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We present a state-of-the-art lattice QCD calculation of the pion and kaon light-cone distribution
amplitudes (DAs) using large-momentum effective theory. The calculation is done at three lattice spacings
a ≈ f0.06; 0.09; 0.12g fm and physical pion and kaon masses, with the meson momenta
Pz ¼ f1.29; 1.72; 2.15g GeV. The result is nonperturbatively renormalized in a recently proposed hybrid
scheme with self-renormalization, and extrapolated reliably to the continuum as well as the infinite
momentum limit. We find a significant deviation of the pion and kaon DAs from the asymptotic form, and a
large SUð3Þ flavor breaking effect in the kaon DA.
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Introduction.—Light pseudoscalar mesons play a
fundamental role in quantum chromodynamics (QCD) as
they are the (pseudo) Nambu-Goldstone bosons asso-
ciated with dynamical chiral symmetry breaking [1,2],
an important nonperturbative phenomena in the standard
model. Their internal structure and its impact on exper-
imental measurements have been actively investigated for
many years.

The leading-twist pion and kaon light-cone distribution
amplitudes (DAs) are among the simplest physical quan-
tities characterizing such internal structure, and provide a
probability amplitude interpretation on how the longi-
tudinal momentum of the pion or kaon is distributed among
quarks in its leading Fock state [3]. They are critical inputs
for the description of hard exclusive reactions, such as the B
meson weak decays [4,5] that provide useful information
on CP violation and the Cabibbo-Kobayashi-Maskawa
matrix, and play a crucial role for probes of new physics
[6]; they are also important for the study of the pion elastic
form factors [7], the pion-photon transition form factor
[8–10], and of hard exclusive meson production that may
give access to nucleon generalized parton distributions
[11,12].
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At the asymptotically large renormalization scale, it is
well-known that these DAs follow a simple form, ϕðxÞ ¼
6xð1 − xÞ [3], as other components are suppressed loga-
rithmically through anomalous dimensions of higher-spin
operators. However, their shapes at hadronic scales are a
nonperturbative QCD problem. A QCD sum rule calcu-
lation for the pion DA has stimulated much theoretical
debate and many experimental measurements [13–16]. In
the past few decades, various nonperturbative models and
phenomenological analyses have been proposed to under-
stand this interesting physical quantity; see, for example,
Refs. [17–19]. Clearly, a first-principle calculation from
lattice QCD will shed more light on this issue.
There have been many lattice studies on the pion and

kaon DAs using the traditional moments approach [20–26].
The proposal of large-momentum effective theory (LaMET)
[27–29] allows one to access the entire x dependence of the
DAs from first-principle lattice calculations, instead of only
the first few moments (for other proposals with applications
to the DAs, see Refs. [30–33]). Using LaMET, several
calculations of the x dependence of meson DAs have been
carried out [34–37]. However, a recent analysis [38] showed
that the nonperturbative renormalization of the quasi-light-
front (quasi-LF) correlation in LaMET could be highly
nontrivial, especially when off-shell quark matrix elements
are used. In such a case, even after renormalization theremay
still be residual linear divergences rendering the continuum
extrapolation problematic. To resolve this issue, a self-
renormalization strategy [39] has been proposed, where one
fits the divergence structure to a quasi-LF correlation and
uses it for renormalization. The present Letter provides the
first full implementation of this strategy, and shows that it
indeed gives promising results.
Lattice simulation.—Let us begin with the following

definition of the leading-twist light-cone DA of a pseudo-
scalar meson:

Z
dξ−

2π
eixp

þξ−h0jψ̄1ð0Þ=nγ5Uð0; ξ−Þψ2ðξ−ÞjMðPÞi

¼ ifMðp · nÞϕMðxÞ; ð1Þ

where Uð0; ξ−Þ ¼ P exp½igs
R
0
ξ−
ds n · AðsnÞ� is the path-

ordered gauge link defined along the minus light-cone
direction n (n2 ¼ 0). To extract this quantity, we calculate
the following quasi-LF correlation on the lattice with
momentum P⃗ along the z direction [34]:

Cm
2 ðz;P⃗;tÞ¼

Z
d3ye−iP⃗·y⃗h0jOΓ1

ðz;y⃗;tÞψ̄2ð0;0ÞΓ2ψ1ð0;0Þj0i;

where OΓ1
ðz; y⃗; tÞ≡ ψ̄1ðy⃗; tÞΓ1Uðy⃗; y⃗ − zẑÞψ2ðy⃗ − zẑ; tÞ

is the quasi-LF operator with ẑ being the unit vector in
the z direction, Uðx⃗; x⃗ − z⃗Þ is the spatial Wilson line
connecting lattice sites x⃗ and x⃗ − z⃗, ψ2Γ2ψ1 is the inter-
polating field of the meson m, and Γ1;2 are chosen as

Γ1 ¼ γzγ5, Γ2 ¼ γ5 for the pseudoscalar meson. The
ground-state matrix elements can be extracted from the
following two-state fit formula:

Cm
2 ðz; P⃗; tÞ

Cm
2 ðz ¼ 0; P⃗; tÞ ¼

HB
mðzÞð1þ cmðzÞe−ΔEtÞ
ð1þ cmð0Þe−ΔEtÞ

; ð2Þ

where HB
mðzÞ is the normalized ground-state matrix

element, cm and ΔE are free parameters accounting for
(one or more) excited state contamination, which are
exponentially suppressed in the large time limit. Based
on the comparison of one- and two-state fits (see
Supplemental Material [40]), we use the one-state fit results
in the analysis below with tmin ¼ 0.72, 0.54, 0.42 fm
(for Pz ¼ 1.29, 1.72, 2.15 GeV), which is large enough
to eliminate the excited states contamination.
In this Letter, the simulation is done using the clover

fermion action on three ensembles with 2þ 1þ 1 flavors of
highly improved staggered quarks generated by the MILC
Collaboration [41,42], at physical pion mass with three
lattice spacings: 0.057, 0.088, and 0.121 fm. Hypercubic
smeared fat links [43] are used in both the fermion action and
the quasi-LF operators in Cm

2 to improve the signal-to-noise
ratio. The rest of the simulation setup is summarized in
Table I. In addition, we use momentum smeared 2 − 2 − 2
grid sources, repeat the calculation at several time slices,
and average the forward and backward correlation
functions to improve statistics. In total, we have 570
ðconfigurationsÞ× 8 ðgrid sourceÞ× 8 ðsource time slicesÞ×
2 ðforward or backwardÞ, 730 × 8 × 6 × 2, and 970 × 8 ×
4 × 2 measurements at three ensembles with a ¼ 0.057,
0.088, and 0.121 fm, respectively.
Hybrid scheme with self-renormalization.—The bare

quasi-LF correlation calculated above contains both linear
and logarithmic ultraviolet (UV) divergences that have to
be removed by renormalization. On the lattice, the numeri-
cal subtraction of linear divergences is extremely delicate.
In particular, such divergences may not be fully removed if
the RI=IMOM renormalization scheme is used [38]. We
also try the RI=IMOM scheme [44] with different momen-
tum transfer Q2 at the current operator, and found that the
linear divergence can be sensitive to Q2 in certain cases
[40]. Thus, simple modifications on the momentum setup
of the RI=IMOM scheme cannot solve the problem.

TABLE I. Details of the simulation setup. The light and strange
quark mass (both valence and sea quark) of the clover action are
tuned such that mπ ¼ 140 MeV and mηs ¼ 670 MeV.

Ensemble a (fm) L3 × T cSW mu=d ms

a06m130 0.057 963 × 192 1.034 93 −0.0439 −0.0191
a09m130 0.088 643 × 96 1.042 39 −0.0580 −0.0174
a12m130 0.121 483 × 64 1.050 88 −0.0785 −0.0191
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Here, we adopt the self-renormalization proposed in
Ref. [39], which amounts to fitting the bare quasi-LF
correlation and subtracting the relevant UV divergences.
To be more precise, one fits the bare quasi-LF correlation at
given hadron momentum and multiple lattice spacings with a
perturbative-QCD-dictated parametrization that contains a
linear divergence, a logarithmic divergence, and discretiza-
tion effects. After removing all the UV divergences and
discretization effects, one is left with the renormalized quasi-
LF correlation encoding the intrinsic nonperturbative physics.
As suggested in Ref. [39], the UV divergences in the

quasi-LF correlator can be determined by using, e.g., the
pion parton distribution function (PDF) matrix elements
MðzÞ≡ hπjOγt jπi in the rest frame at multiple lattice
spacings, and fitting the bare data MB to the following
form [39]:

MBðz; aÞ ¼ Zselfðz; aÞMRðzÞ; ð3Þ

with the renormalization factor parametrized as [39]

Zselfðz; aÞ≡ exp

�
kz

a ln½aΛQCD�
þm0zþ fðzÞa

þ 3CF

b0
ln

�
ln½1=ðaΛQCDÞ�
ln½μ=ΛQCD�

�

þ ln

�
1þ d

lnðaΛQCDÞ
��

; ð4Þ

where the first term in the curly bracket is the linear
divergence, m0 denotes a finite mass contribution arising
from renormalon ambiguity, etc., and fðzÞa accounts for
the discretization effects. (The OðaÞ correction here arises
from the mixed action effect in using clover valence
fermions on highly improved staggered quark sea ones.)
The last two terms come from the resummation of leading
and subleading logarithmic divergences, which only affect
the overall normalization at different lattice spacings. To
partially account for higher-order perturbative effects as
well as remaining lattice artifacts, we also treat d and ΛQCD

as fitting parameters [39]. The renormalized matrix element
is required to be equal to the continuum perturbative
MS result at short distances (chosen to be z ∈ zs ¼
½0.06; 0.18� fm as defined in [45]),

MRðzÞjz∈zs ¼MMS;1-loopðzÞ

≡1þαMS
s CF

4π

�
3ln

z2μ2

4e−2γE
þ5

�
þOðα2;MS

s Þ; ð5Þ

which helps the determination of m0 and d. In the
calculation we use the MS renormalization scale μ ¼
2 GeV and ΛMS ¼ 0.24 GeV.

In the present case, we follow the same strategy as above,
except that the renormalized matrix element in the MS
scheme,

HMS
m ðzÞ ¼ HB

mðz; aÞ=Z̃selfðz; aÞ; ð6Þ

is now required to be matched to the continuum perturba-
tive MS result of the normalized quasi-DA matrix element
at short distances in the rest frame, which reads at one loop

HMS;1-loop
m ðzÞ≡ 1þ αMS

s CF

4π

�
3 ln

z2μ2

4e−2γE
þ 7

�
: ð7Þ

Z̃self turns out to be the same as Zself except for the
value of d.
In Fig. 1, we show a comparison between the self-

renormalized quasi-LF correlations Re½eðizPz=2ÞHMS
m ðzÞ�

(after linear OðaÞ continuum extrapolation and phase rota-

tion) with the perturbative one-loop result HMS;1-loop
m ðzÞ. As

can be seen from the figure, all quasi-LF correlations agree
well with the perturbative result for small z, indicating a
mild Pz dependence in that region.
It is worth pointing out that the self-renormalization

strategy above does not apply at very small z due to finite
lattice spacing artifacts in the data. In the ratio scheme [46],
some degree of cancellation happens in the bare correla-
tions between large momentum states and nonperturbative
lattice renormalization factors. However, in the present
case, the agreement of the self-renormalized LF correlation
with the perturbative result extends down to z ∼ 0.06 fm,
which is our smallest lattice spacing. Thus, we only need to
supplement it with the renormalized quasi-LF correlation at
z ¼ 0, which is normalized to 1. In this way, we obtain the
fully renormalized quasi-LF correlation. To facilitate
the subsequent matching procedure, we define a modi-
fied renormalized correlation by further dividing out the

FIG. 1. Comparison of self-renormalized quasi-LF correla-

tion Re½eðizPz=2ÞHMS
m ðzÞ� of the pion with different momenta

(bands), and the perturbative result in the MS scheme

HMS;1-loop
m ðzÞ (red curve).
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perturbative factor HMS;1-loop
m ðzÞ so that the ratio scheme

matching applies:

HR
mðzÞ ¼

HB
mðz; aÞ

Z̃selfðz; aÞ ·HMS;1-loop
m ðzÞ

¼ HMS
m ðzÞ

HMS;1-loop
m ðzÞ

: ð8Þ

Note that this is equivalent to using the hybrid renormalized
quasi-LF correlation and matching, as the perturbative
difference in the quasi-LF correlation is exactly compen-
sated by that in the matching.
From Fig. 1, we can see that the uncertainty of the

renormalized quasi-LF correlation grows rapidly at large
distance. A brute-force truncation of the correlation intro-
duces unphysical oscillations [36] in momentum space
after Fourier transformation. To resolve this issue, we adopt
a physics-based extrapolation form [45] at large quasi-LF
distance (λ ¼ zPz):

HR
mðz; PzÞ ¼

�
c1

ðiλÞa þ e−iλ
c2

ð−iλÞb
�
e−λ=λ0 ; ð9Þ

where the algebraic terms in the square bracket account for
a power law behavior of the DAs in the endpoint region and
the exponential term comes from the expectation that at
finite momentum (P⃗) the correlation function has a finite
correlation length (denoted as λ0) that becomes infinite
when the momentum goes to infinity. In this Letter, the
Lorentz boost factor γ for the pion at the physical point is
very large f9.21; 12.29; 15.36g, and thus the correlation
length is very large. We therefore drop the e−λ=λ0 factor, and
directly perform a polynomial extrapolation, as suggested
in [45]. The details of this extrapolation can be found in the
Supplemental Material [40].
Numerical results.—We perform a phase rotation eizPz=2

to the renormalized quasi-LF correlation, so that the
imaginary part directly reflects the flavor asymmetry
between the strange and up or down quarks. As an example,
in Fig. 2, the imaginary part of eizPz=2HR

mðzÞ for the pion
(upper panel) and kaon (lower panel) at different lattice
spacings with Pz ¼ 2.15 GeV. It reflects the SU(3) flavor
breaking effects between the valence quarks in the light
meson. For the pion it is consistent with zero within errors
as expected, since we have used degenerate valence u=d
quark masses in the ensembles. While in the case of kaon
there is a nonvanishing imaginary part, such an imaginary
part increases slightly with Pz, as observed in previous
DA studies using LaMET [36,45], and a comparison of
the results at different momenta can be found in the
Supplemental Material [40].
The factorization can be done either in momentum space

[47,48] or in coordinate space. Here, we choose the latter,
which results in

HR
mðz; λ; μRÞ ¼

Z
1

0

dxdy θð1 − x − yÞ

× Cðx; y; z2; μR; μÞhRmðx; y; λ; μÞ
þOðΛ2

QCDz
2;M2z2Þ; ð10Þ

where we take renormalization scale and factorization scale
to be the same and set μ ¼ μR ¼ 2 GeV in this Letter. hRm
is the LF correlation related to the light-cone DA through
the following Fourier transformation:

hRmðx; y; λ; μÞ ¼
Z

1

0

du eiuðx−1Þλ−ið1−uÞyλϕðu; μÞ: ð11Þ

The perturbative matching kernel C up to the next-to-
leading order is given in the Supplemental Material [40].
The impact of the perturbative matching is illustrated in

Fig. 3, where a Fourier transformation to momentum space
has been performed. As can be seen from the figure, the
matching broadens the quasi-DA in the physical region.
Outside the physical region (x < 0 or x > 1), there still
exists a nonvanishing tail, indicating potential effects of
higher-order matching and higher-twist contributions.
Nevertheless, in the unphysical region, the results are
consistent with zero within ∼2 standard deviations.

FIG. 2. The imaginary part of the quasi-LF correlation func-
tion [eizPz=2HR

mðzÞ] for the pion (top) and kaon (bottom)
in the continuum limit a → 0. The hadron momentum
is Pz ¼ 2.15 GeV.
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With the results for Pz ¼ 1.29, 1.72, 2.15 GeVabove, we
can perform an extrapolation to Pz → ∞ using the follow-
ing functional form:

ϕðx; PzÞ ¼ ϕðx; Pz → ∞Þ þ c2ðxÞ
P2
z

þO
�

1

P4
z

�
: ð12Þ

The final results of the π, K DAs are given in Fig. 4, where
systematic uncertainties from renormalization scale μ
dependence, large λ extrapolation, and continuum and
infinite momentum extrapolation have been taken into
account. While the systematic uncertainty from continuum
extrapolation dominates for the kaon, the statistical (larger
than for the kaon due to the lighter quark mass) and
continuum extrapolation uncertainties are comparable and
dominate for the pion. Therefore, we expect that the kaon
DA uncertainty can get significantly suppressed when data
at smaller lattice spacings are available that enable us to do
a more reliable continuum extrapolation; whereas for the
pion, besides data at smaller lattice spacings, we also need
increasing statistics to reduce the statistical uncertainty
[40]. In the endpoint region, which cannot be reli-
ably predicted by LaMET, we adopt a phenomenolo-
gical xað1 − xÞb extrapolation (taken as 0 < x < 0.1 and
0.9 < x < 1). The unreliable region is expected to shrink if
a larger Pz can be reached in future calculations. For
comparison, we also plot the asymptotic form 6xð1 − xÞ
and results from QCD sum rules [49], Dyson-Schwinger
equations (DSE) [50], and reconstructed from moments
calculations (OPE) [26]. As can be seen from the figure,
both π andK DAs deviate significantly from the asymptotic
form, but are close to the results from DSE and OPE
calculations. The shape of π DA is much broader than the
asymptotic form, manifesting the impact of dynamical
chiral symmetry breaking at such a low scale. A similar
behavior has also been observed in a recent analysis using
QCD sum rules with nonlocal condensates [51].

Summary.—We present a state-of-the-art lattice calcu-
lation of π and K DAs using LaMET. The renormalization
is done in the hybrid scheme with self-renormalization
proposed recently. Based on the results at physical light and
strange quark masses with three lattice spacings and
momenta, we perform an extrapolation to the continuum
and infinite momentum limit. The final results exhibit a
significant deviation from the asymptotic form, while they
are close to the DSE and OPE results, especially in the
middle x region where our method is reliable. However,
there are still some significant differences in the endpoint
regions. This could be due to missing higher-power or high-
order corrections in LaMET that can be improved in future
calculations, or due to effects of higher moments ignored
in the OPE and DSE calculations. A more accurate
determination of the endpoint behavior of the DAs would

FIG. 3. Quasi-DA and DA for the pion in momentum space in
the continuum limit a → 0, Pz ¼ 2.15 GeV.

FIG. 4. DAs for π (top) and K (bottom), extrapolated to the
continuum (a → 0) and infinite momentum limit (Pz → ∞). For
the kaon, x is the momentum fraction carried by the light quark.
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be an important step toward a better understanding of
quantities like the pion-photon transition form factor.

The calculations were performed using the Chroma
software suite [52] with QUDA [53–55] through HIP pro-
gramming model [56]. This work is supported in part by the
Strategic Priority Research Program of ChineseAcademy of
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National Natural Science Foundation of China (NNSFC)
under Grants No. 11735010, No. 11975051, No. 12005130,
No. 12047503, No. 11905126, No. U2032102,12125503, a
NSFC-DFG joint grant under Grant No. 12061131006 and
SCHA458/22, andNatural Science Foundation of Shanghai
under Grant No. 15DZ2272100. X. J. is supported partially
by the US DOE, Office of Science, Grant No. DE-
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University.
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