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An analytical and numerical investigation into conductive-radiative energy transfers
in evacuated honeycombs. Application to the optimisation and design of ultra-high

temperature thermal insulation.

Thibaut Desguers∗, Adam Robinson

Institute for Energy Systems, School of Engineering, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United
Kingdom

Abstract

Ultra-high temperature thermal and latent energy storage technologies offer a potential solution to the decarbonisation of

the energy sector. However, uneconomical thermal energy losses are a barrier to their development and where significant,

their minimisation requires knowledge about the different modes of thermal transport and their interaction in a given

structure. In this paper, evacuated rectangular honeycomb structures are investigated as candidates for efficient ultra-

high temperature thermal insulation.

First, a theory is laid out along with its numerical implementation for the modelling of coupled non-linear conduction

and radiation in three-dimensional cuboid multi-media structures with rarefied gaseous and opaque or semi-transparent

solid media. The model is then applied to the study, optimisation and design of efficient ultra-high temperature thermal

insulation based on rectangular honeycomb structures.

A dimensionless number Nrc is defined and an analytical thermal analysis of rectangular honeycombs is developed which

correlates Nrc to the optimal geometry and equivalent thermal conductivity of a honeycomb insulator. A numerical

optimisation procedure is then presented and the correlations are validated, and thus constitute simple practical design

tools for honeycomb insulators. Finally, it is shown that with an appropriate choice of geometry and materials, thin-

walled honeycombs have the capacity to outperform existing high-temperature thermal insulation technologies with

thermal conductivities lower than 0.01 W/m/K at 1600K. In particular, a wall thickness of 50µm on a titanium alloy

honeycomb would suffice to outperform ceramic fibre insulation over its entire range of operating temperatures.

Keywords: Heat Transfer, Honeycomb, High temperature, Thermal insulation, Combined conduction and radiation,

Rarefied gas

1. Introduction

Today, high capacity energy storage remains one of the

major obstacles to a full-scale development and implemen-

tation of renewable energy technologies, without which

hundred-percent decarbonised electricity grid, power and

∗Corresponding author

Email address: thibaut.desguers@ed.ac.uk (Thibaut

Desguers)

heating integrated networks will not be achievable. Un-

fortunately, it would not be economically viable to rely

on current grid-connected storage technologies to provide

enough capacity to compensate for the inherent intermit-

tency of renewables, since most suffer from low energy

densities, low efficiencies, long-term degradation or incon-

venient deployment location requirements [1].

Ultra-high temperatures (UHT) (∼1800K) would ensure
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greater energy densities and allow heat engine extrac-

tion cycles to operate at higher efficiencies, consequently

improving the overall round-trip energy efficiency - see,

for example, an Ultra-High Temperature Thermal Stor-

age (UHTS) system presented by Robinson [2, 3] or

Datas’ UHT latent heat thermal store [4]. However with

higher operating temperatures come additional energy

losses which prove increasingly difficult to prevent as ra-

diative transfers become predominant, and efficient ultra-

high temperature technologies for thermal insulation are

needed.

Vacuum insulated panels can achieve thermal conductivi-

ties as low as 0.004 W/m/K at room temperature [5, 6].

However, they suffer from high cost, thermal bridging and

decreasing thermal properties through time [5], and they

are only operable at low temperatures typically encoun-

tered in building applications. Commercially available in-

sulating materials and technologies with a maximum ser-

vice temperature higher than 1200K include fire bricks,

vermiculite boards, silica-based microporous boards and

ceramic fibre blankets. Of all these, ceramic fibre insula-

tion has the highest operation temperature of up to 1673K,

and the best thermal performance as they exhibit high-

temperature (∼ 1400K) equivalent thermal conductivities

as low as 0.05W/m/K at about 13Pa [7]. This paper inves-

tigates evacuated honeycomb structures as potential can-

didates to both improve thermal performance at such tem-

peratures and raise the maximum operating temperature

to UHTS requirements with similar thermal performance.

The problem of radiative interchange within cavity or hon-

eycomb structures has gathered much attention for many

years. Early studies [8–12] focused on purely radiative

transfers within an opaque enclosure. Later investigations

accounted for conductive and convective transfers [13–15],

however decoupled models were used whereby the total

heat transfer is calculated as the sum of a purely radia-

tive and purely conductive (or convective) heat transfer.

This was later shown to greatly underpredict the global

heat transfer [16] and the coupling, first introduced by

Ref. [17], was later accounted for [16, 18]. The Radiative

Transport Equation (RTE) was then needed for the mod-

elling of opaque cavities with opaque obstacles and proved

to give satisfactory results in the case of grey materials

and a purely radiative heat transfer [19, 20]. The RTE

was then applied to semi-transparent materials in conjunc-

tion with conductive transfers [21, 22], albeit in a single-

medium structure and with a temperature-independent

thermal conductivity. The non-linear conduction equa-

tion was solved for the case of an emitting, absorbing and

scattering medium with non-grey properties [23] - however

the solution was developed in one-dimension for a single-

medium structure. Multi-media structures were later in-

troduced [24], however wall conduction was ignored, and

the gas thermal conductivity was considered constant. The

case of a multiple building-block was studied by Antar

[25] for opaque and grey walls, and solid conduction with

constant thermal conductivity (together with convective

transfer). More recently, a finite-element methodology

was applied to the coupled conductive-radiative problem

within cellular ceramics at high-temperature [26], however

the study was limited to the case where solid media are

opaque to thermal radiation.

To allow the study of honeycomb structures without these

limitations, this paper presents a methodology which

builds on the above-mentioned studies for the modelling

of coupled conduction and radiation in three-dimensional

complex rectangular multi-media structures with obsta-

cles and internal boundaries of any kind. Media may

be opaque or semi-transparent to thermal radiation with

temperature-dependent and non-grey thermal and opti-

cal properties, so that radiative and conductive transfers

may happen through participating (potentially rarefied)

gaseous and solid media alike. Two or more media may be

present, with multiple interfaces between them, and the

Radiative Transport Equation (RTE) is fully solved in all

participating media. To do so, the paper is organised as
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follows. The geometries are introduced in section 2, while

the theoretical model and its numerical implementation

are detailed in section 3. The model is then applied to the

study, optimisation and design of high-temperature ther-

mal insulation based on evacuated honeycomb structures

in section 4. The results are then summarised in section

5.

2. Geometries and materials

Variable load: Variable Temperature

Variable load: Fixed Temperature
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Figure 1: 2D-slice of example geometry with various boundary con-

ditions and heat transfers

The present model is developed for any three-

dimensional multi-media geometry consisting of a cuboid

cavity filled with a network of cuboid solid elements and

gas cells. All media may be opaque, semi-transparent or

transparent to thermal radiation. Applications of these

geometries may be seen in solar collectors, honeycombs,

gas furnaces, combustion chambers and thermal insula-

tion, the focus of this paper. In particular, this study

focuses on a rectangular honeycomb with rectangular cells

containing gas at low pressure as depicted in Fig.(1). The

dimensions and spatial distributions of cells and wall thick-

nesses are parameters that can be varied for the study,

design and optimisation of insulators based on this geom-

etry (which can be extruded into the paper to form the

third dimension. However the resulting profile may also

be made to vary along that dimension).

Note that for a given cross-section, a square-angled cell

has a smaller perimeter than a circular or hexagonal one,

resulting in a larger conductive path (and therefore con-

ductive resistance) from one side of the cell to the other.

Also, smaller angles or curved edges allow surface elements

on opposite sides of the cell to see each other (from a radia-

tive perspective) more than they would with square angles.

As a consequence, square-angled geometries are expected

to be more efficient at inhibiting radiative and conductive

transfers, which is why hexagonal and circular cells are not

investigated here.

While a vacuum without solid structures would best in-

sulate against conduction and convection, a compromise

must be reached where radiative loss control is needed, as

is the case for a UHTS system [2]. Honeycombs naturally

emerge as potential candidates to achieve this as the evac-

uated cavities act as radiative shields without significantly

enhancing conductive (and, in semi-transparent media, ra-

diative) energy transfers if the walls are optimised. Such

structures are studied as static insulators (i.e without a

flow) and are filled with air at low pressure (∼10Pa).

Although the present methodology is not restricted to par-

ticular materials or dimensions, all applications are carried

out for conditions relevant to UHT operation. Typical

operating hot and cold temperatures are of order 1600K

and 288K, respectively. Two categories of solid materials

with respect to thermal radiation are considered: semi-

transparent and opaque. Ceramic alumina (Al2O3) is cho-

sen as an example of the former (for reasons laid out in

Ref. [2, 3]) while stainless steel of type 321 (thereafter

ss321) will be used to illustrate the latter. The criteria for

opacity and semi-transparency is discussed in Appendix

A.
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3. Theoretical model and numerical formulation

3.1. Governing equations

Thermal energy transfers may occur in the form of con-

duction in the gas and through solid walls, convection in

the gas and at the boundaries, and radiation through the

gas and solid and at the boundaries. In steady state, and

in the absence of internal energy generation, the conserva-

tion of energy within a given medium leads to

∇ · [qcond + qconv + qrad] = 0 (1)

where q denotes a heat flux for a particular mode of

thermal transfer. Typical Grashof numbers for geome-

tries presently considered are a few orders of magnitude

lower than critical values reported in the literature for mi-

crochannels [27, 28] so that convection transfers can be

ignored (qconv = 0), which allows Eq.(1) to be rewritten

as

∇ · [−k(T )×∇(T )] = St(T ) (2)

where T is the local temperature, k is the local thermal

conductivity, spatial dependencies have been omitted for

clarity, and St = −∇ · qrad is the radiative source term

coupling conductive and radiative transports. Lifting the

conductive non-linearity of Eq. (2) by means of a Kirchhoff

transform leads to

∆T̃ = −St(T ) (3)

where T̃ is the transformed temperature. The Kirchhoff

transform is used as it allows for an exact treatment of

the conductive non-linearity, thereby eliminating the need

for numerical approximations. The only remaining source

of non-linearity now stems from the radiative source term

which cannot be further simplified and must be resolved

separately with the Radiative Transport Equation (RTE,

see section 3.3). The RTE and energy conservation equa-

tion (Eq.(3)) are coupled and must therefore be solved si-

multaneously, and separately in the gas and solid as they

have different local thermal and optical properties.

Once the transformed temperature field has been obtained,

the local conductive heat flux is given by:

qc = −∇T̃ (4)

The temperature field may then be obtained by applying

the corresponding inverse Kirchhoff transform to T̃ .

3.2. Conductive transfer

3.2.1. Conductive properties of solids

Data for alumina can be found in Karditsas & Baptiste

[29] for temperatures ranging from 298K to 1600K, while

values for ss321 for temperatures from 1K to 1672K are

reported in Ho & Chu [30].

3.2.2. Gaseous transport and rarefaction effects

A Sutherland-type formula is used for gaseous conduc-

tivity k at standard temperature and pressure conditions

(STP):

k(T ) = C0
T 3/2

T + T0
(5)

with C0=0.00277 W/m/K1.5 and T0=280.6 K for air.

However, this equation only holds within the framework

of classical continuum fluid dynamics, i.e for a gas where

inter-molecular collisions are the dominant mode of trans-

port, which happens when the mean free path is signifi-

cantly smaller than a typical dimension of the vessel con-

taining the fluid. Where this is not the case however, rar-

efaction effects may occur [31–33], the degree of which is

quantified by the Knudsen number Kn = l/L (a widely ac-

cepted classification of flow regimes based on Kn is given

in Ref.[34]), where L is a characteristic dimension of the

system and l is the mean-free path which is known from

the kinetic theory of gases [31]. Here, two factors may con-

tribute to rarefaction effects; low pressures and small cell

dimensions, which were set precisely to minimise gaseous

transfers by conduction and convection, and typical Kn

values belong to the transition-flow regime, meaning that

rarefaction effects must be accounted for.
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In rarefied conditions, the thermal conductivity of a gas

becomes dependent on the pressure, for which the use of

a Bossanquet-type formula has been validated by several

authors [35, 36]:

k(T, P ) =
k0(T )

1 + αKn(T, P )
(6)

where k0 is the thermal conductivity at STP (Eq.(5)) and

α = 2 [35, 36] is a non-dimensional rarefaction parameter.

Note that the rarefied gas theory was developed in terms

of the gas viscosity; however the same mechanisms govern

viscous and thermal energy transport, which validates the

use of this theory for gaseous thermal conductivities [31].

3.3. Radiative transfer

3.3.1. Governing equations

In semi-transparent media, the spectral radiative inten-

sity Iν obeys the following equation:

(s · ∇)Iν(r, s) = κν(T )Ibν (T )− βν(T )Iν(r, s)

+
σν(T )

4π

∫
4π

Iν(r, s0)Φ(s, s0)dΩ
(7)

where the subscript ν indicates spectral quantities, r is

the position vector, s is the direction of propagation, Ω

is the solid angle it subtends, σν is the spectral scattering

coefficient, βν = κν+σν where κν is the spectral coefficient

of absorption, Φ is the scattering phase function, and Ibν is

the blackbody’s spectral radiative intensity. Note that the

frequency rather than the wavelength is used here since

it remains unchanged as radiation propagates from one

medium to another. Also in Eq.(7), it was assumed that

rays propagate along straight lines so that the direction

of propagation s is independent of the spatial variable r

within a medium (the reader is referred to Sarvari [37] for

a detailed treatment of radiative propagation with variable

refractive indices).

The spectral radiative source term per unit volume, related

to the spectral radiative heat flux qrν , is iven by

Stν (r) = −∇ · qrν = −κν(T ) · [4πIbν (T )−Gν(r)] (8)

where Gν is the spectral irradiation

Gν(r) =

∫
4π

Iν(r, s)dΩ (9)

and qrν is the spectral radiative heat flux

qrν (r) =

∫
4π

Iν(r, s)sdΩ (10)

Notice that in the case of opaque media, the radiative

source term is identically zero. Surface radiative energy

gains or losses at the interface with semi-transparent media

are then obtained from thermal boundary conditions (see

section 3.4). Finally, the total quantities are calculated by

integrating Eqs.(8-10) over the whole spectral range (see

below).

Because of the RTE dependency on many variables, as-

sumptions must be made on directionality: rough surfaces

in honeycomb structures will be modelled as diffuse emit-

ters (if opaque) and reflectors, whereas smooth surfaces

will be modelled as specular directional reflectors and di-

rectional emitters (if opaque). For details on the validity

of the diffuse assumption, see for example [10, 38–40].

3.3.2. Optical properties

Radiative spectrum. The frequency range used in this

study for bodies at temperatures between 293K and 1600K

is [3.33·1012-6·1014]Hz, corresponding to wavelengths of

[0.1-90]µm in vacuum.

Optical constants and reflectivities. The macroscopic com-

plex optical index m, index of refraction n and extinction

index k are given by [41]

m = n+ ik

ε = ε′ + iε′′ = m2
(11)

where ε′ and ε′′ are the real and imaginary parts of ε,

the microscopic complex dielectric function. The afore-

mentioned absorption coefficient is then calculated as:

κν =
4πνk

co
(12)
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where c0 is the speed of light in vacuum. The complex

dielectric function is theoretically described by the four-

parameter-semi-quantum (FPSQ) model [42]. This theory

applies to any solid-state material, and therefore so does

the numerical procedure presented in the next section.

However optical properties have been sought for the afore-

mentioned example materials alumina and SS321 and are

given in Appendix A.

Besides, some gases may participate in radiative transfers.

However, radiation - gas interactions happen through tran-

sitions of molecular energy levels and, as such, require a

dense enough molecular medium to be significant; at stan-

dard atmospheric conditions and moderate temperatures,

for typical cavity sizes considered here (a few millimetres

at most), dry air is transparent to radiation. In rarefied

conditions, at a pressure of 10 Pa, the air density is a

hundred-thousandth of its value at standard conditions,

further reducing interactions with radiation to levels even

more negligible. Consequently, air is treated as a non-

participating gas in this study.

For a beam travelling from medium 1 to medium 2, the

specular directional-hemispherical reflectance for lossy me-

dia is given by the generalised Fresnel coefficients [43–46]:

Rs(θi) =

∣∣∣∣µ2m1 cos θi − µ1m2 cos θr
µ2m1 cos θi + µ1m2 cos θr

∣∣∣∣2
Rp(θi) =

∣∣∣∣ε1m2 cos θr − ε2m1 cos θi
ε1m2 cos θr + ε2m1 cos θi

∣∣∣∣2
Rtot = 0.5 · (Rs +Rp)

(13)

where µ1,2 are the complex magnetic permeabilities of both

media, θi and θr are the angles of incidence and refrac-

tion, subscripts p and s denote the two different states of

polarisation, and the last equation holds for unpolarised

radiation. The angle of refraction for subcritical angles of

incidence follows Snell’s law

n1 sin θi = n2 sin θr (14)

with more conditions applying for supercritical angles [46].

In the following, all materials will be assumed to be non-

magnetic, so that magnetic permeabilities disappear from

the above equations. Besides, for opaque materials, the re-

flectivity will be calculated from the emissivity and Kirch-

hoff’s law.

For incidences lower than ∼60◦, the reflected radiation in-

tensity is approximately isotropic [40]. It is then conve-

nient to define a diffuse reflectance as

Rdν =

∫∫
Rν(θ)Iν cos θdΩ∫∫
Iν cos θdΩ

=

π/2∫
0

Rν(θ) sin(2θ)dθ

(15)

where the second equality holds for a diffuse radiation

intensity.

Other properties. Based on published studies [47], polari-

sation effects are ignored and the last line of Eq.(13) will

be used. Also, as published data for the scattering coeffi-

cient and phase function are insufficient, scattering effects

have been ignored in all 2D and 3D calculations and appli-

cations presented from section 3.5.4 onward. However for

the sake of generality, scattering terms will be included in

the following theoretical and numerical developments.

3.3.3. Radiative boundary conditions

Boundary conditions for the radiative intensity at an

interface between an opaque wall and semi-transparent

medium is, on the wall (w):

Iν(s) = εwIbν (Tw)+
1− εw
π

∫
n·s′<0

Iν(s′) |n · s′| dΩ′(16)

for a diffusely reflective surface, and

Iν(s) = εw(θi)Ibν (Tw) + (1− εw(θi))Iν(si) (17)

for a specularly reflecting surface.

The interface between two semi-transparent media 1 and

2 must be treated differently. Referring to Fig.(2), an en-

ergy balance for specular reflectors and transmitters leads

to [41]

Iν2(s2r) = ρ21(θ2i)Iν2(s2i)+
(1− ρ12(θ1i))n

2
2

n2
1

Iν1(s1i)(18)
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Medium 1, m1 = n1 + ik1

Medium 2, m2 = n2 + ik2

dA

θ1 θ1

θ2θ2

s1i s1r,s2t

s2r,s1ts2i

Figure 2: Radiative boundary conditions for two semi-transparent

media

where ρij is the reflectivity from medium i to medium j.

A similar equation applies to medium 1.

In the presence of external irradiation, radiative transfers

must be accounted for at the system’s outer boundaries.

For opaque ones, they are obtained using Eqs.(16,17) and

surface properties to calculate the reflected intensity. For

semi-transparent surfaces, Eq.(18) is used to calculate the

outward radiative flux leaving the system which is then

substituted in the interface thermal boundary condition

(see below). In both cases, the external radiation field

and optical index must be known.

3.4. Thermal boundary conditions

Equation.(3) can now be expressed as

∆T̃ =

∫
ν

κν(T ) · [4πIbν (T )−Gν(T )]dν (19)

in semi-transparent materials, and

∆T̃ = 0 (20)

in opaque materials. To fully solve the problem, boundary

conditions are needed at the system’s outer boundaries,

and may be of Dirichlet or Robin type. For the latter, a

simple energy balance is performed with a combination of

radiative and convective or conductive exchanges allowed

with the outside.

Internal boundary conditions depend on the media on ei-

ther side of it. When both are semi-transparent, the ra-

diative flux is continuous across the surface and the ther-

mal boundary condition reduces to the continuity of the

conductive flux. If one medium is opaque, there exist no

radiative flux within it, so that the sum of the conductive

and radiative fluxes on the semi-transparent side of the in-

terface equals the conductive flux on the opaque side. All

fluxes at an interface are a function of the interface’s tem-

perature which is determined by these thermal boundary

conditions.

3.5. Numerical formulation

3.5.1. Spatial discretisation: finite differences

A 3D Cartesian spatial discretisation is applied to the

differential terms of Eqs.(4,19,20) using numerical approx-

imations to first and second-order derivatives with respect

to spatial variables. To accommodate boundary nodes and

their neighbours, various combinations of central, forward

and backward differences were used [48]. All numerical

derivative estimates are 2nd order accurate for both uni-

form and non-uniform grids, which were used for improved

accuracy around interfaces and surfaces where sharper gra-

dients are present.

3.5.2. RTE discretisation

The DOM method. The RTE has no known analytical

solution for the present problem, and was therefore solved

numerically with the Discrete Ordinates Method (there-

after DOM) using the step spatial differencing scheme

[49] together with an EWO10 angular quadrature [50]

which were found best suited for the present problem to

mitigate ray effects and false scattering whilst satisfying

the relevant closure criteria [51, 52]. For more details on

how the DOM, the reader is referred to Refs.[21, 41, 52–56].

Diffuse transmission. Considered geometries involve ob-

stacles and multi-media structures and, as such, internal

7



boundaries. While opaque interfaces are addressed using

a discrete form of Eqs.(16,17), semi-transparent interfaces

are handled as follows.

Irradiation incident upon an optically rough surface under-

goes multiple reflections on surface irregularities. Besides,

as it penetrates into the medium (over a small distance for

an opaque interface), it is reflected off scattering centres

multiple times, and part of it is scattered back towards the

surface from which it came. These two reflection mecha-

nisms cause the reflected radiation to emerge at a wide

range of outgoing angles, which is known as diffuse reflec-

tion. But the same mechanisms also apply to rays incident

from the other side and transmitted, which will encounter

the same scattering centres as they propagate and emerge

through the same rough surface, therefore also undergoing

multiple reflections off scattering centres and surface irreg-

ularities, thus also emerging at a wide range of outgoing

angles. Consequently transmission, along with reflection,

may also be treated as diffuse in the present case.

The outgoing flux in medium 2 (see Fig.(2)), qout2 , is given

by

qout2 =

∫∫
s2r·n2>0

Iν2(s2r) |s2r · n2| dΩ2

= ρ21

∫∫
s2r·n2>0

Iν2(s2i) |s2r · n2| dΩ2

+
(1− ρ12)n2

2

n2
1

∫∫
s2r·n2>0

Iν1(s1i) |s2r · n2| dΩ2

(21)

where Eq.(18) has been used for the second equality. In

this form, Eq.(21) cannot be discretised because of the

second right hand side term which is the integral over all

outgoing angles in medium 2 of a function depending on all

incoming angles in medium 1; it must therefore be rewrit-

ten as an integral over all outgoing angles in medium 2.

This is done using the definition of the spherical polar an-

gle (|s · n| = cos θ) and the associated solid angle, Snell’s

law (Eq.(14), along with the fact that incoming and out-

going angles in a given medium are equal) and its differ-

entiated form (n1 cos θ1dθ1 = n2 cos θ2dθ2), which leads

to

qout2 = ρ21

∫∫
s2i·n2<0

Iν2(s2i) cos θ2dΩ2

+ (1− ρ12)

∫∫
s1i·n1<0

Iν1(s1i) cos θ1dΩ1

(22)

The integral of the first right-hand side term represents

the incident flux in medium 2, qinc2 , while that of the sec-

ond term represents the incoming flux in medium 1, qinc1 .

Besides, under the assumption of diffuse transmission, the

outgoing intensity in medium 2 is isotropic and related to

qout2 by Iν2 = qout2 /π. Eq.(22) then takes its final compact

form

Iν2(s2r) = [ρ21q
inc
2 + (1− ρ12)qinc1 ]/π , ∀s2r (23)

with a similar equation for Iν1(s1r). Eq.(23) expresses the

conservation of radiative energy at the interface, and takes

this simple form only under the assumption of diffuse re-

flection and transmission. Eq.(23) is then discretised in

the same way as Eqs.(16,17) and incorporated into the

numerical scheme as an internal boundary conditions as

described above.

It is important to note that the diffuse transmission as-

sumption allows the same angular quadrature to be used

throughout the entire geometry, eliminating the need to

introduce new directions into the quadrature scheme after

each incidence of specular transmission. This is because

according to Eq.(23), the angles of incidence and trans-

mission are not correlated.

3.5.3. General numerical scheme

Combining sections 3.5.1 and 3.5.2, Eq.(19) is formu-

lated in matrix form

A · t̃ = b (24)

where t̃ is a column vector of length n whose elements

are the T̃ values at all n nodes, A is an n x n matrix

containing all the numerical differential terms, and b is

a column vector of size n containing the radiative terms

8
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Figure 3: General numerical scheme

and energy transfers at interfaces and boundaries. The

vector t̃ is then obtained through matrix inversion, and an

inverse Kirchhoff transform finally gives the temperature

field.

Because b is a function of the temperature field T, an

iterative scheme must be employed to solve Eqs.(19,20)

once the radiative source term is known. The chosen gen-

eral scheme for two media, summarised in Fig.(3), follows

the one outlined in Ref.[57], and proceeds with two nested

iteration loops as follows:

1. First, the grid is constructed, and the Kirchhoff op-

erators are built. Then, the temperature field is

initialised by solving the heat equation assuming a

purely conductive heat transfer with constant ther-

mal conductivities, which speeds up convergence.

2. The RTE is then solved for all frequencies following

the procedure outlined in section 3.5.2. The total ra-

diative fluxes and source terms are computed by angu-

lar and spectral integration, using numerical quadra-

tures and Simpson’s rule, respectively.

3. The heat equation is solved for T̃ according to section

3.5.1, with one nested loop of iterations necessary to

establish thermal equilibrium between the two me-

dia for a given St. First, T̃ is obtained in medium

1, using the value of T̃ from the previous iteration

as a Dirichlet boundary condition at interfaces with

medium 2. Then, heat flux are calculated at the inter-

faces between the two media and then used as ther-

mal boundary conditions to solve for T̃ in medium 2

as explained in section 3.4. This process is repeated

until convergence of the T̃ field in both media. (In

the presence of more than two media, each additional

medium will require an extra nested loop of iterations

to establish thermal equilibrium between it and the

surrounding medium.)

4. When T̃ convergence is obtained, an inverse Kirch-

hoff transform gives the temperature field T. If con-

vergence is achieved for T, the code moves on to step

5 below. Otherwise, it repeats steps 2 and 3 until T

convergence is achieved.

5. The heat fluxes in the entire physical domain and heat

flows at the system’s boundaries are then calculated,

and the process stops.

It is considered that the convergence of a given field F is

achieved when the successive relative differences in F from

one iteration (i) to the next (i+1) fall below a predefined

threshold everywhere in the numerical domain:∣∣∣∣Fi+1 − Fi
Fi+1

∣∣∣∣ < δ (25)

where δ is usually set to 10-6. Due to the non-linearities in

the governing equations, convergence may require the use

of under-relaxation [58].

The use of under-relaxation becomes increasingly nec-

essary for convergence as the radiation to conduction

ratio increases and gives rise to numerical instabilities,

for example with higher temperatures or larger systems

and, for semi-transparent materials, because of a larger

conduction-radiation thermal coupling (see section 4.2.2).

For instance, for the largest systems and highest temper-

atures considered in section 4, relaxation factors as low as

0.01 have been used, resulting in running times of up to

half a day for a 526x488 2D grid. However, the relaxation

9



factor can be varied within a simulation and, in the present

case, was first set to a low value to stabilise the numerical

scheme, and then gradually increased to speed-up conver-

gence. As a comparison, the smaller 3D systems tested in

the next section below on a 144x58x12 3D grid take a few

hours at most to complete.

3.5.4. 2D/3D convergence

The present methodology is adaptable to two-

dimensional systems simply by omitting terms relevant

to the z -direction in the equations, which allows to

investigate three-dimensional effects. To do so, a rectan-

gular honeycomb is chosen which contains 10 single-cell

rows between the top and bottom surfaces which are

maintained at 1200K and 288K respectively. Each cell

is 2mm high and 10mm wide, and the wall thickness

is 0.4mm everywhere. The honeycomb is studied in

two and three dimensions with a range of forty depths

ranging from 8mm to 5.1m, giving depth to height

aspect ratios α = d/Dh between 0.33 and 209. The gas

within the cells and around the honeycomb is air at a

pressure of 10Pa. The honeycomb is perfectly insulated

on its lateral external boundaries so that the thermal

boundary conditions there are prescribed zero heat flux.

Perfect radiative insulation is achieved by setting these

boundaries to be perfect reflectors (i.e opaque with zero

emissivity). For the three-dimensional system, the front

and rear surfaces are transparent gaseous boundaries (the

honeycomb is placed in a vacuum chamber at 288K), and

perfect reflector solid boundaries.

Figure 4 shows the percentage difference (relative to the

3D value) in top surface heat flow for alumina and ss321.

In both cases, the relative differences decrease with in-

creasing depths. For alumina, there is a 53.2% difference

for α=0.33. The differences then drop below the 10%, 5%,

1% and 0.5% marks for aspect ratios of 5.53, 11.7, 61.5 and

110.7, respectively. For ss321, the difference at α=0.33 is
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Figure 4: A comparison between the results of 2D and 3D top surface

heat flows for several depth to height ratios for alumina and ss321.

Notice the logarithmic scale on he x-axis.

46.3%, and drop below the same marks for aspect ratios

of 5.53, 11.7, 73.8 and 159.8. The differences between the

2D and 3D geometries are caused by the radiative losses

at the front and rear gaseous boundaries which cannot be

accounted for in a 2D model; at these boundaries the open

ducts, made fully transparent in the tests, freely exchange

radiative energy with the vacuum chamber at 288K. The

larger the depths, the less significant these exchanges are

relative to the two-dimensional energy flow, which explains

why the differences go down with increasing aspect ratios.

These results prove the convergence of the three-

dimensional solution towards the two-dimensional one for

infinitely deep systems. Consequently, to reduce CPU re-

quirements, the analysis in the remainder of this paper is

carried out in two dimensions.

3.5.5. Grid independence

Grid independence of the numerical results is tested

on a 2D alumina honeycomb of the same geometry and

with the same boundary conditions as in the previous sec-

tion. Five different spatial resolutions are tested: 0.2mm,

0.1mm, 0.05mm, 0.02mm and 0.01mm. Results are shown

in Fig.(5). The successive differences are calculated by

taking the difference between two successive Q estimates

and then dividing it by the Q value obtained with the

coarser grid. The energy flow curve (dashed line, square

markers, left axis) is seen to flatten out as the number
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Figure 5: Grid independence test: energy transfer rate (square mark-

ers) and successive differences (round markers) for several spatial

resolutions. Lines are visual guides only.

of nodes increases, which indicates convergence of the nu-

merical solution. The successive differences curve (dotted

line, round markers, right axis) also flattens out and shows

values ranging from 0.42% for coarser grids to 0.03% differ-

ence for finer ones when the number of nodes is increased

fourfold (last point on the curve). Antar [25] used a 0.5%

change from a selected grid to the next as a criterion for

grid selection; this is achieved for all grids in this example.

4. Optimisation: design tools and application to

high temperature thermal insulation

4.1. Problem formulation

4.1.1. Objectives

We now apply the model to the design and optimisation

of thermal insulators based on geometries represented in

Fig.(1). The purpose of this study is to establish design

criteria to meet specific performance requirements for a

given application, to gain some insight into the physics

of energy transport within such structures, and to study

their thermal performance.

The study is conducted in two-dimensions (as per the re-

sults of section 3.5.4) and focuses on thermal optimisation

only; no mechanical loads are considered. The honeycombs

top and bottom surfaces are maintained at hot (Th) and

cold (Tc) temperatures (see section 4.1.2). The objective

function to be minimised is the honeycomb’s equivalent

thermal conductivity, defined by

keq = Q/(Th − Tc) (26)

where Q is the total energy flow from the hot surface per

unit depth.

4.1.2. Optimisable variables

Optimisable variables are selected by only retaining

those geometrical and thermal parameters which have

the greatest impact on the equivalent conductivity. The

wall thickness is treated as a parameter of constant value

t=0.4mm, both horizontally and vertically, and its impact

on keq is explored in section 4.4. Besides, radiative and

conductive transfers are both minimised with wide and

narrow cells, so that only single-cell rows are considered

(vertical columns become important only where structural

strength is required). The number of cells, then equal to

the number of rows, is an optimisable variable. As for the

honeycomb size, in practice it is dictated by the dimensions

of the gap the insulation has to fit in. But because scale

effects are expected, four different scales are tested ({12.4,

24.4, 48.4, 72.4}mm), while larger ones are explored in

section 4.4. Finally, to further simplify the study, cells

of uniform height h are considered first, which leads to

the following geometrical constraint between the number

of cells N and their height h and width w :

Dh = Nh+ (N + 1)t

w = Dh − 2t
(27)

Here N is chosen as the optimisable variable. For engi-

neering purposes, the minimum cell size is set to the small-

est commercially available for rectangular cell honeycombs

which at the time of writing is around 2mm. However for

theoretical purposes, smaller cells are investigated too.

The equivalent conductivity keq depends on the boundary

conditions of which the number of combinations to account

for all possible scenarios can be very large. However in

practice the honeycomb width and depth for plane geome-

tries are likely to be large, thereby minimising boundary
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effects. Consequently, only one set of boundary conditions

with fixed hot (Th) and cold (Tc) temperatures at the top

and bottom surfaces with zero heat flux on the lateral

boundaries is chosen to best simulate realistic engineer-

ing applications. Four hot temperatures are considered

({400, 800, 1200, 1600}K for ss321 and {400, 650, 900,

1200}K for alumina), while the cold temperature is fixed

to Tc = 288K. All structures are subject to a vacuum

pressure of 10Pa. The resulting optimisable honeycomb

structure is shown in Fig.(6).

4.1.3. Optimisation methodology

Since there exists no known analytical solution to the

present problem, a numerical optimisation procedure must

be found which minimises the total number of simulations

and yields simple design criteria to suit different engineer-

ing requirements on thermal performance. To reduce the

number of simulations, the cell size has been made uni-

form, and the resulting optimal geometry can subsequently

be refined by allowing each cell size to deviate from the

uniform value. Only the uniform case is addressed in this

paper. The number of cells is then varied from N = 1 to

its maximum value

Nmax =
Dh − t
hmin + t

(28)

where hmin = 2mm is the minimum cell size value, giv-

ing Nmax = {5, 10, 20, 30} for the investigated honeycomb

sizes. However to meet the optimal geometry criterion

(Eq.(30) below), smaller cell sizes must be considered.

Design criteria are formulated in terms of the size ratio

(thereafter SR), defined by

SR =
h+ t

Dh
=

1− t/Dh

N

(
' 1

N
for t� Dh

)
(29)

The effect on keq of adding an extra cell can be to ei-

ther increase it if conductive transfers are enhanced more

than radiative transfers are inhibited, or to decrease it oth-

erwise. Which way it goes is determined by the ratio of

radiative to conductive transfers and the degree of rarefac-

tion within the cells, which depends on the cell size. For a

high number of cells N (i.e small cells), the gaseous resis-

tance to conduction is very large, so much so that for high

enough radiation levels, adding an extra cell is expected to

reduce keq by further inhibiting radiative transfers with-

out affecting conduction. As a consequence, the optimal

size ratio S∗R is defined as that beyond which adding an ex-

tra cell would result in a keq drop lower than a predefined

threshold α. Mathematically, this translates as

−α ≤ keq,N∗+1 − keq,N∗
keq,N∗

≤ 0 ⇐⇒ −α ≤ QN∗+1 −QN∗
QN∗

≤ 0

(30)

where N∗ is the number of cells at optimal size ratio.

The objective of this study is to express S∗R in terms of

a dimensionless number Nrc; S
∗
R = f(Nrc). As afore-

mentioned, Nrc may quantify the ratio of conductive to

radiative transfers where only one cell is present:

Nrc =

∣∣∣∣ QradQcond

∣∣∣∣ )
1 cell

(31)
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Assuming infinite gaseous resistance to conduction

through the cells, we have, for opaque materials and per

unit depth

|Qcond|)1 cell ≈
2t < ks > (Th − Tc)

Dh

|Qrad|)1 cell ≈
σ(T 4

h − T 4
c )(Dh − 2t)

1/ε(Tc) + 1/ε(Th) +
√

2− 1

(32)

where 2t is the total column width over which conduction

takes place in the solid, < ks > is the solid thermal conduc-

tivity averaged between Tc and Th, σ is Stefan’s constant,

ε is the Planck-averaged emissivity, and the denominator

of the second line is the radiative resistance between the

hot and cold surfaces. Combining Eqs.(31,32), we get

Nrc = σ
1/ < ks >

1/ε(Th) + 1/ε(Tc) +
√

2− 1

(Dh − 2t)Dh

2t

T 4
h − T 4

c

Th − Tc
(33)

This definition of Nrc is used throughout the remainder of

this paper. Its adaptation for semi-transparent materials

is discussed in Appendix B.

4.2. Design tool 1: SR
*

4.2.1. Analytical study

The dependence of S∗R on Nrc can be estimated ana-

lytically with a few approximations. The full derivation,

detailed in Appendix C, leads to

−α ≤ ∆QN
QN

'
<kg>Dh(Dh−2t)
2<ks>hNhN+1

−Nrc
N(N + 1)(1 + Nrc

N )
≤ 0 (34)

where ∆QN = QN+1 − QN , < kg > is the temperature-

averaged gaseous conductivity, and hN is the cell size for

N cells. The first term in the numerator represents the

increase in conductive transfer by the addition of an ex-

tra cell whereas the second term represents the decrease

in radiative transfer. As such, Eq.(34) illustrates the re-

lationship between conductive and radiative transfers: at

high radiation levels (Nrc � 1), ∆QN/QN is negative for

all N, and as many cells as possible must be used. When

Nrc � 1 however, ∆QN/QN can be positive and the num-

ber of cells has to be limited.

The positive root of Eq.(34) is (see Appendix C)

N∗ =
1 +Nrc

2

(
− 1 +

√
1 +

4Nrc(
1
α − 1)

(1 +Nrc)2

)
(35)

Insofar as N ≤ Nmax = Dh/t− 1 for h to remain positive,

any value of N ≥ N∗ will satisfy Eq.(34). This yields a

condition on α:

α >
1

1 + (Dht − 1)(1 + Dh
tNrc

)
(36)

which, for the present work, gives α > 3 · 10−4. A value

of α=0.001=0.1% is used for the remainder of this work,

which allows for a Taylor expansion of the square root term

of Eq.(35), leading to a greatly simplified form

N∗ '
√
Nrc
α
⇐⇒ S∗R ' (1− t

Dh
)

√
α

Nrc
(α� 1)

⇐⇒ S∗R '
√

α

Nrc
(α� 1 & t� Dh)

(37)

which constitutes a simple design criterion and will be

shown to be valid in the next section with the introduction

of a multiplying factor. No scale effects appear in this re-

sult in the t� Dh limit; this is because scale effects would

only arise from conduction effects, which have been ne-

glected, or from radiation propagation in semi-transparent

solids, which has been incorporated in Nrc (see Appendix

B). Besides, note that since Nrc ∝ D2
h for t � Dh, we

have N∗ ∝ Dh and so S∗R ∝ 1/Dh. Recalling the defini-

tions of SR (Eq.(29)) and Nrc (Eq.(33)), we get that h∗ is

independent of Dh:

h∗ + t =

√
2αt < ks >

(T 2
h + T 2

c )(Th + Tc)

1/ε(Th) + 1/ε(Tc) +
√

2− 1

σ

(38)

and only depends on the wall thickness, temperature and

materials’ properties, but not on the system size, which is

a remarkable result.
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Figure 7: Numerical results for S∗
R as a function of Nrc for ss321 and alumina. A logarithmic scale is used on both axes.

4.2.2. Numerical results

The numerical results for S∗R as a function of Nrc for

ss321 and alumina are plotted in Figs.(7a,7b). As an-

ticipated, the scatter in the data between different sizes

is minimal for ss321 and decreases with increasing Nrc,

which is consistent with the observation of the previous

section that Eq.(34) predicts scale effects in opaque me-

dia to arise from conductive effects only. However for

alumina some scatter is visible, which is attributed to

its semi-transparency (see below). But in both cases,

all points seem to align on a straight line, suggesting

a power-law relationship between S∗R and Nrc. Conse-

quently, the points were fitted to a square-root law of the

form S∗R = A
√
α/Nrc for all sizes independently, and for

all points taken together. To further test the square-root

law, a power-law fit was additionally tested with an uncon-

strained power exponent, S∗R = A(α/Nrc)
B . The results

for both are shown in Table 1.

For all sizes, the r2 coefficients for both fit types exceed

0.995, the unconstrained power exponents are very close

to 0.5 (with a deviation lower than 1.3% in five cases), and

the multiplying factors have similar amplitudes as those of

the square-root fits. These results confirm the validity of

the square-root law predicted by Eq.(37) for a given scale.

The case where all points are fitted together is different.

For ss321, there is perfect agreement between both fits,

suggesting both that scale effects are insignificant, and

that the square-root law, which was derived from phys-

ical considerations, is valid with high accuracy - provided

a multiplying constant is added. For alumina, both fits are

of a lesser quality, with r2 coefficients of order 0.98. This

indicates the presence of scale effects (which goes together

with the noticeable presence of data scatter in Fig.(7b)

as noted above) and is a first important difference be-

tween opaque and semi-transparent solid media: because

the latter participate in radiative transfers through inter-

nal volume mechanisms, the radiative fluxes depend on

the amount of solid volume, just like conductive fluxes do,

and a fit which does not account for scale effects is of

lesser quality. Also, it is important to note that the un-

constrained power law fit yields a larger power exponent

of 0.5588 for alumina due to its semi-transparency, which

indicates that the tweak to Nrc for semi-transparent me-

dia suggested in Appendix B together with the model of

Appendix C is incomplete and needs some refinement to

incorporate scale effects for non-opaque media.

The presence of a multiplying constant larger than unity

suggests an overestimation of the radiative flows in the

analytical model of section 4.2.1, and is attributed to the

one-dimensional radiative flow assumption, which under-

estimates the efficiency of the two-dimensional radiative

barrier structure. In practice radiative flows are two-

dimensional, allowing some radiative energy to be either

absorbed on the sides or reflected back towards the hot sur-
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Table 1: Square root and power law fits for S∗
R for ss321 and alumina optimisation

Square root fit Power law fit

SS321

Dh=12.4mm S∗R = 1.640
√

α
Nrc

, r2 = 0.9965 S∗R = 1.528( α
Nrc

)0.4759, r2 = 0.9975

Dh=24.4mm S∗R = 1.655
√

α
Nrc

, r2 = 0.9998 S∗R = 1.619( α
Nrc

)0.4949, r2 = 0.9997

Dh=48.4mm S∗R = 1.510
√

α
Nrc

, r2 = 0.9955 S∗R = 1.226( α
Nrc

)0.4635, r2 = 0.9999

Dh=72.4mm S∗R = 1.436
√

α
Nrc

, r2 = 0.9984 S∗R = 1.377( α
Nrc

)0.4935, r2 = 0.9977

All points S∗R = 1.632
√

α
Nrc

, r2 = 0.9974 S∗R = 1.628( α
Nrc

)0.4993, r2 = 0.9972

Alumina

Dh=12.4mm S∗R = 1.704
√

α
Nrc

, r2 = 0.9966 S∗R = 1.736( α
Nrc

)0.5062, r2 = 0.9950

Dh=24.4mm S∗R = 1.393
√

α
Nrc

, r2 = 0.9990 S∗R = 1.328( α
Nrc

)0.4891, r2 = 0.9990

Dh=48.4mm S∗R = 1.164
√

α
Nrc

, r2 = 0.9997 S∗R = 1.131( α
Nrc

)0.4951, r2 = 0.9997

All points S∗R = 1.619
√

α
Nrc

, r2 = 0.9798 S∗R = 1.972( α
Nrc

)0.5588, r2 = 0.9869

face., resulting in lower energy flows to the cavities bottom

wall than assumed in the calculations and therefore higher

values for S∗R, hence a constant larger than unity. Finally,

the fact that these constants generally decrease with in-

creasing scales illustrates the presence of the well-known

thermal coupling between conduction and radiation and

is seen to be more pronounced for alumina. This shows

that because they participate in thermal radiation, semi-

transparent media exhibit larger thermal coupling, which

is a second fundamental difference between the two types

of materials.

All together, the above results suggest a law of the form


S∗R = 1.632

√
α
Nrc

for ss321 (r
2

= 0.9974)

S∗R = 1.972
(
α
Nrc

)0.56
for alumina (r

2
= 0.9869)

(39)

can be used for designing and engineering purposes with

high accuracy.

4.3. Design tool 2: keq

4.3.1. Analytical study

An analytical expression for keq can be derived in the

same way as S∗R. The full derivation, given in Appendix

C, leads to

keq '
2t < ks >

Dh

(
1 +

Nrc
N

)
+

< kg >

1− (N + 1)t/Dh
(40)

which can be expressed in terms of SR using Eq.(29), and

simplified at optimal geometry using Eq.(39). Also, it

must be remembered that < kg > is a function of the

cell size and therefore of N.

It emerges from Eq.(40) that the effects of radiation mani-

fest solely through the Nrc/N term, which implies that the

radiative contribution to keq can be expressed as a frac-

tion of the solid conduction contribution; for example if

Nrc/N = 0.5, conduction is twice as high as radiation in

magnitude (only approximately because of the presence of

the gaseous term but whose amplitude is small). A conse-

quence of this result is that Nrc is not only an evaluation

of the single-cell radiation to conduction ratio, but is also

interpreted as a critical number of cells which allows to

determine which transfer mode predominates:
N < Nrc ⇒ Radiation predominates

N = Nrc ⇒ Conduction ' Radiation

N > Nrc ⇒ Conduction predominates

(41)

Interestingly, this implies that the number of cells required

to lower the magnitude of radiative transport below that of

conduction is equal to Nrc; for example if Nrc = 5, it takes

5 cells for conduction to become predominant (for a fixed

Dh). Therefore, the sole knowledge of Nrc is enough to
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know how many cells are required to negate the effects of

radiation, which conveniently complements the S∗R based

design tool of the previous section; for N � Nrc, the en-

ergy transfer within the honeycomb is almost reduced to

pure conduction. Equations (39,40) thus emerge as two

practical design tools.

Besides, it is interesting to note that for N � Nrc or

N = N∗, the scale dependency of keq is imposed by con-

ductive transport, and keq and Dh obey an inverse power

law. In the former case, it is because the Nrc/N term

vanishes in Eq.(40). In the latter, it arises from the fact

that N∗ ∝
√
Nrc ∝ Dh for t� Dh. In both cases, keq de-

creases linearly with increasing system size - this effect is

exploited in section 4.4 below. But in the general case, the

scale dependency of keq can be written as 1/Dh +ADh/N

where A is defined by Nrc = AD2
h for t� Dh. A study of

the derivative of this term reveals that Nrc again appears

as a critical number:N < Nrc ⇒ ∂keq
∂Dh

> 0: keq increases with Dh

N ≥ Nrc ⇒ ∂keq
∂Dh

< 0, keq decreases with Dh

(42)

This is coherent with the interpretation of Nrc (Eq.(41));

when N < Nrc, radiation predominates and as such its

scale dependency (∝ D2
h) prevails over the conduction one

(∝ 1/Dh), resulting in an overall increase of keq with Dh,

and vice-versa.

From the above results, it emerges that all the relevant

thermal properties and design criteria of a square-angle cell

square honeycomb can be predicted from the knowledge

of the non-dimensional number Nrc which only depends

on the temperature, material properties and geometry of

the honeycomb. Nrc is therefore a useful dimensionless

number for the thermal study and design of honeycombs

which avoids complex numerical simulations. However, for

those cases where there exist lateral losses, the losses would

have to be assessed and their contribution to the global

energy flow added to Eq.(40); from there a similar equation

to Eq.(34) can be obtained, leading to another form for the

S∗R = f(Nrc) function.

4.3.2. Numerical results

The analytical predictions for k∗eq from Eq.(40) are com-

pared to numerical results in Figs.(8a,8b) for ss321 and

alumina at optimal geometries. The agreement between

analytical predictions and numerical results is very good in

all cases, and improves with larger sizes. For ss321, at the

two smallest scales, Eq.(40) underestimates k∗eq by factors

between 0.75% and 8.63%, while at the largest two scales,

the differences vary between -3.49% and 5.32%. Besides,

note that for larger scales and higher temperatures (i.e for

larger Nrc values), the analytical predictions become over-

estimations of k∗eq. For alumina however, the predictions

remain underestimations at all temperatures and scales,

with differences not exceeding 7.7%, 7.4% and 4.1% in or-

der of increasing scale, and are of the same order as for

ss321. However, the fact that Eq.(40) underestimates keq

for all scales and temperatures for alumina is attributed to

a larger thermal coupling (see section 4.2.2) which is not

accounted for in the analytical predictions. These results

validate Eq.(40) for ss321 (resp. alumina) for tempera-

tures up to 1600K (resp. 1200K) and Nrc values up to 10

with an accuracy better than 8.63% (resp. 7.7%) in mag-

nitude.

One additional comment can be made. As Th increases,

keq increases for ss321 but decreases for alumina. This

directly reflects the solid conductivity temperature depen-

dency in both cases since at optimal geometry (and be-

yond), Eq.(40) reduces to keq = 2t < ks > /Dh. This

highlights the crucial role played by solid conductivity in

the design of high-temperature honeycomb thermal insu-

lators, of which an example is given in the next section.

4.4. Application to high-temperature thermal insulation

We now apply the above results to the design and

optimisation of high-temperature thermal insulation,

where the thermal resistances of honeycomb structures

and ceramic fibre insulation (therafter CFI) of the same
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Figure 8: Comparison of keq numerical results (solid lines) and predictions from Eq.(40) (dashed lines) at optimal geometry for ss321

and alunmina for Dh=12.4mm (cross markers), Dh=24.4mm (triangle markers), Dh=48.4mm (diamond markers) and Dh=72.4mm (square

markers).

size are compared. Here, because the structures are

square, comparing the thermal resistances is equivalent

to comparing the thermal conductivities (which are

scale-dependent for honeycombs). Equation (40) will be

used for honeycombs, and data reported in Ref.[7] is used

for CFI.

In Eq.(40), it can be seen that the key parameters to

honeycomb thermal efficiency are ks, Dh, P, N, t and Nrc.

The effect of the first four are obvious from Eq.(40); struc-

tures with the lowest solid thermal conductivity, largest

sizes, lowest pressures and the largest feasible number

of cells must be sought. As for Nrc, its contribution is

negligible when N � Nrc. The main parameters on which

Nrc depends are the material’s emissivity, t and Dh. As a

consequence, if N is large enough, the emissivity is not a

parameter of interest - but Dh and t are, as they appear

outside Nrc in Eq.(40).

Opaque solid materials are considered first. In view of the

above, five values of Dh (100, 200, 300, 400 and 500 mm)

and two values of P (0.1 and 10 Pa) are considered. The

wall thickness t will be lowered until acceptable thermal

performance is reached, and N is set so that h = t, which

also ensures that N = (Dh/t − 1)/2 � Nrc. Different

solid materials are considered to vary ks.

Results for ss321 are presented in Figs.(9a-9f) for wall

thicknesses t={100, 50, 10}µm. It is seen that with a

thickness of 100µm and a pressure of 10Pa, only the

largest sizes outperform CFI above a certain temperature

threshold which decreases for P=0.1Pa. Reducing t down

to 50µm lowers the temperature threshold and allows

more sizes to outperform CFI for a wider range of tem-

peratures; for P=10Pa (resp. 0.1Pa), this happens for all

sizes above Th = 1000K (resp. Th = 900K). These results

are satisfactory since this work is concerned with high-

temperature insulation. However, the most interesting

results are obtained by further reducing t down to 10µm,

in which case all tested sizes significantly outperform CFI

for all temperatures. At 10Pa, the honeycomb conductiv-

ities at 1600K range from 0.0022W/m/K (Dh = 500mm)

to 0.0078W/m/K (Dh = 100mm). At room temperature

(300K), these numbers become 0.0012W/m/K (resp.

0.0045W/m/K). At 0.1Pa, they are 0.0017W/m/K (resp.

0.0073W/m/K) at 1600K, and 0.00058W/m/K (resp.

0.0039W/m/K) at room temperature. Note that these

room temperature values are even smaller than those

reported for VIP’s at the same temperature, at both

0.1Pa and 10Pa [5, 6]. Besides, another advantageous

distinctive feature of honeycombs is that the temperature

dependency of keq is much weaker than for CFI. This is

because with N � Nrc, the temperature dependency of

keq is only due to that of < ks >. For CFI however, the

temperature dependency is mainly caused by increased
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Figure 9: Thermal conductivity comparison between ss321 honeycombs and CFI for several values of wall thickness t and pressure P. The

honeycomb sizes are Dh = 100mm (cross markers), 200mm (diamond markers), 300mm (round markers), 400mm (square markers), and

500mm (star markers), indicated in increasing order on the graphs.
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radiative transfers at higher temperatures. This difference

in behaviour is further illustrated below.

These results show that ss321 honeycombs exhibit lower

thermal conductivities than CFI at all temperatures for

wall thicknesses t ≤ 10µm. In an attempt to ease this

thickness requirement, other solid materials are sought

which have a lower thermal conductivity. Most materials

which are opaque to thermal radiation for layers as thin as

10µm and high enough melting points are metals. Of all

known pure metals only bismuth, manganese, plutonium

and mercury have a lower conductivity that stainless

steel. But plutonium is radioactive, and the melting

points of mercury, manganese and bismuth are too low.

However a few alloys display lower thermal conductivities

than ss321 of which a titanium alloy, Ti-6Al-4V, has

the lowest conductivity of about 7 W/m/K at room

temperature and a melting point of about 1873K, and

is therefore a good candidate. Temperature-dependent

values for its thermal conductivity and emissivity were

found in Boivineau et al. [59] and González-Fernández et

al. [60] (the reported data shows a negligible temperature

dependency of its emissivity). The results are presented in

Figs.(10a-10b) and show that similar thermal performance

is achieved as with a 10µm ss321 wall; at P = 0.1Pa,

all sizes outperform CFI for all temperatures, while at

P = 10Pa, there remains a temperature threshold of

Th = 500K only for Dh = 100mm. At this pressure,

the honeycomb conductivities range from 0.0071W/m/K

(Dh = 500mm) to 0.017W/m/K (Dh = 100mm) at

1600K, and from 0.0038W/m/K (Dh − 500mm) to

0.0072W/m/K (Dh = 100mm) at 300K.

The full potential of honeycombs is best illustrated in

Figs.(11a-11b) where the ratios of CFI to honeycomb con-

ductivities are shown for 10µm ss321 and 50µm titanium

alloy honeycombs. In all cases, the ratio increases with

increasing temperatures: the higher the temperature, the

larger the thermal gain honeycombs offer over CFI. This

is a direct consequence of the above remark on the CFI

and honeycomb conductivities temperature dependencies.

At a pressure of 10Pa, the 10µm ss321 honeycomb boasts

conductivities 3.5 (resp. 14.9) times lower than CFI at

300K (resp 1600K) for Dh = 100mm. For Dh = 500mm,

these numbers become 6.5 (resp. 36). Lowering the pres-

sure down to 0.1Pa drives these ratios up to even higher

values. The 50µm titanium alloy honeycomb displays

a lower efficiency; for P = 10Pa, the ratios range from

0.71 (300K) to 2.99 (1600K) for Dh = 100mm, and fall

between 1.35 (300K) and 7.25 (1600K) for Dh = 500mm

(these ratios also go up with lower pressures).

A ratio lower than unity indicates that the CFI achieves

a better performance - however it is only observed for

Dh = 100mm and Th ≤ 500K. But the 50µm value was

chosen to ease the restriction on t ; a 10µm titanium alloy

honeycomb would show even greater efficiency than its

ss321 counterpart. What is important to note is that all

these results demonstrate the capacity of honeycombs

to surpass existing ultra-high temperature insulation

technologies in terms of thermal performance; for exam-

ple, a thickness of 50µm (roughly that of commercially

available metal foils) of this titanium alloy would suffice

to outperform CFI over the whole range of operating

temperatures.

Note that both ss321 and Ti-6Al-4V have been studied

below their melting points (around 1670K for ss321 and

1930K for Ti-6Al-4V) but past their usual maximum ser-

vice temperature (about 1180K for ss321, and 780K for

titanium alloy Ti-6Al-4V) above which they loose a signif-

icant part of their structural strength. However they have

been shown to outperform CFI at all studied temperatures

which illustrates their efficiency across their respective op-

erating temperature ranges, and highlights their potential

at higher temperatures for applications where no struc-

tural strength is required or where structural reinforce-

ment is achievable.

As a comparison, equivalent conductivities for alumina
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Figure 10: Thermal conductivity comparison between titanium honeycombs and CFI for t = 50µm and two P values. The honeycomb sizes

are Dh = 100mm (cross markers), 200mm (diamond markers), 300mm (round markers), 400mm (square markers), and 500mm (star markers),

indicated in increasing order on the graphs.
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Figure 12: Thermal conductivity comparison between alumina honeycombs and CFI for t = 10µm and two P values. The honeycomb sizes

are Dh = 100mm (cross markers), 200mm (diamond markers), 300mm (round markers), 400mm (square markers), and 500mm (star markers),

indicated in increasing order on the graphs. Note that ceramic fibre is off the scale for most of the graph.
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honeycombs with t = 10µm are shown in Figs.(12a,12b)

for temperatures up to alumina’s melting point (2345K).

It is seen that alumina ceramics also outperforms CFI for

all scales and temperatures - albeit with a threshold of

about 450K for the lowest scale. keq values are similar to

the 50µm titanium alloy honeycomb: at 1600K and 10Pa

for example, they are 0.0077 (resp. 0.0061) W/m/K for

Dh = 100mm (resp. Dh = 500mm). At 300K, they be-

come 0.0083 (resp. 0.0022) W/m/K. These values, which

go down at 0.1Pa, show that ceramics honeycombs, al-

though not as thermally efficient as metal ones, retain low

conductivities (<0.01W/m/K) up to their melting point.

This allows to raise the maximum service temperature of

currently commercially available high-temperature insula-

tion, which is crucial for the development of UHTS tech-

nologies, among other high-temperature applications.

Finally, differences between opaque and semi-transparent

materials manifest once more on Figs.(12a,12b) in the

shape of the curves, which have a u-shape for alumina;

the initial low temperature decrease caused by its thermal

conductivity is outweighed at higher temperatures by the

increase of Nrc. The fact that NRc still contributes to keq

even with such small cells illustrates the fact that radi-

ation levels are higher in semi-transparent materials and

consequently even smaller cells would be needed for keq to

keep decreasing at higher temperatures.

All the results in this section demonstrate the potential

of thin-walled honeycomb structures to both outperform

existing high-temperature insulation technologies, and to

raise its maximum service temperature whilst retaining

good thermal performance, and provide motivation for re-

search into the development of manufacturing processes

for such structures.

5. Summary and future work

In this paper, a theoretical and numerical models are

presented for the modelling of combined conductive and

radiative thermal energy transfers in opaque or semi-

transparent cuboid multi-media structures containing ob-

stacles and internal boundaries. Grid independence is then

established along with a 2D/3D convergence which allows

to carry out the rest of the study in 2D.

The model is subsequently applied to the design of high-

temperature thermal insulators based on honeycomb ge-

ometries. First, a numerical optimisation methodology is

established, and a dimensionless number Nrc is defined.

Then, analytical expressions are derived for the honey-

comb equivalent conductivity keq and the S∗R = f(Nrc)

function, where S∗R is the optimal size ratio. A study of

both equations is presented, during which much insight

is gained into the behaviour of energy transfers in honey-

combs. The analytical results are then compared to nu-

merical results. In particular, key findings include:

• Nrc, defined by Eq.(33) as the ratio of radiation to

conduction levels at one cell, allows to know which

transfer mode dominates depending on the number

of cells, and how many cells are required to negate

radiative transfers. It also appears in the expression

for the equivalent conductivity.

• The analytical predictions for S∗R (Eq.(37)) are val-

idated for ss321, provided a multiplying constant is

added for S∗R. Good agreement is also shown for alu-

mina, although the power exponent is found to be

slightly larger than predicted (0.56 instead of 0.5) due

to scale effects. Following this study, a first engineer-

ing design criterion is established (Eq.(39)).

• The analytical predictions for keq show a maximum

deviation from numerical results of 8%, and generally

overestimate keq for ss321 and underestimate it for

alumina.

• Fundamental differences were highlighted between

opaque and semi-transparent materials; mainly that

semi-transparent materials show larger scale effects

and a larger thermal coupling between conductive and

radiative transfers.
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• Finally, it was shown that thin walled metal hon-

eycombs (e.g 10µm ss321 or 50µm titanium alloy)

have the potential to significantly outperform cur-

rently available high-temperature thermal insulation

(like ceramic fibre insulation) with, for example, ther-

mal conductivities below 0.008W/m/K at 1600K and

10Pa. Additionally, thin-walled alumina ceramics

honeycomb, whilst less efficient, also allow an im-

provement on currently available technologies and,

crucially, allow to raise the current maximum service

temperature of insulation technologies by retaining

thermal conductivities below 0.01W/m/K up to their

melting point. These results provide a good basis to

motivate research into the development of manufac-

turing processes of such structures.

Further areas of investigation may include:

• Refining the model presented in Appendix C for semi-

transparent materials.

• The development of processes allowing the manufac-

ture of thin-walled structures such as those of section

4.4 has been showed to be of great importance.
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[55] G. Colomer, M. Costa, R. Cònsul, A. Oliva, Three-dimensional

numerical simulation of convection and radiation in a differ-

entially heated cavity using the discrete ordinates method, In-

ternational Journal of Heat and Mass Transfer 47 (2) (2004)

257–269. doi:10.1016/S0017-9310(03)00387-9.

[56] S. Thynell, Discrete-ordinates method in radiative heat transfer,

International Journal of Engineering Science 36 (1998) 1651–

1675. doi:10.1016/S0020-7225(98)00052-4.

[57] J. Donea, S. Giuliani, Finite element analysis of steady-state

nonlinear heat transfer problems, Nuclear Engineering and

Design 30 (2) (1974) 205–213. doi:10.1016/0029-5493(74)

90165-4.

[58] S. V. Patankar, Numerical heat transfer and fluid flow, Wash-

ington : Hemisphere Pub. Corp. New York : McGraw-Hill, 1980.

[59] M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M. H. Nadal,

B. Wilthan, G. Pottlacher, Thermophysical properties of solid

and liquid Ti-6Al-4V (TA6V) alloy, International journal of

thermophysics 27 (2006) 507–529. doi:10.1007/PL00021868.
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Appendix A. Optical properties of alumina and

ss321

To the authors’ knowledge, alumina FPSQ parameters

(see section 3.3.2) for the required temperature and

spectral ranges have been reported only by Zeidler

[61] for wavelengths up to 50µm and temperatures up

to 928 K. For the present study, it was assumed that

their results applied for wavelengths up to 90µm and

temperatures up to 1800K. With these coefficients and

Eq.(12), it can be shown that alumina is essentially

opaque inside Reststrahlen bands (peaks of reflectance

and absorptance, located around 17, 23 and 25 µm for

alumina). Outside these bands however, it behaves as a
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semi-transparent material for thickness up to '0.4 mm

for higher energies (λ 6 10µm), and up to 10mm for

lower energies (λ > 30µm). It will therefore be modelled

as semi-transparent for all applications considered here.

The attenuation length for thermal radiation within

metals is typically a few dozen nanometres, so that ss321

is modelled as opaque. However, available spectral and

temperature-dependent data are limited. Karlsson [62]

reported values of the optical indices of ss832 (which has

a similar composition to ss321) for a very narrow spectral

range of λ ∈[0.2-4.8]µm and, to the authors’ knowledge,

no further data have been published for a wider spectral

range and various temperatures. Therefore, total values

for the temperature-dependent emissivity [63] together

with Kirchhoff’s law to obtain the reflectivity will be used.

Appendix B. Nrc for semi-transparent materials

The concept of emissivity does not exist for semi-

transparent materials. However, ”equivalent” emissivities

may be defined in various ways depending on a particular

situation [41, 64–67]. The following approach is an adap-

tation of a semi-transparent slab calculation [41, 64] to

the particular case of diffuse transmission and reflection

defined in the main body of the paper.

Consider a pencil of radiative energy qinc incident from

medium 1 upon a slab of thickness d (medium 2) at an

array of angles θi from the surface normal. Following dif-

fuse reflection, an amount q
(1)
R = ρd12qinc is reflected to-

wards medium 1, where ρd12 is the diffuse reflectivity from

medium 1 to medium 2. The transmitted intensity is dif-

fuse and equal to It = (1 − ρd12)qinc/π in all directions.

Therefore, after a propagation over a length of d/ cos θ,

the radiative flux incident reaching the other end of the

slab is q
(2)
inc = πτIt where

τ = 2

π/2∫
0

exp−κd/ cos θ cos θ sin θdθ (B.1)

where κ is the slab’s Planck-averaged absorption coeffi-

cient (Eq.(12)). A ρd21q
(2)
inc portion of this is reflected dif-

fusely, and after another propagation over a d/ cos θ dis-

tance and transmission through the slab’s interface upon

which qinc is incident, a quantity q
(2)
R = ρd21(1 − ρd21)(1 −

ρd12)τ2qinc emerges back into medium 1 alongside q
(1)
R . Ac-

counting for all the reflections, we get the equivalent diffuse

reflectivity of the slab as

Rdslab = ρd12 + ρd21(1− ρd12)(1− ρd21)τ2
i=∞∑
i=0

(ρd21τ)2i

= ρd12 +
ρd21(1− ρd12)(1− ρd21)τ2

1− (ρd21τ)2

(B.2)

which is the well-known slab equation where the propaga-

tion factor exp−κd/ cos θ has been replaced by τ under the

assumption of diffuse reflection and transmission approxi-

mation. The slab’s diffuse transmissivity T dslab is found in a

similar way, and the diffuse absorptivity Adslab is obtained

from the conservation of energy; Rdslab +T dslab +Adslab = 1.

Usually, the slab’s emissivity ε is set equal to its absorp-

tivity.

However in the present case, in order to be able to use the

same formulae as for opaque materials - Eqs.(33,34,C.2),

the additional energy flow through the cells caused by the

medium’s semi-transparency is modelled as an increased

rate of emission whereby the transmissivity is incorporated

into the equivalent diffuse emissivity of the slab which is

then defined as

εdslab = Adslab + T dslab = 1−Rdslab

=
(1− ρd12)(1− ρd21τ

2)

1− ρ2
21τ

2

(B.3)

which amounts to treating the transmitted part of an en-

ergy flux incident upon a slab as being emitted by the

slab. Throughout section 4, Eq.(B.3) is used for semi-

transparent materials in formulae derived for opaque ma-

terials.

Appendix C. Derivation of SR
*=f(Nrc) and keq

Let ∆Q = QN+1 − QN . Ignoring the thermal coupling

between conductive and radiative transports, we can break
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down ∆Q into contributions from radiative and conductive

transfers

∆QN = ∆QcN + ∆QrN (C.1)

Looking at the radiative contribution first we can write

(see, for example, Modest [41]):

QrN = σS0
T 4
h − T 4

c

i=N−1∑
i=1

{1/εi + 1/εi+1 − 1}
(C.2)

where S0 = (Dh − 2t)d is the surface of emission (d is

the depth), and gaseous radiative flows to the lateral sides

have been neglected. This equates to seeing the cells as a

network of infinitely large radiative shields. This assump-

tion is justified for wide and narrow cells, which holds for

small enough values of SR. But when SR is small, i.e when

N is large, we may write, to a good approximation:

i=N∑
i=1

{1/εi + 1/εi+1 − 1} '
i=N−1∑
i=1

{1/εi + 1/εi+1 − 1}

' N(2 < ε̄ > −1)

(C.3)

where < ε̄ > is the inverse of the emissivity averaged be-

tween Tc and Th. This yields

∆QrN = QrN+1 −QrN

' σS0(T 4
h − T 4

c )

×
(

1

(N + 1)(2 < ε̄ > −1)
− 1

N(2 < ε̄ > −1)

)
= − σS0

N(N + 1)

T 4
h − T 4

c

2 < ε̄ > −1

(C.4)

This is the final expression for ∆QrN and shows that

to inhibit radiative transfers, as many cells as possible

are necessary. However, the thermal gain decreases with

increasing N with an inverse square law ∆QrN ∝ 1/N2.

The conductive contribution is treated in a similar way.

Assuming a one-dimensional conductive flow with the lat-

eral columns (conductive resistance R0 = Dh/(2td < ks >

)) acting in parallel to the gas cells, themselves modelled

as a series of gas and solid elements (conductive resistance

RgN and RsN , respectively), the conductive resistance of the

honeycomb may be expressed as

RN =
1

1/R0 + 1/(RgN +RsN )
(C.5)

Using RsN � RgN and R0 � RgN , we may write

RN ≈ R0(1−R0/R
g
N ) (C.6)

The variation of this conductive resistance is

∆R = RN+1 −RN ≈ R2
0(1/RgN − 1/RgN+1) (C.7)

which gives, with RgN = NhN/ < kg > S0:

∆R ≈ −R2
0

< kg > S0t

N(N + 1)hNhN+1
(C.8)

where hN is the cell size when N cells are present and

where it was assumed that the gaseous conductivity is so

small that it is little dependent on hN when hN is small

enough. As expected, ∆R is negative, which means that

some conductive resistance is lost with the addition of

an extra cell. Besides, the fact that it is proportional to

< kg > in the < kg >�< ks > limit can seem counter-

intuitive, but is explained as follows. As the gaseous con-

ductivity approaches zero, its resistance becomes infinitely

large. At this point, any amount of gas will have an in-

finitely large resistance, so that adding an extra cell (i.e

decreasing the volume of gas), will have very little effect

on the total conductive resistance which will still be in-

finitely large. This is visible in Eq.(C.8) which leads to

∆R/R0 ∝ R0 < kg > which is infinitely small. The result

is that the lower the gaseous conductivity, the smaller ∆R,

which is what Eq.(C.8) shows.

We can now derive an expression for ∆QcN :

∆QcN = −(Th − Tc)
∆R

RNRN+1
≈ −(Th − Tc)

∆R

R2
0

(C.9)

which, together with Eq.(C.8), gives

∆QcN = (Th − Tc)
< kg > tS0

N(N + 1)hNhN+1
(C.10)
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The final step is to find an expression for QN . Only ac-

counting for conductive flows through the side column, we

have, per unit depth

QcN ' Qc1 '
< ks > (Th − Tc)2t

Dh
(C.11)

Besides, following from the above radiative developments,

we have

QrN ' σ
(T 4
h − T 4

c )S0

N(2 < ε̄ > −1)
' Qr1

N

∆QrN ' −
Qr1

N(N + 1)

(C.12)

It follows that

∆QN
QN

=
∆Qc + ∆Qr

Qc1 +
Qr1
N

=

∆Qc
Qc1
− Qr1

N(N+1)Qc1

1 +
Qr1
NQc1

(C.13)

Recalling the definition of Nrc (Eq.(31)), and with

Eqs.(C.10,C.11), we get

∆QN
QN

'
<kg>Dh(Dh−2t)
2<ks>hnhN+1

−Nrc
N(N + 1)(1 + Nrc

N )
(C.14)

which leads to Eq.(34).

Neglecting the conduction term, it can be shown that

Eq.(34) becomes

N2 + (1 +Nrc)N +Nrc(1−
1

α
) > 0 (C.15)

Finally, N∗ is the root of this equation:

N∗
2

+ (1 +Nrc)N
∗ +Nrc(1−

1

α
) = 0 (C.16)

The positive root is given by Eq.(35). The approxima-

tion which consists in neglecting the conduction term in

Eq.(34) can be shown to be justified for all values of Dh

and N used here.

Next, for keq, we have, under the same assumptions:

keq =
QN

Th − Tc
≈ QcN +QcellN +QrN

Th − Tc
(C.17)

where the global energy flow has been split into its radia-

tive and conductive parts, and QcellN is the conductive flow

through the gas cells and solid walls. Therefore

QcN '
2t < ks > (Th − Tc)S0

Dh

QrN '
Qr1
N

QcellN ' Th − Tc
RN

(C.18)

where RN is given by Eq.(C.6). When plugged into

Eq.(C.18), together with NhN = Dh−(N+1)t, this yields

keq '
2t < ks >

Dh

(
1+

Nrc
N

)
+

< kg >

1− (N + 1)t/Dh
(C.19)

which is Eq.(40).
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