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Abstract—Achieving high Quality of Service (QoS) is one of
the important goals in the latest 5G Heterogeneous Networks
(HetNets) environments. However, ensuring fairness among users
with Reduced Power Consumption (RPC) is a major challenge.
Although several studies have examined the joint issue of User
Association (UA), Resource Allocation (RA), and Power Alloca-
tion (PA), there is still no optimal solution that achieves QoS
fairness and RPC with low complexity and processing time. This
paper proposes the Power-Performance Efficient Adaptive Ge-
netic Algorithm (P 2EAGA) for solving the UA-RA-PA problem
in HetNets. Simulation results show that P 2EAGA outperforms
existing schemes in terms of variability, fairness, RPC, and
QoS, including throughput, packet loss ratio, delay, and jitter.
Simulation results also show that P 2EAGA generates solutions
that are very close to the optimal global solution compared to
the Default Genetic Algorithm.

I. INTRODUCTION

In cellular networks, data traffic, is now growing at an
exponential pace. The link capacity has been approaching
the fundamental limits thanks to recent advances in commu-
nication theory. One promising solution for supporting the
rapid growth of mobile data traffic is to increase the cost-
efficient density deployment of Base Stations (BSs), hence
creating Heterogeneous Networks (HetNets) [1], [2]. Yet, ex-
tending the network infrastructure would compound the power
consumption usage. As a result, designing reduced power
systems has become a critical requirement for next-generation
mobile networks. HetNets, which are made up of small cells
with short coverage range, enable the User Equipment (UE)
to communicate with BSs at low power levels, resulting in
Reduced Power Consumption (RPC), and eventually lower
CAPEX and OPEX [3]. At the same time, HetNets can support
high service quality as users can select from multiple options
and associate with those BSs that provide good communication
channel conditions (i.e high Channel Quality Index (CQI))
[3]. In this context HetNets most significant challenge is
addressing the triple User Association - Resource Allocation -
Power Allocation (UA-RA-PA) problem, which refers to UA
to BS, RA during service, and PA for using that service. A
solution to the UA-RA-PA problem should enable not only

high values, but also fairness in terms of Quality of Service
(QoS) distribution and RPC while considering aspects such
as BS capacity, user requirements, channel quality, and BS
power budget. Several approaches [4]–[8] have been proposed
to address the UA-RA-PA problem in HetNets. They mainly
differ in terms of architecture (i.e., centralized or distributed),
number and type of parameters considered, and execution time.

Wang et al. [4] suggested a collaborative RA approach
involving UA and PA to solve the optimization problem, split
into two sub-problems. Yuan et al. [5] proposed a joint RA
and PA method in a carrier aggregation enabled HetNet. They
consider a solution based on a hierarchical game to align the
network operator’s pricing policies with the transmit control
and resource distribution of unlicensed users. Zhang et al. [6]
proposed a joint beam and PA in a mmWave small cell to
formulate the two sub-problems using mixed-integer nonlinear
programming. A study by Naqvi et al. [7] proposed dynamic
resource management to maximize the energy efficiency of
cellular users while maintaining good QoS levels for device-
to-device communications. Finally, Zhu et al. [8] proposed a
joint optimization of resource (channel assignment) and PA in
a NOMA system by using a matching algorithm together with
optimal PA.

Despite their good performances, most of the aforemen-
tioned approaches suffer various limitations. For instance, the
approach in [4] did not provide services for UEs with bad
channel conditions, while [8] only focused on a single-cell
network. In addition, fairness among users was not considered
in [7] and both [5] and [6] have high computational com-
plexity and long processing time. These shortcomings have
motivated us to propose the Power-Performance Efficient
Adaptive Genetic Algorithm (P 2EAGA), a decentralized
solution to the UA-RA-PA problem, formulated as a ‘0/1’
Multiple Knapsack Problem (MKP), which is an NP-complete
optimization problem [2], while considering the maximum BS
capacity, the Transport Block Size (TBS)1 index, and total

1The TBS specifies the number of bits sent from the MAC layer to the
Physical layer every TTI (Transmission Time Interval, defined as 1ms).



Figure 1. An example of a two-tier HetNet including 1 MBS and 18 FBSs.
The FBSs are usually located at commercial and residential buildings that
constitute hotspots for wireless traffic. The UEs in a region G are either served
by either MBS or FBSs selected by Power-Performance Service Server.

BS power budget restrictions. The knapsacks are represented
by BSs (Macrocell Base Station (MBS) and Femtocell Base
Station (FBS)) in this solution while the items to fit into
the knapsacks are represented by instances of UEs. The item
weights are UE demands in the UA-RA problem and power
consumption in the PA problem. The item values are the
available throughput for each knapsack in both problems.
Knapsack capacity for the UA-RA problem is the maximum
capacity and the total power budget for the PA problem.
We use a Default Genetic Algorithm (DGA) to solve the
MKP problem. Based on the resource block utilization rate
and TBS index, the available throughput is determined. This
corresponds to the communication link between UEs and BSs.
On the other hand, the power consumption is obtained based
on the received signal-to-interference-noise-ratio (SINR). To
the best of the authors’ knowledge, no work has proposed
a low complexity solution to the joint UA-RA-PA problem
in fairness enhanced HetNets while considering BS capacity,
user requirements, channel quality, and BS power budget.

The rest of this paper is organized as follows. Section
II describes the system model. Section III introduces the
proposed algorithm. Section IV describes the simulation setup
and results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, consider the downlink of a Het-
Net consisting of fixed BSs and randomly placed UEs.
The area is covered by two-tiers of BSs: MBS (Mm) and
FBS tier (Mf ). In the coverage area of such BSs, over-
laps will occur, and each UE will be within the range of
at least one BS. The set of all BSs is denoted as BS =
{MBS1, ...,MBSMm

, FBS1, ..., FBSMf
}, with the set of

the BSs indices M = {0,1, . . ., m-1}, where m = Mm +Mf .
Let S be the set of sub-channels available that can be used
by each BS i ∈ M . These sub-channels are further divided
and assigned to the UEs linked to each BS i. Let U =
{0, 1, · · · , n−1} (n = v+o , v = no. of video users, o = no. of
VoIP users), be the set of UEs located inside the region G, and
ψj ∈ Ψ be the requested downlink rate (i.e., bits per second) of
UE j (j ∈ U), where Ψ is the discrete set of service classes.

We assume that each BS i ∈ M transmits with a constant
per sub-channel transmit power P l

ij on sub-channel l, and the
total transmit power of BS i is P̃i =

∑
l∈S P

l
ij(j ∈ U). In this

paper, we are interested in two different types of services, i.e.,
video service as it requires high bandwidth and VoIP (In this
paper, the VoIP service is considered as a background traffic.)
service. Each UE j can only be associated with at most one BS
at any time. We define µ̃ as the total path loss (i.e., follows
a log-distance path loss model) between BS i and UE j in
decibels (dB). Let Ũ (Ũ = {1, · · · , v}) be the set of UEs who
are interested in video services and Û (Û = {1, · · · , o}) be the
set of UEs who are interested in VoIP services (Ũ ∪ Û = U ).

A. Data Rate Mapping to Power Consumption
The instantaneous SINR received at UE j from BS i on

sub-channel l can be expressed as:

Γl
ij =

hijP
l
ij∑

ĩ∈M\{i} hĩjP
l
ĩj

+ WN0
, (1)

For ease of presentation, we use the Shannon capacity to
calculate the downlink transmission rate. Given the SINR Γ,
the achievable per sub-channel downlink rate achieved by UE
j connected to BS i is given by:

Rl
ij = Wlog2(1 + Γl

ij). (2)

Then, the downlink rate achieved by UE j is computed as:

R̂j =
∑
i∈M

xi
j

∑
l∈S

yl
ijR

l
ij , ∀j ∈ U, (3)

where xij ∈ {0, 1}, and ylij ∈ {0, 1} are the binary decision
variable used for UA and RA (sub-channel allocation), respec-
tively. xij = 1 if UE j is associated with BS i. ylij = 1 if sub-
channel l is allocated to the downlink from BS i to UE j. The
total number of resource blocks or sub-channels allocated by
BS i to UE j for a service, i.e., either for video or VoIP is given

by: N i
j =

⌈
R̂j

Rl
ij

⌉
, with d.e denoting the ceiling function. Once

we calculate the total number of resource blocks allocated, the
total power consumed by UE j form BS i for that service is
given by : P i

j = N i
j * P l

ij . Other notations are given in Table I.

B. Problem Formulation

In our system, there are two actors with different viewpoints
and goals: UEs and BSs. On the one hand, given its QoS
specifications, each UE needs to achieve the maximum data
rate possible. BSs, on the other hand, want to meet UEs’ QoS
requirements while staying within their capability and transmit
power constraints. As a result, we define the objective function
as the amount of available throughput (i.e., measured based
on resource block usage rate) when considering the entities’
perspective and objectives under the total capacity of BSs,
TBS index, and BSs total transmits power constraint.

Under QoS and power provisioning, we describe the Joint
Optimization Problem (JOP) for the UA-RA-PA with MBSs
and FBSs as follows:

JOP : maximize f(x) =

n∑
j=1

pjxj (4)



Table I
TABLE OF NOTATIONS

Notation Description
W sub-channel bandwidth
N0 thermal noise spectral power
hij channel gain between BS i and UE j
Γl
ij SINR of downlink on sub-channel l
Rl

ij data rate of downlink on sub-channel l
R̂j achieved downlink rates of UE j
N i

j total no. of RBs allocated by BS i to UE j
P i
j total power consumed by UE j from BS i for a service used

subject to xj ∈ {0, 1}, j ∈ U = {1, ..., n} (5)n∑
j=1

rijxj ≤ bi, i ∈M = {1, ...,m} (6)

qij ≥ ∆, i ∈M = {1, ...,m}, j ∈ U = {1, ..., n} (7)
rij ≤ bi, i ∈M = {1, ...,m}, j ∈ U = {1, ..., n} (8)∑

l∈S

n∑
j=1

P l
i,j ≤ Pmax

i , i ∈M = {1, · · · ,m} (9)

P l
i,j ≥ 0,∀j, l (10)

Eq. (4) represents a hyper-plane, hence it is a convex function
with convex constraints. Eq. (5) shows the unique association
property, as any UE j can be associated with only one BS at
any moment. We have solved the JOP by breaking it into two
sub-problems. In our first sub-problem, we solve the UA-RA
sub-problem while considering Eqs. (5)-(8). Then, the UA-RA
sub-optimal solution is used as input to the PA sub-problem.
The final output is a sub-optimal solution for the PA sub-
problem which is solved while considering Eqs. (5), (9), (10).

1) UA-RA Sub-Problem: The UA-RA sub-problem is for-
mulated as MKP for finding the sub-optimal solution, which
is solved using the proposed P 2EAGA algorithm. The item
weights (rij) are user demands, while item values (pj) are
the available throughput for each knapsack. Knapsack capacity
(bi) is the maximum capacity available. Eq. (6) implies that the
allocation of resources to UEs should not exceed the maximum
BS capacity2. Eq. (7) implies that each UE j should have
a TBS index above a certain threshold ∆ to participate in
the UA-RA problem (i.e., TBS index vector). Finally, Eq. (8)
indicates that each BS can serve at least one UE.

2) PA Sub-Problem: The PA sub-problem is formulated
as MKP for finding the sub-optimal solution which is solved
using P 2EAGA algorithm. The item weights (P i

j ) is the total
power consumed by UE j from BS i for the service used (VoIP
or Video), while item values (pj) are the available throughput
for each knapsack. Knapsack capacity (Pmax

i ) is defined as
the total transmit power. Eq. (9) indicates a constraint on the
total transmit power of each BS i while Eq. (10) ensures non-
negative powers.

Pacc =

exp(
(f(C

′
1)− f(C1))

t
), if f(C

′
1)− f(C1) < 0,

1 , otherwise
(11)

2Eq. (6) directly covers the constraint
∑

i∈M

∑
l∈S x

i
jy

l
ij ≤ |S|, which

ensures that the number of sub-channels allocated to UEs by BS i does not
exceed the total number of available sub-channels.

Table II
PARAMETER VALUES.

GA Parameters Value
Population Size (ns) 110
Number of Generations (ng) 203
Probability of Crossover (pc) 0.54
Probability of Mutation (pm) 0.79
Tournament Selection “Number of Contestants” (Z) 5
SA Parameters Value
Initial temp. control parameter (ρ) 0.8
Control Parameter (α) 0.71
final temperature (δ) 0.000595

pcad =

pc , if f(C1) > fmax(C),

pc
fmax(C)− f(C1)

fmax(C))− favg(C)
, otherwise

(12)

pmad =

pm , if f(O1) > fmax(C),

pm
fmax(C)− f(O1)

fmax(C)− favg(O)
, otherwise

(13)

III. P 2EAGA - AN ADAPTIVE ALGORITHM

Compared to conventional algorithms, DGA has intelli-
gence, parallelism, self-organization, and high robustness and
can be used to solve combinatorial optimization problems like
MKP [9]. DGA, however, has some flaws, including weak
local searchability, a high convergence rate, and difficulty
avoiding local optimums [10]. In order to mitigate these short-
comings, in this paper, we combine DGA with the simulated
annealing (SA) algorithm and suggest an improved adaptive
Genetic Algorithm. The crossover probability (pc) and mu-
tation probability (pm) of the DGA are fixed values. With
the evolution process, it is easy to fall into a local optimum.
Adaptive adjustment of the crossover probability and mutation
probability, i.e., pcad (Eq. (12)), pmad (Eq. (13)) according
to the fitness value of the population can help the algorithm
jump out of the local optimum. The values of different hyper-
parameters for both DGA and SA are taken from [2], [9]
and are specified in Table II. In addition, while DGA is
prone to premature convergence because of its weak climbing
performance [11], SA has a high asymptotic convergence and
speed [2]. When combined, the new algorithm leaps out of its
local optimum, and the convergence speed of DGA increases.
The major steps in our proposed algorithm P 2EAGA are
described next:

1) Parameter Initialization with values as in Table II.
2) Population Initialization: Random generation of ni

chromosomes to form Initial Population of length Pij̃ .
3) Population evaluation: The fitness of chromosomes in

the current population is calculated, and the tournament
selection method is used to select the best 2 parents.

4) Crossover operation: Two chromosomes C1 and C2 are
selected using tournament selection method explained
in Step 3 and crossed with probability pcad to generate
two new chromosomes C

′

1 and C
′

2. According to the
Metropolis Acceptance Criterion (MAC) [2], the proba-



bility of acceptance of new chromosomes pacc3 is given
in Eq. (11) while the adaptive crossover probability pcad
is computed following Eq. (12) where fmax(C) is the
maximum fitness value of the population and favg(C)
is the average fitness value of the current population.

5) Mutation Operation: Based on the crossover operation,
two off-springs O1 and O2 are created and they mutate
to O

′

1 and O
′

2. Again according to MAC, mutated
offsprings are accepted or not. The adaptive mutation
probability pmad is given in Eq. (13), where favg(O) is
the average fitness value of the current population.

6) Decrease Temperature: After each generation, decrease
temperature with a factor α < 1. SA tries to evade
the local optimum by allowing temporal deterioration
of actual solutions (i.e., moves to a solution that corre-
sponds to a worse objective function value), where the
deterioration is controlled by a parameter temperature
t, which determines the mobility of the system and is
reduced by a positive factor α < 1 [2].

7) Termination Condition: The convergence condition is
met when t is less than the final temperature δ.

A. Phase I : UA-RA sub-problem

The objective is to design a decentralized scheme that
associates each UE j with BS i that offers the highest
throughput (i.e., high CQI). We deploy P 2EAGA in a Power-
Performance Service Server (P 2SS) near MBS to solve the
UA-RA problem in episodes, according to Algorithms 1 and
2. In each episode4 e ∈ E, BSi ∈ M informs P 2SS about
its maximum capacity bi, representing the Knapsack capacity.
Note that BSs participating in episode e will not participate
in the following episodes. Each UE j ∈ Ū will inform
P 2SS about the TBS index (obtained by mapping), estimated
available throughput pj and demands rij . Let Up = Q ∪ Q̃
denotes the set of participating UEs where Q is the set of
UEs meeting the constraint in Eq. (7) and Q̃ represents the
remaining UEs. Note that only UEs in Q will be selected in
the current episode. Vector P, denoting the estimated available
throughput (as specified in [12]), vector R specifying the users
demands (e.g., throughput) and set Q will then be created.
In this phase, an array χ is formed, which contains the best
optimal solution from each generation, and it is the initial
population for Phase II, as explained in Algorithm 2. All
optimal solutions in χ obey UA-RA constraints in Eqs. (5),
(6), (7), (8), and maximize Eq. (4).

B. Phase II : PA sub-problem

In this phase, BSi ∈M informs P 2SS about its maximum
power capacity Pmax

i , representing the Knapsack capacity.
Each UE j ∈ Ū will inform P 2SS about the estimated
available throughput pj and power consumption P j

i . The

3This is based on the Random Walk Metropolis Algorithm (RWMA).
RWMA performs random sampling from a distribution which does not support
direct sampling. RWMA is the simplest version of a Ist order Markov Chain
Monte Carlo algorithm.

4We solve the UA-RA-PA problem in each episode, and it will terminate
when the termination condition is reached.

Algorithm 1 P 2EAGA for UA-RA - Phase I
foreach episode e ∈ E do

Each BS i, i ∈M informs P 2SS bi
foreach j̃ ∈ Ũ do

Inform P 2SS about TBS Index qij̃
if qij̃ satisfies Eq. (7) then

qij̃ ∈ Q
else

UE j̃ will not participate in the problem
Inform P 2SS about pj̃ and rij̃

initialization: P := [p1, p2, ..., pṽ] where ṽ 6= v, ṽ =
length(Q); R:= [ri1, ri2, ..., riṽ] , Up:= {U1, U2, ..., Uṽ},
∀ĵ ∈ Up; X: = 0.
Set GA parameters: ni, ng , ns, pc, pm, Z
Set SA parameters: initial temp.(t) = (max{pĵ |∀ĵ} −
min{pĵ |∀ĵ}) * ρ), α, δ
Arrange Vector P in decreasing order.
Create ni population randomly of vector size P.
while t > δ do

for g = 1:ng do
for h = 1:ni/2 do

Select 2 chromosomes.
Crossover the selected chromosomes genes to
get offspring at pcad.
Mutate off-springs at pmad.

Store best solution for each generation in χ.
t = t ∗ α;

χ stores best sub-optimal solution from each generation of
size a

′
x b

′
, where a

′
= |P | and b

′
depends on termination

condition.

Algorithm 2 P 2EAGA for PA - Phase II
Each BS i, i ∈M informs P 2SS Pmax

i

foreach j̃ ∈ Ũ do
Inform P 2SS about pj̃ and P j̃

i

initialization: Same as Phase I, ni = χ .
while t > δ do

for g = 1:ng do
for h = 1:ni/2 do

Select 2 chromosomes.
Crossover the selected chromosomes genes to get
offspring at pcad.
Mutate off-springs at pmad.

Store optimal solution from each generation in χ
′

t = t ∗ α;
Best optimal solution with highest fitness value



optimal solutions from phase I will be the initial population in
this phase and when the convergence criterion is met, we get
the global optimal solution which satisfies Eqs. (5), (9), (10)
and maximize Eq. (4). Each episode e in both phases I and II
includes a diversification (exploration) and an intensification
(exploitation) phase. In the former, only UEs in Q are selected;
the ones in Q̃ are considered in the next episode e+ 1. In the
latter, after solving Eq. (4) subject to Eqs. (5), (6), (7), (8),
(9) and (10), UEs in Q will get associated with BS i, and
resources will be allocated to them. After each episode, the
set Ū is updated so that it contains only UEs in Q̃ and those
who were not part of the obtained near-optimal solution.

IV. PERFORMANCE EVALUATION

A. Verification of Adaptive Genetic Algorithm

The convergence of the two algorithms running on a single
MKP instance is shown in Fig. 2. DGA does not converge to
any sub-optimal value because of the significant unpredictabil-
ity and the poor selection of chromosomes due to constants
pc and pm. On the other hand, P 2EAGA−WT 5 converges
to a particular sub-optimal value. However, we observe that it
oscillates between identical values, implying that a termination
condition should be incorporated rather than running the
algorithm for a number of generations. By introducing the SA
termination condition along with MAC, P 2EAGA reached a
higher sub-optimal solution, i.e., narrowing the performance
gap. The term “global optimal′′ (Fig. 2) refers to the best
solution for the MKP instance in question. The global optimal
values were taken from GitHub6. Note that obtaining these
values is inefficient in terms of time and resources.

Fig. 3(a) illustrates the Arithmetic Mean (AM) of the ten
runs of meta-heuristics (DGA, P 2EAGA) on ten different
instances of the MKP while Fig. 3(b) depicts the distribution
of near-optimal value (f(e))7 per instance. DGA corresponds
to the Default Genetic Algorithm without any adaptive param-
eters, MAC and SA convergence conditions. We observe that
P 2EAGA is the closest to the optimal solution compared to
DGA. Indeed, DGA is a population-based algorithm with high
exploration and high exploitation, but has difficulty avoiding
local optima and has a high convergence rate. Adaptive genetic
operators, including MAC and SA convergence conditions,
help find the best starting solution and save significant time
when searching for global optimum. By combining these
three aspects, i.e., adaptive genetic operators, MAC and SA
termination condition, P 2EAGA achieves the global optimum
with a low convergence time.

Fig. 3(c) shows the AM of execution time (s) for P 2EAGA
and DGA for ten runs on ten different knapsack instances.
P 2EAGA incurs an average execution time that is 72%

5P 2EAGA−WT is an enhanced version of DGA in which we introduced
adaptive pc and pm as defined in Eqs. (12) and (13). We called this
version “without termination′′ because it runs for the defined number
of generations as SA is not used.

6Knapsack GitHub - https://github.com/madcat1991/knapsack
7f(e) is the final output obtained from Algorithm 1 and 2. AM is calculated

as
1

T

∑T
p=1 fp(e), where T = 10.

Figure 2. Comparison between two versions of GA on a single MKP instance

Figure 3. (a) Comparisons of optimal values between two different versions
of GA. (b) Variability between two different versions of GA. (c) Execution
time for different versions of GA

Table III
DEFAULT SIMULATION PARAMETERS

Parameter Value
Area of Region (G) 500m x 500m
UE traffic demand (Video) (ψj ) 3.5 Mbps
Total transmit power of BSs {46, 26} dBm
Capacity of MBS and FBS 100.8 Mbps
# of RBs S 100
Power/RB for MBS and FBS 0.39 W/RB and 0.0039 W/RB

shorter than that of DGA. This confirms that our proposed
scheme has reduced complexity while incurring low process-
ing time.

B. QoS Assessment

We performed comprehensive simulations in NS-3 to eval-
uate our proposed algorithm. For all our experiments, we
considered one MBS and eighteen FBSs deployed at fixed
locations. All FBSs are initially switched off and are turned on
sequentially when needed using control signals. We randomly
deployed UEs ( U = 70, Ū = 50, Û = 20) following a homo-
geneous Poisson Point Process for the different experiments
and considered a discrete user demand (i.e., requested data
rate). To simulate channel fading, we used a log distance path
loss model. The other simulation parameters are presented in
Table III. Fig. 4 depicts the QoS metrics perceived by users in a
HetNets environment. P 2EAGA performance was compared
with that of two other schemes: Default Single-Cell (DSC)

https://github.com/madcat1991/knapsack


Figure 4. QoS Metrics for 50 video users under three different schemes.

Figure 5. (a) Jain’s Fairness Index for 50 video users under three different
schemes. (b) Power Consumption by users under three different schemes.

and DGA. In DSC, all UEs try to establish a connection with
MBS only.

Fig. 4(a) shows that P 2EAGA incurs an average throughput
of 3.73 Mbps which is 20% and 88% higher than DGA’s
(2.98 Mbps) and DSC’s (0.45 Mbps), respectively. Fig. 4(b)
shows that P 2EAGA incurs the least packet loss ratio (10%)
compared to DGA (28.3%) and DSC (79%). Fig. 4(c) illus-
trates that P 2EAGA experiences the shortest delay (28.11 ms)
which is 50.89% and 91% lower than DGA’s (57.25 ms) and
DSC’s (345.29 ms). Finally, Fig. 4(d) shows that P 2EAGA
produces the lowest jitter (4.18 ms) compared to DGA (8.27
ms) and DSC (31.85 ms). Fig.5(a) depicts the fairness of
throughput among UEs in HetNets. We observe that under
P 2EAGA, around 95% UEs have similar throughput as Jain’s
Fairness Index is approximately 0.95, whereas it is around
0.81 and .62 under DGA and DSC, respectively. Hence, it can
be concluded that our proposed ensure high fairness among
users in comparison to the other two schemes by associating
UEs with the BS that offers high CQI. Fig.5(b) represents the
RPC for 70 UEs. Under DSC, the total power consumption
(TPC) is around 28W, where 20W (71.43% of TPC) were
consumed by the 50 video users while the remaining 8W
were consumed by the 20 VoIP users. Under DGA, the TPC
is around 20.73W, where 12.73W were consumed by the 50
video users (61.40% of TPC) while the remaining 8W were
consumed by the 20 VoIP users. Under P 2EAGA, the TPC is
21.48W, where 13.48W were consumed by the 50 video users
(62.75% of TPC) while the remaining 8W were consumed by
the 20 VoIP users. The TPC is slightly higher under P 2EAGA
than DGA because more UEs are attached to MBS than FBSs.

V. CONCLUSIONS AND FUTURE WORK

This work offers P 2EAGA, an algorithm for addressing the
UA-RA-PA problem in HetNets that provides high fairness in

terms QoS while also minimizing CAPEX and OPEX using
RPC. The UA-RA-PA problem was formulated as a MKP
where BSs represent the knapsacks and UEs are the items to
be fitted into the knapsacks. Simulation results show that the
proposed solution outperforms alternative solutions in terms of
complexity, processing time, fairness, and QoS metrics. Future
work will integrate the dynamics of interference mitigation
with UA-RA-PA in a joint solution.
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