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Abstract

In this paper, prediction with expert advice is surveyed focusing on Vovk’s
Aggregating Algorithm. The established theory as well as extensions developed
in the recent decade are considered. The paper is aimed at practitioners and
covers important application scenarios.

Keywords: online learning, prediction, model selection

2020 MSC: 68Q32, 68T05

1. Overview

The problem of prediction with expert advice may be thought of as gener-
alising the classical problem of merging of probabilistic hypotheses. A number
of ‘experts’, which can be formulas, algorithms, or simply black boxes, are of-
fering their predictions. Depending on the context, the predictions can come in
the form of bits, probabilities, distributions, or even investment decisions. The
problem is to merge them while making as few assumptions as possible about
the nature of the data.

The quest for robustness unites the main topics of the special issue, conformal
prediction and prediction with expert advice. One can claim that prediction
with expert advice goes even further than conformal prediction in minimising
the dependency on the laws governing the data: we aim to get worst case
performance bounds. On the other hand, the assumptions on the data come in
the form of the choice of the pool of experts.

This paper presents a tutorial introduction to key ideas and methods of
prediction with expert advice aiming at practitioners in machine learning. While
the comprehensive monograph [1] remains an important source on the topic,
there have been new interesting and important developments in the area. On
the other hand, the methods and results of prediction with expert advice remain
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largely unknown to machine learning practitioners and an introduction like this
may help to raise the awareness of this machine learning framework.

In Section 2, we describe the problem of sequential prediction and the frame-
work of prediction with expert advice. Then, in Section 3, we present a number
of specific prediction environments called games. Some of them are directly
concerned with probabilistic prediction where the learner needs to work out a
forecast in the form of a distribution; some generalise this framework.

The approach of this paper centres on Vovk’s Aggregating Algorithm. In
Section 4 we describe the algorithm taking Bayesian hypothesis merging as a
starting point. We formulate the algorithm and its optimality properties. Then,
in Sections 6–10, we discuss a number of prediction with expert advice ideas
and approaches as extensions of the Aggregating Algorithm. Namely, we cover
Fixed Share, specialist experts, discounted cumulative loss, and prediction of
packs. All these techniques have clear practical relevance.

The results of prediction with expert advice are formulated for general, not
necessarily mixable, loss functions. However, they become most interesting in
the mixable case. The concept of mixability is briefly discussed in Section 5
with links for further reading.

Finally, in Section 11, we describe a number of applications where the meth-
ods of prediction with expert advice were used for practical prediction.

The ideas we survey are further developed in the papers of this special issue.
The concepts of functional forecasts and integral losses from the paper “Mixa-
bility of integral losses: a key to efficient online aggregation of functional and
probabilistic forecasts” by Alexander Korotin, Vladimir V’yugin, and Evgeny
Burnaev are linked to the prediction of packs we describe in Section 10. The
forecasts with confidence from “Online aggregation of probability forecasts with
confidence” by Vladimir V’yugin and Vladimir Trunov extend the idea of a spe-
cialist expert from Section 8. The important applicaiton to the prediction of
electricity consumption developed by V’yugin and Trunov features in Section 11.

Due to space considerations we excluded a more detailed discussion of non-
mixable loss functions and algorithms for them such as Hedge, Weak Aggre-
gating Algorithm etc. We have also excluded continuous pools of experts and
universal algorithms concentrating on finite pools instead. Many results men-
tioned in this paper can be easily extended to continuous pools.

2. Setup and Goals

Suppose that a learner is tasked with predicting elements of a sequence
ω1, ω2, . . . called outcomes. The outcomes occur in discrete time. Before see-
ing outcome ωt, the learner is outputting a prediction γt. The quality of the
prediction is measured by a loss function λ(·, ·). The learner aims to suffer low
cumulative loss

LossT (L) =

T∑
t=1

λ(γt, ωt)

over T steps.
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We assume that the set of all possible outcomes (outcome space) Ω is known
to us in advance and we are allowed to draw predictions from a known prediction
space Γ, which may or may not be the same as Ω. The function λ is also
known and maps Γ×Ω to a subset of the extended real line, typically [0,+∞].
The inclusion of +∞ is necessary as this permits important special cases and
streamlines some statements1. The choice of a triple G = 〈Ω,Γ, λ〉, sometime
referred to as a game, makes a lot of difference to prediction with expert advice.
We do not normally assume any mechanism generating outcomes and look for
worst case results holding for all possible sequences.

Suppose that the learner gets help from experts. The experts predict the
same sequence and their predictions are made available to the learner before it
commits to its own predictions. The experts are treated as black boxes. We
are not concerned with their internal mechanics, which may well be inaccessible
to us (e.g., the experts may rely on some sources of information unavailable or
even unknown to us). The interaction with experts may be described by the
following protocol. Here we assume that experts are parametrised by θ ∈ Θ.

Protocol 1.

FOR t = 1, 2, . . .
experts Eθ, θ ∈ Θ, announce predictions γθt ∈ Γ
learner outputs γt ∈ Γ
nature announces ωt ∈ Ω
each expert Eθ, θ ∈ Θ, suffers loss λ(γθt , ωt)
learner suffers loss λ(γt, ωt)

ENDFOR

Expert Eθ suffers loss LossT (Eθ) =
∑T
t=1 λ(γθt , ωt). The goal of the learner

is to merge experts’ predictions γθt into its own prediction γt in such a way that
the learner’s loss LossT (L) is low as compared to retrospectively best experts.
It may use information about past outcomes and predictions. Formally, we are
after a merging strategy

S : (ΓΘ × Ω)∗ × ΓΘ → Γ .

We typically want S to guarantee an upper bound on LossT (L) in terms of
infθ∈Θ LossT (Eθ); we want LossT (L) to be low whenever LossT (Eθ) is low for
some θ. Ambitious it may sound, this goal is often achievable.

In this paper, we restrict ourselves to finite pools of experts, i.e., |Θ| = N <
+∞.

Prediction with expert advice may be seen as an alternative to model selec-
tion. Picking a strategy from a pool Θ can be a difficult task. If one wants to
choose an expert on the basis of its performance on some initial training seg-
ment, the well known generalisation problem occurs. While there are popular

1The value −∞ is typically prohibited to avoid −∞+∞ ambiguity, but a few results will
stand if the co-domain of λ is extended to (−∞,+∞] or [−C,+∞] with real positive C.
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methods, e.g., picking a strategy that strikes a balance between performance
and complexity as expressed by BIC or AIC (see, e.g., Section 8.6 in [2], where
the order of an ARIMA model is discussed), obtaining guarantees for their per-
formance beyond the training segment is notoriously hard. Consistency results
often require some unrealistic and fragile assumptions. Even the availability of
the training segment may be questionable: if we refrain from prediction and
use outcomes for training only, we may encounter opportunity costs. This may
happen in the context of sequential investment, which we will discuss later.

By contrast, the guarantees of prediction with expert advice are very gen-
eral, do not depend on statistical assumptions, and are easy to understand and
interpret.

3. Some Games

We will now introduce some games to add substance to the abstract frame-
work.

A binary game is concerned with the interval [0, 1]. In a discrete binary
game, the outcome space is {0, 1}. If predictions are allowed from the interval
[0, 1], the following loss functions may be considered. The square or Brier loss
is given by λSQ(γ, ω) = (γ − ω)2, the absolute loss is λABS(γ, ω) = |γ − ω|, and
the logarithmic loss is

λLOG(γ, ω) =

{
− ln(1− γ) if ω = 0 ;

− ln γ if ω = 1 .

These three losses define games with the same respective names.
The square and absolute loss games have their continuous counterparts with

the outcome space [0, 1] and loss functions given by the same formulas.
In a simple prediction game the prediction and the outcome spaces are {0, 1}

and the loss is given by

λ(γ, ω) =

{
0 if ω = γ ;

1 otherwise .

It is easy to see that the cumulative loss LossT (L) of a learner L in the simple
prediction game is the number of mistakes it made on the steps 1, 2, . . . , T .

The square and logarithmic games have important generalisations to the
simplex

∆d−1 =

{
(p1, p2, . . . , pd) | pi ≥ 0 and

d∑
i=1

pi = 1

}
.

Let predictions γ = (γ1, γ2, . . . , γd) be points from the simplex. In the discrete
case, the outcomes are vertices of the simplex ei (ei ∈ Rd is a vector with one
in position i and zeros everywhere else). The square loss can be calculated as
the squared Euclidean norm λ(γ, ω) = ‖γ − ω‖2 and the logarithmic loss by
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λ(γ, ei) = − ln γi. One may think of the logarithmic game on the simplex as
soft classification assessed by the negative logarithm of the likelihood given to
the true class.

In the continuous versions of these games, the outcomes ω = (ω1, ω2, . . . , ωd)
come from the simplex ∆d−1 too. The square loss can be calculated by the
same formula λ(γ, ω) = ‖γ − ω‖2 and the logarithmic loss is the KL-divergence

λ(γ, ω) =
∑d
i=1 ω

i ln ωi

γi .
An important generalisation of the logarithmic game is provided by the

Cover’s game, where the outcome space is [0,+∞)d, the prediction game is
the simplex ∆d−1 and the loss is given by λ(γ, ω) = − ln〈γ, ω〉. This game
has the following interpretation. Let γ = (γ1, γ2, . . . , γd) represent the way we
partition our capital between d assets and ω = (ω1, ω2, . . . , ωd) be the vector
of price ratios showing by how much the asset prices change between this and
the next discrete moment in time. Then the scalar product 〈γ, ω〉 shows by
how much our total capital changes. The negative logarithm represents this in
the loss framework. Note that the values of the loss can be both positive and
negative here; we can naturally suffer loss of +∞ (and go bankrupt forever) but
not −∞.

This game is described in [3] (see also [4] for a more recent perspective) and
it demonstrates that the protocol we consider is not restricted to prediction
as such. Here γ represents a decision we make, ω the turn of events beyond
our control, and λ(γ, ω) quantifies the consequences we face. The semantics of
λ(γ, ω) does not have to be the discrepancy between γ and ω.

See [5] for a list of games with more examples including some important
monstrosities.

4. The Aggregating Algorithm

In this section, we describe the Aggregating Algorithm (AA) introduced in
[6, 5] and presenting a very general solution to the problem of prediction with
expert advice.

As a motivation, consider the binary discrete logarithmic game. An expert
Ei may be thought of as a hypothesis Hi and the prediction γt it outputs can
be interpreted as a pair of probabilities under the hypothesis

γit = Pr(ωt = 1 | Hi, ω1, ω2, . . . , ωt−1) ;

1− γit = Pr(ωt = 0 | Hi, ω1, ω2, . . . , ωt−1) .

In this framework, LossT (Ei) = − ln Pr(ω1, ω2, . . . , ωT | Hi). If we assign some
prior probabilities to the hypotheses, Pr(Hi) = qi, i = 1, 2, . . . , N , we can work
out the probability Pr(ωt = 1 | ω1, ω2, . . . , ωt−1) conditional on past observa-
tions ω1, ω2, . . . , ωt−1 using the law of total probability:

Pr(ωt = 1 | ω1, ω2, . . . , ωt−1) =
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N∑
i=1

Pr(ωt = 1 | Hi, ω1, ω2, . . . , ωt−1) Pr(Hi | ω1, ω2, . . . , ωt−1) ,

where the posterior probability Pr(Hi | ω1, ω2, . . . , ωt−1) is proportional, by
the Bayes theorem, to Pr(ω1, ω2, . . . , ωt−1 | Hi) Pr(Hi). Let the learner output
γt = Pr(ωt = 1 | ω1, ω2, . . . , ωt−1). Then

e−LossT (L) = Pr(ω1, ω2, . . . , ωT ) =

N∑
i=1

Pr(ω1, ω2, . . . , ωT | Hi) Pr(Hi) =

N∑
i=1

qie
−LossT (Ei) . (1)

By dropping from this sum all terms except for one, we get

e−LossT (L) ≥ qie−LossT (Ei)

and
LossT (L) ≤ LossT (Ei) + ln(1/qi) ,

which is a worst-case loss bound with no probabilistic terms in it.
This motivates the following approach. Let us maintain experts’ weights

wit = qie
−η Losst(Ei), where η > 0 is a parameter we will refer to as

the learning rate. By normalising the weights on step t we can obtain
pit−1 = wit−1/

∑N
j=1 w

j
t−1. However, in a general game, the linear combina-

tion
∑N
i=i p

i
t−1γ

i
t does not necessarily have the desired properties and does not

have to lead us to an analogue of (1) (and does not even have to exist; Γ does
not have to be convex and it is not, for example, in the case of the simple
prediction game).

This leads to the following definition. Consider a game G = 〈Ω,Γ, λ〉. A con-
stant C > 0 is admissible for a learning rate η > 0 if for every N = 1, 2, . . ., every
set of predictions γ1, γ2, . . . , γn ∈ Γ, and every distribution (p1, p2, . . . , pn) ∈
∆n−1, there is γ ∈ Γ ensuring for all outcomes ω ∈ Ω the inequality

λ(γ, ω) ≤ −C
η

ln

N∑
i=1

pie
−ηλ(γi,ω) . (2)

The mixability constant Cη is the infimum of all C > 0 admissible for η. This
infimum is usually achieved. For example, it is achieved for all η > 0 whenever
Γ is compact and e−λ(γ,ω) is continuous (or λ(γ, ω) is continuous w.r.t. the
extended topology of [0,+∞]) in γ.

Now we can formulate the Aggregating Algorithm. It takes as parameters a
set of prior experts’ weights (q1, q2, . . . , qN ) ∈ ∆N−1, a learning rate η > 0 and
an admissible C > 0. The algorithm works according to the following protocol.

Protocol 2 (AA).

1 initialise weights wi0 = qi, i = 1, 2, . . . , N
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2 FOR t = 1, 2, . . .
3 read the experts’ predictions γit, i = 1, 2, . . . , N

4 normalise the weights pit−1 = wit−1/
∑N
j=1 w

j
t−1

5 output γt ∈ Γ satisfying for all ω ∈ Ω the inequality

λ(γt, ω) ≤ −Cη ln
∑N
i=1 p

i
t−1e

−ηλ(γi
t ,ω)

6 observe the outcome ωt
7 update the experts’ weights wit = wit−1e

−ηλ(γi
t ,ωt),

i = 1, 2, . . . , N
8 END FOR

Since C is admissible, a suitable γt can always be found in line 5. For a
particular game G, we do not usually need to solve a system of inequalities
numerically and a simple explicit method called a substitution rule can usually
be used.

By induction on time, one can show that

e−η LossT (L)/C ≥
N∑
i=1

qie
−η LossT (Ei) . (3)

Indeed,

e−η LossT+1(L)/C = e−η LossT (L)/Ce−ηλ(γT+1,ωT+1)/C (4)

≥

(
N∑
i=1

qie
−η LossT (Ei)

)
N∑
i=1

piT e
−ηλ(γi

T+1,ω) (5)

using (3) as the inductive hypothesis and the inequality in line 5 of the AA.
According to lines 3 and 7 of the AA,

piT =
wiT∑N
j=1 w

j
T

=
e−η LossT (Ei)∑N

j=1 qje
−η LossT (Ej)

;

substituting this into (5) yields the desired inequality.
Since the sum of nonnegative terms is greater or equal to each of the terms,

we obtain

LossT (L) ≤ C LossT (Ei) +
C

η
ln

1

qi
. (6)

This bound holds for all times T no matter what outcomes occurred and what
predictions experts made along the way. If equal initial weights q1 = q2 = . . . =
qN = 1/N are used, bound (6) turns into

LossT (L) ≤ C LossT (Ei) +
C

η
lnN . (7)

The importance of the Aggregating Algorithm follows from the optimality
results of [5]. Under some mild regularity assumptions on the game and as-
suming the uniform initial distribution, it can be shown that the constants in
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inequality (7) are optimal. If any merging strategy achieves the guarantee (with
some C,A > 0)

LossT (S) ≤ C LossT (Ei) +A lnN

for all experts E1, E2, . . . , EN , N = 1, 2, . . ., all time horizons T , and all outcomes,
then the AA with the uniform prior distribution qi = 1/N and some η > 0
provides the guarantee with the same or lower C and A.

In other words, bounds (7) cannot be improved within their class. It is im-
portant to understand that entirely different bounds are possible. For example,
as we will explain soon, the absolute loss game is not mixable, i.e., Cη > 1
for every η > 1. One can still achieve C = 1 in the bound, but at the cost
of an additive term growing in time (for the absolute loss, O(

√
T ) is possible)

with different algorithms (e.g., the Weak Aggregating Algorithm from [7]). If
cumulative loss grows linearly with time, having an additive term of order o(T )
would be preferable to having C > 1 for large values of T .

5. Mixability for Various Games

Working out mixability constants Cη is an important question. If C < 1 is
ever admissible, we can iteratively improve the predictions bringing potential
losses to 0. For a sensible game this should not be possible and thus Cη ≥ 1.
The most interesting case is Cη = 1. If this holds, the game is called η-mixable.
If a game is η-mixable for some η, it is called mixable.

5.1. Mixability and Convexity

One can formulate a criterion of mixability as follows. Every game 〈Ω,Γ, λ〉
defines L = {λ(γ, ·) | γ ∈ Γ}, a subset of [−∞,+∞]Ω, which is the set of
functions Ω→ [−∞,+∞]. For a binary game this can be interpreted as a curve
on the extended Euclidean plane, L = {(λ(γ, 0), λ(γ, 1)) | γ ∈ Γ} ⊆ [−∞,+∞]2.

Inequality (2) we used to define admissible C is equivalent to

e−ηλ(γ,ω)/C ≥
N∑
i=1

pie
−ηλ(γi,ω) . (8)

Let us define the transformation Bη : [−∞,+∞]Ω → [−∞,+∞]Ω as follows:
every f(·) is mapped into e−ηf(·). The system of inequalities (8) with C =
1 can always be resolved w.r.t. γ if and only if any convex combination of
Bη(`1),Bη(`2), . . . ,Bη(`N ), where `1, `2, . . . , `N ∈ L, is majorised by Bη(`) for
some ` ∈ L.

This is easy to connect to a standard notion of convexity. Let us call an
element f ∈ [−∞,+∞]Ω a superprediction if there is γ ∈ Γ leading to losses
that are uniformly better or the same as those of f , i.e., f(ω) ≥ λ(γ, ω) for all
ω ∈ Ω. In the binary game example, this is the set of points situated north-east
of the curve; see Figure 1 for sets of superpredictions for binary games. Let us
denote the set of superpredictions S. If λ(γ, ω) > −∞, the image of S under
Bη does not contain infinite points and falls inside RΩ. One can see that the
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1

1

square loss game
λSQ(γ, ω) = (ω − γ)2

1

1

absolute loss game
λABS(γ, ω) = |ω − γ|

ln 2

logarithmic game

λLOG(γ, ω) =

{
− ln(1− γ), ω = 0
− ln γ, ω = 1

1

1

simple prediction game

λ(γ, ω) =

{
0, ω = γ
1, ω 6= γ

Figure 1: Sets of superpredictions for binary games

Bη

Figure 2: Image of the set of superpredictions under the transformation Bη .

game is η-mixable if and only if Bη(S) is convex. This is illustrated in Figure 2
(the plot is actually for the square loss game with a large η).

5.2. Mixability of Binary Games

In the binary case, mixability can be investigated using standard calculus
tools applied to the boundary of Bη(S). Suppose that the boundary of S ⊆
[0,+∞]2 is parameterised by (x(u), y(u)), with u ranging over an open interval
I ⊆ R, in the following sense: S equals the closure (w.r.t. the extended topology)
of the points in R2 situated to the north-east of some (x(u), y(u)). If x and y are
continuous on I and twice differentiable on the interior of I so that x′(u) > 0
and y′(u) < 0, then the game is mixable if and only if the fraction

y′′(u)x′(u)− x′′(u)y′(u)

x′(u)y′(u)(y′(u)− x′(u))
(9)
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a
a

g(1)

g(0)

Figure 3: A substitution rule for the square loss game.

is positive and separated from 0 on the interior of I. If Γ is compact and λ is
continuous in γ, the infimum of this fraction is the largest η such that Cη = 1;
this η is clearly most practical and should be used in prediction. (This formula
was obtained in [8]. In [9, 10] extensions for the non-smooth case are discussed.)

By working out the minimum of (9), one can check that the logarithmic
game is mixable with the largest η = 1 (as to be expected from the probabilistic
argument we had) and the binary square loss game with η = 2.

The concept of mixability is closely related to the curvature of the boundary
of S. In [11] a general mixability criterion for finite Ω in terms of the Hessian
of the boundary of S ⊆ [0,+∞]|Ω| is proposed.

5.3. Substitution Rules

How can we work out γ solving (2) in a mixable case? For the logarithmic
game the question is easy. Indeed, for η = 1, the expression e−ηλ(γ,ω) amounts to
γ or 1−γ and one can take the convex combination γ =

∑N
i=1 piγ

i to satisfy (2).
For the square loss game the situation is a bit trickier. Take η = 2 and let

g(ω) = −(1/η) ln
∑
i=1 pie

−ηλ(γi,ω). This is a function from Ω to [−∞,+∞] and
in [3] it is referred to as a generalised prediction. For a binary game, it can be
identified with a point (g(0), g(1)). The discussion of mixability for the binary
square loss game implies that for η = 2 it always falls north-east of L. Since
(γ − ω)2 ≤ 1, the point is within [0, 1]2.

We need to replace the generalised prediction by a value γ ∈ [0, 1] such that
γ2 ≤ g(0) and (1 − γ)2 ≤ g(1). Any choice of such γ would be acceptable on
step (5) of the Aggregating Algorithm and would guarantee bounds (6) and
(7) with C = 1; the analysis of the cumulative loss in this paper does not
distinguish between them. Figure 3 shows the arc of L corresponding to all
values of γ ∈ [0, 1] suitable to replace (g(0), g(1)).

Still one needs to pick up one value for practical purposes. In [12], it is
suggested to take the prediction leading to losses equidistant from g(0) and
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g(1), respectively. One can find γ from the system

γ2 + a = g(0)

(1− γ)2 + a = g(1)

(see Figure 3). Solving this system yields

γ =
1

2
− g(1)− g(0)

2
. (10)

This value is easy to calculate; in [12] it leads to a simple explicit form of an
algorithm.

Remark 1. The substitution rule we have worked out for the square loss game is
quite different from the simple convex combination γ =

∑N
i=1 piγ

i. If the convex
combination always exists (i.e., the prediction space Γ is convex), can it work
as a substitution rule? Clearly, the convex combination will satisfy (8) with
C = 1 if and only if e−ηλ(γ,ω) is concave in γ (this property is called exponential
concavity in Section 3.3 of [1]). When does it hold for the square loss? We have

∂2

∂γ2
e−ηλ(γ,ω) = 2η(2η(γ − ω)2 − 1)e−η(γ−ω)2 .

Since the loss (γ−ω)2 can be as high as 1, the inequality ∂2

∂γ2 e
−ηλ(γ,ω) ≤ 0 holds

uniformly if and only if η ≤ 1/2. Taking η = 1/2 instead of η = 2 gives us sub-
optimal bounds (6) and (7). Still this merging strategy is technically possible;
it is called Exponentially Weighted Average Forecaster in [1], Section 3.3.

5.4. Continuous Games

The admissible constants for a continuous game cannot be better than the
constants for the corresponding discrete game. Let us show that the continuous
square loss game is η-mixable for η = 2 and, moreover, the same substitution
rules (including (10)) can be used for the continuous square loss game. Follow-
ing [12], we will prove that if γ0 ∈ [0, 1] satisfies

(γ0 − ω)2 ≤ −1

2
ln

N∑
i=1

pie
−2(γi−ω)2

for ω = 0 and ω = 1, then the same γ0 satisfies the inequality for every ω ∈ [0, 1]
by showing that

f(ω) = (γ0 − ω)2 +
1

2
ln

N∑
i=1

pie
−2(γi−ω)2

is convex in ω. Letting

Σ =

N∑
i=1

pie
−2(γi−ω)2 ,
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Σ′ =

N∑
i=1

pi(γ
i − ω)e−2(γi−ω)2 ,

Σ′′ =

N∑
i=1

pi(γ
i − ω)2e−2(γi−ω)2

we can write

d2f(ω)

dω2
= 2

(
1 +

1

Σ2

[
−Σ2 + 4Σ′′Σ− 4 (Σ′)

2
])

=
8

Σ2

(
Σ′′Σ− (Σ′)

2
)
.

One can consider Σ′ as a scalar product of the vectors (γ1−ω, γ2−ω, . . . , γN−ω)
and (1, 1, . . . , 1). Then the Cauchy(-Bunyakovsky-Schwarz) inequality implies

(Σ′)
2 ≤ Σ′′Σ and d2f(ω)

dω2 ≥ 0.
The square loss and logarithmic games on a simplex are discussed in [13]

and [12], respectively.
The mixability of Cover’s game for η = 1 follows from the linearity of

e−λ(γ,ω) = 〈γ, ω〉 in γ. It is not mixable for lower values of η because its
special case, logarithmic game, is not. The Aggregating Algorithm for Cover’s
game has an interesting financial interpretation.

Suppose that the experts are suggesting some investment decisions to us.
Let us partition the initial capital of 1 between the experts giving qi to expert
Ei and let each expert invest its capital and re-invest the proceeds according to
its own advice. We do not redistribute the money between the experts; a good
expert earns more money and controls a larger sum by design. Our wealth after
step T then amounts to WT =

∑N
i=1 qiW

i
T , where W i

T is how much we would
have earned entrusting all our capital to expert Ei from the start. Clearly, we
have WT ≥ qiW i

T for i = 1, 2, . . . , N .

If the investment happens as in Cover’s game, W i
T = qi

∏T
t=1〈γt, ωt〉 =

qie
−LossT (Ei). This equals the weight wiT assigned by the Aggregating Algorithm

to expert Ei. The normalised weight pit−1 can be thought of as the fraction of to-

tal capital after step t− 1 controlled by expert Ei. The vector γt =
∑N
i=1 p

i
t−1γ

i
t

is just the combined investment decision of the experts. The Aggregating Al-
gorithm is thus equivalent to partitioning the money between the experts and
letting them reinvest.

5.5. Non-mixable Games

Since (9) equals zero for the absolute loss game, it is not mixable for any
η > 0. As can be checked directly, the simple prediction game is not mixable
either.

The following geometric interpretation of admissible constants can be given
when λ(γ, ω) ≥ 0. Let H(X) denote the convex hull of a set X. If a game
is not η-mixable, H(Bη(S)) 6= Bη(S) and the same applies to their inverse
images: B−1

η (H(Bη(S))) 6= S. The value of C is admissible if and only if
C ·B−1

η (H(Bη(S))) ⊆ S, where the set C ·X is obtained from X by multiplying
each of its elements by C componentwise.
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In [5], the values Cη are given for the absolute loss and simple prediction
game. The values Cη for the former game can get arbitrarily close to 1 but
never reaches it. The values of Cη for the later game make (7) identical to
the bound of Corollary 2.1 from [14]. The Aggregating Algorithm thus reduces
to Weighted Majority. The values Cη for the simple prediction game can get
arbitrarily close to 2 but never reach 2.

6. Experts and Quantiles

In this section, we will give a few comments on the loss bounds (6) and (7).
Obvious these comments may be, they are important for applications.

While the bounds are theoretically optimal in a strong sense, they do not
necessarily convert to good practical performance. The rest of this paper is
devoted to considerations that may lead to better quality predictions and lower
losses. In this section, we discuss some simple aspects of the loss bounds.

The extra terms in (6) and (7) do not depend on time. It is reasonable to
expect the cumulative loss to grow and possibly at a linear rate (say, outliers
of the same magnitude in the data occurring at a fixed rate will make the loss
grow linearly). This implies that in the mixable case for large T the extra term
should be negligible and the loss of the learner should be close to the loss of the
best expert. The dependency of the extra term on N , the number of experts, is
mild. Assuming the uniform initial distribution, the dependency is logarithmic.
This implies that one should not normally hesitate to include more experts:
with time the algorithm will work out if they are needed at a relatively small
cost.

In a practical situation, the extra term may present a problem. For example,
in [4] the extra term overwhelms the advantages of the best expert. Thus a closer
look may be justified.

Suppose that the absolute best expert outperforms all competitors but the
logarithmic extra term eats up its advantages because each expert has a very low
initial probability. However, let there be a substantial fraction of pretty good
experts. Say, the best 25% of experts perform well. Can they help? Assume
C = 1 and recall (3):

e−η LossT (L) ≥
N∑
i=1

qie
−η LossT (Ei) .

Suppose that over time T experts with the combined initial weight of q or more
suffer loss Losst(Ei) ≤ A. Then

N∑
i=1

qie
−η LossT (Ei) ≥ qe−ηA

and

LossT (L) ≤ A+
1

η
ln

1

q
.

13



Thus a large quantile q may help. Note that no modifications of the AA were
needed and the behaviour ensued automatically.

A closely related observation can be made following [15]. Suppose that we
have two identical experts in the pool. It appears desirable to collate them into
one. However, this is again done by the AA automatically. The behaviour of the
AA would be the same as if one expert with the combined weight is present in
the pool. Assuming the uniform distribution on the initial experts, the weight
of the combined expert will be 2/N and the loss bound for the duplicated expert
Ei (again assuming the mixable case C = 1) turns into

LossT (L) ≤ LossT (Ei) +
1

η
(lnN − ln 2) .

If this expert is actually good, this is to our advantage.
However, if duplicate experts are bad, they create a problem: needlessly

increasing N worsens the bound for good experts.

7. Fixed Share

In this section we will discuss an important Fixed Share algorithm. It was
introduced in [16] for the absolute loss game, but we will describe it in the
context of the Aggregating Algorithm after [17].

The Aggregating Algorithm allows one to compete against individual ex-
perts. In the mixable case, the learner can perform nearly as well as the best
expert, but there are situations when this is just not good enough.

As a motivating example, consider two experts predicting some variables
describing the state of the economy, such as the inflation rate, unemployment,
or the central bank base interest rate. Suppose that one expert is working
well in years of economic growth and the other expert in years of slump and
depression. If we consider the aggregate performance of each experts over, say,
50 years, they will look mediocre so predicting as well as either of them is not
something worth aspiring to.

Instead we want to switch from one expert to another sometimes (in the
example above, whenever the economic climate changes). This problem came
to be known as tracking the best expert (after [16]). If the right moments for
switching are easily predictable, the problem trivialises and we can manually
create new experts performing according to the context. However, suppose that
these points in time are hard to foresee.

Suppose that we have N experts (we will call them base experts). Let us
consider superexperts that are built from base experts. Each superexpert on
every step predicts as one of the base experts according to some switching
pattern such as one shown in Table 1.

We can then mix all superexperts using the Aggregating Algorithm.
One cannot reasonably hope to perform as well as every superexpert (con-

sider, for example, one that switches from one base expert to another on every
step), but we can try and compete with some of them. We will give higher prior
weights to those with fewer switches.

14



Table 1: A table showing a switching pattern.

time 1 2 3 . . . T
expert followed En1 En2 En3 . . . EnT

Let us introduce a distribution on the switching patterns favouring those
with fewer switches. The distribution is controlled by a parameter α ≥ 0 called
the switching rate. This parameter controls the frequency of switches, namely,
α is the probability that a superexpert “decides” to make a switch to a different
base expert at time t. The expert to switch to is chosen uniformly among the
other experts. Suppose that a superexpert follows base expert Ei at time t. The
probability it switches to Ej with j 6= i on step t+ 1 is thus α

N−1 .
Assuming the uniform distribution of the initial expert En1

, we thus assign
to a switching pattern probability

1

N

(
α

N − 1

)k
(1− α)T−1−k , (11)

where k is the number of switches. If we merge all superexperts S with these
prior weights using the AA, inequality (6) yields the loss bound

LossT (L) ≤

C LossT (S) +
C

η

(
lnN + k ln

N − 1

α
+ (T − 1− k) ln

1

1− α

)
(12)

for every superexpert S, where k is the number of switches made by the super-
expert.

Here α is a parameter we can choose. If we have reasons to believe that
superexperts with k switches should perform particularly well, the extra term
in (12) can be optimised for them by taking α = k

T−1 (this motivates the name
switching rate).

Now let us discuss practical implementation. Applying the AA to the super-
experts directly is very inefficient: for NT superexperts we need to maintain NT

weights (and also need to know T in advance). There is, however, a trick that
makes the algorithm nearly as simple as the AA. Each superexpert on every
step follows some base expert. Instead of the weights of the superexperts, let
us maintain the weights of base experts. In other words, for each base expert
we will maintain the combined weight of all superexperts that follow it now.

Let wnt−1 be the weight of base expert En on step t, i.e., the sum of weights of
all superexperts that follow En on step t. How does it change after step t? First
note that all superexperts following En make the same prediction γnt and then
have their weight multiplied by the same coefficient e−ηλ(γn

t ,ωt). So we multiply
wnt by e−ηλ(γn

t ,ωt):
w̃nt = wnt−1e

−ηλ(γn
t ,ωt) .

15



Then we need to take switching into account. Of the superexperts following En
on step t, a fraction α leave and switch away from En to other base experts.
At the same time, of the experts that follow Em with m 6= n share α/(N − 1)
switch to the base expert En. Hence we can write

wnt = (1− α)w̃nt +
α

N − 1

∑
m6=n

w̃mt .

Protocol 2 can be adjusted by replacing line 7 with

Protocol 3 (FS).

7’ update the experts’ weights, part 1: w̃it = wit−1e
−ηλ(γi

t ,ωt),

i = 1, 2, . . . , N
7’’ update the experts’ weights, part 2:

wnt = (1− α)w̃nt + α
N−1

∑
m6=n w̃

m
t , n = 1, 2, . . . , N

Fixed Share turns out to be a fundamental algorithm in many respects. In
[18] it is shown that it optimises adaptive regret, i.e., the difference between the
cumulative loss of a learner and the best (base) expert on an arbitrary time
interval [t1, t2].

In [19] an important generalisation of Fixed Share has been put forward
covering the case where we have both unpredictable and known changes of the
context: on every step the learner is receiving side information from a finite
set (a task), which it can utilize. Also refer to [19] for an extensive up-to-date
literature list.

8. Specialist Experts

In this section, we discuss specialist experts. Specialist experts were intro-
duced in [20] and we will follow the approach of [21] and [22]

A specialist expert is an expert that may refrain from making a prediction. If
a specialist expert is not making a prediction, we say that it sleeps. Otherwise we
say that it is awake. This may cover a range of real-life situations. A prediction
algorithm may see that its internal confidence is low and decide to skip a turn
in order to re-train. Alternatively, an algorithm may simply break down (e.g.,
a regression algorithm may have its matrix very close to singular).

When we dealt with normal experts, we wanted to be as good as the best
expert in terms of the cumulative loss, where the cumulative loss was the sum
of losses over a period of time. For a specialist expert we can calculate the
sum of losses over the steps when the expert was awake. It is natural to judge
the learner by its cumulative loss over the same steps, i.e., the steps when that
expert was awake.

A natural idea for handling sleeping experts is to assume that a sleeping
expert “joins the crowd”. Let us imagine that the sleeping expert sides with
the learner and outputs the learner’s prediction for that turn.
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The Aggregating Algorithm guarantees (in the mixable case) that

T∑
t=1

λ(γt, ωt) ≤
T∑
t=1

λ(γit , ωt) +
1

η
ln

1

qi
.

If on some steps t the learner made the same predictions as the expert Ei, i.e.,
γt = γit , then the corresponding terms in the sums on the left and on the right
cancel out and we get sums over the times when the expert Ei was awake.

Note that our argument has been circular so far: we say that the sleeping
expert outputs learner’s prediction γt but then the learner works out γt on the
basis of experts’ predictions. Fortunately, this is easy to resolve. On line 5 in
Protocol 2 one finds γt by solving a system of inequalities equivalent to

e−ηλ(γt,ω)/C ≥
N∑
n=1

pnt−1e
−ηλ(γn

t ,ω) ,

where ω ranges over Ω. Let us equate the loss of the experts En that sleep on
step T to λ(γt, ωt)/C:

e−ηλ(γt,ω)/C ≥
∑

n:En is awake

pnt−1e
−ηλ(γn

t ,ω) +
∑

n:En sleeps

pnt−1e
−ηλ(γt,ω)/C .

We can then subtract the last sum from both the sides and get

e−ηλ(γt,ω)/C ≥ 1

Zt

∑
n:En is awake

pnt−1e
−ηλ(γn

t ,ω) ,

where
Zt =

∑
n:En is awake

pnt−1 .

This is a system of inequalities on γt with no signs of a vicious circle.
Here is the pseudocode for the Aggregating Algorithm handling sleeping

experts. The parameters are η > 0, an admissible C > 0, and an initial distri-
bution q1, q2, . . . , qN .

Protocol 4 (AA for Specialist Experts).

1 initialise weights wn0 = qn, n = 1, 2, . . . , N
2 FOR t = 1, 2, . . .
3 read the predictions γnt of awake experts

4 normalise the weights of awake experts

pnt−1 = wnt−1/
∑
i:Ei is awake w

i
t−1

5 solve the system (ω ∈ Ω):
λ(γ, ω) ≤ −Cη ln

∑
n:En is awake p

n
t e
−ηλ(γn

t ,ω)

w.r.t. γ and output a solution γt
6 observe the outcome ωt
7 update the awake experts’ weights wnt = wnt−1e

−ηλ(γn
t ,ω),

8 update the sleeping experts’ weights wnt = wnt−1e
−ηλ(γt,ω)/C(η)

9 END FOR
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The learner following this algorithm achieves loss satisfying

T∑
t=1,2,...,T :
En is awake
on step t

λ(γt, ωt) ≤ C ·
T∑

t=1,2,...,T :
En is awake
on step t

λ(γnt , ωt) +
C

η
ln

1

qn
.

In [21], the concept of a sleeping expert is generalised to a second-guessing
expert, which, instead of a prediction γnt ∈ Γ, outputs a mapping γnt : Γ→ Γ and
suffers loss λ(γnt (γt), ωt) depending on the learner’s prediction γt (in this section
we treated a sleeping expert as an identity mapping). Under mild regularity
assumptions, we can handle second-guessing expert and get bounds similar to
(6).

9. Discounted Loss

Discounting losses (and gains) with time is a common practice in on-line
learning. In finance-related applications this can be motivated by inflation2. In
reinforcement learning, discounting comes as standard and is essential to ensure
convergence to an optimal policy. In this section, we will discuss (after [23])
how discounting can be introduced into the Aggregating Algorithm.

Suppose that we are given coefficients α1, α2, . . . ∈ (0, 1]. Let the cumulative
discounted loss for a learner be given by

L̃ossT (L) =

T∑
t=1

λ(γt, ωt)

(
T−1∏
s=t

αs

)
= αT−1

˜LossT−1(L) + λ(γT , ωT ) ;

the discounted loss of an expert En is defined in the same way. If all αi are equal,
α1 = α2 = . . . = α, then λ(γt, ωt) comes into the formula with the discounting
coefficient αT−t.

Let us change line 4 in the AA to work out weights according to pit−1 ∝
qie
−ηαt−1

˜Losst−1(Ei). Then one can show by induction on time that

e−ηL̃ossT (L)/C ≥
N∑
i=1

qie
−ηL̃ossT (Ei) . (13)

Indeed, raising (13) to the power αT ∈ (0, 1] and applying Jensen’s inequality
yields

e−ηαT L̃ossT (L)/C ≥

(
N∑
i=1

qie
−ηL̃ossT (Ei)

)αT

≥
N∑
i=1

qie
−ηαT L̃ossT (Ei) .

2The discounting we consider does not directly translate into inflation because of time
direction.
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On step T + 1, the learner suffers loss satisfying

e−ηλ(γT+1,ωT+1)/C ≥
N∑
n=1

pnT e
−ηλ(γn

T+1,ωT+1) =

N∑
n=1

qne
−ηαT L̃ossEn (T )∑N

j=1 qje
−ηαT L̃ossEj (T )

e−ηλ(γn
T+1,ωT+1) .

Multiplying these inequalities proves (13) for time T + 1.
By dropping from (13) all terms except for one, we get the bound

L̃ossT (L) ≤ CL̃ossT (Ei) +
C

η
ln

1

qi
. (14)

The following modification of the AA achieves the required probabilities.
It takes as parameters η > 0, an admissible C > 0, an initial distribution
q1, q2, . . . , qN , and discounting factors α1, α2, . . .

Protocol 5 (AA with discounting).

1 initialise weights wi0 = 1, i = 1, 2, . . . , N
2 FOR t = 1, 2, . . .
3 read the experts’ predictions γit, i = 1, 2, . . . , N

4 normalise the weights pit−1 = qi(w
i
t−1)αt−1/

∑N
j=1 qi(w

j
t−1)αt−1,

i = 1, 2, . . . , N
5 output γt ∈ Γ satisfying for all ω ∈ Ω the inequality

λ(γt, ω) ≤ −Cη ln
∑N
i=1 p

i
t−1e

−ηλ(γi
t ,ω)

6 observe the outcome ωt
7 update the experts’ weights wit = (wit−1)αt−1e−ηλ(γi

t ,ωt),

i = 1, 2, . . . , N
8 END FOR

10. Prediction of Packs

Suppose that on step t we need to make more than one prediction. The
learner makes Kt predictions γt,1, γt,2, . . . , γt,Kt on the basis of experts’ predic-
tions γnt,1, γ

n
t,2, . . . , γ

n
t,Kt

(n = 1, 2, . . . , N) and then outcomes ωt,1, ωt,2, . . . , ωt,Kt

occur. For example, the learner may need to predict results of Kt football
matches happening on day t. The number Kt may vary with time. We will be
speaking of Kt outcomes as of a pack of outcomes and of Kt predictions as of a
pack of predictions.

This situation may be considered as a special case of the delayed feedback
protocol of [24]. However, we will describe the approach of [25] here instead.

For a game G = 〈Ω,Γ, λ〉 and a positive integer K consider the game
GK with the outcome space ΩK , prediction space ΓK , and the loss function
λK((γ1, γ2, . . . , γK), (ω1, ω2, . . . , ωK)) =

∑K
k=1 λ(γk, ωk)/K.

19



Let C > 0 be admissible for G with a learning rate η > 0. Suppose that we
have experts’ predictions γnk , k = 1, 2, . . . ,K, n = 1, 2, . . . , N and a distribution
p1, p2, . . . , pK . For every k = 1, 2, . . . ,K there is γk ∈ Γ such that

e−ηλ(γk,ωk)/C ≥
N∑
n=1

pne
−ηλ(γn

k ,ωk)

for all ωk ∈ Ω. By multiplying these inequalities over k and applying Hölder’s
inequality one can show that

e−η
∑K

k=1 λ(γk,ωk)/(KC) ≥
N∑
n=1

pne
−η

∑K
k=1 λ(γn

k ,ωk)/K ,

i.e., C remains admissible for GK with the same learning rate η. Moreover,
experts predictions may be merged for GK using the same substitution rule as
for G; it is just applied componentwise.

It is shown in [25] that under some general assumptions the inverse is true
and the admissible constants for GK are not better than for G.

This motivates the following extension of the Aggregating Algorithm to the
case of packs. It takes as parameters prior experts’ weights q1, q2, . . . , qN , a
learning rate η > 0 and an admissible C > 0.

Protocol 6 (AA for packs).

1 initialise weights wi0 = qi, i = 1, 2, . . . , N
2 FOR t = 1, 2, . . .
3 read the experts’ predictions γit,k,

i = 1, 2, . . . , N, k = 1, 2, . . . ,Kt

4 normalise the weights pit−1 = wit−1/
∑N
i=1 w

i
t−1

5 output γt,k ∈ Γ satisfying for all ω ∈ Ω the inequalities

λ(γt,k, ω) ≤ −Cη ln
∑N
i=1 p

i
t−1e

−ηλ(γi
t,k,ω)

k = 1, 2, . . . ,Kt

6 observe the outcomes ωt,1, ωt,2, . . . , ωt,Kt

7 update the experts’ weights wit = wit−1e
−η

∑Kt
k=1 λ(γi

t ,ωt)/Kt,

i = 1, 2, . . . , N
8 END FOR

The learner following this algorithm suffers loss satisfying

T∑
t=1

∑Kt

k=1 λ(γt,k, ωt,k)

Kt
≤ C

T∑
t=1

∑Kt

k=1 λ(γnt,k, ωt,k)

Kt
+
C

η
ln

1

qn

for every n = 1, 2, . . . , N .

11. Experimental Results

In this section we survey some computational results for prediction with
expert advice. One should note that prediction with expert advice has mainly
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developed as a theoretical area motivated by theoretical questions. The area
has not been known to practitioners to a sufficient extent and hence practical
studies are few.

In [13], important experiments were carried out with sports data. One can
interpret the odds quoted by a bookmaker as a probabilistic prediction of the
result of a sports match. Different bookmakers can be treated as experts and
the availability of odds data through betting websites makes this a convenient
playground for prediction with expert advice methods.

The experiments of [13] are followed upon in [25], where the matches hap-
pening on the same day are treated as packs rather than processed sequentially.

In [26], methods of prediction with expert advice are applied to electricity
consumption. This introduced the methods of prediction with expert advice
to the large area of demand forecasting. The algorithm used in the paper is
the Exponentially Weighted Average Forecaster from Section 3.3 of [1]. It is
discussed in Remark 1 in this paper. Its guarantee for the square loss is not as
good as that of the Aggregating Algorithm, but it is not worse off by a lot.

In [27], an important application of specialist experts to prediction of elec-
tricity consumption is discussed. The paper generalises the notion of a specialist
expert to an expert that can be partially awake. Apart from a prediction γt
such an expert produces a confidence value pt ∈ [0, 1], which quantifies its con-
fidence (a fully sleeping expert would output confidence of 0 and a fully awake
expert confidence of 1). A result similar to that described in Section 8 can be
proven for them and they turn out to be very helpful for predicting electricity
consumption under changing conditions.

In [25], prediction with expert advice is applied to house pricing. Working
out the price of a house by its description has long been a benchmark problem
in statistics and machine learning. Now with the availability of records of house
sales (such as the Ames housing dataset and official datasets of the London
area) this problem can be formulated in the on-line framework. As house sales
are often dated to a month, prediction of packs naturally applies here.

In [28], a new direction of applications is proposed. Methods of prediction
with expert advice can be used for selecting the right scope of past informa-
tion. In machine learning, a practitioner is often presented with the problem of
selecting the right training data. The problem has a temporal and a spacial as-
pect. What time horizon do we take so as not to include outdated information?
What range of similar examples do we include in the training set to make it
relevant? The approach of prediction with expert advice is to train models on
different regions of data and then merge them in on-line settings. The resulting
algorithm should perform little worse than the one knowing the right scope. In
[28] this method is used for the prediction of implied volatility of options and
prediction of students’ performance at tests on the GrockIt dataset.
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