

Edinburgh Research Explorer

Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators
Citation for published version:
Lahariya, M, Innes, C, Develder, C & Ramamoorthy, S 2022, Learning physics-informed simulation models
for soft robotic manipulation: A case study with dielectric elastomer actuators. in Proceedings of the
International Conference on Intelligent Robots and Systems (IROS) 2022. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers
(IEEE), pp. 11031-11038, The 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Kyoto, Japan, 23/10/22. https://doi.org/10.1109/IROS47612.2022.9981373

Digital Object Identifier (DOI):
10.1109/IROS47612.2022.9981373

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2022

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. Feb. 2023

https://doi.org/10.1109/IROS47612.2022.9981373
https://doi.org/10.1109/IROS47612.2022.9981373
https://www.research.ed.ac.uk/en/publications/96727136-cd95-4a4c-9bad-1a3ae7fffc99

Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators

Manu Lahariya1∗, Craig Innes2, Chris Develder1 and Subramanian Ramamoorthy2

Abstract— Soft actuators offer a safe and adaptable approach
to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems however
is challenging due to the complex physics of deformable
materials. Accurate Finite Element Method (FEM) models
incur prohibitive computational complexity for closed-loop use.
Using a differentiable simulator is an attractive alternative, but
their applicability to soft actuators and deformable materials
remains under-explored. This paper presents a framework that
combines the advantages of both. We learn a differentiable
model consisting of a material properties neural network and an
analytical dynamics model of the remainder of the manipulation
task. This physics-informed model is trained using data gener-
ated from FEM, and can be used for closed-loop control and
inference. We evaluate our framework on a dielectric elastomer
actuator (DEA) coin-pulling task. We simulate DEA coin pulling
in FEM, and design experiments to evaluate the physics-
informed model for simulation, control, and inference. Our
model attains ≤ 5% simulation error compared to FEM, and we
use it as the basis for an MPC controller that outperforms (i.e.,
requires fewer iterations to converge) a model-free actor-critic
policy, a heuristic policy, and a PD controller.

Index Terms— Dielectric elastomer actuators, Differentiable
simulator, Finite element methods, Model predictive control,
Neural Networks, Physics based machine learning, Soft Actor-
Critic, Soft robotics

I. INTRODUCTION

Soft robotic actuators provide a safe, adaptive, low-cost
solution for manipulation tasks such as gripping and mo-
tion [1]. Precision manipulation using soft actuators however
is a major challenge, as it requires modeling the deformable
actuator behaviour within the context of the manipulation
task [2]. Such models are then used to learn accurate
control strategies via simulation [3]. Recently differentiable
simulators have been used to learn controllers in closed-loop
scenarios by allowing the use of gradient-based optimization
methods (e.g., Model Predictive Control, MPC) [4]. They
have also been used for inference and data generation tasks.

Simulating deformable robots and contact rich manip-
ulation is expensive [3]. Traditional methods model such
dynamics by decomposing their geometry. For example,
Position Based Dynamics approximates multi-body physics
by deconstructing the system into particles [5]. However,
these methods fail to define the underlying physics, making
it difficult to meaningfully interpret or constrain the par-
ticles. The continuum mechanics and contact dynamics of

1Authors are with IDLab, Ghent University – imec, Technologiepark-
Zwijnaarde 126, 9052 Ghent, Belgium,

2Authors are with the School of Informatics, University of Edinburgh,
10 Crichton St, EH8 9AB, United Kingdom,

*Corresponding Author: e-mail: manu.lahariya@ugent.be.

Fig. 1. A coin is pulled with a dielectric elastomer actuator (DEA) —
a soft actuator that deforms under electric actuation. Our proposed control
framework learns accurate physics-informed differentiable simulators and
model-based control for this kind of soft robot manipulation.

deformable materials are difficult to model with such ap-
proximate methods, leading to physically unrealistic results.
Physically accurate simulation of soft robotic manipulation
requires modeling the underlying equations, defined by com-
plex Ordinary/Partial Differential Equations (ODEs/PDEs).

Finite Element Methods (FEMs) provide a numerical
method for solving such equations. Yet despite the ability of
FEMs to accurately model such phenomena, integrating FEM
simulation with closed-loop control is challenging due to
their computationally expensive meshing: unless the meshes
are dense and cover the domain, fidelity is poor.

This paper’s key idea is to generate data from an accurate
(but slow) FEM model to learn an approximate (but fast)
physics-informed model f for soft robotic manipulation.
Our framework uses f as a differentiable simulator for
simultaneous closed-loop control and inference. Our model
f is composed of two parts: a material network m — a
neural network approximating deformable material behaviour
(e.g., hyperelastic) — and the dynamics d — equations
representing the physical context of manipulation task (e.g.,
motion).

We apply our framework to a soft robotic pulling task
using Dielectric Elastomer Actuators (DEAs). DEAs are soft
actuators made using electroactive polymers that convert
electrical work to mechanical work via expanding or bending
motion. In our task, the goal is to pull a stationary coin by
deforming the free end of the DEA (Fig. 1). We learn the
physics-informed model for this pulling motion f , and eval-
uate its accuracy as a simulator against the FEM simulations.
For control, we use the differentiability of f to learn a model-
based control policy (using the MPC solver defined in [6])
and infer the parameters of the system’s dynamics.1

Our main contributions are: (i) a closed-loop control

1For the case study of DEA pulling, the mass of coin mc and kinetic
friction coefficient µb are inferred. For details, refer to Section III-B.

ar
X

iv
:2

20
2.

12
97

7v
1

 [
cs

.R
O

]
 2

5
Fe

b
20

22

framework for soft robotic manipulation, that uses a dif-
ferentiable physics-informed model f trained using FEM
(Section II), (ii) the design of an exemplary DEA pulling
task (Section III), that is simulated in FEM (Section IV),
and (iii) performance evaluation of model f and its use in
closed-loop control. For the latter, we compare simulation
accuracy of f with both a FEM model and a baseline neural
network. Additionally, we compare the model-based control
policy (MPC with f), with (i) a model-free control policy
(learnt using the Soft Actor-Critic SAC algorithm [7]), (ii) a
PD control policy (evaluated previously for DEA control [8]),
and (iii) a heuristic control policy2 (inspired by typical
soft-robotic control policies [3]). We design experiments
(Section V-B) across 8 DEA pulling setups to evaluate our
framework and answer the following questions:
(Q1) How to define f using the physical laws of the system?

What is the simulation accuracy of f in a system with
new unknown parameters (e.g., frictional coefficient)?

(Q2) What is the performance of model-based control policy
(based on f), compared to other control policies?

(Q3) What is the accuracy of the inferred model parameters?
Our results (Section VI) show that f provides ≤ 5%

simulation error compared to FEM. Further, in closed-loop
control, an MPC using f outperforms all other policies, while
we simultaneously infer system properties (mass of the coin)
with ≤ 10% inference error.

A. Related Work

Soft robots are inspired by biological systems, where
animals use muscles to achieve safe actuation and control [1].
Engineers use soft actuators to develop similar safe, quick,
adaptable, and precise robotic manipulation [2]. These soft
actuators generate mechanical work under a specific actua-
tion, e.g., shape memory alloys respond to thermal actuation,
hydraulic actuators respond to pressure, etc. Learning control
for soft actuators requires accurate simulation models that
are used inside the control loop [4]. Designing simulator
models for soft actuators is a challenging task, traditionally
using particle based models (e.g., liquids [9]). In recent
years, researchers are using FEM modeling that allows highly
accurate modeling of deformable materials (e.g., fabric [10],
composite materials [11]).

Dielectric elastomers (DE) are electroactive polymers that
produce deformation under the influence of an external
electric field. DEA are soft actuators that use thin layers
of DE materials to achieve actuation under the stimulus of
electric activation. DEAs provide fast and large deformation,
are lightweight, and have a high energy density, which makes
them promising candidates for soft robotic applications [12].
Hence, DEA has been explored to design soft robotic grip-
pers [13], underwater robots [14], crawling robots [15], etc.

There have been several previous approaches to modelling
DE behaviour. A simplified finite element analysis of a
dielectric bending actuator is performed in [13]. FEM models

2The heuristic policy linearly ramps up actuation voltage until the
‘episodic’ task terminates. For details, refer to Section V-B.

FEM

Training data

Learning Inference Policy Update

Fixed parameters

Optimized parameters
Interactions with

environment

Model-based/
Model-free

Fig. 2. Training the model f , that represents simulator for the manipulation
task. Material network m is optimized during learning, dynamics d are
inferred during closed-loop environment interactions.

for DE material have been explored, where deformation
in unimoph DEA with inhomogeneous geometry modeled
in [16] uses piezoelectric elements. The FEM model for a
gripping actuator presented in [17] is based on a custom
user defined material. All the above methods focus on
modeling the DEA behaviour in isolation. They thus lack
an understanding of the task context in which the DEA
manipulator is being used. In contrast, our method simulates
the complete manipulation task using FEM. This allows us
to learn the task specific context as well as the behaviour of
DEA.

An accurate simulator of the manipulation task can assist
in learning a controller. For example, a simulator based on
position based dynamics (defined using particle interactions)
is used in [9] to develop control strategies for pouring liquid.
A FEM based differentiable simulator proposed in [18]
is used to learn control strategies for cutting. The above
methods are designed to control one specific manipulation
task (e.g., in [19], the model is explicitly engineered for
cutting). In contrast, the control framework we propose can
be used for any robotic manipulation task, as long as it
can be simulated in FEM. Furthermore, we show that our
trained physics-informed model f can infer properties of
new unknown setups, thus it can adapt during the closed-
loop control.

II. CONTROL FRAMEWORK

The objective of our control framework is to learn a control
policy π for a manipulation task. Figure 2 shows the closed-
loop control design using the trained physics-informed model
f of the manipulation task along with policy π.

A model-based control approach utilizes a forward model
of the system: f : S × A → S, where S is the state space,
and A is the control action space. For each timestep t, the
state is st ∈ S , and the control action is at ∈ A. For MPC,
the optimal control actions at each timestep is estimated by
solving the optimization problem defined in Eq. (1), where
ainit is the initial action. We particularly choose to use a
physics-informed f , which is differentiable, and allows us

to use gradient-based methods to solve this optimization
problem (such as finite-horizon iterative Linear Quadratic
Regulator, iLQR [6]). The objective of the control (e.g.,
get to a target location) is used to define the cost function
C : S ×A → R (e.g., distance from the target location). For
example, in DEA pulling, cost function C is defined for the
objective of achieving target state (i.e., the target location
of the coin) with penalty on control actions to minimize
actuation voltage of the DEA.3

arg min
s1:T∈S,a1:T∈A

T∑
t=1

C(st, at)

s.t. st+1 = f(st, at) and a1 = ainit

(1)

The physics of the robotic manipulation task includes,
(i) the physical laws of the deformable material behaviour,
e.g., electromechanical/hyperelastic behaviour, characterized
by high order ODEs/PDEs that are computationally complex,
and, (ii) the physical laws built according to the context of
the manipulation task, e.g., sliding motion laws, or gravity. In
modeling these physics, interaction variables z are introduced
to describe the contact properties (e.g., force, stress, pressure)
between the deformable material and its surroundings. In
particular, for DEA pulling, z are the forces exerted by the
DEA actuator on the contact surface.

We simulate the manipulation task using a FEM model to
numerically solve the associated physics equations. In this
model, state st+1 and interaction variables zt are simulated,
given st and at. The FEM model for DEA pulling is
described in Section IV. How the simulated data is then used
to train a physics-informed model f is described below.

A. Physics-informed model (f)

The physics-informed model f has two parts:
(i) The material network (m): a function approximator

(i.e., neural network) with weights θ that estimates
the interaction variables ẑ (Eq. (4)). These interaction
variables (z) characterize deformable material behaviour
in the manipulation task (e.g., forces by DEA on contact
surface).

(ii) The dynamics (d): the physical laws characterizing
the motion/dynamics of the system in form of math-
ematical equations (e.g., a system of linear equations
or ODEs/PDEs representing sliding or gripping). The
dynamics d estimate the next state using interaction
variables z, state s, and action a (Eq. (3)). Parameters φ
describe the system’s physical properties, e.g., the mass
of coin.

Thus, we can write the model f as in Eq. (2).

ŝt+1 = f(st, at; θ, φ) (2)
f(st, at; θ, φ) = d(ẑt, st, at; φ) (3)

ẑt = m(st, at; θ) (4)

The material model m of a deformable material can describe
an actuator (e.g., DEA), or the manipulated object (e.g.,

3The cost function defined in [6]. For details, refer to Section V-A.

Algorithm 1 Learning
Output: Material network m;

1: Randomly initialize weights θ, and fix parameters φ;
2: while not stopping condition do
3: at ← select action at t using a fixed policy;
4: st+1, zt = FEM (st, at);
5: Dataset D ← D ∪ (st, at, zt, st+1);
6: end while
7: Using all data from ∼ D; // Say |D| = N data samples
8: ẑt = m(st, at; θ);
9: ŝt+1 = f(st, at; θ, φ);

10: θ ← θ−αθ dLl(θ, φ)
dθ ; // Update θ using ẑ and ŝ, Eq. (5)

11: return m

Algorithm 2 Control
Input: Trained weights θ

1: Randomly initialize parameters φ, and ψ, and fix θ;
2: s1 ← env .reset();
3: while not stoping condition do
4: at = π(st; ψ);
5: st+1, rt ← env .step(at);
6: Replay buffer R ← R∪ (st, at, rt, st+1);
7: if it’s time to update then
8: Randomly sample B transitions from ∼ R;
9: // Inference

10: ŝt+1 = f(st, at; θ, φ);
11: φ← φ− αφ dLi(θ, φ)

dθ ; // Update φ using ŝ, Eq. (6)
12: // Policy Update
13: Update ψ by policy defined updates, e.g., SAC [7];
14: end if
15: end while

cloth) depending on the manipulation task. For example,
in DEA pulling, m describes the actuator behaviour of a
unimorph DEA (Section IV).

This section answers part of Q1 (how to define f using
physical laws). The model f is differentiable and captures
the physics of the manipulation task in the form of dynamics
d. Thus, in addition to its usefulness as a simulator for data
generation, it can also be used for inference, and for learning
gradient-based optimization control policies.

B. Training and policy synthesis

The physics-informed model f and policy π are learnt in
two steps. First, a Learning step optimizes the weights θ
of the m, using data generated by the FEM model of the
task. Second, a Control step, where the policy π is learnt
via interactions with the environment. These interactions are
used to infer parameters φ (e.g., coin mass) of dynamics d,
which informs f . We then use f to learn π.

a) Learning: The weights θ are optimized by minimiz-
ing the loss function based on the error in estimating material
model, i.e., m: (zt− ẑt), and the error in enforcing dynamics,
i.e., d: (st − ŝt). Incorporating the loss encountered in ŝ
ensures that our model adheres to dynamics d (as shown

Coin

Active
layer

Constraining
layer

Starting State

Actuated State
Fixed

surface

a) b) y

x

Fig. 3. Unimorph DEA. (a) Unimorph DEA. The active layer expands under
influence of electric voltage, causing the bending actuation. (b) Problem
setup: DEA is used to move a stationary coin on the surface.

by optimization of physics informed neural networks [20]).
Algorithm 1 shows how θ is optimized by fixing parameters
φ and minimizing the learning loss Ll (Eq. (5)). A fixed
policy is used to select actions at (e.g., a random or uniform
policy). The learning rate for weights θ is αθ and number of
data samples is N .

Ll(θ, φ) =
1

N

N∑
t=1

(zt − ẑt)2 +
1

N

N∑
t=1

(st − ŝt)2 (5)

b) Control: Algorithm 2 provides the pseudocode for
closed-loop control of the manipulation task. First, during
inference, the parameters φ are optimized by minimizing the
loss function based on the error in estimating dynamics, i.e.,
d: (st−ŝt). The inference loss function is provided in Eq. (6).
Learning rate for φ is γφ and batch size is B.

Li(θ, φ) =
1

B

B∑
t=1

(st − ŝt)2 (6)

Secondly, we learn the policy π with weights ψ. The
updates in ψ are defined using the underlying policy π and
its training objective. In case of model-free policy trained
using the SAC algorithm, ψ will be updated based on the
loss function defined in [7], and the weights ψ represent the
weights of the neural network. In case of model-based MPC,
we use the differentiable trained model f and gradient-based
optimization to estimate the optimal control action. Thus, in
case of MPC, we do not need to update the parameters ψ
(line 13 of Algorithm 2).

III. SOFT ROBOTIC DEA PULLING

We design the manipulation task of coin pulling using a
unimorph Dielectric Elastomers Actuators (DEAs) to evalu-
ate the framework proposed in Section II. The deformable
DEA actuator is made of Dielectric Elastomers (DEs), which
are a type of electroactive polymers that produce mechanical
strain under the influence of electric voltage. Thus, a DE
membrane expands its area when a voltage is applied across
its thickness [21].

Figure 3(a) shows a unimorph DEA, with one active
and one constraining layer. The active layer expands under
externally applied voltage causing the bending motion. The
DEA is fixed at one end, and the other end rests freely on a
circular coin c. On actuation, the DEA acts as a soft robotic
finger, pulling the coin. A controller policy π can be learnt
to achieve a certain displacement in the coin. Figure 3(b)

TABLE I
STATE AND ACTION DEFINITION FOR TIMESTEP T

st
xt Location of the coin along x-axis at time t
ut Velocity of the coin along x-axis at time t

at
Vt Voltage applied on the DEA
∆t time difference between t and t+1

zt
Fx,t Force along x-axis by DEA on coin c
Fy,t Force along y-axis by DEA on coin c

shows the 2D view of the setup, where the mass of the coin
is mc, the kinetic friction coefficient between the coin and
DEA is µt, and the kinetic friction coefficient between the
coin and bottom surface is µb. The displacement of the coin
depends on such parameters of the system. A pulling coin
setup Cc is characterized by fixed values of {mc, µt, µb}.
Setups C1, C2, . . . represent pulling different coins, based
on different parameter values.4

The physics-informed model f of the system is defined
by the variables shown in Table I. The state of the system at
time-step t is characterized by the location xt and velocity
ut of the coin along the x-axis. The action comprises the
voltage (Vt) applied on the DEA and ∆t,5 and the hidden
variables are the forces (Fx and Fy) applied by the DEA on
the top surface of the coin.

A. Material network (m)

Modeling non-linear properties of DEs require modeling
the effects of hyperelasticity and Maxwell stress [21]. On
application of voltage V, maxwell stress causes the bending
actuation in DEA. The actuated DEA exerts forces Fx and
Fy on the top surface of the coin, which results in its motion.
The material network used to estimate these forces is defined
in Eq. (7). We simulate DEA pulling using FEM, to generate
data and optimize weights θ (Section IV).

F̂x,t, F̂y,t = m(xt, ut, Vt, ∆t; θ) (7)

B. Dynamics (d)

Physical laws of the pulling setup define the system
dynamics d (Section II-A). There are two stages during
pulling: static friction (where forces are applied but there
is no motion), and kinetic friction (where the applied forces
cause motion in coin). A threshold voltage V T should be
used during actuation to achieve motion in the coin (i.e., to
get to the stage of kinetic friction).6 The acceleration At in
the coin is due to the net force in the direction of the x-axis,
given by Eq. (8), where Fµ is the opposing frictional force.
We can calculate Fµ using Eq. (9), assuming a linear growth
in frictional force during the stage of static friction, and a

4We consider the coins to be of fixed dimensions (i.e., fixed volume), and
thus change the mass mc by changing the density ρ of the coin material.
For further details, please refer to Section V.

5Note that in FEM, the time between successive simulation datapoints
may vary.

6Voltage required to achieve a minimum displacement in the coin.

Text

Starting stage

Stage of static friction

Stage of kinetic friction

a)

b)

c)

x,
0.01 m0.04 m

0.001 m

DE Active layer

0.001 m

0.0075 m

Coin

Fig. 4. Finite element model of the DEA pulling, (a) inactive DEA with
dimensions, (b) active DEA during the stage of static friction, and (c) motion
occurs during the stage of kinetic friction.

no-slip condition on the top surface.

F̂Netx,t = mcAt

= F̂x,t − Fµ,t (8)

Fµ,t =


µb

(
F̂y,t+mcg

)
if V ≥ V T ;

µbVt
VT

(
F̂y,t+mcg

)
otherwise

(9)

where g is the gravitational acceleration (9.8 m/s2). We
assume a frictional decay in velocity for a moving coin if
the DEA actuation is stopped (i.e., Vt = 0). These dynamics
do not consider non-linear motion in coin (with high DEA
actuation voltages, where DEA loses contact with the coin
surface). The dynamics d of this pulling setup is charac-
terized by parameters φ (Section II), which are (i) mass
of the coin (mc), and (ii) frictional coefficient (µb),. While
training the material network m, these values are fixed. We
will infer these parameters during closed-loop interactions
with the environment.

The next location and velocity of the coin, i.e., x̂t+1 and
ût+1, are calculated using At, xt, ut, and ∆t and equations
of motion. Thus, the dynamics d is a set of linear equations
based on the laws of motion.

IV. FEM OF DEA PULLING

FEM is a numerical method for solving differential equa-
tions and mathematical modeling of a physical system. The
physical system of DEA pulling consists of a unimorph DEA
on the fixed surface and a solid coin (Section III). We use
commercially available software ABAQUS [22] to build a
3D model of DEA pulling. Figure 4 shows the simulated
setup, during the starting stage and the stages of static and
kinetic friction. In the stage of static friction, we clearly see
no motion in the coin even when actuating the DEA.

a) DE Material: To model DE material in FEM, we
approximate their behaviour using piezoelectric materials
elements [23], as there are no commercial FEM packages
that provide DE elements out of the box. We modify the
piezoelectric finite elements material properties to model
the Maxwell stress effect observed in dielectric materials.
The Maxwell stress p on the DE membrane is given by
Eq. (10) [21]. Similar to DE, piezoelectric materials exhibit
strain when in the presence of electric fields. The piezoelec-
tric stress is given by Eq. (11).

p = e0er

(V
z

)2
(10)

σij = DE
ijklεkl − emijEm (11)

where V is the applied voltage across thickness z of the
DE membrane, the relative permittivity is er, and the permit-
tivity of free space is e0. The piezoelectric elastic stiffness
matrix is DE

ijkl, the strain tensor is εkl, the stress coefficient
is emij and the electric potential gradient is Em. As detailed
in [16] the piezoelectric stress becomes approximately equal
to the Maxwell stress for a thin membrane, such that the
strain ezz in the direction of thickness (z-axis) is given by:

ezz = ere0Ez (12)

These piezoelectric elements assume linear elasticity,
which is not a limiting factor as we can assume such
behaviour for our case of thin DE membranes [16].

A. FEM simulation settings

Figure 4(a) shows the dimensions and assembly of the
FEM setup, where the DEA is inactive (i.e., no voltage
applied). Mesh is created using an 8-node linear brick
element (ABAQUS element type C3D8E), such that each
DE membrane has 10 elements.7 For meshing the coin,
ABAQUS’s internal meshing strategy is used to generate 20
elements.

For the DE material, the Poisson’s ratio is 0.5 and Young’s
modulus is 0.56 MPa [24]. We use Eq. (12) to calculate ezz =
3.68 and set all other piezoelectric coefficient values to zero.
This DE material is used for both active and constraining
layers. Elastic behaviour is assumed for the coin. The bottom
surface and the fixed end of the DEA are constrained using
encastre boundary condition. The top surface of the fixed
end assumes no-slip condition.

The coin rests on the frictional surface with a frictional
coefficient µb ∈ {0.2, 0.25}, which is defined as tangential
behaviour in the contact interactions in ABAQUS. Similarly,
the free end of the DEA rests on top of the coin with a
frictional coefficient µt ∈ {0.5, 0.55}. To simulate a real
scenario, we include gravitational load in the model (g =
9.8 m/s2). We do not assume a no-slip condition between
the top of the coin and DEA, in contrast to the dynamics
described in Section III-B, to keep FEM simulation realistic.
The mass of the coin (mc) is calculated using the volume of

7We use a limited number of elements in our mesh due to software
limitations.

the coin and density ρ ∈ {7.7, 7.8} g/cm3. Thus, the value
of mc rounded up to 2 decimal points is ∈ {1.36, 1.38} g.
The total time simulated in FEM is 1 s, with ∆t between
consecutive points determined by the internal solver.

An experimental coin setup C is described using the mass
of the coin and frictional coefficients (Section III). A total of
8 setups are defined based on the values of µt, µb, and mc

denoted by {C1, C2, . . . , C8}. FEM models are developed
for each of setup. A linearly increasing electric potential
load is applied on top surface of the active DE layer (i.e.,
Vt ∈ {0.0, 400.0}V to collect the dataset for each model.
This dataset contains the values for all variables described in
Table I for each timestep t. Each dataset has approximately
1000-2000 data points. For all setups, the initial location xt
is 0 m and the initial velocity ut is 0 m/s.

V. EXPERIMENTAL DESIGN

In this section, we detail the experiments designed to
evaluate the proposed framework. Using these experiments,
we report the high simulation and inference accuracy of f ,
and develop an effective closed-loop soft robotic controller.
For the case of DEA pulling, we evaluate, (i) the accuracy of
the f as a simulator, and (ii) the accuracy of f in inference,
and (iii) the closed-loop MPC controller that utilizes f .

A. Parameters setting

Each setup C is characterized by three parameters: mass
mc and frictional coefficients µb, µt (Section IV). For ex-
ample, in setup C1, mc = 1.36 g, µb = 0.2, and µt = 0.5.
During learning, we initialize parameters φ (= (mc, µb), see
Section III-B) of the dynamics d using the actual values used
in the FEM model. We note that µt is not used as a parameter
in the dynamics of f , however, it is needed for the FEM
modeling. For each setup, we set the threshold voltage (V T)
achieve a displacement of −10−5 m. Further, we assume the
coin loses contact with the DEA for Vt ≥ 300 V.

Physics-informed model f is developed using Pytorch [25]
and contains the material network m and the dynamics d
(Section II). The material network m is a fully connected
neural network with four input nodes, two output nodes,
three hidden layers with 64 neurons each, and rectified linear
(ReLU) activation functions. The weights are optimized by
minimizing Eq. (5) and Eq. (6) using ADAM optimization
for 1,000 iterations and a learning rate of 0.001. An early
stopping criterion based on validation loss with 0.0 minimum
change is included during optimization.

The target state for the controller is xT = −1.0 mm, i.e.,
goal is to achieve a 1 mm displacement. The manipulation
task ‘episode’ terminates when the coin is ≤ 0.01 mm from
xT (i.e., ‖xt−xT ‖ < 0.01 mm). We average the results for
10 ‘episodes’ for all controllers. Batch size (Algorithm 2)
is 256, and ∆t is fixed to 0.001 s. For inference, mc is
initialized to 0.001 g and µb is initialized to 0.2.

The model-based control policy model f and an MPC
solver [6]. For MPC, the number of timesteps is set to 20,
LQR iterations to 20, and the penalty of actions is set to

TABLE II
6 SIMULATION EXPERIMENT SETS

1 2 3 4 5 6
Ctrain C1 C2 C3 C4 C5 C6

Cval C2 C3 C4 C5 C6 C7

Ctest C3 C4 C5 C6 C7 C8

0.001. The model-free policy is trained using Soft Actor-
Critic (SAC) [7]. For SAC, fully connected neural networks
are used for actor and critic with two hidden layers of 256
neurons each. The value of τ (soft updates) is set to 0.005,
and networks are optimized using MSE loss and the ADAM
optimizer. For the PD controller, the value of Kp is set to
−0.5 and Kd is set to 5.

B. Experiments

a) Experiment 1 Simulation: In this experiment, we
simulate data using f to answer Q1: to show that f can
simulate data for new parameter settings, we train and
simulate on different setups (defined in Section III). Note
that different setups represent different coins, with different
mass mc and frictional coefficients µb and µt.

A simulation experiment set has coin setups given by
{Ctrain, Cval, Ctest}. FEM data from {Ctrain, Cval} is used to
optimize weights θ (material network). Data is simulated
recursively (for T = 1 s) in a test setup Ctest, using simulator
f . This f consists of (i) a material network with previously
optimized θ, and (ii) the dynamics with parameters φtest
(based on Ctest). Results are averaged for 6 simulation
experiment sets presented in Table II.

We evaluate the absolute errors encountered in simulating
ŝt+1 (xt and ut) at each timestep t. For example, error in xt
is given by ext = |x̂t−xt|, where x̂t is the location simulated
using f , and xt is the true value (from the FEM dataset).
Absolute errors in data simulated using a black-box baseline
Neural Network (NN) trained using data from Ctrain and
Cval are also included (i.e., a NN that simply approximates
ŝt+1 = NN(st, at;w)).

b) Experiment 2 Control and inference: In this exper-
iment, we evaluate f to answer Q2 (performance of model-
based MPC compared to other control policies?) and Q3
(what is the accuracy of the inferred parameters?). In the
control step (Algorithm 2), we learn closed-loop control and
infer mc and µb for test setups C1 and C2. Prior to this, in
the learning step (Algorithm 1), we train the model fa using
the FEM data from setups {C3, . . . , C8}. We do not use the
data from C1 and C2 during learning to avoid information
leakage. For C1 and C2, we learn the following policies:

(i) MPC policy: A model-based control policy defined
using differentiable model f and an MPC solver [6]

(ii) SAC policy: A model-free Actor-Critic policy learnt
using the Soft Actor-Critic algorithm [7],

(iii) PD policy: A feedback based control policy (previously
tested for DEA control [8]),

(iv) Heur policy: A heuristic control policy that linearly
ramps up actuation voltage (i.e., voltage increases by
0.5 V after each iteration until terminal state).

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

● ●

Fy,t (N)

xt (m)

0.00 0.25 0.50 0.75 1.00

−4e−03

−2e−03

 0e+00

−4e−03

−2e−03

 0e+00

Simulation time (s)

●

●

f (Physics−informed Model)

NN (Black−box baseline)

FEM

Parameters : ρ= 7.7 g cm3, µt = 0.55, µb= 0.2

Simulated Location and Forces

Fig. 5. Data for setup C3 (ρ = 7.7g/cm3, µb = 0.2, µt = 0.55). Data
is simulated given the action sequences in the test setup.

The Heur policy is a simple policy inspired by typical soft-
robotic control policies [3]. The environment is simulated by
trained physics-informed models fs,1 and fs,2. This is due to
the lack of a real-world DEA setup, however is not limiting,
as we show that our physics-informed models are accurate
simulators (Section VI-A).

VI. RESULTS AND DISCUSSIONS

We now present results for Experiment 1, and Experiment
2 to answer Q1-Q3. We show that the physics-informed
model learnt in our framework is an accurate simulator and
can assist in fast closed-loop model-based control.

A. Simulation Results (Q1)

To evaluate our physics-informed model as a simulator
for new setups (defined by parameters of system dynamics,
Q1), we study the absolute errors in simulating the data
across test setups. Figure 5 shows the location (xt) and forces
(Fy) simulated using physics-informed model f , a baseline
Neural Network (NN), and the FEM model. In the first half
of the simulation time during static friction (Section III-
B), we see negligible displacements and increasing Fy . In
the latter half, the kinetic frictional force becomes stable,
and we see a change in coin location (xt). Our model f
accurately estimates x in both stages. During kinetic friction,
f outperforms the baseline NN , where the location simulated
by NN increases exponentially.

Figure 6 shows the absolute error in x for all test setups for
f and baseline NN . In all cases, f outperforms the baseline
NN . Additionally, the average absolute error in x simulated
using f is less than 0.05 times the magnitude of the actual
values, i.e., we note approximately ≤ 5% error compared the
FEM simulation. We see a similar accuracy for f compared
to the FEM and NN in simulating velocity ux for the coin.
We notice similar results in simulated velocity ut.

The absolute error in forces Fx and Fy in the region of
static friction is higher compared to the region of kinetic
friction. This happens because we optimize material network
m using a physics informed loss function, i.e., a loss function
that is based on the error in the next state s and the error in
the interaction variables z (Eq. (5)). Optimizing m using this

Ctest : C3 Ctest : C4 Ctest : C5 Ctest : C6 Ctest : C7 Ctest : C8

0.0e+00
2.5e−03
5.0e−03
7.5e−03
1.0e−02

A
bs

ol
ut

e
er

ro
r

f (Physics−informed model)

NN (Black−box baseline)Each box: errors in all simulation points

Absolute errors in simulation

Fig. 6. Absolute error in simulated location xt. Each box point has data
for all simulation points.

Target location (xT)−0.9

−0.6

−0.3

0.0

1e+01 1e+03 1e+05
Number of Iterations

Lo
ca

tio
n

x t
 (m

m
)

MPC (Model − based, f)
SAC (Model − free)

PD

HeurLocation: average for 10 episodes

DEA pulling control (Ctest : C2)

Fig. 7. DEA pulling control for C2 . Terminal state: coin is ≤ 0.01 mm
from xT (Solid line: average for 10 ‘episodes’, shaded region: 25-75%)

loss function assists in learning the overall manipulation task
behaviour, as opposed to only learning the outputs of m (Fx
and Fy). This behaviour is non-restrictive, as the objective
of our model is to learn the next state of the motion, which
is simulated accurately.

Once trained, model f can simulate data for new setups
by changing dynamics parameters (like mass mc). This helps
in answering Q1 (simulation accuracy of f for system with
different parameter setting?), as we can conclude from Fig. 6
that our physics-informed model has ≤ 5% error compared
to FEM and outperforms a baseline NN .

B. Control and Inference Results (Q2-Q3)

This section presents results for Experiment 2, which
aims to evaluate closed-loop control (Q2) and inference
(Q3) defined in the proposed framework. In DEA pulling,
using Algorithm 2, we learn a model-based control policy
by utilizing the differentiable f and an MPC solver. Fig-
ure 7 shows the average coin location xt during closed-
loop control of test setup C2. Average is calculated across
10 episodes to compare the MPC policy (model-based),
with SAC policy (model-free), a PD policy and a Heur policy
(defined in Experiment 2). We notice similar results for both
test setups C1 and C2.

The coin reaches the target in ≤ 200 iterations (0.2 s)
under the MPC policy. In contrast, the SAC policy takes
approximately 10,000 iterations (100 s) to reach the target.
We further note that the MPC policy outperforms the PD
policy and Heur policy, which take approximately 1,500 and
500 iterations respectively.

During control using Heur policy we notice sudden motion
towards xT after approximately 280 iterations. This repre-
sents the transition from stage of static friction to stage of
kinetic friction. The Heur policy linearly ramps up actuation
voltage every iteration, and thus, does not depend on location

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

mc µb

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
0.00
0.05
0.10
0.15
0.20
0.25

0.0000
0.0025
0.0050
0.0075
0.0100

Number of Iterations

●

Inferred (Model f)

Real (Used in Ctest)Each point x: after every 256 iterations

Inference of parameters (Ctest : C2)

Fig. 8. Inference of mass of the coin and frictional coefficient by DEA
pulling. (Reported after every 256 iterations to keep figure legible)

feedback. In contrast, both PD policy and SAC policy rely on
observed location, and take longer to reach and manipulate
the coin in the stage of kinetic friction.

Figure 8 shows the inferred mc and µb by physics-
informed model fa and the real value, i.e., the value used in
Ctest during control with MPC policy. We note inferred mc

converges to ≤ 10% error compared to the real value within
2,000 iterations. Similarly, µb, the frictional coefficient con-
verges within ≤ 300 iterations. We notice similar results in
both test setups and across all episodes.

We answered Q2 and Q3 in this section, and conclude
that our framework learns accurate physics-informed model
f that can be used as a simulator for inference and devel-
oping closed-loop model-based control policies. In control,
a model-based MPC policy outperformed all other policies
with an order of hundreds of iterations, and we note ≤ 10%
in parameter inference.

VII. CONCLUSIONS

This paper presents a framework to learn a differentiable
simulator and develop control for soft robotic manipulation.
We defined a physics-informed model f consisting of a
material network m, and dynamics d. This model f can
be used as a simulator for data-generation, inference, and
control policy optimization. We designed a soft-robotics
case study where a coin is pulled using unimorph DEA.
FEM simulation of the DEA generated data to train f . Our
experiments used multiple setups to evaluate the framework
in learning f and model-based control.

From our analyses, we conclude that, (i) the physics-in-
formed model f trained using the proposed framework can
simulate new setups (characterized by parameters φ) with
≤ 5% error compared to FEM (Fig. 6); (ii) a closed-loop
MPC policy based on differentiable model f outperformed
all other policies in orders of hundreds of iterations (Sec-
tion VI-B); (iii) f can be used for accurate inference of
the parameters φ: mc and µb (Fig. 8). Open questions
for future research include evaluating this framework for
effective control of other soft robotic scenarios, and exploring
alternative model-based policies which overcome the high
computational requirements of MPC.

ACKNOWLEDGMENT

The authors would like to thank Mr. Mukul Sahu for his
valuable comments on FEM modeling.

REFERENCES

[1] S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired
evolution in robotics,” Trends in Biotechnology, vol. 31, 2013.

[2] D. Rus and M. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, 2015.

[3] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception,
and control methods for deformable object manipulation,” Science
Robotics, vol. 6, 2021.

[4] N. El-Atab, R. Mishra, F. Al-modaf, L. Joharji, A. Alsharif, H. Alam-
oudi, M. Diaz, N. Qaiser, and M. Mustafa, “Soft actuators for soft
robotic applications: A review,” Advanced Intelligent Systems, vol. 2,
2020.

[5] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012, pp. 5026–
5033.

[6] B. Amos, I. D. J. Rodriguez, J. Sacks, B. Boots, and J. Z. Kolter,
“Differentiable mpc for end-to-end planning and control,” in Pro-
ceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS), 2018, p. 8299–8310.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning (ICML), 2018, pp. 1861–1870.

[8] T. Karner and J. Gotlih, “Position control of the dielectric elastomer
actuator based on fractional derivatives in modelling and control,”
Actuators, vol. 10, 2021.

[9] T. Lopez-Guevara, N. K. Taylor, M. U. Gutmann, S. Ramamoorthy,
and K. Subr, “Adaptable pouring: Teaching robots not to spill using
fast but approximate fluid simulation,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 77–86.

[10] E. Coevoet, A. Escande, and C. Duriez, “Soft robots locomotion and
manipulation control using fem simulation and quadratic program-
ming,” in Proceedings of 2nd IEEE International Conference on Soft
Robotics (RoboSoft), 2019, pp. 739–745.

[11] S. David Müzel, E. Bonhin, N. Guimarães, and E. Guidi, “Application
of the finite element method in the analysis of composite materials:
A review,” Polymers, vol. 12, 2020.

[12] U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, “Soft robots
based on dielectric elastomer actuators: a review,” Smart Materials
and Structures, vol. 28, 2019.

[13] F. Zhou, X. Yang, Y. Xiao, Z. Zhu, T. Li, and Z. Xu, “Electromechani-
cal analysis and simplified modeling of dielectric elastomer multilayer
bending actuator,” AIP Advances, vol. 10, 2020.

[14] J. Shintake, H. Shea, and D. Floreano, “Biomimetic underwater robots
based on dielectric elastomer actuators,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 4957–4962.

[15] M. Duduta, F. Berlinger, R. Nagpal, D. R. Clarke, R. J. Wood, and F. Z.
Temel, “Tunable multi-modal locomotion in soft dielectric elastomer
robots,” IEEE Robotics and Automation Letters, vol. 5, 2020.

[16] O. Araromi and S. Burgess, “A finite element approach for modelling
multilayer unimorph dielectric elastomer actuators with inhomoge-
neous layer geometry,” Smart Materials and Structures, vol. 21, 2012.

[17] X. Zhao and Z. Suo, “Method to analyze programmable deformation
of dielectric elastomer layers,” Applied Physics Letters, vol. 93, 2008.

[18] P. Jamdagni and Y.-B. Jia, “Robotic cutting of solids based on fracture
mechanics and fem,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 8252–8257.

[19] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and
F. Ramos, “DiSECt: A Differentiable Simulation Engine for Au-
tonomous Robotic Cutting,” in Proceedings of Robotics: Science and
Systems, 2021.

[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, 2019.

[21] R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, “Electrostriction of
polymer dielectrics with compliant electrodes as a means of actuation,”
Sensors and Actuators A: Physical, vol. 64, 1998.

[22] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9. United
States: Dassault Systèmes Simulia Corp, 2009.

[23] V. Piefort, “Finite element modeling of piezoelectric structures,” 2000.

[24] N. Wang, C. Chaoyu, H. Guo, B. Chen, and X. Zhang, “Advances in
dielectric elastomer actuation technology,” Science China Technolog-
ical Sciences, vol. 61, 2017.

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,

Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” 2017.

	I INTRODUCTION
	I-A Related Work

	II Control Framework
	II-A Physics-informed model (f)
	II-B Training and policy synthesis

	III Soft Robotic DEA pulling
	III-A Material network (m)
	III-B Dynamics (d)

	IV FEM of DEA pulling
	IV-A FEM simulation settings

	V Experimental Design
	V-A Parameters setting
	V-B Experiments

	VI Results and Discussions
	VI-A Simulation Results (Q1)
	VI-B Control and Inference Results (Q2-Q3)

	VII Conclusions
	References

