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Abstract  29 

 30 

Understanding the genetic diversity of wild populations is fundamental to conserving species 31 

in-situ and ex-situ. To aid conservation plans and to inform ex-situ conservation, we 32 

examined the genetic diversity of the cycad Cycas calcicola (Cycadaceae). Samples were 33 

collected from wild populations in the Litchfield National Park and Katherine regions in the 34 

Northern Territory, Australia. Additional samples were obtained from botanic garden plants 35 

that were originally collected in the Katherine region, Daly River and Spirit Hills in the 36 

Northern Territory, Australia. Using RADseq we recovered 2271 informative genome-wide 37 

SNPs, revealing low to moderate levels of gene diversity (uHe=0.037 to 0.135), very low 38 

levels of gene flow, and significant levels of inbreeding (mean FIS=0.491). Population 39 

structure and multivariate analysis showed that populations fall into two genetic groups 40 

(Katherine vs Litchfield + Daly River + Spirit Hills). Genetic differentiation was twice as high 41 

between populations of the Katherine and Litchfield regions (FST~0.1) compared to within 42 

these two regions (FST~0.05). Increasing population fragmentation together with high levels 43 

of inbreeding and very little gene flow are concerning for the future adaptability of this 44 

species. The results indicated that the ex-situ collections (1) had significantly lower genetic 45 

diversity than the wild populations, and (2) only partly capture the genetic diversity present, 46 

because the Litchfield National Park populations are not represented. We recommend that 47 

ex-situ collections be expanded to incorporate the genetic diversity found in Litchfield 48 

National Park, and that in-situ populations from the Katherine and Greater Litchfield regions 49 

be conserved as separate management units.  50 

 51 

Keywords: RADseq, next generation sequencing, population genetics, genomics, 52 

Cycadaceae, Cycadales, Cycas, ex-situ conservation, in-situ conservation. 53 

 54 

 55 
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Introduction 99 

 100 

The risk of extinction for plant species is increasing worldwide due to habitat fragmentation, 101 

climate change, land clearance, competition with invasive species and, in some cases, over-102 

collection (Vilà et al. 2011; Newbold et al. 2016). The conservation of native plant 103 

populations is, therefore, becoming ever more important to help preserve biodiversity (Hefley 104 

et al. 2016). Conservation genetics provides a framework to guide both conservation and 105 

restoration to help minimise the extinction risk of species (Frankham et al. 2004; Kramer & 106 

Havens 2009) with the aim of determining if populations contain enough genetic variation for 107 

adaptation, expansion, and re-establishment (Hedrick & Miller 1992; Paz-Vinas et al. 2018; 108 

Yoder et al. 2018). Conservation genetics has also informed many in-situ conservation plans 109 

by inferring the overall dynamics of populations, such as decreases in population size, past 110 

bottlenecks, and sex-specific gene flow (Ahrens et al. 2017; Zhang et al. 2018), and has 111 

been used to identify populations with high levels of genetic diversity as conservation 112 

priorities (Drury et al. 2017; Hou et al. 2018; Rodríguez-Rodríguez et al. 2018; Wu et al. 113 

2020). 114 

 115 

Cycads are at the highest risk of extinction of any plant group (Donaldson 2003). Their 116 

leaves, sap, and seeds are poisonous to livestock (Norstog & Nicholls 1997), which has led 117 

to the clearing of cycads from arable land in order to prevent accidental poisoning (Hall & 118 

McGavin 1968; Hall & Walter 2014). Cycads are also highly prized in horticulture, with some 119 

species being sold for thousands of US dollars (Donaldson 2003). The ornamental appeal of 120 

cycads has generated a great demand on the world market, which has led to over-collection 121 

and illegal removal from the wild (Pérez-Farrera et al. 2006; Torgersen 2017). Many cycad 122 

populations have declined in size (González-Astorga et al. 2008; Shuguang et al. 2006; 123 

Octavio-Aguilar et al. 2009; Da Silva et al. 2012; Cabrera-Toledo et al. 2012), with many 124 
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species surviving in small and fragmented populations with low genetic diversity (Long-Qian 125 

et al. 2004; Meerow et al. 2012), especially in Africa (Ekué et al. 2008; Da Silva et al. 2012) 126 

and North America (Cabrera-Toledo et al. 2010). However, genetic diversity in cycads is not 127 

always correlated with population size; for example, small and isolated populations of Cycas 128 

multipinnata C.J.Chen & S.Y.Yang were found to have high levels of genetic diversity (Gong 129 

et al. 2014). This is likely to be due to the long generation times in cycads delaying the 130 

genetic effects of inbreeding and bottleneck effects (González-Astorga et al. 2008; Cibrián-131 

Jaramillo et al. 2010; James et al. 2018).  132 

 133 

Ex-situ living plant collections are a safeguard for species threatened with extinction, and 134 

help to preserve their genetic diversity (Dosmann 2006; Cibrian-Jaramillo et al. 2013). The 135 

Ex-situ conservation of plants is carried out either through the use of seed banks or by 136 

growing plants in botanic gardens, either of which have the potential to replenish depleted 137 

natural populations though reintroductions (Fant et al. 2016; Volis 2017). Of these, seed 138 

banks have the advantage of being able to store a large number of individuals in a relatively 139 

small space, making them more cost- and space-efficient in the long term (Hamilton 1994), 140 

and giving them a higher probability of containing greater genetic diversity compared to living 141 

plant collections (Schoen and Brown 2011). However, seed banks are not an option for 142 

cycads, because their seed are recalcitrant and only viable for about one year, making long 143 

term seed storage very challenging (Calonje et al. 2011; Mondoni et al. 2011; Nadarajan et 144 

al. 2018). This means that living plant collections are at present the only option to conserve 145 

cycads ex-situ. As the number of living individuals that can be held in ex-situ collections is 146 

significantly lower compared to seeds, these individuals must be carefully selected based on 147 

the genetic diversity of the species and the distribution of genetic diversity among 148 

populations (Hurka 1994; Hoban et al. 2020). Additionally, although different species within a 149 

genus may have similar traits, they may have different patterns of genetic diversity due 150 

differences in population size or range. Therefore, they may require different collection sizes 151 
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to safeguard their genetic diversity in ex-situ collections (Hoban et al. 2020). 152 

 153 

Cycas L. is the largest extant genus of Cycadales consisting of 117 currently recognised 154 

species (Calonje et al. 2020), and occurs throughout Madagascar, Asia to Indonesia, 155 

Australia and New Caledonia (Chaw et al. 2005). Australia has many large and undisturbed 156 

populations of Cycas (Liddle 2009), but little is known about their genetic diversity. Of the 38 157 

Cycas species endemic to Australia, the only species represented by a conservation genetic 158 

study is Cycas megacarpa K.D.Hill (James et al. 2018). Populations of this species in 159 

Queensland (Australia) showed low to moderate levels of gene diversity, which did not 160 

correlate with population size. There was little genetic differentiation among populations over 161 

broad geographic regions, perhaps because historical geneflow was detected (James et al. 162 

2018). 163 

 164 

Cycas calcicola Maconochie is an endemic Australian cycad species (Figure 1) with 165 

populations that are believed to be largely undisturbed. The populations occur in four main 166 

areas, all within the Northern Territory in Australia: Daly River (>7000 plants), Spirit Hills 167 

(>5000), Litchfield National Park (>5000) and Katherine region (> 1500) [population sizes 168 

based on estimates from the Parks and Wildlife Commission, 1994, 1995 and 1996; cited in 169 

Liddle (2009)]. The most recent IUCN Red List conservation assessment for C. calcicola was 170 

carried out in 2010 and classified this species as Least Concern due to the size of the 171 

populations (IUCN 2019). However, there is evidence of recent population contraction which 172 

has caused disjunctions between some populations due to increased burning, and habitat 173 

clearing for farmland or roads. In particular the populations in the Katherine region show 174 

evidence of a decline in the number of individuals due to uncontrolled over-collection and fire 175 

damage (Liddle 2009). For these reasons the IUCN assessment of this species is in need of 176 

updating and it is likely that the conservation prospects for C. calcicola have deteriorated in 177 

the last ten years. 178 
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 179 

Here we aim to determine the levels of genetic diversity of Cycas calcicola populations 180 

throughout its distribution to answer the following questions: (1) How is genetic diversity 181 

distributed among populations? (2) how much gene flow is there between populations and 182 

regions? (3) is genetic diversity in wild C. calcicola populations captured by existing ex-situ 183 

collections? 184 

 185 

Materials and methods 186 

 187 

Study species. All known Cycas calcicola populations occur in large but disjunct populations 188 

in four main areas in the Northern Territory (mostly): (1) Litchfield region (includes all 189 

populations in the Litchfield National Park), (2) the Daly River, (3) Spirit Hills conservation 190 

site (on the border of Northern Territory and Western Australia) and (4) Katherine region 191 

(includes populations from Katherine and the surrounding area) (Figure 2) (Hill 1996; Jones 192 

2002). This species usually occurs on or near limestone in open bush or rocky outcrops. 193 

Cycas calcicola has an arborescent trunk typically ≤ 5 m in height, and is easily distinguished 194 

from other Australian Cycas species by its dark green leaflets with recurved margins and 195 

leaflets covered in silvery-grey hairs (Hill 1996). Like other cycads, it is dioecious and likely to 196 

be insect pollinated (Kono & Tobe 2007) although the pollinators of this species have not yet 197 

been documented (Liddle 2009). Some C. calcicola populations occur in close proximity 198 

(within 10 km) to Cycas armstrongii Miq., which is known to be pollinated by two species of 199 

beetle in the Tenebrionidae (Ornduff 1992). Although C. calcicola is not known to hybridise 200 

with C. armstrongii it is likely that the species share pollinators due to similar phenological 201 

patterns (Liddle 2009). Seed dispersal distances of Cycas armstrongii growing in the 202 

Northern Territory are rarely greater than 3 m from a mother plant (Watkinson & Powell 203 

1997), and it is likely that C. calcicola seeds disperse similar distances.  204 
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 205 

Sampling strategy. Silica-dried leaflets of C. calcicola were collected from wild populations 206 

growing in Litchfield National Park and the Katherine region in the Northern Territory, 207 

Australia (Table 1). Populations were selected based on the collection sites of herbarium 208 

specimens recorded online using The Australasian Virtual Herbarium 209 

(https://avh.chah.org.au), accessed 12th January 2015). A total of 60 individuals were 210 

sampled from six populations: three populations from Litchfield National Park and three from 211 

the Katherine region (Figure 2, Table 1). For each population, ten individuals were sampled 212 

from plants of varying ages, but where possible bearing microsporangiate strobili or 213 

megasporophylls. In addition, a further 13 samples were obtained from all known individuals 214 

cultivated in ex-situ collections: George Brown Darwin Botanic Garden (Darwin, Northern 215 

Territory, Australia) and Montgomery Botanical Center (Miami, Florida, USA). The ex-situ 216 

botanic garden material represented plants of known wild origin from Katherine (n=7 from 217 

type population Katherine TT), Daly River (n=4), and Spirit Hills (n=2) (Note: there was no 218 

known individual in botanic garden collected from Litchfield National Park). In addition to the 219 

tissue sampling, we also recorded basic population demographics for each sampled 220 

population (Table 1). 221 

 222 

DNA extraction and quantification. Approximately 0.05 g of silica-dried leaflets were 223 

ground to a fine powder using a TissueLyser (Qiagen, Hilden, Germany). When present in 224 

large amounts (common with C. calcicola), trichomes were removed using a wire brush to 225 

improve DNA yield. High molecular weight genomic DNA was extracted using a Qiagen 226 

DNeasy Plant DNA Extraction Mini Kit (Qiagen, Hilden, Germany). DNA extractions were 227 

quantified using an Invitrogen Qubit fluorometer (3.0 BR DNA assay; Invitrogen, Life 228 

Technologies, Carlsbad, CA, USA) with a target concentration of 17 µg/mL (enough to obtain 229 

500 ng within 42 µL of solution); any sample that yielded less than 17 µg/mL was either re-230 

extracted or concentrated using a 1:1 ratio of Agencourt AMPure XP sample purification 231 
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beads (Beckman Coulter, Inc.) by combining multiple extractions from the same sample. 232 

 233 

DNA normalisation and restriction digest reaction. For a full protocol, see Clugston et al. 234 

(2019). First, genomic DNA was normalised to a concentration of 500 ng in 42 µL total 235 

volume (0.01 µg/mL). Second, 5 µL of NEB 10x CutSmart buffer (New England Biolabs, 236 

Ipswich, MA) and 1 µL of Bovine Serum Albumin (BSA) was added to each well. Samples 237 

were then held at 4°C for a minimum of five hours before adding restriction enzymes—this 238 

five hour of incubation aided in the cutting action of the restriction enzymes. Next, double 239 

digest reactions were carried out using 1 µL each of the restriction enzymes EcoR1-HF and 240 

Mse1. Reactions were then placed into a thermocycler for three hours at 37°C with a final 20-241 

minute enzyme deactivation step at 65°C. The reactions were checked on a 2% agarose gel 242 

for quality of digestion. Last, reactions were cleaned using 1.8:1 ratio of AMPure XP beads to 243 

sample (90 µL of AMPure XP beads to 50 µL of digested DNA) and quantified using a Qubit 244 

(3.0 HS DNA assay, Invitrogen, Life Technologies, Carlsbad, CA, USA). 245 

 246 

Library preparation. Libraries were prepared using an Illumina TruSeq nano high-247 

throughput dual index library preparation kit (Illumina Inc., CA, USA). We followed the ezRAD 248 

v3 modified protocol (Toonen et al. 2013) using half of the recommended volumes of the kit 249 

to save costs (Clugston et al. 2019). Following Clugston et al. (2019), the final steps of library 250 

preparation were modified from the ezRAD protocol by modifying the final bead clean with a 251 

0.8:1 ratio of AMPure XP beads to remove adapter dimer. The libraries were validated using 252 

a LabChip, cleaned using a ratio of 0.9:1 AMPure XP beads, and quantified using a Qubit 253 

high sensitivity kit. Libraries were then normalised to a concentration of 10 nM, after which 5 254 

µL of each library was pooled for sequencing. 255 

 256 

Sequencing. Following Clugston et al. (2019), we aimed to capture ~1 GB of sequence data 257 

per sample (in a run of 95 libraries including 73 samples of C. calcicola). Our goal was to 258 
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obtain adequate coverage of the large genome of C. calcicola to ensure a good read depth to 259 

improve SNP calling accuracy during de-novo assembly. Sequencing was completed using 260 

an Illumina NextSeq 500, with 150 bp paired-end high throughput reagents kit (HT) on a 261 

single flow cell, spiked with 10% PhiX sequencing control V3.  262 

 263 

Bioinformatics  264 

Quality control and filtering of sequence reads. The NextSeq 500 generated eight raw 265 

fastq files for each sample: four forward files and four reverse files. For downstream analysis, 266 

the four forward files were combined into one single fastq file, and the four reverse files into 267 

another. Illumina reads were assessed for quality using FastQC 0.11.4 (Andrews et al. 268 

2014). Trimmomatic 0.36 (Bolger et al. 2014) was used to filter reads according to their 269 

quality, remove Illumina adapter sequences and cut sites (the first six base pairs of reads), 270 

and then crop reads to 120 bp in length (because reads dropped in quality after 120 bp). A 271 

sliding window approach was used to remove low quality reads with a ‘PhredQ score’ less 272 

than 20, and all reads less than 50 bp were discarded.  273 

 274 

Assembly of RADseq data. De novo assembly of the paired-end reads was performed with 275 

ipyrad 0.7.18 (Eaton & Overcast 2020) using a high-performance online instance with 276 

Amazon Web Services through the California Academy of Sciences. For ipyrad, various 277 

settings were tested following guidance from the ipyrad development team. In ipyrad most 278 

parameters were set to default, except that bases with a ‘PhredQ score’ less than 30 were 279 

converted to 'N’, reads with 15 ‘uncalled bases’ were discarded, and ‘data type’ was set to 280 

‘pairgbs’. Reads were further filtered for adapter sequences, adapters were trimmed, and 281 

reads were discarded if they were less than 40 bp after trimming.  282 

 283 

The maximum number of uncalled bases in consensus sequences was set to 10 in both 284 

forward and reverse reads. The minimum depth for statistical base calling and majority rule 285 
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base calling were both set to ‘6’ and the setting for ‘maximum shared heterozygotes per 286 

locus’ was left at 0.5 (default) to reduce the effects of paralogs. The ‘maximum heterozygotes 287 

in consensus sequences’ were set at eight for both forward and reverse sequences, and the 288 

‘minimum number of samples per locus’ was set to 36, so each SNP would be present 289 

across a minimum of 36 samples, which corresponded to at least 50% of the samples (one 290 

sample failed to meet quality threshold for assembly). This ensures effective population 291 

genotyping (Shafer et al. 2016). The maximum SNPs per locus was set to ‘20’ and the 292 

maximum number of indels per locus to 8 forward and 8 reverse reads. 293 

 294 

Population genetic statistics. We used GenALEx 6.5 (Peakall & Smouse 2012) to estimate 295 

the number of alleles (Na), the effective number of alleles per locus (Ne), observed 296 

heterozygosity (Ho), expected heterozygosity (He), and unbiased expected heterozygosity 297 

(uHe=2n/(2n-1)*He); the latter has been shown to be a better estimator of gene diversity if 298 

sample numbers are small (Nei 1978). Level of genetic differentiation among and between 299 

populations was inferred using an analysis of molecular variance (AMOVA), and pairwise FST 300 

(the fixation index) values were calculated with 999 permutations and the ‘Codom-Allelic’ 301 

option selected, with data being portioned for nine populations and four regions (Table 1), 302 

also using GenALEx. FIS (the inbreeding co-efficient) was calculated using the R package 303 

diveRsity 1.9.90 (Keenan et al. 2013).  304 

 305 

Population structure analysis. STRUCTURE v.2.3.4 (Pritchard et al., 2000) was used to 306 

explore the genetic structure and identify for the most likely number of distinct genetic 307 

groups. STRUCTURE uses a Bayesian algorithm to cluster samples into K distinct genetic 308 

groups by minimizing deviations from Hardy–Weinberg and linkage equilibrium within each 309 

cluster. The analyses were carried out using only unliked markers (i.e., one SNP per RAD 310 

tag was randomly chosen for the analysis) for K=1–5 using 500,000 Markov chain Monte 311 

Carlo (MCMC) iterations after a burnin of 20,000 steps. Each analysis was repeated 10 times 312 
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for each value of K. If genetic clusters have widely different sample sizes (unbalanced 313 

sampling), then STRUCTURE has been shown to yield poor estimates of both individual 314 

ancestry and K, if the default settings are used (Wang, 2017). Therefore, we followed Wang’s 315 

(2017) recommendation and selected the alternative option (‘Separate α for each 316 

Population’) allowing a separate α, which is a measure of the relative admixture level 317 

between populations  318 

 319 

To identify the most likely number of distinct genetic groups (K), two approaches were 320 

implemented using the software Kfinder2 (Wang 2019). First, we used the ΔK statistic 321 

(Evanno et al., 2005), which is based on the rate of change in the log probability of data 322 

between successive K values. Secondly, we employed the parsimony index, termed PI 323 

(Wang 2019), which aims to identify the number of populations (K) that consistently yield the 324 

minimal admixture estimates of sampled individuals. Additionally, to test for a correlation 325 

between the genetic (FST/(1 – FST) (Rousset 1997) and the log transformed geographic 326 

distance, a Mantel test was carried out using GenALEx 6.5. 327 

 328 

To visualise the genetic relationships among populations, a Discriminant Analysis of Principal 329 

Components (DAPC) was carried out using adegenet 2.1.0 (Jombart & Ahmed 2011) in R (R 330 

Core Team, 2019). DAPC shows the number genetic clusters (groups) of samples by using a 331 

combination of linear variables (in this case alleles), which have the largest between-group 332 

and smallest within-group variance, and provides group membership probabilities for each 333 

individual in a population based on the number of retained discriminant functions in the 334 

DAPC (Jombart & Ahmed 2011). The optimal number of clusters in the data and the number 335 

of principal components (PCAs) to be retained for discriminate analysis were determined 336 

using the ‘find.clusters’ command in combination with the optimal a-score. A DAPC scatter 337 

plot was used to depict the genetic relationship between individuals. 338 

 339 
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Gene flow analysis. Gene flow was estimated with the software BA3-SNPS (Mussmann et 340 

al., 2019), which is a modification of BayesAss 3.0.4 (Wilson and Rannala, 2003) that 341 

permits handling of large SNP datasets generated via methods such as RADseq. BayesAss 342 

uses individual multi-locus genotypes and a Bayesian Markov chain Monte Carlo (MCMC) 343 

approach to estimate the rates of recent immigration (over the last several generations) 344 

among populations. The BA3-SNPS method rests on fewer assumptions compared to other 345 

estimators of long-term gene flow like migrate-n (Beerli, 2006) and can be applied to non-346 

stationary populations that are far from migration-drift and Hardy-Weinberg equilibrium 347 

(Wilson and Rannala, 2003). Migration rates (m), which are interpreted as the proportion of 348 

migrants per generation in one population that are derived from another population, are 349 

assumed to be low in BayesAss. MCMCs were run for 50 million generations, with a burnin 350 

of five million, sampling every 1000 generations. The mixing parameters for migration rates 351 

(m), allele frequencies (a) and inbreeding coefficients (f) were optimised using BA3-SNPs-352 

autotune (m=0.2125, a=0.775, f=0.0625) to achieve the recommended acceptance rates 353 

between 0.35 and 0.45 (Mussmann et al., 2019). Five independent replicates with different 354 

random starting seeds were carried out, assessing convergence of the combined and 355 

individual runs using Tracer v1.5 (Rambaut and Drummond, 2009). Gene flow was estimated 356 

among all six populations from the Litchfield and Katherine regions using the full dataset of 357 

2271 SNPs.  358 

 359 

Results 360 

 361 

Sequencing and de-novo assembly. After filtering the raw data, the number of reads that 362 

remained per sample ranged from 1,296,034 to 4,650,176. From the original 73 samples 363 

sequenced only 72 samples were processed further as one sample from Katherine CDU2 did 364 

not pass quality control (uploaded to NCBI GenBank BioProject ID: PRJNA746394 see 365 
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Supplementary Table 1). De-novo assembly of the reads using ipyrad generated 1,296,034 366 

to 3,037,283 (average cluster depth = 1552682.44) sequence clusters per sample, with 367 

22,806 to 78,631 (average cluster depth = 42124.16) high depth clusters (defined as 368 

containing six or more reads). Considering only loci that were present in at least 50% of all 369 

individuals, the final output from ipyrad generated 2,271 SNPs (see Supplementary Table 1).  370 

 371 

Population genetic statistics. Unbiased gene diversity (uHe) ranged from uHe=0.037 in 372 

Spirit Hills to uHe=0.135 in Litchfield NP1, with a mean of uHe=0.095 (Table 2). Observed 373 

heterozygosity (Ho) ranged from Ho=0.028 in both Spirit Hills and in Daly River (both ex-situ 374 

conservation populations) to Ho=0.059 in Litchfield NP1, with a mean of Ho=0.039. These 375 

results indicate low to moderate levels of diversity in C. calcicola. The inbreeding coefficient 376 

(FIS) ranged from FIS=-0.244 in Spirit Hills to FIS=0.605 in Katherine CDU1 with an average 377 

across all populations of FIS=0.409 (0.015 – 0.425, 95% CI) (Table 2). Levels of inbreeding 378 

were highest in the ex-situ conservation populations.  The Mantel test revealed a significant 379 

correlation (R2=0.42, P=0.000) between the genetic distance (FST /(1 – FST)) and the log 380 

transformed geographic distance (see Supplementary Figure 1). 381 

 382 

Population differentiation. Analysis of molecular variance (AMOVA) showed low but 383 

significant (P=0.001) levels of differentiation among regions (Litchfield, Katherine, Daly River 384 

and Spirit Hills) (PhiST=6%), with an equal amount of genetic differentiation among 385 

populations (PhiST=6%, Table 3). Additionally, pairwise FST values at the regional level (Table 386 

4) showed that genetic differentiation was greatest when comparing populations from 387 

Katherine with those from the Greater Litchfield region (FST~0.1), and this was about twice as 388 

high as within regions (FST~0.05). At the population level, genetic differentiation was highest 389 

among Spirit Hills and all other populations (FST~0.2) and lowest among populations within 390 

regions (FST~0.05, Table 4). 391 

 392 
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Population structure analysis. Both the ΔK statistic and parsimony index suggested that 393 

the most likely number of genetic groups was K = 2 (ΔK = 1833). Populations from the 394 

Litchfield and Katherine regions formed separate genetic clusters with little admixture (Figure 395 

3). Spirit Hills and Daly River plants were mostly genetically closer to those from Litchfield 396 

National Park but showed some admixture with the Katherine cluster. Discriminant analysis 397 

of principal components (DAPC) equally resolved two (K=2) genetic groups, i. e. Litchfield + 398 

Spirit Hills + Daly River, and a second group containing Katherine populations (greater 399 

Katherine region) (Figure 4).  400 

 401 

Gene flow analysis. The five independent BA3-SNPs analyses each yielded effective 402 

sample sizes (ESS) that were well above 40,000 for all pairwise migration estimates, 403 

indicating adequate sampling of the posterior distribution. All runs resulted in nearly identical 404 

very low migration rates which were not significantly different from zero (Table 5). 405 

 406 

Discussion 407 

In this study, we investigated levels and patterns of genetic diversity of Cycas calcicola using 408 

genomic data from RADseq, and assessed if ex-situ collections represent the genetic 409 

diversity of wild populations. Generally, we found low to moderate levels of genetic diversity 410 

in populations of C. calcicola and evidence of inbreeding, with genetic differentiation between 411 

populations being low, but greater between regions than between populations. We also 412 

found that although C. calcicola is represented in ex-situ botanic garden collections, essential 413 

genotypes were missing, and ex-situ collections do not represent the genetic diversity of the 414 

wild populations.  415 

 416 

Genetic diversity. Our results indicated that C. calcicola had low levels of gene diversity in 417 

both wild (uHe = 0.100 to 0.135, Table 2) and ex-situ populations (uHe = 0.037 to 0.085, 418 
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Table 2). Comparatively, Cycas megacarpa K.D. Hill from Queensland, the only other 419 

Australian Cycas species whose genetic diversity has been investigated, has genetic 420 

diversity nearly three times higher than that of C. calcicola (mean He = 0.269 based on 12 421 

nuclear microsatellite markers; James et al. 2018). Similarly, Cycas simplicipinna (Smitinand) 422 

K.D.Hill populations from Laos and China had a mean He = 0.447 based on 16 SSR markers 423 

(Feng et al. 2014). However, meaningful comparisons between studies using different 424 

genetic markers can be difficult to make (Peakall et al. 2003; Hodel et al. 2017; Sunde et al, 425 

2020), and might be questionable even if the same type of genetic markers were used but 426 

did not screen homologous loci. In particular, gene diversity (He) estimates using 427 

microsatellites can be two to three times higher than estimates using SNPs (Fischer et al. 428 

2017; Hodel et al, 2017; Lemopoulos et al. 2019, Sunde et al. 2020). For example, 429 

Zimmerman et al. (2020) found that estimates of Ho and He in the Gunnison sage-grouse 430 

(Centrocercus minimus) were two to three times higher using microsatellites compared to 431 

SNPs. This is probably due to the high number of alleles per microsatellite locus which 432 

increases He, i. e. the likelihood of drawing two random alleles from a population that are not 433 

identical by descent. Assuming that microsatellite He values are generally two to three times 434 

higher than SNP He values suggests that the levels of genetic diversity are probably 435 

comparable between C. calcicola and C. megacarpa/C. simplicipinna. A recent study on 436 

Dioon merolae De Luca, Sabato & Vázq. Torres in Mexico also using RADseq data 437 

(Gutiérrez‐Ortega et al., 2020) found even lower levels of gene diversity (He = 0.027 to 438 

0.076), indicating that low levels of gene diversity are present in other cycad species as well. 439 

 440 

Many Australian cycad populations are considered to be large and healthy (Liddle 2009). 441 

Although Cycas megacarpa (occurring in Queensland, Australia) has sizeable populations 442 

(>250 or even >500 individuals), there are also many which have fewer than 50 individuals 443 

(James et al. 2018). Populations of C. calcicola show evidence of population contraction 444 

(Liddle 2009), perhaps due to the frequent occurrence of anthropogenic fires, which have 445 



 18 

been a long-time feature of the Australian landscape (Andersen et al. 2005). It is likely that 446 

population sizes have decreased through a range of anthropogenic activities since regional 447 

population sizes of C. calcicola were estimated about 25 years ago by Hill (1996). For 448 

example, based on herbarium records (AVH 2019) and our field-observations (Clugston and 449 

Nagalingum, pers. obs.), populations of C. calcicola are likely to be far more fragmented than 450 

has been assumed. During fieldwork we noted that populations known from herbarium 451 

records in areas between the two major regions (Litchfield and Katherine) no longer exist. 452 

Additionally, we found considerable variation in the number of individuals in each population. 453 

Populations at the Charles Darwin University campus in Katherine (Katherine CDU1 and 454 

CDU2) and Tolmer Falls (Litchfield NP Tolmer) in Litchfield National Park are sizeable (>200 455 

individuals) and showed evidence of recent recruitment (Table 1), but other populations in 456 

the Katherine (Katherine TT = >100 individuals) and Litchfield (Litchfield NP1 and Litchfield 457 

NP2 = >25 individuals) regions were smaller and did not show evidence of recent 458 

recruitment.  459 

 460 

It is concerning that most of the sampled populations showed significant levels of inbreeding 461 

(FIS ranged between 0.456 and 0.605; Table 2). The exception to this was the ex-situ 462 

collections from Sprit Hills with FIS=-0.244. However, as only two individuals were available 463 

from this population this is unlikely to be a reliable estimate. Cycad species are dioecious 464 

and, therefore, obligate outbreeders, but biparental inbreeding (mating between close 465 

relatives) seems to occur at an appreciable frequency according to our FIS results. This is not 466 

surprising given that (1) the recorded seed dispersal distances in Cycas armstrongii (and 467 

other Cycas species) in the Northern Territory are rarely greater than 3 m (Watkinson & 468 

Powell 1997), and (2) that only a few individuals seem to participate in any given 469 

reproductive event for cycads (Vovides et al. 1997; Suinyuy et al. 2009; Terry et al. 2012) . 470 

Significant levels of inbreeding have also been reported in other cycad species with values 471 

ranging between 0.122 to 0.483 (Keppel et al. 2002; Cibrián-Jaramillo et al., 2010). 472 
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Inbreeding leads to a reduction in genetic fitness (inbreeding depression), which is common 473 

in many angiosperms (Charlesworth & Charlesworth 1987; Mahy & Jacquemart 1999; Vogl 474 

et al. 2002; Bellusci et al. 2009; Ruhsam et al. 2010; Sletvold et al. 2013) and gymnosperms 475 

(Kärkkäinen and Savolainen 1993; Durel et al. 1996; Williams & Savolainen 1996). 476 

Furthermore, dioecy is likely to maintain lethal inbreeding factors in a species resulting in 477 

their slow elimination from the gene pool (Willi et al., 2006). The low recruitment in some C. 478 

calcicola populations could, therefore, be due to the effects of early inbreeding depression 479 

manifesting in poor germination rates and seedling viability. Unfortunately, information on 480 

inbreeding depression is not available for C. calcicola. 481 

 482 

Population differentiation. The small and fragmented populations of many cycad species 483 

(Zheng et al. 2017), has resulted in reduced gene flow and high levels of genetic 484 

differentiation between populations (Keppel et al. 2002; Meerow & Nakamura 2007; Keppel 485 

et al. 2008; Cibrián-Jaramillo et al. 2010; Meerow et al. 2012; Calonje 2013). This is 486 

consistent with limited seed-dispersal, as there are few seed dispersal agents for cycads, 487 

and seeds rarely disperse more than 3 m (Watkinson & Powell 1997; Hall and Walter 2013). 488 

The same applies to pollen-dispersal, as cycad pollinators rarely travel distances greater 489 

than 100 m (Norstog & Fawcett 1989). The results from our gene flow analysis indicated that 490 

there has been very little, or possibly no recent gene flow among populations (Table 5), 491 

which is likely due to the geographic distance between some populations (Figure 2). We also 492 

found a significant correlation between genetic and geographic distance, indicating that 493 

populations that are geographically closer are genetically more similar, which is to be 494 

expected given the high genetic differentiation among populations and substantial biparental 495 

inbreeding within them.  496 

 497 

The genetic structure of the populations indicates the existence of two distinct genetic 498 

groups, namely Katherine (Katherine CDU1 + Katherine CDU2 + Katherine TT + Katherine 499 
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CUL) and ‘Greater Litchfield’ (Litchfield NP1 + Litchfield NP2 + Litchfield NP Tolmer + Daly 500 

River + Spirit Hills) (Figures 3 and 4). Although pairwise FST values (Table 4) were twice as 501 

high between regions (Katherine and Greater Litchfield, FST~0.1) compared to within regions 502 

(FST~0.05), the FST values seem surprisingly low. Higher differentiation was detected 503 

between Spirit Hills and all other populations (FST~0.2), as well as between Daly River and 504 

most other populations (FST~0.15). However, this is based on only a few assayed individuals 505 

from Spirit Hills (n=2) and Daly River (n=4), which are held in ex-situ collections. Although it 506 

has been shown that RADseq using large number of SNPs (>1500) accurately captures the 507 

genetic diversity of populations if only three to eight individuals per population are screened 508 

(Qu et al. 2019, Nazareno et al. 2017). The average sample size (number of individuals) per 509 

locus for Spirit Hills (n=0.89) and Daly River (n=1.81) is below this number due to missing 510 

data, which indicates that that the results need to be interpreted with caution.  511 

 512 

Why do we not see higher levels of differentiation between populations? One answer to this 513 

question is probably the recency (~100 years) of fragmentation events (Mankga & Yessoufou 514 

2017), the long generation times and the low mutation rates in cycads (Chiang et al. 2009; 515 

Mankga & Yessoufou 2017). For example, in some species of South African Encephalartos 516 

Lehm., the minimum generation time is about 60 years (Da Silva et al. 2012). If this is also 517 

the case for C. calcicola, then no more than two to three generations would have passed 518 

since fragmentation has had an impact on the population dynamics of this species. As a 519 

comparison, populations of Dioon merolae De Luca, Sabato & Vázq. Torres 1981 exhibited 520 

similar levels of geographic disjunction to that found in C. calcicola, but with greater levels of 521 

differentiation among populations (FST = 0.184 to 0.647). As cycads can live hundreds of 522 

years (Norstog and Nichols 1997), this means that our assayed individuals (mostly adults, 523 

but also 4-5 juveniles) are likely to show the genetic signature of a time when populations of 524 

C. calcicola were much less fragmented. To assess whether fragmentation has an impact on 525 

the genetic diversity of a species, comparisons between cohorts of adults and seedlings are 526 
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usually carried out. For example, analyses of fragmented Primula vulgaris Huds. populations 527 

indicated that seedlings had significantly lower genetic diversity (He seedlings = 0.436 vs. He 528 

adults = 0.535) and showed higher genetic differentiation between populations (FST seedlings 529 

= 0.136 vs. FST adults = 0.060) than mature plants (Van Geert et al. 2008). Similarly, in 530 

populations of Myrtus communis L., seedlings showed lower genetic diversity when 531 

compared to mature plants due to population fragmentation (González‐Varo et al. 2010). 532 

However, the long generation time and longevity of C. calcicola could mean that an effect of 533 

recent fragmentation on parameters such as He and FST might be difficult to detect even if 534 

seedling-adult comparisons are carried out (Kettle et al 2007).  535 

 536 

Do ex-situ collections represent wild diversity? Ex-situ living plant collections of botanic 537 

gardens are critical in the conservation of species, as they can directly help to conserve the 538 

genetic diversity of natural populations and safeguard a species from extinction (Fant et al. 539 

2016). However, a recent study highlighted that the percentage of extant genetic diversity 540 

conserved ex-situ varied between 40% to 95% for the 11 surveyed taxa (Hoban et al 2020), 541 

indicating that some ex-situ collections may not be sufficient to preserve the total genetic 542 

diversity. We screened all 13 C. calcicola individuals that are currently held within ex-situ 543 

collections to establish whether these collections capture the genetic diversity present in the 544 

wild. These individuals were from Katherine, Daly River, and Spirit Hills (Table 1). Based on 545 

our STRUCTURE analysis (Figure 3), all assayed populations of C. calcicola belong to one 546 

of two genetic groups— one group comprising populations of the Katherine region and the 547 

other comprising populations from Greater Litchfield National Park region, Daly River and 548 

Spirit Hills. However, the DAPC analysis (Figure 4) further indicated that the Litchfield 549 

National Park populations form a distinct cluster separate from those of Daly River and Spirit 550 

Hills. As ex-situ collections do not contain individuals from any of the Litchfield National Park 551 

populations, a large and unique part of the genetic diversity of C. calcicola is currently not 552 

conserved. Litchfield National Park is a major stronghold for C. calcicola populations, 553 
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accounting for at least 5000 individuals of this species (Liddle 2009), and the absence of this 554 

region from ex-situ collections represents a significant conservation gap.  555 

 556 

Ex-situ botanic garden collections often represent only a subset of the genetic diversity found 557 

in wild populations (Li et al. 2002; Namoff et al. 2010; Cibrian-Jaramillo et al. 2013; Griffith et 558 

al. 2015; Hoban et al. 2020), which is also true for C. calcicola. Our results showed that gene 559 

diversity was lower in ex-situ collections compared to wild populations of C. calcicola (Table 560 

2). Although no wild populations were assessed from Daly River or Spirit Hills these results 561 

need to be interpreted with caution due to the small sample size in the ex-situ collection. 562 

Many of the cultivated samples originally collected as seeds and young plants (mostly the 563 

Montgomery Botanical Center samples) are from the Katherine region (CUL) and showed 564 

only slightly (albeit significantly) lower levels of gene diversity (uHe=0.085), when compared 565 

to each of the wild populations from the region (uHe=0.10 to 0.114, n=10), suggesting that 566 

genetic diversity is captured ex-situ for the Katherine Region. This is encouraging and is 567 

likely that augmenting ex-situ collections with perhaps just three or more individuals from 568 

Katherine would raise diversity levels of the ex-situ collection to levels comparable with that 569 

of assayed wild populations. In contrast, genetic diversity among the four ex-situ Daly River 570 

(uHe=0.061) collections was half as much as wild Katherine and Litchfield populations, and 571 

that for Spirit Hills (uHe=0.037, n=2) was even lower. However, due to missing data, the 572 

average number of samples screened per locus was only 1.8 in Daly River and 0.9 in Spirit 573 

Hills (Table 2), which might not be an accurate estimate of the genetic diversity despite the 574 

large number of SNPs (2271) used. For logistical reasons we were unable to collect samples 575 

from Daly River or Spirit Hills, but the most recent estimates suggest that they contain at 576 

least as many individuals (>7000 and >5000, respectively) as Litchfield (>5000) or Katherine 577 

(>1500) (Liddle 2009), hence, they could contain at least as much genetic diversity. It is clear 578 

that two or four ex-situ individuals from the largest known C. calcicola populations are very 579 

unlikely to capture a large part of the genetic variation found in the wild. Given the genetic 580 
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distinctiveness of Daly River (less so with Spirit Hills) populations in the DAPC (Figure 4), we 581 

suggest that ex-situ collections be expanded to incorporate more representatives from these 582 

regions.  583 

 584 

Differentiation of C. calcicola populations between regions was at least twice as high as 585 

within regions, so it is important to include individuals from multiple populations from each 586 

region in ex-situ collections. From a conservation perspective we recommend that each 587 

geographic region should be regarded as a separate conservation management unit, with ex-588 

situ collections consisting of around ten well-spaced individuals from each region. Given the 589 

short average dispersal distances of cycad pollen and seeds (Hall & Walter 2013), this would 590 

maximise the chance of collecting genetically diverse and unrelated individuals. Offspring 591 

produced by cross-pollinating these more or less unrelated individuals would have a lower 592 

risk of inbreeding depression and therefore increase the chance of successful reintroductions 593 

into the wild (Cohen et al. 1991). Without insight into the genetic diversity of ex-situ 594 

collections, inbreeding depression due to a narrow genetic base could become a problem 595 

among ex-situ collections, and any wild populations subsequently established from 596 

reintroductions (Enßlin et al. 2011). An added benefit of augmenting ex-situ collections is the 597 

greater number of specimens that will be accessible for scientific and horticultural research, 598 

ultimately aiding the study of physiological and reproductive factors that may have 599 

contributed to the decline of species like C. calcicola in the wild (Chen et al. 2012).  600 

 601 

Although botanic gardens represent safe sites for holding the genetic reserves of wild 602 

populations, conserving the species in botanic gardens does not address the processes that 603 

have affected the genetic diversity of C. calcicola in the first place. Our field observations and 604 

the results of this study suggest that the size of populations have been on the decline in 605 

recent years, which is not yet reflected on a genomic level. This means that the remaining 606 

populations are at risk of an increased loss of genetic diversity in the future and therefore 607 
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conservation plans need to factor in both in-situ and ex-situ reserves to ensure the survival of 608 

this species.  609 

 610 

Conclusions 611 

Here we have provided new insights into the genetic diversity of the cycad, Cycas calcicola. 612 

By screening samples from both in-situ wild populations and ex-situ botanic garden 613 

collections, our results suggested low to moderate levels of genetic diversity, with little recent 614 

gene flow and high levels of inbreeding in most populations. The results from this study are 615 

pertinent for the formulation and implementation of two key conservation strategies: (1) 616 

populations from Litchfield National Park, Daly River and Spirit Hills form a genetically 617 

distinct group and should be managed as a conservation unit separate from those of the 618 

Katherine Region; and (2) plants from Litchfield National Park are genetically differentiation 619 

from other regions and are absent from ex-situ collections. Consequently, we recommend 620 

that priority be given to the acquisition of genetically representative material from this region 621 

to aid in the future conservation of the species. Additionally, our results indicate that low 622 

genetic diversity could relate to reduced population size and fragmentation, which highlights 623 

the importance in understanding generic diversity of threatened and rare species in 624 

conservation management assessments. This work demonstrates that ad hoc collections 625 

may not successfully capture genetic diversity, and, furthermore, genomic analysis should be 626 

considered when developing conservation plans for Australian cycad species.  627 
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Figures and Tables 1361 
 1362 
Figure 1 Cycas calcicola populations growing in the wild in the Katherine region and 1363 
Litchfield National Park. (A) Large population of C. calcicola growing on sandstone in the 1364 
Litchfield National Park, Northern Territory. (B) Small group of C. calcicola growing on 1365 
limestone within the Katherine region. 1366 

Figure 2 Distribution of samples of C. calcicola in Northern Territory. Map of the 1367 
northern part of the Northern Territory, Australia showing sampling sites of wild (Litchfield 1368 
National Park and Katherine Region) and cultivated ex-situ conservation collections (Spirit 1369 
Hills Conservation Site (Cul.) and Daly River (Cul.), representing the entire range of the 1370 
species. Inset: sampling locations in Darwin region within Australia. Area of occurrence: 1371 
representing the extent of occurrence for each species based in herbarium specimen records 1372 
Australasian Virtual Herbarium (https://avh.chah.org.au).  1373 

Figure 3 STRUCTURE plot of Cycas calcicola populations. Plot representing 72 samples 1374 
from nine populations. The most likely number of genetic groups for the species was K=2 1375 
(DK = 1883) indicating two clusters within the data. Ex-situ cultivated populations = Katherine 1376 
CUL, Daly River and Spirit Hills. 1377 

Figure 4. DAPC graph of Cycas calcicola populations. Discriminant analysis of principal 1378 
components (DAPC) of nine C. calcicola populations. DAPC is a summary of 22 principal 1379 
components with three discriminate functions (K = 2) and a proportion of conserved variance 1380 
of 0.527. Inset: indicates the first axis of the DAPC. Ex-situ cultivated populations = 1381 
Katherine CUL, Daly River and Spirit Hills. Inset: shows the first axis of the DAPC, which 1382 
helps to demonstrate the separation between genetic groups. 1383 
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