/platsupport/plat/meson_timer.h#L82
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c
https://github.com/seL4/util_libs/blob/c446df1f1a3e6aa1418a64a8f4db1ec615eae3c4/libplatsupport/src/plat/odroidc2/meson_timer.c

47:22 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

timer_e input_clk : Timestamp_ timebase
} layout record {

timer_a _mode : 1b at 11b,
timer_a_en : 1b at 15b,
timer_a_input_clk : LTimeout_ timebase,
timer_e input_clk : LTimestamp_timebase,
timer_a : 4B at 4B,
timer_e : 4B at 72B,
timer_e hi : 4B at 76B

}

Contrary to the C definition, which is mostly type-less and relies on macros and bit-shifting to denote
the semantics of the bits in use, the COGENT definition comes with a lot more type information,
and also concisely prescribes how bits are used and placed. A typical set-value operation in C can
thus be rewritten in a more abstract way in COGENT as record field updates, shown in Figure 10.

6.2 Verification

To formally verify the driver, we first implemented a purely functional specification of the driver.
Then, we proved that the shallow embedding of the COGENT driver refines it.

Both the device and the driver states are threaded through the functional implementation. For
example, the initialisation function performs a functional update of the device state, represented as
a record similar to Meson_timer_reg (ignoring the layout annotations):

initialize s =
(s (| deviceState := (deviceState s)
(timer e low hi := 0,
timer_a_input_clk := TIMEOUT_TIMEBASE_1 MS,
timer_e input_clk := TIMESTAMP_TIMEBASE_ 1 US

) D)

Both the specification and the manual functional correctness proof are 150 lines each. The
manual proof is established by straightforward equational reasoning—much easier than reasoning
about the bitwise operations implemented in C. Layouts are transparent on the shallow embedding
level: COGENT records are encoded as Isabelle records just as if no layouts were specified.

This manual functional correctness proof composed with the automatically generated compiler
certificate establishes the correctness of the compiler-generated C code. All the tedium in the layout
details is successfully hidden by our automatically generated compiler proofs.

6.3 Discussion

Even though this timer driver is a short program, our formal verification nonetheless uncovered
several bugs or implicit assumptions that had been made in the original C driver.

Firstly, the original implementation of the initialisation function meson_init enabled the count-
down timer A, without setting a starting value for it. The behaviour of the timer device in this
case is unspecified. In fact, this countdown timer should only be enabled when used—that is, in
the meson_set timeout function. Another related issue is that the initialisation function does not
ensure that the disable flag of the driver state is synchronised with the enable flag of the device
register, but rather assumes such. We introduced a specific invariant to the functional correctness
specification of this function, to make this assumption explicit.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:23

timer->regs->mux = regs {
TIMER A EN timer_a_en = True,
| (TIMEOUT_TIMEBASE 1 MS << timer_a_input_clk =
TIMER_A_INPUT_CLK) TIMEOUT TIMEBASE 1 MS,
| (TIMESTAMP_TIMEBASE 1 US << timer_e input_clk =
TIMER_E_INPUT CLK) ; TIMESTAMP_TIMEBASE 1 US }

Fig. 10. The code enables the timer A, and selects the time units for the timers A and E. TIMEOUT_TIMEBASE_1_MS
and TIMESTAMP_TIMEBASE_1_US are constant macro definitions in C (left), whereas in CoGeNT (right) they can
be modelled as constructors of a variant type, but compiled to 2-bit integers.

Additionally, when verifying the function meson_get_time, we had to explicitly assume that
the timer value in the device state is not too large. While the device provides the timer value in
microseconds, the function is specified to return the time in nanoseconds. The conversion requires
a multiplication by one thousand, possibly triggering an overflow if the timer value is larger than
approximately 500 years. Thus, we had to add a precondition to rule out such cases.

6.4 Volatile Behaviour

Although some device registers (such as the configuration register) behave as regular memory,
other registers are volatile. In particular, the value of timer E may change between reading, so
reading it twice may yield different values. The original C implementation of meson_get_time
exploits this behaviour to detect a possible overflow when reading the lower bits of timer E.

Such volatile memory can be modelled by adapting the getter functions on those memory
locations to return non-deterministic values. While CoGeNT functions are deterministic, non-
determinism can be expressed by threading an additional abstract value through a deterministic
version of the function, then abstracting that function to a non-deterministic one without that
additional value. In particular, the getter function of a volatile register can be replaced by a function
that takes an additional abstract type as input and returns a value of that type along with the
value of the register. The shallow embedding of this getter function can then be abstracted to a
function that ignores that additional input and returns a non-deterministic value representing the
true behaviour of the volatile register. We worked out a small example that sums two random
numbers to clearly demonstrate this idea. The verification of this example illustrates that summing
two random numbers can yield any value (not just even values).

7 RELATED WORK

The idea of describing low-level data layout with high-level languages is not new. The rich area
of research makes it challenging to fully contextualise our work within the space. Simplifying
our analysis a bit, we can roughly bifurcate the literature into research on program synthesis and
program abstraction.

For instance, the PADS family of languages [Fisher and Gruber 2005; Fisher and Walker 2011;
Mandelbaum et al. 2007], PacketTypes [McCann and Chandra 2000], Protege [Wang and Gaspes
2011], DataScript [Back 2002], Nail [Bangert and Zeldovich 2014], the generic packet description by
van Geest and Swierstra [2017], the verified Protocol Buffer [Ye and Delaware 2019] built upon the
Narcissus framework [Delaware et al. 2019], EverParse [Ramananandro et al. 2019], and contiguity
types [Slind 2021] are all concerned with synthesising a parser program (and also a pretty-printer
for some of them) from a high-level specification of the data format.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

47:24 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

DARGENT’s primary focus is on the data refinement of algebraic data types rather than securely
operating on wire formats. Even though our technology shares a lot in common, the problem we try
to solve is very different. In particular, DARGENT is not a language for parsing or converting between
data formats. It is an extension to CoGENT for its compiler to fine-tune the target code generation
so that compiled code is already in the desired format that is suitable for systems software. In many
cases, DARGENT can eliminate the need for such a data marshalling tool entirely.

Along with DARGENT, LoCal [Vollmer et al. 2019], SHAPES [Franco et al. 2017, 2019] and
hobbit [Diatchki and Jones 2006; Diatchki et al. 2005] fall in the program abstraction camp and are
concerned with compiling data structures in a program into specific layouts dictated by the user.
Programmers can therefore still work with high-level source code, while the compiler does the
heavy-lifting to generate the low-level mechanisms, retaining the separation of program logic from
low-level concerns.

LoCal [Vollmer et al. 2019] is a compiler for a first-order pure functional language that can
operate on recursive serialised data by translation into an intermediate location calculus, LoCal,
mapping pointer indirections of the high-level language to pointer arithmetic calculations on a
base address. The final compiler output is C code which, interestingly, preserves the asymptotic
complexity of the original recursive functions, although this property is implementation-defined
and not assured by any formal theorem. Nonetheless, LoCal’s type safety theorem does ensure a
form of memory safety: Each location is initialised and written to exactly once. The latter property
is a key difference to our work, since DARGENT can operate on mutable data by virtue of COGENT’s
linear types. On the other hand, COGENT is a total language and purposely lacks full support for
recursion, we therefore do not yet support recursive layout descriptions. Primitive recursive types
for CoGENT are under development and use records [Murray 2019]. Since we already support
layout descriptions on records, we believe, once recursive types are supported, adding support for
recursive layouts would be a straightforward engineering task. As a systems language, COGENT
code often uses abstract types such as arrays and iteration constructs over such types. Arrays and
iteration constructs over arrays were recently verified through CoGenT’s FFI [Cheung et al. 2022].
We have ensured these proofs work with our DARGENT extensions. The most significant difference
with LoCal is that DARGENT is a certifying data layout language, with generated theorems that the
translation is correct, whereas LoCal offers no verified guarantees about its final compiler output.

The SHAPES [Franco et al. 2017, 2019] extension is designed for fine-tuning the layout of object
classes for an object-oriented language to improve cache performance. It allows users to define
layout-unaware classes and specify what layout to use at object instantiation time. This class
parameterisation mechanism shares some similarity with DARGENT’s layout polymorphism. The
layouts that SHAPES is concerned with are primarily arrays of values, which are key to better cache
locality but are not how compilers of managed languages natively represent data in memory. Their
layouts are not down to the bit-level, but rather on the level of record fields. In contrast, DARGENT’s
layouts are lower-level and more flexible, and are less tailored for a specific optimisation. SHAPES’s
type system maintains memory safety properties of the program when it splits and lays out boxed
data types. Therefore it also plays a similar role as COGENT’s uniqueness type system. In our work,
these two aspects are independently managed: DARGENT does not directly interfere with memory
safety properties guaranteed by COGENT’s type system.

The hobbit interpreter [Diatchki et al. 2005] extends a Haskell-like functional language with
first-class support for bit-level types and operations (e.g. bit concatenation and splitting), supporting
external representations of bit-level structures. Their work initially focused on bit-data that can be
stored within a single register and later gets extended to memory areas realised as arrays [Diatchki
and Jones 2006]. Instead of assigning a high-level type and a low-level layout to an object in memory,
their types already prescribe the layouts, by virtue of the first-class bit-data support in the language.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:25

In that sense, it is more comparable to the bit fields feature in the C language, or to CoGeNT if the
DARGENT layout descriptors were subsumed by the COGENT types. Their research novelty also lies
in using advanced type system features that are readily available in Haskell to encode the new
language constructs and to perform sophisticated typechecking, which is arguably an orthogonal
matter to data layouts.

Floorplan [Cronburg and Guyer 2019] is also somewhat relevant to DARGENT, but hardly fits
in either category. It is a memory layout specification language for declaratively describing the
structure of a heap as laid out by a memory manager. It therefore chiefly serves the implementors
of memory managers rather than systems developers and users in general, and the abstraction it
provides does not necessarily extends to algebraic types of heap objects. The compiler follows the
specification to generate memory-safe Rust code to perform common tasks that are needed in the
implementation of a memory manager. The semantics of a heap layout specification is denoted
by the set of values that the heap can take. In contrast, the semantics of a DARGENT layout is
characterised by the getter and the setter functions.

8 CONCLUSION

Systems code must adhere to stringent requirements on data representation to achieve efficient,
predictable performance and avoid costly mediation at abstraction boundaries. In many cases, these
requirements result in code that is error prone and tedious to write, ugly to read, and very difficult
to verify.

We are not without hope, however, as we have demonstrated in this paper. By using DARGENT,
we can avoid the need for having the glue code (be it manually written or synthesised) that
marshals data from one format into another, and eliminate error-prone bit-twiddling operations for
manipulating specific bits in device registers. Instead, we enable programmers to provide declarative
specifications of how their algebraic datatypes are laid out. Given these specifications, our certifying
compiler generates corresponding C code that operates on these data types directly, along with
proofs that the generated code is functionally correct. We have shown the applicability of DARGENT
on a number of examples showcasing its support for low-level systems features including the
formal verification of a timer device driver.

ACKNOWLEDGMENTS

Matthew Di Meglio, Sahan Fernando and Zhenyu Yao contributed to the language design, pen-and-
paper formalisation and compiler engineering during early iterations of DARGENT. We would also
like to thank the anonymous reviewers for their insightful and constructive feedback on drafts of
this paper. Robert Sison kindly offered to proofread a draft of this paper and provided many helpful
suggestions.

REFERENCES

Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima,
Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. 2016. COGENT:
Verifying High-Assurance File System Implementations. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems (Atlanta, GA, USA) (ASPLOS ’16). Association
for Computing Machinery, New York, NY, USA, 175-188. https://doi.org/10.1145/2872362.2872404

Godmar Back. 2002. DataScript — A Specification and Scripting Language for Binary Data. In Generative Programming and
Component Engineering (Pittsburgh, PA, USA) (LNCS, Vol. 2487), Don Batory, Charles Consel, and Walid Taha (Eds.).
Springer, Berlin, Heidelberg, 66-77. https://doi.org/10.1007/3-540-45821-2_4

Julian Bangert and Nickolai Zeldovich. 2014. Nail: A Practical Tool for Parsing and Generating Data Formats. In 11th USENIX
Symposium on Operating Systems Design and Implementation (Bloomfield, CO, USA) (OSDI 14). USENIX Association,
Broomfield, CO, 615-628. https://www.usenix.org/conference/osdil4/technical-sessions/presentation/bangert

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1007/3-540-45821-2_4
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/bangert

47:26 Z. Chen, A. Lafont, L. O’Connor, G. Keller, C. McLaughlin, V. Jackson, and C. Rizkallah

Erik Barendsen and Sjaak Smetsers. 1993. Conventional and Uniqueness Typing in Graph Rewrite Systems. In Foundations
of Software Technology and Theoretical Computer Science (Bombay, India) (LNCS, Vol. 761), Rudrapatna K. Shyamasundar
(Ed.). Springer, Berlin, Heidelberg, 41-51. https://doi.org/10.1007/3-540-57529-4_42

Zilin Chen, Ambroise Lafont, Liam O’Connor, Gabriele Keller, Craig McLaughlin, Vincent Jackson, and Christine Rizkallah.
2022a. Dargent: A Silver Bullet for Verified Data Layout Refinement (Artefact). https://doi.org/10.5281/zenodo.7220452

Zilin Chen, Christine Rizkallah, Liam O’Connor, Partha Susarla, Gerwin Klein, Gernot Heiser, and Gabriele Keller. 2022b.
Property-Based Testing: Climbing the Stairway to Verification. In Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (Auckland, New Zealand) (SLE 2022). Association for Computing Machinery,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3567512.3567520

Louis Cheung, Liam O’Connor, and Christine Rizkallah. 2022. Overcoming Restraint: Composing Verification of Foreign
Functions with CoGENT. In Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs (Philadelphia, PA, USA) (CPP 2022). Association for Computing Machinery, New York, NY, USA, 13-26. https:
//doi.org/10.1145/3497775.3503686

Karl Cronburg and Samuel Z. Guyer. 2019. Floorplan: Spatial Layout in Memory Management Systems. In Proceedings of
the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (Athens, Greece)
(GPCE 2019). Association for Computing Machinery, New York, NY, USA, 81-93. https://doi.org/10.1145/3357765.3359519

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and Adam Chlipala. 2019. Narcissus: Correct-
by-Construction Derivation of Decoders and Encoders from Binary Formats. Proc. ACM Program. Lang. 3, ICFP, Article
82 (July 2019), 29 pages. https://doi.org/10.1145/3341686

Tavor S. Diatchki and Mark P. Jones. 2006. Strongly Typed Memory Areas Programming Systems-Level Data Structures in a
Functional Language. In Proceedings of the 2006 ACM SIGPLAN Workshop on Haskell (Portland, OR, USA) (Haskell °06).
Association for Computing Machinery, New York, NY, USA, 72-83. https://doi.org/10.1145/1159842.1159851

Tavor S. Diatchki, Mark P. Jones, and Rebekah Leslie. 2005. High-Level Views on Low-Level Representations. In Proceedings
of the Tenth ACM SIGPLAN International Conference on Functional Programming (Tallinn, Estonia) (ICFP °05). Association
for Computing Machinery, New York, NY, USA, 168-179. https://doi.org/10.1145/1086365.1086387

Kathleen Fisher and Robert Gruber. 2005. PADS: A Domain-Specific Language for Processing Ad Hoc Data. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (Chicago, IL, USA) (PLDI
’05). Association for Computing Machinery, New York, NY, USA, 295-304. https://doi.org/10.1145/1065010.1065046

Kathleen Fisher and David Walker. 2011. The PADS Project: An Overview. In Proceedings of the 14th International Conference
on Database Theory (Uppsala, Sweden) (ICDT ’11). Association for Computing Machinery, New York, NY, USA, 11-17.
https://doi.org/10.1145/1938551.1938556

Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and Susan Eisenbach. 2017. You Can Have It All:
Abstraction and Good Cache Performance. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Vancouver, BC, Canada) (Onward! 2017). Association
for Computing Machinery, New York, NY, USA, 148-167. https://doi.org/10.1145/3133850.3133861

Juliana Franco, Alexandros Tasos, Sophia Drossopoulou, Tobias Wrigstad, and Susan Eisenbach. 2019. Safely Abstracting
Memory Layouts. https://doi.org/10.48550/ARXIV.1901.08006

David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. 2014. Don’t Sweat the Small Stuff: Formal Verification
of C Code without the Pain. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
429-439. https://doi.org/10.1145/2594291.2594296

Steve Klabnik and Carol Nichols. 2022. The Rust Programming Language. Retrieved November 2022 from https://doc.rust-
lang.org/book/ch04-02-references-and-borrowing.html

Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernandez, and Artem Gleyzer. 2007. PADS/ML: A Functional
Data Description Language. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Nice, France) (POPL "07). Association for Computing Machinery, New York, NY, USA, 77-83.
https://doi.org/10.1145/1190216.1190231

Peter J. McCann and Satish Chandra. 2000. Packet Types: Abstract Specification of Network Protocol Messages. In
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication
(Stockholm, Sweden) (SIGCOMM °00). Association for Computing Machinery, New York, NY, USA, 321-333. https:
//doi.org/10.1145/347059.347563

Emmet Murray. 2019. Recursive Types for COGENT. Honours Thesis. UNSW, Sydney, Australia. Retrieved November 2021
from https://github.com/emmet-m/thesis

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
LNCS, Vol. 2283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45949-9

Liam O’Connor. 2019. Type Systems for Systems Types. Ph.D. Dissertation. UNSW, Sydney, Australia. https://doi.org/10.
26190/unsworks/21495

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://doi.org/10.1007/3-540-57529-4_42
https://doi.org/10.5281/zenodo.7220452
https://doi.org/10.1145/3567512.3567520
https://doi.org/10.1145/3497775.3503686
https://doi.org/10.1145/3497775.3503686
https://doi.org/10.1145/3357765.3359519
https://doi.org/10.1145/3341686
https://doi.org/10.1145/1159842.1159851
https://doi.org/10.1145/1086365.1086387
https://doi.org/10.1145/1065010.1065046
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1145/3133850.3133861
https://doi.org/10.48550/ARXIV.1901.08006
https://doi.org/10.1145/2594291.2594296
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doi.org/10.1145/1190216.1190231
https://doi.org/10.1145/347059.347563
https://doi.org/10.1145/347059.347563
https://github.com/emmet-m/thesis
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.26190/unsworks/21495
https://doi.org/10.26190/unsworks/21495

DARGENT: A Silver Bullet for Verified Data Layout Refinement 47:27

Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim, Toby Murray, Yutaka Nagashima, Thomas
Sewell, and Gerwin Klein. 2016. Refinement through Restraint: Bringing Down the Cost of Verification. In Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for
Computing Machinery, New York, NY, USA, 89-102. https://doi.org/10.1145/2951913.2951940

Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney Amani, Gerwin Klein, Toby Murray, Thomas Sewell,
and Gabriele Keller. 2021. CoGeNT: Uniqueness Types and Certifying Compilation. Journal of Functional Programming
31 (2021), e25. https://doi.org/10.1017/S095679682100023X

Liam O’Connor, Zilin Chen, Partha Susarla, Christine Rizkallah, Gerwin Klein, and Gabriele Keller. 2018. Bringing Effortless
Refinement of Data Layouts to COGENT. In Leveraging Applications of Formal Methods, Verification and Validation. Modeling
(Limassol, Cyprus) (LNCS, Vol. 11244), Tiziana Margaria and Bernhard Steffen (Eds.). Springer International Publishing,
Cham, 134-149. https://doi.org/10.1007/978-3-030-03418-4_9

Blaise Paradeza. 2020. Refinement Types for CoGENT. Honours Thesis. UNSW, Sydney, Australia. Retrieved February 2022
from https://people.eng.unimelb.edu.au/rizkallahc/theses/blaise-paradeza-honours-thesis.pdf

Tahina Ramananandro, Antoine Delignat-Lavaud, Cedric Fournet, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan
Protzenko. 2019. EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats. In 28th USENIX
Security Symposium (Santa Clara, CA, USA) (USENIX Security 19). USENIX Association, Santa Clara, CA, 1465-1482.
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud

Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen, Liam O’Connor, Toby Murray, Gabriele
Keller, and Gerwin Klein. 2016. A Framework for the Automatic Formal Verification of Refinement from CoGeNT to C.
In Interactive Theorem Proving (Nancy, France) (LNCS, Vol. 9807), Jasmin Christian Blanchette and Stephan Merz (Eds.).
Springer, Cham, 323-340. https://doi.org/10.1007/978-3-319-43144-4_20

Norbert Schirmer. 2005. A Verification Environment for Sequential Imperative Programs in Isabelle/HOL. In Logic for
Programming, Artificial Intelligence, and Reasoning (Montevideo, Uruguay) (LNCS, Vol. 3452), Franz Baader and Andrei
Voronkov (Eds.). Springer, Berlin, Heidelberg, 398-414. https://doi.org/10.1007/978-3-540-32275-7_26

Konrad Slind. 2021. Specifying Message Formats with Contiguity Types. In 12th International Conference on Interactive
Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193), Liron Cohen and Cezary
Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 30:1-30:17. https://doi.org/10.
4230/LIPIcs.ITP.2021.30

The seL4 developers. 2022. The seL4 Microkernel. Retrieved October 2022 from https://sel4.systems/

Marcell van Geest and Wouter Swierstra. 2017. Generic Packet Descriptions: Verified Parsing and Pretty Printing of Low-
Level Data. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Type-Driven Development (Oxford, UK)
(TyDe 2017). Association for Computing Machinery, New York, NY, USA, 30-40. https://doi.org/10.1145/3122975.3122979

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and Ryan R. Newton. 2019. LoCal: A
Language for Programs Operating on Serialized Data. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York,
NY, USA, 48-62. https://doi.org/10.1145/3314221.3314631

Philip Wadler. 1990. Linear Types Can Change the World!. In Programming Concepts and Methods. North-Holland, 561.

Yan Wang and Veronica Gaspes. 2011. An Embedded Language for Programming Protocol Stacks in Embedded Systems.
In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (Austin, TX, USA)
(PEPM ’11). Association for Computing Machinery, New York, NY, USA, 63-72. https://doi.org/10.1145/1929501.1929511

Qianchuan Ye and Benjamin Delaware. 2019. A Verified Protocol Buffer Compiler. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). Association for Computing
Machinery, New York, NY, USA, 222-233. https://doi.org/10.1145/3293880.3294105

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 47. Publication date: January 2023.

https://doi.org/10.1145/2951913.2951940
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1007/978-3-030-03418-4_9
https://people.eng.unimelb.edu.au/rizkallahc/theses/blaise-paradeza-honours-thesis.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-540-32275-7_26
https://doi.org/10.4230/LIPIcs.ITP.2021.30
https://doi.org/10.4230/LIPIcs.ITP.2021.30
https://sel4.systems/
https://doi.org/10.1145/3122975.3122979
https://doi.org/10.1145/3314221.3314631
https://doi.org/10.1145/1929501.1929511
https://doi.org/10.1145/3293880.3294105

	Abstract
	1 Introduction
	2 An Overview of Cogent
	2.1 Cogent's Uniqueness Types System
	2.2 The Verification Framework

	3 Dargent
	3.1 An Informal Introduction to Dargent
	3.2 Layout Polymorphism
	3.3 The Dargent Core Calculus
	3.4 The Static Semantics with Dargent
	3.5 Compiling Records: Custom Getters and Setters
	3.6 Implementation

	4 The Verification Framework with Dargent
	4.1 Relating Record Values
	4.2 Relating Record Operations
	4.3 Verifying the Custom Getters and Setters
	4.4 Ensuring Getters and Setters Comply with Layouts
	4.5 Endianness

	5 Applications
	5.1 Power Control System
	5.2 Bit Fields
	5.3 Custom Getters and Setters

	6 Verification of a Timer Device Driver
	6.1 Using Dargent
	6.2 Verification
	6.3 Discussion
	6.4 Volatile Behaviour

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

