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developed. The proposed empirical Bayes approach is data-driven, numerically efficient, 
and allows for the construction of confidence sets for the mean function. Performance is 
demonstrated in simulations and real data analysis. The method is implemented in the R 
package eBsc.1
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1. Introduction

Consider the following observations from a fixed design, nonparametric regression model

Yi = f (ti) + σεi, E(εi) = 0, σ > 0, i = 1, . . . ,n,

corr(εi, ε j) = r(i − j) = r|i− j| ∈ [−1,1], i, j = 1, . . . ,n,
(1)

where r(·) denotes the autocorrelation function of the underlying noise process, and r|i| denotes autocorrelation at lag i. 
The design points ti ∈ R are equidistant and represent time points. The functions f and r are unknown, but it is assumed 
that the noise terms {εi}n

i=1 are sampled from a stationary noise process and that f is a smooth function. (In this paper, 
the Gaussian process is used as a template for such data, but the methodology can be applied to other processes as well.) 
The observations {Yi}n

i=1 might be measures of some experimental quantity observed with a time dependent measurement 
error; in this case estimation of f is of interest, while r is considered as a nuisance parameter. It might also be that 
{Yi}n

i=1 are measurements from a stochastic process indexed by time or space with a seasonal or other deterministic effect, 
described by f ; in this case the focus is rather on estimation of the autocorrelation r.

Non-parametric estimation of the covariance structure of a vector of observations with known mean is already a challeng-
ing problem. This problem is important in time series analysis – e.g., for prediction – as well as in multivariate analysis, in 
problems such as clustering, principal component analysis (PCA), linear and quadratic discriminant analysis and regression 
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Fig. 1. Hourly loads (kW) for a US utility estimated ignoring dependence in the data (left) and assuming that errors follow an autoregressive process of 
order one (right). Grey line shows the data and black lines show estimators. Estimators are obtained by functions gam (left) and gamm (right) of the R 
package mgcv.

analysis. Two frameworks are usually considered when the mean is known: either there are n independent observations 
of a p-dimensional vector with correlated components, cf. Bickel and Levina (2008a,b); or there is one observation of an 
n-dimensional vector sampled from a stationary process, cf. Xiao and Wu (2012). The second framework is the one relevant 
for the present setting. Irrespectively of the framework, natural (moment or sample auto-covariances) estimators for the 
covariance matrix of the observed vectors are well known to be inconsistent (in, e.g., operator-norm) and some form of 
regularisation is needed (e.g., banding, tapering, thresholding) to ensure positive definiteness and consistency of the esti-
mator. There is no simple data-driven approach to select the regularisation parameter in this context, and thus fully taking 
the correlation structure into account; see, e.g., Purahmadi (2011). Minimax rates of estimators of the correlation structure 
depend on the decay of the autocorrelation function as the lag increases (or, alternatively, smoothness of the corresponding 
spectral density); cf. Yang et al. (2001), Cai et al. (2010), Purahmadi (2011), Xiao and Wu (2012), see also Fan et al. (2016). 
As such, non-parametric estimation of the covariance structure of the process is of great importance.

If the mean function is unknown, then a natural approach to covariance estimation is to obtain a consistent estima-
tor for the mean function first and then apply methods for (nonparametric) covariance estimation with a known mean. 
Unfortunately, ignoring dependence on the error process hinders the estimation of f .

To exemplify the problem, consider a time series of hourly loads (kW) for a US utility (grey line in Fig. 1), described in 
detail in Section 4. This process has clear seasonal effects over years and possibly over weeks and days. These deterministic 
effects can be modelled by a function f . If no parametric assumptions on f is made and errors are treated as i.i.d., then 
all standard nonparametric estimators of f are heavily affected by the ignored dependence in the errors. In particular, 
automatic selectors of the smoothing parameter (e.g., by cross-validation) choose a biased smoothing parameter leading to 
a nearly interpolating estimator in case of positively correlated {εi}n

i=1; see the black line on the left plot in Fig. 1. This 
problem has been known for several decades; for an overview see Opsomer et al. (2001).

Hence, there is a need for an approach that allows for correct smoothing of the mean over a large family of possible 
auto-covariance functions. Available methods rely on an explicit, parametric assumption on the correlation structure, e.g., 
assuming that {εi}n

i=1 follows an ARMA(p, q) process. Once r is parametrised, the usual smoothing parameter selection 
criteria are adjusted to incorporate r and both f and r are estimated simultaneously. For example, Hart (1994) introduces 
a time series cross-validation for f estimated by kernel estimators assuming errors to follow an AR(p) process, see also 
Altman (1990) and Hall and Keilegom (2003). Kohn et al. (1992) use spline smoothing for estimation of f and a general 
ARMA(p, q) model for the errors, estimating all parameters from either generalised cross validation or maximum likelihood. 
Similar ideas are employed in Wang (1998). This approach does allow for simultaneous estimation of f and r, but is limited 
to parametric models for r. Of course, the true correlation structure might be much more complex than any parametric 
one and if the parametric model for the error process is misspecified, then the estimator of f is strongly affected. More 
importantly, in practice it is difficult to select and verify a parametric model for r, if the mean function f is unknown.

Smoothing with low-rank splines and an ARMA(p, q) model for the residuals is implemented in the gamm function of 
the R package mgcv. This function has been used to estimate hourly loads in the right plot of Fig. 1, assuming that the 
errors follow an AR(1) process. However, it is difficult to verify if this model is appropriate for the data at hand. For more 
detailed analysis of this dataset see Section 4.

Another group of methods for estimating f is based on trying to eliminate the influence correlation has on the smoothing 
parameter thus treating r as a nuisance parameter. For instance, Chu and Marron (1991) and Hall et al. (1995) study the 
modified cross-validation criterion obtained by leaving out a whole block of 2l + 1 observations around each observation. 
Chiu (1989) and Hurvich and Zeger (1990) study Mallow’s C p and cross validation in the frequency domain. A different route 
is taken by Herrmann et al. (1992) and Lee et al. (2010): in the smoothing parameter selection criteria they incorporate some 
sample estimators of auto-covariances that depend on unknown parameters linked to assumptions on the error process. 
These methods require careful selection of tuning parameters, for which no data-driven methods are available.
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In this paper, a likelihood based method that provides an estimator for a regression function f observed with correlated, 
additive noise is presented. Estimators of the noise level σ , and of the autocorrelation function r are developed as well. 
Furthermore, the proposed empirical Bayesian framework provides a computationally attractive way of constructing confi-
dence sets for the regression function that take the correlation structure into account. There are quite a few novel points in 
this work. Contrary to other approaches in the literature, the proposed method is completely automatic so that no tuning 
parameters need to be set by the user, and it is also fully nonparametric. The proposed estimate of the autocorrelations is 
also novel – spline smoothers are used to estimate the spectral density of the noise process. The autocorrelations are then 
reconstructed from the estimate of the spectral density, rather than by tapering or thresholding some empirical estimate. 
The resulting covariance matrix is positive definite by construction, and consistent in operator norm. Further properties of 
this estimator require new tools to be developed and will be investigated in a separate work.

This paper is structured as follows. In Section 2 the proposed estimators are introduced, Section 3 contains simulation 
results, Section 4 presents a real data example, and Section 5 closes the paper with some conclusions. Technical results are 
in the Appendix to this paper.

2. Construction of the estimators

Assume that in model (1) the regression function f belongs to a Sobolev space Wβ , β > 1/2; see Appendix A.1 for more 
details. The noise terms εi are sampled from a stationary, Gaussian noise process with zero mean and variance σ 2 > 0. The 
Gaussian model is used here as a template to construct estimators, but a penalisation framework is followed (cf. (2)) so 
that the estimators are expected to perform well under other data distributions. To estimate f , so called infill asymptotics 
are used, cf. Robinson (1989) for more details. Define Y = (Y1, . . . , Yn)T , f = f (t) = { f (t1), . . . , f (tn)}T , ε = (ε1, . . . , εn)T , 
where ti = (i − 1)/(n − 1), i = 1, . . . , n. The observations in (1) are modelled as

Y = f + σε, ε ∼ N(0, R).

The symmetric n × n matrix R satisfies the regularity assumptions described in Lemma 1. These do imply that the first row 
of R is absolutely summable which means that the noise process is modelled as having short-term dependence. However, 
the assumptions are otherwise quite mild; in particular, a large (non-parametric) collection of covariance structures for the 
noise terms covering is considered, for instance ARMA noise models as a very particular case. It is also assumed that for 
some 0 < δ < 1, the eigenvalues of R lie on the interval [δ, 1/δ].

The regression function f is estimated using a smoothing spline, i.e., f̂ that solves

min
f ∈Wq

⎡⎣1

n

{
Y − f (t)

}T
R−1{Y − f (t)

}+ λ

1∫
0

{
f (q)(t)

}2
dt

⎤⎦ , (2)

for some q ∈ N , λ > 0 and some “working” correlation matrix R . Subsequently, q, λ, and R are estimated from the data 
using the empirical Bayes approach. It is well-known that for given R , q and λ, the resulting estimator f̂ is a natural spline 
of degree 2q − 1 with knots at t and can be written as f̂ (t) = S(t)Y , where S is a n × n smoother matrix. To represent S , 
the so-called Demmler-Reinsch basis of the natural spline space of degree 2q − 1 is used; this is defined in Appendix A.1 in 
the Appendix. As such, the smoother matrix S can be written as

S = Sλ,q,R = �q
{
�T

q R−1�q + λdiag(nηq)
}−1

�T
q R−1, (3)

where �q is an appropriate n × n basis matrix and ηq ∈ Rn is a vector of eigenvalues. This representation makes the 
dependence of S on the parameters λ, R , and q more explicit. To keep the notation simple, the dependence on these 
parameters is omitted, unless these are set to a particular value.

2.1. Estimation of the remaining parameters

Although a frequentist paradigm is followed, the estimator f̂ has a Bayesian interpretation which provides us with 
a convenient way of estimating all of the unknown parameters by employing the empirical Bayes approach. Later, this 
Bayesian interpretation is used to obtain confidence sets; cf. Section 2.3.

The regression function f is endowed with a partly informative prior – given (t, λ, q, σ 2, R), the prior on f admits a 
density proportional to∣∣∣∣ R−1(S−1 − In)

2πσ 2

∣∣∣∣1/2

+
exp

{
− f T R−1(S−1 − In) f

2σ 2

}
, (4)

where | · |+ denotes the product of non-zero eigenvalues (S has exactly q eigenvalues equal to 1). This prior corresponds to 
a non-informative part on the null-space of R−1(S−1 − In) and a proper Gaussian prior on the remaining space. (This prior 
3
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distribution happens to be independent of R . This follows from the identity R−1(S−1 − In) = S−1
I − In , where S I denotes the 

smoother matrix with R = In; cf. Appendix A.2 for the derivation of the identity.) The mean of the corresponding posterior 
distribution for f |(t, λ, σ 2, R) is the smoothing spline estimator f̂ = S Y ; cf. Speckman and Sun (2003). The variance σ 2

given (t, λ, q, R) is endowed with an inverse-gamma prior IG(a, b), a, b > 0.
The resulting prior on ( f , σ 2)|(λ, q, R) is conjugate for model (1) in the sense that the posterior distribution on 

( f , σ 2)|(λ, q, R) is a known distribution. Namely, the marginal posterior for σ 2 given (λ, q, R) is an inverse gamma distri-
bution with shape parameter (n − q + 2a)/2 and scale parameter {Y T R−1(In − S)Y + 2b}/2. As for f |(λ, q, R), its posterior 
distribution is a multivariate t-distribution (cf. Kotz and Nadarajah (2004) for the definition of this distribution) with n + 1
degrees of freedom, mean f̂ = S Y , and scale σ̂ 2 S R , where

σ̂ 2 = Y T R−1(In − S)Y + 1

n + 1
. (5)

It remains to estimate λ, q and R which are parameters of the prior. To do so, the empirical Bayes approach is used: 
these parameters are estimated from the marginal distribution of Y , given (t, λ, q, R), which is a multivariate t-distribution 
with density

�{a + n−q
2 }
∣∣∣R−1(In − S)

2a−q
2b

∣∣∣1/2

+
{π(2a − q)}n/2�(a − q/2)

{
1 + Y T R−1(In − S)Y

2b

}−(n+2a−q)/2

. (6)

It remains to set the parameters a and b. The choice of parameters a and b is irrelevant for the asymptotics (as long as a
and b are o(n) and lead to a proper prior and marginal distributions), so to simplify the log-likelihood, these are set b = 1/2
and a = (q + 1)/2 to obtain

	n(λ,q, R) = −n + 1

2
log
{

Y T R−1(In − S)Y + 1
}

+ 1

2
log
∣∣R−1(In − S)

∣∣+ , (7)

up to an additive constant that is independent of the parameters of interest. With this choice of a and b the posterior mean 
for σ 2 becomes σ̂ 2 as defined in (5) which is the proposed estimator for the variance of the noise.

2.2. Estimating equations and algorithm

The log-likelihood (7) depends on the unknown parameters via the matrix R−1(In − S) only and can be represented in 
a more convenient way as

R−1(In − S) = �q

{
In + diag(λnηq)�

T
q R�q

}−1
diag(λnηq)�

T
q ,

using the Demmler-Reinsch basis; cf. Appendix A.1. The key result that allows us to handle efficiently the simultaneous 
estimation of f and r (or, equivalently, R) is given in the following lemma whose proof can be found in Appendix A.5,

Lemma 1. Let R be a n × n covariance matrix of a stationary process with spectral density ρ . Set ρ j = ρ(πt j).

(i) If ρ belongs to the Hölder space Cγ ,α , γ ∈N , 0 < α ≤ 1, i.e. ρ(γ ) is α-Hölder continuous, then, for i, j = q + 1, . . . , n,

{�T
q R�q}i, j = ρ jδi, j + I{|i − j| is even} ·

{
O (log(n) · n−γ −α+1), 1 < γ + α ≤ 2,

O (n−1), 2 < γ + α.

(ii) If ρ belongs to the Sobolev space Wβ(M), then, for i, j = q + 1, . . . , n,

{�T
q R�q}i, j = ρ jδi, j + I{|i − j| is even} ·

{
O (log(n) · n−1), β = 2,

O (n−1), β = 3,4, . . . .

(Note that the O (n−1) term is uniform over i, j.)
That is, the Demmler-Reinsch basis �q asymptotically diagonalises R for any q and the log-likelihood (7) can thus be 

represented as

	n(λ,q, R) = −n + 1

2
log

⎡⎣ n∑
i=q+1

B2
i λnηq,i

1 + λnηq,iρi
{1 + o(1)} + O P (1)

⎤⎦+

+ 1

2

n∑
log

(
λnηq,i

1 + λnηq,iρi

)
{1 + o(1)},

(8)
i=q+1

4
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where Bi = {�T
q Y }i , see Appendix A.6. The representation in (8) should hold under wider generality but Lemma 1 already 

provides a rather large model for the covariance structure of the noise.
Since ηq,i = [π{i − (q + 1)/2}]2q{1 + o(1)} (see Appendix A.1 for more details), it is straightforward to differentiate the 

approximative log-likelihood (8) w.r.t. λ, q and ρi to obtain after appropriate scaling the estimating equations

Tλ(λ,q,ρ) =
⎧⎨⎩

n∑
i=q+1

B2
i λnηq,i(

1 + λnηq,iρi
)2 − σ̂ 2

n∑
i=q+1

1

1 + λnηq,iρi

⎫⎬⎭ {1 + o(1)},

Tq(λ,q,ρ) =
⎧⎨⎩

n∑
i=q+1

B2
i λnηq,i log(nηq,i)(

1 + λnηq,iρi
)2 − σ̂ 2

n∑
i=q+1

log
(
nηq,i

)
1 + λnηq,iρi

⎫⎬⎭ {1 + o(1)},

Tρi (λ,q,ρ) =
(

B2
i λnηq,iρi

1 + λnηq,iρi
− ρi

)
{1 + o(1)}, i = 1, . . . ,n,

where

σ̂ 2 = 1

n + 1

⎛⎝ n∑
i=q+1

B2
i λnηq,i

1 + λnηq,iρi
+ 1

⎞⎠ .

Joint estimates for all unknown model parameters are obtained by solving these equations simultaneously over λ > 0, 
ρi > 0, i = 1, . . . , n, and q ∈ N . However, this cannot be done directly due to interdependences and non-linearities in 
the equations. In practice, the equations are solved iteratively. For each fixed q, start with an initial guess R̂

(0)
(typically 

just an identity matrix), to obtain a preliminary estimate λ̂(0) and iterate to get λ̂q and R̂ q . Finally, q is chosen to solve 
Tq(λ̂q, q, R̂q) = 0.

Since ρi = ρ(πti) are values of a smooth function ρ at given points, estimation of ρ should be carried out over a space 
of smooth functions. In the Bayesian framework this can, conceivably, be accomplished by introducing a suitable prior on 
R , which acts as a penalty term. For simplicity, a post-processing procedure is performed instead. First, ρ̃i are obtained as 
solutions of the corresponding estimating equations. Second, ρ̃i are smoothed, i.e., ρ̂ = Sξ,p,I ρ̃ , where Sξ,p,I is a smoother 
matrix (3) with parameters ξ , p and In . (Note that this is inevitable: the estimates ρ̃i are inconsistent.)

All together, for each fixed q, at each step λ̂( j) and ρ̃( j)
i are obtained as solutions of the corresponding estimating 

equations and ρ̃( j)
i are smoothed to get ρ̂( j)

i . The algorithm is iterated until convergence of λ̂ and ρ̂ , which are then used 
to get q̂. Finally, R̂ is recovered from ρ̂ by the discrete Fourier transform; for the details see Appendix A.3. The summary 
of the estimation procedure is given in Algorithm 1:

for q in Q n do
set j = 1 and ρ̂ (0) ≡ 1
while stopping criterium not met do

set λ̂( j) to a solution of Tλ(λ, q, ̂ρ( j−1)
) = 0 ;

set ρ̃i
( j) to a solution of Tρi (λ

( j), q, ρ̂i
( j−1)

) = 0;

compute ρ̂ ( j) by smoothing ρ̃ ( j);
set j = j + 1;

end

set λ̂q = λ̂( j) and ρ̂ q = ρ̂( j);

end

set q̂ to a solution of Tq(λ̂q, q, ρ̂ q) = 0 over Q n;

set λ̂ to λ̂q̂ ;
set ρ̂ = ρ̂ q̂ ;

set (R̂ )i, j = r̂|i− j| , with r̂k = n−1∑n
l=1 cos (kπ{l − 1}/{n − 1}) ρ̂l ;

Algorithm 1: Estimation procedure.

Here, Q n denotes the collection of values for q under consideration. The stopping rule is standard: after each iteration, 
the change in the value of the estimate of λ and the norm of the change in the estimate of ρ are checked; if these fall 
below a threshold, the algorithm terminates. The algorithm is fast and typically converges after just a few iterations.

In summary, the procedure outlined in Algorithm 1 provides an approximation for the optimisers of the likelihood (8)
with the extra property that the estimate of the spectral density is smooth (which is not accomplished by simply maximising 
the likelihood.)

The estimators for f̂ and R̂ are consistent; cf. Appendix A.7. However, deriving convergence rate for f̂ and R̂ is not a 
trivial task due to the interdependence of the two estimators and requires a separate treatment. However, as far as f̂ is 
5
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concerned, in light of Lemma 1 it is clear from (3) that R has a scaling effect on the smoother: as n grows S I ,λ/δ ≤ S R,λ ≤
S I ,δλ for any R with eigenvalues on [δ, 1/δ], where A ≤ B means that B − A is positive semi-definite. The conclusion is 
that the effect of the smoother S R,λ is comparable to that of S I ,λ for a difference choice of λ. It is stressed, however, that 
the small sample behaviour of the smoother S R,λ is far superior in the presence of correlation; the smoother S I ,λ is well 
known to underperform particularly for positively correlated data since, contrary to the smoother S R,λ , it does not take the 
correlation structure of the noise into consideration. From the likelihood in (8) it is clear, however, that the presence of 
correlation simply results in the presence of the (bounded) ρi in the denominators. This means that it should be possible to 
study the asymptotics of the proposed estimator f̂ in a similar way as when there is no correlation in the data as in Serra 
et al. (2017).

Also the asymptotic behaviour of the estimator q̂ should also be similar to when there is not correlation in the data; 
cf. Serra et al. (2017). Either way, the estimator should perform well even if q is set by the user and not selected from the 
data; q = 2 is a popular choice. The estimator for σ 2 should also be consistent.

In conclusion, the presence of short range dependent noise is close enough to the independent noise case to lead to the 
same large sample behaviour for estimators. However, the small sample behaviour of estimators that ignore correlation can 
be significantly improved by use of the proposed approach.

2.3. Confidence sets

Once estimates λ̂, R̂ , q̂, and σ̂ 2 for respectively λ, R , β , and σ 2 are available, these can be plugged into the marginal 
posterior for f to obtain the so called empirical, marginal posterior for f :

�̂ f ( · | Y
)= � f ( · | Y , σ̂ 2, λ̂, q̂, R̂

)
= � f ( · | Y ,σ 2, λ,q, R

)∣∣(
λ,q,R,σ 2

)=(λ̂,q̂,R̂ ,σ̂ 2
). (9)

Given Y , this is just a multivariate tn+1
(

f̂ , σ̂ 2 Ŝ R̂
)

distribution. Here, f̂ is the spline estimate, Ŝ is the smoother matrix S

with (λ̂, ̂q, R̂ ) plugged in for (λ, q, R), and σ̂ 2 is the estimate of the variance. From this, one can easily construct a credible 
set for the regression function of the form

Ĉn(L) =
{

f : ‖ f − f̂ ‖2
2 ≤ L σ̂ 2 sn(λ̂, q̂, R̂ )

}
, L ≥ 1, (10)

which (for an appropriate, known, sequence sn) satisfy

�̂
{

Ĉn(L) | Y
}≥ 1 − α, L ≥ 1,

and are therefore a credible set – a small, high probability region of the empirical posterior; cf. Serra et al. (2017) for a 
more detailed outline of the construction. In (Serra et al., 2017, Theorem 3), it is shown that in the case where R = In

this Bayesian credible set has two important frequentist properties if L is taken appropriately large: a) the set contains 
the true underlying regression function with probability converging to 1, uniformly over a large subset of functions, and b) 
with probability converging to 1, the (random) radius of Ĉn(L) is of the order of the minimax risk corresponding to the 
smoothness class to which the regression function belongs.

As argued in the previous section, the presence of correlation should have a relatively simple scaling effect on the 
smoothing parameter. As such, the theoretical results of Serra et al. (2017) can in principle be extended to cover the 
correlated noise case as well, by (eventually) picking larger values of the multiplier L, but this problem will be studied 
in more generality elsewhere. In this paper, the focus is instead on the implementation, and numerical aspects of the 
procedure. See for instance Sniekers et al. (2015); Serra et al. (2017); Rousseau et al. (2020); Yoo et al. (2016) for more 
details on the use of credible sets as confidence sets, albeit for independent noise.

3. Numerical simulations

In this section, the small sample performance of the proposed estimation procedure is investigated, and compared to 
several alternatives. The simulation setup for data coming from model (1) is as follows. Two regression functions are con-
sidered

f1(t) =
n∑

i=3

ψ3,i(t){π(i − 1)}−3 cos(2i),

f2(t) = 2 sin(4πt),

where ψ3,i is the i-th Demmler-Reinsch basis of W3 given explicitly in Appendix A.1, n = 800 and t ∈ [0, 1]. Both functions 
are subsequently scaled to have standard deviation 1. The standard deviation of the residuals is taken to be σ = 0.33 to 
imply a medium signal-to-noise ratio of 3. All reported results are based on the Monte Carlo sample M = 500. 5 types of the 
6



T. Krivobokova, P. Serra, F. Rosales et al. Computational Statistics and Data Analysis 173 (2022) 107519
Fig. 2. Regression functions f1 (top left), f2 (top right), first 100 values of the first row of R1 (middle left) with the corresponding spectral density (middle 
right) and of the first row of R2 (bottom left) with the corresponding spectral density.

residual processes are considered: an AR(1) process with the parameters φ = 0.5 and φ = 0.9, an ARMA(2, 2) process with 
φ = (0.7, −0.4) and θ = (−0.2, 0.2) and two zero-mean Gaussian process with the correlation matrices R1 and R2 with 
(i, j) entries given by cos(6.5 j) exp(−|i − j|/10) and sin(1.5 j) exp(−|i − j|/10)/(1.5 j), respectively. The distribution of the 
error processes is taken to be Gaussian according to the model (1). However, other error processes were also experimented 
with, such as Gamma and uniform and found nearly no differences in performance.

The plots in the top row of Fig. 2 show both regression functions. The middle and bottom rows show the first 100
elements of the first row of R1 (middle, left) and R2 (bottom, left) and the corresponding spectral densities (middle and 
bottom right).

Before the summary of the simulation results comes a demonstration of how the proposed method works in practice. The 
data are simulated as described above with the regression function f1 ∈ W3 and ARMA(2, 2) dependence in the residuals. 
After Algorithm 1 has converged, one checks the estimate for q. The top left plot of Fig. 3 shows the estimating equation 
Tq(λ̂, q, R̂ ) which has a zero very close to q = 3, as it should for f1 ∈ W3. Next, the corresponding estimate for f is 
obtained; it is shown in the top right plot of Fig. 3, together with the data (black dots) and 95% confidence bands (grey 
area) constructed as described in Section 2.3 (L = log n was used.) The estimate for R1, j , j = 1, . . . , 50 is shown in the 
bottom left plot of the same figure in black, which nearly coincides with the true autocorrelations, which are shown in grey. 
This estimate was reconstructed by the discrete Fourier transform of the estimate of the spectral density, shown in black in 
7
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Fig. 3. Estimating equation Tq in the top left and the corresponding estimator of f1 (black line) together with the data (black points) and point-wise 95% 
confidence intervals (grey area) in the top right. First 50 elements of the first row of the correlation matrix in grey with its estimator in black (bottom left) 
and the true spectral density in grey with its estimator in black (bottom right).

the bottom right plot of Fig. 3. The true spectral density is shown in the same plot in grey. Hence, the proposed method 
allows for simultaneous, fully automatic and nonparametric estimation of f (with data driven q, λ) and R .

There is no other fully nonparametric method for joint estimation of mean and auto-covariance available that could be 
found in the literature. Nonetheless, several approaches that can be at least partly compared to the proposed method were 
considered. Among approaches that make a parametric assumption on R , the well-established method based on splines that 
is implemented in the statistical software R in the function gamm of package mgcv was considered, see Wood (2017). This 
estimation procedure (further denoted by GAM) was applied to the processes with parametric structure of {ε(ti)}n

i=1 only 
and set the correlation structure parameters in gamm to the truth, which is not available in practice.

Among approaches that make no parametric assumption on R , the method of Herrmann et al. (1992), subsequently 
referred to as HER, was considered. This kernel based method uses sample autocorrelation estimators to improve bandwidth 
selection and is developed under assumption of m-dependence in the residuals. However, the authors claim that the method 
works well for estimation of f if the residuals satisfy “some mixing conditions”. In general, this approach focuses on 
estimation of f and the quality of the estimator for r is not discussed.

Finally, a comparison with the proposed estimator for the auto-covariance with the standard banded nonparametric 
estimator (further BAND) is also presented. Since this approach requires a known mean, the true mean f into the estimator 
was plugged in, calculating

R̂ i, j(b) = r̂|i− j|I(|i − j| ≤ b), i, j = 1, . . . ,n,

r̂k = 1

n

n−k∑
i=1

{Y (ti) − f (ti)}{Y (ti+k) − f (ti+k)}, k = 0,1,2, . . . ,

where b is the banding parameter that needs to be chosen.
All these methods require selection of certain parameters: in the function gamm a low-rank splines was used with 

number of knots n/4, B-spline basis of degree 3, penalisation order q = 2, and the correlation structure was specified 
according to the true dependence structure in the residuals for the first 4 residual processes.

For the method of Herrmann et al. (1992) the parameter m is set according to method (i) described in that paper (p. 
787). Namely, m was chosen to be the largest integer such that ĥm ≥ 6/5 ĥm−1 and m ≤ 0.2

√
n, where ĥm is a selected 

bandwidth with the parameter m. This parameter m is linked to the assumption of m-dependence in the residuals. In 
the experiments it was noticed that the influence of m on the estimator of f is not very pronounced, but it does affect 
8
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Table 1
Simulation results. Values of A( f̂ j) and A(R̂ j), j = 1, 2, were multiplied by 103.

f1

A( f̂1) A(R̂1)

Correlation BAS GAM HER BAS GAM HER BAND

AR1(0.5) 6.992 6.866 6.433 0.019 0.004 0.017 0.012
AR1(0.9) 107.605 96.652 300.940 0.830 0.140 2.934 0.293
ARMA(2,2) 4.163 4.012 3.797 0.015 0.011 0.031 0.013
GP1 4.161 – 3.727 0.200 – 0.789 0.124
GP2 5.495 – 4.771 0.047 – 0.087 0.048

f2

A( f̂2) A(R̂2)

Correlation BAS GAM HER BAS GAM HER BAND

AR1(0.5) 7.207 7.028 6.114 0.022 0.005 0.016 0.012
AR1(0.9) 121.442 113.355 308.155 0.848 0.163 2.885 0.271
ARMA(2,2) 4.417 4.236 3.482 0.016 0.012 0.033 0.014
GP1 4.449 – 3.603 0.197 – 0.786 0.117
GP2 5.769 – 4.541 0.050 – 0.090 0.046

the estimator of the auto-covariance quite strongly. There is no simple data-driven approach to choose m such that both 
mean and auto-covariance estimators are optimal in some sense. In the proposed implementation, the function glkerns
of package lokern by Eva Herrmann was used for the estimation of f with the second order kernel and for the estimation 
of f ′′ with the fourth order kernel.

Since there is no fully data-driven approach to banding parameter b selection for the nonparametric covariance matrix 
estimation, an oracle bandwidth was used instead: such b minimises the empirical version of E‖R̂(b) − R‖∞ , where ‖A‖∞
denotes the maximum absolute row sum of matrix A; the calculation of the expectation is based on the Monte Carlo sample 
of size 500.

Even though the proposed approach is adaptive and β can be estimated from the data, q was set to 2 to enable compar-
ing the proposed method with all other procedures for estimating the mean, which should have the same convergence rate. 
All other parameters are estimated from the data. The proposed method as is referred to as BAS.

The results are summarised in Table 1. For all dependence structures and all functions, the metrics

A( f̂ j) = 1

Mn

n∑
k=1

M∑
i=1

{ f j(xk) − f̂ j,i(xk)}2,

A(R̂ j) = 1

Mn

n∑
k=1

M∑
i=1

{R j(k) − R̂ j,i(k)}2, j = 1,2,

were used. Here f̂ j,i denotes an estimator of f j in i-th Monte Carlo run with the residuals following one of the six processes. 
Similarly, R j(k) denotes the k-th entry of the first row of one of six true residual correlation matrices added to the jth 
regression function f j and R̂ j,i(k) is its estimator in the ith Monte Carlo run.

Method HER performs best in estimation of the mean, except for the case with AR(1) error process with the parameter 
0.9, where this approach fails completely. For estimation of auto-covariances HER performs, in contrast, worst, which is 
most likely due to the ad-hoc choice of the tuning parameter m. For parametric structures of the error process method 
GAM performs very similar to BAS in estimation of the mean and is better in estimation of the auto-covariances. This is 
not surprising, since the proposed nonparametric method should have a slower convergence rate than the parametric one. 
However, in simulations the correct parametric model specification in the function gamm was used, which is not available in 
practice. Finally, BAND’s performance in nonparametric estimation of auto-covariances is very similar to BAS, even though 
BAND uses the known mean and oracle banding parameter, both of which are not available in practice. All together, the 
proposed, fully nonparametric and data-driven method is competitive to the considered alternatives, most of which rely on 
oracle choices for their parameters.

4. Real dataset

In this section, data from the load forecasting track of the Global Energy Forecasting Competition 2012 (http://www.
drhongtao .com /gefcom /2012) is considered. These are data on hourly loads of a US facility at 20 zones from the 1st hour of 
January 1st, 2004 to the 6th hour of June 30th, 2008. The goal of the competition was to make a one week out-of-sample 
forecast for each of the 20 time series, as well as backcast certain missing values within the observational period. The 
interest does not lie in forecasting the data, but rather understanding their structure. The mean over all 20 zones over the 
9
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Fig. 4. Estimators of the mean (top), first row of the correlation matrix (first 50 values, bottom left) and the estimating equation for the smoothness degree 
q (bottom right) of the hourly loads of a US facility. Data are shown in grey, BAS estimators are the black solid lines, GAM estimators are dashed lines, 
BAND estimator for the covariance is the dotted line.

whole time period – all together n = 1650 observations – is used, justifying the use of a Gaussian model. Missing values 
were imputed using R package Hmisc; omitting these missing values lead to the same estimators and same conclusions.

Fitting the data with the proposed approach delivers a positive and increasing function in the estimating equation for 
q, which implies that the mean function has either 1 continuous derivative or is even less smooth. This suggests that a fit 
with q = 1 is more appropriate than a fit with q = 2. This agrees with the nature of the data which is prone to display peak 
loads; in the literature similar data are treated e.g., by a mixture of smoothing splines and wavelets, where the later pick 
up the peaks, see Amato et al. (2017). The estimator of the mean with q = 1 is shown in the top plot of Fig. 4 as a black 
line. The corresponding autocorrelations are shown as solid black line in the bottom left plot.

Setting q = 1 in GAM with an AR(2) process for the residuals results in the estimator of the mean that is very close to 
the one obtained with BAS, but having somewhat less pronounced peaks (not clearly visible in the plot). The corresponding 
autocorrelation estimator is shown as a dashed line in the bottom left plot of Fig. 4. Assuming an ARMA(2, 2) process leads 
to nearly the same estimator. Since the HER method is defined only for even order kernels, the fit that would be comparable 
with the fit by BAS with q = 1 cannot be obtained. Subtracting the estimated mean from the data a banded nonparametric 
estimator BAND was employed for the covariance with band b = 12, which is shown as a dotted line in the bottom left plot 
and is closer to the BAS estimator of the covariance.

Estimation with BAS setting q = 2 gives estimates of the mean that are very close to the one obtained by GAM, setting 
the correlation structure to an AR(1) process; this is shown in Fig. 1, right plot. The corresponding autocorrelation estimators 
are also reasonably close. The residual analysis suggests, however, that the fit with q = 1 is more appropriate for this data.

5. Conclusions

Correlation is ubiquitous in applications, particularly when data is collected sequentially over time, and ignoring this 
can have severe consequences for inference. Covariance in data is typically taken into account by either making parametric 
assumptions on the dependence structure, or by relying on introducing tuning parameters that then have be set heuristically. 
A fully automatic, nonparametric method to estimate both mean function and auto-covariance function is proposed. It 
further supplies credible sets for the mean function that quantify the uncertainty of the estimator. The order of the splines 
to be used in the estimator is also estimated from the data, fully data driven. The approach is implemented in the R package 
eBsc (available from the authors), and delivers results in a quick and numerically stable way.

Derivation of the convergence rate turned out to be a non-trivial task due to the interdependence of the estimators and 
will be performed in a separate work. Nonetheless, for short range dependent noise models as covered here, the results, 
10
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both in terms of rates and uncertainty quantification are expected to be similar to the independent noise case. Since there 
are no competing fully non-parametric, fully data-driven, methods available in the literature, in the numerical simulations 
a comparison is made between the proposed approach and methods from the literature that require oracle knowledge of 
parameters. Even so, the numerical simulations suggest that the proposed method is competitive to these alternatives.
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Appendix A. Auxiliary results

In this appendix, contains a number of technical results that are used throughout this paper.

A.1. Demmler-Reinsch basis

Let {ψi}∞i=1 denote the Demmler-Reinsch basis of Wβ(M), such that

νβ,i

1∫
0

ψβ,i(x)ψβ, j(x)dx = νβ,iδi j =
1∫

0

ψ
(β)

β,i (x)ψ(β)

β, j (x)dx.

For a precise definition of the space Wβ(M), β ∈ N , see Serra et al. (2017). Rosales Marticorena (2016) found explicit 
expressions for ψβ,i and νβ,i as a solution to

(−1)qψ
(2β)

β,i = νβ,iψβ,i,

ψ
(l)
β,i(0) = ψ

(l)
β,i(1) = 0, l = β,β + 1, . . . ,2β − 1.

In particular, νβ,1 = · · · = νβ,β = 0 and

νβ,i =
{
π

(
i − β + 1

2

)}2β

, i = β + 1, β + 2, . . . ,

ψβ,i(x) = √
2

[
cos

{
π

(
i − β + 1

2

)
x + π

β − 1

4

}
+ Ti(x)

]
(A.1)

where

Ti(x) =
∑

a j∈S(β)

r j

[
exp

{
−a jπ

(
i − β + 1

2

)
x

}
+ (−1)i+1 exp

{
−a jπ

(
i − β + 1

2

)
(1 − x)

}]
,

for S(β) = ∪ j

{
(−1) j/(2β), (−1) j/(2β)

}
, with 0 ≤ j ≤ β −2 taking odd values for β odd and even values for β even. Constants 

r j are known and depend on β only. Note that Ti(x) vanish exponentially fast away from the boundaries.
The Demmler-Reinsch basis of the natural spline space of degree 2q − 1 with knots at observations S2q−1(x) is uniquely 
defined via

ηq,i

n∑
k=1

φq,i(xk)φq, j(xk) = ηq,iδi j =
1∫

0

φ
(q)

q,i (x)φ(q)

q, j(x)dx,

and �q = �q(x) = [φq,1(x), . . . , φq,n(x)] = [φq, j(xi)]n
i, j=1 is the corresponding basis matrix.

Utreras Diaz (1980) used the results of Fix (1972) to show that |nηq,i − νq,i | = O (n−2). From Fix (1972) and Fix (1973) also 
follows that ‖√nφq,i − ψq,i‖Wq = O (n−1), or, equivalently, that ‖φq,i − ψq,i/

√
n‖L2 = O (n−3/2).

To apply results by Fix (1972) and Fix (1973) the standard result (see Lemma 3.2 in Utreras Diaz, 1980) is used.
11
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Lemma 2. Let f ∈ Wβ(M), β ≥ 2, then∣∣∣∣∣∣1n
n∑

i=1

f (ti) −
1∫

0

f (t)dt

∣∣∣∣∣∣≤ c

n2
‖ f ‖Wβ ,

where ti = (i − 1)/(n − 1), i = 1, . . . , n.

A.2. Matrix identities

This section contains some matrix identities. The smoother matrix S satisfies

S = R1/2
{

In + λR1/2�q diag(nηq)�
T
q R1/2

}−1
R−1/2.

From this expression is it clear that R−1 S = S T R−1 so that in particular

R−1(In − S) = (In − S)T R−1.

From the definition of S is also simple to check the scaling relation

R−1(S−1 − In) = λ�q diag(nηq)�q
T = S−1

I − In.

The estimating equation for λ is obtained in a straightforward way by noting that since ∂ S/∂λ = −(In − S)S/λ, then

∂ R−1(In − S)

∂λ
= 1

λ
R−1(In − S)S,

and the estimating equation for q is based on the fact that

∂ R−1(In − S)

∂q
= R−1 S

∂ S−1

∂q
S = λ

q
R−1 S R�q diag

{
nηq ◦ log(nηq)

}
�T

q S

= λ

q
S T �q diag

{
nηq ◦ log(nηq)

}
�T

q S

= 1

q
R−1(I − S)�q diag

{
log(nηq)

}
�T

q S,

where ◦ denotes the Hadamard product. For the derivation of the estimating equations for the ρi note that

∂ S

∂ρi
= −S

∂ S−1

∂ρi
S = −S

∂ R

∂ρi
(S−1

In
− In)S = −S

∂ R

∂ρi
R−1(In − S),

such that, combining the above, and using the chain rule

∂ R−1(In − S)

∂ρi
= −R−1 ∂ R

∂ρi
R−1(In − S) + R−1 ∂ S

∂ρi

= −R−1(In − S)
∂ R

∂ρi
R−1(In − S) = −(In − S)T R−1 ∂ R

∂ρi
R−1(In − S).

A.3. R and its spectral density

Let R be a Toeplitz matrix in that (R)i, j = Ri, j = ri− j for some sequence {ri}i∈Z . Let us further assume that Ri, j = 0, if 
|i − j| > m, m ∈N . Denote the Fourier spectrum of R as

ρ(x) =
m∑

k=−m

rk exp(ikx), so that rk = 1

2π

π∫
−π

ρ(x)exp(−ikx)dx,

where i denotes the imaginary unit. If R is the correlation matrix of a stationary process, then additionally, ri− j = r j−i so 
that
12
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ρ(x) = 1 + 2
m∑

k=1

rk cos(kx), and,

rk = 1

2π

π∫
−π

cos(kx)ρ(x)dx =
1∫

0

cos(kπx)ρ(πx)dx.

In practice rk is approximated via

rk = 1

n

n∑
i=1

cos

(
kπ

i − 1

n − 1

)
ρi + O (n−1), where ρi = ρ

(
π

i − 1

n − 1

)
.

A.4. Derivation of the posterior and marginal posterior

Consider t, λ, q, R fixed throughout. Endow ( f , σ 2) with a prior specified by endowing σ 2 with and inverse gamma 
prior with parameters a, b, and endowing f | σ 2 with a prior with density (w.r.t. some appropriate dominating measure) as 
specified in (4). Using the fact that S−1 − In has rank n − q, the prior density is thus proportional to(

σ 2)− n−q
2 −a−1 × ∣∣R−1(S−1 − In)

∣∣1/2
+ × exp

{
− 1

2σ 2

[
f T R−1(S−1 − In) f + 2b

]}
.

Multiplying this by the Gaussian likelihood and completing the square shows that the posterior density of ( f , σ 2) is pro-
portional to(

σ 2)− 2n−q
2 −a−1 × |S R|−1/2 × exp

{
− Q

2σ 2

}
, (A.2)

where Q in the exponent is

Q = ( f − S Y
)T

(S R)−1( f − S Y
)+ 2b + Y T R−1(In − S

)
Y T .

Integrating out f , the marginal density of the posterior distribution on σ 2 is recognised as an inverse gamma distribution 
with shape parameter (n − q + 2a)/2 and scale parameter {Y T R−1(In − S)Y + 2b}/2. Integrating out σ 2 instead leads to a 
marginal posterior density for f which is clearly a multivariate t-distribution with n + 1 degrees of freedom, expectation 
f̂ = S Y , and scale σ̂ 2 S R , where σ̂ 2 is given by (5).

As for the marginal distribution of Y under the prior, this is obtained by integrating out both f and σ 2 from (A.2). For 
instance, the marginal posterior for σ 2 has a density proportional to(

σ 2)− n−q
2 −a−1 × exp

{
− 1

2σ 2

[
2b + Y T R−1(In − S

)
Y T
]}

,

which can be easily integrated with respect to σ 2 leading to the marginal likelihood for Y proportional to the one specified 
in (6).

A.5. Proof of Lemma 1

(i) W.l.o.g. assume that n is even. Noting that ti = (i − 1)/(n − 1) and denoting t j,q = { j − (q + 1)/2}/(n − 1), for i, j =
q + 1, . . . , n,

{�T
q R�q}i, j =

n∑
l=1

φq,i(tl)

n∑
k=1

√
2

n
cos{π(k−1)t j,q+π(q−1)/4}r|l−k|

+
n∑

l=1

φq,i(tl)

n∑
k=1

[
φq, j(tk) −

√
2

n
cos{π(k−1)t j,q+π(q−1)/4}

]
r|l−k|

= ρ(πt j,q)δi, j

−{1+(−1)|i− j|}
√

2

n

n/2∑
l=1

φq,i(tl)

∞∑
s=n−l+1

cos{π(l−1+s)t j,q+π(q−1)/4}rs (A.3)

−{1+(−1)|i− j|}
√

2

n

n/2∑
φq,i(tl)

∞∑
cos{π(l−1−s)t j,q+π(q−1)/4}rs
l=1 s=l

13
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−ρ(πt j,q)

n∑
l=1

φq,i(tl)

[
φq, j(tl) −

√
2

n
cos{π(l−1)t j,q+π(q−1)/4}

]

+
n∑

l=1

φq,i(tl)

n∑
k=1

[
φq, j(tk) −

√
2

n
cos{π(k−1)t j,q+π(q−1)/4}

]
r|l−k|.

It was used that 
∑

|s|≤n/2 cos(π st j,q)rs = ρ(πt j,q) +∑∞
|s|>n/2 cos(π st j,q)rs , the cosine addition identity, and that cosine 

and sine are even and odd functions, respectively. Four last terms in (A.3) vanish for |i − j| odd; for the last two terms 
this follows since φq, j(tk) has the same number of sign changes as cos{π(k − 1)t j,q + π(q − 1)/4} (see Appendix A.1) and 
φq,i(tk) is an even function for i odd and odd function for i even. If |i − j| is even, then the second term in (A.3) is of order 
O (n−γ −α+1) since φq,i(x) = O (n−1/2) and the Fourier coefficients rs of ρ ∈ Cγ ,α are O (s−γ −α). Again, by rs = O (s−γ −α), 
the inner sum of the third term is O (l−γ −α+1). Thus, for |i − j| even, the third term is of order O (n−1), if 2 < γ + α, and 
of order O (log(n) · n−γ −α+1), if 1 < γ + α ≤ 2. To see that the last two terms are of order O (n−1) for |i − j| even, use 
the Cauchy-Schwarz inequality, Lemma 2 and the result from Appendix A.1 that ‖φq,i − ψq,i/

√
n‖L2 = O (n−3/2), where ψq,i

is the Demmler-Reinsch basis of the Sobolev space Wβ(M) given in (A.1), with the tail parts Ti(x) vanishing exponentially 
away from the boundaries. Additionally, for the last term it is used that 

∣∣∣(∑n
l=1 r|l−k|

)2∣∣∣ = O (C) for each k = 1, ..., n since 

γ + α > 1. Finally, since ρ is Lipschitz continuous, it follows ρ(πt j,q) = ρ(πt j) + O (n−1) = ρ j + O (n−1).

(ii) The proof is identical to (i) since only the decay properties of the Fourier coefficients of ρ are used. Note that 
rs = O (s−β) for ρ ∈Wβ(M).

A.6. Simplified representation for the likelihood

The log-likelihood of the model is given by

	n(λ,q,R) = −n + 1

2
log{YT R−1(In − S)Y + 1} + 1

2
log |R−1(In − S)|+, (7)

where

R−1(In − S) = �q

{
In + diag(λnηq)�

T
q R�q

}−1
diag(λnηq)�

T
q .

Suppose that Lemma 1 holds in such a way that

{�T
q R�q}i j = ρ(πt j)δi j + I{|i − j| is even}O (n−1), i, j = q + 1, . . . ,n,

which imposes some regularity constraints on the spectral density ρ . In this case,

�T
q R�q = diag(ρ) + E,

where ρ = {ρ(πt1), . . . , ρ(πtn)}T and E is matrix with elements Eij = I{|i − j| is even}O (n−1). Note that the Lemmas give 
the values of the matrix for i, j = q + 1, . . . , n, but the values for the first q + 1 rows and columns are at most O (1) (follows 
from the summability of the rows and columns of R and that {�q}i j = O (n−1/2)).

Now,

R−1(In − S) = �q
{

In + diag(λnηqρ) + diag(λnηq)E
}−1 diag(λnηq)�

T
q

= �q

{
In + diag

(
λnηq

1 + λnηqρ

)
E

}−1

diag

(
λnηq

1 + λnηqρ

)
�T

q .

Note that the matrix

diag

(
λnηq

1 + λnηqρ

)
E,

has first q rows equal to zero and since the elements of the diagonal matrix are less than one, the order of this matrix is 
the same as that of E. Denote

diag

(
λnηq

1 + λnηqρ

)
E = 1

n
Ẽ,

where elements of ̃E are of order O (1) and the first q rows are zero.
14
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Hence,

log |R−1(In − S)|+ = log

∣∣∣∣∣diag

(
λnηq

1 + λnηqρ

)∣∣∣∣∣+ − log
∣∣(In + n−1Ẽ

)
Dq
∣∣+ ,

where Dq = diag(0q, 1n−q). It is easy to see that the first term is of order O {nλ−1/(2q)}, while the second term is O (n−1), 
which follows with Hadamard’s bound: |A|2 ≤∏n

j=1
∑n

i=1 a2
i j . Since the i j elements of (In + n−1Ẽ)Dq are of order δi j +

O (n−1) for i, j = q + 1, . . . , n and 0 for i, j = 1, . . . , q

∣∣(In + n−1Ẽ)Dq
∣∣2+ ≤

n∏
j=q+1

{1 + O (n−1)} = 1 + O (n−1),

so that log
∣∣(In + n−1Ẽ)Dq

∣∣2+ = O (n−1).

Writing

(In + n−1 Ẽ)−1 = In − (In + n−1 Ẽ)−1n−1Ẽ,

leads to

YT R−1(In − S)Y =

= BT diag

(
λnηq

1 + λnηqρ

)
B − BT (In + n−1 Ẽ)−1n−1Ẽ diag

(
λnηq

1 + λnηqρ

)
B.

Using the definition of the matrix inverse A−1 = |A|−1adj(A) and Hadamard’s bound as above, implies that the matrix 
between the two vectors in the second term has elements of order O (n−1) for i, j = q + 1, . . . , n and zero for i, j = 1, . . . , q. 
Hence,

YT R−1(In − S)Y =
n∑

i=q+1

B2
i λnηq,i

1 + λnηq,i
{1 + O (n−1)} −

n∑
i, j=q+1

i �= j

Bi B j E∗
i j,

for a matrix

E∗ = (In + n−1 Ẽ)−1(n−1Ẽ)diag

(
λnηq

1 + λnηqρ

)
,

which has elements of order O (1/n). The second term in the last display is of order O p(1) by the Cauchy-Schwarz inequal-
ity. Finally,

YT R−1(In − S)Y =
n∑

i=q+1

B2
i λnηq,i

1 + λnηq,i
{1 + O (n−1)} + O p(1).

A.7. Consistency of the estimators

Suppose that Y ∼ N( f 0, σ 2 R0) represents the distribution of the data.

The estimator of the regression function. Note that since Y − f 0 ∼ N(0, σ 2 R0),

E‖ f̂ λ,q,R − f 0‖2 = f T
0 (In − Sλ,q,R)T (In − Sλ,q,R) f 0 + σ 2tr

(
Sλ,q,R R0 S T

λ,q,R

)
.

Then, if A ≤ B means that B − A is positive semi-definite, using the fact that the eigenvalues of R are on [δ, 1/δ], and the 
identity R−1(S−1

λ,q,R − In) = S−1
λ,q,In

− In , leading to

In − Sλ,q,R = Sλ,q,R R R−1(S−1
λ,q,In

− In) ≤ 1

δ
(S−1

λ,q,In
− In) ≤ 1

δ2
(S−1

δλ,q,In
− In),

where the definition of the smoother is used. In a similar way, since by assumption the eigenvalues of R0 are on [δ, 1/δ], 
using the von Neumann trace inequality,

tr
(

Sλ,q,R R0 Sλ,q,R

)
≤ 1

2
tr
(

Sλ,q,R R Sλ,q,R

)
.

δ

15
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Then, again by the definition of the smoother that

Sλ,q,R R Sλ,q,R = �q

{
�T

q R−1�q + λdiag(nηq)
}−2

�T
q

≤ 1

δ2
�q
{

In + δλdiag(nηq)
}−2

�T
q = 1

δ2
S2

δλ,q,In
.

Combining all of the above, conclude that

E‖ f̂ λ,q,R − f 0‖2 ≤ 1

δ4

{
f T (In − Sδλ,q,In )

2 f 0 + σ 2tr
(

S2
δλ,q,In

)}
.

The quantity in {·} is just the usual risk for a smoothing spline with smoothing parameter δλ for the model with indepen-
dent noise with variance σ 2. The conclusion is that, up to constants, the risk (and therefore the rate) of ˆf 0 is the same as 
in the independent noise case. It is stressed again, though, that the finite sample performance of the smoother S λ,q,R , as 
illustrated by the numerical simulations, is far superior to that of the smoother that ignores the correlation structure.

The estimator of the correlation. Note that since both R̂ and R0 are Toeplitz matrices, so is their difference. It is known that

‖R̂ − R0‖2 =
√

λmax

(
(R̂ − R0)2

)
≤ 2π‖ρ̂ − ρ0‖∞,

see e.g., p. 115 in Cai et al. (2013). As such, consistency of the estimator R̂ follows from consistency of the spline estimator 
ρ̂ .

Now note that the ρ̂i are a spline smoothed version of ρ̃i that satisfy Tρi (λ, q, ρ̃) = 0. As such, if ρ̃i satisfies the i-th 
equation then

B2
i (λnηq,iρ̃i)

2

(1 + λnηq,iρ̃i)
2

= λnηq,iρ̃i

1 + λnηq,iρ̃i
ρ̃i ≈ ρ̃i,

for all but the first few i. Next note that the fraction on the left is just the square of one of the entries in �T
q (In − Sλ,q,ρ̃)Y

where ρ̃ is identified with the resulting estimate of the correlation matrix. The quantity (In − Sλ,q,ρ̃)Y corresponds to the 
residuals of a smoothing spline fit, and as just seen, regardless of the estimate of the correlation, this estimator is consistent 
with a rate depending on the smoothness of the regression function, so that the expectation of the residuals is negligible. 
As such, for any ρ ,

Biλnηq,iρi

1 + λnηq,iρi
=
{
�T

q (In − Sλ,q,ρ)�q B
}

i
,

where B = �T
q Y , and where approximately

�T
q (In − Sλ,q,ρ)�q B ∼ N

(
0, �T

q (In − Sλ,q,ρ)R0(In − Sλ,q,ρ)T �q

)
.

Then, approximately

{
�T

q (In − Sλ,q,ρ)R0(In − Sλ,q,ρ)T �q

}
i, j

=
(

λnηq,iρ0,i

1 + λnηq,iρ0,i

)2

ρ0,iδi, j ≈ ρ0,iδi, j,

for all but the first few i. It therefore makes sense to model

ρ̃i = B2
i (λnηq,iρ̃i)

2

(1 + λnηq,iρ̃i)
2

= ρ0,i + νi,

where νi are independent and have expectation 0 and bounded variance. In such a case Eggermont and LaRiccia (2009), 
smoothing spline smoother applied to the ρ̃i delivers an estimate of the spectral density with a convergence rate depending 
on the smoothness of the spectral density (or, equivalently, on the speed of decay of the auto-correlations.) In particular, 
consistency of R̂ in spectral norm follows.

The heuristic argument above can be made precise but this is out of scope in this work as the concern was with the 
implementation of the numerical procedure.
16



T. Krivobokova, P. Serra, F. Rosales et al. Computational Statistics and Data Analysis 173 (2022) 107519
References

Bickel, P., Levina, E., 2008a. Covariance regularization by thresholding. Ann. Stat. 36, 2577–2604.
Bickel, P., Levina, E., 2008b. Regularized estimation of large covariance matrices. Ann. Stat. 36, 199–227.
Xiao, H., Wu, W., 2012. Covariance matrix estimation for stationary time series. Ann. Stat. 40 (1), 466–493.
Purahmadi, M., 2011. Covariance estimation: the GLM and regularized perspectives. Stat. Sci. 26, 369–387.
Yang, Y., et al., 2001. Nonparametric regression with dependent errors. Bernoulli 7 (4), 633–655.
Cai, T., Zhang, C.-H., Zhou, H., 2010. Optimal rates of convergence for covariance matrix estimation. Ann. Stat. 38, 2118–2144.
Fan, J., Liao, Y., Liu, H., 2016. An overview of the estimation of large covariance and precision matrices. Econom. J. 19 (1).
Opsomer, J., Wang, Y., Yang, Y., 2001. Nonparametric regression with correlated errors. Stat. Sci. 16 (134–153).
Hart, J., 1994. Automated kernel smoothing of dependent data by using time series cross-validation. J. R. Stat. Soc. B 56, 529–542.
Altman, N., 1990. Kernel smoothing of data with correlated errors. J. Am. Stat. Assoc. 85, 749–759.
Hall, P., Keilegom, I.V., 2003. Using difference-based methods for inference in nonparametric regression with time series errors. J. R. Stat. Soc. B 65 (2), 

443–456.
Kohn, R., Ansley, C., Wong, C., 1992. Nonparametric spline regression with autoregressive moving average errors. Biometrika 79, 335–346.
Wang, Y., 1998. Smoothing spline models with correlated random errors. J. Am. Stat. Assoc. 93, 341–348.
Chu, C.-K., Marron, J., 1991. Comparison of two bandwidth selectors with dependent errors. Ann. Stat. 19, 1906–1918.
Hall, P., Lahiri, S., Polzehl, J., 1995. On bandwidth choice in nonparametric regression with both short- and long-range dependent errors. Ann. Stat. 23, 

1921–1936.
Chiu, S.-T., 1989. Bandwidth selection for kernel estimate with correlated noise. Stat. Probab. Lett. 8, 347–354.
Hurvich, C., Zeger, S., 1990. A frequency domain selection criterion for regression with autocorrelated errors. J. Am. Stat. Assoc. 85, 705–714.
Herrmann, E., Gasser, T., Kneip, A., 1992. Choice of bandwidth for kernel regression when residuals are correlated. Biometrika 79, 783–795.
Lee, Y.K., Mammen, E., Park, B.U., 2010. Bandwidth selection for kernel regression with correlated errors. Statistics 44 (4), 327–340.
Robinson, P.M., 1989. Nonparametric estimation of time-varying parameters. In: Hackl, P. (Ed.), Statistical Analysis and Forecasting of Economic Structural 

Change. Springer, Berlin, pp. 253–264.
Speckman, P., Sun, D., 2003. Fully Bayesian spline smoothing and intrinsic autoregressive priors. Biometrika 90 (2), 289–302.
Kotz, S., Nadarajah, S., 2004. Multivariate t-Distributions and Their Applications. Cambridge University Press.
Serra, P., Krivobokova, T., et al., 2017. Adaptive empirical bayesian smoothing splines. Bayesian Anal. 12 (1), 219–238.
Sniekers, S., van der Vaart, A., et al., 2015. Adaptive bayesian credible sets in regression with a gaussian process prior. Electron. J. Stat. 9 (2), 2475–2527.
Rousseau, J., Szabo, B., et al., 2020. Asymptotic frequentist coverage properties of bayesian credible sets for sieve priors. Ann. Stat. 48 (4), 2155–2179.
Yoo, W.W., Ghosal, S., et al., 2016. Supremum norm posterior contraction and credible sets for nonparametric multivariate regression. Ann. Stat. 44 (3), 

1069–1102.
Wood, S., 2017. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.
Amato, U., Antoniadis, A., De Feis, I., Goude, Y., 2017. Estimation and group variable selection for additive partial linear models with wavelets and splines. 

S. Afr. Stat. J. 51 (2), 235–272.
Rosales Marticorena, L.F., 2016. Empirical bayesian smoothing splines for signals with correlated errors: methods and applications. Ph.D. thesis. Georg-

August-Universität Göttingen. http://hdl .handle .net /11858 /00 -1735 -0000 -0028 -87F9 -6.
Utreras Diaz, F., 1980. Pur ie choix du paramétre d’ajustement dans le lissage par fonctions spline. Numer. Math. 34, 15–28.
Fix, G.J., 1972. Effects of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems. In: Aziz, A. (Ed.), The 

Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, pp. 525–556.
Fix, G.J., 1973. Eigenvalue approximation by the finite element method. Adv. Math. 10 (2), 300–316.
Cai, T.T., Ren, Z., Zhou, H.H., 2013. Optimal rates of convergence for estimating Toeplitz covariance matrices. Probab. Theory Relat. Fields 156 (1), 101–143.
Eggermont, P., LaRiccia, V., 2009. Maximum Penalized Likelihood Estimation. Springer Series in Statistics, vol. 2. Springer.
17

http://refhub.elsevier.com/S0167-9473(22)00099-8/bib2A97EE0B4F97361F3480F03422ACFBFDs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib975B72506EAF60896C223FE9174149DDs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibD18E43B4E2BF3060782CF586D8AB5753s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib98ACDCF846D7504617AA1C2E28297B60s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib3B4B54285E8CF513CAD654A6BCB0D77Ds1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib67A27D1D5921AD9A73C51307C246D7C7s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibE7DA52E4CB50516AE081339B26CDECA5s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib94A8F8A1B0689158454C467998949956s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibC98786F18E1074E58159947C453CB4C2s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib053B0CC5F04F24499453C2B9E1CF582Cs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibBAA43A039B75C385227DC345BAEECBDFs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibBAA43A039B75C385227DC345BAEECBDFs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib8C39D863004E5CF6F3F0F0F292E0E2D1s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib743F9E224BF92B7A48ACFF392F076330s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibED925E0D90950763891F5FD679B53215s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib8DCF9CE7EF8EF5051D61B7701BBAD40Ds1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib8DCF9CE7EF8EF5051D61B7701BBAD40Ds1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib7897FB832AF8035D740CD1922628AF6Ds1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibEA51FAF353A9A55C1F488E4077102891s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib793D3309756B4A792CE0B5AC7FD8C8EEs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib8BA1B06BF45930F19D080FFFDE1B2B12s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib5F849D522F371190F5704FFFDC917B33s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib5F849D522F371190F5704FFFDC917B33s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibCE82DE8EF3B17B37138AF9A2C9DAD295s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib965DFCE6D1CAF4301C2D06C6B1921933s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib0E5F31C984164537070CAACD969350EEs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib626DFD147DA0754831412FDC728FBC80s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib345CC60889802E747308B5173FCF9383s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib4A92B2B267011C6FAD54CC6C640ECB17s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib4A92B2B267011C6FAD54CC6C640ECB17s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib5748520E158FBDE810628B193B56F9DAs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibFA4D3D00DA34CB51D2DAF86581548927s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibFA4D3D00DA34CB51D2DAF86581548927s1
http://hdl.handle.net/11858/00-1735-0000-0028-87F9-6
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibA05759583D5E3306A07D330D97CF8049s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib02E84603645137F8DCE80EE1D4391727s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib02E84603645137F8DCE80EE1D4391727s1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib8DEF3898E7C1270B0F4A298473E5A6FEs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bib4332BD8D8F07D9BAC99CF8AD71AB2AEFs1
http://refhub.elsevier.com/S0167-9473(22)00099-8/bibD8C478C5B4B57F4D309C0D8E8487D713s1

	Joint non-parametric estimation of mean and auto-covariances for Gaussian processes
	1 Introduction
	2 Construction of the estimators
	2.1 Estimation of the remaining parameters
	2.2 Estimating equations and algorithm
	2.3 Confidence sets

	3 Numerical simulations
	4 Real dataset
	5 Conclusions
	Acknowledgements
	Appendix A Auxiliary results
	A.1 Demmler-Reinsch basis
	A.2 Matrix identities
	A.3 R and its spectral density
	A.4 Derivation of the posterior and marginal posterior
	A.5 Proof of Lemma 1
	A.6 Simplified representation for the likelihood
	A.7 Consistency of the estimators

	References


