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Toward nonprobabilistic explanations of learning and decision-making 

Aba Szollosi*, Chris Donkin, & Ben R. Newell 

School of Psychology, University of New South Wales 

 

Abstract 

Referring to probabilistic concepts (such as randomness, sampling, and probability 

distributions among others) is commonplace in contemporary explanations of how people learn 

and make decisions in the face of environmental unknowns. Here, we critically evaluate this 

practice and argue that such concepts should only play a relatively minor part in psychological 

explanations. To make this point, we provide a theoretical analysis of what people need to do 

in order to deal with unknown aspects of a typical decision-making task (a repeated-choice 

gamble). This analysis reveals that the use of probabilistic concepts in psychological 

explanations may and often does conceal essential, nonprobabilistic steps that people need to 

take to attempt to solve the problems that environmental unknowns present. To give these steps 

a central role, we recast how people solve these problems as a type of hypothesis generation 

and evaluation, of which using probabilistic concepts to deal with unknowns is one of many 

possibilities. We also demonstrate some immediate practical consequences of our proposed 

approach in two experiments. This perspective implies a shift in focus toward nonprobabilistic 

aspects of psychological explanations. 
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The application of probability theory as a model of unknowns that emerge in complex 

physical environments has been immensely successful in scientific enquiries. This success has 

provided an enduring inspiration for psychological theories of how people generally deal with 

the problems associated with such unknowns. Indeed, most research traditions concerned with 

learning and decision making at least partly adopted concepts from probability theory in their 

explanations – a tendency prominently recognizable in Bayesian (Chater, Tenenbaum, & 

Yuille, 2006; Oaksford & Chater, 2007; Tenenbaum, Griffiths, & Kemp, 2006) and sampling 

models of cognition (Busemeyer, Gluth, Rieskamp, & Turner, 2019; Fiedler & Juslin, 2006; 

Ratcliff, Smith, Brown, & McKoon, 2016; Stewart, Chater, & Brown, 2006) to name only a 

few.  

In this paper we critically evaluate the role that probabilistic concepts may play in 

theories of learning and decision making. Although criticism of particular implementations of 

probabilistic theories of cognition already exists (e.g., of Bayesian models; Bowers & Davis, 

2012; Jones & Love, 2011), the nature and the focus of our present critique is different: Because 

probabilistic concepts have seeped through a broad range of theories of learning and decision 

making (not only Bayesian), we do not focus on the shortcomings of any particular framework, 

but rather examine and offer potential solutions to the problems associated with the general 

reliance on such concepts in psychological explanations.  

We start with a brief overview of the history and current influence of probability theory 

in psychological theorizing. We then evaluate how probability theory and its related concepts 

can help deal with unknowns. Based on this analysis, we argue that the role that probabilistic 

concepts may play in psychological theories is necessarily minor, mainly because their 

application is tied to sophisticated argumentation, background knowledge, and assumptions 

that laypeople rarely possess. More problematically, the reliance on such concepts may and 

often does conceal the steps required to deal with unknowns. We illustrate these problems and 

sketch a potential way forward through a theoretical and experimental analysis of sequential 

effects in probabilistic experimental designs.  

 

Probabilistic models: From tools to theories 

Probability theory is a mathematical theory concerned with assigning probability values 

to potential outcomes in abstract mathematical spaces (e.g., Kolmogorov, 1950). Its simplest 
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iterations consist of a sample space of possible outcomes, the actual occurrence of which are 

governed by random variables. The allure of this theory comes from this latter random 

variable, which can be used to express expectations about outcome-occurrences in terms of 

probability values. Probability theory achieved its popularity due to its potential to model a 

broad range of environments, because, in such models, unknown causes of variability can be 

replaced with the concept of randomness. More specifically, probability distributions can 

provide a robust mathematical approximation for the variation in the outcomes produced by 

many complex physical environments.  

Perhaps most prominent of such applications is as models of games of chance (which 

inspired the development of probability theory; Hacking, 2006). For an example, consider how 

the roll of a six-sided die would be modelled using probability theory. As a first step, one would 

define the part of the model that represents the anticipated physical outcomes of the die-roll: 

In this case, a mathematical sample space of outcomes ranging 1 to 6 could be specified to 

model the six sides of the die, based on the argument that one of these sides is expected to face 

up after the roll (and that alternative occurrences, such as the die breaking during the roll, are 

irrelevant for the purposes of the model). Next, one would define the part of the model that 

represents the physical process of a die-roll. In this case, a discrete random variable uniformly 

distributed across the six possible outcomes could be specified, based on arguments as to why 

the die is fair (e.g., its sides are of even size, the weight of the material it is made of is 

distributed evenly). Once these parts are in place, one may use the model to substitute 

expectations of the outcome of the physical die-roll with the expectations of the random 

variable of the model (e.g., in the long run, one should expect all sides to be rolled a similar 

number of times). 

In addition to its popularity for modeling games of chance, probability theory has also 

been influential among scientists. Probabilistic models are routinely used to model the behavior 

of other physical systems, ranging from relatively simple systems, such as gases or liquids, to 

more complex ones, such as the weather, the climate, traffic flows, or pandemics. The 

application of such models is widespread in psychological science as well. Intriguingly, 

however, psychologists have gone beyond using them as tools to model people’s behavior and 

have made probabilistic models – or at least some of the concepts associated with them – 

integral parts of theories regarding how humans learn and make decisions.  
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Psychological theories frequently invoke probabilistic concepts both in the explanation 

of people’s cognitive capacities that supposedly help them deal with unknowns, and when 

characterizing the unknowns of their environment. On the one hand, people’s cognition is often 

explained in probabilistic terms: People are said to sample outcomes from the environment and 

from their memory (Fiedler, 2000; Stewart et al., 2006), to learn probability distributions 

(Griffiths & Tenenbaum, 2006; Sanborn & Beierholm, 2016), to perceive randomness (Ayton 

& Fischer, 2004; Bar-Hillel & Wagenaar, 1991; Hahn & Warren, 2009; Nickerson, 2002; 

Reimers, Donkin, & Le Pelley, 2018), and to judge the likelihood or probability of events 

(Busemeyer, Pothos, Franco, & Trueblood, 2011; Costello & Watts, 2014; Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1973). In a similar vein, such explanations are often 

complemented by references to the statistical structure of the environment (Simon, 1956). 

Accordingly, they often describe such environments in terms of correlational and causal 

statistical structure of events (Griffiths & Tenenbaum, 2005; Lagnado, Waldmann, Hagmayer, 

& Sloman, 2005; Pearl, 2000; Waldmann & Holyoak, 1992), such as cues and outcomes 

(Brunswik, 1955; Juslin, Olsson, & Olsson, 2003; Karelaia & Hogarth, 2008; Pleskac & 

Hertwig, 2014), or rewards and punishments (Dayan & Niv, 2008; Rescorla & Wagner, 1972; 

Sutton & Barto, 1998).  

Yet, while scientific tools can sometimes serve as useful inspirations for theorizing 

(Gigerenzer, 1991), it is important to understand where such metaphors break. In the current 

case, the problem is that, since complex systems do not actually behave probabilistically, the 

application of probability theory non-trivially depends on the arguments and background 

knowledge as to why we can pretend that outcome variability is probabilistic – as we briefly 

outlined in the case of the die-throw. Yet, the application of probabilistic concepts to real-world 

phenomena is often treated as self-evident allowing the explanation of how people take these 

necessary steps to be overlooked in psychological theories. 

 

Overview of our approach  

Our goals in this paper are to demonstrate the potential pitfalls and problematic 

consequences of introducing probabilistic concepts into psychological explanations and to 
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introduce a way toward the resolution of these issues1. The general approach we are taking to 

unpack these arguments is to use probabilistically generated experimental environments as a 

demonstrative tool: Because people’s learning and decision making in the face of 

environmental unknowns is predominantly studied in such environments, they provide a 

natural context to explore common problems and to map out potential solutions.  

We start with a theoretical analysis of a standard experimental design through which we 

illustrate how the typical use of probabilistic concepts in psychological explanations may 

obscure essential aspects of learning and decision making. Based on this analysis, we outline 

an alternative approach for studying how people deal with environmental unknowns that does 

not necessarily invoke probabilistic concepts. We then provide a case study of this approach in 

two novel experiments. 

To foreshadow, our main argument is that the use of probabilistic concepts allows 

intermediary steps of dealing with unknowns to be left implicit, and thus these steps may be 

introduced as assumptions into the explanation – while leaving the psychological mechanisms 

motivating those assumptions unexplained. To avoid the resulting issues, we suggest that 

probabilistic concepts not take on central roles in psychological explanations, and that instead 

the questions of how people attempt to create and apply models of the environment should be 

prioritized.  

 

Hidden steps of probabilistic explanations: A theoretical analysis 

Although the mathematical foundation of probability theory is relatively uncontroversial, 

the way in which the theory should be applied to physical phenomena has historically been and 

continues to be a thorny issue (for summaries of this debate see e.g., Hájek, 2019; Schwarz, 

2018). The main difficulty stems from the long-recognized problem that the structure of the 

environment is not manifest through observation (Popper, 1963; more recently in psychology, 

Brehmer, 1980; Brette, 2019; Felin, Koenderink, & Krueger, 2017; Szollosi & Newell, 2020). 

Consequently, it is not trivial how to represent environmental unknowns probabilistically.  

 
1 Even though the use of probabilistic concepts differs substantially across psychological theories (e.g., rational, 
approximate, or “as-if” uses), we argue that the problems that we are highlighting emerge irrespective of 
interpretation. Therefore, we introduce the main problem without clearly differentiating between these uses but 
provide a more detailed analysis of each of them in the General Discussion. 
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In the first part of this section, we provide a theoretical analysis of how probabilistic 

concepts are usually used in learning and decision-making research. We do this by showing 

how two common representations that include probabilistic concepts are applied to explaining 

performance in a typical decision-making task. In the second part, we highlight how in these 

applications – and when using probabilistic concepts in psychological explanations more 

generally – many important steps of the application which connect the representation to the 

environment can be often left implicit and, therefore, left out of the substantive explanation of 

how people deal with the problem. Lastly, we sketch and argue in favor of an alternative 

framework that does not start from the assumption of probabilistic concepts and demonstrate 

how it avoids the problems associated with them. In this alternative framework, we explain the 

way people deal with unknowns in their environments in more general terms of the generation 

and evaluation of hypotheses2, under which the probabilistic approach is only one of many 

possibilities.  

 

Representing probabilistically generated experimental environments 

Structure of experimental environments  

Studies of learning and decision making often model real-world unknowns as 

probabilistically generated environments in the lab (providing yet another example of the 

extent to which probabilistic concepts have become an integral part of psychological research). 

The key similarity across such experimental settings is the use of environments in which events 

of interest are generated according to a quasi-stochastic rule and the participants’ task is to 

figure out some parameter of this rule. This connection ties together a large body of learning 

and decision making research, from the study of the effects of punishments and reinforcements 

on animal and human behavior (Rescorla & Wagner, 1972; Sutton & Barto, 1998), to research 

investigating how people think about probabilities (Estes, 1950; Tversky & Kahneman, 1973), 

correlational and causal relationships (Brunswik, 1955; Waldmann & Holyoak, 1992), and 

about random processes in general (Bar-Hillel & Wagenaar, 1991; Nickerson, 2002). Based on 

 
2 Although it is common to use the word ‘hypothesis’ as though it inherently refers to probabilities, this need not 
be the case: People’s hypotheses may or may not include references to probabilistic concepts. The difference is 
important, because whereas ‘probabilistic hypotheses’ must be unambiguous and coherent according to the 
axioms of probability theory, people’s actual hypotheses can be ambiguous or incoherent. We explain this 
difference in more depth in the General Discussion. 
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this similarity, we can treat the experimental environments used in such studies as isomorphic 

for our current purposes.  

As a demonstrative example, we use a repeated-choice gambling task (Barron & Erev, 

2003; Hertwig, Barron, Weber, & Erev, 2004) – a simple variation of probabilistic 

experimental designs. An illustration of this task can be seen in Figure 1A. In this hypothetical 

experiment, participants are asked to choose repeatedly between two options which provide 

outcomes in an (to the participants) unknown manner. The participants are instructed to lose as 

few points as possible. Clicking on one of the options reveals the outcomes of both options and 

the loss associated with the chosen option. By repeating this choice across a number of trials, 

the participants are expected to learn about the process that generates the outcomes. The 

outcomes are generated by a pseudo-random sampling process, which provides a loss of 20 

points with a probability of .50 (a relatively bad outcome) and 0 points otherwise (a relatively 

good outcome) on the risky option (left option on Figure 1A), and a loss of 10 points with a 

probability of 1 on the safe option (right option on Figure 1A).  

In this context, the unknowns that participants are expected to learn about are the 

outcomes of the risky option. To illustrate how people’s learning and decision making under 

such conditions is often explained, we will present two probabilistic representations that could 

be used to learn about these outcomes in the following sub-sections. We will apply these 

representations to the first 14 trials of the hypothetical experiment (Figure 1B) and use them to 

derive expectations about the occurrence of the bad outcome (-20). These are simplified 

variations of two commonly assumed representations in psychological explanations of such 

tasks: temporally static and dynamic representations. In the former, the temporal structure of 

the environment is entirely ignored, and the focus is placed only on the probability or frequency 

with which different outcomes occur. In the latter, the temporal structure of the environment is 

considered, for example, by keeping track of the number of trials between occurrences of a 

particular outcome (e.g., the bad one). Although most psychological theories contain features 

of both representations, the hidden steps required for the application of probabilistic concepts 

can be demonstrated more clearly when these are examined separately. We also note that some 

of the mathematical tools that we introduce in these sections will also be used for the analysis 

of our experimental results, which will be presented in subsequent sections.  
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Figure 1. Illustration of a hypothetical repeated-choice gambling task and its potential probabilistic 

representations. (A) Illustration of the experimental task. Participants choose between unmarked options and 

receive feedback of chosen (highlighted) and non-chosen outcome. This panel illustrates the history of the task 

for 4 trials, and the unmarked options of the current trial. (B) History of outcomes on the first 14 trials of the 

experiment. (C) Expectations for the occurrence of the bad outcome (-20) after 14 trials, based on a temporally 

static representation of the task. Expectation of this outcome (in this case probability, p, shown in bottom panel) 

is calculated based on the number of times it occurred over 14 trials (shown in top panel). (D) Expectations for 
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the occurrence of the bad outcome (-20) after 14 trials, based on a temporally dynamic representation of the task. 

Expectation of this outcome (hazard rate, shown in bottom panel) for any trial can be derived based jointly on the 

number of trials since the bad outcome last occurred (x-axis) and on the distribution of previously observed 

sequence lengths (i.e., the number of good outcome trials between bad outcome occurrences; top panel color-

matched with panel B). See main text for more details and specific examples. 

 

Temporally static representations 

One way to probabilistically represent such environments is based on the assumption of 

a stochastic generation process. In this case, unknown aspects of the environment (the 

probability with which the outcomes of the risky option occur) are assumed to be the result of 

a random draw from the statistical distribution of 0 and -20 outcomes. Under these 

assumptions, the temporal structure of the outcomes can be ignored, and expectations about 

the outcomes (their probability) can be based on tracking the frequency with which they 

occurred before, which can then be used to inform choice. 

Mathematically, the tracking of outcome probabilities of the risky option can be 

expressed by using a cumulative average formula to update the estimate of the probability of 

each of the outcomes, 𝑝!, on trial 𝑡: 

 𝑝!" =	
#!
"#$("%&)()!

"	
"

	 (1) 

where 𝑖 indicates the outcome being tracked (e.g., -20 and 0), and 𝑅! is 1 for the outcome that 

occurred and 0 for other outcomes. The idea is that, in the long run, tracked 𝑝! will converge 

on the real 𝑝 value with which the outcomes were generated. This probability value can then 

be used to calculate the expected value, 𝐸𝑉, of an option. This can be calculated, for example, 

for the risky option as: 

 𝐸𝑉+!,-. = 𝛼∑ 𝑝! ∙ 𝑉!!  (2) 

where 𝑉! is the set of outcome values, and 𝛼 can be used to introduce different subjective utility 

weights (e.g., Kahneman & Tversky, 1979), and then the option with the highest 𝐸𝑉 on any 

given trial will be chosen. 
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An illustrative use of this representation can be shown in the hypothetical experiment in 

Figure 1. For example, expectation about the risky option can simply be expressed as the 

function of the number of times an outcome occurred out of the number of all trials that a 

participant has seen by that point. Early on, this value will vary substantially from trial to trial, 

but as shown in panel C, by the 14th trial, the p value would start to converge on .50 (the value 

will be .43). This value can then be used in a choice rule to make predictions about people’s 

behavior (e.g., using Equation 2).  

 

Temporally dynamic representations 

Another possible probabilistic way to represent the experimental environment is through 

a model that takes the temporal structure of outcome occurrences (i.e., the historical order in 

which they appeared throughout the trials) into account. Unlike temporally static 

representations, temporally dynamic representations do not assume that individual trials are 

independent. Instead, unknowns are assumed to result from a random process that draws 

sequences of outcomes from a distribution of such sequences, and thus expectations about 

outcomes can be based on the history of the order in which those outcomes occurred on 

previous trials. For the example displayed in Figure 1, we will consider outcome sequences for 

the risky option, and take as a sequence a run of good outcomes (0) ended by the occurrence 

of a bad outcome (-20), including that outcome (example sequences highlighted with color in 

Figure 1B).  

A potential way to take the sequential structure of the outcomes of the risky option into 

account is to use the so-called hazard rate of the outcomes (cf., Grabenhorst, Michalareas, 

Maloney, & Poeppel, 2019). For the current purposes, the hazard rate can be interpreted as an 

expectation measure for the occurrence of an outcome (in this case the -20 outcome) at any 

given time point in a sequence, in part, based on the history of outcome sequences. This history 

can be mathematically represented as the failure density function 𝑓(𝑡), which is the mass 

function of the lengths of the sequences previously observed, in units of trials 𝑡. In other words, 

it is the distribution of the number of trials it takes for an outcome to repeat. In the example 

sequence, 𝑓(𝑡) for the bad outcome is displayed in the top panel of Figure 1D. This histogram 

shows the mass function of the observed sequences’ lengths in the first 14 trials of the 
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experiment (Figure 1B; the sequences are color-matched with the corresponding bar in the 

histogram in the top panel of Figure 1D).  

Once 𝑓(𝑡) is known, the hazard rate, ℎ(𝑡), can be calculated according to:  

 ℎ(𝑡) = 	 /(")
&%0(")

 (3) 

where 𝐹(𝑡) is the cumulative distribution function of	𝑓(𝑡). The denominator, 1	– 	𝐹(𝑡), 

introduces a type of urgency, so that ℎ(𝑡) also takes into account the temporal position of the 

current trial relative to the longest possible sequence: The smaller the number of potentially 

longer sequences, the higher the expectation of the outcome’s occurrence. The bottom panel of 

Figure 1D represents ℎ(𝑡) for the bad outcome based on the first 14 trials. To summarize, this 

can be interpreted as an expectation value of that outcome to occur on the current trial, and it 

is based on the number of trials since its last occurrence and the frequency of the possible (i.e., 

observed) lengths of the sequences.  

The potential relevance of ℎ(𝑡) for choices can be easily seen in the above example: 

When the expectation of a bad outcome is higher, people should be more inclined to choose 

the safe option; when the expectation of a bad outcome is lower, they should be more inclined 

to choose the risky option (this value can also be introduced into an EV calculation after 

normalization). For example, if we continued our hypothetical experiment, at trial 16 

(assuming the bad outcome did not occur on trial 15) the expectation based on ℎ(𝑡) is relatively 

higher than at trial 18 (assuming it did not occur on trials 15-17), because during the first 14 

trials, we observed alternations (0 -20) twice, but not sequences with exactly 3 good outcomes 

(0 0 0 -20). On trial 19, however, the ℎ(𝑡) value is infinity (assuming the bad outcome did not 

occur on trials 15-18) because sequences longer than 5 were not observed (and thus the bad 

outcome needs to occur). Taken together, a representation based on the hazard rate 

demonstrates a probabilistic way in which temporal expectations could be considered in a 

repeated-choice experiment. 

 

Applying probabilistic models 

Through the above examples, we aimed to illustrate how probabilistic concepts are 

typically used in explanations of people’s behavior on repeated-choice gambles – and in studies 
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of learning and decision making more generally. In many cases, demonstrating that a set of 

such probabilistic formulae capture people’s behavior to an arbitrary accuracy (sometimes 

accompanied by an explanation of the aspects of the environment the formulae characterize) is 

accepted as a sufficient psychological explanation. For these examples, one might say that 

people learn the probability of outcomes or the probability of sequences (or that there is a 

mixture of people using either of these strategies). However, on closer examination, it becomes 

apparent that the application of these models depends on numerous hidden steps – arguments, 

background knowledge, and assumptions not made explicit in the explanation – that 

nonetheless play an important part in the related psychological claims.  

 

Hidden steps  

To illustrate what these hidden steps are, let us briefly return to our example of how 

probability theory is applied to model games of chance and compare it with how psychological 

models are applied. In the case of throwing a six-sided die, an argument could be, events occur 

in a way that makes them impractical or infeasible to predict perfectly (e.g., lack of sensitive 

measurement tools, or time or knowledge to build them), and so one may represent the 

situational unknowns (e.g., force of throw, air pressure, properties of the table’s material) with 

the statistical concept of randomness. However, this can only be done due to the arguments 

and background knowledge that specify how the physical environment works, how and what 

can be measured about it, and with what precision, and why the statistical concept of 

randomness provides an approximation of the aspects that can only be imprecisely measured. 

Although these parts of the application can be and often are left unsaid, the eventual 

probabilistic model of the die-throw is only a relatively minor part of it. 

The same kind of hidden background knowledge and arguments are present in the 

application of probabilistic representations to the hypothetical experimental environment. Most 

of these come from knowledge about how the experimental environment is set up, what the 

researcher’s intentions were, or what they thought the participant inferred about their 

intentions.  For example, two simple assumptions in both the static and dynamic representations 

are that the environment remains stable over time (i.e., that it will behave in a similar way to 

how it behaved before), and that there are only two possible outcomes that can occur on the 

risky option and one on the safe option, because these have been programmed into the 
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experiment. Another assumption is the a priori determination of the units that should be taken 

as observations (i.e., individual outcomes for static, sequences of outcomes for dynamic 

representation), because this is what the experimenter thought the participant will pay attention 

to. A more complex assumption still is that both representations rely on the concept of random 

sampling of outcomes or outcome sequences. Such reliance is usually based on the knowledge 

that the experimental outcomes are determined by a pseudo-random generator – that is they are 

random with respect to the participants’ presumed ability to predict them.  

Of course, not all theories that invoke probabilistic concepts rely on these same exact 

commitments, even those that are generally concerned with behavior on these types of tasks. 

Yet such theories must always make use of similar steps, which are often left implicit in 

probabilistic explanations for convenience (e.g., because other researchers can be expected to 

possess the relevant background knowledge for the application of those models). This practice 

can obscure the theoretical commitments to the corresponding psychological mechanisms.   

 

The problems posed by hidden steps 

The hidden steps we just described are not trivial in any kind of meaningful application 

of a probabilistic model, because the mathematical formulae of the probabilistic models make 

little sense without the accompanying arguments, assumptions, and background knowledge. 

This means that psychological explanations include these hidden steps in some form whenever 

they invoke probabilistic concepts. Leaving them unsaid poses a problem, because this way the 

researcher’s arguments, assumptions, and background knowledge can be uncritically 

incorporated into the psychological explanation – while sidestepping the issue of how people 

themselves take these steps to deal with unknowns. There are two main ways in which such 

problems can arise. 

One way these hidden steps can be incorporated in psychological explanations is to argue 

that people deal with unknowns by (literally) representing them probabilistically. Such an 

argument must assume that people take the same hidden steps as the researcher in how they 

apply probabilistic concepts. This is problematic due to the complex nature of the requisite 

knowledge and the difficulty associated with applying it to the physical environment. Even in 

the two simple examples we have provided, there is a complex chain of arguments that allows 

one to pretend that environmental outcomes are probabilistically generated. Although it is 
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undeniably possible that some people with the requisite knowledge (e.g., researchers) do 

represent these unknowns using probabilistic concepts, it cannot be the general way in which 

people attempt to deal with unknowns. 

Another way to bring these hidden steps into psychological explanations is to explain 

how similar or equivalent steps are taken by people without assuming they have the requisite 

knowledge. Such an argument often takes the form of postulating a set of heuristics that provide 

approximations to the relevant probabilistic models. In our example, for instance, a win-stay-

lose-shift strategy would create choice behavior with temporal dynamics, while a strategy to 

rely on the average of recent observations (e.g., by sampling them) would lead to more static-

looking choices. However, in such solutions, the problem of not explaining which of the many 

possible probabilistic representations of the task should be considered is merely replaced by 

not explaining which of these probabilistic representations should be approximated. In other 

words, this approach similarly takes the argumentative steps, background knowledge, and 

assumptions as self-evident and thereby does not even attempt to explain how individuals take 

those steps3. 

In both the literal and approximate cases, when probabilistic concepts are introduced, it 

becomes hard to tell what they mean in terms of the psychological explanation. When people 

are said to learn probability distributions, perceive randomness, judge likelihoods, or sample 

outcomes it is not clear why and how probabilities, randomness, likelihoods, and sampling (or 

their approximations) became part of people’s repertoire to deal with unknowns in the 

environment. When they are said to infer the statistical structure, it is not clear how they chose 

what to include in their models of causes and outcomes, or rewards and punishments. And 

more generally, it is not clear why the (itself questionable) starting assumption that the 

unknowns in the environment should be represented using probabilistic concepts should be an 

integral part of a psychological explanation. 

 

 
3 A variation of this approach explicitly designates the explanation of these steps as a problem that the scientist 
needs to solve (e.g., as an exercise in developing an optimal probabilistic model) and thereby not making the 
explanation of how people solve the problem part of the psychological explanation. Such an approach often relies 
on the argument that the individual does not need to solve this task (or even be conscious of probabilistic or 
heuristic knowledge), because it already has been solved by evolution. Although not our focus in the present 
paper, our understanding is that heuristics directly resulting from evolutionary processes are rather rigid (in clear 
contrast with the many potential ways in which people appear to be able to represent environments) and so would 
be surprised if they played a role in higher-level psychological processes.  
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Lack of manifest structure 

The way in which probabilistic concepts should be applied (if at all) to model 

environmental unknowns is not self-evident and not part of probability theory but needs to be 

part of the psychological explanations relying on them4. This is because outcome variability in 

real environments is not produced by genuinely random processes and scientists’ choice to 

develop models that assume it is depends on numerous additional considerations. Invoking 

probabilistic concepts in a psychological explanation without clearly explaining how these 

additional considerations – the relevant argumentative steps, background knowledge, and 

assumptions – feature in it renders the psychological explanation of how people deal with 

unknowns incomplete. 

 

Toward non-probabilistic explanations of how people deal with unknowns 

The problems we outlined with current probabilistic approaches demonstrate the value 

in at least attempting to explain learning and decision making without giving probabilistic 

concepts a major role. An alternative, not (necessarily) probabilistic way to construe what 

people do when they face environmental unknowns is in terms of hypothesis generation and 

evaluation (e.g., McKenzie, 2004). In general terms, this means that people attempt to deal 

with the problem of unknowns in their environments by generating hypotheses based on their 

background knowledge and then evaluating these hypotheses by at least in part using the 

feedback provided by their environments. Again, here we use the word ‘hypothesis’ in a broad 

sense, which can include probabilistic hypotheses (when appropriate background knowledge 

is present), but also non-probabilistic ones (e.g., deterministic hypotheses, simple heuristics). 

Thus, in this framework, probabilistic hypotheses are one of an infinite number of possible 

kinds of hypotheses people can create.  

One key difference between this and primarily probabilistic approaches (at least in our 

interpretation) is that the central research question is moved from attempting to identify (a set 

of) individual representation(s) to understanding how such representations develop. That is, 

 
4 Although one might argue that it is possible to represent these hidden steps probabilistically (e.g., background 
knowledge as priors, or argumentation as the potential change in likelihoods), such a representation would only 
be a description of these steps and not an explanation of how and why they are made in the first place. This is 
because invoking further probabilistic concepts to explain how probabilistic concepts are applied would lead to 
an infinite regress.  
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because people are capable of representing the environment in an infinite number of different 

ways, it is their capacity to develop various representations and not the particular 

representation(s) that they develop that remains invariant across settings (Donkin, Szollosi, & 

Bramley, in press; van Rooij & Baggio, 2021). In this section, we discuss the key 

methodological, empirical, and analytic consequences of this approach and its differences from 

probabilistic approaches. 

 

Measuring task representation and the role of feedback 

Developing representations of the environment is central to the hypothesis generation 

and evaluation framework which places a renewed focus on more sensitive measurement of 

people’s task representation in psychological experiments. Although this can be (and 

sometimes is) done under probabilistic frameworks, it can also be (and often is) avoided 

because participants’ task representations are typically independently introduced into the 

probabilistic model as assumptions or “inferred” retrospectively from people’s choices. This 

can be seen in our example where a preselected set of potential representations (i.e., static and 

dynamic) is introduced without measuring what representations participants actually 

entertained. Similarly, the researcher’s choice as to which representation the participant 

“really” based their decisions on would typically be made based on which representation fits 

participants choice patterns best. Determining people’s representations this way is problematic, 

because they can create an infinite number of hypotheses (not just variation of probabilistic 

ones), a lot of which are consistent with any one task or observed choice behavior (e.g., Dulany, 

Carlson, & Dewey, 1984; Dunwoody, 2009; Lovibond & Shanks, 2002; Shanks & St. John, 

1994). 

Clear and sensitive measurement of task representations can provide a partial solution to 

this problem by reducing the reliance on unfounded or outright mistaken assumptions to a large 

degree (Newell & Shanks, 2014). One way toward sensitively measuring participants’ task 

representations is to consider what kind of background knowledge they might have of the task 

and to develop measures on that basis. Background knowledge can come in many forms, but 

perhaps the two more relevant sources for psychology experiments are knowledge that people 

acquire in their everyday life (e.g., mathematical knowledge acquired through formal 

education), and knowledge provided via the experimental instructions. Important but often 
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ignored information in the latter is introduced through (potentially unintentional) 

communicational acts of the experimenter (Hilton, 1995; Sher & McKenzie, 2006). 

Information communicated in this form can be interpreted by the participants through the 

knowledge of shared communicational norms (Grice, 1975). For example, the 

communicational norm of ‘relevance’ can turn the way in which certain stimuli are presented 

into a communicative act (as we will argue is also the case in the example probabilistically 

generated experiments). Considering what background knowledge participants can be expected 

to possess may constrain the measurement of their task representation, of which we will 

provide an example in our case study experiments below. 

Measuring task representations sensitively is also useful to determine the effects that the 

experimental feedback can be expected to have. Since the environmental structure is not 

manifest, the information that it provides can only be a function of the participants’ 

representations of it (Brehmer, 1980; Estes, 1976). For example, as we have discussed in our 

examples above, when people interpret a probabilistically generated environment through a 

temporally static representation, they would consider the frequency with which outcomes occur 

(providing no information about the temporal distribution of the outcomes); when they interpret 

it through a temporally dynamic representation, they would also consider the sequential 

distribution of these same outcomes. As this is true not only for probabilistic representations 

but more generally, understanding the effect of environmental feedback requires a clearer 

picture of participants’ representations of experimental tasks. 

To summarize, sensitively measuring people’s environmental representations – as 

opposed to assuming and/or “inferring” them from choices – is critical to evaluate the potential 

impact of experimental feedback and is also important to evaluate how representations vary 

and change over time (discussed in the next subsection). Although such measurements can be 

implemented under probabilistic approaches, due to the customary way of allowing 

researchers’ knowledge to freely enter psychological explanations of people’s representations, 

these measurements are not as critical as under the framework we are advocating.  

 

Measuring representational variability 

A perhaps even more important practical consequence of the hypothesis generation and 

evaluation framework comes from its implications about the relevant invariances in learning 
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and decision making. Specifically, if we accept that people can create any representation, the 

relevant invariances to measure will not be which particular representation(s) they entertain, 

but rather how these representations develop. The representation(s) participants build are of no 

special significance (although not irrelevant, see below), because these representations are 

mostly a function of their background knowledge, which is not invariant over time (i.e., it 

changes due to changes in cultural knowledge, formal education, etc.). Thus, what should be 

the key interest of psychological studies of learning and decision making are the processes that 

underlie hypothesis generation and evaluation. 

To enable the development of hypotheses, these processes rely on concurrently 

increasing and decreasing variability of entertained hypotheses (by generating and evaluating 

them). Therefore, empirically, such processes can be expected to influence the variability of 

the representations people develop. For example, experimental instructions constrain how 

people adopt their background knowledge to create a representation of the experimental 

environment, and it is potentially further constrained by experimental feedback. It is easy to 

understand why this would be the case: If experimental instructions do not clearly constrain 

the set of representations participants can develop, people’s representations can be expected to 

be more variable than when instructions provide clearer constraints. Similarly, if feedback is 

uninformative with respect to the entertained hypotheses, we can expect a greater variety of 

representations than when feedback is relevant and informative. 

Although the emphasis here is moved from the task representation to the processes 

responsible for its development, this does not mean that the former is irrelevant. On the 

contrary, determining people’s task representations is useful to document changes over time 

and to measure representational variability, and it is also important to derive expectations about 

the potential effects of feedback – only in this scheme determining the actual task 

representation becomes a means to understanding hypothesis development instead of being an 

end in itself. This shift in emphasis also has implications for data analysis and presentation 

(roughly, it implies the depiction and comparison of the variability across and within people’s 

responses, instead of comparing group means or other model-fit estimates), which we will 

demonstrate in the subsequent case study experiments.  

The experimental approach we are proposing stands in stark contrast with the prevailing 

approach under probabilistically informed theories (and more generally in psychology) in 

which the focus is on the evaluation of one or a set of specific representations. Often this is 
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done by comparing people’s performance to a pre-determined (set of) representation(s), or by 

estimating what proportion of people are best described by the various pre-determined 

representations. Variability in this framework is assumed to be produced by random processes 

(guiding both people’s choice on the task and their choice between pre-determined 

representations) and so is only estimated based on pre-determined probability distributions. 

Instead, we argue that response variability (across and within individuals) is the critical 

dependent measure, because it emerges from the invariant processes responsible for developing 

representations.  

 

Beyond probabilistic psychological explanations 

To summarize, our proposed theoretical approach differs from primarily probabilistically 

approaches in two main practical ways. We argued that, sensitively measuring people’s task 

representations is essential under our approach, because it helps to document changes over 

time and to measure representational variability, and it is also important to derive expectations 

about the potential effects of feedback. However, since representations can change over time, 

we also argued that their measurement cannot be the main aim of experimental studies, and 

that instead representational variability should be focused on. This is because only the 

processes that are responsible for hypothesis development (i.e., increase and decrease their 

variability) remain invariant over time. 

In the following main section, we provide two experimental case studies of how this 

approach could work in practice. Continuing with the experimental task from our theoretical 

analysis, we revisited the common finding that people attempt to identify and exploit the 

sequential structure of repeated-choice gambling tasks in “probabilistically” generated 

environments (e.g., Plonsky, Teodorescu, & Erev, 2015; Szollosi, Liang, Konstantinidis, 

Donkin, & Newell, 2019).  
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Experiment 1 

Experimental approach 

Experiment 1 is an illustration of how to study learning and decision making without 

relying on probabilistic concepts, using a repeated-choice gambling task in which we primarily 

focused on measuring people’s task representation. To inform how we measure this, as a first 

step, we consider the relevant background knowledge the people can be expected to hold and 

that they can adapt to form their task representation. For instance, it is unlikely that they assume 

that events in the experiment are stochastically independent, because even if they had heard 

about concepts such as randomness or stochastic independence, they are unlikely to have a 

deep enough understanding of these concepts to apply them in novel circumstances (see e.g., 

Gal & Baron, 1996). On the other hand, there are many reasons for the participants to think 

that the temporal aspect of the task should not be ignored. For example, the fact that the task 

has a trial-by-trial structure could be a sufficient reason in itself: A participant might reasonably 

think that if the experimenter wanted them to ignore the temporal structure, they would have 

presented the stimuli all at once. Taken together, without the precise knowledge of how the 

environment was generated, people have good reasons to think that the experimenter wants 

them to learn about the sequential structure of the task. In this case, they would presumably try 

to come up with hypotheses with respect to this aspect of the task by trying to identify 

informative aspects of the temporal structure and to keep track of them using simple 

mathematical heuristics.  

Based on these considerations, we set out to measure the temporal aspect of people’s task 

representation. We did this by asking participants to generate the aspects of interest once they 

had completed the “actual” experiment, which is a generally promising method to measure 

people’s task representation. We adapted a method used by Tran, Vul, and Pashler (2017). In 

their study, they measured how well people incidentally (i.e., without being instructed) learned 

the spatial structure of some stimuli by asking them to generate the spatial locations similar to 

what they observed in the experiment. Here we adapted this method to measure people’s 

knowledge of the temporal structure of the repeated-choice task and how this knowledge 

informed their choices.  

We also focused our data analysis on the variability in the hypotheses people came up 

with, even though in this experiment we relied on the standard design of repeated choice 
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gambles and so did not attempt to manipulate this variability. Relatedly, while our explanation 

of what people might do did not refer to probabilistic concepts, we still used some such 

concepts to describe and to visualize both the experimental environment and participants’ 

behavior.  

 

Methods 

Participants, open materials, and data availability 

Ninety students, at the University of New South Wales, participated in Experiment 1. 

Participants received course credit and performance contingent payment in exchange for their 

participation (see Procedure for more details). They also consented to participation in the 

experiment. The UNSW School of Psychology Ethics Committee (Ref. #2909) approved all 

experimental work. Materials and data from all experiments, as well as the analysis code are 

available in the Supplemental Materials and at the following link: https://osf.io/6thwz/.  

 

Procedure 

The experiment consisted of two parts: a repeated-choice gambling task and a sequence-

generation task (Figure 2). Participants were only told about the generation task after they 

completed the repeated-choice task. In the repeated-choice gamble (Figure 2A), participants 

were asked to choose between a risky and a safe option for 200 trials. The safe option provided 

the same outcome every time, while the risky option provided two different outcomes: a good 

and a bad outcome relative to the safe outcome. When participants chose an option, they 

received full feedback of the payoffs (i.e., feedback on the outcome of both the chosen and 

non-chosen options), but they were not told what the possible outcomes are in advance. 

Participants started the experiment with 5000 points (equivalent of AUD 5.00) and by choosing 

between the options they lost some number of points. They were told that they will receive a 

monetary payoff based on the number of points they have left by the end of the experiment.  

Participants were randomly assigned to three between-subject conditions, in which we 

manipulated the probability (frequency) of the bad outcome across three levels (.15, .25, and 

.50), with the good outcome changing to keep the expected values equivalent to the safe option. 
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All participants within the conditions observed the same gamble, the payoff structure of which 

is presented in Table 1.  

We aimed to provide a random-like order of the risky outcomes, and so we generated the 

outcome sequences such that their sequence-length distributions retained a monotonically 

decreasing shape (an important feature of random sequences). We determined a fixed sequence 

of good and bad outcomes for each frequency condition that had this property (summarized in 

Figure 3A, gray bars), and, within each condition, every participant observed this same 

sequence (see Supplemental materials for the actual sequences). The rationale for determining 

a fixed sequence was that spurious sequential patterns (e.g., in the form non-monotonically 

decreasing sequence-length distributions) can easily emerge in pseudo-randomly generated 

sequences consisting of a relatively small number of trials5. 

In the second part of the experiment (Figure 2B), participants were asked to generate the 

sequence of outcomes the risky option would provide if the experiment continued (based on 

Tran et al., 2017). We asked participants to do the following: “Now we are interested in 

determining how much of an intuitive sense you have gained for the order in which the 

[outcome 1] and [outcome 2] numbers occurred on the [risky-side] button. Please show us this 

by generating a new sequence of [outcome 1] and [outcome 2] numbers. If you think there 

were any other patterns in the original sequence, please try to generate a sequence that reflects 

those patterns, too. Do not worry about mimicking the actual order of the original sequence. 

Just try to produce a sequence of numbers which is as much like the original sequence as you 

can make it. You may receive additional payment based on how much your sequence is like the 

original in the first part of the experiment.” Participants were paid an additional AUD 1.00, if 

the proportion of good and bad outcomes that they generated matched that of the observed 

outcomes within a range of ±5%. Participants generated a sequence of 200 outcomes.  

 

 
5 To be more precise, sequential patterns emerge in any finite sequence. Whether the generation of a sequence of 
outcomes is well-approximated by the mathematical random model (where no sequential patterns emerge, under 
the assumption of an infinitely long sequence) depends on the knowledge of the modeler (e.g., about the computer 
program that provides the randomization).  
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Figure 2. General structure of the experiments. (A) Repeated choice task. Participants make repeated choices 

between a risky and a safe option on 200 trials (two hypothetical trials of the p = .15 condition pictured). They 

are shown the outcome of both the chosen and the non-chosen options (chosen option highlighted). (B) Sequence 

generation task. Participants are shown the possible outcomes of the risky option. They generate a sequence of 

good and bad outcomes by clicking on the potential outcome (chosen option highlighted) in the desired order on 

200 trials (two hypothetical trials of the p = .15 condition pictured).  

 

Table 1.  

Pay-off structure of gambles in Experiment 1.  

P(Bad) Good Bad Safe 

.15 -10 -30 -13 

.25 -8 -28 -13 

.50 -6 -20 -13 

Note. P(Bad) indicates frequency of bad outcomes. 

 

Results 

We present the results in the following order: We start with the analysis of the sequences 

that participants generated, then proceed to analyze people’s choices, and lastly we look at the 

connection between the two. The reason for leading with the analysis of the sequence 

generation task is so that we can better explain the types of temporal patterns we should expect 

in people’s choices based on their task representation. Additionally, since visual inspection of 
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the data revealed bimodality in people’s responses in the sequence generation task, our analyses 

focus strongly on the modal aspects of these responses. 

 

Sequence-generation task 

The histograms in Figure 3A depict the sequence-length distribution that participants 

produced (yellow bars) overlaid on what they observed (grey bars) in the sequence-generation 

task. More specifically, the histograms show the lengths of the sequences (i.e., the number of 

good outcomes) between repeats of bad outcomes over the course of the whole experiment, 

similar to our explanation in the Temporally dynamic representation section. To reiterate 

through an example, a hypothetical outcome sequence of B G G G B B G B (G – good outcome, 

B – bad outcome) would load on the positions 0 (B B), 1 (B G B), and 3 (B G G G B) of the 

histogram. In the analysis of the experimental results, the sequence lengths were counted 

starting from the first observed/generated bad outcome. 

Visual inspection of these histograms reveals some differences between the generated 

(Figure 3A, yellow bars) and the observed sequence length distributions (grey bars) at the 

group level. Specifically, in the p = .15 and .25 conditions the generated sequence length 

distributions were bimodal, compared to the unimodal distributions that the participants 

observed. In contrast, in the p = .50 condition participants generated relatively accurate 

distributions (i.e., unimodal, monotonically decreasing). Additionally, in all conditions, 

participants failed to generate the rare longer sequences they observed, apparent from the 

relative flatness of the tail of the generated distributions.  

The differences between observed and generated distributions at the aggregate level 

could have resulted from subgroups of participants behaving differently. For example, the 

bimodality in the leftmost panel of Figure 3A could have resulted from a subgroup of 

participants producing a lot of immediate repeats (a sequence of B B; position 0 in the 

histogram), and another group producing a lot of longer sequences (e.g., a sequence of B G G 

G B; position 3 in the histogram). Thus, to get a better understanding of individual-level 

responding, we analyzed the two most-frequent sequences that each individual participant 

generated (Figure 3B and 3C).  
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Figure 3B shows the two most-frequent sequences that participants generated, the blue 

bars representing the numerically smaller and the green bars the numerically larger modes (in 

case of multiple modes, we selected the numerically smaller). This analysis reveals whether 

only a subgroup of participants was responsible for the apparent bimodality at the aggregate 

level, or whether this bimodal pattern holds for individuals. In the case of the former possibility, 

we should see the two modes distributed relatively evenly (i.e., bimodality in both 

distributions), because for some participants shorter sequences would be more likely to be 

modal, while for others longer sequences would be modal (and so both of each participant’s 

modes would be plotted at those respective positions). In the latter case, however, we would 

expect separation for these two modes (i.e., blue and green unimodal distributions), because 

each participant would have modal shorter and modal longer sequences (and so there would be 

separation between each participant’s modes).  

Inspecting Figure 3B, we see that the general bimodal pattern that we observed at the 

group level holds for at least some participants at the individual level. This can be seen by the 

clustering of the smaller modes (blue bars) at position 0 (indicating a large number of 

immediate repeats), while the larger modes (green bars) were more spread out (indicating 

various longer sequences). This pattern generally held in all conditions, albeit less pronounced 

in the p = .50 condition. However, it is also apparent from the figure that some participants’ 

modal sequence lengths were 0 and 1 (i.e., immediate repeats B B, and alternations B G B), 

which were the actual most frequent sequence lengths in the experiment. Thus, it seems that 

the group-level bimodal pattern masked some participants who generated unimodal 

distributions (or at least the modes that they produced coincided with the actual modes that 

they observed); but there were also participants that generated two distinct modes.  

To reveal the proportion of participants in each of these subgroups, we looked at the 

degree of separation between the two modes for each individual. This separation can be seen 

in Figure 3C, where we plot the covariance of the two most-frequent modes for each individual 

(yellow circles). The plot also indicates the covariance of the two actual most-frequent modes 

in the experiment (i.e., immediate repeats B B, and alternations B G B; indicated by crosses in 

the figure). In all conditions, a substantial number of participants generated sequences with 

such adjacent modes (24% in the p = .15, 30% in the p = .25, and 66% in the p = .50 condition). 

Fewer participants generated adjacent modes at other positions, which can be seen by the 
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relatively small number of participants plotted on the diagonal line which represents adjacent 

frequent modes (17% in the p = .15, 17% in the p = .25, and 3% in the p = .50 condition).  

The remaining participants’ most-frequent sequences had varying levels of separation 

between their modes (59% in the p = .15, 53% in the p = .25, and 31% in the p = .50 condition; 

the distance between these modes is represented by the distance from the grey diagonal). For 

example, looking at the p = .25 condition (the second panel of Figure 3C), the abundance of 

yellow circles in the bottom row of the figure indicates that the two most frequent sequence 

lengths for many participants were immediate repeats (B B) and three- and four-trial long 

sequences (B G G G B, and B G G G G B respectively).  

 

 

Figure 3. Descriptive results of Experiment 1. (A) Density histograms of observed (grey bars) and generated 

(yellow bars) sequence length distributions (i.e., number of good outcomes between subsequent bad outcomes) in 

the respective conditions for all participants. (B) Counts of the two most frequent (numerically smaller – blue 

bars; numerically larger – green bars) sequence lengths in individuals’ sequence length distributions. (C) 

Scatterplot of observed and generated smaller and larger modes of sequence distributions for each participant. 

p = .15 p = .25 p = .50

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
0.0
0.1
0.2
0.3
0.4

Number of trials between bad outcomes

D
en

si
ty Generated

Observed

(A)

p = .15 p = .25 p = .50

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
0
4
8

12
16
20
24
28

Number of trials between bad outcomes

C
ou

nt
s Larger

Smaller

(B)

p = .15 p = .25 p = .50

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

Larger mode

Sm
al

le
r m

od
e

Generated

Observed

(C)

p = .15 p = .25 p = .50

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Trials since most recent bad outcome

R
is

ky
 c

ho
ic

e 
ra

te

Choice
Hazard

(D)



 27 

Size of yellow circles represent number of individuals for that mode pairing. Grey diagonal line represents 

potential adjacent modes (greater distance from the line represents greater separation of modes). (D) Average 

risky choice proportions for individuals and groups (colored and black solid lines respectively) based on the 

temporal distance from the most recent bad outcome. Dashed line represents average hazard rate based on 

generated sequences. 

 

Choice task 

We focus on the sequential nature of participants’ choices, in light of the results of the 

sequence-generation task and earlier findings demonstrating that participants take (supposed) 

sequential features of the task into account in their decisions (e.g., Plonsky et al., 2015; Szollosi 

et al., 2019). However, we do note that, at the group level, we replicated the general finding 

that participants “underweight” rare outcomes in such tasks (Hertwig et al., 2004), revealed by 

their average preference for the risky option in conditions with rare outcomes (i.e., group level 

risky choice rates of 65% and 67% in the p = .15 and p = .25 conditions respectively; there was 

no rare event in the p = .50 condition – the risky choice rate was 47%).  

Figure 3D depicts the temporal structure of participants’ risky-choice behavior 

aggregated at the group level (solid black lines), and at the individual level (colored lines). On 

this figure (and in the subsequent analyses), we averaged participants’ choices on each trial 

based on that trial’s temporal distance from the most-recent bad outcome (similarly to the 

analysis of the generated sequences). At the group level, we can see that participants’ chose as 

if they thought there was a predictable temporal structure in the task. This can be seen in the 

recency pattern of participants’ choices in the first two trials following the observation of a bad 

outcome: in each condition, risky choice rates are always lowest on the first trial, and this is 

followed by an increase in this rate on the second trial. Additionally, a reversing of this pattern 

(a decrease in risky choice rates) can be seen in later trials: most markedly in the p = .25 

condition, where risky choices can be seen to taper off gradually after the initial increase. A 

less pronounced version of this same pattern is apparent in the p = .50 condition. In the p = .15 

condition, the general decreasing pattern is not evident at the group level, which might be the 

result of the individual-level differences. For some participants, the decrease following the 

initial increase in risky choices began at different points in the sequence, after which some 

returned to choosing the risky option, whereas others increased their risky choices consistently 

after the bad outcome’s occurrence.  
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Relationship between choices and generated sequences 

Lastly, we analyzed the relationship between the risky outcome sequences that 

participants generated and their choices. To test whether participants’ choices were related to 

their expectations about the outcome sequences, we first calculated a hazard rate for the bad 

outcomes (according to Equation 3) for each participant based on the outcome sequences that 

they generated. We did this to get a (admittedly crude) measure of participants’ temporal 

expectation about the outcomes of the risky option. We calculated the hazard rate based on the 

sequences that participants generated (i.e., using the empirical mass function of the sequence 

lengths for the bad outcome; yellow bars in Figure 3A).  

There were some problems associated with using the raw values of the hazard rates, thus, 

to ensure some level of comparability between participants, we modified the hazard rate 

calculation in three ways. First, because the sequence-length distributions had an upper bound 

for each participant, the hazard rate for this upper bound (the longest sequence that participants 

generated) was always mathematical infinity (i.e., the bad outcome was predicted with 

complete certainty). To be able to plot this number, we replaced it with either two times (the 

value of two was arbitrarily chosen) the otherwise maximum value of	ℎ(𝑡), or, in case the 

largest value was 0 (i.e., if a participant generated only one type of sequence over and over), 

we replaced it with 1. Second, to convert hazard rate to a probability, we normalized the values 

for each participant according to 1(")%23451(")6
27851(")6%234	(1("))

 so that the rates would be bound between 

0 and 1. Third, when connecting the normalized hazard rates to the choices, it could sometimes 

be the case that participants observed sequences in the choice task that were longer than the 

longest sequence they produced (i.e., when there were no values in the hazard rates for such 

long sequences). In these cases, we set the hazard rate value to 1 (i.e., the largest possible 

number), to predict the imminent occurrence of the risky option.  

We plotted the group-level average of the (modified) hazard rate in Figure 3D (dashed 

line). To reiterate, the values of this measure can be interpreted as one aspect of the expectation 

about the occurrence of the bad outcome at any given point in the experiment based on 

participants’ retrospectively generated sequences. Thus, we could predict that when 

expectations of the bad outcome were higher, risky choice rates would decline, and when its 

expectation was lower, risky choice rates would increase. We found that this measure tracked 
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risky choice rates to some degree. Yet, as we have seen in the case of the generation task, 

individual-level effects might be masked at the group level. 

Therefore, to demonstrate the connection between these measures at the individual level, 

we fitted generalized linear models (with binomial error models) in which we predicted each 

participant’s choices from their (modified) hazard rates6. The estimated beta coefficients reflect 

the association between participants’ hazard-based expectation of the bad outcome and their 

choice of the risky option, with negative values reflecting consistency (i.e., a tendency to 

choose the risky option when the bad outcome is not expected). We found that the proportion 

of participants with negative coefficients was 34%, 80% and 76% in the p = .15, .25, and .50 

conditions, respectively. 

 

Discussion 

Through Experiment 1, we aimed to illustrate a way to sensitively measure people’s task 

representation in a repeated-choice gamble and a way to analyze the variability of these 

representations which arises from hypothesis generation and evaluation.  

The analysis of people’s task representation revealed well-known temporal features of 

typical task representation of repeated choice gambles. Specifically, we found that many 

participants generated mainly two different types of sequences (indicated by distinct longer 

and shorter modes in their sequence length distribution), and their choices appeared to preempt 

similar patterns of sequential dependencies. In contrast with typical interpretations of such 

findings, the explanation that we gave implies that these sequential features are not invariant, 

 
6 There are several reasons to consider the hazard rate as a measure of people’s expectation of the occurrence of 
the bad outcome too crude. For example, the hazard rate was calculated based on retrospective estimates of the 
sequence lengths, the perception of which was almost certainly different, and possibly gradually changing during 
the task. The hazard rate also cannot express expectations about trials that are part of sequences longer than a 
participant generated (and thus had to fall back on a heuristic solution). Lastly, the temporal structure may not be 
the only information that participants considered in their choices. The reason why we decided to analyze the data 
using this method was only to demonstrate that there was some level of coherence between the temporal effects 
in people’s choices and in the sequences that they generated. High levels of correlation between these measures 
can show when the participants clearly made their choices based on the perceived temporal dependencies; 
however, lower levels of correlation between these measures are non-diagnostic, because they cannot rule out 
alternative sources of variability that still take perceived temporal dependencies into account (such as more 
complicated decision strategies). See the Discussion section of both experiments for a more detailed explanation. 
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but rather arise from the background knowledge participants bring to the task and received 

from the experimental instructions.  

In addition, there seemed to be a large degree of individual variability in the extent and 

type of hypotheses that participants entertained about the sequential structure. Although both 

participants’ background knowledge and the experimental instructions would have reasonably 

led participants to suspect that they need to attend to the temporal structure, neither were 

unambiguous with respect to which aspect of the temporal structure that requires attention. 

Thus, participants might have attempted to generate hypotheses about the temporal structure 

but came up with different variations of these hypotheses. Additionally, the environmental 

feedback did not provide sufficiently clear constraints to rule out many of these potential 

hypotheses, and thus could contribute little to the reduction of this variability. The same 

arguments can be made for the hypotheses that people entertained about how to make decisions 

based on their representation of the task-structure.  

The apparent bimodality in some participants’ sequence-length distribution present an 

interesting exception to this representational variability, because it shows some extent of 

convergence in the hypotheses participants generated. This could have been the result of these 

participants forming a hypothesis implying the existence of longer and shorter sequence lengths 

categories. Generally, convergence in task representations suggests that similar hypothesis 

selection processes took place, which we will further explore in the next experiment.  

Overall, this experiment and its results show an alternative perspective on repeated-

choice gambles that does not start with the premise that participants represent the task the same 

way it was generated – probabilistically – or indeed in any fixed way. Instead, the detailed 

measurement of participants’ task representations revealed wide representational variability 

but also important similarities, which jointly illuminate the processes responsible for the 

development of these representations. 
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Experiment 2 

Experimental approach 

In Experiment 2, we further aimed to illustrate how to study hypothesis generation and 

evaluation. Specifically, in addition to using the same measures of task representation, we 

aimed to selectively influence the variability of people’s hypotheses. We attempted to do this 

by making experimental feedback more relevant for the hypotheses that participants 

entertained about the environment. Therefore, we manipulated the sequential structure of the 

task in the following way. First, inspired by participants’ apparent attention to modal aspects 

of the sequences observed in Experiment 1, in Experiment 2, we showed them both unimodal 

and bimodal sequence distributions. Additionally, inspired by Tran and colleagues’ (2017) 

study, we manipulated the discernibility of these modes by selectively adding “noise 

sequences” that differed in length from the modal sequences. Lastly, we manipulated the 

frequency of the bad outcome to be able to show participants shorter and longer sequences, 

since that also seemed to affect their representations in Experiment 1. This resulted in three 

main manipulations and thus three between-subjects conditions: a) modality of the sequence 

length distribution (unimodal or bimodal), b) noise of the sequence length distribution (noisy 

or discrete), and c) frequency of the bad outcome (p = .10 or p = .25). 

The expectation was that the manipulations will selectively decrease the ambiguity of the 

feedback that participants get in the task by targeting the possible hypotheses that participants 

entertain. More specifically, we expected the manipulations to increase the constraints on 

hypotheses that participants might entertain (specifically bimodal more ambiguous than 

unimodal, noisy more ambiguous than discrete, and longer sequences more ambiguous than 

shorter sequences).  

 

Methods 

Participants 

We recruited 241 participants at the University of New South Wales. Participants 

received course credit and performance-contingent payment for their participation. 
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Procedure 

The general structure of Experiment 2 was similar to that of Experiment 1 (Figure 2): 

participants first made choices in a repeated gamble task between safe and risky options and 

then recreated the sequence of outcomes they observed on the risky option. The experiments 

differed in the outcome structure of the risky option. We manipulated this structure in a 2 × 2 

× 2 design across the following factors: a) the modality of the sequence-length distribution of 

the good and bad outcomes (unimodal or bimodal); b) the noise around the modes of the 

sequence-length distributions (noisy or discrete); and c) the frequency of bad outcomes (p = 

.10 and p = .25; for the respective payoff structure, see Table 2). The sequence-length 

distributions for the respective conditions are displayed in Figure 4A (grey bars). Every 

participant within each condition observed the same sequence of good and bad outcomes that 

we sampled from the respective distribution (i.e., one sequence for each of the eight conditions; 

see Supplemental materials for the full sequences). We inspected these distributions to ensure 

that the main structural patterns are evenly distributed throughout the experiment (we wanted 

to avoid issues such as, in the bimodal conditions, the shorter sequences being presented 

disproportionately early in the experiment). Additionally, to ensure consistency, each condition 

started off with a bad outcome (this outcome was added as an “extra” bad outcome, thereby 

slightly increasing the frequency of that outcome in each condition).  

Compared to Experiment 1, the sequence distributions in Experiment 2 were simplified: 

instead of monotonically decreasing distributions, we introduced a single or two 

distinguishable modes. The positions of these modes were dependent on the frequency of 

outcomes: for more-frequent bad outcomes, the lengths of the modal sequences were shorter, 

while for less-frequent bad outcomes, the length increased. For an example, consider the 

sequential structure of the p = .25, unimodal, discrete condition. The mode of the sequence 

length distribution was 3, which means that the bad outcome occurred on every 4th trial (i.e., 

there were 3 good outcomes between each bad outcome, thus each sequence was B G G G B). 

In contrast, in the p = .10, unimodal, discrete condition, the mode of the sequence length 

distribution was 9, meaning that the bad outcome occurred on every 10th trial (i.e., a sequence 

of B G G G G G G G G G B).  

To introduce variance, we added a number of “noise” sequences with various lengths to 

some conditions. Whenever present, these noisy sequences followed a uniform distribution, 

such that the number of longer sequences was equivalent to the number of sequences between 
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the mean of the distribution and zero. For the noisy p = .10 conditions, each noise sequence 

was shown once; for the noisy p = .25 conditions, each noise sequence was shown three times. 

One consequence of introducing the noise manipulation was that the number of trials increased 

in certain conditions. We decided that it was preferable to have an unequal number of trials 

across conditions, so that the respective modal sequences could be presented the same number 

of times in all conditions. The number of trials were as follows: 200 trials in all discrete 

conditions; 390 trials in the p = .10, bimodal, noise condition; 284 trials in the p = .25, bimodal, 

noise condition; 380 trials in the p = .10, unimodal, noise condition; 272 trials in the p = .25, 

unimodal, noise condition. 

 

Table 2.  

Pay-off structure of gambles in Experiment 2. 

P(Bad) Good Bad Safe 

.10 -10 -40 -13 

.25 -8 -28 -13 
Note. P(Bad) indicates frequency of the bad outcome. 

 

Results 

In the presentation of the results, we followed the same general logic as in Experiment 

1. We start with the analysis of the sequence generation task. We then derive expectations from 

participants’ responses on this task to evaluate the sequential effects in their choices. 

 

Sequence generation task 

Figure 4A displays the group level sequences that participants produced in the generation 

task (yellow bars) overlaid on the sequences that they observed in the choice task (grey bars). 

Visual inspection of the figures suggested that learning accuracy decreased with the increased 

ambiguity in the sequence distributions. This decrease in accuracy between the conditions can 

be seen in the heights of the yellow bars relative to the grey bars at the modes: relatively smaller 
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yellow bars indicate less accurate learning. However, participants were reasonably accurate 

when recreating the general modal structure of the distributions: the unimodal and bimodal 

structure of the sequence lengths distributions are readily apparent at the group level in all but 

the most ambiguous (bimodal, p = .10, noisy and discrete) conditions.  

Similar to our analysis in Experiment 1, we aimed to clarify these findings by looking at 

the two most frequent sequences that each individual generated (the first two modes of each 

individual’s sequence length distribution; plotted in Figure 4B and 4C). We observed the same 

general pattern in individuals as we did at the group level, with two notable differences. First, 

at this level of analysis, it seems that participants learned the general bimodal structure of the 

task even in the most ambiguous (bimodal, p = .10, noisy and discrete) conditions. This result 

is revealed in Figure 4B by the relatively greater spread of the green bars, and in Figure 4C by 

most participants’ distance from the diagonal (the distance indicates the degree of separation 

between the modal sequences) in those conditions (third panel from the right in the top and 

bottom rows). 

Another pattern that is important to point out is that learning was more accurate for 

shorter sequences. This can be seen in that in all bimodal conditions, the smaller mode 

(alternating sequences) was better learned. Although this was not the case for the unimodal 

discrete conditions (learning accuracy was at ceiling in both conditions), it was true in the 

unimodal noisy conditions (the mode in the p = .25 condition was better learned than in the p 

= .10 condition). A related finding was that “errors” (sequences that were not the modal length) 

were almost exclusively made in the direction of creating shorter sequences. This can be seen 

in Figure 4B in that the sequence lengths that were different from the modal length(s) are 

almost always located at the left of the largest (or only) mode. 
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Figure 4. Descriptive results of Experiment 2. (A) Density histograms of observed (grey bars) and generated 

(yellow bars) sequence length distributions (i.e., number of good outcomes between subsequent bad outcomes) 

in the respective conditions for all participants. (B) Counts of the two most frequent (numerically smaller – blue 

bars; numerically larger – green bars) sequence lengths in individuals’ sequence length distributions. (C) 

Scatterplot of observed and generated smaller and larger modes of sequence distributions for each participant. 

Size of yellow circles represent number of individuals for that mode pairing. Grey diagonal line represents 

potential adjacent modes (greater distance from the line represents greater separation of modes). (D) Average 
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risky choice proportions for individuals and groups (colored and black solid lines respectively) based on the 

temporal distance from the most recent bad outcome. Dashed line represents average hazard rate based on 

generated sequences.  

 

Relationship between choices and generated sequences 

Figure 4D shows participants’ group (black solid line) and individual level (colored lines) 

average risky-choice rates based on the temporal distance from the most-recent bad outcome 

(for more details on the visualization, see the description in Experiment 1). Participants’ 

choices were connected to their representations of the sequential structure of the environment: 

participants’ expectation of the bad outcome (based on the hazard rate calculated from 

participants’ retrospectively generated sequences; for calculations see Experiment 1) was 

coherent with their choices: When the expectation of the bad outcome’s occurrence was lower, 

their choices were riskier, and vice versa. This correlation can be seen in Figure 4D by the 

negative association between the group-level hazard rate (dashed black line) and the risky-

choice rate (solid black line). The clear connection between expectations and choices was even 

more evident from the individual level correlation of hazard rates and risky choice rates. The 

proportion of people that had a negative correlation was relatively large in all conditions (see 

Table 3).  

Importantly, individual variability in both the generated sequences and choice behavior 

increased as a function of the ambiguity in environmental feedback (i.e., bimodal more 

ambiguous than unimodal, noisy more ambiguous than discrete, and longer sequences more 

ambiguous than shorter sequences). For the generated sequences, the increased individual 

variability can be seen in that the spread of the circles in Figure 4C was greater in those 

respective conditions (indicating larger differences in the modal aspects of the generated 

distributions). For participants’ choices, it can be seen in that the spread of the colored lines in 

Figure 4D was greater in the respective conditions (indicating larger differences in risky choice 

behavior). 
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Table 3. 

Proportion of participants with a negative association between hazard rate and risky choice rate within the 

respective conditions. 

Condition 
Unimodal Bimodal 

p = .10 p = .25 p = .10 p = .25 

Discrete 97% 100% 57% 93% 

Noise 90% 94% 83% 77% 

 

 

Discussion 

In Experiment 2, we aimed to provide a clearer example of how to study hypothesis 

evaluation experimentally. Since in Experiment 1 participants seemed to spontaneously 

generate hypotheses about the temporal structure of the task, in Experiment 2 we manipulated 

the feedback about this aspect of the task. The manipulations aimed to selectively reduce the 

variability of participants’ response by proving their hypotheses wrong to varying extents.  

It was apparent from these results that when feedback is relevant and diagnostic for 

participants’ hypotheses, it had a clear effect both on their representation of the temporal 

structure of the task and on the way in which they made choices. One way in which this can be 

seen is that participants were better at recreating the temporal structure of this experiment than 

that of Experiment 1. Participants’ learning was generally good for the relevant modal aspects: 

In most conditions they recreated the modal sequences at the correct positions, and even when 

they did not, they recreated the modality well. These results can be explained in terms of how 

ambiguous the environmental feedback was with respect to the hypotheses that participants 

may have entertained. Specifically, since the modal aspects of the temporal structure of the 

outcomes were clearer (i.e., simpler and frequently repeating), many of the potential 

hypotheses that participants possibly entertained could have been ruled out more easily. 

Another way the effect of feedback can be seen is through the finding that individual 

variability decreased with the decrease of ambiguity (similar to Experiment 1). We found that 

the less ambiguous the environmental feedback was (with regards to the possible hypotheses 

that participants had), the smaller individual variability seemed to be in both participants’ 
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choices and sequence-length distributions. This was presumably the case because different 

individuals were able to rule out similar hypotheses in the conditions with clear feedback, but 

not in the conditions with ambiguous feedback. Thus, in general, participants’ learning of the 

aspects of the environment they thought to be important improved as a result of providing more 

relevant and diagnostic feedback about those aspects.  

The reduction of variability can also be seen in the relationship between the generated 

sequences and participants’ choices. In the least ambiguous conditions (unimodal), the hazard 

function was strongly associated with participants’ choices, and this connection was more 

variable in the more ambiguous conditions (in the bimodal conditions, and also in Experiment 

1). A potential explanation for this is that people converge more on what is an advantageous 

choice strategy in the less ambiguous environment, while the possibility to entertain other 

choice strategies is greater in more ambiguous environments (e.g., because worse strategies are 

harder to rule out using the experimental feedback). 

Although most of participants’ inaccuracies in the sequences they generated (deviations 

from the actual structure shown to them) can be explained by how much constraint the 

environmental feedback provided for their hypotheses, not all of them can be. Instead, some 

inaccuracies seemed to have attentional sources. Specifically, the finding that participants 

made more errors the longer the modal sequences they needed to track were (e.g., apparent in 

the variability of the second mode for the bimodal, p = .10 condition, and the first mode for the 

unimodal with noise, p = .10 condition), could be explained as a result of errors that people can 

make when counting the lengths of those longer sequences during the repeated-choice task 

(i.e., the longer the sequence is that they need to count, the more opportunities they have to 

become distracted).   

 

General discussion 

In this paper, we set out to evaluate the role of probabilistic concepts in psychological 

explanations of learning and decision making and argued that the use of these concepts can 

obscure the steps that are needed to solve the problem of how the structure of an unknown 

environment is identified. For an illustration, we revisited experiments on people’s learning 

and decision making in probabilistically generated environments. Our aim with this 

reassessment was twofold. First, we used these experimental environments to demonstrate how 
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probabilistically inspired models can conceal the steps that are necessary to form and apply 

any kind of representation in unknown environments. Second, we outlined and provided an 

example of an alternative approach to study how people deal with environmental unknowns in 

their learning and decision making that does not rely on probabilistic concepts. 

In both experiments, we aimed to demonstrate an alternative approach that does not start 

from the assumption that people represent their environment using tools of probability theory. 

We argued that under this alternative framework it is essential to sensitively measure people’s 

task representations and illustrated a way to do this in both experiments. These measures 

revealed a large extent of variability in how people construed the task, but also important 

similarities. We explained these results as a joint product of people’s hypotheses based on their 

background knowledge (including task instructions) and the experimental feedback – higher 

levels of variability as the result of hypotheses being under constrained, while lower levels of 

variability as the result of increased constraints. We also showed how to analyze and visualize 

data in these terms. 

To reiterate, the general finding that people try to identify and exploit sequential patterns 

in randomly generated environments is not the novel aspect of this research. There is a long 

history of documenting this pattern of behavior in studies of learning and decision making 

(Bar-Hillel & Wagenaar, 1991; Estes, 1976; Gallistel & Gibbon, 2000; Navarro, Newell, & 

Schulze, 2016; Plonsky et al., 2015). Instead, what was novel about our studies was the way 

we explained and treated these results: We provided an explanation of participants actual task 

representation as only a transient feature of their psychology, which is based on the current 

knowledge they have, and as such, their identification is not the main result of our study but a 

tool that illuminates how people generate and evaluate hypotheses. This is radically different 

from the customary approach which aims for and stops at the supposed identification of one or 

a set of representations. 

Taken together, these studies serve as an example of some of the beneficial influences of 

this perspective on empirical work, apparent in the experimental design (e.g., sensitive probing 

of people’s task representation, providing specific feedback on aspects that are relevant to 

them), the analytical technique (e.g., taking response variability as a crucial measure), and the 

interpretation of the results (e.g., not assuming that representations are stable over time, not 

assuming extensive background knowledge, deeper consideration of invariant features of 

learning and decision making). In the following section we outline a general theoretical 
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framework for hypothesis generation and evaluation and use it to clarify the status of 

probabilistic models and to provide a more detailed explanation of the current experimental 

results.  

 

Intuitive scientists 

Our position is connected to the research tradition that considers laypeople’s learning 

and decision making similar to what scientists do, generally suggesting that people should be 

considered a type of intuitive scientists whose behavior is guided by their explanations (or 

theories) of their environments (e.g., Carey & Spelke, 1996; Gopnik & Meltzoff, 1997; Kuhn, 

1989; Murphy & Medin, 1985). Our view differs from some of these accounts in that we 

identify the similarities between scientists and people not in the use of any of science’s past or 

current methodologies (such as experimental testing or statistical modelling), but rather in the 

general way in which they attempt to explain their environments (Szollosi & Newell, 2020). 

Explanations, for the current purposes, can be considered statements that provide answers 

to why and how questions (cf., Keil, 2006; Lombrozo, 2006): they state what they attempt to 

explain, how they work, and why they work that way, at an arbitrary level of accuracy. We 

note here again that the way in which we used the words ‘theories’ or ‘hypotheses’ (i.e., to 

refer to people’s explanations) deviates from the common usage in psychology, where these 

concepts are often used interchangeably with probabilistic models. There are two main 

advantages of not equating the two: 1) whereas probabilistic hypotheses need to be 

unambiguous and coherent with the axioms of probability, explanations can be ambiguous or 

incoherent; and 2) probabilistic hypotheses rely on very specific forms of background 

knowledge (as outlined in detail in the Introduction), whereas this need not be the case for 

explanations (they can rely on less complex and even incomplete background knowledge). 

 

The role of theories 

How do people attempt to provide and improve explanations of their environment? To 

reiterate, the general answer that many probabilistic models (and some variations of the 

intuitive scientist theories) imply is that theories are derived from or are suggested by the 
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environment (or that at least in part they are). This is often suggested to be done on the basis 

of correlations between cues and outcomes, or presumably obvious effects in the environment, 

or some sampling process. These ideas presuppose that there is some self-evident structure in 

the environment for what counts as a cue and an outcome, what effects there are to look for, or 

what to sample – yet, as we have argued, no such structure is ever self-evident in physical 

environments. Instead, we argued that theories always need to be generated before they can be 

applied to the environment. 

This solution is based on Popper’s (1963; see also Deutsch, 2011) idea of knowledge 

generation. In this conception, theories are generated via creative recombination or 

reorganization of the parts of existing theories and are subsequently evaluated through different 

forms of criticism. These criticisms can come in the form of other theories (e.g., ideas about 

what makes that theory good) or from observations (interpreted through theories). These 

processes can be thought of as similar to evolutionary variance increasing (e.g., via genetic 

mutations) and decreasing (e.g., via natural selection) processes, one of the main differences 

being that these processes take place in people’s minds (Popper, 1972). The core idea here is 

to avoid delegating the role of structure identification to the environment, because, as the 

structure is not manifest, this would essentially be equivalent to leaving it unexplained.  

The specific aspects of learning and decision making that we highlighted in this paper –

background knowledge and environmental feedback – can be easily integrated into this 

framework. Background knowledge provides the basis for the creative construction of the 

environmental representation: It can be modified to make it fit for the situation that people are 

confronted with and when some criticism shows that it does not fit for that purpose, it can be 

modified again. Environmental feedback informs these theories, by enabling a specific form of 

criticism: empirical testing. These tests can show people whether their theories about the 

environment are inaccurate, if their theories about it allow for such criticism (e.g., they are 

specific enough, or include counterfactuals of what cannot happen).  

 

Dealing with unknowns 

Let us now turn back to our original question of how people deal with unknowns in their 

environment and answer it through the intuitive scientist framework. To illustrate, we can now 

give a more detailed explanation of how laypeople behave in a probabilistically generated 
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experimental environment. The background knowledge for most participants (in the present 

cultural context) presumably constitutes of knowledge of communicational norms (e.g., people 

emphasize relevant information in their communication) and some basic mathematical 

principles (e.g., counting, keeping track of numbers, etc.). They could start by enacting only 

minor modifications to this background knowledge to fit the present circumstances because 

they are likely not motivated enough to attempt to think of better ways of representing the 

environmental unknowns in such contexts. This low level of motivation combined with the 

relevant communicational norms applied to the current situation (e.g., “the experimenter set up 

the experiment in such a repeated structure, because that structure is relevant”) and the relevant 

(coarse) mathematical background knowledge applied to the current situation (e.g., counting 

and tracking apparently relevant features of the environment) could lead people to attempt to 

detect and exploit sequential patterns in the experiments.  

Note that there was no reference to probabilistic concepts in this explanation. However, 

there could be for some people. One way in which probabilistic models can feature in this 

explanation is actually the historical account of the development of probability theory and its 

applications (Hacking, 2006). The way in which this mathematical framework and its 

applications were developed took years of research and guesswork. At the end of this process, 

the people who were involved in developing this framework could use probabilistic 

representations to represent unknowns. A less complicated way to represent the environment 

using probabilistic concepts is by learning about these concepts (e.g., in school) and applying 

them to a context because the requisite arguments for the application are also present (e.g., the 

experimenter explicitly told the participant to use them, and the participants believed the 

experimenter as to why they should use them). To summarize, the use of probabilistic concepts 

to represent the environment is a possible way to represent (some) unknowns in the 

environment for knowledgeable people, but it is not a fundamental feature of learning and 

decision making.  

 

Potential objections, alternative explanations 

In this section, we consider existing counterarguments and potential alternative 

explanations relating to some of the points in our critique of probabilistic models. We structure 
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these counterarguments around the three different uses of probabilistic concepts – as optimal, 

approximate, and “as-if” models – common in psychological theories. 

 

Optimal solutions to computational level problems  

The first counterargument to our position might be that probabilistic models are not used 

as theories of cognition, but rather as a way to provide insights into different analytical levels 

of cognition – often building on Marr’s (1982) levels of analyses. On the one side of this view, 

probabilistic models supposedly provide insights into the computational level of the problems 

that people face (e.g., Griffiths, Vul, & Sanborn, 2012). This level is often defined as the 

abstract characterization of the problem that people face in the environment of interest. The 

idea is that using this abstract model, one can provide an objectively optimal solution for the 

task and can then check how people’s actual behavior measures up to this standard. Using this 

framework, researchers often develop a probabilistic formulation of a given environment (in 

some cases taking environmental or cognitive constraints into consideration to an arbitrary 

degree, see below, and Lieder & Griffiths, 2020), and then they designate the solution to this 

formal problem as the optimal solution in that environment. Much of the literature on whether 

or not learning and decision making are rational is grounded in comparisons between people’s 

behavior and such computational level solutions to certain problems7. 

The problem with these lines of arguments is that such solutions only reflect a snapshot 

of the researcher’s current representation of the environment, rather than an objective optimal 

solution. This is because it is always possible that there is another yet undiscovered aspect of 

the environment that can be considered and exploited but is not contained in the currently 

designated optimal solution. In other words, the researcher may have found an optimal solution 

for the abstract computational problem that is an arbitrary approximation of the experimental 

environment – but whether this solution is optimal depends on how well the abstract problem 

matches the real one (similar issues emerge in the application of probabilistic models for 

 
7 There is little that matches or mismatches between people’s behavior and optimal models can tell us (Szollosi 
& Newell, 2020): Matches could mean that both people’s and researcher’s optimal models correspond to the same 
aspect of the environment, but it is possible that they do not have the same content at all (i.e., participants’ 
representations are in some respect confounded with the assumptions of the researcher); mismatches could mean 
that either the researcher’s or the participant’s model is (more) incorrect (McKenzie, 2003). 
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scientific problems; Kellen, Davis-Stober, Dunn, & Kalish, 2021; Navarro, 2018; Szollosi & 

Donkin, 2019).  

Is it possible to provide an optimal solution to problems in physical environments? We 

argue that it is not, because there always exist elements in the environment that people may 

consider outside of the narrow abstract characterization of the experimental environment. 

These elements can be found even in probabilistic experimental environments. One such 

element that we already mentioned is that the information encoded in the communicational 

aspect of the experimental instruction is often ignored in optimal solutions (Grice, 1975; 

Hilton, 1995; McKenzie, 2003; Sher & McKenzie, 2006). But people can go even further than 

that if they are motivated and knowledgeable about other aspects of the environment. For 

example, they could consider a broader contextual element in which the experiment is taking 

place: That it runs on a computer. Background knowledge in this area may allow them to devise 

novel ways to make advantageous choices in the experiments (e.g., by opening the source code 

of the experiment and finding out about which outcomes will occur before making a choice) or 

to make the experimenter believe that they did (e.g., by modifying the program to display a 

high total). The point is that, in physical environments, there is no limit on new elements that 

people may choose to include in their representations, and it is impossible to account for all of 

these possibilities in optimal models. 

More generally, probabilistic models do not have a special status as models of the 

environment. As we have already explained, the use of such models is only sensible when there 

exist arguments that imply that they are the current best solutions (or approximation) for the 

specific problem at hand. Such arguments can be made, for example, in the case of playing 

games of chance at a casino. Using probabilistic models may be considered best for that 

specific problem situation, because developing or using more sensitive measurement devices 

that can predict the outcome of the games with better accuracy is not allowed in such places. 

However, in alternative gambling scenarios in which the rules do not prohibit the use of more 

sensitive measurement tools people might decide to use those tools instead of (or in conjunction 

with) relying on probabilistic models (relatively simple and common examples include, e.g., 

counting cards in a Blackjack game, adjusting the cost of car insurance based on a person’s 

age, etc.).  

To summarize, even though we agree that problem specification is an important part of 

cognition, researchers cannot provide a complete solution to how this is executed, because it is 
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always possible for both the participants and the researcher to consider novel aspects of the 

physical environment in this specification. Therefore, optimal probabilistic models are better 

off treated either as merely “as-if” or descriptive models (e.g., Tauber, Navarro, Perfors, & 

Steyvers, 2017; see below) or as explicanda (i.e., treating the researcher’s capacity to develop 

such representations as behavior to be explained by a psychological theory).  

 

Bounded rational approximations 

The other side of the previous criticism might be that our point is moot, because no one 

claims that people represent unknowns probabilistically at the algorithmic level (Marr, 1982). 

In contrast with the computational level’s focus on optimal solutions, algorithmic level 

investigations are concerned with identifying the cognitive processes that are involved in 

actually solving the problem (Griffiths et al., 2012). One important consideration for this level 

is the idea of bounded rationality (Simon, 1956) – that the rationality of people’s behavior 

should be understood in terms of ecological and cognitive constraints. The common framing 

of this idea is that people can only approximate more complex optimal representations to deal 

with the problems of environmental unknowns, thus theories of cognitive processes need to be 

psychologically and ecologically plausible (i.e., less computationally demanding, while taking 

environmental constraints into account). Examples for such cognitive processes include 

heuristics (Gigerenzer & Todd, 1999), simple linear models (Juslin, Karlsson, & Olsson, 2008), 

or intuitive physical theories (Battaglia, Hamrick, & Tenenbaum, 2013). 

An important recognition of this bounded rational approach is that there are several 

environmental (Fiedler, 2000; Pleskac & Hertwig, 2014; Todd & Gigerenzer, 2007) and 

cognitive constraints (Juslin, Nilsson, & Winman, 2009; van Rooij, 2008) that theories of 

cognitive processes need to consider – an idea that has been integrated to some extent even in 

computational-level analyses (e.g., Lieder & Griffiths, 2020). Another important recognition 

is that probabilistic models are not essential in psychological explanations, because they may 

not provide good approximations to certain kinds of environmental unknowns, such as future 

cultural and technological advances (e.g., Knight, 1921, Luce & Raiffa, 1957; see Kozyreva & 

Hertwig, 2021 for a summary). 

Yet such theories still often feature probabilistic concepts. People are assumed to use 

more or less complex sampling methods (Brown & Steyvers, 2009; Hau, Pleskac, Kiefer, & 
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Hertwig, 2008; Sanborn & Chater, 2016), and the environment is assumed to provide cues 

based on correlational structures (Brunswik, 1955; Pleskac & Hertwig, 2014). Falling back on 

these concepts is indicative of the more general problem that we already highlighted: That 

probabilistic concepts are only substitutes for the process by which the environmental 

representation develops.  

To illustrate the problem on probabilistically generated experiments again, a potential 

bounded rational account would presumably give an explanation for why people consider 

temporal structure in their decisions similar to this: “People’s natural environments often 

contain events that are temporally autocorrelated. A sequence-tracking heuristic can be used to 

exploit these statistical structures in a computationally efficient way. Although such a heuristic 

is useful in natural environments, it can be misapplied in an artificial experimental environment 

(e.g., Ayton & Fischer, 2004).” It is easy to see how the environmental specification is entered 

as an assumption into such an explanation: How does such a heuristic “know” what constitutes 

a sequence? Are all possible temporal sequences already prespecified by the set of heuristics? 

How is it possible that some people use a much more complex probabilistic representation 

instead of such a heuristic? From our point of view, a deeper explanation for how and why 

people would use such a heuristic would need to account not only for environmental and 

cognitive constraints, but for the interplay between those and people’s background knowledge, 

while also accounting for possible more complex representations of the environment (similar 

to our explanation of how some participants could have used probabilistic representations). 

To summarize, we broadly agree with the claims that environmental and cognitive 

constraints need to be taken seriously, and that people often rely on representations that are not 

that computationally resource demanding if certain constraints (environmental, computational, 

motivational) prevent them from thinking more. But such representations are only part of how 

people deal with unknowns: It is true that sometimes people use such simple rules of thumb, 

but sometimes they create much more elaborate representations of their environments. So 

instead of determining which of the many potential approximations people use, the way in 

which interesting aspects of the environment are specified at varying levels of complexity need 

to take a major role in its explanation. Bounded rational accounts often point to evolutionary, 

developmental, and social origins of this specification, but such accounts are in our opinion not 

sufficiently explained (Szollosi & Newell, 2020).  
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“As-if” models 

Lastly, one could argue that probabilistic concepts are not used in a literal sense in 

psychological explanations, but only in a more non-committal sense, as “as-if” models (e.g., 

Tauber et al., 2017; sometimes also referred to as descriptive models). In this view, people are 

not assumed to use (neither literally nor approximately) probabilistic models for their learning 

and decision making. Instead, the models merely provide a mathematical redescription of some 

aspect of what people do. Although sometimes it seems difficult to separate the descriptive 

mathematical model from the psychological explanation – as has been the case with iterations 

of Bayesian models (Bowers & Davis, 2012; Jones & Love, 2011) – we agree that probabilistic 

concepts can occasionally be useful in this sense.  

What we are concerned about, however, is that providing a probabilistic representation 

of some aspect of people’s responses is often accepted as a sufficient psychological 

explanation. For example, describing people’s learning as noisy sampling of evidence or the 

variability in their choices as stochastic deviation from some ideal model is relatively irrelevant 

without an explanation of how they chose what constitutes as evidence and what led to that 

variability. Similarly, descriptions of the environment in terms of noisy correlational cue-

outcome structures or variably occurring environmental events are described as a result of 

stochastic generative processes is not that meaningful without some explanation of how people 

might decide to consider something a cue or an outcome or an event. Stopping before a 

psychological explanation is given is problematic, because the probabilistic model is only an 

approximate mathematical redescription of what people have been observed to do in the 

experiment, rather than an explanation of how people deal with unknowns. 

What further limits the role of probabilistic concepts is that they cannot meaningfully 

describe the argumentative steps that we argued for throughout the paper (although they can 

redescribe them), because those steps are not part of probability theory. Indeed, whenever 

psychological explanations actually attempt to answer these questions, the parts of the 

explanation that answer these questions come not from probability theory, but from arguments 

and knowledge external to it (currently verbal parts of psychological theories). In other words, 

as we have argued throughout the paper, probabilistic models only provide a good description 

of any phenomenon in conjunction with the accompanying arguments and background 

knowledge that explain when they can be used. While probabilistic concepts offer a convenient 

way to mathematically express some aspects of people’s behavior and their environment (e.g., 



 48 

our use of density histograms and hazard rates only redescribed aspects of the environment and 

what people did in the experiment in a simple manner), they cannot in themselves fully describe 

how people deal with unknowns. 

 

The scope of our argument 

To clarify the scope of our argument, let us review how we aimed to preempt some 

potential challenges to our position. We argued that irrespective of interpretation specifying 

how and why probabilistic concepts are applied is important because – as demonstrated by our 

theoretical and experimental examples – there is no trivial way to create representations of 

environments. We suggested that there needs to be either a clear explanation for where 

probabilistic knowledge comes from (in literal and bounded rational interpretations), or a clear 

explanation for why probabilistic models provide appropriate approximations for phenomena 

known to be non-probabilistic (in “as-if” uses). Although we focused our discussion on higher-

level psychological processes such as learning and decision making, these arguments hold for 

any psychological explanation that invokes concepts from probability theory, including lower-

level psychological processes (e.g., those associated with perception).  

To provide a brief sketch of how our argument would apply to lower-level psychological 

processes, consider research on how people use similarity in categorization (e.g., Ashby & 

Alfonso-Reese, 1995). Probabilistic concepts are often used in models of such psychological 

processes – for instance, one might argue that the similarity of a novel stimulus to older stimuli 

can be modelled as a probability distribution. Such use of probabilistic concepts can be 

interpreted as an “as-if” model, meaning that the probabilistic model is considered useful to 

summarize how aspects of similarity affects people’s categorization judgments, rather than 

considering such processes truly probabilistic. However, as we argued, this use of probability 

theory can still easily obscure much of what is interesting in such decisions. For example, such 

a probabilistic model does not explain how and why particular aspects of the environment are 

used to judge the similarity between stimuli when a range of potential candidates may have 

been possible8.  

 
8 Stimuli can be considered similar across many different features (e.g., Tversky, 1977), which can be easily 
demonstrated by the process of constructing similarity measures. To construct such measures, one needs to make 
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How to use probabilistic concepts in literal or bounded rational senses to explain lower-

level psychological processes is less clear-cut. In higher-level processes, we argued that, for 

these uses, the source of probabilistic knowledge can either be explained in terms of the 

acquisition of abstract knowledge about probability theory and its application, or in terms of 

the acquisition of heuristic strategies that exploit some aspects of the mechanics of probabilistic 

models. We expect that explanations of lower-level processes would be more similar to the 

latter – for instance, they can be stated in terms of how evolutionary processes produced 

heuristics that in some way work similarly to probability theory. In these cases, it would be 

important to clarify why such explanations should not be better considered “as-if” 

interpretations. 

In this section, we aimed to clarify how our argument applies to common uses of 

probability theory. While we think probabilistic concepts can be usefully applied in certain 

cases and suggested necessary conditions for how this can be done, we expect that reliance on 

such concepts will become increasingly less prevalent as more of the unexamined underlying 

assumptions are made explicit. 

 

Future directions 

By highlighting often-neglected aspects of learning and decision making, our aim was to 

start a discussion about, rather than provide definitive answers to, how to understand people’s 

treatment of unknowns without probabilistic concepts. We anticipate that this framework can 

not only extend the range of questions that we can ask about learning and decision making, but 

it could change the way we ask those questions and the questions we find interesting. In this 

section, we offer a selection from the exciting questions that this framework could lead to.  

As we have already said, this view opens up new ways to think about the role of 

environmental feedback in improving people’s theories of unknowns. An important 

implication is that feedback is only meaningful in terms of people’s specific knowledge of that 

environment. One interesting line of investigations could be to understand how this applies to 

 
several choices, for example, decide which features to include and which ones to disregard, as there are an infinite 
number of physical features that may be considered (commonly considered features, such as brightness, color, or 
shape, are only a very limited set of the possible ones – other features like hue, emitted non-visible light, whether 
they are a primary color, are rarely or never considered). Such measures can either be constructed by a person (for 
higher-level processes) or by evolutionary processes (for lower-level processes).  
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environments that “provide” different types of feedback about their unknown aspects (Hogarth, 

Lejarraga, & Soyer, 2015; Kahneman & Klein, 2009). As we have argued, in real life people 

can always improve their representation. Such studies, however, often make it difficult for 

people to do this: they can either stay within the narrow confines of the experiment and develop 

a simple satisfactory strategy (e.g., detecting sequential patterns); going further than that (e.g., 

accessing the source code of the software), however, requires a substantial amount of additional 

motivation and background knowledge. Researchers may consider supplementing the 

experiments with mechanisms that allow people more ways to find out about the experimental 

environment. One way to do this is to allow them to figure out which aspect of the environment 

is important via experimentation (Gureckis & Markant, 2012). Another way is to make the 

experiments more enticing by making them more closely resemble actual physical 

environments: most physical environments that people interact with contain many unknowns 

that are not “probabilistic” (i.e., are not well-described by probabilistic models), which should 

be considered when designing experimental environments (e.g., by making the deterministic 

aspects of experiments more meaningful). 

A connected implication of our present analysis is the need to study how people generate 

hypotheses. There have been promising recent attempts in this direction in the form of 

compositional generative models (Bramley, Dayan, Griffiths, & Lagnado, 2017; Lake, Ullman, 

Tenenbaum, & Gershman, 2017; Piantadosi, 2021). Such models rely to a large extent on 

probabilistic concepts. However, their core commitments are that people generate hypotheses 

by using a finite set of primitives and rules that specify compositional combinations. Thus, the 

core claims are broadly consistent with the approach advocated here. It would be interesting to 

see whether the probabilistic aspects of the present compositional generative models can be 

replaced by more psychologically meaningful mechanisms. That is, since variability in 

people’s hypotheses is not generated by real or pseudo-random generators, the substantive 

explanation for how such variability arises should be given in non-probabilistic terms (even if 

it turns out that these processes are well-approximated by probability models). Generally, 

however, we believe that some form of the compositional structure such models invoke is 

necessary in any explanation that aims to account for the flexibility in people’s capacity to 

create new hypotheses.  

A closely related question concerns the role of motivation. We have already alluded to 

the importance of this in our explanation and when explaining what other potential theories 
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people may construct. For example, what makes people pursue having deeper, more complex 

explanations, instead of being satisfied with simple heuristic or satisficing solutions? Such a 

question implies that the way in which people’s theories develop cannot be sufficiently 

explained without concepts that make people inclined to pursue potential improvements, such 

as intrinsic motivation or curiosity (Berlyne, 1966; Deci, 1972; Loewenstein, 1994).  

Another interesting area to which our arguments relate are the measurement of learning 

and decision-making traits, such as risk preferences (Charness, Gneezy, & Imas, 2013; Frey, 

Pedroni, Mata, Rieskamp, & Hertwig, 2017; Loewenstein, Weber, Hsee, & Welch, 2001). One 

important question in this area of research is whether risk preferences are constructed when 

people make decisions or there exist a stable trait that is revealed by people’s behavior 

(Lichtenstein & Slovic, 2006; Pedroni et al., 2017; Slovic, 1995). The results of the current 

experiment pose additional difficulties to this debate – for example, under which particular 

representation of the environment can a participant’s choice be considered to be risky? If a 

participant thinks that there is an exploitable temporal structure, their choices of the risky 

option do not reveal a preference trait, but rather some (perhaps mistaken) knowledge of the 

environment. This also makes it difficult to compare the risk preference of people, since their 

representations of the same environments may differ substantially. Studies into risk-attitudes – 

especially those in the lab – need to consider how people construct their environmental 

representation, for example, by attempting to introduce more sensitive measures of what 

hypotheses people entertain of their environments. 

 

Conclusion 

Due to the success of scientific applications of probability theory, probabilistic concepts 

took on a dominant role in psychological explanations of how people deal with unknowns. In 

this paper, we critically assessed the role that these concepts may play in such explanations. 

Through theoretical and experimental analyses of a typical experiment of related research 

areas, we argued that many intermediary argumentative steps (that are not part of probability 

theory but are essential for representing unknowns in physical environments) can be left 

implicit when applying probabilistic concepts. This leads to the problem that such steps are left 

unexplained in the corresponding psychological explanation. Our hope is that the research 

approach that we outlined and demonstrated here will lead to psychological theories of learning 
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and decision making in which probabilistic concepts only play a relatively minor role. 

Specifically, these concepts should either be treated as explicanda for psychological 

explanations (i.e., as a mode of representation that people are capable of creating), or as tools 

for scientists to conveniently represent (a small number of) aspects of people’s performance or 

environment. 
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