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Abstract
We develop a geometric formulation of fluid dynamics, valid on arbitrary Rieman-
nian manifolds, that regards the momentum-flux and stress tensors as 1-form-valued
2-forms, and their divergence as a covariant exterior derivative. We review the neces-
sary tools of differential geometry and obtain the corresponding coordinate-free form
of the equations of motion for a variety of inviscid fluid models—compressible and
incompressible Euler equations, Lagrangian-averaged Euler-α equations, magneto-
hydrodynamics and shallow-water models—using a variational derivation which
automatically yields a symmetric momentum flux.We also consider dissipative effects
and discuss the geometric form of the Navier–Stokes equations for viscous fluids and
of the Oldroyd-B model for visco-elastic fluids.

1 Introduction

The equations of fluid dynamics are traditionally presented in coordinate forms, typ-
ically using Cartesian coordinates. There are advantages, however, in geometrically
intrinsic formulations which highlight the underlying structure of the equations, apply
to arbitrary manifolds and, when the need arises, are readily translated into whatever
coordinate system is convenient. The most straightforward geometric formulations
rely on the advective form of the momentum equation, with the advective derivative
expressed in terms of Lie or covariant derivatives (Arnold and Khesin 1998; Frankel
1997; Schutz 1980; Holm et al. 2009). One benefit of the Lie-derivative form is that the
metric appears only undifferentiated, in the relationship between advected momentum
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and advecting velocity. It is in this form that the Euler equations and more general
inviscid fluid models emerge from variational arguments as so-called Euler–Poincaré
systems (Arnold 1966; Salmon 1988; Morrison 1998; Arnold and Khesin 1998; Holm
et al. 1998; Webb 2018).

An alternative to the advective form of the momentum equation is the conservation
form, inwhich thematerial advection term is replaced by the divergence of themomen-
tum flux. The conservation form is particularly useful for its close relationship to the
global conservation law of (volume-integrated) momentum, when such a law holds.
It is also useful in the context of Reynolds averaging and its extensions, where the
effect of unresolved fluctuations naturally emerges as the divergence of the Reynolds
stress, the fluctuation-averaged momentum flux. In Euclidean space and for the Euler
equations, it is straightforward to switch between the two forms and to derive global
conservation laws for momentum in each spatial direction. It is less straightforward on
other manifolds, where global momentum conservation laws exist only in the presence
of spatial symmetries, and for fluid models more complicated than the Euler equa-
tions. This points to the benefits of formulating fluid models in conservation form in
a geometrically intrinsic way. This is the first objective of this paper. The second is to
discuss the geometric nature of the Cauchy stress tensor (associated with pressure and
irreversible effects) and of its divergence, noting that the momentum-flux and stress
tensors enter the equations of fluid mechanics on a similar footing.

A first question concerns the geometric interpretation of these tensors. We follow
Kanso et al. (2007) and regard them fundamentally as 1-form valued 2-forms (equiv-
alently, co-vector valued 2-forms), related to the more familiar twice contravariant
tensors through operations involving the metric. In this formulation, the divergence of
the momentum flux and stress tensors becomes the covariant exterior derivative of the
associated 1-form valued 2-forms. Defining and manipulating these objects requires
some differential-geometric machinery which we introduce in §2. The interpretation
ofmomentumflux and stress as 1-form valued 2-forms (or their close relatives, namely
vector valued 2-forms) is advocated by Frankel (1997) who points to its origin in the
work of Brillouin (1919) and Cartan (1925). It has both conceptual and practical bene-
fits. First, 1-form valued 2-forms arise naturally when the stress is regarded as a force,
to be paired with a velocity field and integrated over a surface to obtain a rate of work.
Second, it enables a simple coordinate-free formulation that makes minimal use of the
metric and associated connection. The computations, of the covariant exterior deriva-
tive in particular, are then straightforward when carried out at the level of differential
forms rather than coordinates. We illustrate this by computation in spherical geometry
in appendix A (see also Frankel (1997) for similar computations using vector valued
forms in the context of solid mechanics). Third, the formulation proves useful for the
derivation of momentum-conserving discretisations of the Navier–Stokes equations
(Toshniwal et al. 2014; Gerritsma 2014).

We note that form-, vector- or, more generally, vector-bundled-valued differential
forms appear in various guises in continuummechanics. In themetric-free formulation
of continuummechanics and other field theories developed by Segev (see Segev 2013,
2016), for instance, stress is a 2-form with values dual to the first jet space of vector
fields, so that the pairing involved in the construction of power is with both the velocity
vector and its spatial derivatives. In the theory of elasticity, stress is usually defined
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as the variational derivative of the energy with respect to a deformation tensor; it
then naturally is a rank-2 tensor, twice contravariant in the case of the Cauchy stress
(e.g. Marsden and Hughes 1983). In more general formulations, which describe the
configuration of a deformed body as a surface in the six-dimensional space of joint
reference and deformed positions (e.g. Giaquinta et al. 1998), deformation and stress
can be encoded in rank-3 fully antisymmetric tensors (a 3-form in the case of the
stress) (see Giaquinta et al. 2015). The formulation that we describe remains at a less
abstract level, using differential forms to recast in a convenient, coordinate-free form
fluid dynamical equations that are, conceptually, identical to those of standard fluid
dynamics texts.

We consider the derivation of fluid equations in their conservation form, starting
with the Euler equations for compressible perfect fluids in §3. We follow two routes.
The first takes the Euler equations in their advective form as starting point, and uses
a relation between Lie derivative and covariant exterior derivative to deduce the con-
servation form. The second relies on a variational formulation of the Euler equations:
we show that the stationarity of the relevant action functional, when combined with an
infinitesimal condition for the covariance of the action (that is, for its invariance with
respect to arbitrary changes of variables), leads directly to the Euler equations in their
conservation form. The variational route has the benefit of being systematic and of
automatically yielding the momentum flux as a symmetric 1-form valued 2-form. We
follow this route to derive the conservation form of further inviscid fluid models: the
incompressible Euler equations in §4.1, the Lagrangian-averaged Euler α-model in
§4.2 and themagnetohydrodynamics (MHD) equations in §4.3. Analogous derivations
for the shallow-water model and its MHD extension are sketched in Appendix C. We
emphasise that, for models such as the Euler-α model, the form of the momentum flux
does not follow readily from the advective form of the equations, even in Euclidean
geometry, making the variational derivation valuable.

In §5 we examine the interpretation of the Cauchy stress tensor as a 1-form valued
2-form for Newtonian and viscoelastic fluids. In the Newtonian case, we give an
expression for the viscous stress tensor in termsof theLie derivative of themetric tensor
along the fluid flow, and we emphasise the significance of this derivative as a natural
measure of the rate of deformation of the fluid. In the conservation form of the Navier–
Stokes equations which emerges by taking a covariant exterior derivative, the viscous
term involves the Ricci Laplacian of the momentum. This Laplacian differs from
both the Laplace–de Rham operator and the rough Laplacian by terms proportional to
the Ricci tensor. Its appearance is consistent with physical arguments (Gilbert et al.
2014). For viscoelastic fluids, we discuss models whose constitutive laws involve the
transport of the stress tensors and sketch a geometric derivation of the constitutive law
of one standard representative of this class, the Oldroyd-B model. The formulation
in terms of 1-form (or vector) valued 2-forms sheds light on the reasons underlying
the appearance of a particular type of material derivative of the stress tensor (the
upper-convected derivative in this instance).

Many of the concepts and techniques presented in this paper are standard and
discussed in existing literature on differential geometry and on geometric mechanics.
Their use in fluid dynamics is, however, not well established. By introducing them in
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the context of familiar fluid models we aim to promote their adoption more broadly
in fluid dynamics and its applications.

2 Machinery

We will be using techniques of differential geometry and work on a smooth, ori-
entable Riemannian manifold M, with or without a boundary ∂M. We take M
to be three-dimensional, although formulae and arguments are easily modified for
the two-dimensional case. To avoid unnecessary complications we assume M has a
straightforward topology, so that all curves and surfaces in M may be contracted to
a point. The manifold is equipped with a metric g and we also need the compatible
volume form μ and covariant derivative ∇. We assume that the reader is familiar with
the fundamental constructions of differential geometry including vectors, p-forms, the
interior product �, the Lie derivativeL, the exterior derivative d, the Hodge star opera-
tor �, and the musical raising and lowering operators � and � (see for example Frankel
(1997); Schutz (1980); Hawking and Ellis (1973); Besse and Frisch (2017); Gilbert
and Vanneste (2018)). Note that we prefer to use the term 1-form rather than covector
in what follows. As well as this machinery we will need the notions of 1-form-valued
2- and 3-forms:wewill define these from scratch, following closelyKanso et al. (2007)
and Frankel (1997), in order to establish notation and properties, and because theymay
be unfamiliar to some readers, although such objects arise naturally in the discussion
of continuummechanics for the treatment of stress.While, as indicated above, our aim
is to use purely geometrical constructions where possible, it is sometimes awkward
to represent complicated contractions of objects using coordinate-free notation, and
in some calculations we will use indexed objects. Both approaches have benefits and
the maximum utility is obtained by switching between them fluidly.

2.1 Momentum Flux

We recall that in a traditional treatment of fluid flow in Euclidean space (Batchelor
1967), the stress on an element of surface with normal vector n at a point (x, t) is
a vector force f (x, t, n) per unit area. It can be established that f depends linearly
on n and so we can write fi = σi j (x, t)n j , where the stress tensor σ is symmetric.
Then, the divergence of the stress tensor ∂ jσi j gives the net force per unit volume, and
appears in the Navier–Stokes equation which in conservation form is

∂t (ρui ) + ∂ j (ρuiu j ) = ∂ jσi j . (2.1)

This form highlights the role of the momentum flux ρuiu j as a tensor of a nature
similar to that of σ . For a compressible Newtonian fluid, the stress tensor is given by

σi j = −p δi j + ς(∂ j ui + ∂i u j ) + λ div u δi j , (2.2)

where p is the pressure field, and ς and λ denote the dynamic and bulk viscosities.
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In our more general setting for flow on an arbitrary three-dimensional manifoldM,
the appropriate geometrical object to represent the stress is a 1-form valued 2-form τ

which can be defined by
τ = 1

2τi jk dx
i ⊗ dx j ∧ dxk . (2.3)

This can be thought of as an object with two legs; the first leg, given by the i index,
has the nature of a 1-form or covector, while the second leg, given by indices j and k,
has the nature of a 2-form. The interpretation of τ is as follows: if we have a surface
element given by vectors v and w at a point in the fluid, and the fluid has velocity
u there, then the rate of working of the stress force by flow through that element of
surface, per unit area, is given by contracting τ with u on the first leg and v ⊗ w on
the second leg:

τ(u, v, w) = τi jk u
iv jwk . (2.4)

Note that in a geometric setting momentum is a 1-form, and so it is natural to work
with 1-form valued objects such as τ ; its value (when contracted on the second leg)
is not the force on the surface element itself, but the rate of working or power of the
force when contracted with the vector fluid velocity u on its first leg. Nonetheless for
brevity in the discussion below we refer to this 1-form value τ(·, v, w) as the force.
Vector valued 2-forms, with components τ ijk , may be defined similarly but we will not
need these.

2.2 Exterior Covariant Derivative

Given that a 1-form valued 2-form τ is the appropriate description of the force on
surface elements in a fluid flow, we need to obtain its divergence, in other words
calculate a net force on elements of volume. This divergence is a 1-form valued 3-
form given by dτ , where d is the exterior covariant derivative defined by Kanso et al.
(2007)

(u, dτ) = d(u, τ ) − ∇u
·∧ τ. (2.5)

Here u is any vector field, (u, τ ) denotes u contracted into the first leg of τ ; likewise

(u, dτ) is u contracted into the first leg of dτ . In ∇u
·∧ τ the u is contracted into the

first leg of τ and the covariant derivative is wedged with the second leg of τ . In the

general use of
·∧, the first legs of the two sides are contracted, the second legs are

wedged: for example for 1-forms α and β, a 2-form γ and a vector u,

(u ⊗ α)
·∧ (β ⊗ γ ) = (u, β) α ∧ γ. (2.6)

Consistent with this, we adopt the (somewhat awkward) convention that the first leg
of ∇u is taken to be u and the second to be ∇ and write

∇u = ∇ j u
i ∂i ⊗ dx j = ui; j ∂i ⊗ dx j , (2.7)

with a semicolon as alternative notation for a covariant derivative (Kanso et al. 2007).
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Using components the definition of d amounts to

(u, dτ)i jk = um(dτ)mi jk = 3(umτm[i j );k] − 3τm[i j∇k]um = 3umτm[i j;k] (2.8)

and so we have
(dτ)mi jk = 3τm[i j;k], (2.9)

with square brackets denoting full antisymmetrisation (see Schutz (1980) for the for-
mulation of exterior derivatives and wedge products in terms of antisymmetrised
tensors). The definition is thus independent of the choice of u. The resulting object
dτ has the physical interpretation that the net force on a volume element supplied
by vectors u, v and w is the 1-form obtained as the first leg of dτ , when we take the
contraction dτ(·, u, v, w) on the second leg.We note that the appearance of the covari-
ant derivative in this definition is natural, since computing the net force on a volume
element involves the differences between forces on the various faces and taking these
differences requires parallel transport. The metric-free theory of Segev (2013, 2016)
constructs a more general divergence that does not involve the covariant derivative by
having the stress tensor act on both u and its spatial derivatives in an arbitrarily chosen
manner.

The general definition (2.5) of dτ in fact holds for 1-form valued p-forms for any
p and is easily extended to p-forms with values in other vector bundles. The theory
of these ‘valued’ forms and the exterior covariant derivative d was developed by E.
Cartan as the natural language for discussing curvature, gauge theories, and stress in
elasticity and fluid flow (Frankel 1997; Kanso et al. 2007).

The usual operations such as raising and lowering indices with � and �, and the
Hodge star � operator can be applied to either leg of τ , with a numeral subscript used
to indicate which leg. With this notation, we can relate τ to the usual definition of the
(twice contravariant) stress tensor T = T i j∂i ⊗ ∂ j through

τ = �2�2�1 T , (2.10)

or in components
τi jk = gil T

lm μmjk . (2.11)

We also need to relate the exterior covariant derivative of τ to the usual divergence of
the tensor T . We have that

(dτ)mi jk = 3(gml T
ln μn[i j );k] = 3gml μn[i j T ln

;k], (2.12)

as the covariant derivatives of g andμ vanish. A short computation shows this reduces
to

(dτ)mi jk = gml T
ln
;n μi jk . (2.13)

This is precisely dτ = α ⊗ μ with αm = gml T ln
;n , giving the natural relation between

the 1-form valued 3-form dτ and the usual divergence T i j
; j of T

i j .

The symmetry of the stress tensor, easily expressed as T i j = T ji or T (α, β) =
T (β, α) for arbitrary 1-forms α and β, can be rewritten in terms of the 1-form valued
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1-form �2τ = Ti j dxi ⊗ dx j as

�2τ(u, v) = �2τ(v, u) (2.14)

for arbitrary vectors u and v. It can equivalently be stated in terms of τ itself as

(α� ⊗ β)
·∧ τ = (β� ⊗ α)

·∧ τ, (2.15)

for arbitrary 1-forms α and β, by applying the property that for any 2-form γ ,

β ∧ γ = (β�, �γ ) μ, (2.16)

to the second leg of �2τ .

2.3 Interpretation

For a useful physical interpretation of the definition (2.5) of dτ , consider the work
done by the stress τ on the surface of a volume V moving with a velocity field u. The
rate of work, that is the power generated, is given by

P =
∫

∂V
(u, τ ) =

∫
V
d(u, τ ) =

∫
V
(u, dτ) +

∫
V

∇u
·∧ τ, (2.17)

where, as usual, the contraction in (u, τ ) is into the first leg of τ . The first term on the
right-hand side corresponds to the work done by the force dτ on the moving volume
V and is associated with a change in kinetic energy; the second term corresponds to
an internal work and is associated with the deformation of V and the resulting change
of internal energy. This is better seen by rewriting the second term as

∫
V

∇u
·∧ τ = 1

2

∫
V
(�1Lug)

·∧ τ = 1
2

∫
V
〈〈Lug, �2τ 〉〉μ, (2.18)

where Lu denotes the Lie derivative along u and 〈〈·, ·〉〉 denotes the contraction of
tensors defined, using the metric twice, as 〈〈σ, τ 〉〉 = gi j gklσikτ jl . We have also used
the result

1
2Lug = ∇u� + 1

2du� = 1
2

(∇u� + (∇u�)
T)

, (2.19)

that is, 1
2Lug is the symmetrisation of ∇u�. This follows from the computation

(Lug)(v,w) = Lu(g(v,w)) − g(Luv,w) − g(v,Luw)

= ∇u (g(v,w)) − g(Luv,w) − g(v,Luw)

= g(∇uv − Luv,w) + g(v,∇uw − Luw) = (∇vu�)(w) + (∇wu�)(v)

= 2(∇wu�)(v) + (∇vu�)(w) − (∇wu�)(v) = 2(∇u�)(v,w) + du�(v,w),

(2.20)
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for arbitrary vectors v, w, using that∇ug(v,w) = g(∇uv,w)+g(v,∇uw) andLuv =
∇uv − ∇vu. We emphasise that Lug provides a natural measure of the deformation
induced by u, consistent with the interpretation of (2.18) as the power associated with
the deformation of V .

For vector fields u that satisfy ∇u = 0, and so are parallel-transported across M,
(2.17) reduces to ∫

V
(u, dτ) =

∫
V
d(u, τ ) (∇u = 0), (2.21)

which gives a metric-independent weak form of dτ that can be exploited for
momentum-preserving discretisation (Toshniwal et al. 2014; Gerritsma 2014).

2.4 Properties of d

We conclude this section with properties of the exterior covariant derivative d useful
for our purpose. We first note that we can regard any 3-form ω as a 1-form valued
2-form by simply using formula (2.4). With this in mind it is easy to establish that
when multiplied by a scalar function f we have

d( f ω) = d f ⊗ ω + f dω. (2.22)

In addition, when ω is the metric-induced volume form μ on M it follows from
∇μ = 0 that

dμ = 0. (2.23)

In writing the equations of fluid mechanics in a general setting, Lie derivatives
naturally emerge that express transport of quantities. For example in the Euler equation
(3.1a) below, a Lie derivativeLuν appears to express transport of momentum, in place
of the traditional u · ∇u in Euclidean space. Thus crucial to any analysis is a link
between the divergence d of a quantity and an appropriate Lie derivative. We use the
following key identity, which holds for any vector field u, 1-form field α and 3-form
field ω,

Lu(α ⊗ ω) = d(α ⊗ u�ω) + (∇u, α) ⊗ ω, (2.24)

and links a Lie derivative of the 1-form valued 3-form α⊗ω and the exterior covariant
derivative of the 1-form valued 2-form α ⊗u�ω. In the term (∇u, α) the inner product
is taken between the u and the α, leaving behind a 1-form. To prove this identity we
contract the left-hand side with an arbitrary vector field v on the first leg only, so that
for example (v, α ⊗ ω) = (v, α)ω, writing first

(v,Lu(α ⊗ ω)) = Lu(v, α ⊗ ω) − (Luv, α ⊗ ω)

= d(v, α ⊗ u�ω) − (Luv, α ⊗ ω), (2.25)

using Cartan’s formula
Luβ = d(u�β) + u�dβ, (2.26)
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and noting that (v, α ⊗ ω) is a 3-form and so vanishes under the action of d. We can
now apply (2.5) and Luv = ∇uv − ∇vu to write

(v,Lu(α ⊗ ω)) = (v, d(α ⊗ u�ω)) + ∇v
·∧ α ⊗ u�ω

− (∇uv, α ⊗ ω) + (∇vu, α ⊗ ω). (2.27)

Since
β ∧ u�ω = (β, u) ω (2.28)

for any 1-form β, letting ∇ take the place of β, we observe that the second and third
terms of (2.27) cancel and the last can be rewritten to give

(v,Lu(α ⊗ ω)) = (v, d(α ⊗ u�ω)) + (v, (∇u, α) ⊗ ω). (2.29)

The vector field v is arbitrary and so the result (2.24) follows.
We finally observe that for practical computations, it may be preferable to avoid

using the full coordinate expression (2.9) for dτ . Instead, a convenient expression
emerges by expanding τ as a sum

τ = dxi ⊗ α(i), (2.30)

where the α(i) are 2-forms. The exterior covariant derivative is then given by

dτ = ∇dxi ⊗∧ α(i) + dxi ⊗ dα(i). (2.31)

Here, ⊗∧ denotes a Cartesian product with the first leg of ∇dxi and a wedge product
with the second leg, with as above, the covariant derivative treated as the second leg
(that is, ∇dxi = ∇ j (dxi ) ⊗ dx j ), so that ∇dxi ⊗∧ α(i) is the 1-form valued volume
form ∇ j (dxi ) ⊗ dx j ∧ α(i). We can check (2.31) from the coordinate-free definition
of d:

(u, dτ) = d(ui α(i)) − ∇u
·∧ (dxi ⊗ α(i)) (2.32a)

= ui, j dx
j ∧ α(i) + ui dα(i) − (∇ j u, dxi ) dx j ∧ α(i) (2.32b)

= ui, j dx
j ∧ α(i) + ui dα(i) − (ui, j − (u,∇ j dx

i )) dx j ∧ α(i) (2.32c)

= (u, dxi ⊗ dα(i) + ∇ j (dx
i ) ⊗ dx j ∧ α(i)), (2.32d)

where we use that (∇ j u, dxi ) = ∇ j (u, dxi ) − (u,∇ j dxi ) and ∇ j (u, dxi ) = ∇ j ui =
ui, j . We illustrate the application of this formula and, more broadly, manipulations of
the 1-form valued τ with explicit computations in spherical geometry in appendix A.

3 Application to Compressible Perfect Fluid

Having set up the necessary machinery and linked the divergence d to Lie derivatives,
we now use this to write systems of fluid equations on a general manifold M in
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conservation form. The most fundamental case is the compressible Euler equation,
which takes the coordinate-free form

ρ[∂tν + Luν − 1
2d(u, ν)] + dp = 0, (3.1a)

∂t (ρμ) + Lu(ρμ) = 0, (3.1b)

where ρ is the density, u is the velocity (vector) field, ρν = ρu� is the corresponding
(1-form) momentum and p is the pressure field (Gilbert and Vanneste 2018). For
the maximum flexibility to write a variety of fluid systems in conservation form, we
develop this for the Euler equation using two distinct lines of argument.

In the first, we simply apply identities obtained in §2 to (3.1a). From (3.1) we can
form an equation for the momentum, now thought of as the 1-form valued 3-form
ρν ⊗ μ,

(∂t + Lu)(ρν ⊗ μ) − 1
2ρ d(u, ν) ⊗ μ + dp ⊗ μ = 0. (3.2)

We then apply (2.24) together with

(∇u, ν) = 1
2∇(u, ν) = 1

2d(u, ν), (3.3)

as ν = u� and the covariant derivative of the metric vanishes, ∇g = 0, to obtain

∂t (ρν ⊗ μ) + d(ρν ⊗ u�μ) + dp ⊗ μ = 0. (3.4)

We can also use (2.22) and (2.23), Cartan’s formula and note that u�μ = �ν to write
both the momentum and continuity equations in the desired conservation form

∂t (ρν ⊗ μ) + d(ρν ⊗ �ν + pμ) = 0, (3.5a)

∂t (ρμ) + d(ρ �ν) = 0. (3.5b)

This identifies the momentum flux as the 1-form-valued 2-form ρν ⊗ �ν and the mass
flux as the 2-form ρ �ν.

The second line of argument starts from an action principle (Gotay et al. 1992;
Hawking and Ellis 1973) and provides a direct variational derivation of the Euler
equations in conservation form, as an alternative to the Euler–Poincaré derivation
which yields (3.1a) (Newcomb 1962; Salmon 1988; Holm et al. 1998; Webb 2018;
Gilbert and Vanneste 2018) and which we record in Appendix B for completeness.
We suppose that the time-dependent family of diffeomorphisms φt : M → Mmoves
the fluid elements, together with the mass 3-form ρμ and the scalar entropy s, from
some initial configuration. If we let the internal energy be e(ρ, s) per unit mass, the
action is given by

A[φ] =
∫

dt
∫
M

L[φ], where L[φ] = [ 1
2g(u, u) − e(ρ, s)

]
ρμ (3.6)
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is the Lagrangian 3-form, that is the Lagrangian density multiplied by μ. Here we
abbreviate φ for φt and

u = φ̇ ◦ φ−1, ρμ = φ∗(ρ0μ), s = φ∗s0, (3.7)

where φ∗ is the push forward under the map φ from the initial conditions, with ρ0 as
the initial density, s0 the initial entropy.

We require the action to be stationary under any variation φ 
→ ψε ◦ φ, where ψε

is a family of mappings with ψ0 the identity, so that

d

dε

∣∣∣
ε=0

A[ψε ◦ φ] = 0. (3.8)

We can take the familyψε to be generated by a vector fieldw at ε = 0. We can choose
w to vanish except between some initial and final time, and to vanish outside some
local region of M, meaning that we can freely integrate by parts in time or on M
in what follows. Under such a variation we obtain variations in the fields, labelled
fleetingly by ε, with

d

dε

∣∣∣∣
ε=0

uε = ∂tw + Luw = ∂tw − Lwu, (3.9a)

d

dε

∣∣∣∣
ε=0

ρεμ = −Lw(ρμ) = − div(ρw)μ, (3.9b)

d

dε

∣∣∣∣
ε=0

ρε = − div(ρw), (3.9c)

d

dε

∣∣∣∣
ε=0

sε = −Lws = −(ds, w). (3.9d)

Requiring the action (3.6) to be stationary, (3.8), then gives

∫
dt

∫
M

[
g(u, ∂tw − Lwu) ρμ − 1

2 g(u, u)Lw(ρμ)+(ρe)ρ Lw(ρμ)+ρes(Lws) μ
]

= 0, (3.10)

with the ρ and s subscripts denoting partial derivatives.
The standard derivation in Appendix B uses integration by parts to write each term

in (3.10) as a pairing with the undifferentiated w before invoking the arbitrariness of
w to obtain the Euler equations in the form (3.1). To obtain the conservation form
instead, we return to the action integral (3.6) and note that ψε : M → M, so that we
can write schematically

A[φ] =
∫

dt
∫

ψεM
L[φ] =

∫
dt

∫
M

ψ∗
ε L[φ], (3.11)

with ψ∗
ε L the pull back of the Lagrangian 3-form. Differentiating with respect to ε at

ε = 0 replaces the pull back by a Lie derivative with respect to the vector field w and
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gives ∫
dt

∫
M

LwL[φ] = 0. (3.12)

This key equation expresses the principle of covariance — the invariance of laws of
motion under change of variables—at an infinitesimal level; it allows us to reformulate
the result of applying the action principle and to obtain an equivalent form for the
resulting equation of motion (Hawking and Ellis 1973). Applying (3.12) to the action
integral (3.6) gives

∫
dt

∫
M

Lw[ 12g(u, u) ρμ − ρe(ρ, s) μ]

=
∫

dt
∫
M

[ 1
2 (Lwg)(u, u) ρμ + g(u,Lwu) ρμ

+ 1
2g(u, u)Lw(ρμ) − [(ρ e)ρ Lwρ + ρes Lws]μ−ρeLwμ

] = 0. (3.13)

Both this equation and (3.10) must hold; adding them together leaves

∫
dt

∫
M

[ 1
2 (Lwg)(u, u) ρμ + g(u, ∂tw) ρμ + pLwμ

] = 0, (3.14)

after simplifying and using p = ρ2eρ . This equation gives the momentum equation
in a weak form, suitable for finite element discretisation; see Toshniwal et al. (2014)
and Gerritsma (2014).

We can now use integration by parts, and so discard total time derivatives or total
space derivatives dω, where ω is any 2-form, by applying

∫
M

dω =
∫

∂M
ω = 0, (3.15)

given that ω vanishes on the boundary ∂M. This typically requires boundary con-
ditions on the fields, here that u be parallel to ∂M, and using that w, as the flow
generating a diffeomorphism from M to M, is also parallel to ∂M. We do not con-
sider boundary conditions in detail since they are well established for the fluid models
under consideration in this paper.We denote the equivalence up to total time and space
derivatives by �. For the last two terms in (3.14) we find

g(u, ∂tw) ρμ = (∂tw, ν ⊗ ρμ) � −(w, ∂t (ρν ⊗ μ)), (3.16a)

pLwμ � −μLw p = − (w, dp) μ = −(w, dp ⊗ μ), (3.16b)

on using that Lw p = (w, dp). For the first term we claim that

1
2 (Lwg)(u, u) ρμ � −(w, d(ρν ⊗ �ν)). (3.17)
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Substituting into (3.14) then gives

∫
dt

∫
M

[(w, d(ρν ⊗ �ν)) + (w, ∂t (ρν ⊗ μ)) + (w, dp ⊗ μ)] = 0, (3.18)

and as the vector field w is arbitrary (albeit parallel to ∂M), the conservation form
(3.5a) must hold, completing the derivation directly from the action principle. We
remark that the covariance of the action (3.12) merely encodes an identity, namely
(2.24), in the form used to go from the advective to the conservation forms of the
momentum equation. Its benefit lies in the cancellations of terms that arise when it
is added to the stationarity condition of the action, that is, when (3.10) and (3.13)
are added together. These cancellations are a generic feature of the approach, as the
consideration of an abstract model in §4.4 demonstrates.

We now need to prove the identity (3.17). First we use the identity (2.19) contracted
with the symmetric tensor u ⊗ u to write

1
2 (Lwg)(u, u) = (∇w�)(u, u) = (u,∇uw�) = (ν,∇uw), (3.19)

using that ∇g = 0. Then we have, applying (2.28) to the contraction between the u
and the ∇,

1
2 (Lwg)(u, u) ρμ = (ρν,∇uw)μ = ∇w

·∧ ρν ⊗ u�μ = ∇w
·∧ ρν ⊗ �ν. (3.20)

Hence by the definition of d, and discarding the resulting divergence term (as per
integration by parts), we have

1
2 (Lwg)(u, u) ρμ = −(w, d(ρν ⊗ �ν)) + d(w, ρν ⊗ �ν) � −(w, d(ρν ⊗ �ν)),

(3.21)
which establishes (3.17).

4 Other Fluid Models

The above calculation establishes the principle that allows us to obtain equations in
conservation form by playing off the terms gained from the variational principle in
(3.8) with those obtained by an infinitesimal change of variables in the integral, the
limiting Lie derivative action of a pull back, in the covariance condition (3.12). This
systematic method can be applied to other systems, with varying level of complexity
in the resulting calculations. We consider three important specific systems, namely
incompressible fluid flow, the Euler-α model andMHD before illuminating the overall
structure by examining an abstract model of Euler–Poincaré type.
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4.1 Incompressible Perfect Fluid

We commence with the Euler equations for an incompressible fluid. The action in this
case takes the form

A[φ, π ] =
∫

dt
∫
M

[ 1
2g(u, u)μ − π(φ∗μ − μ)

]
, (4.1)

where −π is a Lagrangian multiplier enforcing the volume-preservation constraint
φ∗μ = μ. Under variation of the path, we obtain

d

dε

∣∣∣
ε=0

A[ψε ◦ φ, π ] =
∫

dt
∫
M

[g(u, ∂tw − Lwu)μ + πLw(φ∗μ − μ) + πLwμ]

= 0, (4.2)

while the covariance condition (3.12) gives

∫
dt

∫
M

[ 1
2 (Lwg)(u, u) μ + g(u,Lwu) μ + 1

2g(u, u)Lwμ − (Lwπ)(φ∗μ − μ)
]

= 0, (4.3)

which holds for anymapφ and fieldπ .We now impose the incompressibility condition
φ∗μ = μ (as follows fromvariations of (4.2) inπ ) in the integrals abovewhich become

∫
dt

∫
M

[g(u, ∂tw − Lwu) μ + π Lwμ] = 0, (4.4)
∫

dt
∫
M

[ 1
2 (Lwg)(u, u) μ + g(u,Lwu) μ + 1

2g(u, u)Lwμ
] = 0. (4.5)

As before we add these two equations to obtain

∫
dt

∫
M

[ 1
2 (Lwg)(u, u) μ + g(u, ∂tw)μ + (π + 1

2g(u, u))Lwμ
] = 0. (4.6)

If we set p = π + 1
2g(u, u), we recover (3.14) with ρ = 1 and, following the

compressible case, the incompressible equations in the form

∂t (ν ⊗ μ) + d(ν ⊗ �ν + pμ) = 0, (4.7a)

div u = 0, (4.7b)

with μ div u = d �ν.

4.2 Euler-˛Model

We next consider the Lagrangian averaged Euler-α model first introduced by Holm
(1999). The model is a generalisation of the Euler equations for incompressible per-
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fect fluids that accounts for the averaged effect of small-scale fluctuations (see Holm
(2002), Marsden and Shkoller (2003), Oliver (2017) and Oliver and Vasylkevych
(2019) for increasingly sophisticated heuristic derivations); it has been formulated on
Riemannian manifolds (Marsden et al. 2000; Shkoller 1998, 2000; Gay-Balmaz and
Ratiu 2005; Oliver and Vasylkevych 2019). We now show that the variational route
enables a relatively straightforward derivation of the conservation form of the Euler-α
model on manifolds, which otherwise would be difficult to obtain.

The Euler-α action for an incompressible flow u is

A[φ] =
∫

dt
∫
M

[ 1
2g(u, u) μ + 1

4α
2|Lug|2 μ − π(φ∗μ − μ)

]
, (4.8)

where α is a parameter and |Lug|2 = 〈〈Lug,Lug〉〉 is the square of the deformation
of u (cf. (2.19)). This action is identical to Euler action (4.1) except for the addition
of the middle term, which we denote by α2A2. We note that other forms for this
term – equivalent in Euclidean geometry but distinct on curved manifolds – have
been proposed originally (Marsden et al. 2000; Shkoller 1998) and that (4.8) follows
the more recent literature (Shkoller 2000; Gay-Balmaz and Ratiu 2005; Oliver and
Vasylkevych 2019). We focus on α2A2 since we have dealt with the other two terms in
the treatment of the Euler equations above. For simplicity, we assume that themanifold
M has empty boundary to avoid unnecessary complications when discarding integrals
overM that are the derivative d of a 2-form (see Shkoller (2000) for a careful treatment
of the boundary conditions). We have

A2[φ] = 1
4

∫
dt

∫
M

〈〈Lug,Lug〉〉μ = 1
2

∫
dt

∫
M

〈〈∇u�,Lug〉〉μ (4.9a)

= 1
2

∫
dt

∫
M

∇u
·∧ �2Lug = − 1

2

∫
dt

∫
M

(u, d(�2Lug))

= − 1
2

∫
dt

∫
M

(u,�Rν) μ (4.9b)

on using (2.5), (2.19) and (2.29). In the last equality, we have introduced the Ricci
Laplacian of 1-forms via

�Rν ⊗ μ = d(�2 Lug), (4.10)

recalling that ν = u�. This is related to theLaplace–deRhamoperator�ν = −(�d�d+
d�d�)ν and the analyst’s (or rough) Laplacian (�̃ν)i = g jk∇ j∇kνi through

�Rν = �ν + 2R(u) = �̃ν + R(u), (4.11)

where R is the Ricci tensor given by, in general, R(u)i = Ri j u j = ∇ j∇i u j −∇i∇ j u j .
The latter equality in (4.11) is known as the Weizenböck formula (Frankel 1997); we
check the former. Setting temporarily Si j = (Lug)i j , (2.13) shows that we need to
compute ∇ j Si j , which gives

∇ j S
i j = gik g jl ∇ j (Lug)kl = gik g jl ∇ j (∇kul + ∇luk) (4.12a)
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= gik [∇ j∇ku
j + (�̃ν)k] = gik (R(u) + �̃ν)k, (4.12b)

using incompressibility, div u = ∇i ui = 0.
The Euler–α momentum equation is obtained by extremising the action (4.8) under

variations of the form (3.9a). The contribution of A2 is readily obtained from (4.9b)
using the self-adjointness of �R (as used in Oliver and Vasylkevych (2019)) to find

d

dε

∣∣∣∣
ε=0

A2 = −
∫

dt
∫
M

(∂tw − Lwu,�Rν) μ. (4.13)

Adding this to the variation obtained for the Euler equation in (4.4) and requiring the
sum to vanish for arbitrary w yields the Euler–α equations in the advective form

∂tυ + Luυ + dπ = 0, div u = 0, where υ = ν − α2�Rν. (4.14)

It is not obvious how to put (4.14) into conservation form by inspection and so we
proceed to use the pull back of the action according to (3.12). We focus again on A2
since the contributions of the other terms are as in (4.5). The variation of A2 can be
written as the sum of three terms proportional to Lwu, Lwg and Lwμ. It is convenient
to use the form (4.9b) of A2 for the first and (4.9a) for the other two. This leads to

∫
dt

∫
M

LwL2[φ]

=
∫

dt
∫
M

[
(−Lwu,�Rν) μ + 1

4 L̃w|Lug|2 μ + 1
4 |Lug|2 Lwμ

]
, (4.15)

where the tilde in L̃w indicates a Lie derivative at fixed u. We work out the second
term in coordinates, noting that, as gi j g jk = δki ,

Lu(g
i j ) = −gik gl j (Lugkl) = −gik gl j (Lug)kl ≡ −(Lug)

i j , (4.16)

to obtain

L̃w|Lug|2 = L̃w

[
gik g jl (Lug)i j (Lug)kl

]
= −2(Lwg)

ik g jl (Lug)i j (Lug)kl + 2gik g jl (LuLwg)i j (Lug)kl

� −2(Lwg)ik (Lug)
i j (Lug)

k
j + 4(Lwg)i j (Lug)

ik (Lug)
j
k

− 2(Lwg)i j g
ik g jl (LuLug)kl

= 2 〈〈Lwg, T 〉〉, (4.17a)

where we introduce the twice covariant tensor

T = (Lug)
2 − LuLug, i.e. Ti j = gkl (Lug)ik (Lug) jl − (LuLug)i j . (4.18)
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Adding together the variations (4.2), (4.3), (4.13) and (4.15) then leads to

∫
dt

∫
M

[
1
2 (Lwg)(u, u) μ + g(∂tw, u) μ + pLwμ

−α2(∂tw,�Rν) μ + 1
2α

2〈〈Lwg, T 〉〉μ + 1
4α

2|Lug|2 Lwμ
]

= 0. (4.19)

Integrating by parts, in particular using that

1
2 〈〈Lwg, T 〉〉μ = ∇w

·∧ �2T � −(w, d �2T ), (4.20)

and requiring (4.19) to vanish for arbitraryw gives the conservation form of the Euler–
α equation,

∂t (υ ⊗ μ) + d
[
ν ⊗ �ν + α2(�2T + 1

4 |Lgu|2μ) + pμ
]

= 0. (4.21)

A direct check that this can be expanded to give (4.14) is tedious but confirms the
result. We emphasise that the momentum flux tensor that emerges as the argument
of d is not simply υ ⊗ �ν = υ ⊗ u�μ, namely transport of the momentum υ by the
velocity u, as might have been expected naively. The latter tensor is not symmetric,
whereas the tensor we obtain in (4.21) is symmetric by construction (Hawking and
Ellis 1973; Gotay et al. 1992). Note that the pressure is augmented by the fluctuations
giving the total effective pressure as p + 1

4α
2|Lgu|2.

4.3 Magnetohydrodynamics

Finally we consider magnetohydrodynamics (MHD) and outline a derivation of the
conservation form of the governing equation of ideal MHD which generalises (3.5)
by including the Lorentz force; see the classic study by Newcomb (1962) and also
Gilbert andVanneste (2019). The general procedure is already established, but because
the flow u and magnetic field b have distinct transport properties, there are notable
differences, and one effect is that a magnetic pressure term emerges from the analysis.

TheMHD action is given byA−B whereA is the compressible perfect fluid action
(3.6) and

B[φ] =
∫

dt
∫
M

1
2g(b, b) μ (4.22)

is the magnetic energy. Here b is the magnetic vector field, and we again allow M
to have a non-empty boundary with the boundary condition b ‖ ∂M. The most
fundamental representation of the magnetic field is perhaps not the vector field b itself
but the associated magnetic flux 2-form, β = b�μ (Frankel 1997). The absence of
magneticmonopoles, that the flux across any closed surface is zero, is simply expressed
by β being closed, dβ = 0 and hence div b = 0. The flux 2-form is transported by the
flow so that

∂tβ + Luβ = 0, (4.23)
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or equivalently pushed forward from the initial condition according to β = φ∗β0.
The magnetic vector field b obeys a more complicated equation (and in fact may be
considered as a tensor density; see Roberts and Soward 2006),

∂t b + Lub + b div u = 0. (4.24)

Let us now consider the effect of a variation in the path φ 
→ ψε◦φ onB (Newcomb
1962). We have using (4.24) that b is transported according to

d

dε

∣∣∣∣
ε=0

bε = −Lwb − (divw) b, (4.25)

and so making the total action A − B stationary introduces new integral terms:

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =
∫

dt
∫
M

[−g(b,Lwb) μ − g(b, b)Lwμ]. (4.26)

Combining with dA/dε|ε=0 in (3.10), and using the integration by parts identities
(B.1) and similar, gives the momentum equation

∂t (ν ⊗ρμ)+Lu(ν ⊗ρμ)− 1
2d(ν, u)⊗ρμ+dp⊗μ = Lb(�β ⊗μ)−dg(b, b)⊗μ,

(4.27)
noting that b� = �β.

To obtain the conservation formof (4.27), we use the covariance of the action (3.12),
adding to (4.26) the term

∫
dt

∫
M

[ 1
2 (Lwg)(b, b) μ + g(b,Lwb) μ + 1

2g(b, b)Lwμ
] = 0. (4.28)

This gives

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =
∫

dt
∫
M

[ 1
2 (Lwg)(b, b) μ − 1

2g(b, b)Lwμ
]
. (4.29)

Subtracting this from (3.14) and following the now usual manipulations we obtain the
conservation form

∂t (ρν ⊗ μ) + d(ρν ⊗ �ν + pμ) = d(�β ⊗ β − 1
2g(b, b) μ). (4.30)

Themagnetic pressure term 1
2g(b, b) emerges naturally in the derivation, and its origin

may traced back to the term b div u in the transport equation (4.24) for b. In a com-
pressible fluid, whereas the fundamental magnetic flux β is simply Lie transported by
the flowmap, and so conserved, themagnetic vector field bwith b�μ = β is intensified
where the fluid is locally compressed, and this contributes to increased energy density
1
2g(b, b) in (4.22) and a resulting restoring force in (4.30). In an incompressible fluid,
themagnetic pressure can simply be absorbed in the pressure p. In appendix C, we also
derive the shallow-water and MHD shallow-water equations in conservation form.
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4.4 Abstract Model

The variational derivations above and in appendix C indicate that combining the sta-
tionarity of the action with its covariance leads to a number of cancellations and, as a
result, relatively simple expressions for the conservation and weak forms of the gov-
erning equations. To understand how these cancellations come about and illuminate
the underlying structure, it is useful to consider a general, abstract fluid model of the
Euler–Poincaré type examined by Holm et al. (1998) and governed by the action

A[φ] =
∫

dt
∫
M

L[u, g, a], (4.31)

where the Lagrangian 3-form depends on the velocity field u and metric g, and on
tensorial fields a that are advected by the flow, that is, satisfy a = φ∗a0, with a0 the
initial fields. The stationarity of the action reads

d

dε

∣∣∣∣
ε=0

A[φε] =
∫

dt
∫
M

((
δL

δu
, ∂tw − Lwu

)
−

(
δL

δa
,Lwa

))
= 0 (4.32)

using (3.9a) and that daε/dε|ε=0 = −Lw a. Its covariance reads

∫
dt

∫
M

Lw L[u, g, a]

=
∫

dt
∫
M

((
δL

δu
,Lwu

)
+

(
δL

δg
,Lwg

)
+

(
δL

δa
,Lwa

))
= 0. (4.33)

Note that δL/δg should be interpreted as a 3-form whose value (on a triple of vectors)
is a twice contravariant tensor. Adding the conditions yields the compact expression

∫
dt

∫
M

((
δL

δu
, ∂tw

)
+

(
δL

δg
,Lwg

))
= 0. (4.34)

We can now integrate by parts and exploit the arbitrariness of w. Defining the bilinear
diamond operator � by

∫
M

(S,Lwg) = −
∫
M

(S � g, w) (4.35)

for any tensor-valued 3-form S (Holmet al. 1998;Holm2002),we obtain the governing
equation in the form

∂t
δL

δu
+ δL

δg
� g = 0. (4.36)

It turns out that the diamond operator �, when applied to a pair of symmetric tensor-
valued 3-form and tensor as is the case here, is equivalent to the covariant exterior
derivative d. To see this, define the twice contravariant tensor M (dual to g) by
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δL

δg
= M ⊗ μ. (4.37)

Using the symmetry of M , (2.19), (2.16) and the definition (2.5) of d, we have, for
any vector field w,

∫
M

(
δL

δg
� g, w

)
= −

∫
M

(
δL

δg
,Lwg

)
= −

∫
M

(Lwg, M) μ

= −
∫
M

(∇w�, M
)
μ (4.38a)

= −
∫
M

∇w
·∧ �2�1�2M =

∫
M

(w, d(�2�1�2M)) . (4.38b)

Hence δL/δg � g = d(�2�1�2M) and the governing Eq. (4.36) can be rewritten in the
conservation form

∂

∂t

δL

δu
+ d(�2�1�2M) = 0. (4.39)

While this expression is general and pleasantly compact, obtaining the explicit form of
M often requires intricate computations, as our treatment of specificmodels illustrates,
because of the complex dependence of the Lagrangian L on the metric g, including
through the volume form. Equation (4.39) shows that �2�1�2M is the general formula
for the stress, including the contribution from the momentum flux, represented as a
1-form valued 2-form. Equation (2.10) then implies that M itself is this stress in the
conventional (twice-contravariant) tensorial form T .

5 Viscosity and Viscoelasticity

5.1 Newtonian Fluids

We now turn to the geometric representation of the viscous stress tensor given in
(2.2) for ordinary Euclidean space. The construction involves the Lie derivative of the
metric which, according to (2.19), is given by

(Lug)i j = ∇iν j + ∇ jνi = ν j;i + νi; j , (5.1)

since ν = u�. It is then natural to replace the terms ∂i u j + ∂ j ui in (2.2) by Lug, both
following thegeneral rule of replacingordinaryderivatives by covariant derivatives, but
more importantly as in our understanding of Newtonian fluids, it is the deformation of
fluid elements that generates viscous stresses, and deformation corresponds precisely
to nonzero transport of the metric under a flow u. With this, the geometric version of
the stress tensor as a 1-form valued 2-form is

σ = −pμ + ς �2Lug + λ(div u) μ, (5.2)
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and then the Navier–Stokes momentum equation in conservation form is

∂t (ρν ⊗ μ) + d(ρν ⊗ �ν + pμ) = d
[
ς�2Lug + λ(div u) μ

]
. (5.3)

In the incompressible case, this simplifies as

∂t (ν ⊗ μ) + d(ν ⊗ �ν + pμ) = ς�Rν, (5.4)

when (4.10) is used to substitute theRicciLaplacian ford(�2 Lug) in the sole remaining
viscous term.We emphasise that the Ricci Laplacian is the proper choice of Laplacian,
rather than the Laplace–de Rham operator or the analyst’s Laplacian, on a manifold
with nonzero Ricci tensor. This choice ensures that velocity fields that leave the metric
invariant, and hence do not cause any deformation, are not dissipated, for example solid
body rotation on the surface of the sphereM = S2 (Gilbert et al. 2014; Lindborg and
Nordmark 2022).

The total energy in the system is E = ∫
M

[ 1
2g(u, u) ρμ + e(ρ, s) ρμ

]
. Following

the development in (2.17) and (2.18), we can write

dE

dt
=

∫
M

[
(u, dσ) − (ρe)ρ Lu(ρμ) − ρes (Lus) μ

] =
∫
M

d(u, σ ′) −
∫
M

∇u
·∧ σ ′

= −
∫
M

1
2 (�1Lug)

·∧ σ ′ = −
∫
M

1
2 〈〈Lug, �2σ

′〉〉μ, (5.5)

where σ ′ = σ + pμ denotes the viscous part of the stress tensor. To obtain this
we observe that the momentum flux makes no contribution to dE/dt , and that the
terms involving the internal energy e cancel out the pressure term −(u, dp) μ (after
integration by parts, as in (B.1c)–(B.1d), and following the argument below (B.4)).
Using the form (5.2) of the viscous stress, we obtain

dE

dt
= −

∫
M

[ 1
2ς〈〈Lug,Lug〉〉 + λ(div u)2

]
μ, (5.6)

as 〈〈Lug, �2μ〉〉 = 2 div u. Note that this derivation requires the additional no-slip
boundary condition u = 0 on ∂M so that the term d(u, �2Lug) in d(u, σ ) integrates
to zero.

5.2 Viscoelastic Fluids

In models of viscoelastic fluids such as polymer solutions, the stress σ often appears
as a dynamical variable, obeying a transport equation of the form (∂t + Lu)σ = · · · ,
where the right-hand side captures the rheology of the fluid. The type of tensor chosen
for σ determines themeaning ofLu , leading to different physical models depending on
the choice made; standard choices take σ as a twice covariant or a twice contravariant
tensor, with the corresponding Lie derivatives termed ‘lower-convected’ or ‘upper-
convected’ derivatives (see, e.g., Marsden and Hughes (1983)). In the context of this
paper, a natural alternative takes σ to be a 1-form valued 2-form, σ = 1

2σi jk dx
i ⊗
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dx j ∧ dxk . A coordinate expression for its Lie derivative is readily computed: since
Lu and d commute, we have

2Luσ = Lu(σi jk) dx
i ⊗ dx j ∧ dxk + σi jk dLu(x

i ) ⊗ dx j ∧ dxk

+ σi jk dx
i ⊗ dL(x j ) ∧ dxk + σi jk dx

i ⊗ dx j ∧ dLu(x
k)

=
[
ul σi jk,l + σl jk u

l
,i + σilk u

l
, j + σi jl u

l
,k

]
dxi ⊗ dx j ∧ dxk, (5.7)

where the comma indicates differentiation (see Frankel (1997) for the analogous com-
putation for a vector valued 2-form). This derivative can be rewritten in terms of
the twice contravariant tensor T = �1�2�2σ (cf. (2.10)) but differs from the upper
convected derivative by terms proportional to Lug that result from the lack of com-
mutativity of Lu with the operators � and �.

While it is tempting to postulate an evolution equation for the 1-form valued σ

of the form (∂t + Lu)σ = · · · with the right-hand side containing only rheological
terms, physical considerations dictate the type of the tensor that is transported by
the flow and hence the form of the evolution equation. We illustrate this with a brief
geometric derivation of the Oldroyd-B model Oldroyd (1950) and its formulation
in terms of σ . The derivation considers a solution of polymers modelled as small
dumbbells whose ends are connected by springs and which move under a combination
of flowmotion (through Stokes drag), spring force, and thermal noise (Bird et al. 1977,
Degond, Lemou and Picasso 2002). We follow closely the presentation in Morozov
and Spagnolie (2015). In a continuum description, the dumbbell extension is naturally
represented by a vector field, r say, measuring the total extension per unit volume.
The balance of the three forces then reads

ζ(∂t + Lu)r = −2 f (r) + √
4kBT ζ Ẇ , (5.8)

where ζ is the drag coefficient, f (r) is the elastic force in the dumbell, a vector aligned
with r , kB the Boltzmann constant, T the temperature, and Ẇ a (possibly spatially
dependent) vector-valued white noise with 〈dWi dW j 〉 = gi j dt . The noise in (5.8)
is the sum of two independent white noises acting on each end of the dumbbells,
each with strength

√
2kBT ζ as determined by the fluctuation–dissipation theorem.

The force exerted by the dumbbells on a surface element is the spring force f (r)
multiplied by the number of dumbbells crossing the surface. A geometrically intrinsic
representation of this is simply f ⊗ r�μ. The stress is proportional to the average
〈 f ⊗ r�μ〉 over realisations of the white noise and can be written as the 1-form valued
2-form

σ = 〈 f� ⊗ r�μ〉 − 〈 f� ⊗ r�μ〉eq, (5.9)

where the equilibrium value is subtracted to retain only the stress induced by the flow.
In general, σ does not satisfy a closed equation. A Fokker–Planck equation govern-

ing the probability distribution of r need to be solved to carry out the average in (5.9)
(e.g. Degond, Lemou and Picasso 2002). However, for a linear (Hookean) spring, with
f (r) = Kr , (5.8) is linear and a closed equation for σ is readily obtained, as we now
detail. Using Itô’s formula and assuming incompressibilty, Luμ = 0, we obtain from

123



Journal of Nonlinear Science            (2023) 33:31 Page 23 of 32    31 

(5.8) that

(∂t + Lu)〈r ⊗ r�μ〉 = −4K

ζ
〈r ⊗ r�μ〉 + 4kBT

ζ
g−1�μ. (5.10)

At equilibrium, the left-hand side vanishes, leading to

〈r ⊗ r�μ〉eq = kBT
K

g−1�μ. (5.11)

We now consider the representation of the stress in (5.9) as the vector-valued 2-form

σ̃ = �1σ = K 〈r ⊗ r�μ〉 − K 〈r ⊗ r�μ〉eq. (5.12)

Applying (∂t + Lu) and using (5.10) and (5.11) we obtain

λ(∂t + Lu)σ̃ + σ̃ = ς �1�2 Lug, (5.13)

on noting that that Lug−1 = −g−1(Lug)g−1 (see (4.16)), and that contraction with
g−1�μ amounts to an application of �. Here λ = ζ/4K and ς = kBT ζ/4K are the
relevant rheological parameters.

Equation (5.13) is the evolution equation for the stress in the Oldroyd-B model on
a manifold, expressed here in terms of σ̃ . It takes a more familiar form using the usual
twice contravariant stress tensor T = �2�2 σ̃ , namely

λ(∂t + Lu)T + T = ς �1�2 Lug, (5.14)

using that the operator �2�2 involves only the volume form and hence commutes with
Lu for incompressible flows. The Lie derivative in (5.14) can be identified as the
upper-convected derivative. Finally, the 1-form valued 2-form obeys the slightly more
complicated equation

λ(∂t + Lu)σ + σ = ς �2Lug + λLug��1σ, (5.15)

where (Lug��1σ)i jk = (Lug)il glm σmjk in coordinates.

6 Concluding Remarks

We conclude with three remarks. First, one of the benefits of the conservation form
of the fluid equations is that it makes the derivation of conservation laws arising from
spatial symmetries according to Noether’s theorem straightforward. On a manifold
M, a spatial symmetry is identified with a Killing vector field, that is, a vector field k
that transports the metric without deformation,

Lk g = 0, (6.1)
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or ki; j + k j;i = 0. For example, if the domain M is R3 or a periodic domain (flat
torus), these are translations; for a sphereM = S2 these are rotations. The associated
conservation law is obtained by noting that

(k, dτ) = d(k, τ ) − ∇k
·∧ τ = d(k, τ ), (6.2)

where the vanishing of the term ∇k
·∧ τ follows from the symmetry of τ as in (2.14)

and use of (2.28). Contracting k with the first leg of the dynamical equation for the
1-form valued momentum

∂t (ρν ⊗ μ) + dτ = 0 (6.3)

then leads to the conservation law

∂t ((k, ρν) ⊗ μ) + d(k, τ ) = 0. (6.4)

For instance, in the case of viscous compressible fluids, contracting k with (5.3) gives

∂t ((k, ρν) ⊗ μ) + d [(k, ρν) ⊗ �ν + pk�μ − ς(k, �2 Lug) − λ(div u) k�μ] = 0.
(6.5)

The density of the conserved quantity, the k-directed momentum, is then (k, ρν)while
the flux (k, τ ) consists of the terms within the square brackets. Integrating (6.5) over
any subregion N of M relates the time derivative of the integral of (k, ρν) to the
transport of (k, ρν) across the boundary ∂N and the k-directed pressure and viscous
stress on the boundary, using Stokes’ theorem. In the case of R3 and S

2, (k, ρν)

corresponds to linear and angular momenta.
Second, it iswell known that, in the variational derivationof the equations formotion

for inviscid fluids, the statement of the stationarity of the action directly gives a weak
form of the equations—with the vector fieldw generating an arbitrary diffeomorphism
regarded as a test function—which can provide the starting point for a finite-element
discretisation. The weak forms we obtain by exploiting the covariance of the action
(namely (3.14), (4.6) and (4.18) for the compressible, incompressible and Euler-α
equations, and (4.29) for the additional magnetic term) are particularly simple and
well suited for discretisations that preserve discrete analogues of the conserved global
momenta (Toshniwal et al. 2014; Gerritsma 2014).

Third, we return to one of the motivations for using the conservation form of the
equations of momentum, namely the suitability of this form when carrying out an
average over fluctuations. Eulerian (Reynolds) averaging is straightforward; for the
incompressibleNavier–Stokes equations it leads to the 1-formvalued 2-formReynolds
stress −ν′ ⊗ �ν′, where ν′ = ν − ν is the momentum fluctuation and the overbar
denotes averaging. The situation is more complex for averages that are performed at
moving rather than fixed Eulerian position, such as the thickness-weighted average
used in oceanography (Young 2012). The derivation of thickness-weighted average
equations, leading to a geometric interpretation of the Eliassen–Palm tensor (the rele-
vant generalisation of the Reynolds stress; see Maddison and Marshall (2013)) is the
subject of ongoing work (Gilbert and Vanneste 2023).
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A Computations in spherical geometry

We consider the 1-form valued stress τ on the sphere S
2. In terms of the polar and

azimuthal angles θ and ϕ, the standard metric and associated volume (in fact area)
form read

g = dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ and μ = sin θ dθ ∧ dϕ. (A.1)

On this two dimensional manifold the stress τ becomes a 1-form valued 1-form (rather
than the 1-form valued 2-forms used earlier for three dimensions). We write it as

τ = τθθ dθ ⊗ dθ + τθϕ dθ ⊗ dϕ + τϕθ dϕ ⊗ dθ + τϕϕ dϕ ⊗ dϕ. (A.2)

The symmetry of the stress tensor implies a relationship between its components.
Using (A.1), we find that

�dθ = (dθ)��μ = ∂θ�μ = sin θ dϕ, (A.3a)

�dϕ = (dϕ)��μ = 1

sin2 θ
∂ϕ�μ = − 1

sin θ
dθ, (A.3b)

hence

�2τ = sin θ τθθ dθ ⊗dϕ− 1

sin θ
τθϕ dθ ⊗dθ +sin θ τϕθ dϕ⊗dϕ− 1

sin θ
τϕϕ dϕ⊗dθ.

(A.4)
The symmetry condition in the form (2.14) therefore implies that

sin θ τθθ = − 1

sin θ
τϕϕ. (A.5)
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We compute the exterior covariant derivative dτ using (2.31). This requires the
covariant derivatives of dθ and dϕ. The (Levi–Civita) connection on the sphere is
determined by the relations

∇∂θ = cot θ ∂ϕ ⊗ dϕ and ∇∂ϕ = cot θ ∂φ ⊗ dθ − cos θ sin θ ∂θ ⊗ dϕ. (A.6)

Using that ∇ applied to contractions of basis 1-forms and basis vectors vanishes, we
find the counterparts

∇dθ = cos θ sin θ dϕ ⊗ dϕ, ∇dφ = − cot θ (dθ ⊗ dϕ + dϕ ⊗ dθ). (A.7)

With these expressions, the computation of dτ from (2.31) is straightforward:

dτ = cos θ sin θ τθθ dϕ ⊗ dϕ ∧ dθ + τθθ,ϕ dθ ⊗ dϕ ∧ dθ + τθϕ,θ dθ ⊗ dθ ∧ dϕ

− cot θ
(
τϕθ dθ ⊗ dϕ ∧ dθ + τϕϕ dϕ ⊗ dθ ∧ dϕ

)
+ τϕθ,ϕ dϕ ⊗ dϕ ∧ dθ + τϕϕ,θ dϕ ⊗ dθ ∧ dϕ

= (τθϕ,θ − τθθ,ϕ + cot θ τϕθ ) dθ ⊗ dθ ∧ dϕ

+ (τϕϕ,θ − τϕθ,ϕ − cos θ sin θ τθθ − cot θ τϕϕ) dϕ ⊗ dθ ∧ dϕ

= (τθϕ,θ − τθθ,ϕ + cot θ τϕθ ) dθ ⊗ dθ ∧ dϕ + (τϕϕ,θ − τϕθ,ϕ) dϕ ⊗ dθ ∧ dϕ,

(A.8)

using the symmetry property (A.5) to simplify the penultimate line.
It is interesting to verify explicitly the property (6.2) that contraction of the first leg

of dτ with a Killing vector field k yields the (metric-independent) pairing (k, τ ). The
sphere S2 has the three Killing fields

k1 = − sin ϕ ∂θ − cot θ cosϕ ∂φ, k2 = cosϕ ∂θ − cot θ sin ϕ ∂φ and k3 = ∂φ,

(A.9)
corresponding to rotation about the x-, y- and z-axes. We have

(k1, dτ) = [− sin ϕ
(
τθϕ,θ − τθθ,ϕ + cot θ τϕθ

) − cot θ cosϕ
(
τϕϕ,θ − τϕθ,ϕ

)]
dθ ∧ dϕ,

(A.10a)

(k2, dτ) = [
cosϕ

(
τθϕ,θ − τθθ,ϕ + cot θ τϕθ

) − cot θ sin ϕ
(
τϕϕ,θ − τϕθ,ϕ

)]
dθ ∧ dϕ,

(A.10b)

(k3, dτ) = (
τϕϕ,θ − τϕθ,ϕ

)
dθ ∧ dϕ, (A.10c)

while

(k1, τ ) = (− sin ϕ τθθ − cot θ cosϕ τϕθ

)
dθ + (− sin ϕ τθϕ − cot θ cosϕ τϕϕ

)
dϕ,

(A.11a)

(k2, τ ) = (
cosϕ τθθ − cot θ sin ϕ τϕθ

)
dθ + (

cosϕ τθϕ − cot θ sin ϕ τϕϕ

)
dϕ,

(A.11b)

(k3, τ ) = τϕθ dθ + τϕϕ dϕ. (A.11c)
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Adirect computation using (A.5) gives (ki , dτ) = d(ki , τ ) for i = 1, 2, 3, as expected
from (6.2). This implies conservation laws of the form (6.4) for the angular momenta
(ki , ρν ⊗ μ), explicitly

∂t (sin θ sin ϕ ρνθ + cos θ cosϕ ρνϕ) + ∂θ

(
sin ϕ τθϕ + cot θ cosϕ τϕϕ

)
−∂ϕ

(
sin ϕ τθθ + cot θ cosϕ τϕθ

) = 0, (A.12a)

∂t (sin θ cosϕ ρνθ − cos θ sin ϕ ρνϕ) + ∂θ

(
cosϕ τθϕ − cot θ sin ϕ τϕϕ

)
−∂ϕ

(
cosϕ τθθ − cot θ sin ϕ τϕθ

) = 0, (A.12b)

∂t (sin θ ρνϕ) + ∂θ τϕϕ − ∂ϕτϕθ = 0. (A.12c)

B Variational Derivation of (3.1)

Wedetail the variational derivation of the Euler equations in (3.1) from the action (3.6).
Starting with condition (3.10) for the stationarity of the action, we use integration by
parts to rewrite each term as a pairing with the undifferentiated w. The first term is
given in (3.16a); the others are

g(u,Lwu) ρμ = (−Luw, ν ⊗ ρμ) � (w,Lu(ρν ⊗ μ)), (B.1a)
1
2g(u, u)Lw(ρμ) � −ρμLw

1
2g(u, u) = −(w, 1

2ρ dg(u, u) ⊗ μ), (B.1b)

(ρe)ρ Lw(ρμ) � −ρμLw[(ρe)ρ] = −(w, ρ d(ρe)ρ ⊗ μ), (B.1c)

ρes (Lws) μ = ρes (w, ds) μ = (w, ρes ds ⊗ μ), (B.1d)

on using that, for any scalar field f , Lw( f μ) = d( f w�μ) � 0 by Cartan’s formula.
To explain, as an example, one of these in more detail, consider (B.1a). We write first

(Luw, ν ⊗ ρμ) = Lu[(w�ν) ρμ] − w�Lu(ν ⊗ ρμ). (B.2)

We have from Cartan’s formula (2.26) applied to the term we wish to remove,
Lu[(w�ν) ρμ] = d[(w�ν) u�ρμ], and then on integrating over M we find

∫
M

d[(w�ν) u�ρμ] =
∫

∂M
(w�ν) u�ρμ = 0, (B.3)

using (3.15) and the boundary condition that u ‖ ∂M: if a surface element is defined
by vectors a and b at a point, then u�μ(a, b) = μ(u, a, b) vanishes as u is contained
in the vector space spanned by a and b.

Introducing the various formulae (B.1) into (3.10) gives

∫
dt

∫
M

[−(w, (∂t + Lu)(ρν ⊗ μ)) + (w, 1
2ρ dg(u, u) ⊗ μ)

−(w, [ρ d(ρe)ρ − ρes ds] ⊗ μ)
] = 0. (B.4)

We use the thermodynamic definitions that T = ∂se is the temperature and h =
(ρe)ρ = e + p/ρ is the enthalpy, together with dh = ρ−1 dp + T ds to simplify the
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last terms. Requiring this integral to be zero for arbitrary w recovers the equation of
motion as precisely (3.2).

C ShallowWater Equations in Conservation Form

In this appendix, we derive conservation forms for the shallow water and MHD
shallow water models. We consider a two-dimensional manifold M supporting a
(two-dimensional) fluid flow u and scalar height field h; flows and magnetic fields are
taken parallel to any boundary of M. The shallow water action is given by

A[φ] =
∫

dt
∫
M

( 12hg(u, u) − 1
2h

2) μ, (C.1)

where the height field transport is governed by conservation of mass,

(∂t + Lu)(hμ) = 0, (C.2)

or equivalently hμ = φ∗(h0μ), where h0 is the initial height. When the flow map is
varied we have

d

dε

∣∣∣
ε=0

(hεμ) = −Lw(hμ) = − div(hw)μ. (C.3)

Varying the action (C.1) gives

d

dε

∣∣∣∣
ε=0

A[ψε ◦φ] =
∫

dt
∫
M

[hg(u, ∂tw+Luw)μ−( 12g(u, u)−h)Lw(hμ)] = 0,

(C.4)
and so we gain

∂t (hν ⊗ μ) + Lu(hν ⊗ μ) + d(− 1
2g(u, u) + h) ⊗ hμ = 0. (C.5)

Given (C.2) we can write this equation in the usual form

∂tν + Luν − 1
2dg(u, u) + dh = 0. (C.6)

If on the other hand we apply the covariance of the action (3.12), we have

∫
dt

∫
M

[ 12 (Lwg)(u, u) hμ + g(u,Lwu) hμ + ( 12g(u, u) − h)(Lwh) μ

+( 12hg(u, u) − 1
2h

2)(Lwμ)] = 0. (C.7)

Combining with (C.4) and tidying gives

∫
dt

∫
M

[ 12 (Lwg)(u, u) hμ + g(u, ∂tw) hμ + 1
2h

2 Lwμ] = 0, (C.8)
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with the conservation form easily derived as

∂t (hν ⊗ μ) + d(hν ⊗ �ν + 1
2h

2μ) = 0. (C.9)

Magnetic fields can also be incorporated into shallow water systems and the result-
ing modelling is relevant to the solar tachocline and other stratified MHD systems in
astrophysics (Gilman 2000; Dellar 2002). In our setting, given any two points x and
y of our two-dimensional M, what is key is the magnetic flux between these points
and so we define a scalar magnetic potential a (up to a constant) so that this flux is
a(y)−a(x). Since these points, i.e. these columns of fluid in the real system, move as
Lagrangian markers in the flow, the flux between them is conserved and so a evolves
according to

(∂t + Lu)a = 0. (C.10)

We then set hβ = da where the magnetic flux β is now a 1-form such that the total
flux through a one-dimensional surface element in M , that is integrated over the fluid
layer from base to h, is given by hβ. This satisfies d(hβ) = 0 and also

(∂t + Lu)(hβ) = 0. (C.11)

The corresponding magnetic vector field b is related to β through b�μ = β or, equiv-
alently �β = b�. It satisfies div(hb) = 0 and, from (C.2) and (C.11),

(∂t + Lu)b = 0. (C.12)

Note that there is no b div u term present, in contrast to (4.24): the effects of nonzero
divergence of the flow u are absorbed into the height field h.

The action is A − B, with A the shallow-water action (C.1) and B the magnetic
term

B[φ] =
∫

dt
∫
M

1
2hg(b, b) μ. (C.13)

When the path is varied we have (C.3) and

d

dε

∣∣∣∣
ε=0

bε = −Lwb, (C.14)

(contrast (4.25)). Hence we find that

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =
∫

dt
∫
M

[−g(b,Lwb) hμ − 1
2g(b, b)Lw(hμ)]. (C.15)

Integrating by parts and using the arbitrariness of w we obtain the equation of motion

∂t (hν ⊗ μ) + Lu(hν ⊗ μ) + d(h − 1
2g(u, u)) ⊗ hμ

= Lb(h�β ⊗ μ) − 1
2dg(b, b) ⊗ hμ. (C.16)
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Using (C.2) and noting that Lb(hμ) = d(b�hμ) = μ div(hb) = 0, we can write this
as

∂tν + Luν + d(h − 1
2g(u, u)) = Lb�β − 1

2dg(b, b). (C.17)

If instead we apply the covariance (3.12) the terms associated with B are

∫
dt

∫
M

[ 12 (Lwg)(b, b) hμ + g(b,Lwb) hμ + 1
2g(b, b)Lw(hμ)]. (C.18)

Combining this with the path variation (C.15) leaves only

d

dε

∣∣∣∣
ε=0

B[ψε ◦ φ] =
∫

dt
∫
M

1
2 (Lwg)(b, b) hμ, (C.19)

giving the conservation version of shallow water MHD as

∂t (hν ⊗ μ) + d(hν ⊗ �ν + 1
2h

2μ) = d(h�β ⊗ β). (C.20)

Note that there is nomagnetic pressure term here, that is the term− 1
2dg(b, b)μ present

in (4.30). Although shallow water dynamics has many attributes of compressible fluid
flow, with the height field h playing the role of pressure, the underlying fluid dynamics
is incompressible and themagnetic pressure does not emerge in the resulting equations
(Gilman 2000; Dellar 2002).
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