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1 Introduction

The discipline of quantum computing emerged in the 1980s with the vision that a
quantum computer has the ability of solving certain problems far faster than any
conceivable classical computer [1, 2]. Algorithms have been proposed that allow
searching in huge databases [3] or factorizing large numbers as used in encryption
techniques [4].

In 2019, Google set a milestone by proving ’quantum supremacy’. They performed a
calculation that is practically impossible for a classical computer with a quantum
computer based on a processor with programmable superconducting qubits [5].
Despite this great efforts, there is a problem with the use of qubits: The quantum
states are extremely fragile. Thus, any slight influence from the environment can
cause a qubit to change its state. This requires complex procedures for error correction
[6–8].
However, Alexei Kitaev provided a different approach [9]. He proposed to make
qubits out of anyons which possess non-Abelian exchange statistics and have a
topological protection against errors. These so-called ’topological qubits’ are the
most promising platform for fault-tolerant quantum computing [10].

In 1937, Ettore Majorana proposed the Majorana fermion, which is a particle and
its own antiparticle at the same time [11]. This particle obeys these non-Abelian
exchange statistics. In condensed matter physics, Majorana Fermions do not exist as
free particles, but as quasiparticle excitations, so-called Majorana bound states. To be
more precise, they occur as zero-energy excitations in spinless p-wave superconductors
[12]. Since p-wave superconductors are practically unusable until now [13], a different
approach was proposed by Fu and Kane [14]. They suggest to engineer a spinless
p-wave superconductor, which is also called a topological superconductor, by inducing
s-wave superconductivity to the surface states of a three-dimensional (3D) topological
insulator. Since then, various concepts to search for Majorana bound states have
been suggested [15].

The prevailing platform are semiconductor nanowires with strong spin-orbit interac-
tion in which s-wave superconductors induce topological superconductivity [16–20].
The experiments have already provided good signatures for the existence of Majorana
bound states at the proximitized region of a semiconductor wire, but it could not be
proven beyond doubt [21, 22].
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1 Introduction

In this work, we explore a yet untried concept to realize topological superconductivity
by combining s-wave superconductors and topological insulator nanowires [23, 24].
Without a magnetic field, the subband structure of the nanowire is topologically triv-
ial. This changes by applying a magnetic flux of one-half flux quantum Φ0/2 = h/2e
through the cross-sectional area of the wire. Now, the system becomes topologically
nontrivial [25, 26], and Majorana bound states are expected to emerge when supercon-
ductivity is induced into the wire. In contrast to trivial Andreev bound states whose
energy-phase relation is 2π-periodic, the Majorana bound state has 4π-periodicity
[27, 28]. Thus, the related Josephson supercurrent is also 4π-periodic.

We fabricate nanowires based on the 3D topological insulator Mercury Telluride
(HgTe). The topological nature of the surface states emerging were revealed in
various experiments dealing with Hallbar devices [29–31] as well as nanowires [32].
Superconducting contacts made of Niobium (Nb) are placed on top of the nanowires
to induce superconductivity.

We analyze the behavior of fabricated Josephson junctions in an applied magnetic
field where various directions of the field with respect to the wire are investigated.
The main part of this work deals with the search for a 4π-periodic supercurrent
in our devices. To probe this signature of the Majorana bound state, we examine
the fractional Josephson effect by measuring the I-V characteristic of the devices
under microwave irradiation [17, 33–37]. With a microwave field, quantized voltage
(Shapiro) steps appear at voltages Vn = nhf/2e with f the microwave frequency
and n an integer [38]. In the case of 4π-periodic Josephson currents, the odd steps
n = 1, 3, ... are partially missing [39]. The appearance of a 4π-periodic supercurrent
is a strong signature of topological superconductivity, but not proof beyond doubt
as missing Shapiro steps have also been found in topologically trivial devices [40].
A special focus is on the transition from the trivial to the topological state when
an axial magnetic field is applied along the wire. This is achieved by tracing the
4π-periodic fraction of the supercurrent as a function of the magnetic flux penetrating
the cross-sectional area of the nanowire and by disentangling trivial and topological
4π-periodic currents with the aid of a perpendicular magnetic field.

The outline of this thesis is as follows:

• Chapter 2 reviews the theoretical concepts. An introduction of topology in
condensed matter physics is given leading to the concept of 3D topological
insulators. The material HgTe is presented, and the theory of nanowires made
from a 3D topological insulator is shown.

The second part of this chapter introduces the microscopic theory of con-
ventional superconductivity and gives an overview of the physics in normal
conductor/superconductor hybrid structures. Here, the concept of Josephson
junctions and Andreev bound states is explained. Additionally, the behavior of
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Josephson junctions under microwave radiation using a resistivity and capaci-
tively shunted junction (RCSJ) model and in the presence of an out-of-plane
magnetic field is studied.

The chapter ends with an introduction of unconventional superconductivity
and Majorana fermions. The emergence of Majorana fermions at the ends of
an one-dimensional (1D) p-wave superconductor is highlighted. Furthermore,
the current-phase relations of an 1D superconductor is derived focusing on the
differences between s- and p-wave pairing. Finally, the realization of an 1D
p-wave superconductor by the combination of a topological insulator nanowire
and an s-wave superconductor is illustrated.

• Chapter 3 describes the experimental methods. The wafer material and the
fabrication processes are illustrated, followed by a presentation of the cryogenic
and electronic setup with a focus on the sample holder and filtering stages.

• Chapter 4 summarizes the basic properties of the materials and devices used.
Here, the transport properties of HgTe are determined, and the critical pa-
rameters of the Nb films are extracted. Additionally, different parameters of
the fabricated junctions are estimated. Particularly noteworthy in this con-
text is the determination of the transmission at the superconductor/nanowire
interfaces.

• Chapter 5 describes the study of HgTe wire based Josephson junction in
a magnetic field. In the first part, the evolution of the critical current is
investigated as a function of an out-of-plane magnetic field where the oscillations
of the critical current resemble the Fraunhofer diffraction pattern. Additionally,
special scenarios are described where no pattern can be observed in an out-
of-plane magnetic field. For a magnetic field aligned parallel to the HgTe
wire based Josephson junction, a Fraunhofer pattern would never be expected.
Surprisingly, we find oscillations of the critical current which are h/4e- and
even h/8e-periodic. These findings are discussed both experimentally and
theoretically in the second part of the chapter. Lastly, we report on resistance
oscillations as a function of the axial magnetic field that occur in the transition
from the superconducting to the normal state.

• In chapter 6, we explore the expected topological transition in topological
insulator nanowire based Josephson junctions as a function of magnetic flux by
probing the 4π-periodic fraction of the supercurrent. We estimate the amplitude
of the 4π-periodic current using a heuristic approach based on the resistively
shunted junction (RSJ) model. Since this model neglects several effects, we show
numerical simulations based on an extended RCSJ model aiming to reproduce
the experimental results as accurately as possible. Furthermore, a method
to distinguish between a trivial and a topological origin of the 4π-periodic
supercurrent is presented.
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1 Introduction

Finally, a summary of the results obtained is given. The thesis ends with a short
outlook on possible future experiments that will bring the system one step closer to
a potential application in the field of fault-tolerant quantum computing.
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2 Theoretical background

This chapter contains the basic theoretical background which is important to un-
derstand the experimental results. At first, the concept of topological insulators
is introduced. A basic description of conventional superconductivity follows. The
focus here is on Josephson junctions and their behavior under microwave radiation
and in a magnetic field. The chapter ends with the introduction of topological
superconductivity. We show the emergence of Majorana fermions at the boundaries
of an 1D p-wave superconductor and explain how this is achieved with the aid of
topological insulator nanowires.

2.1 Topological insulators

Topological insulators are materials where an energy gap separates the valence band
from the conduction band like in an ordinary insulator, but surface or edge states
exist which are protected by time-reversal symmetry [41]. In this section, we review
the concept of topology in condensed matter physics with a special treatment of
the 3D topological insulator HgTe. Additionally, the special properties of nanowires
made from 3D topological insulators are highlighted.

2.1.1 Topology in condensed matter physics

In the mathematical field of topology, objects are described by their genus g which
counts the number of holes. Exemplary objects are sketched in figure 2.1(a-c).
For instance, a doughnut can be transformed into a coffee mug under continuous
deformations without closing the hole. Thus, they topologically belong to the same
class (g = 1). However, a sphere has a different genus g = 0 since it cannot be
deformed into a doughnut without closing the hole [41].

The same concept can be applied to classify Hamiltonians in condensed matter
physics. The Hamiltonians of two systems are topologically equivalent if they can be
continuously deformed into one another without closing the energy gap. The different
classes can be distinguished by the so-called Chern number n ∈ Z where Z denotes
integers [42]. Accordingly, the energy gap has to close at an interface where the
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2 Theoretical background
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μ

FIG. 2.1: (a-c) Different geometric objects as an illustration of topology. A doughnut (b)
can be transformed into a coffe mug (c) without closing the hole. They are topologically
equivalent. However, both objects cannot be transformed into a sphere (a) without closing
the hole. (d) The interface between an insulator and the quantum Hall state. Since the
Chern invariant changes, a conducting edge state emerges at the interface. (e) Electronic
dispersion in the quantum Hall state. Here, an edge state connects the valence band and
the conduction band. Adapted from [41].

Chern number changes. Therefore, the existence of conducting edge or surface states
at such interfaces is a fundamental consequence of the topological classification [41].
Historically, the quantum Hall state was first of all discovered as a topological state
[43]. Here, electrons in a two-dimensional electron gas (2DEG) are forced on circular
orbits when a strong magnetic field is applied perpendicular to the plane of the 2DEG.
These circular orbits are quantized with the cyclotron frequency ωC and lead to the
formation of Landau levels with energies EN = ~ωC (N + 1/2) where ~ is the reduced
Planck constant. If N Landau levels are occupied, an energy gap separates the filled
and the empty states similar to an ordinary insulator. However, the application of
an electric field leads to the formation of conducting edge channels at the interface
of a quantum Hall insulator and an ordinary insulator. These edge channels cause a
quantized Hall conductance σxy = Ne2/h [44] where e is the elementary charge and h
is the Planck constant. In a topological description, N is equal to the Chern invariant
n [42]. At the interface between a quantum Hall insulator and an ordinary insulator,
which is described by n = 0, the Chern invariant has to change from n 6= 0 to n = 0
leading to the formation of edge channels. Exemplarily, the situation is depicted in
figure 2.1(d) for n = 1. A single edge channel is formed at the interface between the
quantum Hall state and the insulating state. The corresponding electronic dispersion
is shown in figure 2.1(e) where the band gap is closed by a conducting edge state.

As an applied magnetic field breaks time-reversal symmetry T , the quantum Hall
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2.1 Topological insulators
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FIG. 2.2: (a) The Brillouin zone of a 2D system with four T invariant momenta Λi (blue
dots). The T invariant momenta Γ1 and Γ2 of an edge are projections of pairs Λi. Adapted
from [46, 47]. (b-c) Electronic dispersion of a T invariant 2D insulator. In (a), the number
of edge states crossing the Fermi level µ is even. In (b), the number is odd. An odd number
leads to topologically protected edge states. Adapted from [41].

state only occurs in systems where T is broken. T is given by an antiunitary operator
Θ = iσyK where σy is a Pauli spin matrix1, and K is the complex conjugation operator
[14]. For spin 1/2 particles, it yields Θ2 = −1, and a T invariant Hamiltonian has to
fulfill

ΘH
(
~k
)

Θ−1 = H
(
~−k
)
. (2.1.1)

However, edge states can also appear in a system without the application of an
external magnetic field due to strong spin-orbit interaction. Here, T is preserved,
and the edge states can even be protected by T [45]. Because the Chern invariant
is n = 0 in T invariant systems, a new Z2 topological number ν is introduced to
characterize T invariant systems. The Z2 index can take two possible values ν = 0, 1
which are explained in figure 2.2. The Brillouin zone of a two-dimensional (2D)
system has four T invariant momenta Λi which are shown by the blue dots in figure
2.2(a). For an edge perpendicular to a vector ~G, the T invariant momenta Γ1 and Γ2

are projections of pairs Λi onto the line perpendicular to ~G. The electronic dispersion
of a T invariant 2D insulator is plotted as a function of the crystal momentum k
on a path connecting Γ1 and Γ2 in figure 2.2(b-c). Only half of the Brillouin zone
0 < k < π/a, where a is the lattice constant, is shown since the other half is just
a mirror image due to T . The Kramers’ theorem constrains that all eigenstates of
a T invariant Hamiltonian are at least twofold degenerate [41]. Therefore, if edge
states exist inside the band gap, they must at least be twofold degenerate at the
T invariant momenta k = Γ1 = 0 and k = Γ2 = π/a. Between these points, the
degeneracy is lifted due to spin-orbit interaction. There are two possibilities how the
states at k = Γ1 and k = Γ2 can connect. In figure 2.2(b), they connect pairwise,
i.e. the Fermi energy µ intersects the bands an even number of times. In this case,
the edge states can be pushed away, e.g. by strong disorder, and we obtain an

1Let us recall the Pauli matrices: σ0 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

11



2 Theoretical background
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μ

FIG. 2.3: (a) Interface between a trivial insulator and a QSHI. Since the Z2 invariant
changes at the interface, helical edge states emerge. (b) Electronic dispersion of a QSHI.
Helical edge states exist in the band gap connecting the valence band and the conduction
band. Adapted from [41].

ordinary insulator with the Z2 invariant ν = 0. In contrast, the edge states cannot
be eliminated when µ intersects the bands an odd number of times as it is sketched
in figure 2.2(c). The Z2 invariant is ν = 1, and the edge states are topologically
protected [41, 46, 47].

Such 1D topological edge states exist in a quantum spin Hall insulator (QSHI) which
is also known as a 2D topological insulator. This state was firstly proposed in
graphene [45]. Later, the existence was also theoretically predicted in HgTe/CdTe
quantum wells [48] and experimentally verified by König et al. [49]. Since T is still
preserved, the edge states form Kramers pairs and are helical, i.e. the direction
of movement is coupled to the orientation of the spin. The situation is illustrated
in figure 2.3(a). At the interface of a QSHI and an ordinary insulator, two edge
channels exist. The spin-up electrons move to the left, while the spin-down electrons
move to the right. The directions are vice versa on the opposite interface. The
channels are forbidden to scatter into each other as long as T is present [41]. The
band structure of a QSHI is shown in figure 2.3(b). Here, two helical edge states
connect the conduction band and the valence band.

2.1.2 3D topological insulators

The principle of the QSHI can be extended to three dimensions [47]. Instead of edge
channels at the boundaries of a 2D topological insulator, 2D surface states emerge
for 3D topological insulators. Here, four Z2 invariants (ν0; ν1ν2ν3) are needed to
characterize a 3D topological insulator. Their meaning can be explained in a similar
way as for the QSHI. In figure 2.4(a), the Brillouin zone of a 3D insulator is shown.
Now, there are eight T invariant points Λi in the Brillouin zone of a 3D crystal. The
surface Brillouin zone for a surface perpendicular to ~G has four T invariant momenta
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2.1 Topological insulators
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FIG. 2.4: (a) The Brillouin zone of a 3D insulator with eight T invariant points Λi (blue
dots) in the Brillouin zone. A surface Brillouin zone has four T invariant momenta Γi
(red dots) which are projections of pairs Λi. Adapted from [46, 47]. (b) Surface Brillouin
zone of a 3D topological insulator. The Fermi circle encloses a single T invariant point.
This describes a strong topological insulator. Adapted from [41]. (c) The surface states
of a 3D topological insulator in real space. The spin of the electrons is always orientated
perpendicular to the direction of motion. (d) A Dirac cone describes the dispersion of a
single surface. Adapted from [50].

Γ1,Γ2,Γ3 and Γ4. These are projections of pairs Λi into the plane perpendicular to ~G.
Due to Kramers’ degeneracy, the T invariant points at Γi, which are also called Dirac
points, are twofold degenerate, while the degeneracy is lifted between them due to
spin-orbit interaction. Again, the surface band structure resembles either figure 2.2(b)
or 2.2(c) for a path connecting any pair Γi and Γj . The total number of intersections
between the Fermi circle and the surface states determines the topological properties
of the system. If the number of intersections is even, the system is called a weak
topological insulator, and the first Z2 invariant is ν0 = 0. The surface states are not
protected by T and can be localized in the presence of disorder. On the other hand,
when the Fermi surface intersects the paths connecting any pair Γi and Γj an odd
number of times, ν0 is 1, and we call it a strong topological insulator. In this case,
the surface states are topologically protected and cannot be localized. The other
invariants (ν1ν2ν3) can be interpreted as Miller indices which describe the orientation
of the layer. The simplest case of a strong topological insulator is achieved when
only a single Dirac point, e.g. Γ1, is enclosed by the Fermi circle while this point
is connected to every other T invariant point as in figure 2.2(c), i.e. µ crosses the
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2 Theoretical background

bands an odd number of times. The Brillouin zone, where a single Dirac point is
enclosed by the Fermi circle, is visualized in figure 2.4(b). Here, a single surface of a
3D topological insulator is described by the Hamiltonian

HSurf = ~vF
(
k̂xσx + k̂yσy

)
(2.1.2)

with the Pauli matrices σx, σy, the wave number operators k̂x = −i∂x, k̂y = −i∂y,
and the Fermi velocity vF . By inserting a plane wave ansatz Ψ = e−ikxxe−ikyyχ,
where χ is a two-component spinor, into the Dirac equation HSurfΨ = EΨ, we obtain
a Dirac-like dispersion

E = ±~vF
√
k2
x + k2

y. (2.1.3)

The resulting 2D Dirac cone describing a single surface of a 3D topological insulator
is plotted in figure 2.4(d). The special property of these surface states is that they
are not spin degenerate. This results from the fact that states at momenta ~k and −~k
must have an opposite spin due to T . Thus, the spin rotates with ~k around the Fermi
circle as shown in figure 2.4(d). Each state has only one spin orientation and the
spin is always orientated perpendicular to the direction of motion. This phenomenon
is known as spin-momentum locking [41, 46, 47]. A corresponding real-space picture
is shown in figure 2.4(c).

The spin-momentum locking has nontrivial consequences for the Berry phase γBn
acquired by an electron moving around the Fermi circle. In general, the Berry
phase γBn is the accumulated phase factor of a quantum mechanical system after
it completes a closed path C in the parameter space, i.e. the position ~R (t = T ) is
equal to ~R (t = 0). The Berry phase is defined as

γBn =
∮
C
d~R · ~An

(
~R
)

(2.1.4)

with the Berry connection ~A = i〈n, ~R|∇R|n, ~R〉 where n is the n-th eigenstate of the
system [50, 51]. In our case, an electron circles a single Dirac point where its spin
rotates by 2π. This results in a Berry phase of π [52]. As we will show in section
2.1.4, the π Berry phase plays an important role dealing with topological insulator
nanowires.

2.1.3 Strained HgTe as a 3D topological insulator

So far, we only discussed if surface states are topologically protected or not. To
understand how such states actually arise in HgTe, we take a closer look at the
band structure of the system. HgTe has a zincblende lattice and forms the bonds
between the 6s electrons of the Hg atoms and the 5p electrons of the Te atoms.
To demonstrate the special properties of the HgTe bandstructure, we additionally
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FIG. 2.5: (a-b) Illustration of energy corrections from the Darwin term (HD), mass-velocity
term (Hmv) and spin-orbit term (HSO) to the Γ6 band and the Γ8 band of CdTe (a) and
HgTe (b). Adapted from [53]. (c) Band structure of CdTe. CdTe has a conventional band
structure where the Γ6 band lies above the Γ8 band. (d) Band structure of HgTe. HgTe
has an inverted band structure since the Γ8 band lies above the Γ6 band. Adapted from
[48].

take a look at the bandstructure of cadmium telluride (CdTe) for comparison. In
figure 2.5(a), the energy levels at the Γ-point are shown for CdTe, while they are
sketched for HgTe in figure 2.5(b). In the initial system (H0), the energy levels
look quite similar. The s-type Γ6 band lies energetically above the p-type Γ8 band.
However, relativistic corrections to the energy levels have to be taken into account.
While the Darwin term (HD) and the mass velocity term (Hmv) result in a small
correction of the energy levels in CdTe, the effect is much stronger in HgTe. Here,
the Γ6 band is almost reduced to the same level as the Γ8 band. The spin-orbit
interaction (HSO) splits the Γ8 band in a degenerate Γ8 band and a Γ7 band. In
HgTe only, the p-type Γ8 band is energetically shifted above the s-type Γ6 band.
Therefore, HgTe has an inverted band structure, while the trivial band ordering
is still preserved in CdTe [53]. Approaching an interface between HgTe and CdTe
(or any trivial insulator), the bands need to reverse their order because it is not
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2 Theoretical background

possible to continuously transform an s-type band into a p-type band. Therefore,
the bands have to cross at the interface, and the band gap vanishes. These states
are the topological surface states which connect the Γ6 bands and the Γ8 bands of
HgTe and CdTe, respectively. The described mechanism corresponds to a topological
phase transition at the interface where the topological invariant changes from ν0 = 1
(HgTe) to ν0 = 0 (CdTe).

A more detailed sketch of the energy dispersion of bulk HgTe and bulk CdTe near
the Γ-point is shown in figure 2.5(c-d). HgTe has no band gap and is a semimetal.
However, a gap is favored as otherwise the bulk dominates the transport properties,
and it is difficult to exclusively probe the surface states. Indeed, there is a way
to open a gap between the Γ8 bands: By growing HgTe on a CdTe substrate, the
HgTe gets strained due to a small lattice mismatch of 0.3 % between these materials.
This strain opens a small gap in the order of 15− 20meV [30, 54] in the bulk band
structure of HgTe which is illustrated in figure 2.6(a). Here, the surface states are
indicated as dashed purple lines. A simplified drawing of the bands near the band
gap is shown in figure 2.6(b). From now on, the energetically highest Γ8 band is
labeled as the conduction band (CB) and the twofold degenerate Γ8 band, which lies
energetically lower, as the valence band (VB). The surface states (SS) are described
by a Dirac-like dispersion where the Dirac point (DP) typically lies in the valence
band.

(a)

Μ

Strained HgTe

Γ8

Γ7

Γ6

0.5

-1

0

-0.5

E 
(e

V
)

ΓΧ

band gap

EC

EV

CB

VB DP

SS

(b)

FIG. 2.6: (a) Band structure of strained HgTe. By growing HgTe on CdTe, a band gap
opens in the band structure. Adapted from [55]. (b) The surface states (SS) also exist in
the band gap and connect the valence band (VB) and the conduction band (CB). The
Dirac point (DP) lies in the valence band. Adapted from [31].
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2.1 Topological insulators

2.1.4 Topological insulator nanowires

Let us now consider a cylindrical nanowire made from a 3D topological insulator.
Since we neglect any contribution of the bulk, it can be viewed as a Dirac-like
surface state wrapped around a hollow cylinder. The nanowire is assumed to be
orientated along the x-axis and has the radius R as it is sketched in figure 2.7(a).
The Hamiltonian of the Dirac-like surface is given by HSurf = ~vF

(
k̂xσx + k̂yσy

)
.

A
R

P

Ф/ Ф0 = 0.5Ф/ Ф0 = 0 Ф/ Ф0 = 0.25

k

E

k

E

k

E(a) (b)

x

FIG. 2.7: (a) Cartoon of a nanowire with radius R and perimeter P which is orientated along
the x-direction. The cross-sectional area of the wire is labeled by A. (b) Energy spectrum
of a topological insulator nanowire for three characteristic values of the magnetic flux.
Nondegenerate bands are visualized as dashed lines, while degenerate bands are indicated
as solid lines. For Φ/Φ0 = 0, the spectrum is gapped and the bands are degenerate. The
degeneracies are lifted for Φ/Φ0 = 0.25, but the spectrum is still gapped. For Φ/Φ0 = 0.5,
the band structure becomes gapless and linear, non-degenerate bands emerge. The other
bands are twofold degenerate. Adapted from [25].

Introducing cylindrical coordinates and using a local unitary transformation2, the
Hamiltonian of the nanowire yields [56]

HWire = ~vF
(
k̂xσx + 1

R
k̂ϕσy

)
(2.1.5)

with the angular coordinate ϕ, k̂x = −i∂x, and k̂ϕ = −i∂ϕ. When a Dirac fermion
encircles the circumference of the nanowire, its spin rotates since the momentum
goes in a loop. As discussed in section 2.4, this spin rotation results in a Berry phase
of π. As a result, the 2π rotation of a spin gives a minus sign, and the wave function
Ψ is antiperiodic:

Ψ(x, ϕ+ 2π) = −Ψ(x, ϕ). (2.1.6)

Substituting the ansatz
Ψ = e−ikxxe−ikϕϕχ, (2.1.7)

2See [56] for details of the transformation.
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where χ is a two-component spinor, in equation (2.1.6) and using −1 = e2iπ` with
` = ±1

2 ,±
3
2 ,±

5
2 , ..., we derive

kϕ = ` with ` = ±1
2 ,±

3
2 ,±

5
2 , .... (2.1.8)

We now add a magnetic field ~B = B~ex in x-direction. This field is described by
the vector potential ~A = B

2 (−y, x, 0), which gives ~A = BR
2 · ~eϕ := Aϕ · ~eϕ after a

transformation in cylindrical coordinates3. After extending Hamiltonian (2.1.5) by
the vector potential, it holds

HWire = ~vF
(
k̂xσx +

( 1
R
k̂ϕ + e

~
Aϕ

)
σy

)
= ~vF

(
k̂xσx +

(
1
R
k̂ϕ + 1

R
· Φ

Φ0

)
σy

)

where we used e
~Aϕ = 2πe

h
BR2

2R = Φ
RΦ0

with the magnetic flux threading the wires’
cross-sectional area Φ = BR2π and the magnetic flux quantum Φ0 = h/e. The
energy spectrum is calculated by the Dirac equation HWireΨ = EΨ which yields

~vF

 0 −i∂x − i
R

(
−i∂ϕ + Φ

Φ0

)
−i∂x + i

R

(
−i∂ϕ + Φ

Φ0

)
0

Ψ = EΨ. (2.1.9)

By inserting the ansatz (2.1.7) and solving the set of equations for E, we obtain the
energy spectrum of the nanowire

E = ±~vF

√√√√k2
x + 1

R2

(
`− Φ

Φ0

)2

:= ±~vF
√
k2
x + k2

l (2.1.10)

where we defined kl = 1
R

(
`− Φ

Φ0

)
. The spectrum is plotted in figure 2.7(b) for

three characteristic values of the magnetic flux Φ/Φ0 = 0, 1/4, 1/2 and ` =
±1/2, ±3/2, ..., ±9/2. Nondegenerate bands are visualized as dashed lines in figure
2.7(b), while degenerate bands are indicated as solid lines. For Φ/Φ0 = 0, the spec-
trum is gapped while the subbands are twofold degenerate with respect to angular
momentum kϕ = `. For a flux 0 < Φ/Φ0 < 1/2, the degeneracies are lifted, but
the spectrum is still gapped. By applying Φ/Φ0 = 1/2, the magnetic flux cancels
out the effect of the Berry phase, and the ` = +1/2 bands become gapless and are
nondegenerate. The other bands are again twofold degenerate. Further increasing of
the flux leads to analogous cycles [25, 26, 56, 57]. An experimental signature of the
nanowires’ subband structure are conductance oscillations as a function of the Fermi
level µ, i.e. an applied gate voltage, or the magnetic flux Φ. Here, maxima occur
each time when µ crosses an additional subband. Such experiments were already
performed in various material systems [32, 58–63] and have confirmed the band
structure of topological insulator nanowires.

3We use (−y, x, 0) = R (−sin(ϕ), cos(ϕ), 0) = R ~eϕ.
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2.2 Superconductivity

2.2 Superconductivity

Superconductors are a class of materials which lose their electrical resistance below
a certain critical temperature Tc. A further property of superconductors is that
they are perfect diamagnets and expell magnetic fields from the interior. This is
called the Meissner effect. In this section, we review the microscopic theory of
superconductivity by Bardeen, Cooper, and Schrieffer (BCS) [64] and extend it to
the Bogoliubov-de Gennes theory which is a tool to describe unconventional and
inhomogeneous superconductors. Additionally, we show that superconductivity can
be induced to normal conductors by the proximity effect. An experimental setup to
probe the induced superconductivity are Josephson junctions. We will introduce their
basic properties and the behavior in the presence of a magnetic field and microwave
radiation where so-called Shapiro steps can be observed in the I-V characteristics.

2.2.1 Microscopic theory of superconductivity

In 1957, Bardeen, Cooper, and Schrieffer [64] introduced a microscopic theory of
superconductivity. The theory is based on an attractive interaction between the
electrons. In the picture of only two particles, the physical idea is that an electron
propagating through a crystal polarizes the medium by attracting the positive ions,
i.e. the electron excites a lattice vibration and creates a phonon. Since this phonon
can be absorbed by another electron, there is an effective attracting interaction
between these electrons. This process is possible if the energy difference between
the electrons is smaller than ~ωD where ωD is the Debye frequency. The coupling is
energetically most favorable if two electrons with opposite momenta (±k) form a
pair, a so-called Cooper pair. These Cooper pairs, which are bosons, condense to an
energetically lower ground state while an energy gap ∆ opens between the ground
state of the Cooper pair condensate and the spectrum of excited single-particle states
due to the pairing energy. As a consequence of this gap, scattering processes are
suppressed and, therefore, the resistance of a superconductor vanishes [65–67]. The
pairing mechanism described is most favorable when electrons with opposite spins
are coupled. This is referred to as conventional or s-wave superconductivity. For
the moment, we limit the discussion to this case. Later, we show that other pairing
mechanisms are also possible.

The BCS-Hamiltonian in the second quantization formalism is given by

HBCS =
∑
kσ

εkc
†
kσckσ +

∑
kl

Vklc
†
k↑c
†
−k↓c−l↓cl↑. (2.2.1)

Here, ckσ is the annihilation operator and c†kσ is the creation operator of an electron
with spin σ and momentum k. The kinetic energy εk is given relative to the
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chemical potential, i.e. εk = ~2/2m
(
~k2 − ~k2

F

)
with the mass of the electron m

and the Fermi wave vector ~kF . The scattering matrix element Vkl describes the
interaction for a pair of electrons. The BCS-Hamiltonian is treated using a mean
field approximation where two operators are expanded by their expectation value ,
e.g. c†k↑c

†
−k↓ = 〈c†k↑c

†
−k↓〉+

(
c†k↑c

†
−k↓ − 〈c

†
k↑c
†
−k↓〉

)
. Furthermore, we define

∆k = −
∑
l

Vkl〈c−l↓cl↑〉. (2.2.2)

The resulting mean-field Hamiltonian is given by

HMF =
∑
kσ

εkc
†
kσckσ −

∑
k

(
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ −∆k〈c†−k↓c

†
k↑〉
)
. (2.2.3)

The last term is often ignored since it only contributes a constant shift in energy.
This Hamiltonian is diagonalized by using the Bogoliubov-Valatin transformation
[68, 69]

ck↑ = u∗kγk↑ + vkγ
†
−k↓,

c†−k↓ = ukγ
†
−k↓ − v∗kγk↑.

(2.2.4)

In particular, new fermionic operators γkσ and coefficients uk, vk are defined. The
new operators satisfy the fermionic anticommutation relations

{
γkσ, γ

†
k′σ′

}
= δkk′δσσ′

with the Kronecker delta δkk′ , {γkσ, γk′σ′} = 0, and the normalization condition
|uk|2 + |vk|2 = 1. Substituting the new operators into the mean-field Hamiltonian
gives

HMF =
∑
k

[
2εk|vk|2 −∆kukv

∗
k −∆∗ku∗kvk + ∆k〈c†−k↓c

†
k↑〉
]

+
∑
k

[[
εk
(
|uk|2 − |vk|2

)
+ ∆kukv

∗
k + ∆∗ku∗kvk

] (
γ†k↑γk↑ + γ†−k↓γ−k↓

)]
+

∑
k

[(
2εkukvk −∆ku

2
k + ∆∗kv2

k

) (
γ†k↑γ

†
−k↓

)
+ h.c.

]
,

(2.2.5)

where h.c. is the hermitian conjugate. The first row contains only constants, and the
second row is already diagonal. Thus, the third row has to vanish in order to get a
fully diagonalized Hamiltonian. Consequently, the condition is

2εkukvk −∆ku
2
k + ∆∗kv2

k = 0. (2.2.6)

Solving for the ratio vk/uk and using |uk|2 + |vk|2 = 1, the result is

|vk|2 = 1− |uk|2 = 1
2

1− εk√
ε2k + |∆k|2

 . (2.2.7)
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2.2 Superconductivity

With these relations, the Hamiltonian becomes

HMF =
∑
kσ

Ekγ
†
kσγkσ + E0 (2.2.8)

where we define the excitation energy

Ek = ±
√
ε2k + |∆k|2, (2.2.9)

and the ground-state energy E0 which contains all constant terms [70]. The excitation
spectrum Ek is plotted in figure 2.8(a) for the superconductor and the normal
conductor (∆k = 0). Note that the resulting energy spectrum is degenerate with
respect to the spin. The energy spectrum of the superconductor has a gap of size
2|∆k|, while the normal-state spectrum is gapless. For the sake of simplicity, one can
define Vkl as a constant −V for energies around µ4. Then, ∆k is independent of k,
and we can cancel the k subscript.

(b)
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∆
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Δk ≠ 0
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μ

FIG. 2.8: (a) The excitation spectrum Ek(k) for a superconductor (∆k 6= 0) and a normal
conductor (∆k = 0). For the superconducting state, the spectrum has a gap of size 2|∆k|,
while the normal-state spectrum is gapless. (b) Density of states DS of a superconductor.
No fermionic states are allowed inside the gap of size 2∆ around µ. Adapted from [65].

The excitations in the superconductor are described by quasiparticles, so-called
Bogoliubons, which are given by the operators γ†kσ. By inverting equation (2.2.4),
we note that Bogoliubons are a mixture of electrons and holes:

γk↑ = u∗kck↑ − vkc
†
−k↓,

γ†−k↓ = u∗kc
†
−k↓ + v∗kck↑.

(2.2.10)

4Vkl =
{
−V for |εk − µ| ≤ ~ωD, |εl − µ| ≤ ~ωD
0 otherwise

[67].
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To understand the meaning of the coefficients uk and vk, we look at the case ∆k = 0.
With equation (2.2.7), |vk|2 = 1 and |uk|2 = 0 holds for εk < 0, while |uk|2 = 1 and
|vk|2 = 0 for εk > 0. Therefore, creating a Bogoliubon corresponds to creating an
electron for εk > 0 and creating a hole of opposite momentum and spin for εk < 0.
However, for a superconductor (∆k 6= 0), a Bogoliubon is a superposition of an
electron and a hole state.

Density of states

The density of states of a superconductor DS is calculated by assuming the conserva-
tion of the total number of states DS(E)∂E = DN(ε)∂ε where DS is the density of
states in the superconducting state and DN is the density of states in the normal
state. Since only energies ε a few millielectronvolts from the Fermi level µ are of
interest, we take DN(ε) = DN(µ = 0) as a constant. Therefore, the result is

DS = DN(0) ∂ε
∂E

= DN(0) ∂

∂E

√
E2 −∆2 = DN(0)


E√

E2−∆2 for |E| > ∆
0 for |E| < ∆

.

The spectrum of the density of states is shown in figure 2.8(b). No states are available
below an energy |E| < ∆. The divergent density of states at |E| = ∆ are explained
by the fact that all excitations |E| < ∆ are raised above ∆ [66].

Bogoliubov-de Gennes Hamiltonian

The previous presentation holds for homogeneous systems. If inhomogeneous systems
or the combination of superconducting and normal conducting materials are investi-
gated, we have to switch to real space. The operators in real space are achieved by
Fourier transformations of the operators ckσ:

ψσ (~r) =
∑
k

ei~k·~rckσ,

ψ†σ (~r) =
∑
k

e−i~k·~rc†kσ.
(2.2.11)

Here, ψ†σ (~r) creates and ψσ (~r) annihilates an electron at position ~r with spin σ =↑ , ↓.
The Hamiltonian is derived analogous to the previous calculation using a mean-field
approximation [71]. It yields

H =
∫
dr

{(
ψ†↑ (~r) ψ†↓ (~r)

)
HN (~r)

(
ψ↑ (~r)
ψ↓ (~r)

)

+ ∆ (~r)ψ†↑ (~r)ψ†↓ (~r) + ∆∗ (~r)ψ↓ (~r)ψ↑ (~r)
}

+ const.
. (2.2.12)
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2.2 Superconductivity

In general, the normal-state Hamiltonian HN is a 2× 2-matrix in spin space. Since
excitations in a superconductor are superpositions of electron and hole states, the
usage of a Hamiltonian that incorporates both the spins and electron/hole components
is desirable. This is achieved by doubling the degrees of freedom by adding the
redundant hole spectrum [72] to the Hamiltonian (2.2.12): Formally, we can rewrite
the normal-state Hamiltonian5

(
ψ†↑ ψ†↓

)
HN

(
ψ↑
ψ↓

)
= 1

2

((
ψ†↑ ψ†↓

)
HN

(
ψ↑
ψ↓

)
−
(
ψ↑ ψ↓

)
HT
N

(
ψ†↑
ψ†↓

)
+ Tr (HN)

)

where Tr(HN) is the trace of the matrix, and HT
N is the transpose of the matrix.

Similarly, we rewrite the pairing terms

∆ψ†↑ψ
†
↓ + ∆∗ψ↓ψ↑ = 1

2
(
∆ψ†↑ψ

†
↓ + ∆∗ψ↓ψ↑ −∆ψ†↓ψ

†
↑ −∆∗ψ↑ψ↓

)
.

By applying these notations and introducing the Nambu spinor Ψ̃ =
(
ψ↑ ψ↓ ψ†↑ ψ†↓

)T
,

the Hamiltonian (2.2.12) is extended to

H ∼ 1
2Ψ̃†

(
HN iσy∆
−iσy∆∗ −HT

N

)
Ψ̃ := 1

2Ψ̃†H̃Ψ̃. (2.2.13)

Here, we omitted the integral and constant terms as it is commonly done in the
literature [73]. Additionally, HT

N can be replaced by H∗N since HN is hermitian. The
4× 4-matrix H̃ is the so-called Bogoliubov-de Gennes (BdG) Hamiltonian.

The same problem can also be described in a different basis. The new basis is
achieved by the transformation H = UH̃U † with U =

(
σ0 0
0 iσy

)
. The Hamiltonian

in the new basis reads

H ∼ 1
2Ψ†

(
HN σ0∆
σ0∆∗ −σyH∗Nσy

)
Ψ (2.2.14)

with Ψ = UΨ̃ =
(
ψ↑ ψ↓ ψ†↓ −ψ

†
↑

)T
=
((
ψ↑ ψ↓

)
Θ
(
ψ↑ ψ↓

))T
where Θ is the

time-reversal operator. In addition to the fact that this basis describes a quasiparticle
by the spin as well as the electron/hole components, the hole operators are equal
to time-reversed electron operators. This will be useful for a later argumentation.
The upper left 2 × 2-block of the Hamiltonian H1, 1 describes the electrons, while
the lower right block H2, 2 describes the time-reversed electrons, i.e. holes. The
other 2 × 2-blocks H2, 1 and H1, 2 couple the electron and the hole block. At this
point, we also introduce the Pauli matrices in the particle-hole space τ0, τx, τy,
and τz. They have the same form as the Pauli spin matrices, but they act on the

5We use the commutation relation ψ†αHijψβ = −Hijψβψ
†
α + δαβEij = −ψβHT

ijψα + δαβEij with
the Kronecker delta δαβ .
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particle-hole basis, i.e. one element of the Pauli matrices in particle-hole space
corresponds to one 2 × 2-block of the Hamiltonian H. Hence, the notation of H
can be simplified by tensor multiplication of Pauli matrices in spin space and Pauli
matrices in particle-hole space, e.g. it holds σ0 ⊗ τ0 = 14.

Bogoliubov-de Gennes equations

Up to now, we were dealing with a general normal-state Hamiltonian. For sake of
simplicity, we now assume a conventional electron gas in the absence of a vector
potential where HN (~r) = Heσ0 = [(~2/2m∗)∇2 + U (~r)− µ]σ0. Here, U (~r) is some
potential, e.g. describing a barrier at an interface, m∗ is the effective mass, and σ0 is
the unit matrix in spin space. The Hamiltonian (2.2.12) simplifies to

H ∼ ψ†↑Heψ↑+ψ†↓Heψ↓+∆ψ†↑ψ
†
↓+∆∗ψ↓ψ↑ =

(
ψ†↑ ψ↓

)(He ∆
∆∗ −He

)(
ψ↑
ψ†↓

)
. (2.2.15)

Here, the matrix notation is derived analogous to the BdG Hamiltonian while it can
be simplified to a 2 × 2-matrix in particle-hole space since HN is spin degenerate.
The Hamiltonian is diagonalized following the calculations of de Gennes [71] using
the Bogoliubov transformation

ψ↑ (~r) =
∑
n

(
γn↑un↑ (~r)− γ†n↓v∗n↑ (~r)

)
,

ψ↓ (~r) =
∑
n

(
γn↓un↓ (~r) + γ†n↑v

∗
n↓ (~r)

)
.

(2.2.16)

This transformation is an analogous version of equation (2.2.4) and corresponds to
the definition of new quasiparticle operators

γn↑ =
∫
dr
(
u∗nψ↑ + v∗nψ

†
↓

)
,

γn↓ =
∫
dr
(
u∗nψ↓ + v∗nψ

†
↑

)
.

(2.2.17)

At this point, we do not perform the full calculation and only take a look at the
condition for the diagonalization. It results that the quasiparticle operators γnσ
diagonalize the Hamiltonian when un and vn satisfy(

He ∆
∆∗ −H∗e

)(
un (~r)
vn (~r)

)
= En

(
un (~r)
vn (~r)

)
. (2.2.18)

This is the so-called Bogoliubov-de Gennes (BdG) equation. The solutions of the
BdG equation represented by un (~r) and vn (~r) are again electron-like or hole-like
quasiparticles. Both are coupled by a finite pairing potential. If ∆ = 0, the
two rows of the BdG equation are decoupled, and we obtain the single-particle
Schrödinger equations for electrons and holes. Therefore, the BdG equation can
describe superconducting, normal conducting as well as hybrid systems.
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2.2 Superconductivity

2.2.2 Andreev reflection

Let us now consider an interface between a normal conductor and a superconductor
as it is sketched in figure 2.9. We set µ = 0 to simplify the explanation. An electron

(b)(a)
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∆
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∆
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FIG. 2.9: Interface between a normal conductor (N) and a superconductor (S). (a) An
electron in the normal conductor with energy E > ∆ can be transmitted into the supercon-
ductor. (b) An electron with energy E < ∆ cannot be transmitted into the superconductor
since there are no states allowed. However, the electron can be Andreev-reflected. Here,
a Cooper pair is created in the superconductor, while an additional hole emerges in the
normal conductor moving in the opposite direction than the incoming electron.

with energy E > ∆ (see figure 2.9(a)) in the normal conductor, which moves to the
interface of the structure, can be transmitted into the superconductor. However, if an
electron has an energy E < ∆ (see figure 2.9(b)), it cannot be transmitted into the
superconductor since there are no single-particle states allowed below E < ∆. In this
case, a different mechanism is possible, which is called Andreev reflection [74]. In this
process, a Cooper pair is created while a second electron of the normal conductor is
needed as a binding partner. Thus, a compatible electron is additionally transmitted
to the superconductor. This is equivalently described by a hole with an energy
−E which moves in the opposite direction than the incoming electron. Therefore,
two charges are transported during the process. It follows that the conductance is
doubled compared to a single particle transmitted. The additional current, which is
added by the enhanced conductance, is called excess current Iexc.

This description stands as we are dealing with perfect interfaces. In real systems,
the transmissions of the interfaces are weaker, e.g. due to oxide layers or Schottky
barriers. In this situation, there is only a finite probability for an incoming electron
with E < ∆ to be Andreev reflected. It also can be normal-reflected at the interface.
The latter gives no contribution to the conductance.
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Amodel describing these processes was introduced by Blonder, Tinkham and Klapwijk
[75] and is known as BTK model. They describe the barrier at the interface as a δ-
function with height hB. Furthermore, the dimensionless parameter Z = hBm/~2kF
is introduced which is commonly used to describe the transparency of a barrier in
the literature. This parameter is related to the transmission probability D by D =
1/ (1 + Z2). The mechanism of Andreev reflection is important to understand the
formation of a supercurrent in superconductor - normal conductor - superconductor
(SNS) junctions. Such structures are also known as Josephson junctions.

2.2.3 Josephson junctions

In 1962, Brian Josephson proposed that a dissipationless current can flow through
a weak link between two superconducting electrodes [76]. Assuming a thin tunnel
barrier as the weak link, the problem can be addressed by a perturbative approach.
In section 2.3.4, we also show a more general approach.
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FIG. 2.10: (a) Sketch of a superconductor (SL) - normal conductor (N) - superconductor (SR)
junction. The wave function is constant inside the superconductors, while it exponentially
decays outside of the superconductor. It is possible that the wave functions overlap in
the normal conductor. (b) Andreev bound state in a SLNSR junction. An electron with
energy +E is Andreev-reflected at the NSR interface. A Cooper pair is created in SR. The
reflected hole is Andreev reflected at the NSL interface, and a hole Cooper pair is created
in SL. Here, another electron is reflected, and the process repeats.

Each superconducting electrode is described by the wave function Ψi where i = L
denotes the left and i = R the right lead as it is sketched in figure 2.10(a). The
wave function is constant inside a superconductor, while it decays over a finite length
outside of the superconductor. If the two superconducting leads are close enough,
their wave functions can overlap. Thus, we define a weak coupling constant K and
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2.2 Superconductivity

formulate the coupled Schrödinger equations

i~
∂ΨL,R

∂t
= µL,RΨL,R +KΨR,L (2.2.19)

where µL,R is the chemical potential of the left (L) and the right (R) electrode. A
solution of these equations is

Ψi = √nieiφi (2.2.20)
with the Cooper pair density ni and the phase φi of the superconducting state. By
substituting the solution into the Schrödinger equations, assuming n = n1 ≈ n2, and
separating real and imaginary parts, we obtain

∂n

∂t
= ±2Kn

~
sin(φR − φL) and (2.2.21)

∂φR,L
∂t

= −K
~

cos(φR − φL)± µR,L
~

. (2.2.22)

The resulting supercurrent IS is defined as the number of Cooper pairs transferred
from one side to the other by time:

IS = −2e∂n
∂t

= −4neK
~

sin(ϕ) = IC sin(ϕ) (2.2.23)

with ϕ = φ2 − φ1 and the critical current IC = |max(IS)| which is the maximum
current flowing without dissipation. This relation is the first Josephson equation
which connects the supercurrent with the phase difference of the superconductors’
macroscopic wave functions. The second Josephson relation is derived by subtracting
both versions of (2.2.22) from each other. It yields

∂ϕ

∂t
= 2eV

~
(2.2.24)

with the voltage drop across the superconducting leads V = (µL − µR)/2e [67].
By combining both Josephson equations, we notice that an alternating current
IS = IC sin(2eV t/~) is created for a finite voltage drop across the junction. The
oscillation frequency of the supercurrent is the Josephson frequency fJ = 2eV/h.

Andreev bound states

In a microscopic picture, the formation of a supercurrent in an SLNSR junction can
be understand by so-called Andreev bound states. Figure 2.10(b) illustrates the
underlying process. We set again µ = 0 to simplify the explanation. When there
is no voltage drop across the junction, an electron with energy +E in the normal
conductor moving to the right NSR interface is Andreev-reflected. Thus, a Cooper
pair is created in the right electrode, and the reflected hole with energy −E moves
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in the opposite direction. This hole can now be Andreev-reflected at the left NSL
interface. A hole Cooper pair is created in the left electrode, which is equivalent
to the annihilation of a Cooper pair. The thereby reflected electron has again the
energy +E and moves to the right. This is the initial condition. Therefore, this
process is constantly repeated, and Cooper pairs are effectively transported from the
left to the right superconducting electrode. From this description, it follows that a
coherent state between the two superconductors exists.

Proximity-induced gap

The presence of the described pair correlations cause that the superconducting
properties will be preserved up to a phase coherence length in the normal conductor.
In particular, an induced superconducting gap ∆i can arise in the density of states
of the normal conductor [71, 77]. This is often referred to as the proximity effect.
The induced gap ∆i is typically smaller than the gap of the superconducting leads
∆. The Andreev bound states do not necessarily form inside the gap of the leads ∆,
but inside the induced gap ∆i. Hence, the induced gap is the limiting energy for the
Andreev bound states. In the following theoretical description, we do not explicitly
distinguish between ∆ and ∆i since we are mainly interested in the arising bound
states.

Long junctions

The limiting energy changes when we deal with long junctions, i.e. a large distance
between the superconducting electrodes since an electron has to travel from one lead
to the other before loosing its phase coherence. The average time an electron needs
in a clean junction, where the mean free path of the electrons is larger than the
distance between the leads L, is t = L/vF . The maximum energy where the electron
keeps its phase coherence is given by the so-called Thouless energy Eth = ~/t [78]. By
comparing both equations, the Thouless energy is found to be Eth = ~vF/L. Hence,
short junctions are defined by ∆i < Eth, and the energy of the Andreev bound states
is limited by the induced superconducting gap. In long junctions (∆i > Eth), the
maximum energy of the Andreev bound states is the Thouless energy Eth.

2.2.4 RCSJ model

The physics of Josephson junctions can be described within the resistively and
capacitively shunted junction (RCSJ) model. A physical Josephson junction is
modeled by an ideal one, as described by the first Josephson equation (2.2.23),
shunted by a resistance and a capacitance. The circuit diagram is shown in figure
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FIG. 2.11: (a) Circuit diagram of a physical Josephson junction. The ideal junction is
shunted by a resistor and a capacitor. (b) Washboard potential for three different cases. If
I = 0 or I < IC , the phase particle is trapped in a minimum. When I > IC , the phase
particle slides down the potential. (c) I-V trace of a Josephson junction. The color of the
dots corresponds to the lines in (b), respectively. As long as the particle is trapped, there
is no voltage drop across the junction. A moving particle leads to a finite voltage. Adapted
from [79].

2.11(a). The ideal Josephson junction models the dissipationless dc regime, the
resistance the finite voltage regime, and the capacitor the geometric capacitance
between the two electrodes. Within this model, the time dependence of the phase
ϕ in the presence of an externally applied bias current I can be derived by using
Kirchhoff’s law:

I = IS + IRes + ICap = IC sin(ϕ) + V

R
+ C

∂V

∂t
. (2.2.25)

Eliminating V by using the second Josephson equation (2.2.24) gives

I = IS + IRes + ICap = IC sin(ϕ) + ~
2eR

∂ϕ

∂t
+ C~

2e
∂2ϕ

∂t2
. (2.2.26)

We divide the equation by IC and introduce a new time variable τ = 2eICR
~ t. This

simplifies equation (2.2.26) to

I

IC
= sin(ϕ) + ∂ϕ

∂τ
+ βC

∂2ϕ

∂τ 2 (2.2.27)

where βC = 2eICR2C
~ is the so-called Stewart-McCumber parameter [80, 81]. Despite

this nonlinear differential equation is not analytically solvable, except in the limit
C = 0, it turns out that there is a well-known analogous system, namely a particle
of mass m moving along the x-axis in an effective potential U with damping η. The
differential equation of such a system yields

m
∂2x

∂t2
+ η

∂x

∂t
+∇U = 0. (2.2.28)
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We can rewrite equation (2.2.27) in a similar form:
(
~
2e

)2

C
∂2ϕ

∂t2
+
(
~
2e

)2 1
R

∂ϕ

∂t
+ ∂

∂ϕ

[
EJ

(
1− cos(ϕ)− I

IC
ϕ
)]

= 0 (2.2.29)

with the Josephson coupling energy EJ = ~IC
2e . Now, we notice the analogies: x⇔ ϕ,

m ⇔
(

~
2e

)2
C, η ⇔

(
~
2e

)2 1
R
, and U ⇔ EJ

(
1− cos(ϕ)− I

IC
ϕ
)
. Hence, we get a

qualitative insight into the physics of Josephson junctions by considering a ’phase
particle’ in a so-called ’tilted washboard potential’ U = EJ

(
1− cos(ϕ)− I

IC
ϕ
)
.

Figure 2.11(b) shows a plot of the potential U as a function of ϕ for three different
externally applied currents I. The color of the lines corresponds to the dots in figure
2.11(c) where different situations are marked in the I-V trace. When no current is
applied, the particle rests in a minimum, the phase ϕ is constant, and ∂ϕ/∂t = 0.
Due to the second Josephson equation (2.2.24), there is no voltage drop across the
junction. By enhancing I, the slope of U (ϕ) starts to tilt. However, there is still no
voltage drop as long as I < IC . If I > IC , the particle leaves the minimum and begins
to move down the potential. The phase ϕ (t) changes, and there is a finite voltage
drop across the junction according to the second Josephson equation (2.2.24).

In the following, we consider junctions with a negligibly small capacitance. This
describes an overdamped junction with βC � 1. In the picture of the washboard
potential, this means that the mass of the particle is very small, and the damping
term dominates. Here, the velocity of the particle is proportional to the local slope
of the washboard potential due to the strong damping. Hence, the particle starts
to move as soon as dU/dϕ < 0 at the right side of a minimum, while the particle is
trapped again when dU/dϕ > 0. The resulting I-V trace is not hysteretic. Indeed,
this problem (C → 0) can be solved analytically. Equation (2.2.27) reduces to a first
order differential, and the result is

V = R
√
I2 − I2

C . (2.2.30)

A possible I-V curve for an overdamped junction is shown in figure 2.12(a).

In the opposite case where C is very large and βC � 1, the I-V traces become
hysteretic as it is sketched in figure 2.12(b). By increasing I above IC , V jumps to
a finite voltage. This corresponds to the phase particle sliding down the potential.
However, if I is decreased again, V does not drop back to zero until a retrapping
current IR is reached which is smaller than IC6. In the washboard picture, this is
explained by the inertia of the moving mass. When the damping is light, the moving
particle can overcome a small barrier, i.e. a region with dU/dϕ > 0, where it would
have stopped if the damping was strong [66].

6IR ≈ 4IC/(π
√
βC)
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FIG. 2.12: (a) I-V trace of an overdamped junction. No hysteresis is observed. (b) I-V
trace of an underdamped junction. The trace is hysteretic since the voltage V jumps to a
finite value at IC by increasing I, while it goes back to zero at IR < IC for a decreasing
I. (c) I-V trace of an overdamped junction including thermal noise. A finite resistance
is always present, even for I < IC . The resistance depends on the current as well as on
temperature, i.e. noise strength. (d) I-V trace of an underdamped junction including noise.
The switching from a finite voltage to V = 0 happens below IC . Adapted from [66].

At last, thermally activated processes are taken into account. Mathematically, this
is done by adding an additional fluctuation term in equation (2.2.27). Here, we limit
it to a discussion within the tilted washboard model. The thermal activation can be
imagined as the phase particle oscillates back and forth in the well. At each period,
there is a probability that the particle escapes from the potential minimum over
the barrier. Once the particle overcomes a barrier in an underdamped junction, it
accelerates down the washboard potential as discussed above. Therefore, we expect
a switching from a finite voltage to V = 0 well below IC in the I-V characteristics.
Figure 2.12(d) sketches possible traces [66].

In an overdamped junction, the situation is different. If the particle thermally
escapes, it stays in the next minimum due to the strong damping until it escapes a
second time. In this case, the implementation of a noise term in the model results in
a finite nonlinear resistance which is always present and increases for I → IC [82].
Corresponding I-V traces are shown in 2.12(c).

In general, the escape probability raises at higher temperature, while for kBT � EJ
thermally activated escapes hardly play a role [66]. At this point, it is important
to note that not only the temperature of the cryogenic bath defines the electron
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temperature. Heating effects in the junction which depend on its resistance and the
current flowing through the junction have also to be taken into account. Furthermore,
electrical noise from the environment or the electric circuits can increase the electron
temperature. Thus, filtering the electrical lines and shielding the sample from the
environment are two important issues. These will be discussed in section 3.4.

2.2.5 Josephson junctions under microwave irradiation

If we irradiate a Josephson junction with microwaves of frequency f , steps form in
the I-V traces at voltages Vn = nhf/2e where n denotes integers. These steps are
called Shapiro steps [38]. The microwave radiation can be taken into account by
adding an additional alternating term

I = Idc + Iac cos (ωact) (2.2.31)

with wac = 2πf in equation (2.2.26). In the picture of the washboard potential, this
leads to an oscillation of the potential around a fixed position, for which I = Idc holds,
with frequency f and amplitude Iac. This scenario is sketched in figure 2.13(a) for
the specific case Idc = IC . As long as Idc + Iac > IC and Idc− Iac < IC , Shapiro steps

 n = 0

 n = 1

 n = 2

 n = 3

U

φ

I = IC

(a) (c)

I = IC+Iac

I = IC-Iac

V (hf/2e)

I/IC
10

(b)

1

2

|n(x)|

x

Iac = 0

Iac ≠ 0

FIG. 2.13: (a) Washboard potential in the presence of microwave radiation. The slope of
the potential oscillates around the position I = Idc with amplitude Iac and frequency f .
Here, the special case Idc = IC is shown. (b) Comparison of the I-V traces with microwave
radiation on (red) and off (blue). In the presence of microwave radiation, Shapiro steps
appear at voltages Vn = nhf/2e with n = 0, 1, 2, .... (c) Plot of the n-th order Bessel
function of the first kind. They describe the stepwidth of the n-th step, respectively.
Adapted from [79].

arise. For Idc− Iac, the particle is trapped in a potential minimum, while for Idc + Iac
the particle moves down the potential. During one period of oscillation ∆t = 1/f ,
the particle can go down n minima before it is trapped again. The resulting phase
difference is ∆ϕ = 2πn. Using the second Josephson equation (2.2.24), we obtain

∆ϕ
∆t = 2eV

~
= 2πn

1/f . (2.2.32)
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According to this, the constant Shapiro steps appear at voltages

Vn = n
hf

2e for n = 0, 1, 2, .... (2.2.33)

An I-V trace of a Josephson junction in the presence of microwave radiation is shown
in figure 2.13(b).

An analytic solution exists only for the ideal voltage-biased case. Here, the external
voltage is written as

V = Vdc + Vac cos (ωact) . (2.2.34)
After replacing V by the second Josephson equation (2.2.24) and integrating the
equation, we obtain

ϕ = ω0 + 2eVac
~ωac

sin (ωact) + ϕ0 (2.2.35)

with ω0 = 2eVdc/~ and the constant of integration ϕ0. We insert ϕ into the first
Josephson equation (2.2.23) and use the expansion of the sine as a Bessel func-
tion where Jn is the n-th order Bessel function of the first kind7. The resulting
supercurrent is

IS = IC
∞∑

n=−∞
(−1)n Jn

(2eVac
~ωac

)
sin ((ω0 − nωac) t+ ϕ0) . (2.2.36)

If (ω0 − nωac) t is time-dependent, there is a sum of sinusoidally varying terms which
results in a time-averaged zero supercurrent. However, if ω0 = nωac, the expression is
time-independent, and we get a dc supercurrent. This condition is equal to equation
(2.2.33). The amplitude of the averaged dc current on the n-th Shapiro step is given
by

|〈IS〉| = IC |Jn
(2eVac
~ωac

)
| (2.2.37)

which corresponds to half of the stepwidth of the n-th step. A plot of the Bessel
function |Jn| for n = 0, 1, 2, 3 is shown in figure 2.13(c). By increasing the microwave
amplitude Vac for a fixed ωac, the width of the zero-voltage step decreases while the
first step appears followed by the higher ones. For larger amplitudes, the step widths
oscillate as a function of Vac.

As already noted, this approach is only valid for the ideal voltage-biased case.
However, an ideal voltage bias is difficult to achieve, and the junctions are mostly
current-biased in the experiments. For this situation, no analytic solution exists, and
numerical calculations are required to obtain the step widths. The results of Russer
[83] for an ideal current-biased junction suggest that a time-averaged supercurrent is
even present for V 6= Vn, and the oscillations of the step widths are similar to the
voltage-biased case [66].

7sin (a+ bsin (x)) =
∑∞
n=−∞ (−1)n Jn (b) sin (a− nx).

33



2 Theoretical background

2.2.6 Josephson junctions in a magnetic field

The presence of a magnetic field can have various effects on Josephson junctions.
Typically, a magnetic field acts as a pair breaking mechanism for Cooper pairs
[84–87]. Here, the superconducting gap ∆ is monotonously reduced by a magnetic
field. However, even magnetic fields which are too low to play a role for the pair
breaking can cause a variation of the supercurrent. The most prominent example
is the formation of a so-called Fraunhofer pattern which arises in the presence of
an out-of-plane magnetic field. We derive its origin by considering a 2D Josephson
junction in the xy-plane as it is shown in figure 2.14(a). The current flows along the
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FIG. 2.14: (a) Sketch of a 2D Josephson junction in the xy-plane while the magnetic
field B is orientated along the z-direction. The magnetic flux threading the area of the
red rectangle is ∆Φ = BL∆y while the flux penetrating the whole area of the junction
is Φ = BWL. (b) The normalized critical current IC (Φ) /IC (0) as a function of the
magnetic flux. The trace resembles the Fraunhofer diffraction pattern. The dashed lines
correspond to the situations described in (c). (c) Local distribution of the supercurrent
along the y-axis for three different values of the magnetic flux Φ. For integer multiples of
the superconducting flux quantum, the local supercurrent flowing in opposite directions
cancel each other (middle panel). Thus, IC = 0. Between these values a net positive
current remains (left and right panel). Adapted from [88].

x-axis while d is the distance between the superconducting contacts, and W is the
width of the junction. It is well known that an applied magnetic field B enters a
superconductor up to the London penetration depth λL [89]. Thus, we define the
effective length of the junction L = d+ 2λL. We take a look at the magnetic flux ∆Φ
through a rectangular area A with an infinitesimally small width ∆y → 0. For the
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sake of visualization, we sketch an area by red dashed lines in figure 2.14(a). The
magnetic flux is given by ∆Φ = BA = BL∆y. In addition to the phase difference
between the superconducting leads ϕ, there is now an additional phase difference
caused by the magnetic flux ∆ϕ = 2π∆Φ/ΦS = 2πBL∆y/ΦS. Here, we explicitly
use the superconducting flux quantum ΦS = h/2e. Thus, it holds

∆ϕ
∆y = 2πBL

ΦS

. (2.2.38)

Introducing the magnetic flux through the whole area of the junction Φ = BLW and
integrating equation (2.2.38), we obtain

ϕ (y) = 2πΦ
WΦs

y + ϕ0 (2.2.39)

where ϕ0 is a constant of integration. The local Josephson current jS (y) is given by
jS (y) = jC (y) sin [ϕ (y)] analogous to the first Josephson equation (2.2.23) where jC
is the critical current density. Assuming an uniform current distribution along the
junction, j (y) = IC (B = 0) /W holds. By integrating over the total width of the
junction, we get the Josephson supercurrent

IS (Φ) =
∫ W/2

−W/2

IC(0)
W

sin
(

2πΦ
WΦS

y + ϕ0

)
= IC (0) sin (πΦ/ΦS)

πΦ/ΦS

sin (ϕ0) . (2.2.40)

We reach the maximum Josephson current max[IS (Φ)] = IC(Φ) by maximizing the
equation with respect to ϕ0:

IC (Φ) = IC (0)
∣∣∣∣sin (πΦ/ΦS)

πΦ/ΦS

∣∣∣∣. (2.2.41)

The resulting critical current IC (Φ) is visualized in figure 2.14(b). Due to the
similarity to the optical phenomenon, this is referred to as the Fraunhofer diffraction
pattern. For a deeper understanding of the current flow in the Josephson junction
with an applied magnetic field, we look at the spatial distribution jS(y) ∼ sin [ϕ (y)].
Figure 2.14(c) shows the distribution of jS (y) with ϕ0 = 0 along y for three values of
the magnetic flux. For Φ/ΦS = 1/2, the phase shift due to the magnetic field ϕ (y)
lies between 0 and π in the range y = 0−W according to equation (2.2.39). This
gives a positive net current which is already reduced compared to the situation of
zero flux. When the flux is an integer multiple of the flux quantum Φ = nΦS, the
total critical current is zero since the supercurrent has equal amounts flowing in both
directions. Between these points, the net critical current is positive, as exemplarily
shown for Φ/ΦS = 5/2, since a part of the supercurrent is not compensated by a
current running in the opposite direction.

As a regular Fraunhofer pattern only arises for a homogeneous current distribution,
its appearance in the experiment indicates a high quality of the interface between the
normal conductor and the superconducting contacts. An inhomogeneous distribution
of the supercurrent leads to deviations from the ideal Fraunhofer pattern.
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2.3 Topological superconductivity

The concept of topology can also be applied to superconductors. So-called topological
superconductors are characterized by zero-energy states which are localized at their
boundaries. These are known as Majorana bound states. In this section, we introduce
the Majorana bound states and show how they emerge in 1D p-wave superconductors.
An effective 1D p-wave superconductor is also realized by the combination of a
topological insulator nanowire and an s-wave superconductor. Since our experiments
are performed on such a system, we take a closer look at the theoretical proposal for
the emergence of Majorana bound states in topological insulator nanowires.

2.3.1 Unconventional superconductivity

Until now, we have only dealt with s-wave superconductivity which is referred to as
conventional superconductivity. Here, Cooper pairs are formed due to an attractive
interaction among electrons with opposite spins s, s′. This is the most symmetric
form of pairing where the relative orbital angular momentum vanishes, and the spin
is in singlet configuration. The pair wavefunction of the Cooper pairs is given by

Ψ (~r, s;~r ′, s′) = f (|~r − ~r ′|)χ (s, s′) (2.3.1)

where f (~r) describes the orbital part of the wavefunction and χ the spin part.
In any case, the wave function has to be antisymmetric when inverting the two
electrons of the Cooper pair. For a conventional superconductor, the spin part is
antisymmetric: χ (s, s′) = −χ (s′, s). Thus, the orbital part is symmetric and fulfills
f (−~r) = f (~r).

All superconductors that deviate from this rule are called unconventional supercon-
ductors. Here, the spin part could be symmetric χ (s, s′) = χ (s′, s), while the orbital
part is antisymmetric f (−~r) = −f (~r) [90]. In the following, we take a look to one of
the simplest form of unconventional pairing, namely p-wave pairing in one dimension.
The asymmetry of the orbital part is achieved by a constant pairing potential, which
changes its sign depending on the direction of the particles’ propagation [27, 28].
Before explicitly calculating the energy spectrum of an 1D p-wave superconductor,
we point out why p-wave superconductivity is an important building block for the
occurrence of Majorana bound states.

2.3.2 Majorana fermions in condensed matter physics

The complex Dirac equation, which was established by Paul Dirac in 1930 [91],
describes fermionic particles with spin 1/2. While the positive-energy solutions
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describe electrons, the negative-energy solutions correspond to their antiparticles, the
positrons, which have the same mass and spin but opposite charge. Both particles
are related by the complex conjugate of its wave function, respectively. In 1937,
Ettore Majorana proposed that the complex Dirac equation can be separated in a
pair of real wave functions [11]. This solution describes a so-called Majorana fermion.
It is a particle which is its own antiparticle. Thus, it holds

γ = γ† (2.3.2)

for its annihilation and creation operator [92]. So far, it is still not clear if there
are elementary particles which are Majorana fermions, e.g. neutrinos are potential
candidates [93].

However, Majorana fermions are also proposed in condensed matter physics. Here,
they are not free particles. They exist as quasiparticle excitations, so-called Majorana
bound states. These states have attracted a lot of theoretical interest since they
obey non-Abelian exchange statistics and, therefore, could serve as a platform for
topological quantum computation [10].

In principle, any fermion can be separated into two Majorana fermions:

c = 1
2(γ1 + iγ2),

c† = 1
2(γ1 − iγ2)

(2.3.3)

with the fermionic annihilation and creation operators c and c†. Normally, this has
no physical consequences because the two Majorana fermions are localized close to
each other and cannot be addressed individually. Therefore, Majorana fermions
become only interesting when they are spatially separated and do not overlap [94].
Inverting equation (2.3.3) gives

γ1 = c† + c,

γ2 = i
(
c† − c

)
.

(2.3.4)

It follows that a Majorana fermion can be viewed as an equal superposition of an
electron and a hole. Therefore, superconductors turn up as a potential platform
since their quasiparticle excitations are also superpositions of electrons and holes.
In the Bogoliubov-de Gennes formalism, which was introduced in section 2.2.1, the
annihilation operator of a Majorana fermion, i.e. a quasiparticle with equal weight
of an electron-like and a hole-like excitation, reads γ = vnc

†
σ + uncσ with un = vn

and spin σ. This operator fulfills the condition γ = γ†. Since un = vn, we expect an
excitation exactly between electron-like and hole-like excitations, i.e. with excitation
energy E = 0. In contrast to the s-wave annihilation operator of a Bogoliubon (see
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equation (2.2.10)) where the fermion operators have opposite spin8, the fermion
operators creating a Majorana fermion have equal spin [94]. Thus, such quasiparticles
do not exist in s-wave superconductors. However, if the pairing of spinless fermions
is assumed, the annihilation operator of a Bogoliubon does not have spin indices,
and it holds γ = γ†. The Cooper pair wavefunction of such spinless fermions has no
spin part. Since the Cooper pair wavefunction must be antisymmetric due to the
Pauli principle, the antisymmetry must be in the orbital part. Therefore, s-wave
pairing, where the antisymmetry is in the spin part and the orbital part is symmetric,
is not possible. Though, the antisymmetry in the orbital part could be achieved
by p-wave pairing. Using this heuristic arguments, it follows that Majorana bound
states emerge as zero-energy excitations in spinless p-wave superconductors [95]. In
the next section, we explicitly show their emergence at the boundaries of an 1D
p-wave superconductor.

2.3.3 Majorana fermions in an 1D p-wave superconductor

The Hamiltonian of an 1D spinless superconductor is given by

H =
∑
k

c†kεkck + 1
2
[
∆c†kc

†
−k + ∆∗ckc−k

]
. (2.3.5)

We focus on the situation where εk = p̂2/2m− µ describes an 1D metal of spinless
or spin-polarized fermions. Since a momentum-independent s-wave pairing is not
possible, we introduce a momentum-dependent p-wave potential ∆ = ∆0p̂ where
∆0 is a constant pairing potential and p̂ = −i~∂x is the momentum operator. The
Hamiltonian can be diagonalized using the Bogoliubov-Valatin transformation (2.2.4)
without spin indices ck = u∗kγk + vkγ

†
−k. Analogous to section 2.2.1, we derive

E = ±
√

(p2/2m− µ)2 + |∆0|2p2,

vk =
√

1
2

(
1− εk

E

)∆∗
|∆| and uk =

√
1
2

(
1 + εk

E

)
.

(2.3.6)

The functions uk and vk are determined only up to an overall phase. Thus, they can
be multiplied by a phase eiϕ without changing any physics [96]. The energy spectrum
E(k) for ∆0 6= 0 is plotted as black lines in figure 2.15 for three different cases. The
spectrum is gapped for µ > 0 as well as for µ < 0, while it becomes gapless for
µ = 0. This is the important difference to the s-wave pairing where the system is
gapped even for µ = 0. The cases µ > 0 and µ < 0 describe different topological
phases. While the phase for µ > 0 is called weak-pairing phase, µ < 0 describes the
strong-pairing phase. They cannot be adiabatically connected to each other without

8Here, γ 6= γ†.
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FIG. 2.15: Energy spectrum of a 1D p-wave superconductor (black lines). For comparison,
the spectrum is also shown in the absence of pairing ∆ = 0 (red dashed lines). (a) For
µ < 0, the spectrum is gapped for ∆ 6= 0 and ∆ = 0. Both states are topologically
equivalent to the trivial insulating state. (b) The spectra become gapless for µ = 0. (c)
For µ > 0, the energy spectrum is gapless if ∆ = 0, while it is gapped for ∆ 6= 0. Since the
latter case cannot be transformed to the trivial insulating state without closing the gap, it
describes a nontrivial topological phase. Adapted from [97].

closing the band gap. Thus, one of them is expected to have a nontrivial topology.
To derive the topological phase, we additionally show the spectra for ∆ = 0 as red
dashed lines in figure 2.15. For µ < 0, the system is a gapped trivial insulator. By
turning on ∆, the system remains gapped. Hence, this phase can be adiabatically
connected to the trivial insulating phase. When µ > 0 and ∆ = 0, the system is
metallic, i.e. gapless. It becomes only gapped for a finite ∆. By trying to connect
the phase µ > 0 and ∆ 6= 0 to the trivial insulating phase where µ < 0 and ∆ = 0,
we always have to pass a gapless point or region [97]. Thus, there is a topological
phase transition, and the system is topologically nontrivial for µ > 0 and ∆ 6= 0.
Therefore, zero-energy bound states exist at the boundary between the topological
system and any trivial system. We explicitly show that by considering a boundary at
the position x = 0 between the weak-pairing (x > 0) and the strong-pairing (x < 0)
phase, i.e. we define µ (x) = µ0 for x > 0 and µ (x) = −µ0 for x < 0. Furthermore,
the BdG equations in real space have to be used which are analogously derived as in
section 2.2.1. The BdG equations take the form

(
p̂2

2m − µ(x) ∆0p̂

∆∗0p̂ − p̂2

2m + µ(x)

)(
un (x)
vn (x)

)
= E

(
un (x)
vn (x)

)
. (2.3.7)

For the sake of simplicity, we set ~ = 1. Thus, p̂ = k̂ = −i∂x. In the limit of small k,
i.e. neglecting quadratic terms, and looking for zero-energy solutions, it holds

(
−µ (x) −∆0∂x
−∆∗0∂x µ (x)

)(
un (x)
vn (x)

)
= 0. (2.3.8)
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We take the ansatz9 (
un (x)
vn (x)

)
= e−

1
∆0

∫ x
0 µ(x′)dx′

(
u0
v0

)
(2.3.9)

and insert it into equation (2.3.8). This gives(
−µ (x) iµ (x)
iµ (x) µ (x)

)(
u0
v0

)
= 0. (2.3.10)

A solution of this equation is given by(
u0
v0

)
= 1√

2

(
1
−i

)
. (2.3.11)

This solution inserted into the ansatz describes a zero-energy mode localized at the
boundary. The annihilation operator of the corresponding Bogoliubon is given by
the spinless version of equation (2.2.17):

γ =
∫
dx
[
u∗n (x)ψ (x) + v∗n (x)ψ† (x)

]
= 1√

2

∫
dx e−

1
∆0

∫ x
0 µ(x′)dx′ [

ψ (x) + iψ† (x)
]
.

Using i = e−iπ/2, we derive

γ = eiπ/4√
2

∫
dx e−

1
∆0

∫ x
0 µ(x′)dx′ [e−iπ/4ψ (x) + eiπ/4ψ† (x)

]
. (2.3.12)

After removing the overall phase of π/4, we notice that γ = γ† holds, and the
operator describes a Majorana fermion [97].

There is also a topological invariant describing topological superconductivity in one
dimension. This invariant is called Majorana numberM and was firstly introduced
by A. Kitaev [12]. This number can take the values M = ±1, while the trivial
phase is labeled withM = 1. The nontrivial phase is described byM = −1 and
is expected to have zero-energy modes at the boundaries. Although the general
determination is very complicated, the derivation of the Majorana number simplifies
to

M = (−1)ν (2.3.13)
in the limit of a small pairing potential ∆. The exponent ν counts the number
of points crossing the Fermi energy in the right half of the Brillouin zone of the
normal spectrum, i.e. the energy spectrum of the underlying system including all
degeneracies without introducing superconductivity. The second important criterion
for the appearance of zero-energy modes at the boundaries is that a finite energy gap
evolves when superconductivity is induced. In the original publication from 2001,

9The equations to solve take the same form as in the work of Jackiw and Rebbi [98]. It differs in
the fact that they investigated a sign change of the mass at a boundary.
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2.3 Topological superconductivity

Kitaev stated that the gap has to be induced by proximity of a p-wave superconductor.
Since p-wave superconductors are very rare in nature as well as they are not well
understood [13], a possible realization was far away at that time. However, after the
emergence of topological insulators, Fu and Kane [14] discovered that the induction
of s-wave superconductivity to the surface states of a topological insulator leads to
an effective p-wave superconductor. Therefore, we expect the emergence of Majorana
fermions in topological insulators withM = −1 where a superconducting gap ∆ is
induced by proximity to an s-wave superconductor.

2.3.4 4π-Josephson effect

In the previous section, we showed that Majorana fermions can emerge at boundaries
of an 1D p-wave superconductor. However, an experimental signature is needed to dis-
tinguish effective s-wave and p-wave pairing. Hence, we will derive the Andreev bound
state spectrum of a junction made of an 1D p-wave superconductor which is orientated
along the x-axis following Kwon et. al. [27, 28]. A cartoon of the device is sketched in
figure 2.16. Additionally, we simultaneously calculate the spectrum for s-wave pairing,

Δ0

Δ0e
iφ

x

FIG. 2.16: Sketch of a 1D supercon-
ducting nanowire orientated along
the x-axis. The weak link (gray) sep-
arates the left (∆L = ∆0) and right
electrode (∆R = ∆0eiϕ). Adapted
from [27].

point out the differences, and explain the different
signatures in the experiments. The Hamiltonian
of the 1D conductor in the normal state is given
by HN = ~2k̂2

x/2m− µ+ U (x) where k̂x = −i∂x.
The weak link is described by a potential barrier
U = U0δ (x) at the position x = 0 between the
left and right electrode. It is worth to mention
that the following calculations are only valid for
short junctions as we assume an infinitesimally
small weak link. The calculations will be shown
assuming an s-wave pairing potential as well as
a p-wave pairing potential. They can be written
as

∆β(x, k̂x) =
∆β for s-wave pairing

∆β
k̂x
kF

for p-wave pairing.
(2.3.14)

Here, β = R labels the right (x > 0) and β = L the left (x < 0) side of the junction
with ∆L = ∆0 and ∆R = ∆0eiϕ where ϕ is the superconducting phase difference
across the junction. Thus, the s-wave pairing is described by a constant pairing
potential ∆0, while the p-wave pairing potential changes its sign depending on the
direction of the particles’ propagation. The BdG equation yields HN(x) ∆β

(
x, k̂x

)
∆∗β

(
x, k̂x

)
−HN(x)

Ψn = EnΨn. (2.3.15)

41



2 Theoretical background

A general solution is a superposition of right and left moving particles with momenta
close to αkF where α = ± labels the right- and left-moving electrons, and β is ±1
for L and R when it is used as a factor. The ansatz takes the form

Ψβ =
[
Aβ

(
uβ+
vβ+

)
eikF x +Bβ

(
uβ−
vβ−

)
e−ikF x

]
eβκx. (2.3.16)

This wave function decays exponentially with increasing distance from the interface
with the length 1/κ. The coefficients uβα and vβα are determined by substituting
the right- and left-moving terms separately into equation (2.3.15) at x 6= 0 where
U(x) = 0. Assuming p-wave pairing, the equation for the coefficients in the limit
kF � κ10 and with ~2k2

F/2m = µ reads(
~2

2m(−2iαβκkF )− E α̃∆β

α̃∆∗β − ~2

2m(−2iαβκkF )− E

)(
uβα
vβα

)
=
(

0
0

)
. (2.3.17)

At this point, we want to address how this equation changes if we assume s-wave
pairing. To illustrate the difference, we introduced α̃. In the case of p-wave pairing,
the factor α equals α̃, while the factor α̃ vanishes (α̃ = +1) for s-wave pairing, and
only α remains. The equations (2.3.17) are compatible if the determinant of the
corresponding matrix is zero. Evaluating this determinant and solving for κ gives

κ =
m
√

∆2
β − E2

~2kF
. (2.3.18)

Furthermore, we solve one equation of (2.3.17) for vβα/uβα and plug in κ. It yields

ηβα := vβα
uβα

=
E − iαβκ~2kF

m

α̃∆β

=
E − iαβ

√
∆2
β − E2

α̃∆β

. (2.3.19)

In the next step, we find the boundary conditions at x = 0. Due to the continuity of
the wave functions, the first condition is

ΨR(x = 0) = ΨL(x = 0). (2.3.20)

The derivatives are not continuous because of the δ-potential. However, the relation
of the derivatives is found by integrating the BdG equation (2.3.15) around an
infinitesimally small range11. Thus, the second boundary condition is

∂xΨR(x = 0)− ∂xΨL(x = 0) = 2mU0

~2 ΨL=R(x = 0). (2.3.21)

10In the calculations, we assume κ/ikF → 0.
11For ε > 0 and Ψβ =

(
Ψβ1
Ψβ2

)
, we exemplarily integrate the first equation for p-wave pairing:

0 = lim
ε→0

∫ ε

−ε
EΨβ1dx = lim

ε→0

∫ ε

−ε

[(
−~2∂2

x

2m + U0δ(x)
)

Ψβ1 + ∆β
−i∂x
kF

Ψβ2

]
dx =

42



2.3 Topological superconductivity

By substituting equation (2.3.16) into the first boundary condition (2.3.20) as well
as into the second boundary condition (2.3.21), we get the set of equations in the
limit kF � κ:

uL+ −uR+ uL− −uR−
vL+ −vR+ vL− −vR−

(2Z + i)uL+ −iuR+ (2Z − i)uL− iuR−
(2Z + i)vL+ −ivR+ (2Z − i)vL− ivR−



AL
AR
BL

BR

 =


0
0
0
0

 . (2.3.22)

Here, we defined Z = mU0/~2 analogous to the BTK theory [75]. The determinant
of this matrix has to be equal to zero to achieve compatible equations. By evaluating
this determinant and introducing the transmission D, which is related to Z by
Z =

√
(1−D)/D, we obtain

1−D = (uR+vL+ − uL+vR+) (uL−vR− − uR−vL−)
(uL+vR− − uR−vL+) (uR+vL− − uL−vR+) . (2.3.23)

By using ηβα = vβα/uβα, it simplifies to

1−D = (ηR− − ηL−) (ηR+ − ηL+)
(ηR+ − ηL−) (ηR− − ηL+) . (2.3.24)

We plug in ηβα for the s-wave case which is given by equation (2.3.19) (α̃ = +1) and
use ∆L = ∆0, ∆R = ∆0eiϕ. Solving this equation for E yields

Es-wave
± = ±∆0

√
1−D sin2(ϕ/2). (2.3.25)

This is the Andreev bound state spectrum for s-wave pairing. Analogously, we insert
equation (2.3.19) in equation (2.3.24) to obtain the Andreev bound state spectrum
for p-wave pairing:

Ep-wave
± = ±∆0

√
D cos(ϕ/2). (2.3.26)

The resulting Andreev bound state spectrum for s-wave and p-wave pairing is plotted
in figure 2.17(a, d), respectively. In the s-wave case, the spectrum is 2π-periodic
in ϕ for any value of D, except for perfect transmission D = 1. However, a perfect
transmission is hardly reachable in realistic systems. Therefore, there always exists a
gap at ϕ = π. For p-wave pairing, the spectrum is 4π-periodic in ϕ for any value of
D while a value D < 1 opens a gap between the bound states and the continuum at
ϕ = n ·2π with n = 0, 1, 2, .... The periodicity and the crossing point at E(ϕ = π) = 0
remains unaffected by D.

−~2∂x
2m ΨR1(0) + ~2∂x

2m ΨL1(0) + U0ΨR1(0) + −i∆β

kF
(ΨR2(0)−ΨL2(0))

where the last term vanishes due to the first boundary conditions. The second equation gives the
corresponding equation, where Ψβ2 and Ψβ1 are exchanged. For s-wave pairing, the calculation
works analogous while the final boundary condition is the same.
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FIG. 2.17: (a) Andreev bound state spectrum assuming an s-wave pairing potential for
different values of the transmission D. (b) The resulting current-phase relation for the same
values of D. It is 2π-periodic with respect to the phase difference ϕ. (c) I-V trace in the
presence of microwave radiation. All Shapiro steps at Vn are visible when the current-phase
relation is 2π-periodic (see section 2.2.5). (d) Andreev bound state spectrum assuming a
p-wave pairing potential for the same values of D as in (a). (e) The resulting current-phase
relation is 4π-periodic. (f) I-V trace in the presence of microwave radiation. The even
steps exclusively emerge for a 4π-periodic current-phase relation. Adapted from [27, 28,
34].

The current carried by a quasiparticle state can be calculated by

IS = 2e
~
∂E(ϕ)
∂ϕ

. (2.3.27)

Thus, the Josephson current of a single state assuming s-wave pairing is

Is−waveS = ± 2e∆0D

4~
√

1−D sin2(ϕ/2)
sin(ϕ). (2.3.28)

in the limit of zero temperature. The resulting current-phase relation is plotted in
figure 2.17(b). For clarity, only the result for one sign is plotted. In the limit D � 1,
we recover the perfectly sinusoidal relation as it was derived in section 2.2.3 with the
Josephson frequency fJ = 2eV/~.
The Josephson current assuming p-wave pairing is given by

Ip−waveS = ±e∆0
√
D

~
sin(ϕ/2). (2.3.29)

The resulting 4π-periodic current-phase relation is plotted in figure 2.17(e). If a
small voltage eV � ∆0 is applied to the junction, the phase difference acquires a
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2.3 Topological superconductivity

dependence on time ϕ(t) = 2eV t/~, and an occupied state produces the current

Ip−waveS = e∆0
√
D

~
sin(eV t

~
). (2.3.30)

The frequency of the current fJ/2 = eV/~ is exactly half of the conventional Josephson
frequency fJ . The fractional frequency has its origin in the fact that the energy in
equation (2.3.26) has the period 4π in ϕ, rather than the conventional 2π. This has
also consequences for the appearance of Shapiro steps. In section 2.2.4 and 2.2.5, we
discussed the washboard potential and the emergence of Shapiro steps with respect
to a 2π-periodic supercurrent IS ∼ sin (ϕ) in the presence of microwave radiation. If
such a current is replaced by a 4π-periodic supercurrent of the form IS ∼ sin (ϕ/2),
also the washboard potential becomes 4π-periodic. Here, when irradiated with
microwaves, a phase particle descends m minima during one period of oscillation,
and the resulting phase difference is ∆ϕ = 4πm. Thus, the Shapiro steps appear at
voltages Vm = mhf/e for m = 0, 1, 2, ... or written alternatively

Vn = n
hf

2e for n = 0, 2, 4, .... (2.3.31)

Hence, the Shapiro steps with odd numbers are missing compared to the 2π-periodic
case (see equation (2.2.33)). The expected I-V traces of a junction in the presence
of microwave radiation are shown in figure 2.17(c, f) for a 2π- and a 4π-periodic
supercurrent, respectively. Therefore, the missing of odd steps is an indication for
an effective p-wave pairing and a signature of a gapless Majorana bound state.

Finally, we take a look at the temperature dependence of the current-phase relations.
In order to get the resulting currents at a finite temperature, one had to sum up over
all states and multiply with the Fermi occupation function:

IS (T ) = 2e
~
∑
j=±

∂Ej
∂ϕ

fα (2.3.32)

with the Fermi occupation function fj = 1
eEj/kBT+1

. The results are given by

Is−waveS (T ) = Is−waveS (0) tanh
(
E−

2kBT

)
(2.3.33)

and
Ip−waveS (T ) = Ip−waveS (0) tanh

(
∆0
√
D cos (ϕ/2)
2kBT

)
. (2.3.34)

2.3.5 Majorana fermions in topological insulator nanowires

As discussed in section 2.3.3, Kitaev introduced the Majorana numberM and for-
mulated criteria for the emergence of topological superconductivity in one dimension.
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FIG. 2.18: (a) Subband structure of a topological insulator nanowire for three characteristic
values of the magnetic flux. Solid lines describe degenerate bands, while dashed lines show
nondegenerate states. The blue sections illustrate positions where the number of subbands
crossing the Fermi level is odd. (b) Phase diagram of a topological insulator nanowire as a
function of energy the E and the magnetic flux Φ. The numbers count subbands crossing
the Fermi level. An even number corresponds to a trivial phase, while an odd number
labels a topologically nontrivial phase. Adapted from [23].

Consequently, an odd number of Fermi level crossings in the right half of the Brillouin
zone of the normal-state band structure is needed. Based on this criterion, Cook
and Franz [23, 24] proposed that a nanowire formed of a 3D topological insulator
represents a quasi 1D topological superconductor when it is proximitized by an
s-wave superconductor. For illustration, we plot again the band structure (see section
2.1.4) of a topological insulator nanowire for three values of the magnetic flux in
figure 2.18(a). Degenerate bands with respect to angular momentum are shown as
solid lines, while nondegenerate bands are sketched as dashed lines. Since all bands
are twofold degenerate for Φ/Φ0 = 0, the number of Fermi level crossings in the right
half of the Brillouin zone is even for any value of E. Thus, the system is trivial,
andM = 1. By increasing the flux, the degeneracy of the bands is lifted. Hence,
positions of the energy E emerge where the number of Fermi level crossings in the
right half of the Brillouin zone is odd. These are exemplarily shown for Φ/Φ0 = 0.25
and marked in blue. For Φ/Φ0 = 0.5, the linear, nondegenerate bands evolve while
all other bands are again twofold degenerate. Therefore, the number of Fermi level
crossings in the right half of the Brillouin zone is odd, andM = −1 for any value of
E. Figure 2.18(b) shows the corresponding phase diagram. The numbers count the
Fermi level crossings in the right half of the Brillouin zone at the specific values for E
and Φ/Φ0. In the grayish areas, the Majorana number isM = −1, and the system
is topologically nontrivial. Thus, it is possible to tune the system from a trivial state
at Φ/Φ0 = 0 to a topological state at Φ/Φ0 = 0.5 by changing the external magnetic
field. So far, we only looked at the Majorana number M. The second criterion
is that a superconducting gap emerges when the topological insulator nanowire is
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2.3 Topological superconductivity

proximitized by an s-wave superconductor. Thus, we derive the energy spectrum of
proximitized topological insulator nanowires. The system is described by the BdG
Hamiltonian (2.2.14) [57, 73]. The Hamiltonian is given by H ∼ 1

2Ψ†HΨ with

H =
(
HWire ∆

∆∗ −σyH∗Wireσy

)
. (2.3.35)

Here, HWire = −i∂xσx + 1
R

(−i∂ϕ + η)σy − µσ0 as it was derived in section 2.1.4.
For the sake of simplicity, we neglect the prefactor 1/2, set ~vF to 1, and define
η := Φ/Φ0. Though, we explicitly add the Fermi level µ. The superconducting
pairing is given by ∆ = σ0∆0einνϕ with a constant ∆0. The exponential factor
einνϕ allows the order parameter ∆ to wind around the perimeter of the wire. This
describes vortices present in the system where nν denotes their number. Whether a
vortex is present in the system or not, depends on the detailed layout of the sample
geometry. If the wire is surrounded by a superconducting shell as it is sketched
in figure 2.19(a), the shell likely develops a phase winding at certain values of the
magnetic flux, and nν = 1. A different situation is shown in figure 2.19(b). The wire
lies on top of a flat superconductor. Here, a roughly homogeneous order parameter
∆0 is expected, i.e. nν = 0 [73, 99].

TI

SC
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SCB

B

φ

Δ(φ)= Δ0e
iφ Δ= Δ0

(a) (b)

FIG. 2.19: Sketch of a topological insulator nanowire proximitized by an s-wave super-
conductor. In (a), the wire is surrounded by the superconductor. The superconducting
phase winds around the perimeter, and a vortex can be present for certain values of the
magnetic flux. In (b), the wire is on top of a superconductor. Here, ∆ is homogeneous,
and no vortex is present. Adapted from [73].

By substituting HWire and ∆ in equation (2.3.35), the resulting Hamiltonian is given
by

H =


−µ −i∂x − 1

R (∂ϕ + iη) ∆0einνϕ 0
−i∂x + 1

R (∂ϕ + iη) −µ 0 ∆0einνϕ
∆0e−inνϕ 0 µ i∂x + 1

R (∂ϕ − iη)
0 ∆0e−inνϕ i∂x − 1

R (∂ϕ − iη) µ

 .
We now introduce the Pauli matrices τi in the particle-hole space. Thus, the
Hamiltonian can be written in the compact form

H =
[
−iσx∂x + 1

R
(−i∂ϕ + ητz)σy − µσ0

]
τz + ∆0σ0 [τx cos(nνϕ)− τy sin(nνϕ)] .
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The trigonometric terms are removed by the unitary transformation U = σ0eiτznνϕ/2
= σ0

(
τ0 cos(ϕ)− i

2τz sin(ϕ)
)
where τ0 is the unit matrix in particle-hole space. The

transformed Hamiltonian H̃ = UHU † reads

H̃ =
[
−iσx∂x + 1

R

(
−i∂ϕ +

(
η − nν

2

)
τz

)
σy − µσ0

]
τz + ∆0σ0τx. (2.3.36)

However, the transformation also modifies the boundary condition of the transformed
wave function Ψ̃ = UΨ since
Ψ̃ (ϕ+ 2π) = U (ϕ+ 2π) Ψ (ϕ+ 2π) = U (ϕ) eiτznνπ (−Ψ (ϕ)) = −Ψ̃ (ϕ) (−1)nν . If
no vortex is present, i.e. nν = 0, the exponential term disappears, and we derive an
antiperiodic boundary condition as in section 2.1.4 with kϕ = ±1

2 ,±
3
2 ,±

5
2 , .... When

nν = 1, the exponential term gives an additional factor of −1, and the boundary
condition becomes periodic. Thus, it follows kϕ = 0,±1,±2, .... For the case that
half a magnetic flux quantum is applied to the wire (η = 1/2) and a vortex is present
(nν = 1), the Hamiltonian simplifies to

H̃ =
[
k̂xσx + 1

R
k̂ϕσy − µσ0

]
τz + ∆0σ0τx. (2.3.37)

The eigenvalues are extracted by squaring the Hamiltonian twice:

H̃2 −
[
|k̂x|214 + 1

R2 |k̂ϕ|
214 + µ214 + ∆2

014

]
= −2µ

(
k̂xσx + 1

R
k̂ϕσy

)
τ0.

[
H̃2 −

[
|k̂x|214 + 1

R2 |k̂ϕ|
214 + µ214 + ∆2

014

]]2
= 4µ2

(
|k̂x|214 + 1

R2 |k̂ϕ|
214

)
.

This equation contains only unit matrices. Thus, the eigenvalues can be directly
extracted from the equation[

E2 −
[
k2
x + 1

R2k
2
ϕ + µ2 + ∆2

0

]]2
= 4µ2

(
k2
x + 1

R2k
2
ϕ

)
. (2.3.38)

When only the first mode is occupied (kϕ = 0), the energy spectrum is given by

E = ±
√
k2
x + µ2 + ∆2

0 ± 2µkx. (2.3.39)

The resulting spectrum for nν = 1 and η = 1/2 is shown in figure 2.20(a) with
R = 1, µ = 0.3, and ∆0 = 0.15, while figure 2.20(b) shows the energy spectrum for
nν = 0. For the latter case, we dispense with a detailed calculation since it is more
complicated. Here, the eigenvalues of the Hamiltonian have been derived numerically
for kϕ = ±1/2.

When a vortex is present, the resulting spectrum, sketched in figure 2.20(a), is gapped.
Hence, both criteria for the emergence of Majorana bound states are fulfilled. On
the other hand, the spectrum remains gapless in the absence of a vortex.
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FIG. 2.20: (a) Energy spectrum of a superconducting topological insulator nanowire if
only one subband (kϕ = 0) is occupied, a vortex is present (nν = 1), and η = 0.5 with
R = 1, µ = 0.3, and ∆0 = 0.15. The spectrum is gapped. (b) Energy spectrum of a
superconducting topological insulator nanowire in the absence of a vortex (nν = 0). Here,
the lowest subbands are described by kϕ = ±1/2. The other parameters are identical as in
(a). The spectrum is gapless. (c-d) The corresponding spectra to (a) and (b) for ∆ = 0.
Electron-like branches are shown as solid lines, while dashed lines describe the hole-like
spectrum. When a vortex is present (c), the linear modes are given by kϕ = 0. In the
absence of a vortex, the linear hole mode has kϕ = −1/2, while kϕ = +1/2 holds for the
linear electron mode. Adapted from [73].

To give a more demonstrative argument for the differences of both cases, we plot the
spectrum in the absence of a pairing potential (∆0 = 0) for nν = 0 in figure 2.20(d).
For ∆0 = 0 the upper left block and the lower right block of the Hamiltonian (2.3.35)
are fully decoupled. The upper left block describes electrons. Their energy was
already calculated in section 2.1.4 and gives E = ±

√
k2
x + (kϕ − η)2 − µ for ~vF = 1

and R = 1. The resulting spectrum is shown by the solid lines in figure 2.20(d). The
blue line describes the case kϕ = −1/2 and the red trace kϕ = +1/2. The latter
presents the linear mode. To get the solution for the lower right block, we derive the
energy for holes (time-reversed electrons). This gives E = ±

√
k2
x + (kϕ + η)2 + µ.

The resulting spectrum is shown by the dashed lines in figure 2.20(d). Again, the blue
line describes the case kϕ = −1/2 and the red trace kϕ = +1/2. Here, kϕ = −1/2
leads to the linear branch. Therefore, the electron and the hole branch at E = 0
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have different angular momenta. If we include superconducting pairing, different
angular momentum subblocks of the Hamiltonian cannot be mixed by the pairing
potential. Thus, the spectrum cannot be gapped out [73].

The situation is different for nν = 1 where kϕ = 0 if only the first mode is occupied.
The energy in the absence of pairing can simply be derived by setting ∆0 = 0 in
equation (2.3.39). It yields E = ±kx ± µ. The spectrum is shown in figure 2.20(c).
The linear branches are identical to the case nν = 0. However, they are now particle-
hole conjugates of kϕ = 0, and the pairing can gap them out as it is sketched in
figure 2.20(a) [73].

This argumentation suggests that it is only possible to observe induced supercon-
ductivity in a topological insulator nanowire when a vortex is present. However, de
Juan et al. [73] showed that this statement is only true for nanowires with discrete
rotational symmetry. If the symmetry is broken, e.g. by disorder, a gap also develops
without a vortex even if this one is much smaller than the one obtained with a vortex.
Another work by Legg et al. [100] showed that a nonuniform chemical potential
across the cross-sectional area of the wire also enables the emergence of Majorana
bound states without a vortex. Typically, such a nonuniform distribution is present
in the wires used for the experiments [31, 32]. These results are important since they
suggest that it is also possible to obtain Majorana bound states in the absence of a
vortex. This makes the experiments more feasible since we do not have to clarify the
existence of a vortex in the experiment.

50
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This chapter deals with the methods of nanofabrication and the experimental setup.
Firstly, the wafer design is reviewed, and the different fabrication techniques are
explained. Furthermore, the cryogenic system, i.e. the dilution refrigerator, and
the sample holder are presented. After a special focus is placed on the filtering
of the measurement lines, the electronic circuit of the measurement setup will be
described.

3.1 Wafer material

(a) (b)

FIG. 3.1: Wafer design of the investigated samples. The 80 nm HgTe film (a) and the
50 nm HgTe film (b) are sandwiched between two Cd0.45Hg0.55Te layers, respectively. The
structure is grown on a GaAs substrate and a CdTe layer. Finally, the wafers are capped
by CdTe. The surface states are indicated in red. Adapted from [31].

The investigated wafers were grown by molecular beam epitaxy (MBE) at the A.
V. Rzhanov Institute of Semiconductor Physics in Novosibirsk. Wafer designs with
different thicknesses of the HgTe film were used during this thesis. The structure of
a wafer consisting of an 80 nm HgTe layer is illustrated in figure 3.1(a), while the
HgTe film in figure 3.1(b) has a thickness of 50 nm. In both cases, the layers are
grown on a (013) GaAs and an MBE-grown CdTe substrate. As discussed in section
2.1.3, the HgTe is strained due to the growth on CdTe, and a band gap is opened in
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the bulk band structure of HgTe. Additionally, a 20 nm Cd0.7Hg0.3Te buffer layer is
introduced between the HgTe and the substrate to reduce dislocations induced by the
lattice mismatch. This increases the electron mobility by one order of magnitude [30].
Finally, the wafers are capped by a 20 nm Cd0.7Hg0.3Te and a 40 nm CdTe layer to
protect the top interface. Typically for these structures, the Fermi energy is located
in the valence band where surface electrons and bulk holes co-exist [30, 31].

Furthermore, wafers with an 80 nm HgTe layer were grown where an Indium doping
was added in the Cd0.7Hg0.3Te layers. This leads to a strong n-doping, and the Fermi
energy is expected to be in the conduction band.

3.2 Sample fabrication

An essential part of this project was spent on developing and optimizing the fabrica-
tion techniques. The fabrication of nanowires requires suitable lithographic processes
and etching procedures. However, the biggest task was the deposition of supercon-
ducting contacts onto the HgTe nanowire since contacts with high transmissions
are an indispensable prerequisite for successful experiments. This section covers
the illustration of the different fabrication steps while a special focus lies on the
optimization of the deposition of the superconductor. A detailed list of process
parameters can be found in appendix A.

3.2.1 Nanowire structuring

The structuring of the nanowire is done by electron beam lithography (EBL). Figure
3.2 illustrates the basic principle of this method. After coating an etch resistant
resist on the wafer, it is rotated with high speed using a spin coater. Thus, the resist
is spread equally over the whole sample. In the following, the resist is heated up in
order to evaporate the solvent which contains the resist. The sample is then placed
in a scanning electron microscope (SEM) and irradiated by the computer-controlled
electron beam. The area where the nanowire is supposed to be is excluded from
the irradiation. The exposed parts of the resist change their chemical structure and
become soluble by a developer. A wet chemical etching solution composed of Bromine
(Br2), ethylene glycol (C2H6O2), and pure water (H2O) at a ratio 0.1 : 100 : 25 is
used to etch the developed nanowire into the sample. The etching solution is cooled
down to 0 °C to enable a slow and controllable etching rate. When the desired etching
depth is reached, the sample is taken out of the solution and put into pure water
to stop the etching process. Finally, the remaining resist is stripped by a remover.
Thus, nanowires with typical widths between 200 nm and 700 nm are fabricated. Due
to the proximity effect, i.e. also nearby parts of the irradiated areas get developed
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barrier & cap layer

HgTe layer

GaAs substrate

resist (CSAR 9%)

(a) (b) (c)

(e)(d)

Br2

FIG. 3.2: Basic principle of electron beam lithography. (a-b) An etch resistant resist is
coated on the wafer. (c) After irradiation by the electron beam, the exposed areas are
removed, and the sample is etched using a Br2 based solution. (d-e) The remaining resist
on the etched sample is removed.

during EBL, and the isotropic etching process, where the resist is underetched on
a similar scale as the total etching depth, the width of the nanowire has to be
chosen approximately 500 nm larger in the computer software than the desired final
width. The isotropic etching process also leads to a rounding of the etched structure.
This concerns in our case the sidewalls of the nanowire. Hence, we obtain rather a
trapezoidal than a perfectly rectangular shape [101].

3.2.2 Removal of the cap layer

Since the superconducting contacts should be directly grown onto the HgTe layer,
the cap layer has to be removed in particular areas. This is again achieved by EBL.
The steps are visualized in figure 3.3(a-c). The sample is coated with a resist, and
stripes crossing the nanowire are developed. These stripes define the positions of the
superconducting contacts. The cap layer is removed by wet chemical etching. At
this step, it is very important to get a very precise etching depth of 60 nm in order
to not remove too much of the HgTe, but to eliminate precisely the entire cap layer.
Therefore, we use an etching solution at a ratio Br2 : C2H6O2 : H2O =∼ 0.015 :
100 : 25 cooled down to 0 °C. Due to the low proportion of Br2, the etching rate is
much slower and more controllable as for the etching of the nanowire. Again, we also
have to compensate for the proximity effect and the isotropy of the etching process.
The width of the stripes should be chosen approximately 300− 350 nm smaller than
the desired final width of the contacts. This must also to be taken into account by
determining the distance between the contacts. The etched stripes can now be filled
with a superconducting material.
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barrier & cap layer

HgTe layer
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Superconductor
(Ti/Nb/Pt)

(a) (b) (c)
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Br2 + Ar+
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FIG. 3.3: Deposition of the superconductor. (a) The nanowire is coated by a resist. (b)
Stripes are developed using EBL. (c) The cap layer is removed by wet chemical etching and
a short Ar+-milling. (d) A thin seed layer of Ti, Nb, and a thin protective layer consisting
of Pt are deposited on the sample. (e) The remaining resist with the metal on top is
removed in a lift-off process.

Before discussing the deposition of the superconductor, we give a short overview
about the problems and solutions during the removal of the cap layer. The goal was
to achieve a flat etching profile in order to deposit the superconductor homogeneously
onto the HgTe. To analyze the etching profiles and to determine the etching rate,
the resist is removed after the wet chemical etching. Hence, the etched stripes
could be investigated using an atomic force microscope (AFM). Here, the sample
is scanned by a cantilever, and we get a profile of the surface. By etching a single
stripe into the material, two different scenarios could be observed. For stripes with
widths W . 1 µm, a rounded etching profile is achieved as it is sketched in the
lower panel of figure 3.4(a). For widths W & 1 µm, large trenches are formed at
the boundaries as shown in the upper panel of figure 3.4(a). These observations are
in agreement with the results of M. Pleyer [102]. For a homogeneous deposition of
the superconductor, the first scenario seems preferable. However, by placing two
stripes each with W < 1 µm close to each other, we found that the trenches still
arise, even if only on the outermost boundaries when the widths of the two stripes
plus the distance between them is > 1 µm. A 3D AFM image of such a structure is
shown in the upper panel of figure 3.4(b). The lower panel shows a line cut along the
red dashed line in the 3D image. Here, the trenches at the outer boundaries of the
stripes are visible. Thus, the desired flat etching profile cannot be achieved with this
simple layout. To overcome this problem, we fabricate structures with four stripes
next to each other. Figure 3.4(c) shows the corresponding AFM images. Of course,
there are again trenches on the outer stripes, but the etching profile of the two inner
stripes is perfectly flat. Therefore, our layout consists of four stripes while only the
inner ones represent the junction where the measurements are taken. During the
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FIG. 3.4: (a) Typical profiles after wet chemical etching. For stripes with widthsW & 1 µm,
large trenches are observed at the boundaries, while we observe a rounded profile for
W . 1 µm. (b) 3D AFM image of two stripes next to each other (upper panel) where the
total width of the structure exceeds 2 µm. A linecut along the red dashed line is shown in
the lower panel. Trenches emerge at the outermost boundaries. (c) 3D AFM image of four
stripes next to each other (upper panel) and a linecut (lower panel) along the red dashed
line. Despite there are trenches at the outer boundaries, the two inner contacts, which are
used for the measurements, are very homogeneous.

analysis of the etching profiles, the etching rates can also be determined. It was
found that the rate strongly depends on the exact geometry, i.e. the width of the
nanowire and the width of the stripes. Thus, the rate has to be checked each time
after changing the geometric parameters.

3.2.3 Contact cleaning and deposition of the superconductor

Once the etching rate for a specific geometry is determined, the superconducting
material is deposited into the stripes without removing the resist after etching the
cap layer. Figure 3.3(c-e) summarizes the process steps. The deposition is done in
an ultra-high vacuum (UHV) chamber. The structure of the chamber is sketched
in figure 3.5(a). We use Niobium (Nb) as the superconducting material. From the
starting point of depositing only Nb, a few steps were added before and afterwards
which all continuously improved the quality of the samples. Fortunately, all of these
steps can be done in the same chamber without breaking the vacuum in between.
Here, we present the final version of the fabrication process.

Contact cleaning

Since a high quality of the interface between the superconductor and the HgTe is
needed, i.e. it should be free from impurities and oxides, the contacts are cleaned by
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a short Argon (Ar+)-milling before the deposition of the superconductor. This is
necessary because oxides are continuously formed on the surface when the sample
is exposed to air, even at the short time transferring it from the etching lab to the
UHV chamber. The contact cleaning is done in the evacuated prechamber using
a Kaufman ion source. The right half of figure 3.5(a) illustrates a sketch of the
Kaufman source. The sample is placed onto a movable transfer rod and aligned
above of the Kaufman source. Ar is admitted to the prechamber, and electrons are
emitted from a cathode. A positive voltage Vdis is applied to the Kaufman source in
order to accelerate the electrons through the Ar atoms. The electrons discharge the
atoms, and Ar+ ions remain. By applying a positive beam voltage Vb at the bottom
of the Kaufman source as well as a negative voltage Vacc at an acceleration grid on
top of the Kaufman source, the Ar+ ions are accelerated towards the sample. Their
kinetic energy is determined by the values of Vacc and Vb. The Ar+ ions dislodge
atoms on the surface of the sample. Hence, the surface is effectively etched. To
remove at least the oxides on the surface, an etching depth of approximately 3 nm
is desirable. A detailed analysis of the etching rates for various parameters can be
found in the bachelor’s thesis of J. Maier [103].

Thermal evaporation

Subsequently, the sample is transferred to the main chamber without breaking the
vacuum via a load lock. Here, it is placed onto a rotable sample holder. It was
found that a small seed layer (∼ 3 nm) of Titanium (Ti) additionally improves the
quality of the interface. Thus, the sample is moved into a horizontal position which
is labeled as ’Pos 1’ in figure 3.5. Ti is evaporated using an electron gun (e-gun),
and the material finally condenses at the cold surface of the sample.

dc sputtering

The Nb is deposited using dc sputtering. Similar to the Kaufman source, Ar is
admitted to the main chamber, and the atoms are discharged. They are now
accelerated towards the Nb target by applying a negative voltage to the target.
The Ar+ ions dislodge Nb particles from the target. These particles are deposited
on the sample. Since the Nb target sits on the slant, we have to adjust the right
position of the sample during sputtering. Normally, we would adjust the sample
perpendicular to the sputtering direction. However, we tune the sample to ’Pos 2’
in figure 3.5(a) where an angle α describes the tilt of the sample with respect to
the position perpendicular to the sputtering direction. Hence, Nb is deposited at
an angle. This ensures that Nb preferentially covers one sidewall of the nanowire.
Thus, a good electrical connection around one edge of the nanowire is guaranteed.
Figure 3.5(b) shows a SEM image of a nanowire where Nb was sputtered at an angle
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α ≈ 45 ◦. One can clearly observe that the right sidewall is preferably covered by
Nb. The measurement devices are connected to the nanowire via this side.

As Nb oxidizes exposed to air, we add a thin layer (∼ 3 nm) of Platinum (Pt) to
protect the Nb. The Pt layer is deposited via thermal evaporation analogous to the
deposition of Ti. After the deposition, the remaining resist including the materials
on top of it is stripped by a remover in an ultrasonic bath. Hence, the materials only
remain at the beforehand exposed and developed areas. Finally, metallic contacts
consisting of Ti and gold (Au) are fabricated using EBL and thermal evaporation.
These contacts are shown in figure 3.5(c). They connect the superconducting leads
and form large bond pads in the outer area of the sample (not shown in the figure).
The sample is glued into a chip carrier, and a thin gold wire is bonded between the
contact pads of the chip carrier and the Ti/Au pads.

For one sample, which is labeled as rI, a topgate is added before gluing the sample
into the chip carrier. Here, an insulator consisting of 30 nm SiO2 grown by plasma
enhanced chemical vapor deposition (PECVD) and 100 nm Al2O3 grown by atomic
layer deposition (ALD) is deposited. Finally, a Ti/Au gate is fabricated by thermal
evaporation.
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FIG. 3.5: (a) Basic structure of the UHV chamber. The sample is placed into the prechamber
(right) via the lid. Here, a Kaufmann ion source enables the etching of the sample. The
sample can be directly transferred to the main chamber (left) via a load lock. In the main
chamber, Nb is deposited using dc sputtering. Additionally, the deposition of Ti and Pt is
possible by thermal evaporation using an e-gun. Between the different deposition methods,
the position of the sample has to be changed by a motion feedthrough. (b) SEM image of
a nanowire after the deposition of superconducting contacts. Since Nb is deposited under
an effective angle, one sidewall of the wire, here the right one, is preferentially covered by
the superconductor. (c) Picture of a sample consisting of three junctions taken with an
optical microscope. The superconducting contacts look white. The leads to these contacts
are made of Ti/Au to enable bonding to a chip carrier.
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3.3 Cryostats and sample holder

Most experiments were carried out in a 3He/4He dilution refrigerator. The cooling
mechanism is based on the phase separation of 3He/4He mixtures. The binding forces
between 3He atoms are smaller due to a stronger zero-point motion than between a
3He atom and a 4He atom. This causes that both isotopes form not well separated
phases, even at T = 0K. Only at a 3He content of 6.4 % in 4He, the binding energies
are low enough so that 3He is no longer soluble in 4He. Hence, two phases emerge:
A concentrate phase which consists of pure 3He and a dilute phase consisting of
∼ 6.4 % 3He and ∼ 93.6 % 4He1. By continuously removing 3He from the dilute
phase, 3He from the concentrate phase enters the dilute phase to keep the most
favorable concentration. This phase transition costs energy which is taken from the
environment and provides a cooling effect [104].

The following explains how this is technically realized. In this project, an Oxford
Instruments Kelvinox TLM dilution refrigerator was used. Figure 3.6 sketches the
structure of the dilution refrigerator and its working principle. The dilution unit
chamber is enclosed by an inner vacuum chamber, followed by a 4He reservoir, a
nitrogen shield, and an outer vacuum chamber. The gaseous 3He/4He mixture flows

(a) (b)

FIG. 3.6: Sketch of a dilution refrigerator. The mixing chamber is enclosed by an inner
vacuum chamber, a 4He reservoir, a nitrogen shield, and an outer vacuum chamber. The
sample holder can be directly inserted into the mixing chamber. (b) Working principle
of a dilution refrigerator. 3He is continuously drawn out of the dilute phase via the still.
Thus, 3He from the concentrate phase enters the dilute phase to keep the most favorable
concentration. This leads to a cooling effect. Taken from [101].

1The exact ratio depends on temperature and pressure.
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into the dilution unit, passes the 4He bath and the 1 K-pot where it cools down and
liquefies. Below 0.872 K, the mixture separates into the concentrate and the dilute
phase. By continuously pumping on the dilute phase via the still, 3He is drawn out
of the dilute phase until it evaporates. To keep the energetically most favorable
condition, 3He from the concentrate phase enters the dilute phase leading to a cooling
effect. With the Kelvinox TLM system, temperatures down to 15 mK can be achieved
depending on the sample holder. The upper limit for a stable temperature is at 1 K.
Experiments at higher temperatures were carried out in a 4He bath cryostat which
is not discussed here. Additionally, the Kelvinox TLM consists of a superconducting
coil inside the 4He bath providing magnetic fields up to 19 T.
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FIG. 3.7: (a) Lowest part of the sample holder. The electric lines are routed towards two
filtering stages to the chip carrier socket. An open-ended semi-rigid line acts as an antenna
and enables the application of microwave radiation. (b-c) Two different types of the chip
carrier socket. The socket in (b) is used for the application of in-plane magnetic fields,
while the socket in (c) has to be installed if an out-of-plane field is required.

The special feature of this system is that the sample can be directly introduced into
the mixing chamber with the aid of a sample holder. A picture of the lowest part of
the sample holder is shown in figure 3.7(a). Electric lines are routed to the sample
via the sample holder. The wires are made of manganin to cause a low heat input.
Before connecting the sample inside the chip carrier socket, the lines pass two filtering
stages which will be discussed in the next section. To apply microwave radiation
near the sample, an additional semi-rigid cable is fed into the mixing chamber. The
outer conductor of the semi-rigid cable is stripped at the lowest part and acts as an
antenna. Since the direction of the external magnetic field is fixed, the orientation of
the sample must be changed to study the influence of different directions of magnetic
field on the devices. Therefore, two interchangeable chip carrier sockets were used
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which are presented in figure 3.7(b-c). They differ in the orientation of the sample
to the magnetic field. This enables us to investigate effects considering an in-plane
as well as an out-of-plane field with respect to the sample.

3.4 Filtering

In section 2.2.4, we discussed the sensitivity of Josephson junctions to electric noise.
The noise has its origin either from electro-magnetic radiation in the environment
or from parts of the measurement setup. A big ratio is thermal noise, so-called
Johnson-Niquist noise [105, 106]. Here, temporary fluctuations of the current arise
due to the thermal motion of charge carriers. Since this effect is suppressed at low
(electron) temperatures, a big advance during this thesis was the implementation of
low-temperature filters in the electric measurement lines. During the bachelor’s thesis
of W. Wittl [107], Ag-epoxy filters based on [108] were fabricated. These filters are
predicted to have an attenuation ≥ 100 dB in the frequency range 150 MHz−10 GHz
and ≥ 50 dB for frequencies ≥ 10 GHz. Furthermore, these properties persist to the
low temperatures of the cryostat [108]. Here, we give only a short overview of the
fabrication and functionality. A more detailed description is found in [107]. A filter
body is cast of Ag-epoxy2 and subsequently shaped. A picture of the filter body
is shown in figure 3.8(a). It contains four segments. A Cu-wire3 is wound around
the body and forms a coil. The winding direction is reversed in adjacent segments
to cancel the arising magnetic fields of the coils. During the winding procedure,
the wire is steadily covered with Ag-epoxy to fully embed the wire. Figure 3.8(b)
shows a finished filter. Additionally, a case was constructed where ten filters could
be inserted. A CAD drawing is presented in figure 3.8(c). Filters are placed in each
hole of the middle plate. The plate is sealed using Ag-epoxy to separate the two sides
of the case. Furthermore, both sides of the case are filled with the silicone rubber
material Eccosorb-CRS-117 which leads to a high attenuation in the microwave
frequency range in embedded electric wires [109]. The wires are soldered to micro-D
connectors at the cover plates of the case. Finally, all slots on the case are sealed with
Ag-epoxy. The filter case can be embedded into the sample holder and is located
in the mixing chamber during the measurement. The functionality of the filters is
based on the skin-effect [110]: While the current density of a dc current is distributed
homogeneously in the cross-sectional area of a conductor, an ac current mainly flows
at the surface of the conductor. In particular, the current distribution exponentially
drops from the surface to the inner part. This effect is enhanced at higher frequencies.
Therefore, the effective area of the conductor is smaller for an ac signal than for a
dc current. This leads to an effective higher resistance for an ac current and, thus,

2EPO-TEK E4110.
3CUL 200/0.1 ; 105 windings per segment.
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FIG. 3.8: (a) A filter body cast of Ag-epoxy. (b) A single filter after the Cu-wire was wound
around, and it was embedded by Ag-epoxy. (c) CAD drawing of the case where ten filters
are placed into the holes of the middle plate. After sealing the middle plate with Ag-epoxy
and filling the case with Eccosorb-CRS-117, the filters are soldered to micro-D connectors
at the cover plates. (d) Attenuation of a single filter as a function of the frequency. For
frequencies in the GHz-regime, the Ag-epoxy filters show the highest attenuation. The
measurement was taken by T. Huber.

a higher attenuation. Consequently, we are able to filter our measurement signals
which are mainly dc or low-frequency ac signals and eliminate high-frequency noise.
The attenuation curve of a single filter is shown in figure 3.8(d). The curve was taken
using a network analyzer where the frequency-dependent attenuation of a reference
signal through the filter was detected. The data show an attenuation > 40 dB in the
GHz-regime and, thus, confirms the functionality of the filters.

Since the enhanced resistance of ac currents causes Joule heating, another important
issue is the thermal dissipation. This is the reason why Ag-epoxy was the material
of choice. Because of its high electric conductivity4, it has also a high thermal
conductivity due to the Franz-Wiedemann law. Therefore, the emerging heat is
rapidly released to the environment.

As the Ag-epoxy filters attenuate frequencies above several hundreds of MHz, ad-
ditional filters are needed for lower frequencies. Hence, RC low-pass filter were
produced. A custom-made circuit board was fabricated where surface mounted
devices (SMD) can be soldered onto. A circuit board consists of ten measurement
lines in accordance with the Ag-epoxy filters. The board was glued into a case,
and the lines were soldered to micro-D plugs. The case is placed directly next to
the Ag-epoxy filters. Two different configurations of the RC elements were used
while only one of them could be implemented during a temperature cycle due to
shortage of space. Figure 3.9(a) shows the two unclosed cases with circuit boards
inside. A filtering line of the first board consists of two resistors5 with R = 1 kΩ
and a capacitor6 with C = 15 nF. They are orientated in a T-shaped structure as
it is sketched in figure 3.9(b). The cutoff frequency is f = 1/ (2πRC) ≈ 10 kHz. It

4σ = 2 · 105S/m.
5Vishay Dale (Part number: TNPW08051K00BEEA).
6Murata Electronics (Part number: GRM2195C1H153JA01D).
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FIG. 3.9: (a) RC low-pass filters on circuit boards inside the unclosed cases. The circuit
board in the right case consists of ten measurement lines with a cutoff frequency f ≈ 10 kHz.
The electronic parts are ordered in a T-shaped structure as shown in (b). The lines in the
left case have a cutoff frequency f ≈ 17 Hz. The electronic parts are ordered in a L-shaped
structure as shown in (c). Here, a zero-ohm jumper is used to enable the usage of an
unique circuit board structure for both types of filter.

is important to utilize ceramic (NP0) capacitors and thin film resistors since their
properties are quite stable while cooling them down to millikelvin temperatures.
The second configuration contains one resistor7 with R = 100 kΩ and a capacitance8

C = 94 nF. They are orientated in a L-shaped configuration as sketched in figure
3.9(c). The cutoff frequency is f ≈ 17 Hz. The latter version is the preferable choice
in order to reduce effects of noise to the Josephson junctions. However, if three-point
measurements are necessary, the first configuration has to be used due to the smaller
series resistance while a reduction of noise is still guaranteed.

Finally, commercial π-filters9 were used at room temperature. They typically have
the highest attenuation in the intermediate MHz-regime.

3.5 Measurement setup

The measurement setup including the filters and a sketch of the sample is illustrated
in figure 3.10. The two inner superconducting leads on the nanowire are used
for the measurements. They are splitted up, respectively, and are connected to
four lines of the sample holder. Since the splitting still takes place within the
superconductor, four-point probe measurements can be performed as long as the
contacts are superconducting.

7Vishay Dale (Part number: TNPW0805100KBEEN ).
8The capacitance consists of two 47 nF capacitors (Kemet, Part number: C0805C473J3GACAUTO)
which are placed in parallel.

9Tusonix 4201-001.
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FIG. 3.10: Sketch of the measurement setup. The sample, RC-filters, and the Ag-epoxy
filters are placed inside the cryostat. The room temperature setup consists of a pure dc
part shown by solid lines. This part is sufficient to measure Idc-V traces. A semi-rigid
line enables the application of microwave radiation to the sample. The optional ac part is
illustrated by dashed lines. Here, a small ac signal is coupled into the dc line via an ac/dc
coupler. This gives us the possibility to directly measure the differential resistance, i.e. the
slope of the Idc-V trace.

The external setup can be divided into a pure dc part which is shown by solid lines
in figure 3.10 and an optional ac part which enables measurements of the differential
resistance. Firstly, we concentrate on the dc part: A dc source (Yokogawa 7651 )
supplies a voltage Vbias which is applied over a resistor (R = 100 kΩ) and the sample.
The resulting current Idc flowing across the sample is determined by a dc voltmeter
(Agilent 34410A) after it is converted to a voltage signal by a current/voltage
converter (Ithaco 1211 Current Preamplifier). Since the resistor is chosen to comply
with R � Rsample, the current Idc can be changed in equidistant steps with the
applied voltage Vbias. In this situation, the junction is current-biased.

The voltage drop across the sample V is measured by a dc voltmeter (Agilent 34420A).
A voltage amplifier (Femto DLPVA-100-F-D) is placed in front of the voltmeter to
amplify the small voltage signals. Furthermore, it maximizes the input resistance
and prevents the sample from noise generated by the voltmeter.

To resolve small changes of the resistance, the setup can be extended to measure
the differential resistance dV/dIdc. The extended part is sketched by the dashed
lines in figure 3.10. A lock-in amplifier (Signal Recovery DSP 7265 ) generates a
small ac signal which is coupled into the dc line using a transformer as an ac/dc
coupler. The ac current Iac flowing across the sample is measured by the same
lock-in amplifier. The fact that this setup enables the measurement of the differential

64



3.5 Measurement setup

resistance can be understood by expanding a voltage signal which arises from a dc
current superimposed by a small ac current Iac with frequency ω. It yields

V (Idc + Iacsin (ωt)) = V (Idc) + dV

dIdc
Iac sin (ωt) + .... (3.5.1)

Hence, we get the differential resistance dV/dIdc by measuring the amplitude of the
ac voltage at the frequency ω and dividing it by Iac. In our setup, this is achieved
by measuring the voltage drop across the junction with another lock-in amplifier
(Signal Recovery DSP 7265 ). Again, a voltage amplifier (Femto DLPVA-100-F-D) is
used.

To enable the application of microwave radiation, an antenna is placed next to the
sample. The antenna is connected to a microwave generator (Anritsu MG3691A),
which controls the power and frequency of the radiation, via a semi-rigid cable.

The magnetic field at the sample is generated by superconducting coils inside of the
cryostat and is adjusted by a magnetic field controller (Oxford Instruments IPS 180-
20 ). Typically, the coils show magnetic remanence which depends on the maximum
field generated by the coils. Since our devices are sensitive to small magnetic fields,
the remanent field has to be reduced before the sample is loaded to the cryostat. This
is achieved by a demagnetization procedure: Starting from the maximum generated
field, the magnetic field is driven repeatedly from positive to negative values while
continuously lowering the amplitude.

A computer-controlled operation of the instruments is realized with the software
package Lab::Measurement [111].

For the characterization of the samples, which is described in chapter 4, it is also
useful to get access to the energetic scales of our devices. This is achieved by applying
a specific voltage V to the device since it is related to energy by eV. Here, it is useful
to perform voltage-biased measurements where the applied voltage to the sample can
be directly controlled. The existing system can easily be modified in this respect by
removing the resistor in front of the sample. The voltage output from the dc source
is now applied directly to the sample.
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4 Material and device
characterization

The knowledge about the basic properties of the materials and devices used is
important for the later analysis of the experimental results. Thus, we evaluate the
transport properties of the HgTe films and the critical parameters of Nb in the first
part of this chapter. After that, important parameters of the fabricated Josephson
junctions, e.g. the transmissions, are extracted.

4.1 Material characterization

In this section, the transport characteristics of HgTe and HgTe nanowires as well
as the critical parameters of the superconducting Nb films are evaluated. The
measurements presented in this section were performed in a 4He bath cryostat at
Tbath ≈ 1.3 K.

HgTe

To determine the properties of the HgTe layers, a Hallbar geometry with length L
and width W is fabricated onto a wafer as sketched in figure 4.1(a). The transport
measurements are performed with four-point probe methods. A lock-in amplifier
is connected to contacts 1 and 4. On the oscillator output of the lock-in amplifier,
an ac voltage with a frequency of 13 Hz and an amplitude of 1 V is emitted. By
connecting a series resistance of 10 MΩ, a current of I = 100 nA flows through the
Hallbar. The voltage drops Vxx and Vxy along the sample are also detected by lock-in
amplifiers. Typical traces for ρxx = VxxW/IL and ρxy = Vxy/I as a function of an
out-of-plane magnetic field B are presented in figure 4.1(b-c). The data stem from a
sample made of wafer 170713. The Hall curves ρxy(B) are nonlinear. This is typical
for electron-hole systems [112]. The Fermi energy is located in the bulk valence band
where surface electrons and bulk holes co-exist. The Drude formalism for two types
of carriers is applied to extract the carrier density n and mobility µ. In this case, the
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FIG. 4.1: (a) Hallbar geometry for transport experiments. The length between two adjacent
contacts is L = 100 µm while the width of the current path is W = 50 µm. The current
I is applied between contacts 1 and 4. The Hall voltage Vxy is measured between 2 and
6. The longitudinal voltage Vxx is measured between 5 and 6. (b) The Hall resistance
ρxy = Vxy/I as a function of the magnetic field B (black curve). The nonlinearity suggests
the existence of an electron-hole system. (c) The longitudinal resistance ρxx = VxxW/IL as
a function of the magnetic field B (black curve). A Fit with the two-carrier Drude model,
which simultaneously reproduces the traces in (b) and (c), is shown as red dashed lines.

total longitudinal conductance σxx and Hall conductance σxy is given by the sum of
the conductances of holes σh and electrons σe:

σxx = σexx + σhxx, σxy = σexy + σhxy with (4.1.1)

σe(h)
xx = qe(h)ne(h)µe(h)

1 +
(
µe(h)B

)2 , σe(h)
xy = µe(h)B

qe(h)ne(h)µe(h)

1 +
(
µe(h)B

)2 . (4.1.2)

Here, qe(h) is the elementary charge of electrons or holes. The expressions for ρxx (B)
and ρxy (B), which are obtained by tensor inversion of the conductances, can be
fitted to the experimental data [30]. The fits are plotted in figure 4.1(b-c) as red
dashed lines. The extracted values for different wafers are summarized in table
4.1. Additionally, we calculate the mean free path of the different types of charge
carriers `mfpe, h = µe, h~kF/e, where kF = √cπne, h with c = 2 for bulk carriers or
c = 4 for surface carriers. For the doped wafers, we only give a span for the mean
free path `mfpe as the Fermi energy is located in the conduction band where surface
electrons and bulk electrons co-exist. Here, the two types of charge carriers cannot
be distinguished by the two-carrier Drude model. Thus, the extracted mobility is
an average value of surface and bulk carriers’ mobility. Furthermore, the value of c
cannot be unambiguously determined.

In the following section, the extracted parameters are used to determine specific
properties of the superconducting devices. However, it is important to note that
the values can only be regarded as a rough estimation since the different fabrication
process of Hallbar devices and Josephson junctions is expected to produce deviations
regarding the individual device parameters.
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4.1 Material characterization

Wafer d ne nh µe µh `mfpe `mfph

[nm] [1011 1
cm2 ] [1011 1

cm2 ] [105 cm2

V s
] [105 cm2

V s
] [µm] [µm]

140826,140827 80 1.0 2.0 2.1 1.4 1.5 1.2
170713 50 0.7 1.9 5.3 0.3 3.2 0.2
190304∗ 80 63 - 1.0 - 4-6 -
190306∗ 80 6.5 - 0.4 - 0.5-0.8 -

Table 4.1: Overview of the different wafers where d is the thickness of the HgTe layer, ne(h)
is the carrier density of electrons (holes), µe(h) is the mobility of electrons (holes), and
`mfpe(h) is the mean free path of electrons (holes). In the undoped wafers, the Fermi energy
is located in the valence band where surface electrons and bulk holes co-exist, while the
Fermi energy of the n-doped wafer is shifted into the conduction band. Doped wafers are
indicated by an asterisk. The wafers 190304 and 190306 were characterized by J. Ziegler.

HgTe Nanowires

Experiments on nanowires fabricated from HgTe have been performed in earlier works
by S. Weishäupl [113] and J. Ziegler [32, 101]. Here, the nanowires showed distinct
conductance oscillations which indicate surface-mediated quasiballistic transport. In
combination with a theoretical analysis of the observed phenomena, the topological
nature of the surface states was confirmed. Furthermore, the phase-coherence lengths
of the wires were found to be in the range 2− 5 µm. This gives an upper limit for
the circumference of the fabricated wires; below, phase-coherent transport is possible
[32].

Niobium

For the fabrication of the superconducting contacts, Niobium (Nb) was the material
of choice due to the simplicity in processing. To extract the critical parameters of
the Nb films, we fabricated a nanowire with superconducting contacts as described
in section 3.2. Though, we short-circuit two of the superconducting leads on top of
the wire as shown in the inset of figure 4.2(a). The resistance R of the two shorted
leads as a function of an out-of-plane magnetic field B is illustrated in figure 4.2(a).
We extract a critical field BC ≈ 3.5 T where the superconductivity of Nb breaks
down. Figure 4.2(b) shows the resistance R as a function of the temperature Tbath.
The critical temperature is TC ≈ 8 K. Deviations from the literature value (∼ 9.3 K
[114]) arise due to the nonperfect quality of the sputtered Nb film.
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FIG. 4.2: (a) The resistance R of the Nb film as a function of an out-of-plane magnetic
field B which is measured among two shorted leads. The critical field is BC ≈ 3.5 T. The
inset shows a SEM image of the device with the shorted leads inside the dashed circle. (b)
The resistance R as a function of the temperature Tbath. The arrows indicate the respective
sweep direction. The critical temperature is TC ≈ 8 K.

4.2 Properties of the fabricated junctions

In this section, we summarize the properties of the fabricated devices and explain
how they are extracted. The results of sample r1, which stems from wafer 140827,
are exemplarily shown while table 4.2 contains the data of various devices. The
measurements presented in this section were carried out at a temperature of Tbath ≈
40 mK.

The geometric dimensions of the junctions are obtained from the electron micrographs.
Figure 4.3(a) shows a SEM image of junction r1. Due to wet-chemical etching, the
wires have a trapezoidal cross-sectional area. The top width is W = 500 nm, the
bottom width W = 580 nm, and the thickness d = 80 nm resulting in an effective
rectangular cross-sectional area of A = 80 nm · 540 nm. The width can only be
determined with some uncertainty which is 12 % for sample r1. The circumference of
all wires is shorter than the phase coherence length which is of the order of several
microns [32]. Thus, transport within the junction is phase coherent. The distance
between adjacent superconducting contacts is L = 170 nm.

For the topological surface states, this implies a Thouless energy of ES
Th = ~vSF/L ≈

1.6 meV where vSF = ~
√

4πne/m∗ ≈ 4.3 · 105 m/s is the Fermi velocity of the surface
states with the effective mass m∗ = 0.03m0 [115] and ne = 1.0 · 1011 1/cm2.

For bulk states, we obtain EB
Th ≈ 0.2 meV with vBF = ~

√
2πnh/m∗ ≈ 6.4 · 104 m/s

where m∗ = 0.2m0 and nh = 2.0 · 1011 1/cm2. Here, we used the definition of Eth
for a clean junction, which requires L < `mfp. By comparing the length L with the
values of sample r1 in table 4.1, we note that this holds for the bulk as well as for
the surface carriers.
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FIG. 4.3: (a) Electron micrograph showing the superconducting Nb stripes placed across
the HgTe wire. The wires have a trapezoidal cross-sectional area. In the case of wire r1,
the top width is 500 nm and the bottom width 580 nm. For further calculations, we choose
the mean value. The inset shows a zoomed out picture. (b) I-V traces of sample r1 at
B = 0. A distinct hysteresis depending on the sweep direction of the current is observed.
(c) I-V curve of sample r1 at B = 0. For high bias voltages, the slope represents the
normal-state conductance G = 1/RN , while Andreev reflections influence the trace at lower
voltages. The presence of an excess current Iexc = 2.75 µA demonstrates the high quality of
the interface. (d) The corresponding differential resistance dV/dI plotted as a function of
the bias voltage V . An estimation for the superconducting gap of Nb ∆ can be extracted
from the curve as the trace starts to deviate from the constant normal-state resistance if
eV < 2∆.

Additionally, the number of occupied subbands can be extracted from the geometric
parameters of the nanowire. By analyzing equation (2.1.10), we realize that subbands
with adjacent angular momentum quantum number ` are separated by ∆kl = 1/R
at Φ = 0. Since we do not have a cylindrical wire, we rewrite ∆kl = 2π/P with the
perimeter P of the wire. With the Fermi wave vector kF =

√
4πne of the surface

states, the number of occupied subbands is estimated as Ne = kF/∆kl. Assuming
the surface states are located 5 nm below the HgTe surface, the number of occupied
subbands is Ne ≈ 20.

An I-V trace of sample r1 is shown in figure 4.3(b). The critical current is IC ≈ 1 µA
while the retrapping current is IR ≈ 0.8 µA. The hysteresis could stem from capacitive
effects as discussed in section 2.2.4. Another possible origin of the hysteresis is Joule
heating. Here, the hysteresis is explained as follows: When the junction is in the
superconducting regime (V = 0), and the bias is increased, the junction switches
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to the resistive branch at IC . If the junction is in the resistive regime (V 6= 0), the
effective temperature is higher due to the additional resistive heat. Accordingly, the
junction becomes superconducting at a lower value IR when the bias is decreased
again [116, 117]. Both potential options will be discussed in section 6.2.

Voltage-biased measurements of sample r1 are presented in figure 4.3 (c-d). The
V -I trace is plotted in (c). The differential resistance dV/dI, which presents the
derivative of the V -I trace, is shown in (d). The differential resistance, i.e. the
slope of the V -I trace, stays constant and represents the normal-state resistance
RN = 1/G = 214 Ω for bias voltages V > 1.9 mV, while for lower voltages Andreev
reflections modify the slope [66, 75, 118]. The situation is visualized in figure 4.4.
If the voltage across the junction is V > 2∆/e (a), charges can flow between the
superconductors and the normal conductor. However, electrons cannot be transferred
from the normal conductor to the superconductor when V < 2∆/e (b). Though,
Andreev reflections are possible which modify the conductance of the junction. Hence,
the change of the conductance gives an estimation for the superconducting gap of Nb
∆ = eV/2 ≈ 0.95 meV. The additional current flowing across the junction caused by
the Andreev reflections is called excess current Iexc. It is extracted from the high
voltage regime in figure 4.4(c) by comparing the experimental trace with the linear
V -I trace defined by the normal-state conductance G. Thus, we obtain Iexc = 2.75 µA
for sample r1.

eV < 2∆

∆
∆
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SL SRN

∆

∆
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SL SRN

eV > 2∆

(b)(a)

FIG. 4.4: (a) Schematic picture of an SLNSR interface for a voltage drop across the
junction V > 2∆/e. Charges can directly flow between the left and right superconducting
electrodes. (b) Schematic picture of twofold Andreev reflections. An incoming electron is
Andreev-reflected on the right NS interface. The resulting hole is Andreev-reflected on
the left NS interface while the created electron can be directly transmitted to the right
superconductor. Thus, the amount of charges flowing from the left to the right electrode is
increased compared to the situation shown in (a). This process takes place if V < 2∆/e
and leads to an increased conductance.

With the extracted values, we estimate the average transmission D of the SN
interfaces. We show two different approaches: The first one is given by Flensberg et
al. [119] which is based on the OBTK theory [118]. By calculating eIexcRN/∆, we
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extract the parameter Z, which is related to the transmission D by D = 1/ (1 + Z2),
by using an analytical expression1 calculated by Niebler et al. [120]:

eIexcRN

∆ = 2
(
1 + 2Z2

) tanh−1
[
2Z
√

(1 + Z2) / (1 + 6Z2 + 4Z4)
]

Z
√

(1 + Z2) (1 + 6Z2 + 4Z4)
− 4

3 . (4.2.1)

By inserting the values of sample r1 and solving for Z, we get Z ≈ 0.8, and
DOBTK ≈ 0.61. A weak point of this model is the fact that it treats a SNS junction
as two NS contacts in series. This neglects the possibility of a quasiparticle interfering
with itself which is only valid in the absence of normal reflection, i.e. with perfect
transmission [121].

Therefore, we also use the theory for ballistic point contacts [121–123] where the
relation between the excess current and the transmission is given by [121]

1
2
Iexc
∆i

h

Ne2 = D2

1−D

[
1− D2

2 (2−D)
√

1−D
ln
(

1 +
√

1−D
1−
√

1−D

)]
(4.2.2)

with the induced gap ∆i and the number of contributing channels N . An upper
limit for the induced gap is ∆max

i ≤ ∆ = 0.95 meV. Assuming perfect transmission
D = 1 of our junctions, we use the relation Iexc = 8∆i/3eRN [121–123] to derive a
lower limit ∆min

i ≥ 0.22 meV. Below, we use the average value ∆i ≈ 0.59 meV of the
two limits as a measure of the induced gap. The number of participating channels is
estimated from the normal-state resistance RN using

RN = 1
G

= h

N ·D · 2e2 . (4.2.3)

Solving the system of equations (4.2.2) and (4.2.3) with the values of sample r1, we
obtain N ≈ 103 and DBPC ≈ 0.58. Although this theory describes the physical
processes better, there is the problem that the induced gap can only be determined
with some inaccuracy. Since both theories provide similar values despite different
weaknesses, they seem to be acceptable at least for a rough estimation of the
transmission. Table 4.2 summarizes the parameters of several devices fabricated
during this thesis.

As some of the theoretical descriptions, shown in chapter 2.3, are only valid for short
junctions, we prove if this holds for our devices, especially for the topological surface
states. In general, junctions are in the short-junction limit when the induced gap is
smaller than the Thouless energy ∆i < Eth. For the surface states, ES

Th ≈ 1.6 meV.
This value is even larger than the upper limit of ∆max

i ≤ 0.95 meV. Thus, we
conclude that the short-junction limit holds for the surface states. The situation is
different for bulk hole states. Here, ES

Th ≈ 0.2 meV is smaller than the induced gap
∆i = 0.59 meV. Hence, the device is in the long-junction limit for bulk holes.

1In reference [119], the relation between Iecx and Z was determined numerically. Hence, only a
graphical evaluation would be possible which might be less precise.
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Sample
(Wafer) W L d IC RN Iexc ∆i

N
(NS) DBPC DOBTK

[nm] [nm] [nm] [nA] [Ω] [nA] [meV]
r1

(140827) 520 170 80 1020 214 2750 0.59 103
(20) 0.58 0.61

r2
(170713) 250 170 50 180 1200 580 0.65 17

(8) 0.61 0.62

r3
(170713) 470 160 50 265 724 694 0.52 31

(14) 0.57 0.60

rD
(190306∗) 600 180 80 650 331 1800 0.54 70 0.60 0.63

rG
(190304∗) 700 110 80 600 130 2200 0.50 860 0.23 0.51

rI
(140826) 520 240 80 137 614 158 0.52 131

(20) 0.16 0.43

Table 4.2: Overview of different samples where W is the width, L is the length of the
junction, and d is the thickness of the HgTe layer. IC is the critical current of the junction.
The transmission DOTBK is estimated from the values of normal-state resistance RN and
the excess current Iexc following [119]. Within a different model, DBPC is determined from
the number of channels N , the excess current Iexc, and the average value of the induced
gap ∆i following [121]. Additionally, the wafer, from which the respective sample stems,
and the number of surface channels NS are listed.
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5 Topolgical insulator nanowire
junctions in a magnetic field

This chapter describes the study of HgTe wire based Josephson junctions in a
magnetic field at millikelvin temperatures (Tbath ≈ 40 mK). In the first part, the
evolution of the critical current is investigated as a function of an out-of-plane
magnetic field.

For a magnetic field aligned parallel to the HgTe wire, we find oscillations of the
critical current which are h/4e- and even h/8e-periodic. These findings are discussed
both experimentally and theoretically in the second part of the chapter.

Finally, we deal with resistance oscillations as a function of an axial magnetic field
with unusual period of h/3e which appear in the transition from the superconducting
to the normal state.

5.1 Evolution of the critical current in an
out-of-plane magnetic field

For the first experiments presented, the magnetic field is orientated perpendicular to
the sample plane as it is sketched in figure 5.1(a). The observation of the Fraunhofer
pattern, as discussed in section 2.2.6, is expected in this configuration.

Exemplarily, we show data of junction r1 which has a width of W = 520 nm
and a length of L = 170 nm. Moreover, it has one of the highest transmissions
DOBTK = 0.61 among the samples studied. With the geometric values, we estimate
the magnetic field corresponding to one superconducting flux quantum ΦS = h/2e:
BΦ = ΦS/(L + 2λL)W = 16 mT. Here, we use the London penetration depth of
Nb λL = 39 nm [124]. Figure 5.1(c) shows a color map of the differential resistance
dV/dI as a function of the applied magnetic field B and the current I. Dark blue
regions correspond to superconducting states. The critical current IC oscillates as
a function of B resembling a Fraunhofer pattern where the first minima appear
at +6.8 mT and −4.8 mT, respectively. This is in contradiction to the theoretical
expectations where the minima should appear at ±BΦ. A possible explanation could
be a larger λL caused by a nonperfect quality of the sputtered Nb film. However,
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FIG. 5.1: (a) Sketch of the experimental setup. The magnetic field is orientated perpen-
dicular to the sample plane. (b) COMSOL simulation describing the effect of magnetic
flux focusing on Josephson junctions. The applied magnetic field B is expelled by the
superconducting leads. Thus, the effective field Beff between the contacts is enhanced by
a factor C. The local strength of Beff is illustrated by different colors. Blue corresponds
to Beff = B, while red resembles Beff = 2.2B. Taken from [125]. (c) Color map of the
differential resistance dV/dI as a function of the applied magnetic field B and the current
I for sample r1. Dark blue regions correspond to superconducting states. The critical
current IC oscillates as a function of B resembling the Fraunhofer pattern. (d) Fit of the
Fraunhofer pattern to the data shown in (c) where a factor C = 2.4 is included due to
magnetic flux focusing. The red curve perfectly fits the IC(B)-oscillations for positive B
while the black curve fits the data for negative B. Both curves show the same fit, but
shifted by ∆B to each other.

the values for 2λL would have to be comparable to the width of the superconductor
(∼ 550 nm) in order to obtain the experimentally observed values for the minima.
Thus, this argument does not explain the discrepancy, at least not in its entirety.

Another approach, which can explain the discrepancy, is magnetic flux focusing [125].
The applied magnetic field B is expelled by the superconducting contacts. As a result,
the magnetic field lines run past the superconductor, and an accumulation of field
lines exists between the leads. Therefore, the effective magnetic field Beff between
the contacts is higher than the applied field B. We define the constant C = Beff/B
as a measure of the strength of magnetic flux focusing. Figure 5.1(c) shows an
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5.1 Evolution of the critical current in an out-of-plane magnetic field

illustration of magnetic flux focusing which is based on a COMSOL1 simulation
performed in [125]. By implementing C into equation (2.2.41), the dependence of
the critical current IC is given by

IC (Φ) = IC (0)
∣∣∣∣sin (CπΦ/ΦS)

CπΦ/ΦS

∣∣∣∣. (5.1.1)

In figure 5.1(d), we plot equation (5.1.1) for C = 2.4 above the data shown in (c).
The red and black curves are identical except for the fact that they are shifted by
a value ∆B relative to each other. The red curve perfectly fits the periodicity for
positive B while the black curve fits the data for negative B. The shift of the two
curves, i.e. the asymmetry of the main peak, is independent of the sweep direction.
This asymmetry could be a consequence of the strong spin-orbit interaction occurring
in HgTe. Without the asymmetry, magnetic flux focusing explains the experimental
data very well. However, it should be mentioned that the determined value for C
is probably somewhat smaller since a slightly increased value of λL is additionally
possible.

Most devices with high transmission and sufficient width show the behavior just
described. Now, we also show how samples with poor transmission or very thin
wires behave in an out-of-plane magnetic field. Figure 5.2(a) shows a color map
of the differential resistance dV/dI as a function of the applied magnetic field B
and the current I for sample rG. This junction has a width of W = 700 nm and a
length of L = 110 nm while it has one of the lowest transmissions DOBTK = 0.51.
This sample does not show IC(B)-oscillations if at all barely visible additional side
maxima are present. The position at which the critical current disappears does also
not fit the expected theoretical value for the first minimum of the Fraunhofer pattern,
even if one assumes a very large magnetic focusing constant C = 3.1. The expected
Fraunhofer pattern for C = 3.1 is indicated by the white trace in figure 5.2(a). The
collapse of the superconductivity before the expected minimum can be explained
by an inhomogeneous current distribution along the junction. With the low average
transmission, many modes hardly contribute to the supercurrent while there are
probably also a few individual ones with somewhat higher transmissions. These are
localized at certain areas on the junction, i.e. the transmission is somewhat increased
at certain points along the width of the wire. The arising IC(B)-pattern is connected
to the current distribution along the width by a Fourier transformation. Thus, the
pattern experimentally observed can be explained by a specific current distribution
in the junction.

Figure 5.2(b) presents a color map of the differential resistance dV/dI as a function
of the applied magnetic field B and the current I for sample r2. This junction has
a comparable transmission DOBTK = 0.62 and length L = 170 nm as sample r1.
However, sample r2 consists of a very thin nanowire with a width of W = 250 nm.

1COMSOL Multiphysics is a software for simulations of physical processes.
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5 Topolgical insulator nanowire junctions in a magnetic field

(a) (b)C=3.1 C=2.4

FIG. 5.2: (a) Color map of the differential resistance dV/dI as a function of the applied
magnetic field B and the current I for sample rG. The white line shows the expected
Fraunhofer pattern for C = 3.1. Very small, if any, side maxima are observed due to an
inhomogeneous current distribution along the junction. (b) Color map of the differential
resistance dV/dI as a function of the applied magnetic field B and the current I for sample
r2. The white line shows the expected Fraunhofer pattern for C = 2.4. Instead of showing
a pattern, IC monotonously decays since the width of the wire W is smaller than the
magnetic length εB =

√
ΦS/B.

The white trace in figure 5.2(b) illustrates the expected Fraunhofer pattern for
C = 2.4. In contrast to that, the experimental data show a monotonic decay of IC
by increasing B. Similar observations were found for junctions with a small width in
other works [126, 127]. Cuevas et al. [128] theoretically explained the absence of a
pattern in very thin wires by the fact that the width W of the junction is smaller
than the magnetic length εB =

√
ΦS/B . In this scenario, pair-breaking effects

reduce the induced gap until IC is fully suppressed. To check if this argumentation
holds for our device, we calculate the magnetic length at the position BΦ = 33 mT
where the first minimum of the regular Fraunhofer pattern is expected:

εB =
√

ΦS

BΦ
≈ 250 nm. (5.1.2)

As this value is comparable to the width W , the absence of a magnetic interference
pattern can be ascribed to the small width of the junction.

5.2 Critical current oscillations in an axial magnetic
field

A magnetic field applied parallel to the current direction in a Josephson junction as
it is sketched in figure 5.3(a) is expected to act as a Cooper pair-breaking mechanism
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5.2 Critical current oscillations in an axial magnetic field

[84–87]. In this scenario, the critical current of the device decreases monotonously
with increasing magnetic field strength. For some of our devices, however, we find a
strong modulation of the critical current IC as a function of the axial magnetic field
B. Oscillations of the critical current arise which are h/4e- and even h/8e-periodic.
Thus, they constitute a highly unusual interference pattern. In this section, we
relate these findings both experimentally and theoretically to the coupling of the
superconducting contacts to the topological insulator nanowire junction.

5.2.1 Experimental results

B
Nb

Nb

HgTe

(a)

(c)(b)

S S

FIG. 5.3: (a) Sketch of the experimental setup. The magnetic field B is orientated along
the nanowire. (b) Color map of the differential resistance dV/dI of sample rG as a function
of the current I and the magnetic flux Φ/ΦS . For sample rG, Φ/ΦS corresponds to
B ≈ 36 mT. Superconducting regions are shown in blue. The critical current oscillates
with a period of ΦS/2 = h/4e while the side maxima at Φ = ±ΦS are most pronounced.
(c) Color map of the differential resistance dV/dI of sample rG up to higher values of the
magnetic flux. For |Φ/ΦS | > 3, additional maxima appear resulting in a period of h/8e.

Figure 5.3(b) presents a color map of the differential resistance dV/dI for sample rG
as a function of the current I and the magnetic flux Φ threading the cross-sectional
area of the nanowire. This device has a critical current IC ≈ 600 nA and shows the
most prominent oscillations of IC among the samples studied. With the width of
the wire W ≈ 700 nm, one superconducting flux quantum ΦS = h/2e corresponds
to B ≈ 36 mT. Blue regions in the color map illustrate superconducting states.
The pattern displays maxima of IC for Φ = j · ΦS/2 with j an integer, while IC
is fully suppressed in between them. Furthermore, the maxima at ±ΦS are more
pronounced than the ±ΦS/2 maxima. Data of the same device up to higher fluxes
are shown in figure 5.3(c). Here, additional maxima appear in between the j · ΦS/2
maxima. Hence, the h/4e periodicity is changed to a h/8e one for higher magnetic
fields. The envelope of this pattern can be ascribed to the expected pair-breaking
mechanism. We note at this point that roughly h/2e-periodic oscillations were
observed by Stampfer et al. and ascribed to oscillations of the transmission due to
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5 Topolgical insulator nanowire junctions in a magnetic field

the conventional Aharonov-Bohm effect [129]. Nonmonotonic behavior of IC(B) with
multiple nodes and lobes but without clear periodicity was observed in semiconductor
nanowire based Josephson junctions in an axial field [130, 131]. Though, a regular
periodicty as observed in some of our devices was not observed.

Only a fraction of the investigated junctions show a modulation of the critical current
as a function of the flux, while the critical current monotonously decreases with
the magnetic field for other samples. Even the exact shape and periodicity of the
pattern, if it exists, differs for various devices. Therefore, we analyze the emergence
of IC(B)-oscillations for different experimental parameters in the following.

Gated devices

HgTe wire

Insulator

VG

Nb Nb
VG= 0 V VG= 3 V

(a)

(b)

(c) (d)

0 2

150

225

I C
 (

nA
)

VG (V)
S S

FIG. 5.4: Gate dependence of IC(B)-oscillations for sample rI. (a) Sketch of the sample
layout. An insulator and a metallic topgate is placed on top of the junction. (b) The
critical current IC increases for higher gate voltages VG. (c) Color map of the differential
resistance dV/dI as a function of the current I and the magnetic flux Φ/ΦS at VG = 0.
The critical current oscillates with a period of ΦS . (d) The corresponding color maps at
VG = 3 V. Additional oscillations of IC appear recovering the ΦS/2-periodicity.

Figure 5.4(c) shows the data of sample rI. This device has a critical current IC =
136 nA and an average transmission D = 0.43 while one superconducting flux
quantum ΦS corresponds to B ≈ 50 mT. Here, we also observe IC (B)-oscillations.
However, only maxima at Φ = j · ΦS are visible leading to a h/2e periodicity. For
more detailed studies, a topgate was added to the junction. This allows to investigate
the IC (B)-oscillations as function of the gate voltage VG. The structure of a gated
device is sketched in figure 5.4(a). An insulator made of ∼ 30 nm SiO2 and ∼ 100 nm
Al2O3 was deposited above the junction. The topgate voltage VG is applied via a
metallic Ti/Au layer. Figure 5.4(b) shows the critical current IC as a function of
the topgate voltage VG. By tuning VG from 0− 3 V, IC increases by a factor ∼ 1.7.
Figure 5.4(d) illustrates dV/dI (Φ, I) of sample rI for VG = 3 V. Additional maxima
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5.2 Critical current oscillations in an axial magnetic field

appear at Φ = (2j + 1) · ΦS/2 in contrast to the data at Vg = 0. Hence, the h/4e
periodicity is recovered by increasing VG. This observation emphasizes that the h/2e
oscillations are the dominating ones and are observable for any VG. The maxima at
Φ = (2j+1) ·ΦS/2 cannot be resolved for VG = 0 due to the low IC at these positions.
By increasing VG, the number of contributing channels rises enabling to resolve
IC at Φ = (2j + 1) · ΦS/2. Compared to sample rG, however, IC (B)-oscillations
with a period of h/8e are not observable, although the transmissions of the devices
are similar. As sample rG stems from a doped wafer, the electron density is much
higher and a large amount of transport channels contributes to the signal. Such
high densities cannot be reached in the undoped sample, even for high gate voltages.
Thus, we conclude that the number of transport channels influences the period of the
IC (B)-pattern where more channels lead to the visualization of higher periodicities.

Influence of the transmission

In addition to differences in geometry, the transmission of the superconductor
/nanowire interface is the decisive parameter that differentiates the devices studied.
Figure 5.5 shows color maps of the differential resistance dV/dI as a function of
the current I/IC and the magnetic flux Φ/ΦS for several samples with different
transmissions. The transmission DOBTK is calculated as explained in section 4.3.
The extracted transmission gives a value averaged over all contributing transport
channels. Thus, it can vary locally at the superconductor/nanowire interface. In
Figure 5.5, the color maps are ordered by the transmission of the devices, descending
from the highest (a) to the lowest (i) values. Moreover, the capital letter in the
labeling of the devices A-I follows the labeling in the figure (a)-(i)2. Devices
wA and wB have the highest transmissions DOBTK ≈ 0.70 and DOBTK ≈ 0.66
among the samples investigated. For these high-transmission devices, the critical
current IC monotonously decays by increasing the magnetic flux Φ. For samples
with slightly lower transmission DOBTK ≈ 0.64 and DOBTK ≈ 0.63, as in samples
wC and rD, the monotonic decrease of the critical current still prevails, but an
additional shoulder comes out. This shoulder can be considered as a precursor of the
oscillations appearing at still lower transmissions. The oscillations start for device wE
(DOBTK ≈ 0.62). Initially, IC decreases and is almost fully suppressed below Φ = ΦS.
Then, IC increases again and shows a maximum around Φ = ΦS. The oscillations
become more pronounced for samples wF (DOBTK ≈ 0.57), rG (DOBTK ≈ 0.51), wH
(DOBTK ≈ 0.49), and rI (DOBTK ≈ 0.43) which have even lower transmissions. These
samples show clear IC(B)-oscillations with periodicities h/2e or h/4e. For samples

2The lower case letter indicates the fabricator of the sample: Samples starting with ’w’ were
fabricated and measured by W. Himmler.
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(a) (b) (c)

(f)(d) (e)

(i)(g) (h)

wA wB
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rG rI

FIG. 5.5: Impact of sample transmission on IC(B)-oscillations. Color maps of the differential
resistance dV/dI as a function of the normalized current I/IC and the magnetic flux Φ/ΦS

for different samples. The color maps are ordered by decreasing transmission of the junctions
with the highest transmission shown in (a) to the lowest in (i). (a-b) Samples with high
transmission (DOBTK ≈ 0.70 and DOBTK ≈ 0.66) show no oscillations as a function of the
magnetic field. (c-e) For intermediate transmissions (DOBTK ≈ 0.64, DOBTK ≈ 0.63, and
DOBTK ≈ 0.62), the shape of the IC(B)-contour starts to deviate and first shoulders are
observable. (f-i) Samples with the lowest transmissions (DOBTK ≈ 0.57 to DOBTK ≈ 0.43)
show distinct oscillations as a function of the axial magnetic field. Samples with initial
letter ’w’ were fabricated and measured by W. Himmler.
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5.2 Critical current oscillations in an axial magnetic field

rG and rI, the maxima appear exactly at positions Φ = j · ΦS/2 and Φ = j · ΦS,
respectively, while the positions are slightly shifted for devices wF and wH.

Based on these experimental observations, we conclude that the transmission DOBTK

is the most influential parameter that determines whether IC(B)-oscillations occur or
not. The oscillations appear preferentially for samples with low average transmission,
while they are fully absent for high transmissions.

5.2.2 Theoretical model

To understand the observed experimental phenomena, a theoretical model was
developed by J. Fuchs and M. Barth [132–134]. Within this model, semiclassical and
numerical simulations were performed to explain the experimental findings. Here, we
outline the basic principles of the model in a simplified way and show the results of
the simulations. A more detailed version of the theory can be found in [132, 133].

Geometry and model

(a) (b)
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C=W+2d

n=0
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FIG. 5.6: (a) Sketch of the topological insulator nanowire Josephson junction. The surfaces
are illustrated in gray while surfaces with proximity induced superconductivity are shown
in green. The bottom side of the nanowire is not affected by the induced superconductivity.
The barriers at the NS interfaces are marked in orange. The different types of paths are
illustrated in red, purple, and blue, respectively. (b) Sketch of the uncoiled nanowire to
improve the illustration of the different types of paths. Adapted from [132].

The geometry of the model is presented in figure 5.6(a). To improve the visualization
of the different parameters, the uncoiled nanowire is sketched in figure 5.6(b). Here,
we define the coordinate s which winds around the perimeter. The nanowire with a
rectangular cross-sectional area A is considered to be orientated along the x-axis. It
is contacted by two superconducting leads with width WSC . The distance between
the leads is given by L. The width of the nanowire is labeled as W , while d is its
height. Thus, the perimeter is P = 2(W + d). The magnetic field B is aligned along
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5 Topolgical insulator nanowire junctions in a magnetic field

the wire just like in the experiment. In the model, only surface states are considered
while any contribution of the bulk is neglected. Since only the top surface and the
side surfaces of the nanowire are covered by a superconductor, these surfaces are
assumed to become superconducting by the proximity effect. The bottom surface
stays normal-conducting. Thus, the superconducting pairing is given by

∆ =


σ0∆0eiφL for 0 ≤ s ≤ C and −WSC ≤ x ≤ 0
σ0∆0eiφR for 0 ≤ s ≤ C and L ≤ x ≤ L+WSC

0 otherwise
(5.2.1)

with a constant ∆0, the phase difference of the superconductors ϕ = φL − φR, and
the length of the perimeter which is covered by the superconductor C = W + 2d.
Additionally, the potential U describing the barrier between the nanowire and the
superconductor can be written as

U(x, s) =
U0[δ(x) + δ(x− L)] for 0 ≤ s ≤ C

0 otherwise
(5.2.2)

with a constant U0. In figure 5.6(a), the superconducting regions are illustrated
in green, while the normal-conducting parts are gray. The barrier is shown in
orange. The choice of the introduced barrier is justified by taking a closer look at the
fabrication process of the nanowire junctions. We assume a low average transmission
since the IC(B)-oscillations preferentially appear in such devices. A low average
transmission is most likely caused by an incomplete removal of the cap layer in
the fabrication process. This only concerns the top surface of the nanowire. The
corresponding barriers are at x = 0 ∨ x = L and d < s < d+W . The side surfaces
are already fully uncovered by the etching of the nanowire. Thus, the transmission
at the side surfaces is much higher than the transmission at the top surface if the
average transmission of the whole device is rather low. This explains the absence of
a barrier at s = C or/and s = 0 ≡ P , which corresponds to the lowest part of the
side surfaces. Strictly speaking, the barrier should also be missing at x = 0 ∨ x = L
and 0 < s < d, W + d < s < W + 2d as this is also a part of the side surface.
Though, this deviation from the experimental situation does not qualitatively affect
the results, but simplifies the classification of the paths.

Classification of the trajectories

The idea of the semiclassical analysis is that each classical trajectory between the
leads contributes a current i to the total current IS. By considering only straight
paths and neglecting normal reflections, the total current is the integral over all
trajectories:

IS ∼
∫
ds
∫
dksi (s, ks) . (5.2.3)
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5.2 Critical current oscillations in an axial magnetic field

The trajectories can be classified into three different categories and the integral for
each is evaluated separately. The classification of the trajectories is based on its
starting point and end point. For the sake of simplicity, we use a fixed direction for
the explanation of the paths. The different paths are visualized in figure 5.6.

• Type-1 paths are ’direct’ paths. The starting point at the left SLN interface is
located at x = 0 while the end point at the right SRN interface is at x = L.
If the wire is fully surrounded by a superconductor, i.e. C = P , this type of
paths exists exclusively.

• Type-2 paths are ’mixed’ paths. The starting point at the left SLN interface is
also located at x = 0. However, the end point is at s = 0 ≡ P ∨ s = C and
L < x ≤ L+WSC at the SRN interface. Since this scenario can also take place
with exchanged interfaces, we can divide these paths further into type-2L and
type-2R paths depending whether they start on the SLN or SRN interface.

• Type-3 paths are ’side’ paths. They start at s = 0 ≡ P ∨ s = C and
−WSC ≤ x < 0 at the SLN interface while the end is at s = 0 ≡ P ∨ s = C
and L < x ≤ L+WSC at the SRN interface.

Additionally, a crossing number n is assigned to every path. For a given slice along
the x-axis in the region C < s < P , we count the number a path crossing this slice.
Here, a positive count indicates a passing through in positive s-direction, while a
negative count labels a passing through in negative s-direction. Exemplarily, figure
5.6(b) illustrates the crossing numbers n = 0 and n = 1 for a red type-1 path.
Additionally, we notice that no paths of type-2 and type-3 with crossing number
n = 0 exist.

Andreev bound states

The modeled system is described by the BdG Hamiltonian of a topological insulator
nanowire proximitized by an s-wave superconductor as it was derived in section
2.3.5:

H =
(
HWire ∆

∆∗ −σyH∗Wireσy

)
(5.2.4)

where the Hamiltonian of the nanowire in the normal-state is given by

HWire = ~vF
[
−i∂xσx +

(
−i∂s + 4π

P

Φ
ΦS

)
σy

]
− µσ0 + Uσ0. (5.2.5)

Here, small adjustments compared to section 2.3.5 are applied: 1/R is replaced by
2π/P and ∂ϕ by P

2π∂s (k̂ϕ by P
2π k̂s) to account for the rectangular shape of the wire

[56, 132].
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5 Topolgical insulator nanowire junctions in a magnetic field

To calculate the current contribution i for each classical trajectory, the Andreev
bound states for a type-m path are calculated using a scattering matrix approach
[132]. Similar to equation (2.3.25), they yield

Em,n = ±∆0

√
1−Dm sin2

(1
2ϕ0 − γ

)
. (5.2.6)

Here, the values for the transmission Dm depend on the specific type of the path,
where θ is the angle of its incidence:

D1 = 1
sin2 (ϕN) +

[
1 + 2Z2 (1 + Z2)−1 tan2 (θ)

]2
cos2 (ϕN)

,

D2 = 1
1 + Z2 (1 + Z2)−1 tan2 (θ)

, and D3 = 1

with

ϕN = 2 arctan
 cos (θ) + Z tan (θ)
Z − sin (θ)−

√
1 + Z2 + Z2 tan2 (θ)


and Z = U0/~vF . Thus, type-1 paths have barriers at both NS interfaces. Type-2
paths have a barrier at one NS interface while Z = 0 at the other NS interface. For
type-3 paths, Z = 0 at both NS interfaces. Additionally, the gauge-invariant phase
difference ϕ0 − 2γ appears in equation (5.2.6). The phase difference between the left
and the right superconducting lead is described by ϕ0. The second part of the phase
is induced by the magnetic field. It evolves for transport paths which wind around
the perimeter and pick up an Aharonov-Bohm phase [66]

γ = e

~

∫
d~s · ~A = 2nπ Φ

ΦS

. (5.2.7)

Theoretical results

In figure 5.7, we present the results of the semiclassical model. Here, the current
i for every trajectory is determined from the energy-phase relation (5.2.6). The
supercurrent IS is given by the integral over all trajectories. For the calculations,
realistic parameters were used: The width of the nanowire is W = 300 nm, its height
is d = 80 nm, the width of the superconducting contacts is WSC = 1 µm, and the
distance between them is L = 200 nm. The chemical potential is set to µ = 30 meV,
~vF = 330 meV nm, kF = 0.09 nm−1, and ∆0 = 0.8 meV. Only paths with crossing
numbers n = 0, ±1 are considered. A low barrier U0 = 100 meV nm is assumed for
the results shown in figure 5.7(a). In the upper panel, the current-phase relation is
shown for different values of the magnetic flux. The current-phase relation shows a
jump whenever there is a sign change in the Andreev bound state. This happens
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FIG. 5.7: Results of the semiclassical analysis. (a) Current-phase relation for a low barrier
strength U0 = 100 meV nm and different values of the magnetic flux Φ (upper panel). The
current arising from type-1 paths dominates while jumps in the current-phase relation occur
at ϕ0 = ±π ± 2πΦ/ΦS due to type-2 and type-3 paths. The maxima of the current-phase
relation for a specific magnetic flux are indicated by circles. Critical current IC as a
function of the magnetic flux Φ when a low barrier is assumed (lower panel). The trace
shows a period of h/2e. (b) Current-phase relation for a large barrier U0 = 600 meV nm
and different values of the magnetic flux Φ(upper panel). The current arising from type-2
and type-3 paths gains in importance. Critical current IC as a function of the magnetic
flux Φ for a large barrier (lower panel). The trace shows a period of h/4e. Adapted from
[132].

at ϕ0 = ±π for paths with crossing number n = 0. Paths with crossing numbers
n = ±1 are shifted due to the Aharonov-Bohm phase. Therefore, the jumps occur at
ϕ0 = ±π + 2πΦ/ΦS and at ϕ0 = ±π − 2πΦ/ΦS. The maxima of the current-phase
relation, i.e. the critical currents, for a specific magnetic flux are indicated by circles.
The critical current as a function of the magnetic flux is shown in the lower panel
of figure 5.7(a). Here, the critical current oscillates with a period of ΦS = h/2e. In
the scenario described, the current carried by type-1 paths manifests the dominating
contribution to the results obtained.

By considering a higher barrier U0 = 600 meV nm, the results change. The trans-
missions D1 and D2 of type-1 and type-2 paths decrease, while type-3 paths are
not affected by the barrier. Thus, especially the current of type-1 paths drops its
predominance, and the paths with crossing numbers n = ±1 gain in importance.
The upper panel of figure 5.7(b) illustrates the resulting current-phase relation for
different values of the magnetic flux while the critical current as a function of the

87



5 Topolgical insulator nanowire junctions in a magnetic field

magnetic flux is shown in the lower panel. The critical current shows oscillation with
a period of ΦS/2 = h/4e. Here, the additional peaks at Φ = (2j + 1) · ΦS/2 with
j an integer are weaker similar as observed in the experiment. At this point it is
worth mentioning that the enveloping drop of the critical current with the magnetic
field is not considered in the model.
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FIG. 5.8: (a) Results of the semiclassical analysis. For a small barrier strength U0 (green
and orange), the critical current IC oscillates as a function of the magnetic flux Φ with
a period of h/2e. By increasing the barrier, additional maxima appear leading to a h/4e
periodicity (red). A peak at Φ = (2j + 1) · ΦS/2 also exists for U0 = 0. Though, it
immediately vanishes by introducing a small barrier. (b) Results of the numerical analysis.
The results are qualitatively similar to the semiclassical analysis. However, the peak at
Φ = (2j + 1) · ΦS/2 for U0 = 0 is absent in the numerics. Adapted from [132].

Figure 5.8(a) presents the critical current IC as a function of the magnetic flux ΦS

for different barrier strengths U0. Additionally, the numerical results from M. Barth
[133, 134] are illustrated in figure 5.8(b). The latter are obtained by numerical
tight-binding simulations with the Python package Kwant [135]. The semiclassical
and the numerical results show the same qualitative behavior: IC(B)-oscillations
with a period of h/2e are observed for low barriers, whereas a period of h/4e evolves
with an increasing barrier. The main difference between semiclassics and numerics is
that a peak at Φ = (2j + 1) ·ΦS/2 also exists for U0 = 0 in the semiclassical analysis
only. It immediately vanishes by introducing a small barrier and appears again for
high barrier strengths. However, this feature is not reproduced in the numerical
simulations. A possible reason is that the numerical simulation respects the length of
the different types of paths which is not captured by the semiclassical analysis. This
causes that the type-2 paths have too much weight in the semiclassics. Furthermore,
the critical currents obtained from the numerical simulations are smaller.

The same calculations were also performed for the Hamiltonian of a metal instead
of the Hamiltonian of a topological insulator nanowire (5.2.5). The metallic Hamil-
tonian does not capture the topological properties of the system. The results show
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5.2 Critical current oscillations in an axial magnetic field

qualitatively the same behavior as for the Dirac-like Hamiltonian [132]. Thus, the
h/4e oscillations have their origin in the geometry of the system, and a topological
nature of the surface states is not required to experimentally observe them.

Comparison to the experiment

Finally, we summarize the experimental observations and relate them to the the-
oretical model. The IC(B)-oscillations appear preferentially for samples with low
average transmission. A low average transmission is caused by a bad transmission
at the top interface while the transmissions at the side interfaces are rather high.
As a consequence, transport channels of type-2 and type-3 provide a significant
contribution to the signal. This leads to the h/4e oscillations as illustrated by the
theoretical model. For a low contribution of type-2 and type-3 paths, one would only
expect h/2e oscillations.

For samples with high average transmission, the coupling of the superconductor to
the nanowire is quite good. Here, we expect a wide impact of the superconductivity.
Thus, also the bottom side of the nanowire gets proximitized by the superconductivity.
With this assumption, no transport channels of type-2 and type-3 with crossing
numbers n 6= 0 exist, and only type-1 paths are present. Hence, the additional phase
difference in equation (5.2.6) vanishes, and the Andreev bound states are similar to
the ones of a planar junction. Here, the critical current monotonously decreases due
to the reduction of ∆0 by the magnetic field.

For sample rG, oscillations with a period of h/8e are observed. Such period is
expected if paths with crossing numbers n = ±2 provide a significant contribution to
the current. The fact that these period is only observed for sample rG is explained
by the high amount of transport channels compared to other samples. Here, the
probability that a few contributing channels with crossing number n = ±2 exist is
higher.

A similar argumentation can be applied for sample rI where h/4e oscillations are
only observed for VG = 3 V. The maxima at Φ = (2j + 1) · ΦS/2 cannot be resolved
for VG = 0 due to the low contribution of type-2 and type-3 channels to the absolute
current. By increasing VG, the number of contributing type-2 and type-3 channels
raises leading to the resolution of the maxima at Φ = (2j + 1) · ΦS/2.

Similar to previous works on semiconductor wires [130, 131], deviations from a
h/2e or h/4e periodicity are observed for samples wE, wF, and wH. They were
ascribed to subband supercurrent interference [136]. Here, the phase picked up by
the quasiparticles depend on the difference of their wave numbers, the length of the
junction, and the angular momentum quantum number. Since these oscillations
depend on many parameters, they do not necessarily show any periodicity in the
flux quantum. The fact that such oscillations are observed in several of our devices
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5 Topolgical insulator nanowire junctions in a magnetic field

while others show a clear periodicity in the flux quantum could not be clarified
so far. One notable difference between the respective devices is the width of the
superconducting contacts. For the samples (rG and rI ) which show a periodicity
with the flux quantum, WSC ≈ 550− 700 nm. This value is significantly smaller than
in samples (wE, wF, and wH) that showed no clear periodicity.

For the detection of Majorana bound states in chapter 6, we preferentially study
devices which show a monotonic decay of IC by increasing Φ, i.e. junctions with
high transmission. For these devices, superconductivity is induced into the whole
wire. This assumption is made in the theoretical proposals for the appearance of
Majorana bound states in topological insulator nanowires. Thus, such devices are
most promising for the verification of the theory.
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5.3 Resistance oscillations in an axial magnetic field

5.3 Resistance oscillations in an axial magnetic field

In addition to the described IC(B)-oscillations, other phenomena were also found
in an axial magnetic field that were only observed on certain devices. Sample r1
shows oscillations of the resistance R as a function of the magnetic flux Φ/Φ0 at
the transition from the superconducting to the normal state. Note that we use
the normal flux quantum Φ0 = h/e at this point. A plot of the resistance R(Φ)
is shown in figure 5.9(a) (blue trace). The resistance R increases from R = 0 to
R = RN between Φ = 2 Φ and 4 Φ. This corresponds to the transition from the
superconducting state to the normal state. In the rise, oscillations of the resistance
appear. To improve the visualization of the oscillations, we substract the background
by a high-pass filter algorithm with a cutoff frequency of 0.6 Hz. The resulting trace
is shown in red. Here, the oscillations are clearly visible. They show a period of
∼ h/3e.
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FIG. 5.9: (a) Resistance R of sample r1 as a function of the magnetic flux Φ (blue trace).
Between Φ = 2 Φ0 and 4 Φ0, R increases from 0 to RN resembling the transition from the
superconducting state to the normal state. Oscillations with period of h/3e occur during
this ascent. The visualization of the oscillations is improved by subtracting the background,
which is executed by a high-pass filter algorithm with a cutoff frequency of 0.6 Hz. The
resulting trace is shown in red. (b) Color map of the differential resistance dV/dI as a
function of an axial magnetic field B and the current I for sample r1. The critical current
IC monotonously decays by increasing B.

To check if these oscillations are related to the IC(B)-oscillations shown in the
previous section, we plot the color map of the differential resistance dV/dI as a
function of an axial magnetic field B and the current I for sample r1 in figure 5.9(b).
No IC(B)-oscillations are observed due to the high transmission of sample r1. Thus,
we assume a relation to the IC(B)-oscillations to be improbable.

Another possible explanation could point to the Little-Parks effect which was discov-
ered by W. A. Little and R. D. Parks in experiments with empty and thin-walled
superconducting cylinders in an axial magnetic field [137]. As the topological surface
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5 Topolgical insulator nanowire junctions in a magnetic field

states of the nanowire may resemble such a cylinder, this is worth taking a closer
look at. In the Little-Parks experiment, the resistance of the cylinders showed
an oscillation with period of h/2e as a function of the magnetic flux penetrating
the cross-sectional area of the cylinder. This resistance oscillations reflect periodic
oscillations of the critical temperature TC . To understand this effect, one has to
recall that the flux which is trapped in a superconducting cylinder is an integer
multiple of h/2e [138, 139]. By applying the magnetic flux, the kinetic energy of the
superconducting electrons is increased. However, superconducting vortices appear
periodically, and reduce the kinetic energy again. Thus, the kinetic energy oscillates
as a function of the flux. Since the kinetic energies of normal and superconducting
electrons are equal at TC , the critical temperature TC must also be a periodic function
of the enclosed flux Φ/Φ0 [137].

In our experiment, the transition from the superconducting state to the normal state
is spread over a finite interval (2 Φ0 − 4 Φ0). Hence, the critical temperature TC
varies for different parts of the nanowire at a given magnetic field. Since for a certain
part of the nanowire the temperature is very close to TC , Little-Parks oscillations
which have their origin in the oscillation of TC , should be apparent in the interval
2 Φ0 − 4 Φ0 if they are present at all. Therefore, the regime, in which the oscillations
occur, fit perfectly to the Little-Parks effect. However, the fact that we observe a
period of h/3e, although a period of h/2e is predicted, speaks against the Little-Parks
effect. Deviations from the theoretical period could also be found in other works, e.g.
h/4e oscillations in disordered Au0.7In0.3 cylinders [140] or periodicities h/e, 3h/2e,
and 2h/e [141] in combination with a phase shift by a half flux quantum [142] in the
topological superconductor β-Bi2Pd. However, a period of h/3e was not observed so
far.

Therefore, no fully satisfying explanation can be given for the R(Φ)-oscillations
occurring in our experiment at the moment. Further experiments on several devices
is necessary to get better insights into the observed behavior.
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6 4π-periodic supercurrent in
topological insulator nanowires

Topological insulator nanowires in proximity to conventional superconductors have
been proposed as a tunable platform to realize topological superconductivity [23,
24]. The tuning is done using an axial magnetic flux Φ which allows transforming
the system from trivial at Φ = 0 to topologically nontrivial when half a magnetic
flux quantum Φ0/2 penetrates the cross-sectional area of the wire. In this chapter,
we explore the expected topological transition in Josephson junctions based on
topological insulator nanowires. To probe signatures of topological superconductivity
in our system, we measure the I-V characteristics under microwave irradiation and at
millikelvin temperatures (Tbath ≈ 40 mK). With a microwave field, quantized Shapiro
steps appear at voltages Vn = nhf/2e. In the case of topological superconductivity,
the current-phase relation is 4π-periodic, and the odd Shapiro steps, i.e. n = 1, 3, ...
are partially missing.

6.1 Microwave response in the absence of a magnetic
field

The experimental setup to detect Shapiro steps is sketched in figure 6.1(a). An
open-ended coaxial cable is placed a few millimeters away from the sample emitting
microwave radiation. We are able to achieve frequencies in the range from 1.5 to
12 GHz. Firstly, we concentrate on the results in the absence of a magnetic field.
Exemplarily, we show the results of sample r1 while samples r2, r3, and w1 show
consistent results.

The I-V traces of sample r1 with and without applying microwaves are shown in
figure 6.1(b). Without microwaves (blue line, right axis), a supercurrent of about
IC = 1 µA flows across the junction. With microwaves turned on (red and green line,
left axis), Shapiro steps appear in the I-V trace. Even and odd voltage steps appear
for f = 5.9 GHz while the n = 1 step, indicated by the black arrow, is missing,
and the n = 3 step is barely visible at f = 5.4 GHz. To improve the visualization
of the steps, we use bar charts. Here, the V -axis is divided into small intervals of
0.25hf/2e and the data points within them are counted. The intervals are illustrated
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FIG. 6.1: (a) Sketch of the experimental setup. The magnetic field B is orientated along
the nanowire while microwave radiation is applied via an antenna in vicinity to the sample.
(b) I-V trace of sample r1 (blue trace). The junction has a critical current of IC ≈ 1 µA.
By adding microwave radiation, Shapiro steps appear in the I-V traces (red and green
traces). The n = ±1 steps are visible at 5.9 GHz, while the first steps are absent at a lower
frequency of 5.4 GHz. This is indicated by the black arrow. The V -axis is divided into
intervals of 0.25hf/2e to create histograms. The intervals are shown for negative voltages.
(c) Histogram of the data shown in (b) where the data points within each interval are
counted. With this illustration, the missing first steps for f = 5.4 GHz are even better
recognizable.

for negative voltages in figure 6.1(b). The corresponding histograms are shown in
figure 6.1(c). An accumulation of data points marks a flat line in the I-V traces, i.e.
a Shapiro step. Thus, the missing n = 1 plateau (black arrows) is clearly observable
for f = 5.4 GHz in the bar plots while the n = 1 step is present for f = 5.9 GHz.
For a quantitative study, we measure the frequency and power dependence which
both affect the Shapiro steps. Figures 6.2(a-c) show color maps at three frequencies
as a function of the power at B = 0. An increasing microwave power enhances
the ac current flowing across the junction. For the color maps, the histograms are
created as explained above. The color maps show these histograms as a function of
microwave power. Yellow regions mark an accumulation of data points, i.e. Shapiro
steps. For the evaluation of the maps, we limit ourselves to the low power regime
which corresponds to the area up to the dashed line in figure 6.2(a). For higher
powers, oscillations appear which are described by Bessel-like functions [83], but
they are not of interest here. All Shapiro steps are visible for f = 6.6 GHz whereby
steps with a lower index n appear at a lower power. By reducing the frequency
to f = 5.4 GHz, the first steps n = ±1 becomes completely suppressed, and the
third ones are slightly reduced, i.e. they start to disappear at lower powers. The
sequence of all other steps is unchanged. At f = 3.7 GHz, the third steps are also
fully quenched while the fifth ones are strongly reduced. So far, only a missing first
step was observed in the literature [17, 33, 37], except in Josephson junctions made
of 2D HgTe [34]. The absent higher steps n ≥ 3 show the high quality of our samples
and prove that hysteresis, occurring on a smaller bias current scale, is not the origin
of the missing steps.

94



6.1 Microwave response in the absence of a magnetic field

(a)

(e) (f)(d)

(b) (c)f = 6.6 GHz f = 5.4 GHz f = 3.7 GHz

f = 5.4 GHzf = 6.6 GHz

w1
w2

w1

w2 w
1
/w
2

f4π

Δf4π

FIG. 6.2: (a-c) Color maps of the bin counts of sample r1 at frequencies f = 6.6 GHz,
5.4 GHz, and 3.7 GHz. The yellow color marks a step in the I-V traces. For the highest
frequency, all Shapiro steps are visible. By lowering the frequency, the first step disappears
and the third ones become slightly suppressed. Red arrows mark missing or suppressed
steps. For the lowest frequency shown, the third step is also strongly suppressed while
the fifth one is further reduced. (d-e) Amplitude of the Shapiro steps as a function of the
microwave power P for the above color map, respectively. At f = 6.6 GHz, the maximum
amplitude w1 of the first Shapiro step is larger than of the second one w2. For f = 5.4 GHz,
the amplitude of the first step is almost fully suppressed and the second step dominates.
(f) The ratio w1/w2 as a function of the frequency. The ratio decreases by lowering the
frequency. At the point w1/w2 = 1, the second step starts to dominate. We indicate this
point as the transition frequency f4π. The grayish background indicates the uncertainty
∆f4π in the determination of f4π.
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6 4π-periodic supercurrent in topological insulator nanowires

All in all, our observations indicate a 4π-periodic Josephson effect in topological
insulator nanowires at B = 0. This is surprising since the wire structure is topologi-
cally trivial (see section 2.3.5), and a pure 2π-periodic Josephson effect is expected.
Nevertheless, the presence of the higher order odd plateaus as well as the missing
steps preferably at low frequencies and powers suggest that trivial 2π-periodic modes
are also present in addition to the 4π-periodic ones. Before giving a potential ex-
planation for the 4π-periodic supercurrent at B = 0 in section 6.3, we analyze the
experimental data using a resistively shunted junction (RSJ) model and an extended
resistively and capacitively shunted junction (RCSJ) model. This also permits to
extract the ratio I4π/IC from frequency-dependent measurements of the Shapiro
spectrum [39, 143, 144].

6.2 Modelling of the experimental results

In section 2.2.4, we showed that the RCSJ model can be used to describe the dynamics
of Josephson junctions and the formation of Shapiro steps. Here, we use two different
approaches to analyze our data. Firstly, we take a simplified RSJ model based on [33,
39, 143] where the capacitive term is neglected. As the RSJ model neglects several
effects that may influence the observed Shapiro signatures, numerical simulations
based on an extended RCSJ model were additionally performed aiming to reproduce
the experimental results as accurately as possible. Here, the effects of Joule heating
and the excess current are also implemented.

6.2.1 RSJ model in the presence of 2π- and 4π-periodic
supercurrents

For the simplified RSJ model, the supercurrent IS is assumed to be a linear combi-
nation of a 2π-periodic and a 4π-periodic supercurrent. This implies that the two
contributions are completely independent of each other. Additionally, a sinusoidal
2π-periodic current-phase relation is used. As shown in figure 2.17(b), this is only
valid for low transmissions. With these considerations, equation (2.2.26) is adapted
to

Iext = ~
2eRN

∂ϕ

∂t
+ I2π sin (ϕ) + I4π sin (ϕ/2) (6.2.1)

with Iext = Idc + Iac cos (ωact). We rewrite this equation to
(
~
2e

)2 1
RN

∂ϕ

∂t
+ d

dϕ

[
EJ

(
1− I2π

IC
cos(ϕ)− 2I4π

IC
cos(ϕ/2)− Iext

IC
ϕ
)]

= 0 (6.2.2)
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where the washboard potential is given by the expression in the square brackets just
as in equation (2.2.29). The additional 4π-periodic contribution provides a change
in the washboard potential compared to section 2.2.4. The maxima of the 2π- and
4π- component is superimposed at every second maximum that they add up. On
the other hand, for the maxima in between, the maximum of the 2π-periodic part
meets a minimum of the 4π-periodic part. Assuming that the 4π-periodic part is
much smaller than the 2π-periodic part, this results in a reduced maximum.
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FIG. 6.3: (a-b) Washboard potential U(ϕ) for two superconducting contributions I2π sin(ϕ)
and I4π sin(ϕ/2) with I4π = 0.3 IC , I2π = 0.7 IC , and Idc = 0.8 IC . In (a), the applied
microwave power is Iac = 0.2 IC . In (b), Iac = 0.4 IC . The overall slope of the washboard
potential changes between I = Idc+Iac and I = Idc−Iac during one period of oscillation. (c-
d) Derivative dU/dϕ of the above washboard potential, respectively. During one oscillation,
the slope dU/dϕ changes, and the phase particle slides down until the slope of the potential
is positive again. Adapted from [145].

Firstly, we address the power dependence and explain why missing odd steps are
preferably observed at low powers when the junctions are irradiated with microwave
radiation. Therefore, the washboard potential is plotted for a low power (Iac = 0.2 IC)
and a high power (Iac = 0.4 IC) in figure 6.2.1 (a-b). In both cases, Idc = 0.8 IC ,
I4π = 0.3 IC , and I2π = 0.7 IC . The red line gives the top position during one
oscillation, while the blue one illustrates the lowest position. To visualize the slope
of the washboard potentials at each position, the derivatives are shown in the figure
below, respectively. As a starting point, the particle sits in one of the deep minima
where the derivative of the potential is positive, and I = Idc − Iac. For the sake
of simplicity, let us consider a single period of oscillation. During the oscillation,
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6 4π-periodic supercurrent in topological insulator nanowires

the slope changes, and the particle slides down until the slope of the potential is
positive again1. As shown in figure 6.2.1(a, c), the slope does not reach a positive
value at the position ∆ϕ = 2π for a low power. Thus, the particle falls down to the
minimum at ∆ϕ = 4π, and ∆ϕ/∆t = 4πf . Consequently, steps of constant voltages
appear at Vn = nhf/2e with n = 0, 2, 4, ..., and the 4π-periodic contribution of the
supercurrent is visible.

The amplitude of the oscillation is stronger for a high power as illustrated in figure
6.2.1(b, d). Thus, the slope at the position ∆ϕ = 2π becomes positive. The particle
stops, and ∆ϕ/∆t = 2πf . Shapiro steps appear at the regular values Vn = nhf/2e
with n = 0, 1, 2, ... and the 4π-periodic contribution of the supercurrent is hidden.

Furthermore, the experimental data show that missing odd steps are preferably
achieved below a certain driving frequency. To understand this within the RSJ
model, we rewrite equation (6.2.1) to

τ
∂ϕ

∂t
= idc + iac cos (ωact)− i2π sin (ϕ)− i4π sin (ϕ/2) (6.2.3)

where τ = ~/2eRNIC is the phase relaxation time, and each current ix is given by
its ratio of the critical current ix = Ix/IC . Firstly, we assume a pure 2π-periodic
current-phase relation. Here, the phase relaxation time sets the time scale for the
phase to adapt to a change of the current. When the oscillation period 1/ωac > τ , the
junction has enough time to relax during one oscillation. In this regime, we are able
to observe Shapiro steps. For 1/ωac < τ , the phase cannot follow the driving current.
Therefore, the phase locking is not possible and Shapiro steps are absent. In our case,
regarding a 2π-periodic and a 4π-periodic current contribution, the situation is more
complicated. For each component there exists an own relaxation time τ2π = ~/2eRI2π
and τ4π = ~/eRI4π. However, the argumentation is similar as above. The 4π-periodic
contribution influences the junction dynamics only for frequencies ωac < 1/τ4π, while
for 1/τ2π > ωac > 1/τ4π the regular 2π-periodic dynamics dominate [146]. Hence,
we are only able to observe missing odd Shapiro steps as a signature of 4π-periodic
junction dynamics below a transition frequency f4π which is given by [39]

f4π = ω4π

2π = 1
2πτ4π

= eRNI4π

h
. (6.2.4)

This equation gives us the opportunity to extract the 4π-periodic current I4π from
frequency-dependent Shapiro step measurements.

With these results, we follow reference [33] to evaluate f4π from our experimental
data. Figure 6.2(d, e) shows the histograms’ power dependency of the above figure
6.2(a,b), respectively, at fixed voltages Vn = nhf/2e for n = 0, 1, 2. This presentation

1Here, we assume that the frequency of the microwave radiation is in the right range to observe
this behavior. The role of frequency is discussed later.
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corresponds to slices in figure 6.2(a, b) at the fixed voltages. We extract the maximum
step size (bin count) of the first step w1 and the second one w2. Figure 6.2(f) shows
the ratio w1/w2 as a function of the microwave frequency f . A missing first step,
i.e. a ratio w1/w2 � 1, indicates a 4π-periodic contribution to the supercurrent.
This holds for frequencies below 5 GHz where the ratio w1/w2 is almost constant.
For higher frequencies, the ratio w1/w2 rises. When w1/w2 > 1, all Shapiro steps
are visible and the influence of the 4π-periodic contribution is suppressed. Thus,
the frequency f4π ≈ 5.9 GHz, at which w1/w2 = 1 holds, is an estimation for the
transition frequency f4π. The error ∆f4π describes the uncertainty of f4π. It is given
by the distance to adjacent frequencies for which a measurement is taken. With
equation (6.2.4), we calculate the amplitude of the 4π-periodic supercurrent given
by I4π = f4πh

2eRN ≈ 57 nA where RN = 214 Ω is the normal-state resistance. This
corresponds to I4π/IC ≈ 6 %.

All in all, the RSJ model can explain the frequency- and power-dependence of the
first and second Shapiro steps in the presence of a 2π- and 4π-periodic component
of the supercurrent. Furthermore, it gives a first approximation for the ratio of the
4π-periodic current I4π to the total critical current IC .

However, the arguments adapted from the RSJ model should also hold for steps
with higher indices. Thus, all odd steps should be present or not. By looking at the
experimental data, this is obviously not the case since odd steps at lower voltages
are absent, while odd steps are still present at higher voltages. This is an indication
that the RSJ model does not give an answer to all the phenomena observed in the
experiment. Consequently, we also address the effects of the capacitance, Joule
heating, and the excess current and discuss how they influence the observation of
Shapiro steps.

6.2.2 Correction due to the excess current

By estimating the 4π-periodic current I4π with equation (6.2.4), we use the normal-
state resistance RN = 1/G. However, G only describes the conductance of the
junction for voltages V > 2∆/e. Below this value, the conductance changes due to
an excess current caused by presence of Andreev reflections. Since Shapiro steps
usually occur at voltages Vn � 2∆/e, the usage of RN for the calculation seems
not to be ideal. To account for the excess current, an additional current source
Icor = Iexc tanh (V/Vexc) connected in parallel to the other circuit components of the
model is considered. Thus, the current is given by [147]

Idc = V

RN

+ Icor = V

RN

+ Iexc tanh
(
V

Vexc

)
. (6.2.5)

The excess voltage Vexc gives the voltage at which the current switches to the excess
branch. Iexc is the magnitude of the excess current, i.e. the difference between the
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FIG. 6.4: (a) V -I curve of sample r1 at B = 0 up to high bias voltages. The fitting curve
I = V G + Iexc tanh (V/Vexc) perfectly reproduces the trace except for the zero-voltage
plateau. (b) The conductances G and G∗ as a function of the magnetic field B. While G∗
has a strong dependence on the magnetic field, the normal-state conductance G hardly
changes. (c) The excess current Iexc as a function of the magnetic field B. It is suppressed
with increasing magnetic field from B = 0 to B = 50 mT by a factor 0.57. (d) The critical
current IC and the retrapping current IR as a function of the temperature Tbath. The red
curve shows the simulated values from the extended RCSJ model with Q = 2.1·109 eV/sK5.

measured value of the current at V � Vexc and the expected ohmic value GV = Idc.
Figure 6.4 (a) illustrates a fit of equation (6.2.5) to the experimental V -I trace.
It shows an excellent agreement for the values RN = 1/G = 214 Ω = 1/4.67 mS,
Iexc = 2.75 µA, and Vexc = 0.48 mV.

Hence, equation (6.2.5) produces a voltage-dependent effective conductance G∗. For
V � Vexc, the effective conductance is G∗ = G, while

G∗ = G+ lim
V→0

Icor
V

(6.2.6)

holds for low voltages. Inserting the values obtained from the fit, we get G∗ =
4.67 mS + 5.7 mS = 10.4 mS for low voltages. As Shapiro steps appear in this low
voltage regime, the use of the effective conductance G∗ in an extended model is
preferable.

So far, the data shown were conduced in the absence of a magnetic field. Since
simulations should also be performed for a magnetic field applied along the wire,
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6.2 Modelling of the experimental results

we additionally extract the values for G, Iexc, Vexc, and G∗ from the experimental
data at different values of the magnetic field B. Figure 6.4(c) presents the excess
current Iexc as a function of the magnetic field. The excess current is suppressed
with increasing magnetic field from B = 0 to B = 50 mT by a factor 0.57. From
equation (4.2.2), we infer that the induced gap ∆i(B) is suppressed by the same
factor. The dependencies of G and G∗ on the magnetic field B are shown in figure
6.4(b). G∗ has a strong dependence on the magnetic field due to the dependence
of Iexc on B, while G varies only by about 2 % between the lowest and the highest
magnetic field values.

6.2.3 Influence of the capacitance

Within the RSJ model capacitive effects are neglected. To decide if the capacitance
plays a role, we estimate the capacitance of our junctions, exemplarily shown for
junction r1. Firstly, we treat the geometric capacitance. It is calculated by Cgeo =
ε0dSCLSC/L with the electric constant ε0, the thickness of the superconducting leads
dSC ≈ 65 nm, the distance between the leads L ≈ 170 nm, and the length of the leads
LSC ≈ 20 µm at their closest distance. Here, we neglect the capacitance between other
parts of the leads and the capacitance to the ground. Regarding only the closest part
of the junction seems to be sufficient since C ∝ 1/L. Hence, we obtain Cgeo ≈ 68 aF,
and the Stuart-McCumber parameter is βC = 2eICC/~(G∗)2 ≈ 4.5 · 10−5 � 1. Thus,
the effect of the geometric capacitance is negligible.

However, the intrinsic capacitance of the junctions has also to be taken into account
[148, 149]. The intrinsic capacitance arises due to quantum fluctuations and the
resulting finite lifetime of the zero-voltage state. Using the washboard potential
it can be explained as follows: A phase particle trapped in a minimum describes
a metastable state since there is a finite probability for quantum-mechanically
tunneling through the barrier. This phenomenon is called macroscopic quantum
tunneling and is illustrated in the inset of figure 6.5(a). It is most prominent at
low temperatures because thermally activated escaping as discussed in section 2.2.4
dominates for higher temperatures. Antonenko et al. [149] showed that the finite
lifetime of the superconducting state results in an effective capacitance which is given
by C = α~G/Eg. Here, α is a model-dependent parameter, G is the normal-state
conductance, and Eg is the mini gap. The mini gap is Eg = ∆i for short junctions,
while Eg = ETh for long junctions. We consider two parallel contributions arising
due to surface and bulk conduction. For our devices, the values αbulk and αsurf are
of the order of 1 while they generally depend on the phase ϕ [149]. The usage of this
approximated value seems sufficient since a phase-dependent estimation would be
excessive anyway. Thus, the intrinsic capacitance is given by

Cint = αbulk
~GB

EB
Th

+ αsurf
~GS

∆i

≈ 13 fF (6.2.7)
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6 4π-periodic supercurrent in topological insulator nanowires

with the conductance of the surface states GS = NSDBPC2e2/h ≈ 0.9 mS and the
conductance of the bulk states GB = (N −NS)DBPC2e2/h ≈ 3.7 mS. Consequently,
the Stuart-McCumber parameter is βC ≈ 0.4. As the junction is only slightly
overdamped, we conclude that the effects cannot be totally neglected in the Shapiro
experiment. However, a large hysteresis in the I-V trace, e.g. observed in figure 4.3,
is not expected as a consequence of the capacitance. Thus, we mainly ascribe the
origin of the hysteresis to heating effects.
The Stuart-McCumber parameter increases with larger biases, but is reduced for
higher magnetic fields as the critical current strongly decreases while the intrinsic
capacitance and the conductance change weaker.
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FIG. 6.5: (a) Washboard potential for I lowdc − Iac = 0.5 IC and Ihighdc − Iac = 0.8 IC with
I4π = 0.1 IC and I2π = 0.9 IC . The phase particle is trapped in a minimum for both
scenarios. For the low bias I lowdc , the phase particle can possibly overcome the weak
minimum when capacitive effects are considered. For a high bias Ihighdc , the phase particle
is either trapped or can escape both types of minima. The inset illustrates the process
of macroscopic quantum tunneling: A trapped phase particle has a finite probability for
tunneling through the barrier. (b) Schematic sketch of quasiparticle poisoning. An excited
bound state can relax to a lower energy state by accepting or giving a quasiparticle to the
continuum. This process changes the measurable periodicity of the bound state. Adapted
from [146].

As the capacitance of our junctions is not totally negligible, we discuss the conse-
quences for the experiments. Picò-Cortés et al. [144] showed that the presence of a
finite capacitance can explain the missing of the first Shapiro step only when both a
2π- and a 4π-periodic contribution of the supercurrent exist. For the explanation,
we plot the washboard potential with a 2π- and a small 4π-periodic contribution for
a low and a high bias current Idc in figure 6.5(a) where the situation Iext = Idc − Iac
for the same Iac is shown, respectively. In the absence of a capacitance, the phase
particle is trapped in a minimum for both Idc. By considering the capacitance, the
situation occur that the phase particle can overcome the weak minimum due to its
inertia for a low bias I lowdc (green trace), i.e. for a low Shapiro step index, while the
barrier at a deep minimum is too high, and the particle is trapped. This scenario
reveals the 4π-periodic contribution and leads to missing odd Shapiro steps. For a
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6.2 Modelling of the experimental results

high bias Ihighdc (orange trace), i.e. higher step indices, the situation is different. Here,
the increased slope of the washboard potential results in a smaller difference between
the depths of the minima. Thus, they are hardly distinguishable. A massive phase
particle is either trapped or can escape both types of minima. In the first case, all
Shapiro steps are observable, while no phase-locking occurs anymore in the latter
case.

In addition to this explanation, there exists a suggestion that Joule heating is another
cause explaining the absence of the first step only [146]. In the following, we discuss
how heating influences our experiment.

6.2.4 Joule heating and quasiparticle poisoning

Our sample can be regarded as a thermodynamic system which is composed of two
interacting subsystems, the electrons and the phonons. The electron and phonons
are coupled together by the electron-phonon interaction. By applying an external
current to the sample, the power P is added to the electron system. The electron
temperature T rises and heat is transferred to the phonons until a steady-state
condition is achieved [150]. We consider Joule heating by equating the average
output power of the junction

〈P (t)〉 = 〈I(t)V (t)〉 = 〈(Idc + Iac sin (ωact))V (t)〉 (6.2.8)

and the power dissipated through electron-phonon coupling

〈Pe−ph (t)〉 = Q
(
T 5 − T 5

ph

)
(6.2.9)

where Q is a conversion constant describing electron-phonon coupling and Tph is
the phonon temperature. We assume that a device resting on a substrate has a
constant phonon temperature Tph ≈ Tbath. Comparing both equations (6.2.8) and
(6.2.9), gives the quasiparticle temperature T for each applied (Idc, Iac) [146, 151,
152]. The conversion constant Q can be calculated using microscopic parameters of
the junction [153–155]. However, we can also extract Q from the experimental data.
This will be shown below.

Beforehand, we explain how the Shapiro steps are affected by the heating. For the sake
of simplicity, we use the RSJ model and set I2π = IC , I4π = 0. The average heating
power, using the second Josephson equation (2.2.24) and I = Idc + Iac sin(2πft), is
given by

〈P (t)〉 = 〈(Idc + Iac sin (2πft)) ~
2e
∂ϕ

∂t
〉. (6.2.10)
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By plugging in ∂ϕ/∂t from equation (6.2.1)2, we obtain3

〈P (t)〉 = 〈RN (Idc + Iac sin (2πft)) (Idc + Iac sin (2πft)− IC sin (ϕ))〉
= RN

[
I2
dc + I2

ac/2− Iac〈sin (2πft) · sin (ϕ)〉
]
.

(6.2.11)

If Shapiro steps appear, the phase is locked at a multiple n of the frequency. Hence,
the phase is given by ϕ = n2πft (see equation (2.2.32)). In that case, the heating
power yields4

〈P (t)〉 = RN

[
I2
dc + I2

ac/2− Iacδn,1/2
]

(6.2.12)

with the Kronecker delta δn,m. This equation shows that the plateau n = 1 is less
heated than the other Shapiro steps due to the additional summand. Additionally,
the heating power increases for higher indices as the steps appear at a larger bias Idc
[146, 151].

To understand how heating suppresses the observation of missing odd steps we
introduce the mechanism of quasiparticle poisoning: An excited bound state can
relax to a lower energy state by accepting or giving a quasiparticle to the continuum.
Figure 6.5(b) illustrates this process for a 4π-periodic bound state. Here, one state,
say the blue trace, is half of the time at a higher energy than the other one (red
trace). Thus, the ground state is not always the same state. When the system
is in the state with higher energy, it is excited. Now, quasiparticle poisoning can
switch the system to its ground state as indicated by the black arrow. If a switching
event occurs when the curve is traversed, the resulting energy-phase relationship
is 2π-periodic. Hence, to keep the 4π-periodicity, the measurement time has to be
shorter than the quasiparticle lifetime τsw of the 4π-periodic state which is given
by

τsw = τ0e
∆i−E
kBT (6.2.13)

with a phenomenological time scale τ0 [151]. Therefore, it is most promising to check
the periodicity by the ac Josephson effect.

From equation (6.2.13), we notice that an increased electronic temperature promotes
quasiparticle poisoning and, thus, reduces the lifetime τsw of the 4π-periodic state.
Since the electronic temperature T increases for Shapiro steps with higher indices,
poisoning is enhanced, and the reveal of the 4π-periodicity is suppressed. Accordingly,
missing odd steps are more likely to occur for a low step index n, especially for n = 1
[151].

2The external ac current is given by Iac cos(ωact) in equation (6.2.1), while we use Iac sin(ωact) at
this point following the cited literature, respectively. This does not change any physics.

3〈sin2(2πft)〉 = 1/2, 〈sin(2πft)〉 = 0, and 〈sin(ϕ)〉 = 0.
4〈sin (2πft) · sin (ϕ)〉 = 1

1/f
∫ 1/f

0 sin (2πft) · sin (2πnft) dt = sin(2πn)
2π(n2−1) . The result is 0 for every n,

except n = 1. Here, limn→1
sin(2πn)

2π(n2−1) = 1
2 .
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6.2 Modelling of the experimental results

6.2.5 The extended RCSJ model

Since we discussed several issues, which are not covered by the RSJ model, we extend
the model by considering the capacitance, Joule heating, and the excess current. Here,
we limit the discussion to the physical basics. The associated numerical simulations
were performed by J. Picò-Cortés [156].

The differential equation of the extended RCSJ model is given by

~C(T )
2e

∂2ϕ

∂t2
+ ~G

2e
∂ϕ

∂t
+IS(ϕ, T )+Icor

~
2e
∂ϕ

∂t
= Idc+Iac sin(ωact)+In(t, T ) (6.2.14)

where ϕ is the phase difference between the two superconductors, T is the quasiparti-
cle temperature, C is the effective capacitance of the junction, G is the normal-state
conductance, Idc and Iac are the dc- and ac-current amplitudes, and ωac is the ac bias
frequency. The effect of excess currents is introduced by adding an effective current ele-
ment Icor which introduces a voltage-dependent conductance. A Gaussian white noise
term In (t, T ) with the autocorrelation function 〈In(t1)In(t2)〉 = 2kBTG(T )u(t1− t2),
where u(t) is an unit impulse function, describes statistical noise. The supercurrent
term IS(ϕ, T ) is assumed to have the form

IS(ϕ, T ) = I2πf2π(ϕ, T ) + I4πf4π(ϕ, T ) (6.2.15)

with f2π(ϕ, T ) = f2π(ϕ + 2π, T ) and f4π(ϕ, T ) = f4π(ϕ + 4π, T ). The functions
fk(ϕ, T ) are normalized that maxϕ

[
fk(ϕ, 0)

]
= 1. For the 2π-periodic part of the

current-phase relation we consider the bulk as well as the surface contribution

f2π = 1
N2π

(
IBulkC

IBulkC + ISurfC

f2πBulk (ϕ, T ) + ISurfC

IBulkC + ISurfC

f2πSurf (ϕ, T )
)

(6.2.16)

where N2π is a normalization constant to ensure maxϕ
[
f2π(ϕ, 0)

]
= 1. For the

surface contributions, we apply the temperature-dependent results of section 2.3.4
for a short junction5. Thus, the 2π- and 4π- current-phase relations yield

f2πSurf (ϕ, T ) = 1
N2π
Surf

∆i (T )
∆i (0)

sin (ϕ)√
1−DBPC sin2 (ϕ/2)

tanh
(

∆i (T )
2kBT

)
, (6.2.17)

f4πSurf (ϕ, T ) = ∆i (T )
∆i (0) sin

(
ϕ

2

)
tanh

(
∆i (T )

√
DBPC

2kBT

)
(6.2.18)

where DBPC is the average transmission and N2π
Surf is a normalization constant.

5Compared to the result of section 2.3.4, tanh
(
∆i

√
DBPC cos (ϕ/2) /2kBT

)
is simplified to

tanh
(
∆i

√
DBPC/2kBT

)
. This is valid assuming that the occupation numbers of the sub-

gap states instantaneously are in thermal equilibrium for each ϕ [27, 28]. Additionally, we
explicitly use the induced gap ∆i.
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For the bulk part, we consider the current-phase relation of a long, clean junction.
It is obtained from solving the Eilenberger equations with rigid boundary conditions
(see [156, 157] for details).

Finally, the conversion constant Q has to be determined in order to estimate the
quasiparticle temperature T for each (Idc, Iac). For that, the temperature dependence
of the critical current IC and the retrappping current IR is reproduced within the
extended RCSJ model for Iac = 0. The experimental data of IC (black dots) and IR
(blue dots) as a function of the bath temperature Tbath are plotted in figure 6.4 (d).
The red lines illustrate the results of the simulations for Q = 2.1 · 109 eV/sK5. Since
the simulations fit almost perfectly the experimental results, this value is chosen for
further simulations.

f = 6.6 GHz f = 5.4 GHz f = 3.7 GHz(a) (b) (c)

ac ac ac

FIG. 6.6: Frequency dependence of Shapiro steps at B = 0 mT. (a-c) Color maps obtained
from numerical simulations for frequencies f = 6.6 GHz, 5.4 GHz, and 3.7 GHz using the
extended RCSJ model. The corresponding experimental data are shown in figure 6.2(a-c).
The simulations match the experimental results best for I4π/IC ≈ 0.06. The simulations
were performed by J. Picò-Cortés.

As now all parameters of the RCSJ model are clarified, I-V traces in the presence of
microwave radiation were simulated. The bin maps are created analogously to the
experimental approach. The results of the simulations for frequencies f = 6.6 GHz,
f = 5.4 GHz, and f = 3.7 GHz are presented in figure 6.6. These are the frequencies
for which the corresponding experimental data are shown in figure 6.2. Note that
the Shapiro profiles are represented in terms of the amplitude of the ac bias Iac
in the simulations, while the experimental results are represented in terms of the
microwave power P ∝ I2

ac. Minor deviations in the x-axis scaling of experiment and
simulation occur since the exact relation between P and Iac is unknown. By choosing
I4π/IC = 6.1 %, the simulations show a great agreement with the experimental
data. One discrepancy is that the first step is less quenched at high frequencies
in the experiment compared to the calculations. Likewise, frequency-dependent
damping [158] being stronger at higher frequencies could explain this feature. A
stronger damping, i.e. a smaller βC , would mask the presence of 4π-periodic current.

106



6.3 Trivial origin of 4π-periodic supercurrents: Landau-Zener transitions

Alternatively, the difference could originate from the temperature dependence of the
conductance at low bias or the phase dependence of the effective capacitance which
both are not captured by the model. Accordingly, we prioritize reproducing the
lowest frequency results when a single match for all frequencies is not possible.

6.3 Trivial origin of 4π-periodic supercurrents:
Landau-Zener transitions

The observation of a 4π-periodic supercurrent at B = 0 is surprising as the subband
structure of the wire is topologically trivial. However, it is conceivable that Landau-
Zener transitions between trivial Andreev bound states with a small gap mimic 4π
periodicity [40]. The principle of Landau-Zener transition is illustrated in figure
6.7(a). Here, transitions from the lower bound state to the higher one or vice versa
take place. The transitions are indicated by black arrows. This process has the
highest probability to occur at the anticrossings of the two states at ϕ = (2n+ 1) π
where n ∈ Z. Consequently, the effective energy-phase relation in the presence of
Landau-Zener transitions is 4π-periodic as sketched by the green dashed line in figure
6.7(a). Furthermore, the corresponding current-phase relation is plotted in figure
6.7(b). The black dashed line shows the current-phase relation of the Andreev bound
state, while the blue trace illustrates the current-phase relation in the presence of
Landau-Zener transitions. The latter is 4π-periodic. Hence, missing odd steps are
expected by probing the fractional Josephson effect even if only 2π-periodic Andreev
bound states are present.
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FIG. 6.7: (a) Illustration of Landau-Zener transitions exemplarily shown between trivial
Andreev bound states (solid lines) with a transmission D = 0.99. At the anticrossings of
the upper and the lower bound state, a transition between the states can take place. This is
indicated by the black arrows. This process can mimic a 4π-periodicity of the energy-phase
relation as illustrated by the dashed line. (b) The resulting current-phase relation in the
presence of Landau-Zener transitions (blue line) is 4π-periodic. The dashed line shows the
current-phase relation when no Landau-Zener transitions occur. Adapted from [145].
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The probability of a Landau-Zener transition at ϕ = π is given by [40, 122]

PLZT = e−2πδ2/(∆i~ dϕdt |ϕ=π) = e−π∆i(1−D)/(e|V (tLZT )|) (6.3.1)

where 2δ = 2∆i

√
1−D is the gap between the Andreev bound states and V (tLZT ) =

(~/2e)dϕ/dt|ϕ=π is the voltage across the junction when the system goes across
the anticrossing. Thus, a high transmission D favors Landau-Zener transitions
since the probability decays exponentially with the size of the gap δ. In addition,
the probability increases at higher bias voltages V . Since this is contrary to the
experimental observation, where the missing steps are predominantly appear at low
voltages, i.e. low frequencies, Landau-Zener transitions were ruled out to be origin of
the missing steps in previous works [33, 146]. However, this argumentation only holds
for a single channel while many channels with various transmissions co-exist in a real
system. Indeed, a recent work refutes the original argumentation and shows that
Landau-Zener transitions can cause a 4π periodicity in a trivial material [40]. In their
model, the supercurrent can flow across the junction via two effective modes which
represent the many modes in a simplified way. One mode has a very low transmission
and a negligible probability to undergo a Landau-Zener transition. The other one
has a very high transmission and favors Landau-Zener transitions. For a low current
bias, i.e. a low average voltage, the current is predominantly carried by the channel
with high transmission. Thus, Landau-Zener transitions occur and a 4π periodicity
is mimicked. When the bias current is increased, more and more of the current
is carried by the channel with a negligible probability of Landau-Zener transitions
showing the 2π periodicity. For the appearance of missing Shapiro steps in a trivial
material, the results imply that only a few modes with high transmission besides
many modes with low transmission are sufficient to observe missing odd steps. As
long as the bias, i.e. the frequency, is low enough that most of the current flows via
the channel with high transmission, missing odd steps occur. When the current in the
channel with low transmission becomes larger, the odd Shapiro steps reappear [40].
Therefore, these considerations show that the observation of a 4π-periodic Josephson
current is a necessary but not sufficient proof of topological superconductivity and
the presence of a Majorana bound state [159].

In our device, it is quite reasonable that there are a few modes with very high
transmission and many modes with poorer transmission resulting in an average
transmission as calculated in section 4.2. With this assumption, we can ascribe the
4π-periodic supercurrent at B = 0 in our experiment to Landau-Zener transitions
between trivial Andreev bound states with a small gap.
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6.4 Magnetic field dependence of the 4π-periodic
supercurrent

In the following, we show data as a function of magnetic flux where the system is
expected to change from trivial to topological.

(a) (b) (c)

(f)(d) (e)

f = 5.9 GHz f = 5.4 GHz f = 3.7 GHz

f = 3.7 GHzf = 5.4 GHzf = 5.9 GHz

ac ac ac

FIG. 6.8: Frequency dependence of Shapiro steps at B = 30 mT (Φ/Φ0 ≈ 0.27) (a-c) Color
maps of the bin counts of sample r1 at frequencies f = 5.9 GHz, 5.4 GHz, and 3.7 GHz.
The transition frequency is f4π = 5.6 GHz. With RN = 216 Ω, we estimate I4π/IC ≈ 0.21
using the RSJ model. (d-f) Numerical simulations using the extended RCSJ model. The
model almost perfectly fits the experiment by using I4π/IC ≈ 0.15. The simulations were
performed by J. Picò-Cortés.

Figure 6.8(a-c) shows the data of sample r1 measured at B = 30 mT where the
magnetic field B is aligned along the wire axis as sketched in figure 6.1(a). This
value corresponds to a magnetic flux Φ = BA ≈ 0.27 Φ0. The first Shapiro steps,
fully present at 5.9 GHz, are weakened at 5.4 GHz and are fully absent at 3.7 GHz.
Analogous to section 6.3, we extract the transition frequency f4π = 5.6 GHz. Conse-
quently, we obtain I4π = f4πh

2eRN ≈ 55 nA using equation (6.2.4). Thus, the 4π-periodic
current is slightly smaller than without a magnetic field. However, as the total critical
current IC decreases strongly with B to IC (30 mT) = 260 nA, a larger fraction of the
4π-periodic current I4π/IC = 0.21 is carried by the 4π-periodic contribution. Figures
6.8(d-f) show corresponding simulations within the extended RCSJ model. Here, the
experimental data are most accurately reproduced using a fraction of the 4π-periodic
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current I4π/IC = 0.15. As the simulations also give satisfying results for a certain
range around this value, which is I4π/IC = 0.14− 0.18, there is some uncertainty of
this value. The determination of the range and the influence of different 4π-periodic
contributions on the results is summarized in [155, 156].
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FIG. 6.9: Frequency dependence of Shapiro steps at B = 40 mT (Φ/Φ0 ≈ 0.36) (a-c) Color
maps of the bin counts of sample r1 at frequencies f = 5.7 GHz, 4.8 GHz, and 3.7 GHz.
The transition frequency is f4π = 4.9 GHz. With RN = 217 Ω, we estimate I4π/IC ≈ 0.31
using the RSJ model. (d-f) Numerical simulations using the extended RCSJ model. The
simulations reproduce the experimental results most accurately for I4π/IC ≈ 0.20. The
simulations were performed by J. Picò-Cortés.

Figure 6.9(a-c) shows the color maps at B = 40 mT. This value corresponds to a
magnetic flux Φ = BA ≈ 0.36 Φ0. The first Shapiro steps are fully visible at 5.7 GHz.
At f = 5.4 GHz, they are decreased to approximately half width, while they are
almost fully disappeared at 3.7 GHz. Here, the transition frequency is f4π = 4.9 GHz.
Thus, we get I4π = f4πh

2eRN ≈ 48 nA using the RSJ model. Since the total critical current
is reduced to IC (40 mT) = 155 nA, I4π/IC = 0.31. The corresponding simulations
using the extended RCSJ model are presented in figure 6.9(d-f). Simulated and
experimental data show the best agreement for I4π/IC = 0.2. Although the absolute
values of I4π/IC depends on the respective model, both models capture an increase
of the 4π-periodic current up to B ≈ 40 mT.

At last, we present color maps at B = 55 mT, which correspond to Φ = BA ≈ 0.5 Φ0,
in figure 6.10(a-c). By lowering the frequency from f = 3.7 GHz across 3.4 GHz to
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FIG. 6.10: Frequency dependence of Shapiro steps at B = 55 mT (Φ/Φ0 ≈ 0.5). (a-c) Color
maps of the bin counts of sample r1 at frequencies f = 3.7 GHz, 3.4 GHz, and 3.1 GHz.
The transition frequency is f4π = 3.2 GHz. With RN = 217 Ω, we estimate I4π/IC ≈ 0.43
using the RSJ model. (d-f) Numerical simulations using the extended RCSJ model. The
simulations reproduce the experimental results most accurately for I4π/IC ≈ 0.09. The
simulations were performed by J. Picò-Cortés.

f = 3.1 GHz, only a tiny reduction in the width of the first step is detectable. Indeed,
a detailed analysis of the step widths suggests that the width of the second step
is larger than the width of the first one at f = 3.1 GHz. The evaluation leads to
f4π = 3.2 GHz, I4π = f4πh

2eRN ≈ 31 nA, and I4π/IC = 0.43 using the RSJ model. As the
critical current is significantly reduced for such high magnetic fields, the resistive
and capacitive contributions gain in importance. The effect of the 4π-periodic
supercurrent is harder to observe in this regime. Compared to lower magnetic
fields, much lower frequencies are required to observe completely missing Shapiro
steps. Hence, a clearer reduction of the first step would probably be observable
at lower frequencies. Unfortunately, useful measurements could not be obtained
due to limited resolution of the Shapiro steps. For that reason, the estimation of
I4π is less precise than for lower magnetic fields. Figures 6.10(d-f) illustrate the
corresponding simulations within the extended RCSJ model. The experimental data
are most accurately reproduced using I4π/IC = 0.09. Since there is no experimental
data as a template, in which a fully missing first step is present, the determination
of I4π/IC is also less accurate, and satisfying results can be obtained for a large
range of I4π/IC = 0− 0.16. By comparing the results of the RSJ and the extended
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6 4π-periodic supercurrent in topological insulator nanowires

RCSJ model for B = 55 mT, we notice clear differences: While the RSJ model
predicts a higher fraction I4π/IC at B = 55 mT than for lower magnetic fields, the
results of the extended RCSJ model suggest that I4π/IC is reduced again compared
to B = 40 mT.
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FIG. 6.11: Magnetic field dependence of the critical currents for samples r1, r2, r3, and
w1. (a) The total critical current IC normalized to its value at B = 0 for four wires
plotted versus the magnetic field applied in parallel to the wire. The amplitude of IC
is strongly reduced by the magnetic field. (b) The 4π-periodic current I4π, in contrast,
decreases weaker as a function of magnetic flux. (c) The ratio I4π/IC obtained using the
RSJ model plotted as a function of the magnetic flux Φ. The red line marks Φ/Φ0 = 0.5
while the grayish background indicates its uncertainty. All traces display maxima at about
Φ/Φ0 ≈ 0.5. (d) Comparison of I4π/IC of wire r1 extracted using the RSJ model and the
extended RCSJ model. The black dots resemble the values for which the simulations fit
the experimental data most accurately while ratios in the gray area also lead to satisfying
results. The extended RCSJ model gives somewhat smaller values at high magnetic fields
than the RSJ model, but also shows a distinct maximum which occurs at a lower field.
However, the exact position of the maximum in the blue curve is difficult to determine due
to the large error bars around Φ/Φ0 ≈ 0.5.

A detailed overview of the magnetic field dependence of IC and I4π for sample r1 is
displayed in figure 6.11 (blue traces). To be quantitative, we also add the results of
three other samples r2, r3, and w16 with different geometries. Experimental datasets
of samples r2 and r3 can be found in appendix B. Figure 6.11(a) illustrates the

6Sample ’w1’ was fabricated and measured by W. Himmler.
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critical current IC normalized to its value at B = 0 as a function of the magnetic
flux Φ. The critical current drops quickly with increasing Φ for all samples. The
error bars on the Φ-axis indicate the uncertainty of determining the exact value of
the magnetic flux since the width of the wire can only be roughly estimated (see
section 4.2). Furthermore, there are also errors on the IC-axis which are not shown
in the figure. They arise since the exact value of IC cannot be determined due
to a finite size of the measurement interval between two points. The 4π-periodic
current I4π calculated within the RSJ model as a function of the magnetic flux Φ
is shown in figure 6.11(b). It decreases much less than IC . The error bars have
their origin in the uncertainty of the transition frequency ∆f4π. The magnetic field
dependence of the ratio I4π/IC is plotted in figure 6.11(c). For sample r1, I4π/IC
increases from about 0.06 at B = 0 to 0.43 at B = 55 mT (Φ/Φ0 ≈ 0.5). We also
performed measurements at B = 70 mT (Φ/Φ0 ≈ 0.63). Here, we do not observe
a missing first Shapiro step down to f = 1.5 GHz which is the lowest frequency at
which the first Shapiro steps get resolved. Thus, the blue point of wire r1 in figure
6.11(c) at Φ/Φ0 ≈ 0.63 can be regarded as an upper limit for I4π/IC . Assuming the
odd Shapiro steps start to disappear just below f = 1.5 GHz, we use f4π = 1.5 GHz
and get I4π/IC ≈ 0.24. However, the value might be significantly lower as indicated
by the large error bar. All in all, we observe an increase of I4π/IC with Φ with a
maximum close to Φ ≈ 0.5 Φ0. We ascribe the increase to the additional occurrence
of the topological mode around Φ ≈ 0.5 Φ0 as predicted by the theory [23]. Upon
further increase of B, we expect the perfectly transmitting state to disappear again
and I4π/IC to drop.

The wires r2, r3, and w1 show a similar dependence of I4π/IC on the flux Φ although
the peak height near Φ/Φ0 ≈ 0.5 varies strongly. This variation is most likely linked
to the magnetic field dependence of the 2π-periodic current I2π which dominates
the critical current IC . The fact that I4π/IC has a maximum sometimes slightly
below Φ = Φ0/2 is not surprising since the exact magnetic field range in which the
perfectly transmitting mode occurs depends on many experimental parameters like
the exact position of the Fermi level, disorder, or the shape of the nanowire [73].
Additionally, there is also some uncertainty of determining the exact value of the
magnetic flux as discussed above. This error is indicated by the grayish background
in figure 6.11(c).

In figure 6.11(d), we compare the results of sample r1 obtained from the RSJ and the
extended RCSJ model. The blue dots show the results of the RSJ model, while the
black dots resemble the values for which the simulations within the extended RCSJ
model fit the experimental data most accurately. The ratios in the gray area also lead
to satisfying results and can be regarded as error bars. The extended RCSJ model
gives somewhat smaller values at high magnetic fields than the RSJ model, but also
shows a distinct maximum which occurs at a lower field B = 40− 45 mT. Despite
this difference, both analysis methods show qualitative agreement, i.e. an increase
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of I4π/IC with increasing flux with a maximum near half flux quantum. Possibly,
the positions of the maxima obtained from both methods could be closer together
than assumed as the exact position of the maximum in the blue trace is hard to
determine due to the large vertical error bars around Φ/Φ0 ≈ 0.5. Additionally, for
the estimation of f4π, the value f (w1/w2 = 1) is used in the RSJ model. Since this
definition of f4π does not necessarily describe exactly the beginning of the influence
of the 4π-periodic component, a slightly different definition might also be conceivable.
This would lead to different absolute values of I4π/IC .

6.5 Trivial vs. topological 4π-periodic supercurrents

So far, we assume that the 4π-periodic current at B = 0 is of trivial origin while
at a finite range around Φ/Φ0 ≈ 0.5 (or a slightly smaller value than Φ/Φ0 ≈ 0.5)
the perfectly transmitting mode appears adding an additional contribution to the
4π-periodic current. By further increasing Φ, the topological mode is expected to
disappear again.
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FIG. 6.12: (a) Sketch of the experimental setup. When the magnetic field B is aligned
perpendicular to the wire, no transition from a trivial to a topologically nontrivial band
structure occurs. (b) The total critical current IC , normalized to its value at B = 0, plotted
for the magnetic fields applied parallel to the wire (black) and perpendicular to the wire
(blue). The orientation of B is visualized in the insets.

To verify our consideration, we have to disentangle the trivial and the topological 4π-
periodic contribution to the supercurrent. This can be accomplished by experiments
where the magnetic field is oriented perpendicular to the wire as sketched in figure
6.12(a). For this configuration, no transition from a trivial to a topologically nontrivial
band structure is expected. Hence, missing Shapiro steps should exclusively arise
due to trivial effects. In figure 6.12(b), the critical current IC as a function of B
aligned perpendicular to the wire (blue trace) is compared to IC where the magnetic
field B is orientated along the wire (black trace, same data as in figure 6.11 (a)). We
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plot them as normalized values since the data were taken at different temperature
cycles leading to small differences of about 7 % for IC . For both orientations of
the magnetic field, IC decays quite similar. This allows us to directly compare the
Shapiro maps at specific magnetic field values.

(a) (b) (c)  B = 20 mT;  f = 5.4 GHz   B = 40 mT;  f = 3.7 GHz   B = 45 mT;  f = 3.1 GHz

  B = 20 mT;  f = 5.4 GHz   B = 40 mT;  f = 3.7 GHz   B = 45 mT;  f = 3.1 GHz(d) (e) (f)

FIG. 6.13: Shapiro maps at magnetic fields parallel and perpendicular to the wire. (a-c) B
parallel to the wire as shown in the inset of (a). Color maps of the bin counts at B = 20 mT
and f = 5.4 GHz, B = 40 mT and f = 3.7 GHz, B = 45 mT and f = 3.1 GHz. The first
steps are strongly quenched or fully absent at these frequencies for the respective magnetic
field values. (d-f) B perpendicular to the same wire as shown in the inset of (d). Color
map of the bin counts at the same field strengths and frequencies than in the above color
map, respectively. While in (d) the first step is quenched similar than in (a), in (e) and (f)
all steps are fully visible. The latter is contrary to the observations in (b) and (c). This
indicates an additional 4π-periodic component of the supercurrent when B is oriented
along the wire.

Corresponding color maps for magnetic fields orientated along as well as perpendicular
to the wire are shown in figure 6.13. The upper row (a-c) illustrates data for the field
applied along the wire. For B = 20, 40 and 45 mT, we show the data of the highest
frequency where the first Shapiro step is fully suppressed, respectively. The lower
row (d-f) shows the corresponding maps for identical frequencies and magnetic field
strengths while the field is orientated perpendicular to the wire. For B = 20 mT and
f = 5.4 GHz, the first Shapiro step is suppressed in both configurations. Thus, we
expect a similar transition frequency f4π and 4π-periodic current I4π. This suggests
that I4π is mainly of trivial origin in the low field range. The situation changes
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for higher magnetic fields. For B = 40 mT at f = 3.7 GHz and for B = 45 mT
at f = 3.1 GHz, the first Shapiro steps are suppressed when the magnetic field is
orientated along the wire. However, the first steps are fully present if the magnetic
field is oriented perpendicular to the wire. This indicates that there is an additional
4π-periodic contribution which only arises if the magnetic field is aligned along the
wire.

f = 3.7 GHz f = 3.1 GHz(a) (b) (c)

FIG. 6.14: Shapiro maps at B = 30 mT. The orientation of the magnetic field is shown
in the inset, respectively. (a) For B along the wire, the first steps are fully absent at
f = 3.7 GHz. (b) For B perpendicular to the wire, the first steps are slightly quenched at
f = 3.7 GHz, but they are still well visible. (c) The perpendicular magnetic field has to be
reduced to f = 3.1 GHz to fully suppress the first steps.

For B = 30 mT and f = 3.7 GHz, corresponding bin maps for a magnetic field along
the wire (a) and perpendicular the wire (b) are presented in figure 6.14. The first
steps are fully suppressed if the magnetic field is aligned along the wire. For the same
magnetic field strength, orientated perpendicular to the wire, the first Shapiro steps
are still visible. Hence, an additional 4π-periodic contribution is already present
at B = 30 mT for a magnetic field aligned along the wire. For the perpendicular
magnetic field, we have to reduce the frequency to f = 3.1 GHz to significantly reduce
the first steps. The associated color map is shown in figure 6.14(c). This implies
that f4π is lower for a perpendicular magnetic field compared to a parallel field of
30 mT, respectively. Thus, we conclude that the perfectly transmitting mode starts
to emerge for parallel magnetic field in the range B = 20− 30 mT. Due to limited
resolution at low frequencies and low IC , we are not able to perform experiments at
lower frequencies for B = 40 mT and B = 45 mT. Hence, we cannot determine the
exact transition frequencies f4π when the magnetic field is aligned perpendicular to
the wire. Therefore, the exact amplitudes of trivial and topological components for
B > 30 mT are unknown.

In summary, I4π is consistently lower for B ≥ 30 mT in the perpendicular configura-
tion. These observations can be explained by trivial 4π-periodic contributions which
get suppressed for both configurations with increasing magnetic fields while the topo-
logical perfectly transmitting mode only emerges with an increasing magnetic field
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orientated along the wire. This also explains the decrease of I4π/IC for Φ/Φ0 > 0.4
in figure 6.11(d) since the topological 4π-periodic contribution is expected to vanish
again. Therefore, our experiments are a first indication that one can indeed switch
between trivial and topological superconductivity with an axial magnetic flux in
topological insulator wires as suggested theoretically [23, 99, 160]. However, it is
necessary to understand the exact behavior of Landau-Zener transition for different
orientations of the magnetic field to prove the topological nature of the 4π-periodic
current I4π for Φ/Φ0 > 0.4 with certainty.
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7 Summary

This thesis describes the studies of Josephson junctions made from topological
insulator nanowires. Such nanowires in proximity to conventional superconductors
have been proposed as a tunable platform to realize topological superconductivity
and Majorana zero modes. The tuning is done using an axial magnetic flux Φ, which
allows transforming the system from trivial at Φ = 0 to topologically nontrivial when
half a magnetic flux quantum Φ = Φ0/2 = h/2e penetrates the cross-sectional area
of the wire.

In this work, we investigate Josephson junctions based on HgTe nanowires under the
influence of a magnetic field. Additionally, we probe the expected transition from
trivial to topological superconductivity as a function of the axial magnetic flux.

In an out-of-plane magnetic field, some devices studied show a Fraunhofer pattern, i.e.
a modulation of the critical current IC as a function of the magnetic field. The effects
of magnetic flux focusing and spin-orbit interaction are taken into account to agree
with the theoretically predicted evolution of the pattern. The absence of the pattern
in other devices is explained by bad transmissions of the nanowire/superconductor
interface or the extreme thinness of some wires.

For an axial magnetic field, we also observe a modulation of IC for devices with
low transmissions. Here, the modulations show periodicites of Φ = ΦS/2 = h/4e or
Φ = ΦS/4 = h/8e where Φ is magnetic flux threading the cross-sectional area of the
wire. For devices with high transmission, no modulation occurs, and IC monotonously
decays with the magnetic field. We relate these findings both experimentally and
theoretically to the coupling of the superconducting contacts to the topological
insulator nanowire. For a high transmission, all sides of the nanowire become
superconducting due to the proximity effect. In contrast, only the interfaces directly
covered by the superconductor, i.e. the top and the sides, are proximitized if the
average transmission is rather low. Here, different types of transport paths exist
while some of them pick up an additional phase induced by the magnetic flux. This
additional phase causes a modification of the current-phase relation and, thus, leads
to a modulation of the critical current as a function of the magnetic flux.

In Josephson junctions, an indication of emanating Majorana bound states is a
4π-periodic current-phase relation. A convenient way to probe the periodicity of the
current-phase relation is the measurement of Shapiro steps. In the trivial situation,
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all Shapiro steps are visible while the odd steps are supposed to disappear if the
current-phase relation is 4π-periodic.

Hence, we probe the Shapiro step spectrum for different microwave frequencies and
intensities. From the suppression of odd Shapiro steps, we extract the 4π- and
2π-periodic fraction of the critical current I4π/IC and I2π/IC using both a resistively
shunted junction (RSJ) and a resistively and capacitively shunted junction (RCSJ)
model. The ratio I4π/IC depends strongly on the axial magnetic flux. While the total
critical current IC decreases with an increasing flux, the ratio I4π/IC changes from
approximately 6 % at Φ = 0 up to a maximum around Φ = Φ0/2. The presence of a
finite I4π at Φ = 0 and small magnetic fields is ascribed to Landau-Zener transitions
between trivial Andreev bound states causing the 4π-periodic current. A method to
distinguish between the trivial and the topological origin of the 4π-periodic currents
is achieved by comparing the results for in-plane magnetic fields parallel to the
wire as well as perpendicular to the wire. A topological 4π-periodic current is only
proposed for the first configuration, while a trivial 4π-periodic current appear for
both cases. Thus, our data suggest that the 4π-periodic current, which only appears
for parallel magnetic fields & Φ0/4, is mainly of topological origin. Therefore, our
experiments provide an indication for the switching between trivial and topological
superconductivity with an axial magnetic flux in topological insulator nanowires.

In a next step, the implementation of topgates on several junctions could be realized.
This allows to reduce the effects of the bulk by tuning the Fermi level to the band gap.
Furthermore, the fabrication of narrower wires would lead to a decreased number
of trivial subbands. For this purpose, a perfect deposition of the superconducting
contacts must be ensured. Additionally, a further improvement of the filtering
would result in the suppression of disruptive effects such as quasiparticle poisoning.
Furthermore, the behavior of Landau-Zener transitions in a magnetic field needs to
be understood in more detail. This can allow to confirm the topological nature of
the induced superconductivity in topological insulator nanowires.

The results of this thesis have shown that topological insulator nanowires represent
a promising platform for topological superconductivity. In future experiments,
the ’braiding’ of Majorana zero modes would be a milestone in the realization of
topological quantum computing. To verify the elementary braid of Majorana zero
modes, a trijunction hosting a single topological qubit is propsed [161]. In addition,
more complex networks made from sets of four and six wires with strategies for the
optimization of robustness to quantities such as noise and the size can realize first
scalable architectures for topological quantum computing [162].
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A Process documentation

This section contains a detailed description of the fabrication process. Here, we show
the final version of the documentation since the different fabrication steps have been
optimized continuously.

Wafer splitting

• Clean wafer (30 s acetone → 30 s isopropyl alcohol)

• Spin coat protective resist Shipley 1813 (1500 rpm for 30 s), bake (5 min
at 80 ◦C)

• Scribe wafer with ATV Diamond Scriber RV-129 to 3.2 cm× 3.7 cm big
sample pieces, scribe force 5-7 cm, repeat 3-4×

• Split wafer over glass edge with clean tape

Nanowire structuring

• Clean sample (30 s acetone in ultrasonic bath → 30 s acetone → 30 s
isopropyl alcohol)

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’nanowire structures’ in the electron microscope (Zeiss Auriga) at
3 kV by two steps:

– Detailed structure in proximity to the nanowire: 30 µm aperture, dose:
50 µC/cm2

– Remaining area on the sample: 120 µm aperture, dose: 50 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• Wet chemical etching with solution of Br2:C2H6O2:H2O=0.1 : 100 : 25ml at
0 °C (magnetic stirring rod at 300 rpm), typical etching times are between
4:00-4:30min depending on the thickness of the HgTe and cap layer, jiggle
sample holder shortly every 30 s, stop process in pure water (2× 5 s)
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• Remove remaining resist with AR-600-71 for 30 s, clean sample in isopropyl
alcohol (30 s)

Removal of the cap layer: Test stripes to determine the etching rate

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’teststripes’ in the electron microscope (Zeiss Auriga) at 3 kV:
30 µm aperture, dose: 150 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• Wet chemical etching with solution of Br2:C2H6O2:H2O=∼0.015 : 100 : 25ml
at 0 ◦C (magnetic stirring rod at 300 rpm), typical etching times are be-
tween 20-30 s for a 60 nm thick cap layer, stop process in pure water
(2× 5 s)

• Remove remaining resist with AR-600-71 for 30 s, clean sample in isopropyl
alcohol (30 s)

• Determine etching depth using atomic force microscopy, calculate exact
etching time to remove 60 nm. It is important to ensure an almost identical
etching process (e.g. usage of the same pipette) in the next step.

Removal of the cap layer at position of the superconducting contatcs

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’superconducting contacts’ in the electron microscope (Zeiss Au-
riga) at 3 kV: 30 µm aperture, dose: 150 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• Wet chemical etching with solution of Br2:C2H6O2:H2O=∼0.015 : 100 : 25ml
at 0 ◦C (magnetic stirring rod at 300 rpm) for the previously determined
time, stop process in pure water (2× 5 s)

Superconducting contatcs

• Mounting the sample in the pre-chamber of the UHV Orion Sputtering
System, pump down to ∼ 10−6 mbar

– Ar+-milling using a Kaufman ion source for 10-15 s (Icat ∼ 5.9 A,
Idis = 0.1 V, Vdis = 40 V, Vbeam = 150 V, Vacc = 90 V, flow: 4 %,
pressure: ∼1.5× 10−3 mbar)

– Transfer sample to the main chamber via the load lock and place the
sample at the lowest position
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– Deposit 3 nm Ti by thermal evaporation (rate: 0.4Å/s)

– Deposit 60 nm Nb by dc sputtering (P = 250 W, flow: 40 %, pressure:
∼5× 10−3 mbar) at an angle α ≈ 45 ◦ (corresponds to position 0 mm
on milimeter screw)

– Deposit 2 nm Pt by thermal evaporation (rate: 0.2Å/s)

• Lift-off in AR-600-71 (15 min at 60 ◦C→ 30 s in ultrasonic bath→ remove
excess materials with syringe), clean sample in isopropyl alcohol (30 s)

Metallic contacts

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’metallic contacts’ in the electron microscope (Zeiss Auriga) at
3 kV by two steps:

– Detailed structure in proximity to the superconducting contacts:
30 µm aperture, dose: 50 µC/cm2

– Large contacts pads on the outer part of the sample: 120 µm aperture,
dose: 50 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• Mount the sample in Leybold Univex 450, pump down to ∼ 10−6 mbar

– Ar+-milling for 60 s (V = 3 kV, I = 35 mA, pressure: ∼1× 10−3 mbar)

– Deposit 10 nm Ti by thermal evaporation (rate :1Å/s)

– Deposit 100 nm Au by thermal evaporation (rate :1.9Å/s)

• Lift-off in AR-600-71 (15 min at 60 ◦C → remove excess materials with
syringe), clean sample in isopropyl alcohol (30 s)

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

Only sample rI: Fabrication of a topgate

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’insulator’ in the electron microscope (Zeiss Auriga) at 3 kV:
120 µm aperture, dose: 50 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• deposit 30 nm SiO2 by PECVD (Oxford Plasmalab 80Plus), 3× 15 s, gas
flow: SiH4 710 sccm; N2O 170 sccm, 80 ◦C, 150 W
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• deposit 100 nm Al2O3 in ALD (Cambridge NanoTech Savannah 100 ) at
80 ◦C, 66 s purge time, 1100 cycles

• Lift-off in AR-600-71 (15 min at 60 ◦C → remove excess materials with
syringe), clean sample in isopropyl alcohol (30 s)

• Spin coat with CSAR 9 % (800 rpm for 3 s → 5000 rpm for 40 s), bake
(20 min at 80 ◦C)

• Expose ’topgate’ in the electron microscope (Zeiss Auriga) at 3 kV: 30 µm
aperture, dose: 60 µC/cm2

• Develop with AR-600-546 for 30 s, stop process in isopropyl alcohol (30 s)

• Mount the sample in Leybold Univex 450, pump down to ∼ 10−6 mbar

– Ar+-milling for 30 s (V = 2 kV, I = 25 mA, pressure: ∼4× 10−3 mbar)

– Deposit 10 nm Ti by thermal evaporation (rate: 1Å/s)

– Deposit 100 nm Au by thermal evaporation (rate: 1.9Å/s)

• Lift-off in AR-600-71 (15 min at 60 ◦C → remove excess materials with
syringe), clean sample in isopropyl alcohol (30 s)

Contacting to chip carrier

• glue sample into chip carrier with PMMA resist, cure resist 20 min at
80 ◦C

• bond contact pads to chip carrier with 25µm Au wire on the MEI gold
bonder, Settings: Power 1: 6, Time 1: 6; Power 2: 4, Time 2: 6
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B Supplementary data

This section contains additional data of sample r2 and r3.

Sample r2

In this section, we show additional data of sample r2 at Φ = 0, at Φ = 0.35 Φ0, and
at Φ = 0.52 Φ0.

f = 8.4 GHz f = 7.2 GHz f = 5.4 GHz(a) (b) (c)

FIG. B.1: Frequency dependence of Shapiro steps at B = 0 mT (a-c) Color maps of the
bin counts of sample r2 at frequencies f = 8.4 GHz, 7.2 GHz, and 5.4 GHz. The transition
frequency is f4π = 7.8 GHz. We estimate I4π/IC ≈ 0.07 using the RSJ model.

Figure B.1(a-c) illustrates the color maps of the bin counts as a function of the
power P and the normalized voltage V for different frequencies f at Φ = 0. All
Shapiro steps are visible for f = 8.4 GHz. At f = 7.2 GHz, the first steps n = ±1
are reduced while they are fully absent at f = 5.4 GHz. The transition frequency is
f4π ≈ 7.8 GHz. With equation (6.2.4), we calculate the amplitude of the 4π-periodic
supercurrent I4π ≈ 13 nA. With IC (0 mT) = 180 nA, I4π/IC ≈ 7 %.

Figure B.2(a-c) shows the data of sample r2 measured at B = 150 mT where the
magnetic field B is aligned along the wire. This value corresponds to a magnetic
flux Φ = BA ≈ 0.35 Φ0. The first Shapiro steps are fully present at f = 7.2 GHz. At
f = 6.2 GHz, the first steps are reduced, and they are fully suppressed at f = 5.1 GHz.
We obtain the transition frequency f4π = 6.7 GHz and calculate I4π ≈ 11 nA using
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f = 7.2 GHz f = 6.2 GHz f = 5.1 GHz(a) (b) (c)

FIG. B.2: Frequency dependence of Shapiro steps at B = 150 mT (Φ = 0.35 Φ0) (a-c) Color
maps of the bin counts of sample r2 at frequencies f = 7.2 GHz, 6.2 GHz, and 5.1 GHz.
The transition frequency is f4π = 6.7 GHz. We estimate I4π/IC ≈ 0.10 using the RSJ
model.

equation (6.2.4). The total critical current IC decreases with B to IC (150 mT) =
111 nA. Thus, the fraction of the 4π-periodic current is I4π/IC ≈ 0.10.

Figure B.3(a-c) shows the data of sample r2 measured at B = 225 mT. This value
corresponds to a magnetic flux Φ = BA ≈ 0.52 Φ0. All Shapiro steps are visible at
f = 6.2 GHz and f = 4.5 GHz. At f = 3.4 GHz, the first steps are reduced and the
second steps dominate. The transition frequency is f4π = 4.0 GHz. Thus, we obtain
I4π ≈ 7 nA using equation (6.2.4). With IC (225 mT) = 51 nA, the fraction of the
4π-periodic current is I4π/IC ≈ 0.13.

f = 6.2 GHz f = 4.5 GHz f = 3.6 GHz(a) (b) (c)

FIG. B.3: Frequency dependence of Shapiro steps at B = 225 mT (Φ = 0.52 Φ0) (a-c) Color
maps of the bin counts of sample r2 at frequencies f = 6.2 GHz, 4.5 GHz, and 3.6 GHz.
The transition frequency is f4π = 4.0 GHz. We estimate I4π/IC ≈ 0.13 using the RSJ
model.
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Sample r3

In this section, we show additional data of sample r3 at Φ = 0 and at Φ = 0.44 Φ0,
where the fraction I4π/IC has a maximum.

f = 8.4 GHz f = 5.4 GHz f = 4.7 GHz(a) (b) (c)

FIG. B.4: Frequency dependence of Shapiro steps at B = 0 mT (a-c) Color maps of the
bin counts of sample r3 at frequencies f = 8.4 GHz, 5.4 GHz, and 4.7 GHz. The transition
frequency is f4π = 5.8 GHz. We estimate I4π/IC ≈ 0.06 using the RSJ model.

Figure B.4(a-c) illustrates the color maps of the bin counts as a function of the power
P and the normalized voltage V for different frequencies f at Φ = 0. All Shapiro
steps are visible for f = 8.4 GHz. By reducing the frequency to f = 5.4 GHz, the
first steps n = ±1 become completely suppressed. At f = 4.7 GHz, the third steps
are also fully quenched. The transition frequency is f4π ≈ 5.8 GHz. With equation
(6.2.4), we calculate the amplitude of the 4π-periodic supercurrent I4π ≈ 16 nA.
With IC (0 mT) = 265 nA, this corresponds to I4π/IC ≈ 6 %.

f = 5.4 GHz f = 4.7 GHz f = 3.9 GHz(a) (b) (c)

FIG. B.5: Frequency dependence of Shapiro steps at B = 100 mT (Φ = 0.44 Φ0) (a-c) Color
maps of the bin counts of sample r3 at frequencies f = 5.4 GHz, 4.7 GHz, and 3.9 GHz.
The transition frequency is f4π = 4.8 GHz. We estimate I4π/IC ≈ 0.21 using the RSJ
model.

Figure B.5(a-c) shows the data of sample r3 measured at B = 100 mT where the
magnetic field B is aligned along the wire. This value corresponds to a magnetic
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flux Φ = BA ≈ 0.44 Φ0. The first Shapiro steps, fully present at f = 5.4 GHz, are
weakened at f = 4.7 GHz. At f = 3.9 GHz, the second steps clearly dominate. We
extract the transition frequency f4π = 4.8 GHz. Thus, we obtain I4π ≈ 13 nA using
equation (6.2.4). Since the total critical current IC decreases strongly with B to
IC (100 mT) = 63 nA, the fraction of the 4π-periodic current is I4π/IC ≈ 0.21.
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