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Influence of the Poisson effect on the stress dependence of the
elastic moduli of soil

S. CONSTANDINOU∗ and K. J. HANLEY∗

Effective medium theory and discrete-element method (DEM) simulations of smooth spheres both fail
to correctly capture the small-strain stiffness of soil. The inability of the latter to capture small-strain
stiffness can be overcome by adopting a rough-surface contact model which includes the effect of
asperity deformation. Hertzian spheres are commonly used in DEM which neglect the Poisson effect,
i.e., the lateral extension of a sphere orthogonal to an applied load. The hypothesis investigated in this
paper is that this omission contributes to the inability of smooth-sphere DEM simulations to correctly
capture the stress dependence of the elastic moduli of soil. This hypothesis was investigated using
the finite-element method. At low to moderate confining stresses, the Poisson effect has little influence
on the response. The Poisson effect becomes significant only at confining stresses on the order of
100 MPa, using parameters appropriate for a silica sand: stresses at which massive particle crushing
would be expected. At lower stresses, rough-surface contact models remain the most justifiable way
to match the stress–stiffness response measured in laboratory testing using DEM simulations.
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NOTATION

a radius of contact area from sphere compression
E Young’s modulus
F contact force
G0 elastic (small-strain) shear modulus
K bulk modulus
K0 elastic (small-strain) bulk modulus
m exponent in G0–σ′ relationship
n exponent in K0–σ′ relationship
R particle radius
s deformation (or DEM overlap) of a sphere
U(R) lateral extension at central diameter of sphere
δεv logarithmic volumetric strain increment
δσ′ increment of effective confining stress
ν Poisson’s ratio
σ′ effective confining stress
σb average stress along each rigid boundary

INTRODUCTION
The elastic or small-strain shear modulus of soil, G0, depends
on the effective confining stress, σ′, as do the elastic bulk

Manuscript received. . .
Published online at www.geotechniqueletters.com
∗School of Engineering, Institute for Infrastructure and
Environment, The University of Edinburgh, Edinburgh, EH9 3JL,
UK. Corresponding author: K. J. Hanley (k.hanley@ed.ac.uk)

modulus and Young’s modulus. Considering the relation G0 ∝
σ′m, experiments have found that m ≈ 1/2 for many real
soils. However, theoretical analyses based on effective medium
theory (EMT) have consistently found m = 1/3 for a range of
regular and random packings, matching analytical solutions for
smooth spheres with Hertzian interactions (Duffy & Mindlin,
1957; Walton, 1987; Chang et al., 1991; Santamarina &
Cascante, 1996; McDowell & Bolton, 2001). A nonlinear
contact interaction, e.g., based on Hertz, is required to capture
the stress dependence of the elastic moduli (Yimsiri & Soga,
2000). The limitations of EMT for capturing the variation of the
bulk modulus, K, of soft two-dimensional particle assemblies
were recently highlighted by Cantor et al. (2021). Goddard
(1990) proposed two mechanisms to explain the discrepancy
between theoretical analyses and experiments which were
investigated by McDowell & Bolton (2001): (i) the presence of
conical asperities at real interparticle contacts; (ii) an increasing
number of contacts with increasing confining stress due to the
buckling of force chains.

Discrete-element method (DEM) simulations naturally
incorporate the second mechanism. In addition, micro-
mechanical expressions have been developed for the elastic
moduli which incorporate the coordination number, allowing
for a varying number of contacts (Agnolin & Roux, 2007).
Allowing the number of interparticle contacts to vary improves
agreement with experimental data compared to EMT (Makse
et al., 1999). However, buckling is irreversible and not
strictly applicable to elastic soil (McDowell & Bolton, 2001).
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2 Influence of the Poisson effect on the elastic moduli of soil

Furthermore, this mechanism is ineffectual for idealised
packings of monosized spheres in which new contacts cannot
form. Rough-surface DEM contact models have been proposed
to account for the first mechanism, e.g., Yimsiri & Soga (2000)
and Otsubo et al. (2017), the latter building on the work of
Cavarretta et al. (2010) and O’Donovan et al. (2015). These
models succeed in increasing m in the G0 ∝ σ′m relationship
and enable good agreement with experimental data at low to
moderate confining stresses.

One of the key assumptions of Hertzian mechanics (Hertz,
1882) is very small deformations (Dintwa et al., 2008). At high
confining stresses, at which m ≈ 1/3 for rough-surface contact
models, the validity of the theory proposed by Hertz becomes
questionable. Tatara (1991) extended Hertz’s theory for one
special case: uniaxial compression of a single unbreakable
sphere to large strains between two rigid platens. The extended
theory developed by Tatara (1991) includes the lateral extension
of the sphere at its equator due to the Poisson effect to
give an oblate spheroid. This lateral extension is precluded
in conventional DEM simulations, i.e., fundamental spheres
remain spherical and cannot deform. Therefore, at large strains,
any cross-sectional area of a uniaxially compressed Hertzian
sphere in DEM, and hence its stiffness, is underpredicted.

The hypothesis explored in this paper is that the omission
of this lateral extension contributes to the discrepancy between
m ≈ 1/2 for real soil and m ≈ 1/3 in numerical analyses,
particularly at high confining stresses. The finite-element
method (FEM) is used to investigate this hypothesis. Firstly,
the simulation approach is verified by comparing with the
analytical solution of Tatara (1991) for uniaxial compression
of a single unbreakable sphere. Then the sphere is isotropically
compressed between six platens and the relationship between
the small-strain bulk modulus, K0, and the effective confining
stress is explored. This takes the formK0 ∝ σ′n, distinguishing
between G0 and K0 relationships using exponents m and n,
respectively.

VERIFICATION BY UNIAXIAL COMPRESSION
The commercial package Abaqus FEA (Dassault Systèmes,
2015) was used to quasi-statically compress a sphere between
two rigid platens as shown schematically in Fig. 1. The particle
and material parameters match Yimsiri & Soga (2000): radius
R of 1 mm, density of 2600 kg m−3, Young’s modulus E of
69.6 GPa and Poisson’s ratio ν of 0.2. The elasticity is modelled
using the inbuilt routine in Abaqus for isotropic materials which
requires only E and ν. An octant of the entire sphere was
simulated using three planes of symmetry and 15 484 quadratic
‘C3D20R’ elements as shown in Fig. 2. Compression stopped
at 5% axial strain: a common heuristic for the maximum
permissible overlap between spheres in DEM simulations. The
results of this simulation were compared with the predictions of
Hertz (1882) and Tatara (1991). The comparison with the latter
allows the reliability of these implicit simulations to be verified

a) 2R b)

R R+U(R)
s

s

-F

F

Fig. 1. Schematic showing a single sphere (a) before and (b)
after uniaxial compression between rigid platens. Deformations
have been exaggerated to enhance clarity of representation

Fig. 2. The octant of the sphere simulated in Abaqus FEA at an
axial strain of 5%. The contours represent the von Mises stress
measured in kPa.

against an analytical solution developed for non-infinitesimal
strains.

According to Hertzian theory, the contact force, F , for a
sphere contacting a rigid platen is

F =
4E
√
R

3 (1− ν2)
s

3
2 (1)

where s is the deformation of the sphere (analogous to overlap
in a DEM simulation of Hertzian spheres). The equivalent
relationship between F and s for the case of linear elasticity
is given by equations (2)–(4) in Tatara (1991):

s =
F

E

(
3
(
1− ν2

)
4a

− c

π

)
(2)

a3 =
3
(
1− ν2

)
RF

4E
(3)

c =
2(1 + ν)R2

(a2 + 4R2)
3
2

+
1− ν2√
a2 + 4R2

(4)

where a is the radius of the circular contact area.
The lateral extension at the central diameter of the sphere,

U(R), is zero for a Hertzian sphere. For the linear elasticity
case, U(R) is given by Tatara (1991) as

U(R) =
F (1 + ν)

πER

(
1

2
√
2
− (1− 2ν)

(
1− 1√

2

))
(5)

Both F and U(R) are plotted against axial strain on Fig. 3.
The disparity between the FEM force data and the Tatara
analytical solution stabilises at around 2% at axial strains
beyond 2%. This is considered acceptable for the purposes
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Fig. 3. Relationships between (a) contact force, F , and axial
strain and (b) lateral extension at the central diameter of the
sphere, U(R), and axial strain for a single sphere subjected to
uniaxial compression in FEM, compared with analytical curves
of Hertz (1882) and Tatara (1991)

of verification. By contrast, the disparity between the Hertz
and Tatara forces increases monotonically with strain, in both
absolute and relative terms, as the lateral extension effect
becomes significant: the disparity increases in magnitude from
5% at 1% axial strain to 9% at 3% axial strain to 11.7% at 5%
axial strain.

While the FEM simulation captures Tatara’s analytical F
very well, the same is not true ofU(R). Fig. 3b shows thatU(R)

is overestimated by a factor of around two in the simulation
compared to equation (5). When Tatara et al. (1991) compared
their theory with experiments for uniaxial compression of a
rubber sphere, they found very good agreement for both F

and U(R) up to very large deformations, implying that the
disparity in Fig. 3b is attributable to the FEM rather than a
deficiency of the analytical prediction. Additional simulations
show that the margin of the overestimate in U(R) depends on
the Poisson’s ratio, e.g., fourfold at ν = 0.01. While the Poisson
effect is apparent in FEM, which represents an improvement
on Hertzian mechanics for which U(R) = 0, it is exaggerated.
For the FEM simulations of isotropic compression, the Poisson
effect is also likely to be exaggerated.

ISOTROPIC COMPRESSION AND DATA ANALYSIS
Having established the capacity of FEM to predict the contact
force for uniaxial compression and display the Poisson effect,
albeit more pronounced than the analytical solution of Tatara
(1991) indicates, isotropic compression of a sphere between
six platens was simulated. The same parameters and octant
of a sphere were used as for the uniaxial compression except
the Poisson’s ratio, ν, was varied from 0.01 to 0.49. Data
were exported from the simulations at logarithmically spaced
intervals. These data comprised the displacement of each platen
from its initial position, s, and the force on each platen. The
displacements were identical for each platen; the forces, which
were multiplied by four to give the forces for a complete sphere,
F , were the same within a small margin of numerical error.

The average stress along each rigid boundary was calculated
as

σb =
F

(2R− 2s)2
(6)

The denominator represents the surface area of each rigid
boundary enclosing the sphere. Since these average stresses
are the same for each boundary, the effective confining stress
σ′ = σb. The elastic bulk modulus K0 was computed as

K0 =
δσ′

δεv
(7)

where δσ′ is the increment of effective confining stress and δεv
is the logarithmic volumetric strain increment.

Elastic bulk moduli were also calculated for a single
Hertzian sphere compressed between rigid platens following
equations (6)–(7). At any effective confining stress σ′, δσ′ was
fixed at a small value of 100 Pa and δεv was computed at
stresses of σ′± 50 Pa. The corresponding platen displacements,
s, were obtained by substituting equation (1) into equation (6)
and solving numerically.

RESULTS AND DISCUSSION
Fig. 4 shows the elastic (small-strain) bulk modulus, K0,
against effective confining stress, σ′, at Poisson’s ratios,
ν, of 0.01, 0.1, 0.2, 0.3, 0.4 and 0.49. The range of
confining pressures considered, 100 kPa–100 MPa, matches
that in Yimsiri & Soga (2000). Linear regressions fit these
data very well but are not displayed on Fig. 4 for clarity: the
coefficients of determination R2 > 0.9975 for the FEM data,
with the lowest R2 corresponding to the largest Poisson’s ratio
of 0.49. R2 > 0.9999 for the Hertzian sphere regressions.

As ν increases, so too does K0 at a fixed σ′ for both the
FEM and perfect Hertzian spheres. The slopes of the linear
regressions, n, increase systematically with increasing ν for
the FEM data, from 0.3488 at ν = 0.01 to 0.3650 at ν = 0.49.
This is in line with the proposed hypothesis; as the Poisson’s
ratio increases, the particle expands more due to the increased
Poisson effect and so will behave more stiffly when subjected
to isotropic compression. The FEM simulations capture, and
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Fig. 5. K0 against σ′ at Poisson’s ratios, ν, of 0.01, 0.1, 0.2,
0.3, 0.4 and 0.49 for effective confining stresses of 50 MPa–
200 MPa. Black dotted linear regressions are shown for the FEM
data (black markers). As for Fig. 4, results for a Hertzian sphere
are shown as grey dashed lines

in fact overemphasise, the ‘lateral extension’ effect (Fig. 3b).
For the Hertzian spheres, this effect is absent and n varies
negligibly from 0.3388 at ν = 0.01 to 0.3367 at ν = 0.49.
Although close, these slopes are not exactly 1/3 because of
significant sphere deformations which violate a key assumption
of Hertzian theory. At σ′ = 100 MPa, s ranges from 18.6 µm
(ν = 0.49) to 28.6 µm (ν = 0.01): equivalent to 1.86%–2.86%
of the sphere’s radius. As s→ 0, n→ 1/3 for the Hertzian
spheres.

The Poisson effect is expected to become more pronounced
at large strains. This is confirmed in Fig. 5 in which the range
of effective confining stresses has been increased to 50 MPa–
200 MPa compared to Fig. 4. On Fig. 5, as for Fig. 4, n
values for the FEM data increase with increasing ν: from
0.3999 at ν = 0.01 to 0.4446 at ν = 0.49. For all of these
regressions, R2 > 0.9995. The equivalent Hertzian spheres
significantly underpredict K0 at these high confining stresses
and the regressions have much smaller slopes, ranging from
n = 0.3648 at ν = 0.01 to n = 0.3546 at ν = 0.49.

For real soils, confining stresses of 50 MPa–200 MPa would
cause enormous particle crushing even for silica sands (Altuhafi
& Coop, 2011; Hanley et al., 2015). Asperities on particle
surfaces would certainly be crushed. As a result, rough-
surface contact models in DEM analyses of unbreakable
spheres become ineffectual at such high stresses. Therefore,
the inclusion of the Poisson effect would be a viable option
to give a reasonable stress dependency of the elastic moduli.
It is questionable, however, whether one should run DEM
simulations at such large stresses without including a particle
crushing mechanism. At lower stresses, the Poisson effect has
a negligible effect; the two mechanisms discussed by Goddard
(1990) and McDowell & Bolton (2001) are far more influential.
Recalling that the Poisson effect is overestimated in these
FEM simulations (Fig. 3b), its effect at low stresses is even
less than indicated by Fig. 4. The adoption of rough-surface
contact models, e.g., Otsubo et al. (2017), remains the most
justifiable way of matching experimental measurements using
DEM simulations.

While this paper has focused on a single spherical particle,
the results are relevant for multi-particle assemblies, even
randomly packed ones. The behaviour of a multi-particle
assembly is a direct consequence of the behaviours of each
individual particle comprising the assembly. Each particle in
an idealised cubic packing has an identical stress state so
any single particle is representative. Random packings of
smooth particles have comparable exponents in the G0 ∝ σ′m

relationship (Otsubo et al., 2017). It is also noted that a strictly
elastic soil does not allow for sliding at interparticle contacts
or buckling of force chains (McDowell & Bolton, 2001). This
indicates that contact mechanics is the critical factor for soil
elasticity rather than the evolving soil fabric.

CONCLUSIONS
A novel hypothesis was presented and explored in this paper
regarding the dependence of the elastic moduli of soil on the
effective confining stress, σ′. For real soils, the G0 ∝ σ′m

relationship typically has an exponent m ≈ 1/2; for Hertzian
spheres, m ≈ 1/3. It was hypothesised that the omission of
the Poisson effect in Hertzian mechanics contributes to the
discrepancy between these exponents, particularly at high
confining stresses. By simulating a single spherical particle in
FEM, it was found that the Poisson effect has a measurable but
very limited influence at low to moderate confining stresses.
Using simulation parameters appropriate for a silica sand, the
Poisson effect became significant only at confining stresses
on the order of 100 MPa. Consequently, rough-surface contact
models are far more effective for obtaining a realistic stress
dependence of the elastic moduli in DEM simulations.
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dynamic response. Géotechnique 67, No. 5, 452–459.

Santamarina, J. C. & Cascante, G. (1996). Stress anisotropy and wave
propagation: a micromechanical view. Can. Geotech. J. 33, No. 5,
770–782.

Tatara, Y. (1991). On compression of rubber elastic sphere over a large
range of displacements – Part 1: Theoretical study. J. Eng. Mater. –
T. ASME 113, No. 3, 285–291.

Tatara, Y., Shima, S. & Lucero, J. C. (1991). On compression of
rubber elastic sphere over a large range of displacements – Part
2: Comparison of theory and experiment. J. Eng. Mater. – T. ASME
113, No. 3, 292–295.

Walton, K. (1987). The effective elastic moduli of a random packing
of spheres. J. Mech. Phys. Solids 35, No. 2, 213–226.

Yimsiri, S. & Soga, K. (2000). Micromechanics-based stress–strain
behaviour of soils at small strains. Géotechnique 50, No. 5, 559–
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