
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

OA-Cache: Oracle Approximation based Cache
Replacement at the Network Edge

Shuting Qiu, Qilin Fan, Member, IEEE, Xiuhua Li, Member, IEEE, Xu Zhang, Member, IEEE,
Geyong Min, Member, IEEE, and Yongqiang Lyu, Member, IEEE

Abstract—With the explosive increase in mobile data traffic
generated by various application services like video-on-demand
and stringent quality of experience requirements of users, mobile
edge caching is a promising paradigm to reduce delivery latency
and network congestions by serving content requests locally.
However, how to conduct cache replacement when the cache is
full is a challenging issue when faced with enormous content
volume and limited cache capacity at the network edge while
the future request pattern is unknown ahead. In this paper,
we propose a cache replacement algorithm based on the oracle
approximation named OA-Cache in an end-to-end manner to
maximize the cache hit rate. Specifically, we construct a complex
model that uses a temporal convolutional network to capture the
long and short dependencies between content requests. Then,
an attention mechanism is adopted to find out the correlations
between requests in the sliding window and cached contents.
Instead of training a policy to mimic Belady that evicts the
content with the longest reuse distance, we cast the learning
task into a classification model to distinguish unpopular contents
from popular ones. Finally, we apply the knowledge distillation
approach to assist in transferring knowledge from a large pre-
trained complex network to a lightweight network to readily
accommodate to the network edge scenario. To validate the
effectiveness of OA-Cache, we conduct extensive experiments on
real-world datasets. The evaluation results demonstrate that OA-
Cache can achieve better performance compared to candidate
algorithms.

Index Terms—Cache Replacement, Edge Caching, Imitation
Learning, Knowledge Distillation.

This work is supported in part by the National Key R & D Program
of China (Grant No. 2022YFE0125400), the National NSFC (Grants No.
62102053 and 62072060), the Natural Science Foundation of Chongqing,
China (Grant No. CSTB2022NSCQ-MSX1104), Key Research Program of
Chongqing Science & Technology Commission (Grants No. cstc2021jscx-
dxwtBX0019 and cstc2019jscx-zdztzxX0031), the EU Horizon 2020 research
and innovation programme under the Marie Skodowska-Curie grant agreement
No. 898588, and the Chongqing Key Laboratory of Digital Cinema Art Theory
and Technology (Grant No. 2021KF01). This article reflects only the authors’
view. The European Union Commission is not responsible for any use that
may be made of the information it contains. (Corresponding author: Qilin
Fan.)

S. Qiu and Q. Fan are with the School of Big Data and Software Engi-
neering, Chongqing University, Chongqing 400044, China (email: qiushut-
ing@cqu.edn.cn; fanqilin@cqu.edu.cn).

X. Li is with the School of Big Data and Software Engineering, Chongqing
University, Chongqing, China 400000, and also with Haihe Laboratory of In-
formation Technology Application Innovation, Tianjin, China 300072 (email:
lixiuhua1988@gmail.com).

X. Zhang and G. Min are with the Department of Computer Science,
University of Exeter, Exeter EX4 4QF, U.K. (e-mail: x.zhang6@exeter.ac.uk;
g.min@exeter.ac.uk).

Y. Lyu is with the Beijing National Research Centre for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China (e-
mail: luyq@tsinghua.edu.cn).

I. INTRODUCTION

The Internet has witnessed the sky-rocketing growth of
mobile data traffic with the popularization of various devices
(e.g., portable cameras, smartphones) and application services
(e.g., video-on-demand, virtual reality). According to a Cisco
report [1], in 2022, the IP traffic flowing through the global
network will exceed the total traffic of the entire 32 years from
the first year of the Internet to the end of 2016. The enormous
traffic brings tremendous pressure to the backbone network
and significantly impacts users’ quality of experience (QoE)
[2], [3].

To this end, edge caching [4]–[6] emerges as a promising
paradigm by caching popular contents at network edges, such
as Wi-Fi APs and cellular base stations, and redirecting user
requests to these local replicas instead of being served by the
back-end/origin server. Thus, benefiting from caching, content
requests can be served locally to reduce delivery latency and
network congestions [7], [8]. However, compared with the
enormous and increasing content volume, the cache size of
the edge node is always restricted. It is impossible to cache all
the contents locally. Hence, how to replace the cached content
when the cache is full is a crucial issue.

However, unlike the traditional CDN caching [9], [10],
edge caching has several characteristics [11], [12]: (i) limited
resources: unlike cloud computing which has large capacity
resources, the capacity of network edge is very limited. There-
fore, the edge node highly relies on a well-designed caching
strategy to cache “popular content” for good performance. (ii)
dynamic request patterns: due to the mobility and personal-
ized preferences of users, requests from edge networks show
characteristics of fluctuations and bursts [13]. (iii) insufficient
computational power: compared with large computing clusters
such as cloud computing, the computing power of a single
edge node is often limited, so it is not suitable for processing
large-scale complex models. For these reasons, we need a
lightweight cache replacement algorithm that can efficiently
adapt to the characteristics of requests at the edge network.

The existing cache replacement algorithms are mostly based
on heuristics such as recency-based [14], frequency-based
[15], and so on. These methods are usually only applicable
to a specific pattern and are not universal. Recently, caching
algorithms based on learning have also been proposed, and
many authors build deep models and use large training sets
to predict content popularity or reuse distances to decide
which content to be replaced or admitted [16], [17]. These
approaches typically have high computational complexity and

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

a long time for the online decision, thus unsuitable for highly
dynamic edge networks.

In this paper, we propose a cache replacement algorithm
based on the oracle approximation named OA-Cache in an
end-to-end manner, without any explicit assumptions about the
access pattern, and is well adapted to edge scenarios. Specif-
ically, we first construct a complex model named OA-Cache-
Teacher that fully learns the features of the accessed sequence,
which uses a temporal convolution network to capture long
and short dependencies of content requests. Then an attention
mechanism is adopted to find out the correlations between
requests in the sliding window and cached contents. Instead
of training a policy to mimic Belady that evicts the content
with the longest reuse distance, we cast the learning task into
a classification model to distinguish unpopular contents from
popular ones. Finally, we use knowledge distillation to extract
a lightweight model with fewer parameters for quick decision-
making named OA-Cache from OA-Cache-Teacher.

The contributions of this paper can be summarized as
follows:
• We leverage a temporal convolution network (TCN) to

characterize the multi-scale temporal features of content
requests which can process the series in parallel and
improve the computational efficiency compared to LSTM.
An attention mechanism in a complex model is employed
to dynamically learn the contextual relationships between
each cached content and historical and current access.

• We propose an imitation learning architecture to calculate
the eviction probability distribution to approximate the
oracle policy. We innovatively introduce the binary cross-
entropy loss function for training the policy to improve
the prediction accuracy and versatility of the model.

• We apply the knowledge distillation approach to assist in
transferring knowledge from a large pre-trained complex
network to a lightweight network to accommodate to the
network edge scenario.

• We conduct extensive experiments on real-world datasets
from iQiYi, astar and MovieLens. The evaluation results
demonstrate the better performance of OA-Cache com-
pared to candidate algorithms.

The rest of this paper is organized as follows. Section II
provides a brief overview of related work. Section III gives
the system model and problem statement of cache replacement.
In Section IV, we describe the methodology of OA-Cache. In
Section V, we present the evaluation results. Finally, Section
VI concludes the paper.

II. RELATED WORK

Cache has attracted a lot of attention due to its advantages
of reducing network latency and network backhaul overhead.
The existing cache replacement algorithms can be classified
into the following three categories.

A. Heuristic-based algorithms.

The most common cache replacement algorithm based on
heuristics is least recent use (LRU) [14], which assumed
that the recently accessed content will be used again soon,

and some other policies focus on the frequency of accesses
(i.e., LFU [15])) or the timing of cached content (i.e., FIFO
[18]). S4LRU [19] divided the cache into four lists formed
by LRU queues. ARC [20] adaptively divided the cache into
two regions to separate pages that have been visited only
once recently from frequent pages. LeCaR [21] recorded the
recency and frequency of each cached data and utilized a
regret minimization method to update the weights of these
two policies. Zhou et al. [22] divided the cache into two parts
and combined LFU and FIFO policies for partitioned caching.
GDS [23] was a variant of LRU that takes content size and
cost into account in a simple and non-parametric way for high
performance.

These algorithms that follow heuristic rules are easy to
implement. However, they may perform well in some access
modes and poorly in others, failing to adapt to the dynamic
content access modes of edge caches under real data flow.

B. DRL-based algorithms.

Some works advocated the use of deep reinforcement learn-
ing (DRL). For example, Zhong et al. [24] employed the
deep deterministic policy gradient (DDPG) for training and the
Wolpertinger architecture to deal with the large discrete action
space. He et al. [25] designed a novel DRL algorithm for
the studied QoE maximization problem and sought a balance
between Q-values’ accuracy and DRL acceleration’s stability
to improve the QoE satisfaction of intelligent caches. Wu et
al. [26] modelled the problem as a Markov decision process
and developed a new dynamic content update policy with
the help of DRL to dynamically update the base station’s
cache. Zhou et al. [27] used DRL to learn the relationship
between workload distribution and cache replacement policy
distribution (including LRU and LFU). Ye et al. [28] designed
a distributed bootstrap reinforcement learning framework to
learn joint cache size scaling and replacement adaptation and
used a distribution-guided regularization algorithm to maintain
the intrinsic order of discrete variables. Sadeghi et al. [29]
proposed a scalable DRL approach to learn Q-functions in an
online manner to learn the optimal caching policy.

However, DRL-based algorithms require a tremendous num-
ber of learning samples and suffer from large-delayed rewards
(cache hits), which can result in slow reaction times in highly
dynamic environments and cannot adapt to scenarios where
edge caching requires fast online decision-making.

C. Supervised-based algorithms.

Some other work adopts supervised learning that learns
features in content requests, employs regression models, and
performs the prediction task. For example, LRB [30] utilized
a gradient boosting machine (GBM) to predict when the
content will be next requested and incorporates a threshold to
determine whether to evict the predicted content. DeepCache
[12] used long short-term memory (LSTM) to predict content
popularity, learning caching strategies from access sequences
in real-time. Fedchenko et al. [31] employed feedforward neu-
ral networks (FNN) to predict content popularity and randomly
re-evaluate the popularity of partially cached content. Belady

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

Cache

Accesses

Increasing

probability

of

eviction

=

Evict

Miss Hit

Time
= 0 = 1

Miss

=

Evict

= 2

Fig. 1. Cache replacement. At t = 0, as access to content x4 results in a
miss, replacement policy π caches x4 by evicting content x2 with the highest
probability from the contents [x1, x2, x3] in the cache. At t = 1, access to
content x4 is hit in the cache, so the cache state remains unchanged. At t = 2,
access to content x2 again results in a miss, so policy π caches x2 by evicting
content x3 with the highest probability.

(oracle) algorithm [32] replaced the content with the largest
reuse distance. However, as future information is unavailable
in advance, it is a utopian optimal policy. Hawkeye [33] trained
a binary classification model based on Belady to predict if
the content is cache-friendly or cache-averse. But when all
contents are cache-averse, it still uses LRU to determine which
content to evict. PARROT [34] imitated Belady based on
LSTM network architecture and utilized ranking loss and reuse
distance loss for training. However, as the prediction task
based on LSTM structure and ranking for all cached con-
tents are computation-intensive and time-consuming, PARROT
might be cumbersome for latency-sensitive applications.

Different from previous work, in this paper, we first propose
a complex OA-Cache-Teacher model that leverages TCN with
an attention mechanism to capture the features of content
requests. Then we propose an imitation learning architecture
and cast the task into a classification model to improve
the versatility. Furthermore, we use a knowledge distillation
approach to obtain a lightweight OA-Cache model from the
OA-Cache-Teacher model.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this paper, let C = {c1, . . . , cm, . . . , cM} denote the
set of M contents requested by the users. The sequence of
requests for content is denoted as X = [x1, . . . , xt, . . . , xT],
where xt denotes the accessed content at moment t. We
assume that all contents are unit-sized. The edge node can
hold W contents. Lt = [l1t , . . . , l

w
t , . . . , l

W
t] denotes the cache

vector at time t. A binary vector Zt = [z1t , . . . , z
m
t , . . . , z

M
t]

is an indicator of cached contents, where zmt represents
whether content m is stored in the cache at time t. When
a content request xt arrives, the cache vector and indicator of
cached content remain the same if it is hit in the cache, i.e.,
Lt+1 = Lt, Zt+1 = Zt. Otherwise, the cache evicts content lŵt
where ŵ is selected by cache replacement policy π, and caches
xt. The transitions of cache vector and indicator of cached
contents can be shown in Fig. 1 and modelled as follows:

lwt+1 =

{
xt, w = ŵ,
lwt , otherwise. (1)

zmt+1 =

 0, m = lŵt ,
1, m = xt,
zmt , otherwise.

(2)

Fig. 2. Framework of OA-Cache.

We introduce HR(π) to represent the long-term average
cache hit rate when T goes to infinity by adopting π, which
is given by:

HR(π) = lim
T→∞

1

T

T∑
t=1

zxt
t . (3)

We aim to maximize HR(π) based on the constraint of
cache capacity. Therefore, the cache replacement problem is
formulated as:

max
π

HR(π) (4)

s.t.

M∑
m=1

zmt ≤W, t = 1, . . . , T, (5)

zmt ∈ {0, 1} , t = 1, . . . , T, m = 1, . . . ,M. (6)

IV. METHODOLOGY

Van Roy et al. [35] proved that the Belady algorithm, which
evicts the content with the longest reuse distance in the cache,
is the optimal policy for the above problem. Therefore, the
Belady algorithm is an upper bound for the performance of the
cache replacement problem. However, it is infeasible as future
information is unknown ahead in an online environment. To
this end, in this paper, we propose a lightweight learning-based
approach named OA-Cache to approximate Belady (oracle)
algorithm at the network edge. The detailed design is presented
below.

A. Framework of OA-Cache

As shown in Fig. 2, the framework of OA-Cache can be
divided into two parts: offline training and online decision-
making, which are elaborated as follows:

Offline training: If given the knowledge of future content
requests, oracle could calculate the optimal cache eviction
decision π∗(w|Lt, xt, xt+1, . . . , xT) when xt arrives. In the
offline training phase, experiences are sampled from the mem-
ory window. Our OA-Cache tries to learn a policy πµ from
experiences to approximate the optimal policy without using
future accesses. OA-Cache updates the model parameters by
calculating the loss function between the mimic policy and
the expert policy composed of oracle and OA-Cache-Teacher.
As new requests continually arrive, the memory window for
training renews periodically.

Online decision-making: We use the trained OA-Cache
model to make online cache replacement decisions. It is

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

Fig. 3. OA-Cache-Teacher model.

impractical to perform the action based on all previous re-
quests. To adapt to the latest request patterns, we apply a
sliding window of length H to capture the temporal de-
pendencies of requests. When xt arrives while the cache
declares a miss, OA-Cache feeds state st consisting of the
current cache vector Lt, history accesses in the sliding window
[xt−H , xt−H+1, . . . , xt−1] and current access xt into the deep
neural network (DNN) and outputs the cache eviction decision
ŵ = argmaxw π

µ(w|st). The cache replaces lŵt with xt.
Then, with the arrival of the subsequent cache access xt+1 in
the next time step, the sliding window slides one step further
and contains [xt−H+1, xt−H+2, ..., xt] history accesses.

B. Model Architecture of OA-Cache-Teacher
The model architecture of OA-Cache-Teacher, illustrated in

Fig. 3, consists of three components: (1) temporal convolu-
tional network (TCN) module; (2) attention module and (3)
prediction module. We will explain them in detail.

TCN module: We select the TCN [36] to capture the
temporal dependencies of requests as it has the following
advantages compared with recurrent neural networks (RNNs):
i) Unlike the situations in RNN where the calculation for
later time steps must wait for their predecessors to complete,
convolutions in TCN can be calculated in parallel; ii) As
filters are shared across the layers, TCN occupy less memory,
especially for long sequences. OA-Cache-Teacher takes the
embedding Et = [e(xt−H), . . . , e(xt−1), e(xt)] ∈ Rn×(H+1)

of the current access xt and its H historical accesses [xt−H ,
. . ., xt−1] as the input to calculate the output of the last hidden
layer of the TCN, where n is the content embedding dimen-
sion. Given the convolution filter f : {0, ..., k − 1} → Rn×n

, the dilation convolution operation F at the time t is defined
as:

F (t) =

k−1∑
i=0

f(i) · hjt−d·i, (7)

where k is the filter size, d is the dilation factor. We increase
d exponentially with the depth of TCN (i.e., for j-th layer,

d = 2j). hj ∈ Rn×(H+1) is the j-th hidden layer of TCN. t−
d·i accounts for the direction of past information. Particularly,
h0 = Et.

To keep the gradient from vanishing, a residual connection
mechanism is utilized at each layer to ease the network training
of TCN. Therefore, the j-th hidden layer hjt at the time t is
calculated as:

hjt = σ(hj−1t + F (t)), (8)

where σ is a nonlinearity activation function. The last hidden
layer of TCN is the feature of the access sequences: Y =
[yt−H , . . . , yt].

Attention module: We apply the scaled dot-product at-
tention [37] in soft attention to calculate the contextual fea-
tures of each cached content gw, where each cached content
embedding e(lw) is denoted as the query and hidden states
Y as keys. Specifically, we compute the dot products of
the query with all keys, divide each by

√
n, and apply a

softmax function to obtain the weights a. Compared to other
attention functions, the dot-product attention mechanism can
be implemented with highly optimized matrix multiplication,
thus showing the advantage of faster execution and higher
spatial efficiency in practice. To eliminate the influence of
dimensionality factors, we scale the results of dot-products for
better access to sequence information. The specific calculation
process of the context information is given as follows:

ai = softmax(
e(lw)

T yt−H+i√
n

), (9)

gw =

H∑
i=0

aiyt−H+i. (10)

Prediction module: The prediction module contains a
flatten layer, a fully-connected layer, and a sigmoid layer.
Specifically, the prediction module flattens each gw to a row
vector with dimension R1×n. Then the flattened contextual
features of cached content are fed into a fully-connected layer
with rectified linear unit (ReLU) activation function to obtain

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

Fig. 4. Hit rate of oracle when evicting top-1 to top-6 content on iQiYi
dataset.

the logits of each cached content. Finally, we calculate the
eviction probability for each cached content πθ(w|g1, . . . , gW)
through a sigmoid layer. Therefore, we transform the predic-
tion task into a 0-1 classification problem to distinguish pop-
ular contents from unpopular ones, regardless of the specific
eviction probability of these contents.

C. Training Method of OA-Cache-Teacher

We sample consecutive access sequences of
[xt−H ,. . . ,xt+H] from memory window and divide them
into two discrete segments Xwarm−up = [xt−H , . . . , xt−1]
and Xvalidation = [xt, . . . , xt+H]. Combined with the cache
status Lt, we train our cache replacement policy πθ on the
Xwarm−up and compute the loss LBCE(πθi , π∗i).

If the requested content misses, given the future access
sequences, we could compute the reuse distance for each
cached content and select the top-κ contents as the eviction
candidates where κ =W ∗α. Here, α denotes the percentage
for classification. Fig. 4 illustrates how the hit rate varies
on iQiYi dataset when evicting top-1 to top-6 content as the
access sequences arrive with W = 60 and α = 10%. We
can see that the differences are marginal among these distinct
replacement policies. So evicting any one of the eviction
candidates without paying attention to the relative priorities
between these κ cached contents is feasible.

Compared to traditional imitation learning algorithms that
learn only the optimal action of the oracle’s policy, i.e., the
cached content with the highest probability of eviction, this
observation inspires us to use binary cross-entropy loss as our
loss function in OA-Cache-Teacher to distinguish “cold” con-
tents from “hot” contents to improve the prediction accuracy
and versatility of the model. The loss LBCE between OA-
Cache-Teacher policy πθt and oracle policy π∗t is calculated as
follows:

LBCE(πθt , π∗t) = −
1

W

W∑
w=1

[1t(w) log2 π
θ
t (w)

+(1− 1t(w)) log2(1− πθt (w)], (11)

1t(w) =

{
1, w ∈ top-κ(πθt),
0, otherwise, (12)

Algorithm 1: OA-Cache Algorithm

1 /**Offline**/
2 Pre-train the policy πθ of OA-Cache-Teacher model;
3 Initialize the policy πµ of OA-Cache model;
4 Set the number of epochs R; the number of sample times

S; the length of historical accesses H;
5 for epoch = 1, 2, . . . , R do
6 for s = 1, 2, . . . , S do
7 Sample access sequences and divide them into

two discreet segments from memory window;
8 Get the cache status Lt;
9 for i = t, t+ 1, . . . , t+H do

10 Calculate the loss LKD(πµ, πθ, π∗) according
to Eq. (15);

11 κ =W ∗ α;
12 candidates = top-κ(πµi);
13 Randomly evict lŵi from candidates;
14 Update the cache status;
15 Update µ by loss LKD(πµ, πθ, π∗);
16 end
17 end
18 end
19 /**Online**/
20 Obtain the policy πµ from offline training;
21 Get current request xt and cache status Lt;
22 if xt not in Lt then
23 if the cache is not full then
24 Caches xt;
25 else
26 Feed st that consists of Lt, historical accesses in

sliding window [xt−H , . . . , xt−1] and xt into the
DNN;

27 Compute eviction probability πµ(w|st);
28 Evict lŵt where ŵ = argmaxw π(w|st) and cache

xt;
29 end
30 end
31 Update Cache status and move the sliding window one

step forward;

where πθt (w) is the probability for evicting cached content
lwt computed by the OA-Cache-Teacher policy at time t. The
function top-κ denotes the indices of top κ values of πθt . 1t(w)
denotes whether w-th cached content is labelled as the eviction
candidates when given future information by oracle.

D. OA-Cache Algorithm at the Network Edge

In edge caching, we need a complex model to extract
potential features from a large dataset while a lightweight
model to make online decisions quickly. Therefore, there is
some inconsistency between training and deployment. In order
to reduce the number of model parameters and thus make
the model ideally suited to the network edge scenario with
guaranteed performance, we use a knowledge distillation [38]
approach and combine it with a Belady strategy to transfer
knowledge from a large pre-trained teacher network (OA-

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

Fig. 5. The process of knowledge distillation.

Cache-Teacher) to a small student network (OA-Cache). The
knowledge distillation process is shown in Fig. 5.

In this paper, the OA-Cache model is a small model with
fewer parameters and a simple model structure. During the
calculation process, we simply concatenate the current access
sequence features yt obtained by TCN with the embedding of
each cached content, and then input the concatenated vector
g′ = [g′1, . . . , g

′
W] into the fully connected layer to output the

eviction probability πµ of each cached content.
In the process of knowledge distillation, we use the outputs

πθ of the teacher network OA-Cache-Teacher as soft labels
for supervising the training for the student network OA-Cache.
This is mainly because, in addition to positive labels, negative
labels also carry abundant potential information from the
inductive inference of the OA-Cache-Teacher model. While in
the traditional hard-label training method, all negative labels
are treated equally. Then we use oracle-labeled hard labels π∗

to assist the training of OA-Cache to effectively reduce the
possibility of errors being propagated to the OA-Cache net-
work when the OA-Cache-Teacher network sometimes makes
incorrect decisions.

Furthermore, in our classification task, the sigmoid function
is used to realize the conversion of logits to probabilities. The
original sigmoid function is:

πµt (w) =
1

1 + exp(−zwt)
, (13)

However, in the conversion process of the original sigmoid
function, if the entropy of the probability distribution of the
sigmoid output is relatively small, then the value of the
negative label will be very close to 0, and the contribution to
the loss function will be negligible. Therefore, we introduce
the parameter “temperature” τ into the sigmoid function to
amplify the information carried by the negative labels. The
sigmoid function after adding the temperature variable is given
by:

π
µ|τ
t (w) =

1

1 + exp(−zwt /τ)
, (14)

where zwt and πµt (w) are the logits and eviction probabilities
of the lwt cached content of the OA-Cache network at time t,
respectively. τ determines the “softness of the teacher labels.
It indicates that the higher the τ , the smoother the output

probability distribution of the sigmoid, the greater the entropy
of its distribution, and the higher the model’s attention to
negative labels.

The objective function of OA-Cache LKD is calculated as
follows:

LKD = βLsoft + (1− β)Lhard, (15)

Lsoft(πµt , πθt) = −
1

W

W∑
w=1

[π
θ|τ
t (w) log π

µ|τ
t (w)

+(1− πθ|τt (w)) log(1− πµ|τt (w)], (16)

Lhard(πµt , π∗t) = −
1

W

W∑
w=1

[1t(w) log π
µ
t (w)

+(1− 1t(w)) log(1− πµt (w)], (17)

where πθ|τt (w) = 1
1+exp(−vwt /τ)

, vwt and πθ|τt (w) are the logits
and eviction probabilities of the lwt cached content of the OA-
Cache-Teacher network at time t, respectively. β is the ratio
of the OA-Cache model affected by soft and hard labels. It is
determined by the temperature τ , i.e., β

1−β = τ2, alleviating
the problem of unbalanced gradient values of soft labels and
hard labels due to the distillation temperature τ .

The offline and online cache replacement algorithms of OA-
Cache are given in Algorithm 1. Let J t and Js denote the
depth of TCN in OA-Cache-Teacher and OA-Cache, respec-
tively. The time complexity of online decision-making of OA-
Cache-Teacher is O(J tHkn2 +WHn+Wn) and OA-Cache
is O(JsHkn2 +Wn), where O(J tHkn2) and O(JsHkn2)
are the complexity of the TCN module, O(WHn) is the
complexity of the attention module, and O(Wn) accounts for
the prediction module.

V. EVALUATION

A. Dataset

We conduct the experiments on three real-world datasets,
which are listed as follows:

iQiYi1 contains 300,000 individual videos watched by 2
million users over two weeks which has been extensively
used in previous work [12], [39]. Each entry contains the

1http://www.iqiyi.com

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

(a) iQiYi (b) astar (c) MovieLens

Fig. 6. Number of accesses of the content versus its rank.

anonymized user information, the video content requested by
each user, and the arrival time of the request.

astar2 comes from the 2nd Cache Replacement Champi-
onship and contains memory access traces from the SPEC
CPU2006 benchmark test. We subsample the traces by select-
ing 64 out of 2048 sets and filtering accesses to these sets.

MovieLens [40] contains 5-star rating and free-text tagging
activities of 62,423 different movies by 162,541 different users
from January 09, 1995 to November 21, 2019. We use the
rating behaviors to simulate the content accesses and select
corresponding requests of 10,000 movies from January 1,
2016. We split the dataset into an 80% training set and 20%
test set.

In Fig. 6, contents are ranked in descending order by their
number of accesses on iQiYi and astar, respectively. Each
sample illustrates the number of accesses versus the rank
of the corresponding content. We observe that the content
popularity is highly skewed, following a Zipf-like distribution.
However, content requests in iQiYi and astar show different
access patterns. The figures illustrate that iQiYi contains more
“overheated” contents while astar includes more “supercold”
contents. Moreover, in Fig. 6(c) we can see that the data
distribution of MovieLens is similar to that of iQiYi.

B. Experiment Settings

We randomly selected M1 = M3 = 10, 000 different
content accesses from the iQiYi and MovieLens datasets and
M2 = 5, 000 different content from the astar dataset. The
cache percentage is the ratio of the cache size to the different
contents selected on each dataset. We use a percentage of
candidate evictions α1 (10%) on iQiYi, α2 (0.4%) on astar, and
α3 (0.3%) on MovieLens, learning rate (0.0001) and optimizer
(Adam) to conduct the experiment. In the distillation process,
we chose τ = 2 for OA-Cache extraction. To calculate the
network delay, we set a 10ms delay between the user and
the edge node, and a 100ms delay between the edge node
and the origin server [30]. When considering the backhaul
traffic, we focus on calculating the backhaul cost between the
edge node and the origin server. As all contents are assumed
unit-sized, we set the backhaul traffic between the edge node

2https://crc2.ece.tamu.edu/

TABLE I
PARAMETER VALUES

Name Value Description
M1 10000 Number of contents in iQiYi
M2 5000 Number of contents in astar
M3 10000 Number of contents in MovieLens
W1/M1 0.1%∼0.5% Cache percentage for iQiYi
W2/M2 5%∼25% Cache percentage for astar
W3/M3 0.4%∼0.8% Cache percentage for MovieLens
n 3 Dimension of embedding and hiddden states
k 0.6 Kernel size
H 60 Length of historical accesses
α1 1%∼30% Percentage of candidate evictions for iQiYi
α2 0.2%∼1.2% Percentage of candidate evictions for astar
α3 1%∼10% Percentage of candidate evictions for MovieLens
Jt 3 Number of TCN layers in OA-Cache-Teacher
Js 2 Number of TCN layers in OA-Cache
τ 2 Distillation temperature

and the origin server as 1GB for each missed content [12].
Unless explicitly stated, the experimental results are given with
the above settings. OA-Cache is developed and tested on a
PC equipped with a 14-core Intel(R) Core(TM) i7-12700H
CPU@2.30 GHz, NVIDIA RTX 2050 graphics processor (4
GB of video memory), and 32 GB of RAM. Table I lists
additional parametric information and descriptions.

C. Benchmarks and evaluation metrics

We compare our OA-Cache algorithm with the following
algorithms:
• Belady [32]. It is an optimal offline algorithm that evicts

the cached content with the largest reuse distance when
the cache storage is full and the requested content misses.

• OA-Cache-Teacher. It is the complex model proposed
for knowledge distillation in this paper, which has a
higher number of parameters compared to OA-Cache.

• Simple-Cache. It has the same network structure as OA-
Cache, but only uses hard labels marked by Belady
for training instead of soft labels output by OA-Cache-
Teacher.

• DeepCache [12]. It utilizes the memory unit of LSTM
to characterize the temporal dependencies among requests
and learns the priority of each content.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

(a) Hit rate on iQiYi (b) Hit rate on astar (c) Hit rate on MovieLens

Fig. 7. Cache hit rate under varying cache percentages on different datasets.

(a) GtO on iQiYi (b) GtO on astar (c) GtO on MovieLens

Fig. 8. GtO under varying cache percentages on different datasets.

• LeCaR [21]. It utilizes two basic eviction policies (i.e.,
LRU and LFU). The weights of these two policies are
updated using the regret minimization technique, and the
policy with the higher weight is used each time for cache
eviction decisions.

• ARC [20]. It splits the cache into two parts. One catches
the contents that have been accessed only once and the
other caches the contents that have been accessed many
times. ARC also record LRU-based eviction history of
these two parts through which the recency and frequency
priorities are adjusted and the size of these two parts are
changed dynamically.

• LRU [14]. It evicts the cached content which has been
least requested recently when the cache storage is full
and the requested content misses.

• LFU [15]. It evicts the cached content which has been
least frequently requested when the cache storage is full
and the requested content misses.

Our evaluation is based on the following metrics:
• Edge hit rate. This metric is calculated as the total number

of edge hit requests divided by the total number of
requests. It reflects the ratio of content requests served
by the edge node instead of the origin server.

• Gap to oracle (GtO). It measures how well the algorithms
approximate the Belady strategy, which is given by:

GtO =
rBelady − rAlg

rBelady
, (18)

where rBelady denotes the hit rate of Belady algorithm and
rAlg denotes the hit rate of a specific algorithm.

• Average access delay. It is calculated as the average
waiting time required to retrieve the content for all
requests from the edge node or the origin server.

• Average backhaul traffic. This metric calculates the av-
erage total traffic cost of all requests between the edge
node and the origin server.

In addition, to demonstrate the effectiveness of our distilla-
tion method, we also evaluate some algorithms in terms of
floating-point computation, parameters amount and average
decision time.

D. Performance Comparison
Edge hit rate and Gto. Fig. 7 and Fig. 8 show the hit

rate and GtO performance under varying cache percentages
on the iQiYi, astar and MovieLens datasets, respectively. Here
we mainly analyze the GtO metric because the hit rate and
GtO are interconvertible. As can be seen from the figures, the
performance gap between OA-Cache-Teacher and Belady is
less than that of the other candidate algorithms in all cases, and
OA-Cache can achieve an effect close to OA-Cache-Teacher.

Specifically, for iQiYi dataset shown in Fig. 8(a), when the
cache percentage is 0.1%, the GtO of OA-Cache-Teacher and
OA-Cache is only 18% and 20%, while the GtO of Simple-
Cache, ARC, DeepCache, LFU, LeCaR and LRU is 28%, 29%,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

(a) Access delay on iQiYi (b) Access delay on astar (c) Access delay on MovieLens

Fig. 9. Average access delay under varying cache percentages on different datasets.

(a) Backhaul traffic on iQiYi (b) Backhaul traffic on astar (c) Backhaul traffic on MovieLens

Fig. 10. Average backhaul traffic under varying cache percentages on different datasets.

30%, 32%, and 47%, respectively. When the cache percentage
is 0.2%, the performance of OA-Cache is closer to that of
OA-Cache-Teacher. The gap between the two and Belady is
17.4% and 17.9%, respectively, while the GtO of Simple-
Cache, DeepCache, LeCaR, ARC, LFU, and LRU is 19%,
23.2%, 23.3%, 24%, 28%, and 40%.

For astar dataset shown in Fig. 8(b), we can observe that
at 5% cache percentage, the GtO of OA-Cache-Teacher and
OA-Cache is only 24.9% and 26.5%. In comparison, the
GtO of Simple-Cache, DeepCache, LFU and LeCaR is 31%,
42.7%, 51.6% and 77%, respectively, while the GtO of other
algorithms is more than 95%. Even when the cache percentage
is large (i.e., 25%), the GtO of OA-Cache-Teacher and OA-
Cache is much lower than that of other algorithms.

For MovieLens dataset, Fig. 8(c) illustrates that the GtO of
OA-Cache-Teacher and OA-Cache at 0.4% cache percentage
is only 28.9% and 29.5%, while the GtO of DeepCache,
Simple-Cache, ARC, LeCaR, LFU and LRU is 33.7%, 36.5%,
46.1%, 47.6%, 69.5%, and 73.8%, respectively. As the cache
percentage increases, OA-Cache can always maintain a low
GtO value.

It can be seen that our proposed complex algorithm OA-
Cache-Teacher can make decisions that best approximate Be-
lady’s strategy due to the richness of its parameters and struc-
ture. The algorithm OA-Cache extracted by our knowledge
distillation method can also achieve good results. Compared
to the Simple-Cache network trained with only traditional
hard labels, OA-Cache more closely approximates the oracle’s
policy. Therefore, knowledge distillation method is superior
in helping the lightweight model to learn the knowledge of
experts efficiently.

Average access delay. The cache hit rate of edge nodes
directly affects the average delay of retrieving the accessed
content. When the requested content is missed in the cache, the
edge node queries the origin server for the corresponding con-
tent, resulting in increased delay. Therefore, when the cache hit
rate is higher, the corresponding network delay is lower. In Fig.
9, we compare the average delay for algorithms under different
cache percentages on three datasets. In the iQiYi dataset, the
delay of OA-Cache is reduced by 0.8%∼1.7% compared to
Simple-Cache; compared to ARC and LRU, it can reduce the
delay by 2.1%∼4.9% and 15.9%∼19.6%, respectively. In the
MovieLens dataset, compared to DeepCache, Simple-Cache
and LRU, the delay of OA-Cache is reduced by 0.3%∼1.8%,
0.9%∼3% and 19%∼27%, respectively. In the astar dataset,
when the cache percentage is 5%, the delay of OA-Cache
is reduced by 0.45% compared to Simple-Cache and more
than 1.6% compared to other algorithms. It can be seen that
OA-Cache is able to store popular contents and reduce access
delay.

Average backhaul traffic. When the cache hit rate in-
creases, the average backhaul traffic for retrieving specific
content decreases. Fig. 10 shows the average backhaul traffic
comparison of algorithms under varying cache percentages on
the three datasets. It can be seen that our proposed OA-Cache
has lower backhaul traffic compared to the rest of the candidate
algorithms, second only to Belady and OA-Cache-Teacher. In
the iQiYi dataset, the backhaul traffic of OA-Cache is reduced
by more than 1% compared to Simple-Cache, and by more
than 18% compared to LRU. In the astar and MovieLens
datasets, OA-Cache also yields lower backhaul traffic.

Quantitative analysis. To demonstrate that our OA-Cache

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

(a) Variable α1 on iQiYi (b) Variable α2 on astar (c) Variable α3 on MovieLens

Fig. 11. The effect of the variable α on the hit rate.

(a) On iQiYi (b) On astar (c) On MovieLens

Fig. 12. Comparison of cache hit rate after ablation using LSTM instead of TCN.

TABLE II
QUANTITATIVE ANALYSIS

Algorithm #Flops (M) #Params (K)
Average
Decision

Time (ms)
DeepCache 0.5943 644.165 48.5075
OA-Cache-Teacher 12.6692 554.881 11.4813
OA-Cache-Teacher (LSTM) 4.1434 571.777 14.2110
OA-Cache (LSTM) 0.0274 63.285 5.0945
Proposed OA-Cache 0.0373 64.121 1.1653

model is suitable for edge scenarios, we conduct quantitative
analysis from three perspectives: floating-point computation
amount, parameter amount, and average decision time. The
specific values are given in Table II. As can be seen from Table
II, compared with the complex model OA-Cache-Teacher and
the DeepCache algorithm based on LSTM, our proposed OA-
Cache model has less floating-point computation, shorter aver-
age decision-making time, and can quickly make replacement
decisions, which is suitable for edge networks with highly dy-
namic requests. Also, our model has fewer parameters, which
can meet the requirements of lightweight models for edge
networks. Therefore, even though the OA-Cache, extracted
using the knowledge distillation approach, sacrifices a small
hit rate compared to the complex model OA-Cache-Teacher,
it is more suitable for edge networks than OA-Cache-Teacher
and can also make appropriate decisions.

To sum up, OA-Cache algorithm achieves good results
regardless of whether the dataset contains “overheated” or
“supercold” content, especially on smaller cache percentages.
This is mainly because algorithms (i.e., LFU, LRU or their
variants) will take lagged time to evict the cached unpopular

contents. So caching these “cold” contents is quite likely
to generate cache misses for caches with small capacity.
DeepCache learns the caching priority of all the contents.
However, the task of learning to rank for the dynamic request
pattern might yield inconsistency when applied in the online
scenario. In contrast, OA-Cache learns the context of each
cached content based on historical information and simultane-
ously learns knowledge from OA-Cache-Teacher and Belady
algorithms to evict the “cold” content in the cache with high
probability and carries out the robust classification task for
training thus rendering a higher hit rate and reducing the delay,
backhaul traffic, and decision time.

E. Ablations Study

To better explain the relative importance of the components
of our proposed approach, we design two ablation experiments
on three datasets. One is to verify that randomly evicting top-
κ content during the training phase is superior to evicting
the furthest one. The other is to prove that the TCN is more
efficient than the LSTM.

Component of evicting among top-κ. As shown in Fig.
11, we measure the effect of variables α1, α2 and α3 on the
hit rate of OA-Cache under cache percentage W1/M1 = 1%,
W2/M2 = 10% and W3/M3 = 1% on iQiYi, astar and
MovieLens datasets, respectively. In iQiYi, OA-Cache can
always maintain a relatively high hit rate when α1 varies
from 1% to 30%. OA-Cache achieves the highest hit rate
value when α1 = 10%, better than evicting the cached
content with the highest eviction probability (α1 = 1%)
directly. The results and conclusions are similar for MovieLens
dataset. It indicates that compared to the oracle policy that
evicts the top-1 cached content, OA-Cache could improve the
performance via selecting a random one from the candidate

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

(a) Variable τ in iQiYi (b) Variable τ in astar (c) Variable τ in MovieLens

Fig. 13. The effect of the variable τ on the hit rate.

set for eviction. However, the hit rate gradually decreases as
α1 and α3 increase. In astar, OA-Cache also achieves better
results on α2 = 0.4% and shows very similar performance on
the remaining percentages. It might be because the flattening
popularity distribution in astar dataset enables the parameter
of partition percentage in OA-Cache insensitive. It can be seen
that our approach using random eviction from a candidate set
for model training has certain advantages in cache replacement
problem.

Component of TCN. Fig. 12 summarizes our results when
using LSTM instead of TCN for ablation on three datasets. At
W1/M1 = 0.3%, W2/M2 = 15% and W3/M3 = 0.6%, for
the astar, iQiYi and Movielens datasets, compared with OA-
Cache (LSTM) using LSTM, the hit rate of OA-Cache using
TCN to obtain access features is improved by 1%, 2.6% and
3.9%, respectively. In addition, we analyze the performance
in running time of the model after ablation using LSTM. As
can be seen in Table II, OA-Cache (LSTM) is slightly smaller
than OA-Cache in terms of floating point count and number
of parameters, but has a longer average decision time. This
is mainly due to the efficient parallel computing capability
during TCN convolution. Therefore, the TCN component is
more computationally efficient than LSTM, whose temporal
dependencies are step-wise.

F. Effect of Parameters
In this subsection, we perform the analysis of the effect

of different temperatures during distillation and sliding win-
dow sizes for OA-Cache on the iQiYi, astar, and Movie-
Lens datasets using cache percentages W1/M1 = 0.3% ,
W2/M2 = 15% and W3/M3 = 0.5%, respectively.

Different distillation temperatures. From Fig. 13, we can
see that when τ = 2, OA-Cache achieves the best results on
both iQiYi and astar datasets, and achieves similar results on
MovieLens dataset as τ = 4. As τ increases, the overall hit
rate shows a downward trend. This is mainly because when the
distillation temperature is too high, the probability distribution
of soft labels will be too smooth and the available training
information might be lost. For this reason, within a reasonable
range of τ , we choose τ = 2 as our distillation temperature.

Different sliding window sizes. As shown in Fig. 14, we
can find that OA-Cache achieves good results on all three
different datasets when the sliding window size is greater than
60. In particular, when the sliding window size varies from 60
to 100, the improvement in the hit rate metric for the OA-
Cache is relatively small. Therefore, considering that a larger

Fig. 14. The effect of variable H for the OA-Cache on the hit rate metric.

sliding window size requires more storage and computing
resources, we decide to use a sliding window size of H = 60
in our model. In addition, it can be observed that when H
is small (i.e., H = 20), OA-Cache has a lower hit rate
as it cannot fully utilize the historical access information.
Meanwhile, when H is larger (i.e., H = 120), OA-Cache
may pay less attention to the recently accessed data due to
excessive attention to historical information, which might also
lead to a lower hit rate for astar and MovieLens datasets.

VI. CONCLUSION

In this paper, we have proposed a novel cache replacement
algorithm named OA-Cache to approximate the oracle policy.
By leveraging TCN with an attention mechanism, we have
firstly designed a complex OA-Cache-Teacher model that
learns the contextual relationships between cached contents
and accesses with multi-scale temporal features. Then, we
have cast the imitation learning task into a classification model
which utilizes the binary cross-entropy as a loss function
for training. Furthermore, we have applied the knowledge
distillation approach to extract a lightweight model from a
large pre-trained OA-Cache-Teacher to accommodate to the
network edge scenario. The extensive experiments on real-
world datasets have verified the effectiveness and robustness
of OA-Cache. In our future work, we plan to consider the
joint problem of cache admission and cache replacement to
promote the hit rate. Designing the learning-based approach
for mixed cooperative-competitive caching of multiple caches
is also our future research focus.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

REFERENCES

[1] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco visual networking
index (VNI) complete forecast update, 2017–2022,” Americas/EMEAR
Cisco Knowledge Network (CKN) Presentation, pp. 1–30, 2018.

[2] X. Ma, Q. Li, Y. Jiang, G.-M. Muntean, and L. Zou, “Learning-based
joint QoE optimization for adaptive video streaming based on smart
edge,” IEEE Transactions on Network and Service Management, vol. 19,
no. 2, pp. 1789–1806, Jan. 2022.

[3] H. Wang, K. Wu, J. Wang, and G. Tang, “Rldish: Edge-assisted QoE
optimization of HTTP live streaming with reinforcement learning,” in
Proc. of IEEE INFOCOM, Aug. 2020, pp. 706–715.

[4] A. Lekharu, M. Jain, A. Sur, and A. Sarkar, “Deep learning model for
content aware caching at MEC servers,” IEEE Transactions on Network
and Service Management, vol. 19, no. 2, pp. 1413–1425, Dec. 2021.

[5] N. Zhang, W. Wang, P. Zhou, and A. Huang, “Delay-optimal edge
caching with imperfect content fetching via stochastic learning,” IEEE
Transactions on Network and Service Management, vol. 19, no. 1, pp.
338–352, Oct. 2021.

[6] S. Bayhan, S. Maghsudi, and A. Zubow, “Edgedash: Exploiting network-
assisted adaptive video streaming for edge caching,” IEEE Transactions
on Network and Service Management, vol. 18, no. 2, pp. 1732–1745,
Nov. 2020.

[7] R. Li, K. Matsuzono, H. Asaeda, and X. Fu, “Achieving high throughput
for heterogeneous networks with consecutive caching and adaptive
retrieval,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 4, pp. 2443–2455, Jul. 2020.

[8] R. Immich, L. Villas, L. Bittencourt, and E. Madeira, “Multi-tier edge-
to-cloud architecture for adaptive video delivery,” in Proc. of FiCloud,
Aug. 2019, pp. 23–30.

[9] S. T. Thomdapu, P. Katiyar, and K. Rajawat, “Dynamic cache manage-
ment in content delivery networks,” Computer Networks, vol. 187, p.
107822, Mar. 2021.

[10] Y. Sun, Z. Guo, S. Dou, and Y. Xia, “Video quality and popularity-aware
video caching in content delivery networks,” in Proc. of IEEE ICWS,
Sep. 2021, pp. 648–650.

[11] Q. Fan, X. Li, J. Li, Q. He, K. Wang, and J. Wen, “PA-Cache: Evolving
learning-based popularity-aware content caching in edge networks,”
IEEE Transactions on Network and Service Management, vol. 18, no. 2,
pp. 1746–1757, Jan. 2021.

[12] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative
edge caching for 5G networks: A deep learning based approach,” in
Proc. of IWQoS, Jun. 2018, pp. 1–6.

[13] Y. Guan, X. Zhang, and Z. Guo, “CACA: learning-based content-aware
cache admission for video content in edge caching,” in Proc. of ACM
MM, Oct. 2019, pp. 456–464.

[14] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini,
“Analyzing the performance of LRU caches under non-stationary traffic
patterns,” arXiv preprint arXiv:1301.4909, Jan. 2013.

[15] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High perfor-
mance cache replacement using re-reference interval prediction (RRIP),”
ACM SIGARCH Computer Architecture News, vol. 38, no. 3, pp. 60–71,
Jun. 2010.

[16] G. Yan and J. Li, “RL-bélády: A unified learning framework for content
caching,” in Proc. of ACM MM, Oct. 2020, pp. 1009–1017.

[17] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “RL-cache:
Learning-based cache admission for content delivery,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2372–2385, Jun.
2020.

[18] K. Kogan, A. López-Ortiz, S. I. Nikolenko, and A. V. Sirotkin, “Online
scheduling FIFO policies with admission and push-out,” Theory of
Computing Systems, vol. 58, no. 2, pp. 322–344, Apr. 2016.

[19] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C.
Li, “An analysis of facebook photo caching,” in Proc. of ACM SOSP,
Nov. 2013, pp. 167–181.

[20] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. of FAST, Mar. 2003, pp. 1–6.

[21] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacement
with ML-based LeCaR,” in Proc. of HotStorage, Jul. 2018, pp. 1–6.

[22] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video popularity dynamics
and its implication for replication,” IEEE Transactions on Multimedia,
vol. 17, no. 8, pp. 1273–1285, Aug. 2015.

[23] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in
Proc. of USITS, Dec. 1997.

[24] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in Proc. of CISS, Mar.
2018, pp. 1–6.

[25] X. He, K. Wang, and W. Xu, “QoE-driven content-centric caching with
deep reinforcement learning in edge-enabled IoT,” IEEE Computational
Intelligence Magazine, vol. 14, no. 4, pp. 12–20, Nov. 2019.

[26] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Communications Letters, vol. 23, no. 10, pp. 1773–1777, Jul. 2019.

[27] Y. Zhou, F. Wang, Z. Shi, and D. Feng, “An end-to-end automatic
cache replacement policy using deep reinforcement learning,” in Proc.
of ICAPS, vol. 32, Jun. 2022, pp. 537–545.

[28] J. Ye, Z. Li, Z. Wang, Z. Zheng, H. Hu, and W. Zhu, “Joint cache size
scaling and replacement adaptation for small content providers,” in Proc.
of IEEE INFOCOM, May. 2021, pp. 1–10.

[29] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learn-
ing for adaptive caching in hierarchical content delivery networks,” IEEE
Transactions on Cognitive Communications and Networking, vol. 5,
no. 4, pp. 1024–1033, Aug. 2019.

[30] Z. Song, D. S. Berger, K. Li, A. Shaikh, W. Lloyd, S. Ghorbani, C. Kim,
A. Akella, A. Krishnamurthy, E. Witchel et al., “Learning relaxed Belady
for content distribution network caching,” in Proc. of NSDI, Feb. 2020,
pp. 529–544.

[31] V. Fedchenko, G. Neglia, and B. Ribeiro, “Feedforward neural networks
for caching: enough or too much?” ACM SIGMETRICS Performance
Evaluation Review, vol. 46, no. 3, pp. 139–142, Dec. 2019.

[32] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[33] A. Jain and C. Lin, “Back to the future: leveraging Belady’s algorithm
for improved cache replacement,” in Proc. of ISCA, Aug. 2016, pp. 78–
89.

[34] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An
imitation learning approach for cache replacement,” in Proc. of ICML,
Jul. 2020, pp. 6237–6247.

[35] B. Van Roy, “A short proof of optimality for the min cache replacement
algorithm,” Information processing letters, vol. 102, no. 2-3, pp. 72–73,
Apr. 2007.

[36] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, Apr. 2018.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, Jun. 2017.

[38] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, Mar.
2015.

[39] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, Mar. 2017.

[40] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, dec 2015.

Shuting Qiu is currently working towards her B.E.
degree from the School of Big Data and Software
Engineering, Chongqing University, Chongqing,
China. Her research interests include network op-
timization, information-centric networking, software
defined networking and edge computing.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

Qilin Fan (Member, IEEE) is currently a As-
sociate Professor in the School of Big Data
and Software Engineering, Chongqing University,
Chongqing, China. She received the B.E. degree in
the College of Software Engineering, Sichuan Uni-
versity, Chengdu, China, in 2011, and the Ph.D. de-
gree from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
in 2017. Her research interests include network
optimization, mobile edge computing and caching,
network virtualization and machine learning.

Xiuhua Li (Member, IEEE) received the B.S. degree
from the Honors School, Harbin Institute of Technol-
ogy, Harbin, China, in 2011, the M.S. degree from
the School of Electronics and Information Engineer-
ing, Harbin Institute of Technology, in 2013, and the
Ph.D. degree from the Department of Electrical and
Computer Engineering, The University of British
Columbia, Vancouver, BC, Canada, in 2018. He
is currently a tenure-track Assistant Professor with
the School of Big Data and Software Engineering,
Chongqing University, Chongqing, China, and the

Head of the Institute of Intelligent Software and Services Computing as-
sociated with Key Laboratory of Dependable Service Computing in Cyber
Physical Society (Chongqing University), Education Ministry, China. He is
also an adjunct research fellow of Haihe Laboratory of Information Tech-
nology Application Innovation, Tianjin, China. His current research interests
are 5G/6G mobile Internet, mobile edge computing and caching, big data
analytics and machine learning.

Xu Zhang (Member, IEEE) received the BS de-
gree in communication engineering from the Beijing
University of Posts and Telecommunications, China,
in 2012 and the Ph.D. degree in computer science
from the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 2017. He is
currently a Marie Sklodowska-Curie research fellow
with the College of Engineering, Mathematics and
Physical Sciences, University of Exeter, Exeter, U.K.
His research interests include articial intelligence,
multimedia communication, and network measure-

ment. He was the co-recipient of 2019 IEEE Broadcast Technology Society
Best Paper Award.

Geyong Min (Member, IEEE) received the BSc
degree in computer science from the Huazhong
University of Science and Technology, China, in
1995, and the Ph.D. degree in computing science
from the University of Glasgow, U.K., in 2003. He is
currently a professor of high-performance computing
and networking with the Department of Computer
Science within the College of Engineering, Mathe-
matics and Physical Sciences, University of Exeter,
U.K. His research interests include computer net-
works, wireless communications, parallel and dis-

tributed computing, ubiquitous computing, multimedia systems, modelling,
and performance engineering.

Yongqiang Lyu (Member, IEEE) received the B.S.
degree in computer science from Xidian University,
Xian, China, in 2001, and the M.S. and Ph.D. de-
grees in computer science from Tsinghua University,
Beijing, China, in 2003 and 2006, respectively. He
is currently an Associate Professor with the National
Research Center for Information Science and Tech-
nology, Tsinghua University. His research interests
focus on processor hardware security, computer sys-
tem security, networking, and the IoTs.

