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Semi-inclusive processes are very promising to investigate XYZ hadrons at the next generation of
electron-hadron facilities, because they generally boast higher cross sections. We extend our formalism
of exclusive photoproduction to semi-inclusive final states. The inclusive production cross sections for
charged axial-vector Z states from pion exchange are predicted. We isolate the contribution ofΔ resonances
at small missing mass. Production near threshold is shown to be enhanced roughly by a factor of two
compared to the exclusive reaction. We benchmark the model with data of semi-inclusive b�1 production.
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I. INTRODUCTION

Appearance of the exotic XYZ states in the spectrum of
heavy quarkonia is widely recognized as one of the most
intriguing puzzles with potentially high impact on our
understanding of QCD [1,2]. Most of these states have
been observed only in specific channels, most notably in
heavy hadron decays and via direct production in eþe−

collisions [3]. Exploring alternative production processes,
such as electro- or photoproduction can provide complemen-
tary information on the nature of these states, while probing if
they are real resonances or mere kinematic effects [4].
In a previous paper [5], we calculated production rates

for several of these states in exclusive photo- and electro-
production, at energies that have been proposed, both for
the future Electron Ion Collider (EIC) [6] and a new facility
that could take advantage of an energy upgrade of the
CEBAF accelerator [7]. While exclusive reactions benefit
from constrained kinematics, complementary information
can be obtained from inclusive reactions. For example,
there is ample literature on inclusive Xð3872Þ production,
e.g., in heavy-ion collisions and how it is relevant in
unraveling its composition [6,8–11]. Hard events can be
studied with perturbative QCD and effective field theories,
and one can perform global fits of the long-distance matrix
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elements from electron-hadron and hadron-hadron colli-
sions, to be compared with model predictions [9]. Soft
processes are dominated by specific kinematic configura-
tions. Compared to exclusive production, inclusive reac-
tions benefit from larger cross sections, and often rely less
on model assumptions.
In this paper, we focus on inclusive production of states

that can process via one pion exchange. Modulo final state
interactions, pion exchange is a rather well tested hypoth-
esis and given its proximity to the physical threshold it
usually results in large cross sections. We test our model by
comparing with data on the b1 photoproduction. We find
a good agreement with the cross section measured by the
OmegaPhoton collaboration [12]. As in our previous
work [5], in predicting the photoproduction cross section
for the Zð0Þ

c;b states we rely on the measured branching
fractions and infer other properties from the well-
established quarkonium phenomenology. This makes our
predictions as agnostic as possible as far as the nature of
these states.
The paper is organized as follows. The following section,

Sec. II outlines the formalism for single meson semi-
inclusive production. It includes discussion of the virtual
pion-nucleon cross section, which we study in regimes of
both small and large missing mass. Section III contains
numerical results for the inclusive cross sections of axial-
vector mesons, in particular the b1ð1250Þ and Zð0Þ

c;b states.
Finally, concluding remarks and summary of our results
are given in Sec. IV. For reference we provide a summary
of kinematic expressions relevant to inclusive processes
in Appendix A as well as formulas connecting SAID partial-
waves to the total pion-nucleon cross section in Appendix B.

II. FORMALISM

We consider the process γp → Q�X , where Q is an
axial-vector (quarkoniumlike) meson with massmQ, and X

collectively refers to unobserved particles with total invari-
ant mass MX , also known as “missing mass.” We do not
consider production of neutral Q0 as it contains Pomeron
exchange which, given the limited available data for the Z
states, will dependmore on model assumption. We note that
X has baryon quantum numbers and a minimummassMmin
which, for Qþ, is the nucleon mass and corresponds to the
exclusive, γp → Qþn reaction. Since this process was
already studied in Ref. [5], in the following we fix the
minimummass to be equal to the first inelastic threshold, i.e.,
Mmin ¼ mπ0 þmn (and for the Q−, Mmin ¼ mπþ þmp).
The process is represented schematically in Fig. 1, and the
relevant kinematics is summarized in Appendix A.

A. Generalized optical theorem

The extension of the single-particle exchange mecha-
nism of the exclusive reactions to semi-inclusive produc-
tion is given by the generalized optical theorem [13]. A
sketch of the derivation is provided below for illustration
purposes and for a more detailed discussion we refer
to [14]. The Lorentz-invariant differential cross section
for the reaction γp → Q�X , is given by:

EQ
d3σ
d3qf

¼ 1

16π3
1

4Eγ
ffiffiffi
s

p 1

4

X
fλg

X
X

d3pn

ð2πÞ32En
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fλg j2

× ð2πÞ4δ4
�
qþ p − q0 −

X
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pn

�
; ð1Þ

where fλg ¼ λγ; λN; λQ collectively denotes particle hel-
icities, and the sum overX runs over all possible final states
containing n unobserved particles. By analytical continu-
ation, crossing symmetry relates the amplitude for γN →
QX to that of the reaction γNQ̄ → X . By summing over all
intermediate states X , using unitarity for a 3 → 3 amplitude
one can express Eq. (1) in terms of the discontinuity of the
forward elastic 3 → 3 amplitude across the M2

X cut1:

DiscAγNQ̄
fλg ¼ 1

2i
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pn

�
: ð2Þ

Comparing with Eq. (1) one can write,

FIG. 1. Semi-inclusive photoproduction of an axial-vector Q
via pion exchange in the t-channel. The bottom vertex B is
generalized to consider the production of arbitrary final state X .

1We note that the discontinuity of a 3 → 3 amplitude depends
on eight kinematic variables. What enters the generalized optical
theorem of Eq. (2) is the forward amplitude, with the final state
particles having the same momenta as the initial state particles.
In this kinematics there are only three independent variables,
denoted, by s, t, and M2

X as shown in Fig. 2.
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EQ
d3σ
d3qf

¼ 1

16π3
1

2Eγ
ffiffiffi
s
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4

X
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DiscAγNQ̄
λγλNλQ
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or, in term of Mandelstam variables,

d2σ
dtdM2

X
¼ 1

16π2
1

4E2
γs

1

4

X
fλg

DiscAγNQ̄
λγλNλQ

: ð4Þ

The semi-inclusive cross section is therefore given by the
discontinuity of the 3 → 3 amplitude containing both t
and M2

X dependence as depicted in Fig. 2. As a check on
normalization in Eq. (3) it is usefully to derive the exclusive
formulas from it. Writing explicitly the one-body phase
space in Eq. (2), one obtains,

DiscAγNQ̄
λγλNλQ

¼
X
λ0N

���AγN→QN0
λγλNλQλ

0
N

���2πδðM2
X −m2

NÞ; ð5Þ

whence

dσ
dt

¼
Z

dM2
X

d2σ
dtdMX

¼ 1

16π

1

ð2Eγ
ffiffiffi
s

p Þ2
1

4

X
fλg

���AγN→QN0
λγλNλQλ

0
N

���2; ð6Þ

which agrees with the standard expression for the exclusive
differential cross section [15]. Furthermore, using the
t-channel pion exchange model for exclusive Z production
previously considered in work [5] into Eq. (5), one obtains,

DiscAγNQ̄
λγλNλQ

¼ jT λγλQPπj2
X
λ0N

jBλNλ
0
N
j2πδðM2

X −m2
NÞ: ð7Þ

Here, T and B are the πγQ and πNN vertex functions
respectively and Pπ is the pion propagator.
The second line is identified with the nucleon pole

contribution to the elastic scattering of an off-shell pion
(π�) off the nucleon. We may thus write,

DiscAγNQ̄
λγλNλQ

¼ jT λγλQPπj2DiscAπ�N
λN

; ð8Þ

which shows how the M2
X dependence of the exclusive

amplitude generalizes to the inclusive case through the
forward (virtual) πN scattering amplitude. Inserting Eq. (8)
into Eq. (3) gives

EQ
d3σ
d3qf

¼ K
16π3

1

2

X
λγλQ

jT λγλQPπj2σπ�Ntot ; ð9Þ

where we also use the optical theorem to express the
forward πN elastic amplitude in terms of the total cross
section,

1

2

X
λN

ImAπ�N
λN

¼ λ1=2ðM2
X ; t; m

2
NÞσπ�Ntot ; ð10Þ

with σπ
�N

tot ≡ σπ
�N

tot ðt;M2
X Þ and the flux factor

K ≡ Kðs; t;M2
X Þ ¼

λ1=2ðM2
X ; t; m

2
NÞ

2Eγ
ffiffiffi
s

p : ð11Þ

In the approach of [5], the top vertex is approximated by
an effective γQπ Lagrangian and thus in the t-channel
frame the spin-flip interactions between the photon and Q
vanish. The sum over helicities in the top vertex then
reduces to:

EQ
d3σ
d3qf

¼ K
16π3

jTπðtÞPπj2σπ�Ntot ; ð12Þ

where the residue function TπðtÞ is related to a dimension-
less πγQ coupling constant:

TπðtÞ ¼ gγQπ

λ1=2ðt; 0; m2
QÞ

2mQ
et

0=Λ2
π : ð13Þ

Here we also include the exponential form factor with
pion cutoff, Λπ ¼ 900 MeV, to account for the observed
momentum-transfer dependence of the OPE cross sections.
For the ease of comparison with the exclusive kinematics
and to avoid any spurious dependence on MX , we fix t0

FIG. 2. Diagrammatic representation of the generalized optical theorem. The semi-inclusive amplitude squared summed over all
possible final states is related to the discontinuity of the 3 → 3 forward elastic scattering amplitude.
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to the value it takes for the exclusive reaction,
t0 ≡ t − tminðs;MX ¼ mNÞ.
With an appropriately chosen pion propagator and

parametrization for the (off-shell) πN cross section,
Eq. (12) becomes the semi-inclusive generalization of
the pion-exchange model. The form of the propagator
depends on the energy range of interest for the production
reaction. For instance, a Feynman diagram-inspired model
of fixed-spin pion exchange with a scalar propagator

Pπ ¼
1

m2
π − t

; ð14Þ

is expected to be reliable at energies near threshold. In the
high energy limit, to leading order in s the amplitude is
given by Reggeized pion exchanges. In particular, we focus
on the so-called triple Regge region, where s ≫ MX ≫ jtj
in which the amplitude is simply obtained by replacing the
pion propagator with

Pπ → α0ξðtÞΓð−αðtÞÞ
�

s
M2

X

�
αðtÞ

; ð15Þ

in terms of a Regge pole [14]. The signature factor ξ is
given by

ξðtÞ ¼ 1

2
½1þ τe−iπαðtÞ�; ð16Þ

with τπ ¼ þ1 and pion trajectory

απðtÞ ¼ α0πðt −m2
πÞ with α0π ¼ 0.7 GeV2: ð17Þ

Here we note that compared to the usual Regge pole form,
M2

X appears in the denominator of Eq. (15) instead of
the constant mass scale related to the masses of particles
involved, s0. This is because s ≫ M2

X ≫ s0 ≳ jtj, thus
cos θt → s=M2

X , with M2
X setting the dimensional scale.

Examining the asymptotic behavior of Eq. (15), we see
that at very large t (outside the validity range of the model),
the Γ function grows faster than exponentially, exceeding
the suppression from the form factor:

et
0=Λ2Γð−αðtÞÞ → et½Λ−2þα0−α0 logðα0jtjÞ�: ð18Þ

Thus, in order to avoid unphysical contributions when
integrating over the whole semi-inclusive phase-space, in
the numerical studies below we impose a cutoff

jtcutj≲ 1

α0
e1=Λ

2α0 ∼ 8.3 GeV2; ð19Þ

such that the amplitude is exponentially dampened in the
entire t range considered.

B. The π�N total cross section

The aspect of the model in Eq. (12) not present in the
previous analysis of exclusive reactions is the generalized
“bottom vertex” which is given by the total π�N cross
section. Since virtual pion-nucleon scattering cross sections
are not known we will relate this as much as possible
to the usual on-shell pion-nucleon scattering process.
Additionally, as before, it is important to consider the
different kinematic regimes of the variable M2

X since the
near-threshold πN spectrum is dominated by nucleon
resonances which may dramatically affect the inclusive
production. In fact, the resonance region shows vastly
different behavior between the different isospin states
which means it is now important to clearly denote the
charge of the channel considered. We fix the initial nucleon
to a proton target such that Q� production involves π∓p
scattering in the bottom vertex.
To this end we use the formalism of Ref. [16], which

describes the total π�p cross section at all energies. At
small M2

X the cross section is dominated by the Δ and N�
resonances. Because the intrinsic properties of these
resonances are not the focus of our study, a sophisticated
analytic model is not required. Instead, we interpolate the
SAID partial wave amplitudes based on the T-matrix
analysis of the GW-PWA group [17]. Partial waves for
both parities and s-channel isospin projections are given up
to orbital angular momentum L ¼ 7. These may be related
to t-channel isospin amplitudes by considering isospin
crossing combinations as in Ref. [16]. We provide a brief
summary of these relations in Appendix B. Importantly, the
decomposition is in the form

σπ
�p

tot ðM2
X Þ ¼

X
L

σπ
�p

L ðM2
XÞ; ð20Þ

where the right-hand side is calculated from the SAID
partial waves at fixed L.
The SAID partial waves are provided up to

M2
X ∼ 4.5 GeV. At higher M2

X these are matched to a
Regge-motivated parametrization which incorporates
exchange physics relevant for the high energy regime.
From Eq. (10), the cross section is calculated from
t-channel isospin amplitudes:

σπ
�p

tot ðM2
XÞ ¼

Im½CðþÞðM2
X ; 0Þ ∓ Cð−ÞðM2

X ; 0Þ�
plabðM2

X Þ
ffiffiffiffiffi
s0

p ; ð21Þ

where Cð�Þðsπp; tπpÞ are the invariant, t-channel isoscalar
and isovector πp → πp amplitudes, with energy squared
sπp ¼ M2

X , momentum transfer tπp, and plabðM2
X Þ ¼

λ1=2ðM2
X ; m

2
p;m2

πÞ=2mp the pion momentum in the proton
rest frame. At largerM2

X , the amplitudes C� are taken to be
the sum of Regge exchanges in the t-channel with the
isoscalar corresponding to Pomeron and f2 exchange while
the isovector is dominated by ρ exchange:
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CðþÞðM2
X ; 0Þ ¼ APðM2

X ; 0Þ þ AfðM2
X ; 0Þ;

Cð−ÞðM2
X ; 0Þ ¼ AρðM2

X ; 0Þ: ð22Þ

Here each scalar amplitude Akðsπp; tπpÞ takes a simple
Regge pole form which in the forward direction is given by:

AkðM2
X ; 0Þ ¼ −ck0ξkð0ÞΓðnk − αkð0ÞÞ

�
ν̂ffiffiffiffiffi
s0

p
�

αkð0Þ
; ð23Þ

with the (reduced) crossing-symmetric variable

ν̂ ¼ νðM2
X ; 0Þ ¼

M2
X −m2

p −m2
π

2mp
; ð24Þ

which is the energy of the pion in the nucleon rest frame.
The f2 trajectory is assumed to be degenerate with the ρ
one with opposite signature. We take a simple linear form
for all trajectories such that at tπp ¼ 0 we only require the
intercept αð0Þ. The factor of ðn − αð0ÞÞ appearing inside
the Gamma function is implemented with n ¼ ðτ þ 1Þ=2 to
remove the ghost pole at αðtπpÞ ¼ 0 for the f2 and Pomeron
exchanges in the more general expression. The parameters
used are summarized in Table I.
The total cross section as a function of M2

X is shown in
Fig. 3. As a comparison we additionally plot the simpler
phenomenological parametrization from the PDG [18,19]
the so-called HPR1R2 model, which takes the form:

σπ
�p

tot ðM2
XÞ ¼ PþHlog2

�
M2

X

M2
μ

�

þ R1

�
M2

X

M2
μ

�−η1 ∓ R2

�
M2

X

M2
μ

�−η2
: ð25Þ

Here M2
μ ¼ ðmπ þmp þ μÞ2 and the parameters

H ¼ 0.272 mb, μ ¼ 2.1206 GeV, η1 ¼ 0.4473, and η2 ¼
0.5486 are process independent. For πp scattering the
remaining parameters are P ¼ 18.75, R1 ¼ 9.56, and
R2 ¼ 1.767, all in units of mb. We consider this model
to examine the impact of the low-energy resonance region
in the production rates.
In order to incorporate the off-shell pion in a minimal

way we will assume that the dependence on the virtuality
enters only through a kinematic change of phase space
factors. For the low-energy regime we modify Eq. (20) with
a factorized form:

σπ
��p

tot ðt;M2
X Þ ¼

X
L

Rπ�
L ðt;M2

X Þσπ
�p

L ðM2
X Þ; ð26Þ

where

Rπ�
L ðt;M2

X Þ ¼
�
pπ�

pπ

�
2L

¼
�

λðM2
X ; t; m

2
pÞ

λðM2
X ; m

2
π; m2

pÞ
�L

ð27Þ

is the ratio of barrier factors of individual partial waves. We
note that in the limit M2

X ≫ jtj the rescaling ratio tends to
unity and there is no need to apply it to the high-energy,
Regge part in Eq. (22).
The rescaling in Eq. (26) numerically involves large

cancellations when evaluated very close to threshold, in
particular for high-Lwaves. In the numerical studies below,
we replace the value L → minðL;LmaxÞ in the rescaling
factor Rπ�

L , with the value of Lmax chosen to provide
the appropriate rescaling to the dominant waves while
keeping the higher waves numerically stable near thresh-
old. Because the resonance peaks appear mainly in the
S- and P-waves, with higher waves contributing primarily
to the intermediate M2

X region near the matching point, we
find that Lmax ¼ 3 is sufficient for all processes considered.

C. Relation to triple Regge amplitude

The model in Eq. (12) has been considered in the
past in the context of the triple Regge formula (see for
example [20,21]), which takes the form:

TABLE I. Parameters for Reggeon contributions to σπptot in
Eq. (23) and taken from [16].

τ αð0Þ c0

P þ 1.075 23.89
f þ 0.49 71.35
ρ − 5.01

FIG. 3. Low-energy behavior of the pion-nucleon elastic
scattering as a function of the πp invariant mass, Wπp ¼ ffiffiffiffiffiffiffisπp

p .
Solid lines are calculated with Eq. (21) with the amplitudes
from [16], while dashed are the high-energy parametrization
Eq. (25) [18,19].
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EQ
d3σ
d3qf

ðγp → Q�XÞ

¼
X
k

G∓
ππkðtÞ
πs0s

�
s

M2
X

�
2απðtÞ�M2

X

s0

�
αkð0Þ

; ð28Þ

schematically represented in Fig. 4. Here k labels the
possible Regge exchanges in the bottom vertex, andGππk is
a triple Regge coupling, often parametrized with a phe-
nomenological exponential form. The scale s0 is custom-
arily taken to 1 GeV2. This form is expected to be reliable
in the triple Regge kinematic region s ≫ MX ≫ jtj, where
the particle Q carries large momentum in the near-forward
direction, i.e., when the fraction of longitudinal momentum
x ∼ 1. Since most of the literature focuses on this limit, it is
worth considering how Eq. (12) compares to the phenom-
enological formula in Eq. (28).
If we consider Eq. (12) in the triple Regge kinematics,

we first note that the flux ratio K → ðM2
X=sÞ and we may

use the Reggeized form in Eq. (15) for the pion propagator.
We must then consider σπ

�p
tot ðt;M2

X Þ in this kinematics.
From Eq. (23), as M2

X → ∞ we have Rπ�
L → 1 and the

Reggeon pole form Eq. (23) reduces to:

ImAkðM2
X ; 0Þ → γk

�
M2

X

s0

�
αkð0Þ

; ð29Þ

where k ¼ P; f2; ρ and the coupling constants are given by

γk ¼
π

2

ck0
Γðαkð0Þ − nk þ 1Þ

� ffiffiffiffiffi
s0

p
2mp

�
αkð0Þ

: ð30Þ

Then, with Eq. (29), we may write Eq. (12) as:

σπ
��N

tot ðM2
X Þ →

X
k

2mpffiffiffiffiffi
s0

p γkf�k
s0

�
M2

X

s0

�
αkð0Þ−1

: ð31Þ

where f�ρ ¼∓ 1 and f�f2;P ¼ þ1 depending on the pion
charge. Putting it all together, we can see that Eq. (21) in the
triple Regge limit reduces precisely the form of Eq. (28)
with the triple Regge vertex function given by

G�
ππkðtÞ ¼ f�k

mp
ffiffiffiffiffi
s0

p
γk

8π2
jα0TπðtÞξπðtÞΓð−απðtÞÞj2: ð32Þ

Seeing the emergence of triple Regge behavior in the
appropriate limit is reassuring, as the formula Eq. (12)
generalizes the semi-inclusive cross section by loosening
the requirement of large M2

X and allows us to consider the
fixed spin analog relevant for near threshold production,
i.e., with small s and M2

X .

D. Exclusive Q−Δ+ + and Q+Δ0 production

Another consistency test for the semi-inclusive cross
section formula in Eq. (12) is the opposite limit, MX ∼
Mmin.Wemay consider the production of amesonQ together
with a Δ baryon, which dominates the low-energy πN
spectrum. This is particularly true for the πþp scattering,
where the Δþþ is the only resonance in the mass region
MX ≲ 1.5 GeV.
Additionally, in this πN isospin-channel there is no

analogous exclusive reaction, meaning the γp → Q−Δþþ
reaction is already contained within the cross section,
Eq. (12). Calculating the exclusive reaction with effective
Lagrangian methods as in Ref. [5] should lie strictly below
the prediction for the inclusive cross section and saturate
the low energy regime. Although we will focus specifically
on the Q− case, the discussion in this section is directly
applicable for the opposite charge with a relative factor
associated with isospin-projection:

σðγp → QþΔ0Þ
σðγp → Q−ΔþþÞ ¼

1

3
: ð33Þ

Because P-wave πþp scattering is dominated by the
Δþþ, a straightforward way to considerQ−Δþþ production
is to restrict the total cross section in Eq. (12) to only the
P-wave component by replacing

σπ
�þp

tot ðt;M2
X Þ → Rπ�

L¼1ðt;M2
XÞσπ

þp
L¼1ðM2

X Þ: ð34Þ

Alternatively, in analogy to the exclusive formalism of
Ref. [5], we can include the spin-3=2 baryon by changing

FIG. 4. Diagrammatic representation of the triple Regge formula of Eq. (28).

D. WINNEY et al. PHYS. REV. D 106, 094009 (2022)

094009-6



the bottom, πΔN vertex for which we take a simple
effective Lagrangian as in [22]:

LπNΔ ¼ gπNΔ

mπ
Δ̄μ

∂μπN þ H:c:; ð35Þ

or equivalently the bottom vertex:

BλN;λΔ ¼ igπNΔ

mπ
ūμðp0; λΔÞkμuðp; λNÞ; ð36Þ

where k is the pion momentum, k ¼ p − p0 and uμ is the
Rarita-Schwinger spinor:

uμðp; λÞ ¼
X
m1;m2

�
1; m1;

1

2
; m2

����32 ; λ
�
ϵμðp;m1Þuðp;m2Þ:

ð37Þ

The coupling gπNΔ is calculated assuming the width to be
saturated by the πN final state. With ΓΔ ¼ 120 MeV and
mΔ ¼ 1.23 GeV, this leads to gπNΔ ¼ 2.10.
We may thus calculate the γp → QΔ amplitude assum-

ing a stable Δ in the final state. To directly compare to
the cross section in Eq. (12) we incorporate the Δ → πp
lineshape via

σðγp→Q−πþpÞ¼
Z

∞

M2
min

dM2σðγp→Q−ΔþþÞdΔ→πpðM2Þ;

ð38Þ

where the QΔ cross section is calculated at fixed s as a
function of M2. Because of the proximity of the πp
threshold we use a simple Breit-Wigner-like distribution
proposed in Ref. [23] which is shown to provide a good
description of the πp mass distribution in the Δ mass
region:

dΔ→πpðM2Þ ¼ 1

π

ρðM2ÞΓ̃Δ

½M2 −m2
Δ�2 þ ½ρðM2ÞΓ̃Δ�2

; ð39Þ

with ρðM2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −M2

min

p
and Γ̃Δ ¼ ΓΔmΔ=ρðm2

ΔÞ.
Interestingly, this function is normalized across the mass
distribution, obeying

Z
∞

M2
min

dM2dΔ→πpðM2Þ ¼ 1: ð40Þ

Both Eqs. (34) and (38) are expected to yield similar results
with minor differences related to the lineshape assumed
for the Δ.

III. NUMERICAL RESULTS

Experimental data on the photoproduction of exotic
quarkoniumlike states is virtually nonexistent. In order

to benchmark the predictions for Z states, we first consider
the axial-vector analog in the light sector, the charged
b1ð1235Þ which has been looked at in the kinematic region
of interest by the OmegaPhoton collaboration [24]. The
applicability of the same amplitudes for both light and
heavy meson production constitutes the primary model
assumption, i.e., through the use of VMD which has
recently been criticized [25]. As noted in Ref. [2], however,
VMD predicts roughly the correct size of the ratio
Γðχc2 → γJ=ψÞ=Γðχc2 → γγÞ, so it seems an appropriate
method to obtain at least order-of-magnitude estimates.
In any case, we note this assumption affects only the top
vertex which is the same as in the exclusive analysis. Thus
considering the b1 still serves as a test of the inclusive
extension of the pion exchange process which in principle
is independent of the microscopic nature of Q.
We begin with the comparison with the differential cross

section data in Ref. [24]. The energy range covered by the
measurement is Eγ ¼ 25–55 GeV and for simplicity we
take the midpoint center-of-mass energy, Wγp ∼ 8.7 GeV.
At these energies with respect to the b1N threshold, the
triple Regge behavior is expected to be dominant and we
use exclusively the Reggeized form of the pion propagator,
Eq. (15), with the high energy approximated kinematics as
explained in Appendix A.
The only undetermined parameter is the gγb1π coupling

governing the strength of the top vertex.We use the effective
Lagrangian formalism previously considered in Ref. [5] for
the γπb1 vertex to extract this coupling from its decay
widths. Luckily the radiative decaywidth for theb1 is known
and we may extract the coupling without relying on VMD.
For Γðb1 → πγÞ ¼ 230 keV [26] we have gγb1π ¼ 0.24.
For comparison purposes, we calculate the inclusive

cross section with the pion-nucleon interaction described
with the full π�N cross section Eq. (21), as well as with the
Regge-only parametrization of Eq. (25). These are shown
in Fig. 5 compared to the data points in the highest x bins.
We see a good agreement of both the models in the highest
bin. To make the comparison more quantitative we may
calculate the average cross section from each curve in this
bin, yielding 0.69 and 0.56 μb for the model including
nucleon resonances and the Regge-only parametrization
respectively, both consistent with OmegaPhoton within
uncertainties. The agreement between the two values is
expected, because at this relatively large center-of-mass
energy the nucleon resonances are squeezed in a small
portion of the phase space.
Away from the highest bin we note that single pion

exchange severely underestimates the production. Indeed,
since at high energies the upper limit of integration t is
proportional to 1 − x and the pion exchange is exponen-
tially suppressed with jtj, the integral is also exponentially
suppressed in 1 − x. This suggests that the triple Regge
contribution becomes quickly irrelevant already at x < 0.9,
although other top exchanges than the pion should be
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added. Summarizing, we find good agreement with data in
the region of validity of the model, and a trend toward zero
away from this region. We may thus consider the cross
section calculated in this formalism as a conservative lower
bound of the total inclusive production rate.
By integrating over x, we may also investigate the near-

threshold behavior as a function of invariant mass. For
energies Wγp ≲ 5 GeV we use instead the fixed-spin pion
exchange model of Eq. (14). We compare the inclusive
prediction for b1ð1235Þ− production to the explicit b−1Δþþ
using the formalism in Sec. II D. The comparisons between
the exclusive Δþþ prediction with and without inclusion of
the subsequentΔ → πN decay are shown in Fig. 6 compared
to the inclusive production.We see that the unstableΔ curve
saturates the inclusive production up to the nominal b1Δ
threshold, after which the contribution of other resonances
become relevant. We also see good agreement between the
two methods of incorporating theΔþþ decay. To this end in
all subsequent numerical studies we consider the Δ → πp
decay by restricting the total cross section in Eq. (34) to the
SAID I ¼ 3=2, L ¼ 1 partial wave, since it incorporates
more accurately the Δþþ lineshape. The inclusive cross
sections of both charged b�1 are shown in Fig. 7.
We now turn to the quarkoniumlike states in the hidden

charm and bottom sectors. We use the couplings that were
previously calculated from the observed hadronic decays
of the Z-states within the VMD model, gγZπ × 102 ¼ 5.17,
5.8, and 2.9 for Zc, Zb and Z0

b respectively [5]. The total

near-threshold production cross sections for the two
charged Z� states are shown in Fig. 8. Examining the
Z− inclusive cross sections, we again note that it is
dominated by the Δþþ resonance. On the other hand,

FIG. 5. Inclusive b1ð1235Þþ production at Wγp ¼ 8.7 GeV
using the Reggeized pion exchange. The solid curves are the
inclusive cross section using the parametrization in Eq. (26)
including nucleon resonances, while the dashed curves calculate
the same process using the Regge-only parametrization of Eq. (25).
When averaged over the highest bin, both curves are consistent
with the experimental point within errors. Data from [24].

FIG. 6. Inclusive b1ð1235Þ− production as compared to exclu-
sive b−1pπ

þ production through an intermediateΔþþ as a function
of center-of-mass energy. TheΔ → πp decay is incorporated via a
BW shape using Eq. (38) or from restricting the SAID PW sum in
Eq. (34). The dashed line is the exclusive reaction calculated with
the effective Lagrangian assuming a stable Δ baryon.

FIG. 7. Total b1ð1235Þ production as a function of Wγp with a
fixed-spin pion exchange. The bþ1 curve includes the sum of the
inclusive contribution Eq. (12) and the exclusive process (dashed)
as calculated in [5] which lies below the πN threshold. The b−1
production does not have a corresponding exclusive analog.
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the contributions from inelastic channels to Zþ production
is roughly the same size as the exclusive Zþn reaction
enhancing the total production rate by a factor of 2 close to
threshold. Figure 9 provides a more detailed picture of the
contributing processes. We see that, unlike the Z− case, the
Δ0 does not dominate the inclusive cross-section with

contributions from other resonances being equally impor-
tant. Further we see the asymptotic behavior of the
inclusive cross section falls much slower than the Zþn
final state as the center-of-mass energy grows. In fact, from
the comparison with the asymptotic triple Regge formula in
Sec. II C, we expect the curves to flatten out and grow
slowly with energy, while the exclusive cross section
decreases [5]. Explicit comparison of inclusive production
compared to the respective exclusive reaction at large
energies is shown in Table II.
In Fig. 10 we show the transverse momentum distribu-

tion of the cross section. The diffractive production
mechanism contributes primarily to the small-qT region,
meaning it may be expected to be predominant at near-
threshold energies where the possible produced inclusive
final states have small invariant mass.

FIG. 8. Total cross section predictions for charged, charmonium-like Z-states near-threshold via fixed-spin pion exchange. Left panel:
Total inclusive Z− cross sections (solid lines) as compared with the exclusive γp → Z−Δþþ → Z−πþp cross section (dashed lines) as
described in Sec. II D. Right panel: Total Zþ cross sections (solid lines), which include the sum of the inclusive cross section and the
exclusive nucleon pole contribution. This latter contribution is calculated as in Ref. [5] and is shown explicitly in dashed lines.

FIG. 9. Contributions to the total cross section of near-threshold
Zcð3900Þþ production. The total curve represents the sum of the
full inclusive contribution and the exclusive reaction. The dashed
line corresponds to the sum of only Zþ

c n and Zþ
c Δ0 contributions.

TABLE II. High-energy production cross sections of the total
inclusive process γp → QX as a function of Wγp, compared to
the exclusive process. The exclusive cross sections fall asymp-
totically to zero while the inclusive approaches a constant as
described in the text.

σðγp → Q�XÞ [pb] σðγp → QþnÞ [pb]
Q 30 GeV 60 GeV 90 GeV 30 GeV 60 GeV 90 GeV

b1ð1235Þ 60 × 103 60 × 103 61 × 103 43 2.3 < 10−8

Zcð3900Þ 187 146 140 19 1.0 < 10−8

Zbð10610Þ 163 15 5 150 10 < 10−8

Zbð10650Þ 40 4 1 37 2.4 < 10−8
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IV. CONCLUSIONS

We have calculated the semi-inclusive photoproduction
rates of the axial-vector, charmoniumlike Z� states. We
focus on the diffractive kinematic region where charged pion
exchange is assumed to be the dominant production mecha-
nism. We use a formalism akin to the triple-Regge inter-
action model while incorporating the effects of nucleon
resonances. By focusing on pion exchange we performed a
series of benchmarks testing the predictions against data
available for the analogous b1 meson, as well as expectations
from effective Lagrangian methods for small missing mass.
The analysis indicates that the inclusion of semi-inclu-

sive final states produces cross sections upwards of tens of
nanobarn for the Zc and few nanobarn for Zb states. This
comes from a rough factor of 2 increase compared to the
exclusive production in the near-threshold production. In
particular the Δ resonance is found to play a large
contributing role in the near-threshold production. It may
thus be viable to search for these states in the exclusive
ZþΔ0 and Z−Δþþ mode which are of comparable size to
the Zþn reaction. This feasibility will depend on the
experimental setup’s ability to reconstruct the Δ decay
pions to which the formalism presented here may be a
valuable tool for simulation.
Similar semi-inclusive electroproduction at electron-

hadron facilities has been considered recently in [27].
Herein production rates are calculated within the hadronic
molecule interpretation of the Zc states as an S-wave DD̄�
bound state and therefore arise from the semi-inclusive
production of constituents which are then rescattered.
The initial constituent distribution is estimated with

general-purpose MonteCarlo generators (Pythia). With no
specific tuning, the charm production is predominantly due
to hard scattering. Extrapolating this to the region close to
thresholdmight severely underestimate the production rates.
COMPASS has measured upper limits for the Zcð3900Þ
exclusive photoproduction cross sections at an average
energy of hWγpi ¼ 13.8 GeV of ∼0.5 nb, once branching
ratios are taken into account [28].Were this to be confirmed,
this would imply an overestimate of a factor of ∼4 with
respect to our exclusive predictions, which could be due to
the breaking of the VMD assumption, or to a dramatic
dependence of the top coupling on the photon virtuality. An
independent confirmation of such result is thus needed.
The predictions presented here, while likely a lower-

bound of the total expected semi-inclusive production of
Zð0Þ
c;b, do not assume any microscopic nature of the produced

state. Further, the formalism presented here is naturally
extendable to the semi-inclusive production of other exotic
candidates, in particular the Xð3872Þ, Yð4260Þ and hidden-
charm pentaquark states. These are assumed to be produced
via exchangeswith spin and thus thework presented here is a
stepping stone to considering more complicated reactions
relevant for the spectroscopy programs at future facilities.
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APPENDIX A: KINEMATICS OF SEMI-
INCLUSIVE PHOTOPRODUCTION

We use the standard notations for 2 → 2 scattering,
considering the X system as a quasi-particle of mass MX .
One can thus define the Mandelstam variables s, t, u
satisfying sþ tþ u ¼ m2

p þm2
Q þM2

X . The initial state is
fully characterized by the energy of the photon beam in the
center-of-mass frame:

Eγ ¼ qi ¼
s −m2

p

2
ffiffiffi
s

p ; ðA1Þ

FIG. 10. Differential distributions with respect to the transverse
momentum of Zcð3900Þ, i.e., qT ¼ qmaxy ¼ qf cos θ, for near-
threshold production.
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which only depends on the total invariant mass of the
collision, s ¼ ðpþ qÞ2 ¼ W2

γp. The final state can be
characterized by different sets of variables. A natural choice
for example is the scattering angle and the missing mass,
ðθ;M2

X Þ. The allowed region is obviously given by

−1 ≤ cos θ ≤ 1; Mmin ≤ MX ≤
ffiffiffi
s

p
−mQ: ðA2Þ

Alternatively, one can use a pair of invariants, ðt;M2
X Þ, with

t ¼ k2 ¼ ðq − q0Þ2 being the exchanged pion virtuality. The
scattering angle can be expressed in terms of invariants,

cos θ ¼ sðt − uÞ −m2
pðm2

Q −M2
X Þ

4sqiqf
; ðA3Þ

where qf is the modulus of the 3-momentum of Q in the
center-of-mass:

qf ¼ λ1=2ðs;m2
Q;M

2
X Þ

2
ffiffiffi
s

p ; ðA4Þ

with λða;b;cÞ¼a2þb2þc2−2ab−2ac−2bc the stan-
dard Källén triangular function. The allowed region can
now be given as

ϕðs; t;M2
X Þ ≥ 0 and MX ≥ Mmin; ðA5Þ

with ϕ being the Lorentz-invariant Kibble function [29]:

ϕðs; t;M2
X Þ ¼ ð2 ffiffiffi

s
p

qiqf sin θÞ2
¼ stuþ sm2

Qðm2
p −M2

X Þ þ tm2
pðm2

Q −M2
X Þ

þm2
Qm

2
pðM2

X −m2
p −m2

QÞ: ðA6Þ

At fixedM2
X the bounds in tmay be given in the closed form:

t� ¼ m2
Q −

ðs −m2
pÞðs −M2

X þm2
QÞ

2s
� 2qiqf; ðA7Þ

At fixed t, the upper boundMX ≤
ffiffiffi
s

p
−mQ is contained in

the boundary condition of Eq. (A5):

M2
max ¼

ðsþ t −m2
p −m2

QÞðm2
pm2

Q − stÞ
ðs −m2

pÞðm2
Q − tÞ ; ðA8Þ

as represented in Fig. 11.
Another choice is to replace t with the fraction of

3-momentum carried by Q:

r ¼ qf
qmax

: ðA9Þ

Here, qmax ¼ λ1=2ðs;m2
Q;Mmin

2Þ=2 ffiffiffi
s

p
is the maximal

value of momentum the meson Q can have for fixed total
energy, which is reached for MX → Mmin. The physical

kinematic region is greatly simplified in the ðr; cos θÞ-plane
to finite square area:

0 ≤ r ≤ 1 and − 1 ≤ cos θ ≤ 1: ðA10Þ

Finally we may consider the Cartesian variables ðx; yÞ
defined by:

x ¼ r cos θ and y ¼ r sin θ; ðA11Þ

that correspond to the fractions of longitudinal and trans-
verse 3-momentum, respectively, carried byQ. The allowed
region is determined by the circle:

x2 þ y2 ≤ 1; ðA12Þ

as shown in Fig. 12. The Cartesian variables may be related
to the polar coordinates by inverting their definition in
Eq. (A11), and to the invariant quantities by evaluating

M2
X ¼ sþm2

Q − 2
ffiffiffi
s

p
EQ; ðA13Þ

and

t ¼ m2
Q − 2EγEQ þ 2qiqmaxx; ðA14Þ

with the on-shell relation

E2
Q ¼ m2

Q þ q2maxðx2 þ y2Þ: ðA15Þ

FIG. 11. Chew-Low plot marking physical semi-inclusive
kinematic region in missing mass and momentum transfer at
fixed Wγp ¼ 3 GeV for b1ð1235Þ production.
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The Lorentz-invariant cross section can be given as:

EQ
d3σ
d3q

¼ 2
ffiffiffi
s

p
Eγ

π

d2σ
dtdM2

X

¼ 1

q3max

EQ

2πr2
d2σ

drd cos θ

¼ 1

q3max

EQ

2πy
d2σ
dxdy

: ðA16Þ

For comparison to experimental papers it is convenient
as well to look at the mixed variable combination:

EQ
d3σ
d3q

¼ 1

π

Eγ

qmax

d2σ
dtdx

; ðA17Þ

although the physical region constraints then become more
complicated. For example, at fixed−1 ≤ x ≤ 1 the physical
range in t is given by:

t�ðxÞ ¼ m2
Q þ 2qiqmaxx −

ðs −m2
pÞðs −M2

�ðxÞ þm2
QÞ

2s
;

ðA18Þ

where

M2þðxÞ ¼ M2
X ðx; y ¼ 0Þ; ðA19aÞ

M2
−ðxÞ ¼ M2

X

�
x; y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p 	
; ðA19bÞ

follows from Eqs. (A13) and (A15) and refers to the bounds
of missing mass at fixed x.

For the triple Regge kinematics, where s and M2
X ≫ jtj,

and s=M2
X ≫ 1, we may consider the high energy approxi-

mation where M2
X depends on x and s only,

M2
X

s
∼ 1 − x; ðA20Þ

and the upper boundary in t reads

tþðxÞ ∼ −m2
Qð1 − xÞ: ðA21Þ

Note that this introduces an extra x dependence, while the
behavior of t−ðxÞ is not relevant, as at large jtj the
amplitude is exponentially suppressed. In conjunction with
Eq. (A17) this simplifies numerical calculations. Since
Regge forumlas resum leading powers in M2

X=s only, in
numerical calculations involving Reggeized exchanges
we use the approximation Eq. (A20) as to not introduce
spurious subleading dependencies on M2

X=s. The precise
form of Eq. (12) then reads

σðγp → QXÞ ∼
Z

1

0

dx
Z

tþðxÞ

t−ðxÞ
dt
1 − x
16π3

×

����TπðtÞPπ

�
t;
M2

X

s
¼ 1 − x

�����
2

× σπ
�N

tot ½M2
X ðs; t; xÞ�: ðA22Þ

The pion-proton cross section is always evaluated at the
exact M2

X , as using the approximate form would probe the
unphysical region below threshold. For the same reason, we
use the exact t�ðxÞ from Eq. (A19a). This form was used
for the curves in Fig. 5, while the low-energy cross sections
implement the exact kinematics.

APPENDIX B: πN FROM SAID PARTIAL-WAVES

At low energies, we appeal to the amplitudes provided
by SAID, which provided partial-wave amplitudes up to
orbital angular momentum, L ¼ 7 for both s-channel
isospin projections and parities (i.e., 13 waves total) we
denote these as hIL� where I ¼ 1=2; 3=2 is the s-channel
isospin projection and L� refers to a wave with total
spin J ¼ L� 1=2.
Each partial wave contributes to the total cross section

of Eq. (20) with

σπ
�p

L ðM2
X Þ ¼

Im
h
CðþÞ
L ∓ Cð−Þ

L

i
plabðM2

X Þ
ffiffiffiffiffi
s0

p : ðB1Þ

Here the invariant amplitudes A, B, and C may also be
considered at fixed L:

Cð�Þ
L ¼ 4π½A�

L þ ν̂B�
L �: ðB2Þ

FIG. 12. Peyrou plot for γp→b1ð1235Þ−X atWγp ¼ 8.7 GeV.
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Note that these are functions of M2
X only. We remind

readers that the isospin labels (�) refer to t-channel isospin
projections. As such the amplitude A and B are defined by:

A�
L ¼ MX þmp

Ep þmp
ðf�L þ g�L Þ þ

MX −mp

Ep −mp
g�L ; ðB3aÞ

B�
L ¼ 1

Ep þmp
ðf�L þ g�L Þ −

1

Ep −mp
g�L ; ðB3bÞ

and are in terms of the t-channel isospin partial waves,
f�L and g�L and the center-of-mass frame proton energy
Ep ¼ ðM2

X þm2
p −m2

πÞ=ð2MX Þ. These are constructed
from the s-channel isospin partial waves (i.e., with
I ¼ 1=2 or 3=2) waves by:

fþL ¼ 1

3
½f1

2

L þ 2f
3
2

L� ðB4aÞ

f−L ¼ 1

3
½f1

2

L − f
3
2

L�; ðB4bÞ

and identical definitions for g�L in terms of g
1
2
;3
2

L .
Finally these last s-channel partial waves are calculated

from the SAID partial wave amplitudes, hIL�, which are
projected also onto definite J by:

fIL ¼ ðLþ 1ÞhILþ þ LhIL− ðB5aÞ

gIL ¼ LðLþ 1Þ
2

½hILþ − hIL−�; ðB5bÞ

where the prefactor in Eq. (B5b) comes from the value of
the first derivative of the Legendre polynomials at t ¼ 0,
i.e., P0

Lðθ ¼ 0Þ.

[1] A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rep. 668, 1
(2017); F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q.
Zhao, and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018);
S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod.
Phys. 90, 015003 (2018); P. C. Wallbott, G. Eichmann, and
C. S. Fischer, Phys. Rev. D 100, 014033 (2019); N.
Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P.
Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, Phys. Rep.
873, 1 (2020).

[2] M. Albaladejo et al. (JPAC Collaboration), Prog. Part. Nucl.
Phys. 127, 103981 (2022).

[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
110, 252001 (2013); 118, 092001 (2017); S.-K. Choi et al.
(Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).

[4] F.-K. Guo, X.-H. Liu, and S. Sakai, Prog. Part. Nucl. Phys.
112, 103757 (2020).

[5] M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C.
Fernández-Ramírez, V. Mathieu, and A. Szczepaniak (JPAC
Collaboration), Phys. Rev. D 102, 114010 (2020).

[6] R. Abdul Khalek et al., Nucl. Phys. A1026, 122447 (2022).
[7] J. Arrington et al., Prog. Part. Nucl. Phys. 127, 103985

(2022).
[8] C. Bignamini, B. Grinstein, F. Piccinini, A. Polosa, and C.

Sabelli, Phys. Rev. Lett. 103, 162001 (2009); C. Bignamini,
B. Grinstein, F. Piccinini, A. Polosa, V. Riquer, and C.
Sabelli, Phys. Lett. B 684, 228 (2010).

[9] P. Artoisenet and E. Braaten, Phys. Rev. D 81, 114018
(2010); 83, 014019 (2011).

[10] M. Albaladejo, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.
Nieves, A. Nogga, and Z. Yang, Chin. Phys. C 41, 121001
(2017); A. Esposito, B. Grinstein, L. Maiani, F. Piccinini, A.
Pilloni, A. D. Polosa, and V. Riquer, Chin. Phys. C 42,
114107 (2018).

[11] A. Esposito, E. G. Ferreiro, A. Pilloni, A. D. Polosa, and
C. A. Salgado, Eur. Phys. J. C 81, 669 (2021); E. Braaten,

L.-P. He, K. Ingles, and J. Jiang, Phys. Rev. D 103, L071901
(2021).

[12] M. Atkinson et al. (Omega Photon Collaboration), Phys.
Lett. 138B, 459 (1984).

[13] A. H. Mueller, Phys. Rev. D 2, 2963 (1970).
[14] P. D. B. Collins, An Introduction to Regge Theory and High-

Energy Physics, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, UK,
2009).

[15] A. C. Irving and R. P. Worden, Phys. Rep. 34, 117 (1977).
[16] V. Mathieu, I. V. Danilkin, C. Fernández-Ramírez, M. R.

Pennington, D. Schott, A. P. Szczepaniak, and G. Fox, Phys.
Rev. D 92, 074004 (2015).

[17] R. L. Workman, R. A. Arndt, W. J. Briscoe, M.W. Paris, and
I. I. Strakovsky, Phys. Rev. C 86, 035202 (2012).

[18] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,
100001 (2016).

[19] J. R. Cudell, V. V. Ezhela, P. Gauron, K. Kang, Y. V.
Kuyanov, S. B. Lugovsky, E. Martynov, B. Nicolescu,
E. A. Razuvaev, and N. P. Tkachenko (COMPETE Collabo-
ration), Phys. Rev. Lett. 89, 201801 (2002).

[20] R. D. Field and G. C. Fox, Nucl. Phys. B80, 367 (1974).
[21] S. N. Ganguli and D. P. Roy, Phys. Rep. 67, 201 (1980).
[22] S.-i. Nam and B.-G. Yu, Phys. Rev. C 84, 025203 (2011).
[23] F. Giacosa, A. Okopińska, and V. Shastry, Eur. Phys. J. A

57, 336 (2021).
[24] M. Atkinson et al. (Omega Photon Collaboration), Nucl.

Phys. B245, 189 (1984).
[25] Y.-Z. Xu, S. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui, and

C. D. Roberts, Eur. Phys. J. C 81, 895 (2021).
[26] B. Collick et al., Phys. Rev. Lett. 53, 2374 (1984).
[27] Z. Yang and F.-K. Guo, Chin. Phys. C 45, 123101 (2021).
[28] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B

742, 330 (2015).
[29] T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).

XYZ SPECTROSCOPY AT ELECTRON-HADRON FACILITIES. II. … PHYS. REV. D 106, 094009 (2022)

094009-13

https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/PhysRevD.100.014033
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.ppnp.2022.103981
https://doi.org/10.1016/j.ppnp.2022.103981
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.118.092001
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1103/PhysRevD.102.114010
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1016/j.ppnp.2022.103985
https://doi.org/10.1016/j.ppnp.2022.103985
https://doi.org/10.1103/PhysRevLett.103.162001
https://doi.org/10.1016/j.physletb.2010.01.037
https://doi.org/10.1103/PhysRevD.81.114018
https://doi.org/10.1103/PhysRevD.81.114018
https://doi.org/10.1103/PhysRevD.83.014019
https://doi.org/10.1088/1674-1137/41/12/121001
https://doi.org/10.1088/1674-1137/41/12/121001
https://doi.org/10.1088/1674-1137/42/11/114107
https://doi.org/10.1088/1674-1137/42/11/114107
https://doi.org/10.1140/epjc/s10052-021-09425-w
https://doi.org/10.1103/PhysRevD.103.L071901
https://doi.org/10.1103/PhysRevD.103.L071901
https://doi.org/10.1016/0370-2693(84)91939-7
https://doi.org/10.1016/0370-2693(84)91939-7
https://doi.org/10.1103/PhysRevD.2.2963
https://doi.org/10.1016/0370-1573(77)90010-2
https://doi.org/10.1103/PhysRevD.92.074004
https://doi.org/10.1103/PhysRevD.92.074004
https://doi.org/10.1103/PhysRevC.86.035202
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevLett.89.201801
https://doi.org/10.1016/0550-3213(74)90495-7
https://doi.org/10.1016/0370-1573(80)90067-8
https://doi.org/10.1103/PhysRevC.84.025203
https://doi.org/10.1140/epja/s10050-021-00641-2
https://doi.org/10.1140/epja/s10050-021-00641-2
https://doi.org/10.1016/0550-3213(84)90429-2
https://doi.org/10.1016/0550-3213(84)90429-2
https://doi.org/10.1140/epjc/s10052-021-09673-w
https://doi.org/10.1103/PhysRevLett.53.2374
https://doi.org/10.1088/1674-1137/ac2359
https://doi.org/10.1016/j.physletb.2015.01.042
https://doi.org/10.1016/j.physletb.2015.01.042
https://doi.org/10.1103/PhysRev.117.1159

