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Abstract—The recent worldwide sanitary pandemic has made
it clear that changes in user traffic patterns can create load
balancing issues in networks (e.g., new peak hours of usage
have been observed, especially in suburban residential areas).
Such patterns need to be accommodated, often with reliable
service quality. Although several studies have examined the
user association and resource allocation (UA-RA) issue, there
is still no optimal strategy to address such a problem with low
complexity while reducing the time overhead. To this end, we
propose Performance-Improved Reduced Search Space Simu-
lated Annealing (PIRS3A), an algorithm for solving UA-RA
problems in Heterogeneous Networks (HetNets). First, the UA-RA
problem is formulated as a multiple 0/1 knapsack problem (MKP)
with constraints on the maximum capacity of the base stations
(BS) along with the transport block size (TBS) index. Second,
the proposed PIRS3A is used to solve the formulated MKP.
Simulation results show that PIRS3A outperforms existing
schemes in terms of variability and Quality of Service (QoS),
including throughput, packet loss ratio (PLR), delay, and jitter.
Simulation results also show that PIRS3A generates solutions
that are very close to the optimal solution compared to the default
simulated annealing (DSA) algorithm.

Index Terms—Heterogeneous Networks, Traffic Optimization,
Simulated Annealing, QoS, TBS index, COVID-19.

I. INTRODUCTION

The coronavirus disease (COVID-19) has caused an un-
precedented number of individuals worldwide to work from
home. As new digital patterns are emerging, the communica-
tions service providers have a critical role in supporting an
active community with good quality digital communications
[1]. One of the most promising approaches to fulfill this role is
the 5G support for HetNets environments. It involves enriching
the current cellular network with several smaller and simpler
base stations (BS) with broadly varying transmission capac-
ities, coverage areas, carrier frequencies, types of backhaul
connections, and communication protocols. For instance, the
integration of femtocell base stations (FBSs) with macro-cell
base stations (MBSs) enables HetNets to support good quality
of service (QoS) when serving diverse users [2], [3].

Among the significant challenges in HetNets are user associ-
ation (UA) to BS and resource allocation (RA) during service.

As a result, the dual UA-RA problem needs to be examined
to enable support for high QoS while considering variables
such as BS capacity, user requirements, and channel quality.
The problem of UA-RA in HetNets has been studied recently.
The approaches mainly differ in terms of architecture (i.e.,
centralized or distributed), the number of parameters consid-
ered and the execution time. For instance, Alnoman et al. [4]
proposed a joint UA-RA de-centralized approach to maximize
the overall network throughput using a Mamdani-type fuzzy
logic controller (FLC). The users were first classified based
on their data rate requirements and the controller decides the
amount of bandwidth to allocate to each class.

Wang et al. [5] divided the UA-RA problem into two
subproblems. The first sub-problem was solved using graph
theory by fixing the power allocation (PA), UA, and RA while
the second was solved using a difference convex function
in which UA-RA was fixed, and PA was solved. Feng et
al. [6] proposed two schemes for the joint UA-RA problem,
one centralized and one distributed. The centralized iterative
scheme was broken down into two sub-problems: first, using a
cutting plane approach, the UA problem was solved; second, a
primary decomposition approach solved the joint frame design
and the RA problem. Both sub-problems were iteratively
solved to find an optimal solution. The de-centralized scheme
used repeated games between users which has shown to
achieve the Nash equilibrium. Using the Stackelberg game
method, Zhong et al. in [7] solved the UA-RA problem while
considering the back-haul potential of BSs. Sapountizs et al.
[8] provided an iterative optimal solution for UA in back-haul
restricted HetNets by finding the optimum cell with which to
be associated. Luo et al. [9] suggested a joint UA-RA scheme
to minimize the network packet delay using different QoS-
aware UA (QoSA) strategies: descent of block-coordinate,
multiplier alternating-direction method, and multi-flow. These
algorithms minimized the packet delays in a distributed way
at a lower complexity compared to the conventional UA
strategies. Barbosa et al. [10] proposed the use of DoE (Design
of Expert) [11], RSM (Reduced Surface Methodology), and
racing algorithms to improve the genetic algorithm (GA) and



Simulated Annealing (SA) efficiency to solve the problems of
classical optimization. We have used this work as the base
for tuning SA’s significant hyper-parameters for solving the
multiple 0/1 knapsack problem (MKP). RSM1 is suggested
as a fine-tuning technique by the authors of [12] to achieve
greater proximity of regions with promising settings. The
racing concept was studied in [13], [14] using F-race, a racing
algorithm where candidate configurations are removed using
Friedman statistics.

Despite their good performance, most of the aforementioned
approaches suffer various limitations. For instance, the ap-
proaches in [4] and [5] did not consider the channel quality
when solving the UA-RA problem. The schemes in [6] only
consider constraints on the wireless back-haul and incur a large
overhead, making them unfeasible for large-scale networks.

The limitations of the previous works have motivated us
to propose the Performance Improved Reduced Search
Space SA (PIRS3A), a decentralized solution to the UA-RA
problem, formulated as a MKP, considering the maximum BS
capacity and the transport block size (TBS) index restrictions.
The knapsacks are represented by BSs (MBS and FBS) in this
solution, and the items to fit into the knapsacks are represented
by instances of user equipment (UE). The item weights are
user demands, while item values are the available through-
put for each knapsack. Knapsack capacity is the maximum
capacity available. We use SA to solve the MKP problem
and based on the resource block (RB) utilization rate along
with TBS index, the available throughput is determined. To the
best of the authors’ knowledge, no work has proposed a low
complexity solution to the joint UA-RA problem in HetNets
while considering several variables.

The rest of this paper is organized as follows. Section II
presents the system model. Section III describes the relevant
algorithm and presents the algorithm’s fine-tuning in terms
of parameters range and solution search space. Section IV
describes the simulation setup and results. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

Consider the downlink of a HetNets consisting of fixed BSs
and randomly placed UEs, as depicted in Fig. 1. There are two
sets of BSs: the set of Macro BS |SM | = Mm and the set of
femtocell BS |Sf | = Mf . As the coverage area of these BSs
may overlap, we assume that each UE can be within the range
of at least one BS. The set of all BSs is denoted as BS =
{SM ∪ Sf} with |BS| = Mm +Mf . A high-speed backhaul
with minimal delay (such as high-speed fiber) is connected to
all BSs. Let N be the set of UEs located inside the region G
and ψj ∈ Ψ be the requested downlink rate (bits per second)
of UE j, where Ψ is the discrete set of service classes. In this
paper, we are interested in the video service as it requires high
bandwidth. Each UE can only be associated with at most one
BS at any time instance. We define µ̃ as the total path loss

1The RSM framework is available in DoE software, and a more detailed
explanation about its use can be found in [20].

Fig. 1. An example of a two-tier HetNet including one MBS: M1, and
10 FBSs: M2,M3, · · · ,M11. The FBSs are usually located at commercial
and residential buildings that constitute hotspots for wireless traffic. The UEs
UE1, UE2, · · · , UEN in a region G are either served by either MBS or
FBSs selected by Information Service Server (ISS).

(i.e., follows a log-distance path loss model) between BS i and
UE j in decibels (dB). Other notations are given in TABLE I.

UEs might not receive high data rates because of time-
variable fading channels in wireless communication (i.e., LTE,
5G). This issue is more pronounced in urban areas. In to-
day’s wireless communication system, a decentralized scheme
is typically used to solve such problem, enabling UEs to
communicate with the BSs that provide them with the best
channel conditions and which can satisfy their minimum QoS
requirements.

There are two actors with distinct perspectives and goals
in our scheme, namely, UEs and BSs. On the one hand, each
UE wants to achieve the maximum data rate given its QoS
requirements. On the other hand, BSs want to fulfill UEs’ QoS
requirements considering their constraints. Therefore, under
the maximum capacity of BSs and TBS index constraint, we
describe the objective function as the amount of available
throughput (i.e., calculated based on RB usage rate) while
considering the entities’ perspective and goals.

minimize : −f(x) =

n∑
j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ bi, i ∈ {Mm ∪Mf} (2)

xj ∈ {0, 1}, j ∈ N = {1, ..., n} (3)
qij ≥ Γ, i ∈ {Mm ∪Mf}, j ∈ N = {1, 2, ..., n} (4)
rij ≤ bi, i ∈ {Mm ∪Mf}, j ∈ N = {1, ..., n} (5)

Eq. (1) represents a hyper-plane, hence it is a convex function
with convex constraints. Eq. (2) implies that the allocation of
resources to UEs should not exceed the maximum BS capacity
(bi). Eq. (3) shows the Unique association property, where
UE j can only be associated with one BS at any moment. Eq.
(4) implies that each UE j should have a TBS index above a
certain threshold Γ to participate in the UA-RA problem (i.e.,
TBS index vector). Finally, Eq. (5) indicates that each BS can
serve at least one UE. This MKP problem is formulated as the



TABLE I
TABLE OF NOTATIONS

Notation Description
N , N , j set, cardinality, and indexes of UEs
BS, BS , i set, cardinality and indexes of BSs
µ̃ path loss between BS i and UE j
ψj requested downlink rates of UE j
bi maximum capacity of BS or knapsack i
rij resource consumption allocated to each item or UE j

for each BS or knapsack i
xij , x user association decision variable/vector
pj profit or available throughput for UE j
Qi vector of UEs having TBS index greater

than Γ with BS i
Up Set of participating UEs

mixed-integer linear program (MILP) which is solved using
PIRS3A, described in Section III, to achieve a near-optimal
solution and achieve high QoS levels.

III. PIRS3A ALGORITHM

A. Simulated Annealing (SA) - Overview

SA is a local search algorithm that can circumvent the
local optima problem. Over the previous decades, its ease of
implementation along with its convergence properties made
it a standard algorithm for solving combinatorial optimiza-
tion problems like MKP. It was named as such because of
its similarity to the physical solid annealing process [10],
which involves heating and controlled cooling of material by
varying temperature. If the temperature decreases very slowly,
a stable state can be observed, which cannot be reached if
the temperature falls quickly. SA is based on the Metropolis
acceptance criterion (MAC) that is based on the Random
Walk Metropolis Algorithm (RWMA), which specifies a way
of doing dependent sampling from posterior space. It is the
simplest version of Ist order Markov Chain Monte Carlo
(MCMC) algorithms because the decision to the next step in
the parameter space only depends on the current state. SA tries
to evade the local optima by allowing temporal deterioration
of actual solutions (i.e., moves to a solution that corresponds
to a worse objective function value), where the deterioration
is controlled by a parameter temperature t, which determines
the mobility of the system and is reduced by a positive
factor α < 1 in the algorithm. The likelihood of accepting
a deteriorated solution decreases as the algorithm progresses.
For a given value of t, some exchange trials D (repetitions) are
performed until the value t is less than the final temperature
δ. The initial temperature t should be initialized with t := %*ρ,
where % is defined in Algorithm 1.

B. PIRS3A: A Decentralized Scheme

Our objective is to design a decentralized scheme that helps
each UE j to be associated with BS i that offers the highest
throughput (i.e., high CQI, better channel conditions). We
deploy PIRS3A in an Information Service Server (ISS) near
MBS to solve the UA-RA problem in episodes, as illustrated
in Algorithm 1. In each episode e ∈ E, BSi ∈ {Mm ∪Mf}

Algorithm 1: PIRS3A for UA-RA Problem

foreach episode e ∈ E do
Each BS i, i ∈M informs ISS bi
foreach j ∈ N do

Inform ISS about TBS Index qij
if qij satisfies (4) then

qij ∈ Q
else

UE j will not participate in the problem
Inform ISS about pj and rij

initialization: P := [p1, p2, ..., pñ] where ñ 6= n,
ñ = length(Q); R:= [ri1, ri2, ..., riñ] where
ñ 6= n, , Up:= {U1, U2, ..., Uñ}, ∀j̃ ∈ Up; X: = 0.

Perform performance-improvement (Section III.E)
Set values of parameters suggested in TABLE. IV
i.e. an initial temp.(t) =
(max{pj̃ |∀j̃} −min{pj̃ |∀j̃} * ρ); α; δ; D

Select Initial Solution ω = (x1, x2, . . . , xñ) ∈ Υ;
Incumbent Solution ← f(ω);
repeat

Set repetition counter a = 0;
repeat

Select integer ĩ from set {1, 2, ..., ñ};
if xĩ = 0, pick item ĩ then

while solution ω
′

is unusable, do
Drop another item from ω

′

randomly; denote new solution as
ω

′
;

Let ∆ = f(ω
′
) - f(ω);

while ∆ ≥ 0 or Random (0,1) <

exp

∆

ta , do
ω ← ω

′
;

else
Drop item ĩ, and pick up another item
randomly, get new solution ω

′
;

Let ∆ = f(ω
′
) - f(ω);

while ∆ ≥ 0 or Random (0,1) <

exp

∆

ta , do
ω ← ω

′
;

if f(ω
′
) > incumbent solution then

Incumbent solution ← f(ω
′
);

a = a+1;
until a = D;
Set t = α * t;

until t > δ;
N = N - ω

′
;

informs ISS about its maximum capacity bi, which represents
the Knapsack capacity. Note that BSs which participate in
episode e will not participate in the following episodes. Each
UE j ∈ N will inform ISS about the TBS index (obtained



Fig. 2. System model of a two tier macro-femto HetNet for PIRS3A.

by mapping) and the estimated available throughput pj and
demands rij . Let Up = Q∪ Q̃ denotes the set of participating
UEs where Q is the set of UEs meeting the constraint in Eq. (4)
and Q̃ is the remaining UEs. Let X:= [x1, x2, ..., xñ] denotes
a matrix of variable xi

j̃
where j̃ ∈ Up. Note that only UEs in Q

will be selected in the current episode. Vector P, denoting the
estimated available throughput, vector R specifying the users
demands (e.g., throughput) and the set Q will then be created.

Each episode e includes a diversification (exploration) and
an intensification (exploitation) phase. In the former, only UEs
in Q are selected; The ones in Q̃ are considered in the next
episode e + 1. In the latter, after solving Eq. (1) subject to
Eqs. (2) and (3), UEs in Q will get associated with BS i, and
resources will be allocated to them. After each episode, the
set N is updated so that it contains only UEs in Q̃ and those
who were not part of the obtained near-optimal solution ω

′
.

C. Available Throughput Estimation Method

First, BS i sends a control signal (CS) to each UE j that
wants to be associated with it. Based on received CS, each
UE j calculates CQI. Using CQI, MCS, and TBS mapping
indices table [18], the jth UE calculates TBS index along
with its allocated RBs and the estimated available throughput
that BS i can provide. The UE then sends this information to
the ISS where our proposed scheme runs. If the received TBS
index information satisfies Eq. (4), the UE will participate in
the MKP problem. If selected after solving MKP, the UE will
get associated with BS i and allocated the necessary resources.

D. Parameters Range Search Space Reduction

To perform algorithm fine-tuning, we select a set of pa-
rameters (i.e., ρ, α, δ and D described in Section III.A) that
intuitively appear to affect the efficiency of solving MKP
solving using meta-heuristics SA. To generalize our results
and compare them to one another, we use the relative deviation
from the optimum expressed as follows:

κ(e) =
|f(e∗)− f(e)|

f(e∗)
(6)

where f(e) is the computed solution while f(e∗) is the best-
known solution to the problem. Thus, the lower is the value

TABLE II
PARAMETER SETTINGS FOR SA.

SA param. ρ α δ D
Low 0.1 0.01 0.00001 0.1n
High 0.9 0.99 0.001 2n

TABLE III
RSM RESULTS FOR SA.

SA param. Instance 1 Instance 2 Instance 3 Instance 4
ρ 0.628 0.7 0.7 0.7
α 0.745 0.255 0.745 0.255
δ 0.00041 0.00051 0.00051 0.00051
D 61 42 61 61

TABLE IV
DEFAULT AND SUGGESTED PARAMETER SETTINGS FOR SA.

SA param. ρ α δ D
Default 0.5 0.6 0.001 60
Suggested 0.8 0.71 0.000595 40

of κ(e) for the meta-heuristic, the better is the performance
of the algorithm [10]. The parameters and their necessary
corresponding levels (low and high) required by a 2g complete
factorial are indicated in TABLE II. The fine-tuning of SA
on MKP uses four arbitrary instances indicated in TABLE II
and available in GitHub2. The 2g=4 [9] full factorial design
was used to identify the factors that influence the algorithm
the most. Thus, in the first step of our approach, we applied
DoE ANOVA analysis [10] on the four parameters. From the
analysis, we concluded that (i) ρ and α are significant for
the algorithm regardless of the instance selected. δ and D
are significant only in some instances; and (ii) the influence
of every parameter varies depending on the instance studied.
The next stage consists of applying RSM (Reduced Surface
Methodology) to explore the neighborhood regions around a
promising solution region.

In this context, RSM employs a sampling technique that
finds the best match for each studied parameter to obtain a
sub-optimal value that corresponds to estimated throughput
in Eq. (1) with low convergence time. We define a range
of values between each parameter’s minimum and maximum
from the RSM results presented in TABLE. III. This forms a
space for the search of candidate configurations. The employed
procedure consists of the simultaneous variation of all four
parameters until ANOVA shows statistical significance. RSM
results suggest an empirical model for the four parameters.

In the last step, we used the IRACE [21] package for
racing algorithm implementation to select a good possible
configuration out of many options. For this study, the settings
used for SA are ρ ∈ {0.62, 0.7}, α ∈ {0.255, 0.5, 0.745},
δ ∈ {0.00041, 0.00051}, D ∈ {39, 52, 65} as shown in TA-
BLE. III. Because of the large difference between the mini-
mum and maximum values obtained from the results of RSM,
three different values, including the middle point for α and D
are considered. Every possible combination leads to a different
algorithm setting, so our search space consisted of 36 different

2https://github.com/bharat1992-bit

https://github.com/bharat1992-bit


parameter settings for the SA algorithm. After applying the
race algorithm in this search space, the best setting for the
algorithm to solve MKP was found (see TABLE. IV3). DoE,
RSM, and IRACE help obtain a reduced search space SA in
the range of the parameters.

E. Solution Search Space Reduction

The solution search space also includes significantly large,
useless, or infeasible solutions that the SA algorithm can
consider when evaluating the target function. Undoubtedly,
these annealing processes waste a lot of time in these useless
solution regions and can easily impede the discovery of the
correct solution. So, we remove the useless solution regions
before applying SA to solve for MKP. To this end, we
first classify n items according to the increasing profit pj
(j = 1, ..., n). The greater the profit, the smaller the index,
i.e., by descending order, these items were arrayed. If the
number of items is greater than

⌊
b
n

⌋
, we only take the first⌊

b
n

⌋
items to participate in SA computation. The reason is

that the items in n −
⌊
b
n

⌋
are never selected when trying to

obtain a maximum profit from a knapsack. So the remaining
items n−

⌊
b
n

⌋
belong to the useless solutions region. Hence,

these items should be removed from the search space. In this
way, reducing the search space of the parameter ranges and
the solution space can achieve near-optimal solution while
decreasing uncertainty.

IV. PERFORMANCE EVALUATION

A. Search Space Reduction

Fig. 3 illustrates the arithmetic mean (AM) of the ten runs of
meta-heuristics (DSA, PIRS3A) on ten different instances of
the MKP while Fig. 4 depicts the distribution of near-optimal
value (f(e)) per instance. DSA corresponds to the default
simulated annealing without any fine-tuning of search space
ofthe parameter ranges and the solution space. We observe that
PIRS3A is the closest to the optimal solution compared to
DSA. Indeed, DSA [10] is a single solution-based algorithm
with less exploration and high exploitation, because of which
it can easily be stuck in local minima. Parameter search
space reduction helps finding the best starting solution while
solution search space reduction helps removing the useless
regions, saving significant time in finding the global optima.
By combining these two aspects, PIRS3A achieves the global
optima with low convergence time.

TABLE. V shows the execution time (ms) for PIRS3A and
DSA when varying the number of items. PIRS3A incurs an
average execution time that is 60% shorter than that of DSA
for 100 items and around 69% shorter for 2000 items. This
confirms that our proposed scheme has reduced complexity
while incurring low overhead time.

3Default corresponded to settings of SA used in [10] while Suggested
corresponds to settings of SA obtained from fine-tuning.

Fig. 3. Comparison of optimal values for two different versions of SA .

Fig. 4. Variability between two different versions of SA.

TABLE V
EXECUTION TIME OF DIFFERENT VERSIONS OF SA

Time(ms) Number of Items
Scheme 50 100 200 500 1000 2000
DSA 0.00028 0.00099 0.0035 0.025 0.090 0.36
PIRS3A 0.00011 0.00040 0.0015 0.002 0.020 0.11

TABLE VI
DEFAULT SIMULATION PARAMETERS

Parameter Value
Area of Region (G) 500m x 500m
UE traffic demand (ψj ) 2 Mbps
number of BSs (M = Mm ∪Mf ) 11 = 1 + 10
Total transmit power of BSs {46, 26} dBm
Capacity of MBS 100.8 Mbps
Capacity of FBS 50.4 Mbps

B. QoS Assessment

We performed comprehensive simulations in NS-3 to eval-
uate our proposed algorithm. For all our experiments, we
considered one MBS (Mm = 1) and ten FBSs (Mf = 10) that
are deployed at fixed locations. All FBSs are initially switched
off and are turned on sequentially when needed using CS. We
randomly deployed UEs ( N = 70) following a homogeneous
Poisson Point Process (PPP) for the different experiments and
considered a discrete user demand (i.e., requested data rate).
To simulate channel fading, we used a log distance path loss
model as in [19]. Other simulation parameters are depicted in
TABLE VI. Fig. 5 depicts the QoS metrics perceived by users



Fig. 5. QoS Metrics for 70 users under three different schemes.

in a HetNets environment. Beside PIRS3A, we simulated two
other schemes: Single-Cell (SC) and DSA. In SC, all UEs try
to establish a connection with MBS only. DSA, on the other
hand, corresponds to the classic SA scheme for the UA-RA
problem formulated as MKP without fine-tuning in terms of
parameter range and solution search space reduction.

Fig. 5(a) shows that PIRS3A incurred an average through-
put of 2.22 Mbps which is 40% and 80% higher than DSA’s
(1.34 Mbps) and SC’s (0.45 Mbps), respectively. Fig. 5(b)
shows that PIRS3A incurred the least packet loss ratio (4%)
compared to DSA (19%) and SC (54.5%). Fig. 5(c) illustrates
that PIRS3A experienced the shortest delay (13.5 ms) which
is 29.32% and 54% lower than DSA’s (19 ms) and SC’s (29.5
ms). Finally, Fig. 5(d) shows that PIRS3A produced the low-
est jitter (2.7 ms) compared to DSA (3.7 ms) and SC (5.1 ms).
The reason PIRS3A outperformed the remaining schemes
in all the QoS metrics is its self-organized intrinsic property.
Indeed, the parameter search space reduction helps selecting
the best starting optimal solution as meta-heuristic algorithm
for solving combinatorial optimization problems that heavily
depend on the selected starting solution. In addition, the
solution search space reduction helps increase the likelihood
of selecting UEs with the highest estimated throughput, i.e.,
a high TBS index with a specific BS while considering other
parameters such as BS capacity, UEs requirements and channel
efficiency.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed PIRS3A, an algorithm for solving the
user association and resource allocation (UA-RA) problem in
HetNets. The UA-RA problem was formulated as an MKP
where BSs represent the knapsacks in this solution and UEs
are the items to be fitted into the knapsacks. Simulation results
show that the proposed solution outperforms alternative solu-
tions in complexity, overhead time, and QoS metrics. Future
work will integrate the dynamics of interference mitigation
with UA and RA in a joint solution.
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