
Fakultät Verkehrswissenschaften �Friedrich List �, Institut für Verkehrstelematik

Diplomarbeit

Semantische Segmentierung optischer

Sensordaten für Anwendungen in der

Binnenschi�fahrt

eingereicht von

Lukas Hösch

geb. am 19.03.1996 in Stuttgart

Hochschullehrer: Prof. Dr.-Ing. O. Michler

Betreuende: Dipl.-Ing. Albrecht Michler,

M.-Eng. Xinyu Zhang,

Dr.-Ing D. Medina

Dresden, den 26. August 2022

Lukas Hösch

Bibliographic evidence

Lukas Hösch

Diplomarbeit

Semantische Segmentierung optischer Sensordaten für Anwendungen in der Binnen-

schifffahrt

Technische Universität Dresden

Fakultät Verkehrswissenschaften “Friedrich List”

Institut für Verkehrstelematik

Studiengang Verkehrsingenieurwesen

94 Seiten, 37 Abbildungen, 5 Tabellen, 102 Quellenangaben

Abstract:

Inland waterway transport (IWT) is an extremely important backbone for heavy good

transportation with severe economical influence and the potential for the reduction of

traffic-related greenhouse gas emission. As IWT is expected to increase, updated chart

data is required. Traditional survey methods are intense in cost and time. This work

presents a processing scope for self-updating inland waterway charts. The required

data can be gathered through optical sensors, that are fitted on IWT vessels.

In semantic segmentation, every pixel in a RGB image is assigned to a defined class.

This machine-learning problem is used to distinguish between various objects in a

(IWT related) scene and thus to survey the infrastructure. For this task, the new

BerlinIWT dataset is proposed. Existing datasets in this field may contain more ex-

amples, but do not provide an adequate number of classes. Training a neural network

on the datasets MaSTr1325 and BerlinIWT leads to remarkable results.

Spatial mapping information is completed with LiDAR (light detection and ranging)

data. The acquired 3D point clouds provide precise distance information with a reason-

able maximum range. The sensor compensates the flaws of (stereo) cameras, that are

suitable for scene understanding, but inappropriate for distance measurements. The

most suitable technique for the combination of LiDAR and camera data is discussed.

For the ongoing scope towards simultaneous localisation and mapping (SLAM), two

different methods for optical flow estimation are compared.

Finally, further processing steps are pointed out and the application is discussed with

respect to a traffic-telematics related use-case.

Lukas Hösch IV

Note of thanks

Daniel, thank you for addressing new topics with such matter of course, courage and

faith. We have worked our way through and I would like to keep going. Thank you,

Ralf, for always having my back and assisting in challenges that seemed impossible.

Thank you, Albrecht and Xinyu, for your valuable remarks and your time for the meet-

ings with me. I have had a great supervision from both of you.

For the measurement campaign, many thanks to Astrid, Tom, Pawel, Uwe and Xiang-

dong. This part of the work wouldn’t have been possible without the support of you

all. Thank you, Dominic, Nele, Philipp and Raik for withstanding two weeks with me

in the same office and of course for your valuable work. Special thanks also to Lars for

your support in the dependency hell and Jetson heaven. I don’t know where I would

have been without you. Alonso, thank you for your valuable work and the great at-

mosphere. Thank you Filippo for your support on site and your socialising initiatives.

Thanks to Thoralf for your support as a department lead and the opportunities you

provided. I’m glad working in this department.

Many thanks to Jorge who provided all his knowledge and hints about machine learn-

ing! Also thanks to Heinrich, who never got tired analysing and discussing the chal-

lenges. Finally I would like also to thank Niklas and all of my friends for dragging me

away from the laptop when ever necessary and possible.

Lukas Hösch V

Contents

1 Introduction 1

1.1 Overall Idea of the Project . 2

1.2 Contribution of this work . 3

1.3 Outline . 4

2 Semantic Segmentation on Images 5

2.1 Related Work . 5

2.2 Applied Methodology . 7

2.2.1 Modes of Learning . 7

2.2.2 Learning Process . 9

2.2.3 Optimization Algorithms . 12

2.2.4 Convolutional Neural Networks 14

2.2.5 Train / Test Splitting . 18

2.2.6 Overfitting and Regularization . 19

2.2.7 Batch Normalization . 21

2.2.8 Hyperparameter Choice . 22

3 Proposed Solution for IWT Semantic Segmentation 25

3.1 Used Model . 25

3.2 Training Procedure . 28

3.3 Generation of the BerlinIWT Dataset . 30

3.3.1 Measurement Campaign . 30

3.3.1.1 Hardware in Use . 31

3.3.1.2 Covered Trajectory . 34

Lukas Hösch VI

Contents Contents

3.3.1.3 Collected Data . 38

3.3.2 Annotation . 38

3.4 Training Environment . 42

3.4.1 Results of a Five-class Dataset . 43

3.4.2 Results for a Dual Class Dataset: Bridge Detection 53

3.4.3 Comparative Results . 62

4 LiDAR Assisted Spatial Mapping 64

4.1 Related Work . 65

4.2 Spatial Mapping Information from LiDAR Sensors 67

4.3 Pixel-wise LiDAR to RGB Alignment . 74

4.4 Optical Flow Estimation . 78

4.4.1 Sparse Optical Flow Estimation: The Lucas-Kanade Method . . . 79

4.4.2 Dense Optical Flow Estimation: The Farneback Method 82

5 Conclusion 86

5.1 Traffic-Telematics related Evaluation . 88

5.2 Outlook and Future Work . 92

Bibliography 95

Lukas Hösch VII

Propositions for the thesis

1. Commercial shipping on inland waterways requires well-updated and precise

chart data. Traditional survey means are time-consuming and expensive.

2. A significant number of inland waterway vessels equipped with appropriate sen-

sors is able to provide spatial mapping information faster and at higher efficiency.

3. Semantic segmentation, performed by artificial neural networks, is essential to

identify the surrounding and can be carried out best on RGB images.

4. LiDAR sensors are a decent possibility to provide precise spatial mapping infor-

mation, that is required for generating a self-updating chart.

Lukas Hösch VIII

List of Figures

1.1 Scope for self-updating IWT chart . 3

2.1 Basic structure of a neural network . 8

2.2 Relu function . 9

2.3 Forward propagation . 15

2.4 Fully connected and convolutional layer 16

2.5 Pooling . 18

2.6 Small CNN . 19

3.1 Atrous convolution . 26

3.2 Residual block . 27

3.3 Image from MaSTr1325 dataset with its augmentations 29

3.4 Aurora with sensors . 32

3.5 Sensor combination at the bow . 33

3.6 PNT unit . 34

3.7 Trajectory measurement campaign day 1, section 1 35

3.8 Trajectory measurement campaign day 1, section 2 36

3.9 Trajectory measurement campaign day 2 37

3.10 Camera image compromised by raindrops 39

3.11 Annotated mask from the BerlinIWT dataset 41

3.12 Bridge with water-marks - example from BerlinIWT dataset (5 classes) . 44

3.13 MaSTr1325 example . 44

3.14 Data augmentation example (5 classes) . 46

3.15 Plots of evaluation metrics (5 classes) . 48

3.16 Mask evolution (5 classes) . 50

Lukas Hösch IX

List of Figures List of Figures

3.17 Selection of validation masks (5 classes) 52

3.18 Example from BerlinIWT dataset (2 classes) 54

3.19 Data augmentation example (2 classes) . 55

3.20 Plots of evaluation metrics (2 classes) . 58

3.21 Mask evolution (2 classes) . 60

3.22 Selection of validation masks (2 classes) 61

4.1 LiDAR working principle . 68

4.2 LiDAR FMCW principle . 70

4.3 LiDAR device Sick MRS6000 . 71

4.4 Point cloud registered by LiDAR . 72

4.5 Coordinate system for optical sensors . 73

4.6 LiDAR projections . 74

4.7 Implementation of the Lucas-Kanade algorithm 81

4.8 Implementation of the Farneback method 84

Lukas Hösch X

List of Tables

2.1 ANN error measures . 20

3.1 Five-class training dataset distribution . 45

3.2 Five-class hyperparameter overview . 47

3.3 Two-class hyperparamter overview . 56

3.4 Performance comparison of 2 and 5 class dataset 62

Lukas Hösch XI

List of Symbols

α learning rate

β moving average parameter RMS Prop

β1 hyperparameter for Adam

β2 hyperparameter for Adam

βl batch norm parameter to be learned

βr reflectance of the target’s surface

ϵ parameter preventing zero-division

η overall system efficiency in a laser-rangefinder

γ batch norm parameter to be learned

λ wavelength

λl parameter, that controls information flow from 2D pixel to 3D point

µ mean value

σ2 covariance value

a[l] generic activation function in layer l

a f type of activation function

Ar area of receive aperture (Blende) at range r

b bias

B[l] biases in layer l

Br modulation bandwidth

c number of channels

cr speeed of light

dc, ϕc, θc spherical coordinates in LiDAR point cloud

dr decay rate

Lukas Hösch XII

List of Symbols List of Symbols

d displacement

ep current epoch

Ep total energy of a transmitted pulse laser

f filter dimension (height and width)

f filter (kernel)

fi f frequency shift

fd Doppler frequency shift

fm signal of video frame

g activation function

Gl graph used by LDLS for 2D / 3D mapping

h number of hidden units

H height

Ii frame i of a consecutive video

I identity matrix

J(w) generic cost function

K number of layers

l layer

L generic loss function

m number of training examples

ml object instance

Ml number of object instances

n image dimension (height and width)

nr = 1 refraction index

o activation threshold

p amount of rows and columns that are added by padding

p f center pixel for optical flow estimation

pm polynomial of video frame

pW value of parameters inside vector W[l]

Pr received power

P(xc,i) set of image pixels

pl,j coordinate vector of 2D pixel i

qi point of tracked feature

Lukas Hösch XIII

List of Symbols List of Symbols

r distance to target

s stride

t time

tw waveform period

Tr transmission loss trough the transmission medium

u unit (neuron)

v velocity

w weight

W width

W[l] weights in layer l

x input

x input matrix (e.g. image)

X input vector

x f , y f pixel coordinates of Ii

X{t} Mini-batch containing training examples

xc, yc, zc Cartesian coordinates in LiDAR point cloud

xc,i coordinate vector of 3D LiDAR point i

y desired output

ŷ predicted output

y desired output matrix (e.g. true mask)

ŷ predicted output matrix (e.g. predicted mask)

yl pixel of the mask

Y vector containing desired outputs

Y{t} Mini-batch containing desired output

zl
(m) vector containing labels for object instances

Lukas Hösch XIV

List of Abbreviations

ANN Artificial Neural Networks

ASPP Atrous Spatial Pyramid Pooling

Adam Adaptive Moment Estimation

BEV Bird’s Eye View

CNN Convolutional Neural Networks

CVAT Computer Vision Annotation Tool

DLR Deutsches Zentrum für Luft- und Raumfahrt / German Aerospace Center

FC fully connected

FMCW Frequency-Modulated Continuous Wave

FoV Field of View

GNSS Global Navigation Satellite System

GPU Graphical Processing Unit

HSV Hue, Saturation, Value

IMU Inertial Measurement Unit

IWT Inland Waterway Transport

IoU Intersection over Union

Lukas Hösch XV

List of Abbreviations List of Abbreviations

LiDAR light detection and ranging

MEMS Microelectromechanical systems microscanning

ML Machine Learning

NIR near-infrared

NN Neural Network

PNT Position, Navigation and Timing

PPP Precise Point Positioning

RGB red, green, blue

RINEX Receiver Independent Exchange

RMS Prop Root-Mean-Square Propagation

ROS Robotic Operating System

RTK Real-time Kinematics

ReLu Rectified Linear unit

ResNet Residual Network

SLAM Simultaneous Localization and Mapping

SNR Signal to Noise Ratio

SOW Spree-Oder-Wasserstraße

ToF Time of Flight

USV Unmanned Surface Vehicles

VHF Very High Frequency

Lukas Hösch XVI

1. Introduction

Inland Waterway Transport (IWT) is a cost-efficient, safe and environmentally friendly

mode of transport with low energy consumptions [1]. On the inland waterways of

Germany, the total transport volume of goods amounted to 222.7 million tons in 2017.

This value is expected to grow by approximately 22 % until 2030 / 2035 [1], which

is a challenging development for the current state of the associated infrastructures.

IWT is capable of an considerably valuable contribution to the reduction of external

effects of transport systems [2]. The average external costs concerning the emission

of greenhouse gases from IWT are about 40 % lower than the corresponding value

of road traffic with heavy good vehicles. It is important to mention, that the lack of

data might slightly compromise the comparability. Still, also the multi-functionality of

inland waterways reduces the external cost caused by habitat damage.

Generally, accidents on inland waterways are comparably rare. However, collisions

with bridges or other infrastructure might occur [3], which would impede the general

traffic flow on the associated waterway. The effects of a waterway being blocked by

vessels suffering from an accident were illustrated by the container ship Ever Given,

that caused severe traffic obstruction in the Suez canal. The seven days blocking in

march 2021 of this important merchant route caused painful economical effects [4].

Even though such effects may not arise with comparable extend in case of a similar

scenario on inland waterways, an impact might be noticeable. The existing risk of

collision is expected to increase with the growing traffic load.

Lukas Hösch 1

1.1 Overall Idea of the Project 1. Introduction

1.1 Overall Idea of the Project

IWT makes an important contribution to the environmental goals as well as to the

economic development. In order to minimise the risk of collision, precise and well up-

dated chart data is a crucial parameter. Traditional means and techniques for inland

waterway surveying are expensive and time-consuming.

Available (low-cost) optical sensors may be used for general surveying along the wa-

terway, but also to collect measurements concerning the relevant infrastructure such

as bridges and waterway locks. The used sensors might indeed suffer from a lack

of accuracy, compared to high performance survey devices used by particular mea-

surement teams. With a relevant number of inland waterway vessels equipped with

the associated sensors, the precise measurement values can be estimated numerically

from various datasets of the same waterway section. Obtaining measurements from a

certain amount of vessels on their daily journeys along the inland waterway network

ensures the currency of the gathered information. Furthermore, without the need to

carry out specific measurement proceedings, the obstruction to IWT is reduced and

relevant information is obtained with low effort in cost and time. Broadcasting the

measured data to other vessels or web-interfaces also allows for a self-updating inland

waterway chart, contributing to easier and safer navigation along inland waterways.

The development of a self-updating inland waterway chart requires several important

cornerstones. An overview of the project idea is illustrated in Fig. 1.1. First of all, the

data acquisition is performed by one or more optical sensors, gathering precise range

measurements (such as Light detection and Ranging (LiDAR) sensors), as well as data

that serves for semantic scene understanding (provided by single or stereo cameras).

The collection of LiDAR point clouds and stereo images needs to be processed for es-

sential scene understanding and object classification. The specific shape of a bridge can

be modelled mathematically, resulting in a precise description of the on-scene shapes

and ranges. Precise global mapping (and map matching) is used to find the exact ge-

ographic position of the detected object. Finally, the updated charts can be published

through an appropriate platform.

Lukas Hösch 2

1.2 Contribution of this work 1. Introduction

Figure 1.1: Scope of the generation of a self-updating inland waterway chart. Sensor data is
retrieved by inland vessels, translated into spatial mapping information and broadcasted to the
chart interface. Images retrieved from (left to right) [5], [6] and [7].

1.2 Contribution of this work

As a first step towards self-updating inland waterway charts, optical sensor data needs

to be acquired and processed to gain awareness of the traffic depiction and the infras-

tructure surrounding the vessel. Using visual perception systems, the following infor-

mation levels can be distinguished:

• Physical description: pose, speed and shape of objects

• Semantic description: categories of objects

• Intention prediction: likelihood of the object’s behaviour

The main focus of this work is semantic description based on the input of the men-

tioned optical sensors. In general, this task is mostly performed on RGB images, as

they contain more (accurate) semantic information than LiDAR point clouds [8].

Semantic Segmentation describes the goal of assigning a pre-defined class-value to every

pixel of the image [9]. As a state-of-the-art approach, this goal is achieved by machine

learning (ML), in particular by training an artificial neural network. The result is a so-

called segmentation mask, visualizing all classified pixels. The classes can be defined

with respect to the application of the segmentation algorithm.

Lukas Hösch 3

1.3 Outline 1. Introduction

A LiDAR sensor emits laser beams and measures the reflection received back from

the environment [10]. The output from a 3D sensor consists of a point cloud, contain-

ing the 3-dimensional position and the intensity of the received reflection for every

point detected. By this way, spatial information of the environment can be retrieved

mostly independently of light conditions and at high precision up to ranges of 200 m

(depending on the specific device in use), outperforming stereo camera range estima-

tion in both, maximum range and accuracy [11]. In general, LiDAR sensors are often

bulkier and considerably expensive than stereo cameras. Object recognition on point-

clouds is a challenging task and the large input datasets are computationally intense.

In contrast, stereo cameras allow for semantic scene understanding at comparably low

effort, but poor range estimation. The combination of the two sensors can therefore

leverage the flaws of each other [11].

The goal of this work is to establish and compare methods to perform Semantic Sege-

mentation in inland waterway environments. Regarding the use of sensor data, the

main focus will therefore be on RGB images for accurate semantic description, using

the precise range measurements by LiDAR point clouds as an additional information

to achieve accurate spatial mapping.

1.3 Outline

An introduction and motivation for the topic was given in this Chapter. Chapter 2

provides an overview of state-of-the-art ML techniques applied for semantic segmen-

tation. In Chapter 3, the applied model is presented. Furthermore, an overview over

the valuable dataset MaSTr1325 is given. Section 3.3 describes the generation of the

BerlinIWT dataset, developed in this work to assist in IWT semantic segmentation. Fi-

nally, the results of the presented methods are discussed. Chapter 4 presents state-of-

the-art methods for spatial mapping assisted by LiDAR sensors and discusses methods

for aligning 3D point clouds to RGB images. Furthermore, an overview of optical flow

estimation techniques is given in Section 4.4. Finally, Chapter 5 concludes the work

and evaluates the application in a traffic-telematics related frame.

Lukas Hösch 4

2. Semantic Segmentation on Images

Semantic image segmentation describes the task of grouping image regions together,

that belong to the same semantic class and then assigning each pixel to one of the

pre-defined classes [12]. This procedure is also known as pixel-wise classification [13].

Semantic segmentation plays a major role in image understanding problems, that are

often used in a plethora of applications, including surveillance, computer graphics and

autonomous vehicles.

2.1 Related Work

With the application of Convolutional Neural Networks (CNN), the abilities in recog-

nition tasks as image classification and bounding box detection have substantially im-

proved over the last years [14]. The great variety of available neural networks assists

in the development of fine-grained labelling [15].

Automotive applications are a popular use-case for semantic segmentation algorithms.

A large field of research is dedicated to autonomous road vehicles [16] and the associ-

ated task of road segmentation [17] as well as obstacle detection [18]. For the data-

hungry CNNs, appropriate training data is a crucial parameter. For the particular

case of self-driving cars, the KITTI benchmark has evolved to one of the most pop-

ular datasets [19], [20]. The data is fully annotated, publicly available and contains

measurements from a LiDAR sensor, two stereo cameras (colour and grayscale) and

an Inertial Measurement Unit (IMU). The datasets are recorded during daytime in dif-

ferent road-based environments. UrbanLoco [21] is another publicly available, fully

annotated dataset for the application on autonomous vehicles. In contrast to the KITTI

dataset, UrbanLoco is collected in urban environments only, addressing especially the

Lukas Hösch 5

2.1 Related Work 2. Semantic Segmentation on Images

challenge of urban canyons and tunnels. Measurements from LiDAR sensors, cameras,

IMUs and Global Navigation Satellite System (GNSS) receivers are included. The au-

thors of [22] provide a comparably small dataset containing radar, LiDAR and camera

data.

With the development of so-called Unmanned Surface Vehicles (USV), autonomous

applications enter the maritime domain. An obstacle detection approach for stereo

camera semantic segmentation for USVs is presented by [23]. The algorithm is fur-

ther strengthened by the additional use of an IMU [24]. In contrast to the approach

used on open water applications, Roboat [25] is developed as an autonomous surface

vehicle for urban waterways. The authors address localization, path planning and ob-

stacle avoidance by using LiDAR, camera and IMU information in areas that suffer

from limited GNSS availability. In addition, Roboat II [26] can carry out sophisticated

path planning as well as accurate Simultaneous Localization and Mapping (SLAM).

Also for the application of USVs, labelled data is a crucial requirement for training

data-driven approaches [27]. Just like road segmentation for self-driving cars, water

segmentation is a significant ability for USVs for the identification of navigable areas.

Different approaches to this task are evaluated in [28]. The authors of [29] train and test

deep learning algorithms to address the use-case of river segmentation for flood mon-

itoring. In [30], a model for water detection is proposed to be applied to self-operating

outdoor robots. In [13], different colour spaces (e.g. Hue, Saturation, Value (HSV) and

RGB) are evaluated with respect to their robustness in water segmentation, especially

for scenarios with rapidly changing light conditions. While the variety of datasets re-

lated to self-driving cars is large, comparable datasets for the maritime domain are very

rare. The authors of [31] address this problem by providing a high-resolution dataset

collected in a nordic lake environment. The dataset contains 600 manually labelled im-

ages with a variety of weather conditions and can be used for water segmentation only.

The USVInland dataset [32] is collected on various sections of inland waterways by Li-

DAR sensors, stereo cameras, a millimeter-wave radar, GNSS and IMUs. It contains

700 images that can be used for water segmentation. Inland waterway environments

hold challenges such as complex distribution of obstacles, possible GNSS outages, the

reflection of bank-side structures as well as possible fog over the water surface [32].

Even though, these challenges might not be experienced with comparable frequency

Lukas Hösch 6

2.2 Applied Methodology 2. Semantic Segmentation on Images

and extent when sailing in open water, the MaSTr1325 dataset [33], collected in the

coastal waters of Koper (Slowenia) is also of great interest. Indeed, one major aim of

this research is to distinguish robustly between sky and water surface by using the

assistance of an IMU. However, for gathering reliable spatial mapping information,

performing water segmentation is not sufficient.

2.2 Applied Methodology

The commonly known Artificial Neural Networks (ANN) are inspired on the behaviour

of biological nervous systems [35]. CNNs are a type of ANN, that is primarily used to

recognise patterns in images. In general, an ANN consists of an input layer, e.g. the

pixel values of the image and an output layer, e.g. the values of the final segmentation

mask. In between those layers, a variety of hidden layers is located to perform the ac-

tual task by processing the values transmitted from the input layer. The behaviour (and

thus the result) of a Neural Network (NN) depends on the parameters of the network.

Namely, a weight w ∈ {−1, 1} is assigned to the connection between two neurons and

a bias b ∈ R is allocated to every neuron, that is part of a hidden layer. A neuron

can be thought of as a function, that transfers its input to subsequent neurons only if a

certain activation threshold o is reached. Considering a fully connected network, as it

is depicted in Fig. 2.1, the activation function of specific a neuron u can be expressed

as [44]

o(w1o1 + w2o2 + ... + wjoj − bu) (2.1)

The activation function of a neuron in layer l as part of a fully connected network can

thus be generalized to

a(l) = a f (wa(l−1) + b) (2.2)

The type of activation function a f is to be chosen [37]. A popular state-of-the-art choice

is the ReLu function, describing the rectified linear unit function as depicted in Fig. 2.2.

2.2.1 Modes of Learning

The goal of the “learning” or “training” process of a NN is to find the weights and

biases that fit best for the desired output. Depending on the application of the NN,

Lukas Hösch 7

2.2 Applied Methodology 2. Semantic Segmentation on Images

Figure 2.1: Basic structure of a neural network (NN) [36]. Here, a three layer NN is depicted
with input dimension i and output dimension k.

Lukas Hösch 8

2.2 Applied Methodology 2. Semantic Segmentation on Images

Figure 2.2: The Rectified linear unit (ReLu) function is one of the most commonly used activation
functions for NN.

either supervised or unsupervised learning may be used.

Supervised learning is mostly used in semantic segmentation on RGB images. The net-

work is trained on a distinct training dataset that contains a desired output (for this

use-case a segmentation mask) for every input image. The objective in this form of

training is to minimise the overall classification / labelling error of the model. To

achieve this, the weights and biases are adapted after every training example so that

the segmentation mask predicted by the model matches the true mask as closely as

possible.

Unsupervised learning training datasets do not include any labels [35]. Instead, the

model is trained to minimise an associated cost function. This technique is used in

feature extraction [38], [39], traffic engineering, internet traffic classification, anomaly

detection as well as quality of service optimization.

2.2.2 Learning Process

Usually, the input of a NN is passed from the input layer through all hidden layers

towards the output layer, the so called forward propagation. The so-derived output can

then be compared to the desired output [40]. During training, backward propagation is

Lukas Hösch 9

2.2 Applied Methodology 2. Semantic Segmentation on Images

used to adapt the parameters of the NN and achieve the desired output.

A single example is expressed as x with its desired output y. In contrast, the expres-

sions x and y illustrate an input and an output matrix (e.g. an image and a desired

output mask), respectively. A defined loss function L(ŷ, y) models how well one single

estimate of the NN ŷ fits the desired output example y. A generic cost function can be

expressed as

J(w, b) =
∫

L(z, w)dp(z), (2.3)

where

z[l] = w[l]g[l−1] + b[l]

g[l] = ReLu(z[l])
(2.4)

models the costs over all training examples. The expression z[l] is computed with re-

spect to the parameters w and b, as well as the activation function g[l] of layer l. The

minimisation of the cost function J(w, b) in this representation containing the empiri-

cal distribution dp(z) would be too costly in time and computational effort. Therefore,

gradient descent is applied in order to find a local minimum of the cost [41]:

J(w, b) =
1
m

m

∑
i=1

L(ŷ, y). (2.5)

A commonly used loss function is referred to as cross entropy, which is especially inter-

esting to classification problems [42], and described by

L(ŷ, y) = y(i) log ŷ(i). (2.6)

As described later in Section 2.2.3, the derivative of the cost function influences the

evolution of the parameters inside the NN. The partial derivative of Eq. (2.5) yields the

likelihood of the predicted classes, which can be compared to the true class. Further

derivation of the mathematical details can be consulted at [42].

In practical implementations, mathematical operations are not carried out explicitly

by iterating over each of the training examples. Instead, vectorization is applied: all

training examples x(1), x(2), . . . , x(m) are stacked together to create one single vector.

X =
[

x(1), x(2), . . . , x(m)
]

(2.7)

Lukas Hösch 10

2.2 Applied Methodology 2. Semantic Segmentation on Images

The vectors W[l] and B[l] contain the weights and biases associated with all hidden

units h in layer l. The parameters W[l] and B[l] are initialized with random numbers.

Throughout the process of gradient descent, the parameters are adjusted by the NN

to minimize the function J(W, B). For illustration purposes, an example for a single

iteration of a small NN with two hidden layers is described next. Thus, consider:

• The parameter vectors W[1,2] and B[1,2] contain the weights and biases for the first

and second layer.

• The cost function is defined by J(W[1], B[1], W[2], B[2]) = 1
m ∑m

i=1 L(ŷ, y) over all m

training examples.

The input X is propagated forward through the network:

Z[1] = W[1]X + B[1] (2.8)

A[1] = g[1](Z[1]) (2.9)

Z[2] = W[2]A[1] + B[2] (2.10)

A[2] = g[2](Z[2]) (2.11)

where A[l] represents the result of the activation function g() and the current layer Z[l].

For parameter adjustment, the result of the output layer is compared to the desired

output Y. The parameters are then adjusted during back propagation:

dZ[2] = A[2] − Y (2.12)

dW[2] =
1
m

dZ[2]A[1]⊤ (2.13)

dB[2] =
1
m ∑ dZ[2] (2.14)

dZ[2] = W[2]⊤dZ[2] · g[1](Z[1]) (2.15)

dW[1] =
1
m

dZ[1]X⊤ (2.16)

dB[1] =
1
m ∑ dZ[1] (2.17)

Lukas Hösch 11

2.2 Applied Methodology 2. Semantic Segmentation on Images

Finally, all weights and biases in each layer l are adjusted using gradient descent by

W[l] = W[l] − αdW[l]

B[l] = B[l] − αdB[l]
(2.18)

with

dW[l] =
dJ

dW[l]

dB[l] =
dJ

dB[l]

(2.19)

where the learning rate α is to be determined as a hyperparameter in advance. More

details can be found in section 2.2.5.

2.2.3 Optimization Algorithms

To train a NN, the cost function (2.5) is to be minimized. Gradient Descent is an algo-

rithm that finds a set of variables that minimize a given target function (such as the

cost function). It computes the gradient of the cost function to perform a parameter

update for all of the training examples X with their associated labels Y as stated by Eq.

(2.18) and (2.19). In fact, updating the parameters of the network with respect to every

single training example, instead of computing the gradient descent of the cost function

for the entire training set at on time, avoids redundant computation and saves com-

putational time [43]. Note that if the learning rate is set too high, the gradient descent

algorithm might not converge to a minimum of the cost function. Nevertheless, it has

been shown, that by slowly decreasing the learning rate the convergence to a minimum

is almost certain [43].

Gradient descent can also be applied to smaller subsets of the dataset (so called mini-

batches). This may result in a less time consuming computation, as the empirical pro-

cess can be optimized on smaller parts of the training set. The dataset, consisting of the

input X and the desired output Y is divided into mini-batches X = X{1}, . . . , X{t} and

Y = Y{1}, . . . , Y{t}. According to Eqs. (2.8) and (2.11), each mini-batch is propagated

Lukas Hösch 12

2.2 Applied Methodology 2. Semantic Segmentation on Images

through the network by

Z[1] = W[1]X{t} + B[1]

A[1] = g[1](Z[1])
...

A[K] = g[K](Z[K])

The costs for the current training example i are computed by

J{t} =
1
m

l

∑
i=1

L(ŷi, yi) (2.20)

and the gradients of J{t} using X{t} and Y{t} by the Eqs. (2.18) and (2.19). During one

epoch of training, this process is carried out for all of the mini-batches formed by the

training set [43].

Gradient descent can be speeded up using RMS Prop (Root-mean-square-prop). RMS

Prop restricts the direction for the convergence steps to avoid time consuming oscilla-

tions during the process. In this case, a larger learning rate might be applied to achieve

a faster convergence [43].

W = W− α
dW√

SdW + ϵ
(2.21)

B = B− α
dB√

SdB + ϵ
(2.22)

with

SdW = βSdW + (1− β)dW2 (2.23)

SdB = βSdB + (1− β)dB2. (2.24)

The moving average parameter β and the additional hyperparameter ϵ need to be set.

A popular choice is ϵ = 10−8 to avoid division by zero [43].

Finally, the well known optimizer Adaptive Moment Estimation (Adam) combines differ-

ent well-working optimization methods. The iterative process is initialized with the

parameters values VdW , SdW , VdB, SdB as vectors of zero. First, exponentially decaying

averages of past gradients are stored. This approach is also known as momentum term

[43]:

VdW = β1VdW + (1− β1)dW (2.25)

Lukas Hösch 13

2.2 Applied Methodology 2. Semantic Segmentation on Images

VdB = β1VdB + (1− β1)dB (2.26)

As stated earlier, RMS Prop is used as an estimate for the variance [43]. The variables

SdW and SdB are derived from (2.23) and (2.24), where β is replaced by the hyper-

paramter β2. As the values VdW , SdW , VdB, SdB are initialized to zero, the algorithm is

prone to be biased towards zero. To counteract this effect, bias correction is applied as

follows.

Vcorr
dW =

VdW

1− βt
1

(2.27)

Vcorr
dB =

VdB

1− βt
1

(2.28)

Scorr
dW =

SdW

1− βt
2

(2.29)

Scorr
dB =

SdB

1− βt
2

(2.30)

Finally, the weight and bias are updated

W = W− α
Vcorr

dW√
Scorr

dW + ϵ
(2.31)

B = B− α
Vcorr

dB√
Scorr

dB + ϵ
(2.32)

with the learning rate α to be determined and tuned, β1 = 0.9 as default value, β2 =

0.999 as recommended value and ϵ = 10−8 to prevent zero division. The parameter

ϵ, however, does not play a major role on the performance. The Adam optimizer is

well-known and widely used among the ML community. It is an effective method to

compute adaptive learning rates for each parameter.

2.2.4 Convolutional Neural Networks

A CNN is an ANN, where at least one layer performs convolutional operations. In

this convolutional layer, the input is propagated through at least one filter (also named

kernel) instead of a simple multiplication with the activation function. For the size

of the filter, (3, 3) is a popular choice. In general, the parameters inside the filter are

Lukas Hösch 14

2.2 Applied Methodology 2. Semantic Segmentation on Images

learned by the network. An example is provided below.

f =


−1 −1 −1

1 1 1

0 0 0

 (2.33)

This small example depicts a filter detecting upper horizontal edges in images: the

value −1 represents black pixel values, 1 white and 0 grey coloured pixels. Even

though also different filter sizes can be chosen, the filter is usually considerably smaller

than the image. After processing the receptive field of the filter for the first time, it is

Figure 2.3: Convolutional operation with stride of 1

shifted (by s pixels, the so called stride) to the next subset of pixels as depicted in Fig.

2.3. As a result of each of these convolutional operations, one pixel value of the out-

put feature map is computed. Sifting the filter by only one pixel over the input image

results in large overlapping receptive fields [35]. Therefore, the stride can be increased

in order to reduce the overlap within the convolutions.

In ML, a convolution is referred to an operation as follows [44]:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (2.34)

which is also known as cross-correlation. This convolution without kernel flipping

(cross-correlation) is implemented in many ML libraries [44]. In this work, the above

stated operation shall be referred to as convolution, as it is the case in a broad spectrum

of the ML community, although this notation may interfere with the notion of “convo-

lution” coming from the signal processing verbose. While the filter size is pre-defined,

Lukas Hösch 15

2.2 Applied Methodology 2. Semantic Segmentation on Images

(a) Convolutional layer. The output y is formed by a convolution with a

kernel of width 3, so three output units are affected [44].

(b) Fully connected layer. Connections are not sparse, instead both layers

are fully connected.

Figure 2.4: Sparse connectivity in comparison to a fully connected layer with the impact of x3

highlighted. The output y is formed by a matrix multiplication with a kernel of width 3 [44].

the actual filter values are to be learned by the network. Therefore, the network will

also learn whether the kernel is flipped or not. To detect a large variety of visual fea-

tures, the amount of hidden layers is usually considerably high in a CNN. This is also

referred to as deep network [45]. To avoid excessively high complexity of a CNN, the

fully connected network is adapted by the concept of sparse connections. As depicted

in Fig. 2.4, a convolutional layer contains less connections than a fully connected (FC)

layer [46]. Some of the available connections are assigned with weight 0 and are no

longer part of the network. For the remaining connections, fewer parameters need to

be computed and the complexity of the system decreases without any drawbacks on

the performance of the network [47].

Lukas Hösch 16

2.2 Applied Methodology 2. Semantic Segmentation on Images

Parameter sharing is another approach to reduce the computational costs while train-

ing a NN. For instance, discovering that a certain filter is useful in a certain region of

the image leads to the use of the same filter for other regions [35]. Based on this as-

sumption, the weights and biases are constrained accordingly. The decreased amount

of parameters to be learned by the NN leads to improved learning characteristics.

As the input image is convolved with the filter, the dimensions of the output feature

map will change with respect to the original input. Considering an image of size (n, n)

convolved with a filter of size (f , f), the output feature map will have dimensions

(n− f + 1, n− f + 1). This operation is denoted as valid convolution [45]. To prevent

feature maps from shrinking, padding can be applied. Padding describes the method

of adding p rows and columns to the input image in order to produce a feature map

of dimensions (n, n). In order to perform this same convolution, the parameter p can be

derived by

p =
f − 1

2
(2.35)

with f ∈ odd values only. As the added values are usually equal to 0, this is also

referred to as zero-padding [45]. In general, the height nH and width nW of the output

feature map can be computed by

(nH, nW) =

(⌊
n + 2p− f

s
+ 1 ,

n + 2p− f
s

+ 1
⌋)

(2.36)

with dimensions of the input image (n, n), filter size (f , f), stride s and padding p.

Colour images (e.g. RGB images) are of dimension (n, n, c) with c representing the

number of channels. Every pixel value is thus encoded in each of the (mostly three)

colour channels. In this case, the convolution is performed over all the colour channels

by applying filters of size (f , f , c), so the associated feature map has only one channel.

In practical applications, nc filters are applied within the same convolutional layer, so

different features can be detected in one single layer and among all three channels. As

every single convolution leads to a different feature map, the resulting feature maps

are stacked together, yielding a feature map of dimension (nH, nW , nc) [44].

Pooling helps to focus on the most relevant features detected and can be applied as

separate operation within a layer of a CNN [44]. The feature map obtained from the

previous operation is divided in sub-regions (e.g. of size (2,2) pixels) as depicted in

Fig. 2.5. From each sub-region, only one value will be kept for subsequent operations.

Lukas Hösch 17

2.2 Applied Methodology 2. Semantic Segmentation on Images

This value can be either the average of the defined sub-region (average pooling) or the

maximum value of the sub-region (max pooling), which is the more popular choice.

Furthermore, pooling is a valuable tool to achieve a model that is more robust against

Figure 2.5: Max pooling is a technique used to detect the most relevant features of the map. Of
each sub-region indicated, only the maximum value is kept for further processing. [44].

small changes of the input feature map [44]. Invariance to translations states that, for

small translations of the feature map, most pooled outputs will not change [44]. In or-

der to keep the dimensions of the feature maps, padding can be combined with pooling

[48].

Finally, Fig. 2.6 represents the structure of a small CNN as it could be implemented

to recognize hand-written digits from the MNIST dataset [49]. The MNIST dataset is

designed to train networks to map a hand-written digit to the associated digital one.

The Fig. 2.6 derived from [35] depicts a structure, that tends to be common among the

ML community [35]: the input image (here of size (28, 28) [49]) is first processed by

a convolutional layer using a ReLu activation function. The following pooling layer

detects the most relevant features from the previously computed feature map. A FC

layer with ReLu activations is used for up-sampling. The purpose of the last FC layer

is to map the detected features to one of the pre-defined possible outputs: in this case

a number between 0 and 9.

2.2.5 Train / Test Splitting

Rigorous training on a representative dataset is an important factor for the perfor-

mance of a NN. In general, CNNs perform best when trained on a large dataset, or

at least on a dataset with strong variations in the data.

The complete dataset is typically split into: i) training set is the largest subset and used

Lukas Hösch 18

2.2 Applied Methodology 2. Semantic Segmentation on Images

Figure 2.6: Example of a small CNN as presented by [35]. This example may be used to recog-
nize hand-written digits, as presented in [49].

for the training process; ii)development set can be used during training for validation of

the training results and to compare the performance of different algorithms. It is im-

portant to keep this subset separate from the training set, as this is the only possibility

to evaluate the performance using data new to the algorithm. iii) The test set, that is

used for the final evaluation of the readily trained algorithm. The size of the mentioned

subsets depends on the total number of examples available from the whole dataset:

100− 10.000 examples can be split into subsets of 60 %, 20 %, 20 % for training, devel-

opment and testing, respectively. In some cases, the test set may even be discarded

and the development set may be used for testing. Then, the training set would consist

of 70 % and the development set of 30 % of the whole dataset. For larger datasets, i.e.

in the order of 106 examples, a splitting of 98 %, 1 %, 1 % or even 99.5 %, 0.4 %, 0.1 % for

training, development and testing, respectively, can be applied.

2.2.6 Overfitting and Regularization

The error measures for training and development sets are a valuable source for perfor-

mance evaluation. A high error in both training and development set indicates a high

estimation bias. The term bias does not address any difference in the training and de-

velopment set error: it only describes the error level in both sets. The problem of a high

bias can be addressed by using a larger network or extending the training process.

Lukas Hösch 19

2.2 Applied Methodology 2. Semantic Segmentation on Images

The difference of the training set error and development set error is referred to as

train set error low high high low

dev set error high high even higher low

bias low high high low

variance high low high low

Table 2.1: Overview of bias and variance in relation to training and development set error.

variance. A high variance can be observed, e.g., when a low training set error in combi-

nation with a high development set error occurs. This effect is also named overfitting:

the NN has been trained excessively on the (limited) training set. Its capabilities to

generalize the learned behaviour are therefore lacking. Overfitting behaviour is illus-

trated in the first column of Tab. 2.1. Furthermore, the table provides an overview

over other possible combinations of bias and variance and possible behaviour of the

network. Besides overfitting, this includes “underfitting” behaviour (second column

of Tab. 2.1), a combination of over- and underfitting (third column) and finally the de-

sired behaviour exhibiting decent generalization abilities (last column).

From an implementation point-of-view, the easiest way to counteract overfitting is the

usage of a bigger dataset for training. However, due to lack of training data or time

to acquire it, this might not be always possible. In this case, regularization methods,

such as L2 Norm (also called weight decay) can be applied [50]. The cost function is

re-defined by

J(W[l], B[l], . . . , W[K], B[K]) =
1
m

m

∑
i=1

L(ŷ(i), y(i)) +
λ

2m

K

∑
l=1
||W[l]||2F (2.37)

where the second part of the equation λ
2m ∑K

l=1 ||W[l]||2F implements the regularization

with Frobenius norm ||W[l]||2F of W[l]. The update step for the weights and biases in

the network defined by Eq. (2.19) is adapted [50], so that

dW[l] =
dJ

dW[l]
+

λ

m
W[l] (2.38)

The computation of the weights and biases by gradient descent remains unchanged

[50] as in Eq. (2.18):

W[l] = W[l] − αdW[l] (2.39)

Lukas Hösch 20

2.2 Applied Methodology 2. Semantic Segmentation on Images

Overfitting can also be prevented by other regularization methods such as data aug-

mentation. Within this process, images are adapted during the training process by

horizontal or vertical flipping, random rotation and random zooming or cropping.

Also, random adjustments on colour, brightness, contrast and saturation can be used

to augment the dataset. Even though these methods seek to increase the variety of

the dataset, the training set might remain slightly redundant. However, data augmen-

tation is a very inexpensive regularization method [51]. Most built-in libraries apply

data augmentation during the training process, so that performance will not suffer

from larger datasets. Augmentation may only be applied to the training, not to devel-

opment or test set.

Early stopping is a technique, consisting on finalizing the training process as soon as

the error computed on the validation set starts to increase during training. A further

decreasing training error, but increasing development error would exhibit overfitting.

With early stopping, the model is able to generalize its inputs fairly well [51].

2.2.7 Batch Normalization

Looking at the different hidden layers of a network, the distribution of the layer input

might vary as the parameters of the previous layers change [52]. This effect is called

internal covariate shift and can make the training process slow and hard to tune. It is

counteracted by the approach of batch normalization, also called batch norm, that aims at

normalizing the activations of every layer in the network. For the intermediate values

inside the l-th layer of the NN, z(i), . . . , z(m), mean and variance can be computed by

[52]

µ =
1
m ∑

i
z(i) (2.40)

σ2 =
1
m ∑

i
(z(i) − µ)2 (2.41)

The normalized inputs are the derived from

z(i)norm =
z(i) − µ√

σ2 + ϵ
(2.42)

Lukas Hösch 21

2.2 Applied Methodology 2. Semantic Segmentation on Images

In order not to normalize the values necessarily to a zero-mean normal distribution of

unit variance, z̃(i) is computed as

z̃(i) = γz(i)norm + βl (2.43)

with the parameters γ and βl to be learned by the network. The mean of z̃(i) can thus

be set to an arbitrary value controlled by βl and γ [52].

To implement batch norm in a deeper NN (a NN containing various hidden layers), the

normalized value z̃(i) is computed from the output of the layer z(i). The value z̃(i) is

then propagated to the subsequent layer in place of z(i). Batch norm is usually applied

to mini-batches, so that z̃(i) is computed for every mini-batch X{t} separately. Whereas

the parameters βl and γ are additional parameters to be learned by the network, the

bias parameter b[l] is zeroed out during the normalization process [52]. The associated

parameter vector B(l) can therefore be neglected if batch norm is applied. During the

implementation the optimization algorithm, the parameters W[l], βββ
[l]
l , γγγ[l] are calculated

as in Eq. (2.19) [52]:

βββ
[1]
l = βββ

[1]
l − αdβββ

[1]
l .

Batch norm reduces the amount that the parameters need to be adapted during the

learning process and layers can learn more independently from each other [52]. Even

though the scaling on µ and σ2 adds a small amount of noise to the function z[l], which

introduces a small regularization effect, batch norm is not a regularization method [52].

2.2.8 Hyperparameter Choice

The training process of NN is heavily influenced by the choice of hyperparameters.

Those hyperparameters need to be chosen carefully and may also evolve throughout

the training process.

• The learning rate α determines the convergence speed for the optimization and,

therefore, how fast the network learns. More precisely, the weights W[l] of the

network are adjusted while performing gradient descent (as described in Section

2.2) with respect to a cost function J. As stated by Eq. (2.18), the weights are up-

dated during backpropagation by W[l] = W[l] − α dJ
dW[l] [53]. Indeed, the learning

rate is the most important hyperparamter to configure the training environment

Lukas Hösch 22

2.2 Applied Methodology 2. Semantic Segmentation on Images

of a NN [53]. In many cases, the learning rate is determined experimentally [53]:

multiple networks with different learning rates are computed in order to com-

pare their performance. Due to the limitation of computational capacity, this

might not always be possible. Another approach is to follow the training process

of the model closely to recognize, how different learning rates affect the training

process. Nevertheless, the ML community has converged on the idea of using

algorithms which systematically adapt the learning rate throughout the training

process [53].

• Momentum term can be thought of as the second important hyperparameter.

With the application of the Adam optimization algorithm, the parameters are

usually chosen to β1 = 0.9, β2 = 0.99 and ϵ = 10−8, as described in Section 2.2.3.

• Splitting the dataset into smaller mini-batches generally is a valuable opportunity

to enhance faster training. Whereas larger mini-batches might be beneficial for a

faster training process, a smaller batch size leads to more accurate estimators[54].

Furthermore, accuracy gains are expected to be achieved after fewer number of

epochs when training with smaller mini-batches compared to larger batch-sizes.

• Learning rate decay is applied to assure the convergence of the optimization prob-

lem to a minimum. This might not always be the case if the learning rate is kept

constant [55]. Several approaches can be used in order to adjust the learning rate

throughout the training process.

α =
1

1 + drep
α0 (2.44)

with the decay rate dr being the hyperparameter for this process. It is multiplied

by the number of the current epoch ep. The adapted and previous learning rate

are represented by α and α0, respectively. Alternative approaches are to adjust

the learning rate exponentially

α = 0.95ep α0 (2.45)

or introducing another hyperparameter k

α =
k
√ep

α0 (2.46)

Lukas Hösch 23

2.2 Applied Methodology 2. Semantic Segmentation on Images

The learning rate can also be modified in relation to the minibatch size t

α =
k√

t
α0 (2.47)

Finally, the learning rate can also be adjusted in a discrete way in relation to the

number of epochs or even manually.

Further hyperparameters such as the number of hidden units and the number of layers

are defined by the network architecture, applied to a particular use-case.

Lukas Hösch 24

3. Proposed Solution for IWT Semantic

Segmentation

The following section describes the process of training a semantic segmentation model

for an IWT environment. As a first approach, the segmentation task in this work will

lay the focus on RGB images only.

3.1 Used Model

The DeeplabV3 model is an extension of the Deeplab algorithm and is suggested by

[56]. The algorithm is developed as a Deep Convolutional Neural Network (DCNN)

for the task of semantic segmentation. An approach called atrous convolution is used

to control the resolution of the image without any additional learning parameters [56],

[57].

Referring to the word “trous”, which means “holes” in French, atrous convolution can

be thought of as a convolution with a filter that consists of holes (values equal to zero)

between the parameters. By adjusting the size of the holes in the filter (the so called

rate), its FoV can be adapted. Standard convolution is equivalent to atrous convolution

with rate = 1.

DeeplabV3 is built on the basis of ResNet (residual network) [58], a powerful approach

for object detection and semantic segmentation. By proposing residual learning, the

authors of [58] introduced the valuable approach of adding so-called skip-connections

to a NN. Up to a certain threshold, adding more layers a NN does indeed improve the

training accuracy. However, beyond this threshold, deeper networks (networks that

consist of an increased number of hidden layers) exhibit a worse performance due to

Lukas Hösch 25

3.1 Used Model 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.1: Atrous convolution as used in the DeeplabV3 model. The field of view (FoV) can
be adjusted by the rate, which defines the spaces between the filter parameters [57].

the problem of vanishing or exploding gradients [59]. For the sake of simplicity, an

activation function g(z) = a and a biases B[l] = 0 are assumed. In very deep NNs, the

vector of all estimated outputs of the network Ŷ can be described by

Ŷ = W[l]W[l−1]W[l−2] . . . W[3]W[2]W[1]X (3.1)

Each matrix W[l] is represented by its pW parameters, as

W[l] =

[
pW 0

0 pW

]
(3.2)

in each of the K layers.

By neglecting the dimensions of the last parameter W[1], the estimated output can be

rewritten as

Ŷ = W[1]

[
pW 0

0 pW

][K−1]

X (3.3)

and therefore

Ŷ = p[K−1]
W X. (3.4)

The number of layers K tend to be very large in deep NNs. This leads to the effect, that

the Eq. (3.4) will exhibit very large values if pW > 1 (“exploding gradients”) or very

Lukas Hösch 26

3.1 Used Model 3. Proposed Solution for IWT Semantic Segmentation

small values if pW < 1 (“vanishing gradients”). As the activation values increase or

decrease exponentially as a function of K, the computation of the gradients for gradient

descent is affected in a similar way. In particular, vanishing gradients slow down train-

ing substantially [59]. The problem of vanishing / exploding gradients is addressed in

the implementation of ResNet [58] by the application of skip-connections. As depicted

Figure 3.2: Residual block. The skip connection counteracts vanishing / exploding gradients.

in Fig. 3.2, the activation function of the subsequent layer a[l+2] = g(Z[l+2]) is adapted

to a[l+2] = g(Z[l+2] + A[l]). To account for dimensions mismatch, A[l] may be adjusted,

so that (W[l]A[l]) ∈ R(n×n), whereas A[l+2] ∈ R(n×n).

ResNet offers the option to use a pre-trained model. The authors of [56] use a ResNet50

as well as a ResNet101 for comparison reasons. Both models have been pre-trained on

ImageNet [60], that serves as a benchmark in object detection, image classification and

single-object localization. The dataset consists of hundreds of object categories and mil-

lions of images and is therefore a good possibility for models that shall be pre-trained

for a broad use-case.

Atrous Spatial Pyramid Pooling (ASPP) [56] addresses the issue, that the repeating

combination of convolutional and max-pooling layers significantly reduces the resolu-

tion of the image. So called “deconvolutional” layers may counteract this effect, but

with increased computational effort. ASPP applies several atrous convolutions with

increasing rate subsequently to each other [56]. By doing so, the FoV can be arbitrarily

enlarged while the resolution of the output feature map is kept stable.

Lukas Hösch 27

3.2 Training Procedure 3. Proposed Solution for IWT Semantic Segmentation

All modules added by the authors in addition to ResNet include batch normaliza-

tion. The authors of [56] demonstrate the superior performance of DeeplabV3, when

compared to other state-of-the art NNs. The learning rate is set dynamically to (1−
iter

max_iter)
0.9, where iter and max_iter represent the current and total number of itera-

tions, respectively. The initial learning rate is 0.007. After the first 30.000 iterations,

the batch normalization is frozen and another 30.000 iterations are carried out with a

smaller base learning rate α = 0.001. Throughout the training process, the training

data is augmented by randomly scaling the images and random horizontal flipping.

The authors highlight the performance of the model: its mean intersection over union

(IoU) amounts to 85.7 % [56]. Further details about the mean IoU metric for segmenta-

tion problems can be found in Section 3.4.

3.2 Training Procedure

As discussed in Section 2.1, a number of datasets have been generated for machine

learning applications in the automotive domain. However, for the application to IWT,

the variety of datasets is extremely limited. Indeed, the datasets collected by [31] and

[32] provide high resolution RGB images collected from a nordic lake environment

and various inland waterway scenes, respectively. However, the aim of both datasets

is limited to water segmentation only: The ground-truth segmentation masks contain

only the two classes “water” and “not water”.

MaSTr1325

The only training dataset suitable for the application to this work is therefore the

MaSTr1325 dataset [33]. It was collected in the coastal water of Koper (Slowenia),

to enforce the development of small USVs, operating in coastal waters. From the 50

hours of data, collected over a span of two years, 1325 images were hand-picked while

ensuring to cover various weather conditions and a great variety of semantic scenes.

The images are labelled pixel-wise to the categories “water”, “sky”, “obstacle” and

“void”. To address the problem of labelling uncertainty at the edges between neigh-

bouring classes, these pixels are labelled as “uncertain”. Being collected in a coastal,

marine environment, the MaSTr1325 does not perfectly match the aimed application to

Lukas Hösch 28

3.2 Training Procedure 3. Proposed Solution for IWT Semantic Segmentation

IWT semantic scene understanding. Still, the dataset covers a variety of weather condi-

tions and different scenes and is labelled extremely carefully. It is therefore chosen for

the training process in the application under discussion, even though the encountered

scenes may differ slightly.

The authors of [33] augment their data by horizontal flipping and central rotation by

5◦ to 15◦ of the images. Furthermore, following the approach of [61], a small set of

descriptive images is selected from the target domain and used for colour transfer. In-

deed, data augmentation is a widely used approach to generate more representative

data, which reduces the risk of overfitting. Also for the application to IWT, data aug-

mentation is a valuable approach. However, as inland vessels barely tilt along their

main axis (rolling), central rotation of the images might be less beneficial, compared to

the application in coastal waters. Fig. 3.3 depicts the different modes of data augmen-

Figure 3.3: The dataset generated by [33] was augmented by seven colour augmentations and
four rotations augmentations (last row).

tation. Together with the unaugmented images, a total of 53000 images are available

for training [33]. With the dataset in place, the authors train, among other models,

a DeepLabV2 [56] on a NVidia GTX1080 Ti GPU. For single image segmentation, the

Lukas Hösch 29

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

DeepLab architecture achieves a mean IoU of up to 97.49 %, which is the best result

compared to other networks in use. Therefore, the DeepLab architecture has been cho-

sen for the IWT segmentation solution proposed in this work.

To first approach the segmentation problem, a model was trained on the unaugmented

MaSTr1325 dataset for only 20 epochs. Even though the results were evolving in a

promising way, it was clear that the trained model could not serve the task of thor-

ough inland waterway scene understanding. While objects, water and sky could be

recognized with reasonable accuracy, no distinction could be made between objects,

bridges, vessels and other objects belonging to IWT infrastructures. The need for a

dataset with a larger class variety arose.

3.3 Generation of the BerlinIWT Dataset

As described previously, the availability of training data for IWT applications is ex-

tremely limited. Even though the MaSTr1325 dataset is a valuable assistance for the

desired use-case, a need arises for finer labelled IWT application-based datasets. For

the purpose of further data acquisition, a measurement campaign was carried out, that

shall be described in detail in this section.

Even though the number of training examples inside the dataset is limited when being

compared to other datasets used in many ML problems, it is, to best of my knowledge,

the first dataset for multi-class semantic segmentation for IWT applications.

3.3.1 Measurement Campaign

The main goal of the measurement campaign is data acquisition for the generation of

an appropriate dataset. Bearing in mind the further scope of the application, the de-

tected infrastructure shall be integrated by a SLAM algorithm into a global reference

system. Therefore, also the GNSS position needs to be recorded.

Fig. 3.4 depicts the acquisition platform: a Quicksilver 675 Pilothouse motorboat. The

Aurora is a survey boat, owned by the Department Nautical Systems of the Institute of

Communication and Navigation, German Aerospace Center (DLR) Neustrelitz. With

its 7 m length over all, 2.6 m maximum beam and less than 3 t of fully loaded mass,

the boat can easily be moved to the desired location easily using a trailer. With the

Lukas Hösch 30

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

112 kW outboard engine (and an additional bow thruster), the boat is easy to steer.

A maximum draught of only 0.9 m allows to navigate even shallow waters. Carry-

ing a wide range of valuable on-board equipment, such as an electronic chart plotter,

depth sounder, GNSS positioning, very high frequency (VHF) radio and radar sensor,

the boat is suitable for both, inland waterway and coastal navigation. These on-board

sensors are part of the standard equipment provided and powered by the outboard

engine. For the operation of all measuring hardware, 230 V power is provided by an

additional alternator. The Aurora can host up to seven persons, even though space is

rather limited, making it undesirable to exhaust this maximum capacity. The measure-

ment campaign was carried out with six persons on board, which is sufficient for the

different tasks on board, such as safe navigation, hardware surveillance and minuting

the measurement process.

3.3.1.1 Hardware in Use

For the acquisition of optical sensor data, a LiDAR device and a stereo camera are used.

The LiDAR employed is a Sick MRS6000. It emits pulsed laser beams at a wavelength

of 870 nm every 10.5 ns. More information about the working principle of LiDAR de-

vices can be found in Chapter 4. The device has a horizontal FoV of 120 ◦ with an angu-

lar resolution of 0.13 ◦. The vertical FoV amounts to 15 ◦ with an angular resolution of

0.625 ◦ , which is recorded within four different horizontal planes. The laser scanner is

designated for outdoor usage, with a nominal working range of 0.5 to 200 m. However,

reaching the maximum range requires perfectly reflecting objects, that can hardly be

found in a typical outdoor scene. From the specifications of the LiDAR device manual,

a maximum working range of 90 m seems more realistic [62]. Depending on the con-

ditions, some laser beams might be reflected earlier than others, which could occur in

case of rain, fog or transparent surfaces in the propagation path. For appropriate envi-

ronment perception under these conditions, four different echoes can be evaluated by

the device. More detailed information about laser devices can be found in Chapter 4.

The RGB images are recorded by a Stereolabs ZED 2i stereo camera. The baseline

between both lenses amounts to 12 cm, allowing depth estimation within distances of

up to 20 m. With a horizontal FoV of 120 ◦, the camera is rather wide-angled. Besides

the visual perception sensors, the Aurora is equipped with multiple GNSS antennas

Lukas Hösch 31

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.4: The motorboat Aurora was used for the measurement campaign. The optical sen-
sors, IMU and one GNSS antenna were mounted on the bow of the boat and two further GNSS
antennas on the roof.

and receivers, a couple of MEMS IMUs, a barometer and a magnetometer.

For the recording and storing of both, LiDAR and camera data, an Ubuntu 20.04 lap-

top equipped with the robotic operating system (ROS) is used. This middleware pro-

vides, among other functionalities, low-effort sensor synchronization, data recording

and replying. Furthermore, ROS allows to view the recorded data in real-time and is

equipped with straight-forward methods for playing back the recorded files.

Precise localisation and absolute attitude determination are provided by three different

GNSS antennas and an IMU. All position data are saved locally on a designed compu-

tational platform, which is referred to as the PNT (position, navigation and timing)

unit. For synchronization, all positioning sensors and the laptop recording visual sen-

sor data are connected to the PNT unit.

The set-up of all sensors in use is depicted in Fig. 3.4. The combination of the optical

sensors is mounted between the rails at the bow of the boat as depicted in Fig. 3.5. The

Lukas Hösch 32

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.5: The sensor combination at the bow of the boat consists of a GNSS antenna, an IMU,
the LiDAR sensor and a stereo camera (top-down).

stereo camera is installed below the LiDAR sensor and pointing in the exact same di-

rection, which reduces the effort for calibration of the optical sensors. Special attention

is required by the camera as the FoV can be obstructed by the vessel’s anchor and its

bracket. Therefore, the whole combination is tilted slightly upwards. This also eases

the recognition of bridges with the LiDAR sensor, as its low vertical FoV of only 15 ◦

makes it difficult to capture the shapes of the river bank and the structures of higher

bridges at the same time. Due to the focus on bridge detection, priority was given here

to the recording of structures, which are higher above the water level. On top of the op-

tical sensors, the external IMU and one GNSS antenna are installed. Two further GNSS

antennas are placed on the equipment carrier on the cabin of the boat. The water-proof

cables of all sensors are led through a side-hatch of the cabin and connected to the

power plugs and processing hardware. Among others, the PNT unit (Fig. 3.6) consists

of three GNSS receivers, that are each connected to a distinct antenna. Position data is

saved with the Precise Point Positioning (PPP) standard and therefore centimetre-level

accuracy in the receiver independent exchange (RINEX) format. The recording of posi-

tioning data can be monitored by a laptop connected to the PNT unit. In this case,

the same laptop is used for recording optical sensor data, accessing the PNT unit and

writing the minutes. For later traceability, the passage of other vessels, bridges and

waterway locks are logged in addition to the start and end of the recording as well as

the sensor behaviour.

Lukas Hösch 33

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.6: The PNT unit is stored safely on a mounting structure inside the boat. It carries all
GNSS receivers and is used for synchronization of all sensors.

3.3.1.2 Covered Trajectory

As described previously, the main focus of the measurement campaign is the acquisi-

tion of optical sensor data for the application to IWT. Special priority is given to the

bridge detection in a first stage and to bridge surveying as one of the subsequent steps.

As stated by the project [63], first developments of the self-updating inland waterway

chart focus on the Spree-Oder-Wasserstraße (SOW), that connects a big crossing of inland

waterways in Berlin further eastbound. Indeed, DLR contributes to the development

of a digital test bed for cross-linked and highly automated IWT on the SOW [64]. It

is therefore desirable to carry out this measurement campaign in an environment that

is developing towards a future test bed. Furthermore, in the urban area of Berlin a

considerable amount of bridges are located for traversing various channels and the

SOW. The environment is therefore suitable for the acquisition of optical sensor data

of a large variety of different bridges. Finally, the company operating Berlin’s ports,

Behala [65], as a valuable partner in the project consortium, supported the measure-

ment campaign by providing their crane for trailer - water transfer of the boat as well

as allocating a berth in Berlin Westhafen.

Berlin’s urban waterways are governed by a number of restrictions with respect to

the accessibility of pleasure crafts. Namely, the SOW in the center of Berlin between

10:30 a.m. and 7 p.m. can only by navigated by skippers having an additional VHF

certificate. The measurement campaign was carried out on two different days. After

Lukas Hösch 34

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.7: First part of the measurement campaign on day 1. After leaving the port, the boat
proceeded westbound through the Westhafenkanal and then southbound to the SOW. The return
point is the beginning of a restricted area at the bridge Lessingbrücke (km 12.01 of the SOW).

the boat had arrived on the trailer on the first day, it was transferred into the water

by a crane. Most of the equipment has been already in place, requiring only minor

additional checks on site. A first part of the trajectory was carried out from the port

Westhafen westbound through the canals Westhafenkanal, Schleusenkanal and the SOW

until km 12.01. The bridge Lessingbrücke indicates the border to the restricted area. This

trajectory can be viewed in Fig. 3.7. The weather conditions were cloudy with several

rain showers. Including the way back to the port this first trajectory on the first day

amounts to 14 km. Additional measurements were performed by passing one single

bridge several times while adjusting the mounting angle of the combination of optical

Lukas Hösch 35

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

sensors. The circles around a small island next to the port are visible in Fig. 3.7. The

goal of this manoeuvre was to find the optimal mounting angle, at which the LiDAR

sensor can capture the largest part of the scene regardless of its limited vertical FoV.

In order to enter the restricted area in the city center, another section of the measure-

Figure 3.8: Second part of the measurement campaign on day1. The SOW was sailed until the
bridge Weidendammer Brücke inside Berlin’s restricted urban waterways.

ment campaign was carried out from 6:30 p.m. until 8:30 p.m. After leaving the port,

the boat navigated on the SOW beyond the bridge Lessingbrücke and passed by the re-

stricted waterway next to the main station. The boat turned around and began heading

back to the port in vicinity to the bridge Weidendammer Brücke. The associated trajec-

tory is depicted in Fig. 3.8. Lighting conditions during this second part of the first

measurement day were governed by dusk in sunny and cloudy, but mostly dry condi-

tions.

The trajectory carried out on the second day of the measurement campaign is depicted

in Fig. 3.9. With the restriction to pass km 17.8 of the SOW by 10:30 a.m., the boat left

the port at 07:45 a.m. on the second day of the measurement campaign and proceeded

on the SOW beyond km 12.01. The waterway lock Mühlendammschleuse at km 17.8 of

the SOW indicates the end of the restricted area and was passed by 10:00 a.m. From

this location, the boat sailed the SOW further to the south-east and entered the narrow

Lukas Hösch 36

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.9: Second day of the measurement campaign: After leaving the port westbound, the
boat proceeded through the SOW eastbound through the waterway lock Mühlendammschleuse
and back through the narrow channel Landwehrkanal.

channel Landwehrkanal. The entire trajectory carried out on the second day is visible

in Fig. 3.9. Even though the first parts of data were recorded well after sunrise, the

low elevation of the sun and its reflection in the water abnormally compromised the

correct recording of RGB images. With the sun rising up, this rare problem vanished

completely and bright sunlight as well as fair winds provided perfect conditions: the

scene is fully illuminated and small waves inside the water prevent the bridge from be-

ing reflected on the water surface. Looking at the trajectory depicted in Fig. 3.9, small

outages in the position solution can be observed when following the Landwehrkanal.

This is the result of small hardware outages in the associated time period. Regardless

of these small issues, the complete measurement campaign was carried out without

any problems.

Lukas Hösch 37

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

3.3.1.3 Collected Data

With the varying weather conditions on the first and second day, a great variety in

the data collection can be achieved with only these two days of measurement cam-

paign. Even though both camera lenses were cleaned in regular intervals during the

rain showers on the first day, several images are compromised by raindrops, as in Fig.

3.10. However, as real-world applications might face the exact same problem, also

some of these images were chosen for the annotation process.

In addition to the single images, that are used for the generation of the dataset, also

stereo images have been recorded by the stereo camera in order to keep the possibil-

ity of depth estimation using RGB images only. Depth estimation with stereo images

can be performed at a maximum range of 20 m. This limitation is outperformed by

the LiDAR sensor. Furthermore, depth estimation on stereo images would not be as

accurate as the spatial mapping information provided by LiDAR. During the measure-

ment campaign, the LiDAR device is cleaned regularly during the rainy periods, even

though rain drops do not seem to affect the performance of the device. All optical sen-

sor data is recorded with a sampling rate of 10 Hz.

The GNSS position of the vessel can be viewed in Fig. 3.7, 3.8 and Fig. 3.9 for both

sections of the first day and the second day, respectively. Most of the time, the GNSS

position is acquired with centimetre accuracy using the PPP standard. In case, the PPP

standard is not available, the RTK (real-time kinematics) solution is used as a reference.

3.3.2 Annotation

Of the 11 hours of recorded data, the most relevant sections are extracted. Time frames,

in which many different bridges or other vessels were passed are considered as rele-

vant sections. Even though, commercial vessels can only operate on wider waterways,

such as the SOW, also data from narrow channels (e.g. the Landwehrkanal) are used to

increase the variety of the dataset. From the file recorded in the ROS format rosbag, RGB

images for the most relevant time sections of the measurement campaign are extracted.

In total, 200 images were chosen from the sections that have been considered as rele-

vant. For the variety in the training dataset, images of different bridges, recorded at

Lukas Hösch 38

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.10: Image recorded by the stereo camera, compromised by raindrops. The low quality
was chosen for reasonable memory usage during the recording process.

varying distances, are selected. With lesser frequency, also various images of the same

bridge under varying conditions (rain, sun) and varying distances, as well as pictures

of under-bridge passages are selected. Within the possibilities, data recorded inside

waterway-locks is additionally selected for annotation.

It was initially planned to perform the annotation process using the web-interface of

the Computer Vision Annotation Tool (CVAT) [66]. The advantage of a web-interface

based solution is that barely any additional software is needed for the annotators to

fulfil their task. Beside the user-friendly handling, CVAT offers the possibility to create

distinct projects. Another valuable functionality are the different stages of the annota-

tion process, that, among others, also dedicate a specific stage to quality control of the

masks. However, at the time requested, the CVAT server was not available. With the

time constraints, the need for a quickly availably alternative solution arose.

Therefore, the annotation process is carried out with the web-interface MakeSense [67].

This tool allows annotation for image recognition or object detection. A text-file con-

taining the labels can be loaded directly to the web-interface. The four in-house an-

Lukas Hösch 39

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

notators are briefed with respect to their task and the software in use. Depending on

the complexity of the image, the annotation of one single image takes between 10 and

20 minutes. In order not to constrain the usage of the dataset by annotating too few

classes, a great variety of 14 classes is provided, including the classes

• Sky.

• Water.

• Bridge: all infrastructure, that fully traverses the waterway, including pipes, ex-

cept power cables.

• Vessel: any kind of boat or ship.

• Floating object: objects, that float inside the water, but are not steered. Berlin’s

waterways carry a considerable amount of waste bottles or woods, but also water

birds.

• Vegetation: Any kind of plants visible in the picture, especially trees and bushes.

Such plant covers can be observed frequently along the banks of inland water-

ways.

• Moving object: any measure of transport, e.g. trains, cars or bicycles, but also any

kind of animal. The main goal of this class is to filter out objects that are not part

of a permanently installed infrastructure, but rather dedicated to displacement.

• Person. The differentiation to the class moving object might not be strongly nec-

essary, but beneficial for future implementations.

• River bank: where ever the waterway is not directly adjacent to a building, the

bank of the river is surveyed as part of the IWT infrastructure.

• Water mark. Signs for mariners are surveyed as part of the IWT infrastructure.

Buoys are distinguished from other floating objects.

• Waterway lock: all gates and chamber walls that are part of a waterway lock.

• Other object: permanently installed objects, that do not comply with one of the

above mentioned classes. This applies especially to any kind of building.

Lukas Hösch 40

3.3 Generation of the BerlinIWT Dataset 3. Proposed Solution for IWT Semantic Segmentation

• Default: image structures, that cannot be recognized.

• Background. Standard class provided by MakeSense, contains all pixels not be-

ing assigned to any other class. Especially used whenever border lines between

objects cannot be distinguished certainly.

Indeed, distinguishing between all of the mentioned classes is not always straight for-

ward. Even though all of the in-house annotators were well briefed with respect to this

issue, confusions arose throughout the annotation process. Furthermore, the diversity

of the classes is prone to slow down the annotation of complex images. In fact, not all

of the 14 classes may even be required for the application under discussion. However,

the advantage of larger flexibility justifies the effort of using all of the classes for the

annotation.

Once annotated, the annotation files can be derived from the MakeSense web-interface

in COCO-JSON [68] format. With the conversion to the labelme format [69], the masks

can be saved as .png file. To adapt the dataset to the standards of MaSTr1325 [33], the

RGB values of the files are normalized to values between 0 and 14. In total, 190 images

Figure 3.11: Hand-labelled annotation example. Not all 14 classes are present in this picture.

Lukas Hösch 41

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

are annotated, of which 29 masks are compromised in a way, that they are not suitable

for training. Also within the remaining 171 images, large differences can be observed

in the quality of the pixel-level annotations.

In case the diversity of 14 different classes is not needed for a specific training pur-

pose, the generated mask can easily be adapted by merging the RGB values of different

classes together. This additional step in pre-processing could be executed at relatively

low effort. On the other hand, the sudden need for an additional class would require

to restart the labelling process, which would be a large drawback.

3.4 Training Environment

The NN in use is a DeepLabV3, as described in Section 3.1, that is pre-trained on the

ImageNet dataset. To allow training on a Graphical Processing Unit (GPU), a Nvidia

Jetson Xavier AGX developer kit is used. The NN is implemented in pyhton’s Tensor-

flow library 2.9.1, running over a Jupyter Notebook. Even though, the Jetson Xavier

AGX developer kit does not offer extraordinary computational resources, the usage of

a GPU is far more suitable to the ML-problem, than applying a conventional Central

Processing Unit, which may not have all functionalities required by machine-learning

libraries.

To find a reasonable trade-off between resolution of the images and masks processed

by the NN and computational time, an image size of 256 pixels is chosen for both,

height and width. For faster training, the dataset is divided into mini-batches of 8

examples each. The loss function is optimized with the Adam optimizer, using the de-

fault momentum terms of β1 = 0.9, β2 = 0.99 and ϵ = 10−8. Learning rate decay is not

applied. However, a Learning Rate Scheduler adapts the learning rate if the evolution of

a certain evaluation metric does not exhibit significant changes after a certain number

of epochs. This number of epochs is also referred to as patience. For the training config-

uration in this work, the validation mean IoU is monitored with a patience of 35 epochs.

The IoU is chosen in this case over the accuracy metric, because high accuracy values

are very easy to achieve in semantic segmentation problems. Due to the high number

of pixels per mask, accuracy values of 90 % may even be achieved after only one epoch

of training. However, the metric may neglect small, but significant patterns by solely

Lukas Hösch 42

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

comparing the overall pixels classification in true and predicted mask. This is where

the advantages of the mean IoU metric take effect: the mean overlap of both, true and

predicted, masks is computed with the respect to the number of classes. In general, the

IoU can be thought of as a relation between the area of intersection of detected patterns

and the area of union [70].

IoU =
ŷ(i) ∩ y(i)

ŷ(i) ∪ y(i)
(3.5)

To achieve best possible results, the choice of hyperparameters and the training envi-

ronment has been carefully adapted throughout several different configurations.

3.4.1 Results of a Five-class Dataset

The BerlinIWT dataset is explicitly developed for semantic segmentation of infrastruc-

ture in an inland waterway scenario. With its 14 classes, the variety of classified in-

frastructure is large, making the dataset applicable for a number of different use-cases.

However, due to time constraints, the dataset consists only of 171 examples, that can

be used for training and evaluating a CNN. Indeed, not all of the initially defined 14

classes are necessary for the application in discussion here: the overall goal of this

work is the detection of bridges along inland waterways from optical sensor data. The

large variety of classes is therefore merged down to only 5 different classes. Beside the

class bridge, the classes sea, sky, object and other are defined. The class object contains

any kind of object, while the class other contains all pixels that were assigned to the

classes background and default as explained in Section 3.3.2. This offers the possibility

to enlarge the dataset with the MaSTr1325 dataset [33], which contains the last four

classes sea, sky, object and other. Furthermore, the lower number of different classes is

expected to counteract the flaw of the low number of training examples. The strategy

of pre-defining more classes than possibly needed and merging them accordingly to

the use-case is a straight-forward way for efficient use of recorded datasets. Generally,

this also works flawlessly for this particular application. The only drawback is intro-

duced by re-labelling pixels of the class water-mark as object. As depicted in Fig. 3.12,

water-marks are often attached to bridges. As a result of re-labelling the associated

class as object, certain areas of the bridge are labelled as object, that should be labelled

Lukas Hösch 43

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.12: Input image x and true mask y as processed by the network. The example is part
of the BerlinIWT dataset. The re-labelling process results in certain areas of the bridge being
labelled as object.

as bridge. Still, re-labelling the class water-mark as bridge is a worse alternative to this

problem, as many floating buoys are labelled as water-mark.

Even though the environment of the examples in both, the MaSTr1325 and the BerlinIWT

dataset is very different, both datasets are combined for the training process. Fig 3.13

shows an example from the MaSTr1325 dataset [33]. While the class bridge clearly

remains underrepresented, the training process strongly benefits from the increased

number of examples accounting for sky - water - object segmentation.

For training, validation (development) and testing, 70 %, 20 % and 10 % of the dataset

Figure 3.13: The exmaples of the MaSTr1325 dataset are used additionally for training.

are used, respectively. Most examples in use show completely different bridges. How-

Lukas Hösch 44

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

ever, rarely also various pictures of the same bridge occur in the dataset. In some

extremely seldom cases, even the conditions under which the picture of the bridge

was taken (daylight, weather, distance to bridge) are similar. To show repeating infor-

mation in different (training and validation) sets, it is tried to ensure, that examples

depicting the same bridge are in the same, either training or validation set. Table 3.1

MaSTr1325 BerlinIWT Total of which BerlinIWT

whole dataset 1325 171 1496 11 %

training set 931 116 1047 11 %

validation set 263 37 300 12 %

test set 131 18 149 12 %

Table 3.1: Number of examples in training, validation and test set. The percentage of BerlinIWT

examples is sufficiently constant among the sets.

shows the number of examples retrieved from either the MaSTr1325 or the BerlinIWT

dataset, used for training, validation and testing. For performance comparison, it is

important that the class imbalance (underrepresented BerlinIWT examples) remains

approximately constant among training, validation and test set. The combination of

both datasets leads to a total number of examples of 1469, with 11 % of BerlinIWT

examples. This trend is kept throughout all of the other subsets, that are split up as

described previously.

The 1047 examples in the training set are augmented with random values for bright-

ness, contrast and saturation. Furthermore, the images are flipped horizontally, re-

sulting in a total number of (augmented and unaugmented) 5235 examples used for

training. Fig. 3.14 depicts the result of this data augmentation process for one exam-

ple from the training set that belongs to the BerlinIWT dataset. The images shown in

Fig. 3.14 are not (yet) resized for the processing by the NN. The mask depicted in the

bottom right corner of the figure is flipped horizontally in order to match the horizon-

tally flipped image. Training the DeepLabV3 for 100 epochs on the augmented dataset

requires approximately 20 hours on the NVidia Jetson Xavier AGX. The learning rate

α = 0.001 remains constant throughout the whole training process, as no learning rate

decay is applied and the validation mean IoU does not settle for the threshold of 35

Lukas Hösch 45

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.14: All examples in the training set are augmented by horizontal flipping as well as
random brightness, contrast and saturation.

Lukas Hösch 46

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

epochs. Table 3.2 provides an overview of the hyperparameter settings used in this

training scenario. Fig 3.15a depicts the accuracy achieved during the training pro-

hyperparamter value

number of epochs 100

α 0.001

β1 0.99

β2 0.9

ϵ 10−8

Table 3.2: Overview of hyperparamter settings.

cess over the 100 epochs performed. As described initially, good accuracy values are

easy to achieve in semantic segmentation problems, because even moderate prediction

masks are recognized as good estimates. Small, but significant deviations between

true and predicted mask can hardly be viewed by looking at the accuracy values only.

Obviously, it is expected that the validation accuracy is significantly smaller than the

training accuracy. Still, evaluating the performance of the network on data that are not

used by the optimization algorithm for parameter adjustments is an important metric

for hyperparameter tuning and also assists in overfitting prevention. Furthermore, it

is noted that the validation accuracy exhibits uneven behaviour than the training accu-

racy. This effect is caused by the different size of the two sets. In the smaller validation

set, even small parameter changes might affect the accuracy value significantly. In the

larger training set, small parameter changes have a less severe effects on the accuracy.

After the initial increase of both accuracy values, a slight decrease in the validation

accuracy can be observed. This behaviour indicates first, slight overfitting effects: the

parameters of the model are well adapted for the examples inside the training set. In-

deed, an increasing training accuracy can also be observed from the plot. However,

the model slightly lacks sufficient generalization capabilities and therefore does not

perform as well on data, that has not been used for parameter adaptation. For practi-

cal use-cases, it is extremely important, that the model is able to generalize the inputs

well, as real-world applications need to deal with unseen data. After training for 100

epochs, a training accuracy value of 98.91 % and a validation accuracy of 96.39 % can be

Lukas Hösch 47

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Accuracy achieved during training on the training and validation set.

(b) Mean IoU achieved during the training process on training and validation set.

Figure 3.15: Accuracy and mean IoU on training and validation set.

Lukas Hösch 48

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

observed. The accuracy is also evaluated on the test set, where it amounts to 96.81 %.

The test accuracy being slightly higher than the validation accuracy is a coincidence,

that indicates room for improvement with respect to the hyperparameter tuning. How-

ever, due to the large computational time of 20 hours for only one run of 100 epochs,

hyperparameter adjustment has already been a time-intense process until this point.

Further hyperparamter tuning is, given the limited time and computational resources,

beyond the scope of this work.

As mentioned previously, the accuracy might not be the most meaningful metric for

the evaluation of a semantic segmentation model. Fig. 3.15b depicts the evolution of

the mean IoU assessed on the training and validation set throughout the 100 epochs

of training. Both, the training and validation mean IoU start at a value of 40 %, when

training is first initialized. The largest evolution of the metric can be observed until

epoch 40, where the mean IoU for training and validation reaches 90 %. Again, the

bumpy behaviour of the validation mean IoU with respect to the corresponding value

assessed on the training set can be noticed. During the first 40 epochs, the valida-

tion mean IoU can even be observed surpassing the training mean IoU. This effect can

happen by coincidence, especially when the training and validation sets suffer from re-

dundant information. However, thanks to the carefully executed pre-processing steps

of the data, training and validation mean IoU tend to be levelled at a decent value

above 90 %. In contrast to the accuracy plots, no overfitting behaviour can be observed

from the mean IoU values: both of the curves tend to increase until the last of the 100

training epochs. Best performance could be achieved by a model, that is optimized

until the very last epoch before the overfitting starts. It would be therefore interest-

ing to perform longer training and observe the overfitting behaviour. However, such

experimentation will be considered as future work due to the limited computational

resources. The training mean IoU after 100 epochs amounts to 94.36 % and the valida-

tion mean IoU to 92.52 %. Again, the associated value computed for the test set is with

93.12 % slightly higher than the validation mean IoU indicating the need for further

hyperparameter optimization.

Fig 3.16 shows how the prediction of the model evolves over the training epochs. For

the assessment of the model evolution, a validation image from the BerlinIWT dataset

is chosen. The notable adverse lighting conditions of the input image make this exam-

Lukas Hösch 49

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Prediction after epoch 1.

(b) Prediction after epoch 7.

(c) Prediction after epoch 72.

Figure 3.16: Evolution of the masks predicted by the model. The shown mask is part of the

validation set.

Lukas Hösch 50

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

ple a challenging one. The true mask depicts a rather complicated scene. Furthermore,

the pixel-wise annotation could be more precise, but is still suitable for the purpose.

A considerable amount of pixels are labelled as uncertain and the fine-grained bridge

structures are not labelled in every detail. Still, the model exhibits decent performance

already in the estimate after epoch 7. Even after epoch 1, significant progress can be

noticed when looking at the predicted mask. Looking at Fig 3.15b and Fig. 3.16, a

decent model evolution over the first epochs is visible. This behaviour is expected to

be caused by the rather high learning rate of 0.001. However, it is a challenging task

to determine the correct point and time where the learning rate should be decreased

in order to close the small, but notable performance gap remaining at a mean IoU of

94.36 %. Still, a validation mean IoU of 92.52 % is an excellent result, especially bearing

in mind the limitations of the available training data and computational resources.

It has been discussed, that the mean IoU is an extremely relevant metric for segmen-

tation problems. Therefore, the validation mean IoU is monitored for possible adjust-

ments of the learning rate. Generally, it would also be possible to use the mean IoU

as cost function and directly optimize on the most desirable metric. However, this

prevents the model from learning the actual classification-related segmentation. The

mask prediction would be adapted nicely towards decent mean IoU values, whereas

the classification performance would suffer severely. For a segmentation problem con-

taining more than two classes, this leads to a model that exhibits decent ability in shape

detection, but performs poorly when it comes to classifying the detected object. This

behaviour is not feasible. In addition, the flatter derivation of the mean IoU with re-

spect to the cross-entropy loss function is prone to slow down the training process as

the optimizer would converge slower towards a minimum. Therefore, the standard

cross-entropy function is used as loss function. In Fig. 3.17, a selection of masks from

the validation set is depicted with the associated predicted mask by the fully trained

model. The two upper examples belong to the MaSTr1325 dataset. It can be noticed,

that even subtle structures, such as the crane structures in Fig. 3.17a, are predicted by

the model with sufficient accuracy. Bigger shapes, such as quay walls and coastlines,

as in Fig. 3.17b, are recognized without any difficulties. For the examples from the

BerlinIWT dataset, the lack of training data visibly affects the performance in the as-

sociated examples. Still, the overall bridge structures are recognized in Fig. 3.17c and

Lukas Hösch 51

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Example from the MaSTr1325 dataset.

(b) Example from the MaSTr1325 dataset.

(c) Example from the BerlinIWT dataset.

(d) Example from the BerlinIWT dataset.

Figure 3.17: Selected masks from the validation dataset with predictions of the fully trained

model.

Lukas Hösch 52

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

3.17d. Uncertainties arise mostly concerning the superstructures of the bridge, such as

the lamp post on the bridge in Fig. 3.17c. These structures are labelled as part of the

bridge and classified as object by the model. However, this uncertainty is expected not

to compromise the performance of the algorithm with respect to a real-world use-case.

For the application to inland waterway charts, the clearing heights and widths be-

low the bridge are of importance, whereas possible superstructures could be neglected

completely. Furthermore, any kind of bridge superstructure could arguably also be

classified as object, instead of being treated as part of the bridge. The model faces fur-

ther challenges when looking at the example depicted in Fig. 3.17d. In most of the

training examples considered, the depicted bridges cross the waterway transversely to

the waterway direction. In the example depicted in Fig. 3.17d, an additional bridge is

visible in the left part of the image, following the waterway in longitudinal direction.

This structure is not detected perfectly.

The room for improvements on the hyperparameter tuning is clearly visible from the

prediction masks depicted in Fig. 3.17. Very challenging examples from the validation

set may even exhibit worse performance. In rare cases, the predicted mask might even

show partially failed segmentation operations.

The trained model was tested successfully on an independent test set, where the test

mean IoU amounts to 93.12 %. Despite further adaptations that could be made for

further improvements on the results, this value for the mean IoU indicates an in-

credibly good performance. This is especially true when considering the small set of

application-related training data and the limitations of computational resources.

3.4.2 Results for a Dual Class Dataset: Bridge Detection

For the intended use-case of bridge recognition, even a two-class segmentation prob-

lem might be sufficient. To simplify the training process, the remaining classes from the

previous scenario sky, water, object and other are all merged into one single class. The re-

sult is a training dataset with only two classes: bridge and other. As the MaSTr1325 does

not contain any relevant information for bridge detection, it will not be used in this ex-

ample. Furthermore, all images not depicting a bridge are removed from the BerlinIWT

dataset. The remaining 164 examples are split to 70 %/20 %/10 % for training, valida-

tion and testing, respectively. The training set therefore contains 116 examples, the

Lukas Hösch 53

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

validation set 30 and 18 examples are kept for testing. Fig. 3.18 shows an example

Figure 3.18: Example from the BerlinIWT dataset. Pixels are classified as bridge and other.

retrieved from the validation set with the associated 2-class-mask. It can be noticed,

that pedestrians crossing the bridge are well annotated as person, as described in Sec-

tion 3.3. Using only two classes for the segmentation task, the class person is merged

into the class other, causing a small inconsistency in the shape of the bridge. The ef-

fect observed here was already described in Section 3.4.1, were watermarks attached

to the bridge compromised the correct modelling of the shape. Even though slight un-

certainties in the generation of the true mask can be noticed when various pre-defined

classes are merged into one, the overall shape of the objects, namely bridges, is mod-

elled correctly. The result of the segmentation problem is therefore expected not to be

compromised significantly by these labelling inaccuracies.

The 116 training examples are augmented with horizontal flipping and random values

for brightness, saturation and contrast resulting in a total of 580 training images. An

example is depicted in Fig 3.19. In the example depicted, the camera points towards

the sun, causing low illumination of the rest of the scene. The challenging conditions

are even aggravated by the lower illumination of the example augmented with ran-

dom brightness values in the upper right corner. The mask depicted in the lower right

corner of Fig. 3.19 is associated with the horizontally flipped image. The fine structures

of the steel bridge depicted are not labelled in the detail of every pixel. This might be

acceptable as not all fine structures of the bridge may be recognized at this distance.

Still, this example is another indication for the varying quality of the pixel-wise anno-

Lukas Hösch 54

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

Figure 3.19: Data augmentation is applied by horizontal flipping, as well as random colours
for brightness, saturation and contrast.

Lukas Hösch 55

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

tations inside the dataset.

Considering the aforementioned hardware , the training on the described dataset for

100 epochs requires only 3 hours. Generally, this would allow training for many more

epochs while still achieving reasonable computational time. In order to be compara-

ble to the training scenario described in Section 3.4.1, the training process is limited

to 100 epochs also in this scenario. In contrast to the 5 class scenario, the loss func-

tion is adapted to the training goal. As described, in Section 3.4.1, the mean IoU is

again used as evaluation metric for the segmentation problem. Using it as a loss func-

tion might not be appropriate for multi-class segmentation. However, for two-class

segmentation the recognition of the shapes in the masks might be sufficient. There-

fore, the cross-entropy loss function is replaced by the mean IoU in this training sce-

nario. The learning rate is initially chosen to α = 0.001 and adapted by a learning rate

scheduler monitoring the validation mean IoU with a patience of 35 epochs. With the

validation mean IoU not settling for 35 epochs throughout the training process, the

learning rate remains constant for all 100 training epochs. The relatively high learning

rate turned out to demonstrate best performance among all hyperparameter settings

that were tried. The training examples are sub-divided into batches of 8 examples

per batch. The Adam-optimization algorithm is applied with the default parameters

β1 = 0.99, β2 = 0.9 and ϵ = 10−8. The model in use is a DeeplabV3, pre-trained on the

ImageNet dataset. An overview of the hyperparameter configuration is provided by

Table 3.3.

Fig. 3.20a shows the accuracy evaluated on the training and validation set over all 100

hyperparamter value

number of epochs 100

α 0.001

β1 0.99

β2 0.9

ϵ 10−8

Table 3.3: Overview of hyperparamter settings.

epochs. As described previously, good accuracy values are relatively easy to achieve

Lukas Hösch 56

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

in segmentation problems, because small, but significant deviations in the predicted

mask barely influence this metric. It can be noticed, that the validation accuracy val-

ues develop with a higher noise level than the training accuracy. This is caused by the

lower number of examples inside the validation set when compared to the training set.

As the performance can be evaluated on only 30 examples, even small developments

of the model can cause remarkable changes of the validation accuracy. A similar effect

is expected to introduce the spikes in the training and validation accuracy at epoch 35

and 75. With the limited dataset, even small parameter adjustments can lead to signifi-

cant accuracy changes. The larger training set is less affected by this development and

shows smaller spikes than the smaller validation set. This is another indication that

the spikes are caused by the limited dataset. As the learning rate influences the magni-

tude of parameter adjustments, a smaller learning rate could possibly reduce the spike

effects. Another option would be to decrease the patience of the learning rate sched-

uler and adapt the learning rate during the training process. Finding the correct value

for the patience of the learning rate scheduler is a challenging task. If the value is set

too low, the learning rate is decreased rapidly causing the parameters adjustments to

become extremely low, which in fact prevents relevant developments towards a mini-

mum of the cost function.

Disregarding the spikes, both accuracy values show decent development, even after

the convergence around epoch 15. With the validation accuracy remaining constant,

no overfitting effects can be observed. After training for 100 epochs, the training accu-

racy amounts to 99.72 % and the validation accuracy to 95.39 %. On the independent

test set, an accuracy of 96.17 % is achieved. With the test accuracy slightly outper-

forming the validation accuracy, the need for further hyperparameter adjustments is

notable. Further hyperparameter optimization will be considered as future research.

While the accuracy indicates good performance of the model, the limited significance

of the metric needs to be kept in mind.

Fig. 3.20b depicts the mean IoU evaluated on the training and validation set, respec-

tively. Again, the noisier behaviour of the validation mean IoU with respect to the

training mean IoU is notable. At times, the validation mean IoU even surpasses the as-

sociated training value by chance. It is interesting to note the significant spikes in the

validation mean IoU at epochs 35 and 75, that are also visible for the accuracy metric

Lukas Hösch 57

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Accuracy over 100 epochs. The introduced spikes might be the effect of the small dataset.

(b) Mean IoU over 100 epochs, converging comparably late around epoch 80.

Figure 3.20: Accuracy and mean IoU on training and validation set.

Lukas Hösch 58

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

in Fig. 3.20a. The combination of both metrics indeed indicates poor development of

the parameters around these two epochs. However, the overall development of train-

ing and validation accuracy shows that the model parameters evolve in a favourable

way. The metrics show first convergence behaviour around epoch 60, but experience

another improvement at epoch 80. With the spikes additionally influencing the valida-

tion mean IoU, it is clear that this metric has not settled for 35 epochs at any point in

the training process. It is therefore plausible, that the learning rate is not decreased by

the learning rate scheduler. After a total of 100 epochs, the training mean IoU amounts

to 97.93 % and the associated validation value to 89.86 %. The test mean IoU of 91.50 %

indicates room for further hyperparameter improvements. Even though these further

improvements are beyond the scope of this work, the mean IoU values for both, val-

idation and testing indicate surprisingly good performance of the model. Mean IoU

values around 90 % are extremely good results, especially when considering the limi-

tations of the dataset and the computational resources.

Fig. 3.21 depicts the evolution of a predicted mask in different epochs. The light-

ing conditions in the example depicted here can be considered challenging. Further-

more, the scene contains a variety of objects, further complicating the recognition of

the bridge. The depicted example is part of the validation set. It is remarkable, that al-

ready after epoch 1 (Fig. 3.21a), significant segmentation progress is visible. At epoch

12, first basic bridge structures are visible from the predicted mask. Until epoch 67, the

shape of the bridge is modelled more accurately with respect to the fine structures. By

this epoch, the validation mean IoU amounts to approximately 85 % and indicates first

convergence trends. Still, remarkable uncertainties in the finer structures of the bridge

keep persisting. Apart from that, a small amount of false positive pixels labelled as

bridge can be recognized in the left part of the predicted mask in Fig. 3.21c.

Fig. 3.22 shows a selection of examples with their true masks and the prediction made

by the fully trained model. All depicted examples are part of the validation dataset.

It can be noted, that the overall structure of the bridge is predicted with an acceptable

certainty by the model. Following the validation mean IoU of 89.86 %, the predicted

mask shows significant overlap with the true mask. Even though 100 % of validation

mean IoU is practically impossible to achieve, the predicted masks illustrate that even

this very decent value of almost 90 % still indicates a remarkable performance gap. The

Lukas Hösch 59

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Prediction after epoch 1.

(b) Prediction after epoch 12.

(c) Prediction after epoch 67.

Figure 3.21: Evolution of the masks predicted by the model. The shown mask is part of the

validation set.

Lukas Hösch 60

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

(a) Example from the BerlinIWT dataset.

(b) Example from the BerlinIWT dataset.

(c) Example from the BerlinIWT dataset.

Figure 3.22: Selected masks from the validation dataset with predictions of the fully trained

model.

Lukas Hösch 61

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

remaining 10 % towards a truly perfect predicted mask could only be achieved by sig-

nificant improvements in the finer structures of the recognized shapes. The labelling

uncertainties in the superstructures of the bridge depicted in Fig. 3.22b are hardly rel-

evant for a real-world application in the IWT domain. Nevertheless, in the masks of

Fig. 3.22a and 3.22c, the uncertainties also affect the estimate of the delicate under-

bridge passages, which is indeed prone to compromise an application that seeks to

provide navigation assistance, especially for safety-critical uses. These problems may

be addressed by further hyperparameter optimization and longer training.

3.4.3 Comparative Results

An overview over all training scenarios and the results presented is given in Table 3.4.

The accuracy and mean IoU evaluated on the training, validation and test set are given

in percent. The values listed under 5 class scenario are the results from the training

scenario presented in Section 3.4.1, where the model has been trained using a classi-

cal cross-entropy loss function on a combination of the MaSTr1325 and the BerlinIWT

dataset, that consists of five different classes. Dual class scenario indicates the training

scenario presented in Section 3.4.2. In this scenario, the model has been trained on a

the BerlinIWT dataset consisting of only two different classes with the mean IoU as

loss function.

Segmentation problems can easily achieve good accuracy values. As the mean IoU

Accuracy [%] mean IoU [%]

Training Validation Testing Training Validation Testing

5 class scenario 98.91 96.39 96.81 94.36 92.52 93.12

Dual class scenario 99.72 95.39 96.17 97.93 89.86 91.50

Table 3.4: Overview of all metrics for both training scenarios.

is a more suitable metric for the evaluation of segmentation tasks, it is hardly sur-

prising, that all of the accuracy values are higher than the corresponding mean IoU

values. Furthermore, it is expected that the training accuracy and mean IoU surpasses

the associated mean IoU in all of the scenarios. Both evaluated metrics exhibit better

Lukas Hösch 62

3.4 Training Environment 3. Proposed Solution for IWT Semantic Segmentation

performance on the test set than on the validation set. This is true for both training sce-

narios in discussion and shows that further hyperparameter optimization should be

applied to both evaluated scenarios. However, detailed hyperparameter optimization

is beyond the scope of this work due to limited availability of computational resources

and time.

Another interesting development can be viewed when comparing the performance of

both training scenarios directly to each other. The dual class scenario achieved slightly

higher training accuracy, but lower validation accuracy. The test accuracy in both sce-

narios is comparable. The five class scenario might be more challenging for training

than the two class scenario, as five different classes may be more difficult to distinguish

than two. A relevant note is, however, that the dataset for bridge detection is signifi-

cantly smaller (nine times less), which hinders the learning process. With regard to the

testing accuracy these two effects seem to cancel out each other.

The value of the training mean IoU is remarkably higher for the two class scenario

than the one for the five class scenario. This might be an effect caused by the mean IoU

used as loss function for the two class scenario. However, looking at the mean IoU for

validation and testing, the five class dataset with classical cross-entropy loss function

shows better performance. This indicates that the larger training dataset offers better

conditions than the adapted loss function. The effect does not seem to be compromised

by higher number of classes.

Overall the differences in the evaluated metrics are very small. Both metrics evaluated

indicate extremely good performance for both scenarios.

Lukas Hösch 63

4. LiDAR Assisted Spatial Mapping

The process of generating a precise model of the surrounding by using sensor data is

called spatial mapping. It is a crucial technique for the generation of a self-updating

inland waterway chart, as the model of the environment needs to be set up and defined

clearly before it can be mapped into a global frame. High quality spatial mapping in-

formation requires semantic scene understanding, but also precise range information

to allow for the localisation of objects in the surrounding. Finally, the detected features

need to be tracked over time to develop a model of the larger surrounding.

As described initially, a perception system contains different information levels, such

as physical and semantic description and intention prediction [71]. Semantic informa-

tion can be provided using single RGB images as shown in Chapter 3 at good accuracy

with comparably low effort [71]. However, single images do not provide any depth in-

formation. Even stereo cameras with a decent baseline offer poor distance estimation

in measures of maximum range and accuracy, whereas LiDAR sensors provide more

precise range information at higher maximum distances. In general, this sensor type

is a decent choice for physical description. However, looking at LiDAR point clouds,

semantic scene understanding can quickly become a very complicated task. Indeed,

when lacking relevant information for semantic description, LiDAR sensors may be

inadequate for this task [71].

To exploit the benefits of both sensors, it is a common practice to combine the accurate

distance measurements of LiDAR devices with the semantic description achieved by

cameras [11], [71]. Due to its valuable contribution on precise range measurements,

outperforming camera and even radar systems [11], the LiDAR sensor is subject of

further investigation in this work.

Lukas Hösch 64

4.1 Related Work 4. LiDAR Assisted Spatial Mapping

4.1 Related Work

Combining LiDAR point clouds and RGB images for semantic segmentation as well

as precise range information is a popular approach in order to exploit the maximum

capabilities of both sensors.

The goal of DeepI2P [72] is to align LiDAR point clouds and RGB data that have been

recorded from different points of view or at different angles. The LiDAR point clouds

are projected onto the plane of the RGB image. Points outside the camera’s FoV are

therefore neglected. For the training process, labelled point cloud data is needed, as it

would be available from the KITTI [19] dataset [72]. DeepI2P is a robust method for

pixel-wise alignment.

Perception-aware multi-sensor fusion (PMF) is proposed by [73] as a method for sensor

fusion for 3D LiDAR semantic segmentation. Similar to DeepI2P, also this algorithm

projects each point of the point cloud to the camera coordinates: each 2D pixel is as-

signed with a distance, x, y, z coordinates and an intensity value. A two-stream net-

work, called TSNet [73] is proposed to extract perceptual features separately and thus

account for possible poor lighting conditions in RGB images. Based on the sensor char-

acteristics, a perception-aware loss is introduced into the network: LiDAR point clouds

are considered for local feature detection as shape estimation with this data leads to

comparably poor performance [73]. RGB images yield unprecise edge detection, but

good shape estimation.

The authors of [74] present an approach that labels GNSS-registered LiDAR point

clouds and street-view images by combining rule-based parsing and learning-based

labelling. Point clouds and photometric features are combined. First, rule-based detec-

tion is applied for the recognition of large surfaces, such as roads and large buildings.

These structures constitute almost 75 % of a point cloud in an urban environment [74].

The remaining point cloud is processed using a learning-based approach. The labels

can also be projected back into the 2D surface, resulting in a fully labelled 3D point

cloud as well as a 2D image [74].

The authors of [75] propose S3CNet, a sparse CNN, that is able to predict the seman-

tically completed scene from a unified LiDAR point cloud using 2D semantic scene

completion. The approach achieves state-of-the-art results on the KITTI [19] bench-

Lukas Hösch 65

4.1 Related Work 4. LiDAR Assisted Spatial Mapping

mark.

In [76], a method is proposed, to align stereo camera point clouds and sparse LiDAR

point clouds without the need for object labelling in 2D images. The algorithm uses

a bird’s eye view (BEV) representation of the feature map and projects the LiDAR 3D

points onto the image feature map. The method is enabled with multi-task learning

and surpasses state-of-the-art on the KITTI [19] benchmark [76].

The authors of [77] propose an approach to line up fully segmented RGB images to

LiDAR point clouds. The segmentation task is performed on the 2D image, that offers

precise semantic description at lower complexity than a 3D point cloud. The LiDAR

point cloud is projected into the image plain for the ease of alignment. Finally, the

labelled point cloud is generated mapping the 2D image pixel-wise to the 3D point

cloud. As no additional calibration for sensor orientation is performed, the two sensor

outputs are considered as aligned. The approach does not require LiDAR point clouds

that have been annotated in advance, but only 2D images as training data. The library

LDLS is available online and can be installed on a machine that is equipped with an

NVidia GPU.

Especially in the automotive domain, LiDAR sensors are widely used for object detec-

tion and even classification. The following two approaches perform semantic segmen-

tation on LiDAR point clouds only and are mentioned here for the sake of complete-

ness.

The authors of BirdNet [78] propose a method for 3D object detection and classification

using a LiDAR point cloud that is encoded as a BEV image. The 3-channel image con-

tains information about the height of the highest point in a predefined cell, the mean

intensity of all points in that cell and the density of the points inside the cell. The

density information is necessary for normalization purposes, which allows the usage

of different LiDAR sensors with different resolutions [78]. The sensor orientation is

estimated using a Faster R-CNN [79]. Feature extraction can be improved by using

RGB-pre-trained weights [78].

RangeNet++ is an algorithm to perform semantic segmentation for point clouds recorded

by a rotating LiDAR sensor [80]. The 3D point clouds are mapped to a 2D representa-

tion using spherical coordinates. Semantic segmentation is performed on the 2D rep-

resentation with a CNN. Transformation back to a 3D representation leads to a three-

Lukas Hösch 66

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

dimensional, fully labelled point cloud. As the segmentation process is carried out on

a 2D representation, it can be obtained at comparably low computational costs.

The athors of [81] propose an approach to identify docking locations for USV using

LiDAR sensors only. The problem of a very sparse point cloud is counteracted by

overlapping consecutive scans while accounting for the relative motion of the USV.

For identifying the dock location, geometric features are exploited. The algorithm is

tested successfully on a small dataset. However, the approach remains limited to docks

of certain shape and may be compromised by unforeseen movement of the vessel [81].

4.2 Spatial Mapping Information from LiDAR Sensors

As indicated earlier, LiDAR sensors are gaining increasing interest in the automotive

domain, mostly applied to self-driving cars. The LiDAR perception system can be

used for object detection, classification, tracking and intention prediction. Especially

the physical information provided by such sensors is highly reliable. Even though se-

mantic segmentation in LiDAR point clouds is still an extremely challenging task, the

sensor offers valuable abilities for object recognition [11].

In general, LiDAR sensors scan their FoV using at least one laser beam and an associ-

ated beam-steering system [11]. Many recent devices operate at 1550 nm wavelength.

A higher output power (and range) is possible while still meeting eye-safety require-

ments. However, at this wavelength, also atmospheric water absorption increases, so

wavelengths of 850 to 950 nm in the near-infrared (NIR) area are a common usage [11].

The system of a LiDAR sensor can be sub-divided into a laser-rangefinder and the

scanning system. The laser-rangefinder consists of the following parts [11]:

• The laser transmitter illuminates the FoV with a modulated wave.

• The photodetector generates an electronic signal from the reflected photons.

• The optics are used to adjust the emitted laser beam and focus the reflected signal

on the photodetector.

• Finally, signal processing electronics are used to estimate the distance to the re-

flecting surface.

Lukas Hösch 67

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

An overview of this principle is illustrated in Fig. 4.1 using the example of a direct-

detection laser-rangefinder. Direct-detection laser-rangefinders measure the ToF of a

Figure 4.1: Working principle illustrated on a ToF laser example [11].

pulsed laser singal. Coherent-detection laser-rangefinders indirectly measure the dis-

tance and velocity from the Doppler effect. For this technique, the laser signal is a

frequency-modulated continuous wave (FMCW) [11].

After transmission, the laser is attenuated by the transmission medium. During the

reflection at the medium the laser gets diffused, so only a part of it can be captured by

the receiving optics. Finally, the received signal is transformed by a photo-detector to

an electrical signal. The received power Pr can be modelled as follows [82].

Pr = Ep
cηAr

2r2 · βr · Tr (4.1)

with the distance to target r, received signal power Pr, total energy of a transmitted

pulse laser Ep, the speed of light cr, the area of receiving aperture (Blende) at range

r Ar, the overall system efficiency η, the reflectance of the target’s surface βr and the

transmission loss through the transmission medium Tr. The reflectance of the targets

surface βr depends on the surface properties and the incident angle. For the simple

case of a Lambertian reflection with a reflectivity of 0 ≤ Γ ≤ 1, it applies βr = Γ/π.

This is usually assumed on matte or most rough, non-shiny surfaces, but also a good

approximation if the medium is unknown.

Lukas Hösch 68

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

A direct-detection laser-rangefinder, using ToF measurements with a pulsed laser sig-

nal, as depicted in Fig. 4.1 determines the range r following the equation [11]:

r =
1

2nr
cr△t (4.2)

with time difference between signal transmission and reception △t and the refrac-

tion index nr = 1 used for propagation in air. The structure and signal processing

techniques are comparably simple. However, since for ToF LiDARs no modulation is

applied, the measured signal of these devices might accidentally interfere with other

pulsed lasers. Also, interference from strong sunlight may accidentally be treated as a

received signal. The range of this measurement technique is limited due to eye-safety

limitations on the transmitted power.

A frequency-modelled signal is emitted constantly over time while a constant refer-

ence signal (“local oscillator”) is kept. After being reflected, the signal can then be

demodulated by mixing the received signal with the carrier signal from the local oscil-

lator. The FMCW constantly illuminates its FoV, so less power needs to be emitted for

this purpose. Therefore, eye-safety requirements can be met still by increasing emitted

power and FoV.

Figure 4.2 shows the signals for coherent detection. The intermediate frequency IF

(in red) is obtained by mixing the received signal (in blue) with the local oscillator (in

green). As the laser source and the tracked object may move, the frequency of the

received signal is expected to be higher than the reference frequency (Doppler). How-

ever, the Doppler frequency shift fd is assumed to be less than fi f , so the following

formula applies [83]:

fi f =
4rBr

crtw
=

f+i f + f−i f

2
, fd =

f+i f + f−i f

2
(4.3)

The velocity is obtained from

v =
fdλ

2
(4.4)

with the modulation bandwidth Br, the waveform period tw and the wavelength λ.

Preferably, the LiDAR device does not contain any moving parts (solid state), is not

too bulky and can therefore be fitted easily to an application-related platform.

Mechanical spinning steers the laser beam by moving a mirror or prism, controlled by

Lukas Hösch 69

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

Figure 4.2: Principle of laser FMCW [11]. The intermediate frequency (red line) provides the
distance estimate and is generated from the transmitted and received light waves [83].

a motor in order to get a larger FoV. Current LiDAR devices use multiple beams to

reduce moving parts. They provide a high signal to noise ratio (SNR) and wide FoV,

however the rotating mechanism is bulky and fragile [11].

Microelectromechanical systems microscanning (MEMS) is a tiny mirror embedded di-

rectly on the chip, so only very small mirrors need to be rotated if the beam shall be

adapted. The AEye LiDAR is a MEMS based device, that can adapt its FoV dynam-

ically. Even though this technique still contains moving parts, it can be seen as near

solid-state [11].

Flash LiDARs don’t contain moving parts, so they are true solid-state. A single laser

beam is spread by an optical diffuser to scan the whole area. A 2D array of laser

diodes is processed into a 3D point cloud. The pixels measure all ranges simultane-

ously. The range of this low-cost device is small (100 m), because the whole FoV needs

to be scanned with one single laser source, limited in its power emission by eye-safety

constraints [11].

Optical phased arrays are solid state devices. Beam adaptation is achieved by a chang-

ing the speed of light through optical phase modulators. Even though this technology

seems to be promising, it is not yet widely available on the market [11].

As described in Section 3.3.1.1, the LiDAR device used for this work is a Sick MRS6000.

It emits laser beams following the ToF principle, that are steered by four internally

rotating mirrors [62]. Even though the sensor is not true solid state, it is easy to han-

dle. Fig. 4.3 depicts the device with its vertical FoV of 15◦ and the horizontal FoV

of 120◦. The working range of 200 m can hardly be reached under real-world condi-

Lukas Hösch 70

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

tions as it would require a perfectly reflecting surface in order to achieve a remission

of 100 % [62]. However, for a remission of 90 %, the scanning range decreases to 90 m,

which is important to take in account when using the sensor. In order to view, record

Figure 4.3: The ToF LiDAR Sick MRS6000 provides a horizontal FoV of 120◦ and a vertical FoV
of 15◦ [62].

and play back point clouds registered by the Sick MRS6000, the middleware ROS is

used. Fig. 4.4 depicts a point cloud registered by the device during the measurement

campaign described in Section 3.3.1. The colors encode the intensity of the reflected

points. As can be interpreted by the squared grid coordinate system in the middle of

the figure, the view angle has been adapted slightly to demonstrate the full capacity

of a 3D point cloud. The point cloud was recorded on the relatively wide waterway

SOW. Even though the bank of the river on the left-hand side is not visible , the bridge

can be distinguished clearly as well as the building block on the right hand side. The

accurate resolution of the sensor can be emphasized. However, the limited horizon-

tal FoV is prone to constrain the registration of points either to the entire bridge (as

depicted in Fig. 4.4) or to the lower structures of the bridge if the bank of the river

shall be depicted additionally. Furthermore, in contrast to the application of LiDAR

sensors in the automotive domain, where solid road surfaces generate echoes that can

be viewed in the point cloud, the water surface is not visible for the LiDAR sensor. On

the one hand, the navigable area can thus be determined relatively straight-forward by

the area between two river-banks. Still, this process might be rather complicated if at

Lukas Hösch 71

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

least one of the river-banks is located outside the FoV of the device. As pointed out in

Figure 4.4: Point cloud registered by the Sick MRS6000. The colors encode the intensity of the
reflected signal.

Section 4.1, the problem of aligning LiDAR point cloud data to the associated image is

generally addressed by projecting the point cloud into the image plane [84], [85]. Fol-

lowing the coordinate system depicted in Fig. 4.5, the image plane can be described be

the yc− zc plane. The direction described by the xc-axis is the direction of view of both

optical sensors. For three-dimensional spatial mapping, it is desirable to orientate the

sensors in a way, that the zc-axis is perpendicular to the local ground plane. However,

it was necessary to install the optical sensor combination in a way that it was slightly

pointing up into the vertical direction. One important factor for this installation is the

limited vertical FoV of the LiDAR device: The sensor had to be installed pointing up

in order to capture all the superstructures of the bridges. Another benefit of this ori-

entation is to ensure the thorough scans of the bridge’s lower surface while passing

under it. This is especially beneficial for the application in discussion, as the clearing

height below a bridge is a crucial factor in overall navigation and particularly in inland

waterway navigation. Furthermore, the FoV was constrained below the optical sensor

combination by an installation of the anchor of the boat, that could not be removed.

However, it is important to bear the orientation of the sensors in mind when consider-

ing the projections of the point cloud.

The points obtained form the sensor message of the LiDAR are represented in local

cartesian coordinates xc, yc, zc. Their projection into spherical coordinates can be ob-

Lukas Hösch 72

4.2 Spatial Mapping Information from LiDAR Sensors 4. LiDAR Assisted Spatial Mapping

Figure 4.5: Coordinate system used for optical sensor data processing.

tained by [86]:

dc =
√

x2
c + y2

c + z2
c

θc = arcsin
zc√

x2
c + y2

c + z2
c

ϕc = arcsin
yc√

x2
c + y2

c

(4.5)

The calculation of the euclidean distance dc is straight-forward. The angels ϕc and θc

are measured into horizontal and vertical direction, respectively. Accounting for the

horizontal and vertical FoV, as well as the associated resolution of the sensor leads to

accurate visual representation. The result can be viewed in Fig. 4.6. The plots depict

the projection of the point cloud shown in Fig. 4.4. It is important to notice that the

angle of view might differ between both representations. The colour scale of the dia-

grams represents the distance and the intensity of the detected points, respectively. In

vertical and horizontal direction, a maximum of 24 and 924 points can be detected by

the device, respectively [62]. These limitations constitute the axis for height and width

of the projection in Fig. 4.6. For orientation, the vertical line in both of the plots repre-

sents the middle of the horizontal FoV of the sensor.

The distance representation depicted in the upper part of the figure shows the pro-

jected point cloud with the colours encoding euclidean range between the sensor and

the detected point. To match the LiDAR device performance under real-world condi-

tions, the range scale is normalized to a maximum of 100 m, which is suitable consid-

ering a maximum scanning range of 90 m at 90 % remission [62]. On the left side of

the projection, bridge structures are visible at a distance of approximately 40 m. The

building structures in the lower right corner are detected at a lower distance of roughly

Lukas Hösch 73

4.3 Pixel-wise LiDAR to RGB Alignment 4. LiDAR Assisted Spatial Mapping

Figure 4.6: Projections of the LiDAR point cloud into the image plane.

10 m. In the upper right corner, the structures of another, larger building are detected

with a range of 60 m. The point cloud projection with a colour encoding of the inten-

sity values is visible in the lower part of Fig. 4.6. The intensity values are normalized

to a maximum intensity of 1, which would represent perfect reflection of the LiDAR

signal. However, the maximum intensity is rarely reached. Slightly increased inten-

sity can be observed from the reflection of some bridge and lower buildings structures.

Throughout the whole representation, the detected intensity does not surpass 50 % of

the maximum intensity.

4.3 Pixel-wise LiDAR to RGB Alignment

As discussed initially in Section 4.1, three-dimensional point clouds are not as straight-

forward to label by using semantic segmentation as RGB images. One workaround to

Lukas Hösch 74

4.3 Pixel-wise LiDAR to RGB Alignment 4. LiDAR Assisted Spatial Mapping

this challenge is to perform semantic segmentation on the 2D RGB images and to align

the resulting mask pixel-wise to the associated LiDAR point clouds. A very similar

approach, called Label Diffusion LiDAR Segmentation (LDLS), has been implemented by

[77].

The authors emphasize the ability of LiDAR sensors to provide spatial mapping with

astonishing accuracy. It needs to be admitted, that unstructured 3D point clouds are

complex to label and the generation of application-related training datasets can there-

fore be very complicated. 2D images, however, can easily be annotated by non-experts,

as has also been described in Section 3.3 of this work. The challenge can be viewed in

numbers when comparing two large datasets such as the KITTI dataset [19] and the

MS COCO [68] dataset: MS COCO is an image-only dataset and consists of 200.000

images, whereas the LiDAR-camera combined KITTI is made of less than 8.000 exam-

ples [77]. LDLS combines the advantages of both, the LiDAR and 2D camera sensor in

order to align the sensor data and finally generate a fully labelled 3D point cloud. The

code of the tool is available at the associated GitHub repository [77].

The input required by LDLS is a LiDAR point cloud and an aligned RGB image. This

sensor configuration is common for being applied to autonomous vehicles [77] and

was also chosen for the measurement campaign described in ection 3.3 of this work.

For simplification, only LiDAR points are considered, that lie within the FoV of the

camera. Unlike the approach of supervised learning, presented in ection 2.2 of this

work, LDLS applies semi-supervised learning, assuming that only a subset of all the

available points is labelled. A graph Gl is constructed, that consists of nodes assigned

for 2D images and 3D LiDAR points, respectively. The nodes are connected by two

different types of connections: from a 2D pixel to a 3D point and between 3D points.

Every 2D pixel and every 3D point is therefore a node within Gl. While the 2D pixels

are labelled according to a segmentation mask, all 3D points are unlabelled initially.

Considering both sensors as aligned, every 3D point can be projected into 2D pixel

coordinates. However, this would introduce high rates of labelling errors, especially

around the boundaries defined in the 2D image [77]. This issue is driven by calibra-

tion errors between both sensors, as well as the fact that the 2D labelled mask does not

take into account the depth information provided by the 3D point cloud. Therefore, a

Lukas Hösch 75

https://github.com/brian-h-wang/LDLS

4.3 Pixel-wise LiDAR to RGB Alignment 4. LiDAR Assisted Spatial Mapping

subgraph is constructed, that combines 2D and 3D information.

G2D→3D
l,ij =

λl if pl,j ∈ P(xc,i)

0 otherwise
(4.6)

The set of image pixels P(xc,i) is near the projected 2D location of the LiDAR point

xc,i. pl,j describes the coordinates defined by a 2D pixel. The parameter λl is used to

control the amount of information flowing from a pixel to its associated LiDAR point.

The authors of LDLS use a small and constant value (λl = 0.001) to mitigate sensor

calibration errors [77].

For encoding connections between 3D point clouds, an exponentially-weighted nearest

neighbours graph is constructed. The set KNN(xc,i) is computed for each point xc,i

within the point cloud according to the euclidean distance.

G3D→3D
l,ij =


1 if i = j, else

exp(− ||xc,i−xc,j
σl
||22σ) if xc,j ∈ KNN(xc,i)

0 otherwise

(4.7)

During their experiments, the authors of [77] set K = 10 and σl = 1. Finally, the full

graph combining all connections is defined by

Gl =

[
G3D→3D

l G2D→3D
l

0 I

]
(4.8)

with the identity matrix I and Gl matching the shape of the RGB image. After con-

structing the graph according to Eq. (4.8), each row is normalized according to

Gl,ij ←
Gl,ij

∑j′ , Gl,ij′
. (4.9)

For all non-zero elements in graph Gl a connection is indicated, where information in

object instance labels should be diffused. Within this process, precise 3D segmentation

is performed using both, 2D and 3D data. Including the background instance, a total

number of Ml + 1 objects instances is assumed. The labels for these instances are stored

inside the vector z(m)
l , which then contains one entry for every 3D point and 2D pixel.

The computation

z(m)
l ← Gl × z(m)

l (4.10)

Lukas Hösch 76

4.3 Pixel-wise LiDAR to RGB Alignment 4. LiDAR Assisted Spatial Mapping

is performed iteratively for all Ml + 1 instances in order to diffuse labels throughout

the graph nodes. If a point xl,i is unlabelled, but connected to a labelled pixel pl,j, the

same label is likely to be applied to the point if G2D→3D
l,ij > 0. After a sufficient num-

ber of iterations is performed for this task (200 is a good benchmark [77]), each LiDAR

point is assigned with the most likely label.

Correct label diffusion may fail if the projection or mask boundary is erroneous, which

would result in a large number of LiDAR points being projected to the 2D segmenta-

tion mask. To account for this error source, an outlier removal step is introduced. The

subgraph G(m)
l of the graph G(3D→3D)

l is defined by considering only LiDAR points

labelled as objects. Cl(G
(m)
l) is the largest connected component in G(m)

l . The LiDAR

points are updated by

yl,i ←

yl,i if xl,i ∈ Cl(G
(ml)
l)

0 otherwise
∀yl,i ∈ {yl|yl = ml} (4.11)

for the current object instance ml assigned to the pixel yl of the mask. Finally, the 3D

LiDAR point cloud is labelled, in a way that every point is either assigned as back-

ground or as one of the class labels [77]).

Indeed, LDLS is an extremely valuable assistance to the problem of labelling 3D point

clouds. There is no labelled point cloud data needed, as the labels can be generated

from the labelled 2D segmentation mask. These features perfectly fit to the conditions

of the development discussed in this work. The code for LDLS is publicly available

and requires a python environment and a NVidia GPU. These requirements can be met

by the usage of the Jetson Xavier AGX developer kit. However, without any addition-

ally installed solid state disk, the memory of this hardware in use is not sufficient for

the installation of all dependencies required by LDLS. The problem could be easily

addressed with the installation of an additional disk. Sadly, this possibility has been

infeasible for this work as the availability of the hardware was not matching the time

constraints.

The practical implementation of LDLS to the application discussed in this work is an

extremely interesting problem which will be subject of future research.

Lukas Hösch 77

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

4.4 Optical Flow Estimation

For retrieving precise spatial mapping information, the detected features need to be

tracked over time. Therefore, optical flow estimation is another important tool assist-

ing in the generation of a precise, self-updating inland waterway chart.

Since first emerging around the year 2000 [87], three dimensional scene-flow has made

constant progress [88]. In general, optical flow describes relative, dense displacements

between according pixels through a number of images, mostly consecutive frames of

a video [89]. The principle can be used in various fields. The authors of [90] and [91]

use optical flow estimation supported by a deep NN for video compression. Optical

flow estimation is generally applied to RGB images and can be also used for action

recognition, as in [92], [93] as well as for video denoising [94], [95]. Bearing in mind

traffic-telematics related applications like the generation of a self-updating inland wa-

terway chart using optical sensor data, the most interesting application appears to be

object tracking, as it is implemented by [96], [97].

Indeed, real-time object tracking plays a remarkable role in a number of computer

vision challenges, such as motion estimation, activity recognition, but also 3D recon-

struction, vehicle navigation and traffic management systems [96]. In general, opti-

cal flow estimation is often applied to such surveillance problems. Enabling camera

sensors on inland waterway vessels with flow estimation could offer several valuable

functionalities for automated map generation. Optical flow estimation would ease the

integration of visual odometry. Visual SLAM algorithms could benefit from motion

estimation and object tracking assisting in precise relative positioning. Furthermore,

the approach could assist in distinguishing moving objects, such as other vessels, from

the rest of the surrounding scene while proceeding on inland waterways. Beyond the

scope of the application in discussion, this ability could then be exploited for the imple-

mentation of systems assisting in collision avoidance or unmanned vessels. However,

the placement of the sensor remains as a large difference to the traditional object track-

ing task. Generally, for object tracking the sensor is placed motionless in vicinity to the

infrastructure used by the objects to be tracked. For the generation of a self-updating

inland waterway chart, the optical sensors are installed on the vessel in order to recog-

nize the infrastructure while it moves along. With the camera being no longer statically

Lukas Hösch 78

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

placed, the relative motion of an arbitrarily chosen object does not describe necessar-

ily the velocity of the vessel. The approach DeepTAM (Deep Tracking and Mapping),

presented by [97], applies Deep Learning for dense camera tracking for 3D mapping

tasks. Existing learning-based approaches are extended towards full-scale SLAM solu-

tions. The main novelty of DeepTAM is a learned tracking and mapping network, that

generalizes well to new datasets [97].

To evaluate the benefit of optical flow estimation for the generation of a self-updating

inland waterway chart, two main algorithms are discussed in the following.

4.4.1 Sparse Optical Flow Estimation: The Lucas-Kanade Method

The Lucas-Kanade method was presented as a computationally efficient technique for

registering two images together, based on their geometrical features [98]. This concept

can also be applied to the registration of subsequently following frames of a video.

The method assumes, that the flow is constant in the neighbourhood around the pixel

under consideration, which reduces the computational costs [99]. The basic optical

flow equations in this neighbourhood are solved by a least squares criterion.

Assuming the frames of the video have been recorded at time t and t + δt, respectively,

the optical flow method calculates the movement between the two frames. In the first

image, one pixel I1(x f , y f , t) is considered, that moves the distance δx f , δy f in a certain

time δt f until it arrives in the second frame I2(x f + δx f , y f + δy f , t + δt). By using the

knowledge, that I1 and I2 are two images depicting the same scene within a very short

time t, the relation

I1(x f , y f , t) = I2(x f + δx f , y f + δy f , t + δt) (4.12)

can be adopted [98]. The translations tend to be small, as δx f , δy f , δt are not too large.

The similarity of the two functions can be obtained from the first-order Taylor series in

Eq. (4.12). In general, the Taylor series for a value a is defined by

∞

∑
nt=0

f nt(a)
nt!

= f (a) +
f
′
(a)
1!

(x− a) +
f
′′
(a)

2!
(x− a)2 + . . . (4.13)

The local approximations of Eq. (4.12) can be derived as differentials by

I(x f , y f , t) = I(x f , y f , t) +
∂I

∂x f
dx f +

∂I
∂y f

dy f +
∂I
∂t

dt (4.14)

Lukas Hösch 79

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

, which also applies to I(x f + δx f , y f + δy f , t + δt). The relation between both images

can be interpreted as velocity with the components vx =
dx f
dt and vy =

dy f
dt . The equa-

tion can therefore be transformed to the continuity equation

∂I
∂x f

vx +
∂I

∂y f
vy +

∂I
∂t

= 0 (4.15)

with the image’s differentials I{x f ,y f ,t} =
∂I

∂{x f ,y f ,t} . It indicates the conservation of the

spatial intensity mapped to the velocity of the pixels (x f , y f) in the image at time t. The

equation

Ix, f Vx + Iy, f Vy + It = 0 (4.16)

describes the movement, which can be rewritten as

∇I⃗⊤ · V⃗ = −It (4.17)

with the spatial gradient of intensity ∇⃗I = (Ix, f Iy, f) and the image velocity (also called

optical flow) V⃗ = (Vx, f , Vy, f) of the pixel (x f , y f) at time t. As this equation with two

unknowns cannot be solved directly, another set of equations is needed.

With the assumption made by the Lucas-Kanade method, that the displacement be-

tween both images is small and approximately constant in the neighbourhood of the

pixel p f , it can also be assumed that the optical flow is equal for all pixels within a

certain window centred around p f .

Ix, f (q1)Vx, f + Iy, f (q1)Vy, f = −It(q1)

Ix, f (q2)Vx, f + Iy, f (q2)Vy, f = −It(q2)

...

Ix, f (qn)Vx, f + Iy, f (qn)Vy, f = −It(qn)

(4.18)

with partial derivatives I{x f ,y f ,t f }(qn) of image I in position (x f , y f) at time t and pixel

(or point) qi. With the matrices

A f =


Ix, f (q1) Iy, f (q1)

Ix, f (q2) Iy, f (q2)
...

Ix, f (qn) Iy, f (qn)

 ; v⃗ =

[
Vx, f

Vy, f

]
; b f =


−It, f (q1)

−It, f (q2)
...

−It, f (qn)

 (4.19)

Lukas Hösch 80

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

Eq. (4.18) can be written as

A f v⃗ = b f (4.20)

, which can be solved to obtain the optical flow v⃗:[
Vx, f

Vy, f

]
=

[
∑n

i=1 I2
x, f (qi)

2 ∑n
i=1 Ix, f Iy, f (qi)

2

∑n
i=1 Ix, f Iy, f (qi)

2 ∑n
i=1 I2

y, f (qi)
2

]−1 [
−∑n

i=1 Ix, f It(qi)
2

−∑n
i=1 Iy, f It(qi)

2

]
. (4.21)

In order to asses whether the method would be suitable to assist in visual odometry

and may be placed as part of a visual SLAM algorithm, the Lucas-Kanade method

is implemented on a small subset of the images gained throughout the measurement

campaign described in Section 3.3.1. Fig. 4.7 depicts the results of the implementation.

Figure 4.7: The Lucas-Kanade algorithm is implemented on the RGB images gained during
the measurement campaign. The dots and lines indicate significant geometrical features recog-
nized and tracked by the algorithm.

The sampling rate of the frames is 10 Hz. For a higher sampling rate, the difference be-

tween two consecutive frames (x f , y f) is smaller than for lower sampling rates, which

is prone to ease the estimation of the optical flow between these frames. The dots and

Lukas Hösch 81

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

lines in the picture (Fig. 4.7) represent the position of a point qi that is chosen as a sig-

nificant feature by the algorithm and therefore tracked for the optical flow estimation.

Best results are achieved when the boat moves in a straight line forward. In the ex-

ample depicted, the boat was moving forward at low speed to ensure the safe passage

of the oncoming vessel on the left hand side. As can be seen from the figure, several

features of the navigation bridge of the oncoming vessel are used for the flow estima-

tion as well as a number of objects at the shore. Several features adjacent to the distant

road bridge are tracked and registered as moving sideways. This is the result of small

manoeuvring uncertainties of the boat: even in small turning manoeuvres, sidewards

moving points are registered and used for the flow estimation.

From the first estimate of the picture, the Lucas-Kanade method is not considered as

valuable contribution for visual odometry or SLAM algorithms. Tracking only a lim-

ited number of points instead of all pixels in the image might be suitable for saving

computational resources. However, as the camera is not placed motionless, but on the

moving boat, the flow estimation is prone to be compromised by turning manoeuvres.

This is not suitable for applications like visual odometry or visual SLAM algorithms,

that require precise relative motion estimation. Therefore, sparse optical flow estima-

tion is not considered as the most suitable algorithm for the desired application.

4.4.2 Dense Optical Flow Estimation: The Farneback Method

While in sparse optical flow estimation, only a limited amount of pixels are tracked

by the algorithm to maintain a reasonable usage of computational resources, dense

optical flow estimation uses all of the pixels available from the frame. Depending on

the movement of the objects taken into consideration, the output of such an algorithm

might resemble semantic segmentation masks. Indeed, the authors of [100] apply the

Farneback method [101] as dense optical flow estimation for assistance in semantic seg-

mentation. The suggested algorithm is used for automated driving and achieves state-

of-the-art results on the KITTI benchmark [100]. This approach is interesting to the

application of inland waterway map generation, because the visual sensors are placed

on the moving measuring platform, which is also the case in the application under

discussion. Furthermore, dense optical flow estimation can support in improving the

results of semantic segmentation [100].

Lukas Hösch 82

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

The method suggested by Farneback shall be briefly presented in the following. The

neighbourhood of each pixel is approximated with the second order polynomial [101]

fm,1(xm, ym) ∼ pm,1(xm, ym) = x⊤mAm,1xm + b⊤m,1x + cm,1 (4.22)

with the matrices

xm =

[
xm

ym

]
; Am =

[
rm,4

rm,6
2

rm,6
2 rm,5

]
; bm =

[
rm,2

rm,3

]
; c = rm,1. (4.23)

The coefficients Am; bm; and cm and consequently rm,1, . . . , rm,6 are to be determined by

fitting the signal fm to the polynomial pm using a weighted least squares method. The

problem can be described by

argminrm,1,...,rm,6 ∑
xm,ym

(wm(xm, ym)(fm(xm, ym)− pm(xm, ym)))
2 (4.24)

with the weights

wm(xm, ym) =

 e
x2

m+y2
m

2σ2 , |xm| ≤ Nm−1
2 , |ym| ≤ Nm−1

2

0, otherwise
(4.25)

where Nm is assumed to be odd and at least equal to 3. The weight function is used

to assign equal importance to points in various directions within the neighbourhood.

Furthermore it determines the size of the structures captured in the polynomial ap-

proximations [101]. As this computation needs to be performed over all pixels in both

of the considered frames, it may become computationally intense. This problem is ad-

dressed by organizing the computations as a small number of convolutions [101]. With

the local signal model constructed in a local coordinate frame by Eq. (4.22), also a new

signal model can be constructed after the displacement d took place [102].

fm,2(xm, ym) ∼ pm,2(xm, ym) = x⊤mAm,2xm + (b⊤m,1 − 2Am,1d)⊤d⊤Am,1d− b⊤m,1d + cm,1

(4.26)

The second video frame can alternatively be represented by

fm,2(xm, ym) ∼ pm,2(xm, ym) = x⊤mAm,2xm + b⊤m,2x + cm,2 (4.27)

with the coefficients

bm,2 = bm,1 − 2Am,1d (4.28)

Lukas Hösch 83

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

2Am,1d = −(bm,2 − bm,1) (4.29)

d = −1
2

A−1
m,1(bm,2 − bm,1). (4.30)

In addition to these basic equations of the Farneback optical flow estimation method,

further refinements might be applied by parametrizing the displacement field with an

appropriate motion model [102].

The Farneback method is applied to the same subset of the images gained from the

measurement campaign as it was the case for the Lucas-Kanade method described in

Section 4.4.1. Fig. 4.8 depicts the results of a first implementation of the Farneback

Figure 4.8: The Farneback method (right) is implemented on a subset of the RGB images gained

during the measurement campaign. The colours encode the direction and magnitude of the

moving objects as illustrated by the scale in the lower left corner. Besides the trees at the shore-

line and the oncoming vessel, also smaller water waves are registered as features. The picture

of the scene (left) is presented as reference.

algorithm on the RGB images gained during the measurement campaign. The frames

are sampled with a rate of 10 Hz. The colors depicted in the right picture (Fig. 4.8)

encode direction and magnitude of the moving objects. A colour scale illustrating the

movements in HSV format is provided in the lower left corner of the figure. With the

hue and the saturation, the defined colour encodes the direction of movement of the

Lukas Hösch 84

4.4 Optical Flow Estimation 4. LiDAR Assisted Spatial Mapping

tracked object. The value illustrates the magnitude of the movement. Starting on the

right side of the camera FoV, the bank of the river can be recognized as tracked object.

The red colour is the primary colour indicated by the colour scale. The trees above

the river bank on the right hand side are marked in violet colour indicating longitudi-

nal movement. Several trees on the left side of the flow estimation mask are marked

in turquoise. As indicated by the colour scale, this colour illustrates a movement in

the opposite direction compared to the red (primary) colour. The value of both tracked

features on the left and right side of the mask indicates that the magnitude of the move-

ment of these features is comparable. Also the superstructures of the oncoming vessel

are registered for the flow estimation with slightly higher value when compared to

the static objects. The higher magnitude of movement of the oncoming vessel is to

be expected. However, the Farneback method classifies additionally certain small wa-

ter waves in the middle of the waterway as objects, which appear in direct vicinity

to the oncoming vessel. This is a limitation when being applied for spatial mapping

purposes: in the current state, the application of the algorithm would be limited to

conditions that exhibit an absolutely flat water surface.

The application of optical flow estimation is an extremely interesting field with respect

to the use-case investigated in this work. Dense optical flow estimators are able to

assist in semantic segmentation. Furthermore, flow estimators can assist in the de-

velopment of visual SLAM algorithms, which are necessary for 3D map generation.

Distinguishing between moving and non-moving objects in the gathered image data

is a key-factor, that can play a valuable role when improving the accuracy of seman-

tic segmentation algorithms. In general, dense optical flow estimators appear more

valuable, especially for supporting semantic segmentation tasks, due to their ability of

classifying every single pixel in the image. However, even very small waves on the

waterway are often registered and tracked as features. The results from the Farneback

method are only suitable for segmentation assistance if the flow estimation of the wa-

ter surface is successfully denoised.

Unfortunately, further investigations in the integration of optical flow estimation are

beyond the scope of this work. The valuable and interesting contribution of especially

dense optical flow estimation for the application discussed in this work is therefore left

for future work.

Lukas Hösch 85

5. Conclusion

IWT plays a key role for European transportation systems, especially concerning mass

goods. Inland vessels are an environmentally friendly alternative to heavy good road

vehicles due to the lower emission of greenhouse gases and reduced effects by habitat

damages. The transport volume of goods on inland waterways in Germany is expected

to grow within the upcoming 10 years by 22 % [1].

Even though accidents on inland waterways are comparably rare, the existing risk of

collision with infrastructure is a threat to the undisturbed traffic flow. High definition

map broadcasts and constant updates on the chart display may minimize the risk of

collisions and damages on the infrastructure. However, traditional means of surveying

are intense in costs and time.

This problem can be addressed by equipping a relevant number of inland waterway

vessels with optical sensors. The measured data is translated into spatial mapping in-

formation and broadcasted to generate a self-updating inland waterway chart.

In this work, an overall processing scope of optical sensor data, suitable for generating

such self-updating inland waterway chart was shown. In particular, the work focused

on developing a solution for semantic segmentation on RGB images using Convolu-

tional Neural Networks. Due to the lack of appropriate training data, a designated

dataset, the BerlinIWT dataset, was generated. For this task, a measurement campaign

on the waterways of Berlin was carried out to gather optical sensor data. The most

significant images were chosen from the dataset and annotated by four in-house an-

notators. While meeting the ambitious time constraints for the generation of a new

training dataset, a total number of 171 examples were found to be useful as training

data.

In a first scenario, the generated dataset was combined with the MaSTr1325 dataset.

Lukas Hösch 86

5. Conclusion

The model was trained for 100 epochs to distinguish between the five different classes

sky, water, object, bridge and other on an augmented dataset. While high accuracy values

are easy to achieve in semantic segmentation tasks, the mean IoU is a far more suit-

able metric. Resulting in a mean IoU of 93.12 % on the test set, the performance of the

model in this scenario is surprisingly good. The slightly lower corresponding value

of 92.52 % examined on the validation set indicated room for further hyperparameter

adjustments. Nevertheless, bearing in mind the limitations of available training data

and computational resources, these results are very decent.

In a second scenario, the model was trained on 164 examples retrieved from the Berlin-

IWT dataset only for performing two-class segmentation. For further optimization,

the mean IoU was used as a loss function and the dataset was augmented. The test

mean IoU of 91.50 % shows decent performance of the model, even though the value is

slightly lower than the corresponding one in the five-class segmentation scenario. This

effect is expected to be caused by the smaller training dataset. The validation mean IoU

amounts to 89.86 % showing that the hyperparameter setting could be improved. Nev-

ertheless, the results for both of the training scenarios show very decent performance

of the model, which is especially true when considering the amount of available train-

ing data and the relatively low number of epochs the models have been trained.

Precise spatial mapping information requires not only semantic scene understanding,

but also accurate distance measurements to the objects in vicinity. LiDAR sensors are

a valuable source for precise distance information, outperforming stereo cameras in

both, detection range and accuracy. Semantic scene understanding from 3D LiDAR

point clouds only is an extremely complicated task. Therefore, the point clouds are

aligned to the segmentation masks of the RGB images. This technique is widely used

among the community. Several different approaches have been compared in this work

to find the most suitable one for the specific problem in discussion. A proposed method

called LDLS seemed to be the most promising one. Unfortunately, the practical imple-

mentation of this algorithm was not possible with the existing constraints on time and

hardware. Semantic segmentation of LiDAR point clouds in inland waterway scenar-

ios is therefore a topic that needs to be left for future research, even though a very

promising concept was already theoretically presented in this work.

Finally, object tracking over time is another important component of spatial mapping

Lukas Hösch 87

5.1 Traffic-Telematics related Evaluation 5. Conclusion

information. For this purpose, different optical flow estimation algorithms were ap-

plied in this work using the data collected during the mentioned measurement cam-

paign. Dense optical flow estimation is prone to require a comparably high amount of

computational resources, but fits better for the application discussed in this work. It

estimates the displacement of every single pixel in the FoV of the camera. In conse-

quence, features moving at similar speed and direction are classified in a similar way.

Besides the benefit of motion detection and object tracking, the algorithm can therefore

assist in semantic segmentation. In addition to rigid objects, such as the river bank and

oncoming vessels, also small waves on the waterway may be detected as features. This

circumstance can compromise the result of the dense optical flow estimation, depend-

ing on the sea-state of the waterway under survey. In any case, already very small

waves, that can occur in light winds are capable of introducing considerable noise into

the optical flow estimation mask. Making dense optical flow estimation robust against

water waves is therefore another field of subsequent research activities.

This work contributes to the generation of a self-updating inland waterway chart by

developing an approach for semantic segmentation on RGB camera data, that can be

used for IWT infrastructure recognition. Due to the small dataset, first segmentation

tasks are limited to the recognition of bridges. The results are promising: The trained

model is able to detect all of the bridges provided in the dataset and recognizes the

most relevant shapes of the bridge.

5.1 Traffic-Telematics related Evaluation

The approach presented in this work was developed for the application of a self-

updating chart of inland waterways. The main motivation for an application like this

is a more time and cost efficient way of surveying the infrastructure. Measurements

of the infrastructure require nowadays a survey team, vehicles and appropriate equip-

ment. In the future, they could be performed by vessels, that use the inland waterway

for transportation purposes. By this approach, the effort in cost and time for IWT

surveys as well as the obstruction for IWT due to survey works would be reduced.

As soon as a vessel, equipped with the associated sensors, passes a waterway section

and broadcasts the information gained to a platform, intentional and unintentional

Lukas Hösch 88

5.1 Traffic-Telematics related Evaluation 5. Conclusion

changes in the IWT infrastructure would be recognized. For the time being, changes

cannot be registered unless a survey team has carried out measurements in the corre-

sponding section of the waterway. With the development for ordinary surveying in

place, the approach could be extended for detecting anomalies in the infrastructure,

such as damages and other threats to inland vessels. The early detection of compro-

mised IWT infrastructure would minimize hazards, that result from the usage of the

compromised section. Furthermore, restoration of damages detected at an early stage

is prone to be less intense in cost and time. Spatial mapping information provided by

(low cost) optical sensors might not be as exact as measurements carried out by a sur-

vey team. However, by numerically interpolating various measurements, performed

by several different vessels, that pass through the same section at different times, suf-

ficient accuracy could be reached.

For survey tasks of the infrastructure, optical sensors are particularly useful, as they

provide an efficient and straight-forward way of gathering spatial mapping informa-

tion from the environment. When compared to other perception systems (such as

radar), most LiDAR sensors provide inferior maximum range. However, objects in

direct vicinity to the sensor can be registered with surprisingly accurate resolution and

distance information. For scanning the near environment, extremely large ranges are

not needed. With the mentioned abilities, the contribution of LiDAR sensors in this

field is very valuable. Semantic scene understanding is a key factor for survey applica-

tions. With a camera providing colour images, semantic segmentation can be achieved

with excellent accuracy values at reasonable computational effort.

As described in Section 3.4, decent accuracy values are easy to achieve in semantic

segmentation problems. On a dataset distinguishing between five different classes

(Section 3.4.1), a mean IoU of 92.52, % and 93.12, % was achieved on the validation

and test set, respectively. Indeed, this indicates very decent performance of the model.

In a real-world use-case, the overall semantic understanding of a scene could be guar-

anteed with the current state of the implementation. This includes the recognition of

bridges. However, not all fine details in the scene might be labelled correctly. This

applies especially for the shapes of buildings and bridges. For accurate surveying,

also fine structures are important, so the need for training longer and on more data

arises. Still, the current implementation is suitable for the identification of navigable

Lukas Hösch 89

5.1 Traffic-Telematics related Evaluation 5. Conclusion

areas. For the two-class-scenario (Section 3.4.2), the mean IoU of the validation and

test set amounts to 89.86 % and 91.50 %, respectively, which indicates slightly worse

performance. Still, also in this scenario, the recognition of a bridge can be guaranteed.

However, the smaller training dataset introduces severe uncertainties in the recogni-

tion of finer structures. To fulfil the strict requirements of an application suitable for

inland waterway survey, the mean IoU values of validation and test set would need

to be improved in both of the training scenarios. Furthermore, the alignment with 3D

LiDAR point clouds would be necessary for providing precise spatial mapping infor-

mation.

The presented approach is not necessarily limited to the inland waterway transporta-

tion mode. The infrastructures of railway lines could be monitored in a similar way.

Such infrastructure includes railway signals with their associated components, as well

as parts of the track infrastructure, such as the state of switches, but also bridges, tun-

nels and the state of platforms could be monitored. A major difference to the IWT

related application is that trains move considerably faster, which might be challenging

for recognition and segmentation tasks. Installing optical sensors on modern trains in

a way that their FoV remains unconstrained by other components might not always

be possible. However, railway infrastructure companies would strongly benefit from

an automatic survey application. Railway tracks are often difficult to access for sur-

vey teams. In daily operation, the safety of survey staff is not always easy to ensure,

especially without impeding operating trains. Restricting the operation on a railway

line can have severe effects on the operation throughout the whole network. Further-

more, many railway lines nowadays are working to their full capacity. It is therefore

not always feasible to assign designated time-slots for survey vehicles operating on the

tracks. In the railway domain, large amounts of persons or goods, and consequently

high masses, at comparably high velocities are carried. In case of a collision, this leads

to severe consequences, which requires high safety standards in daily operation. This

includes the flawless state of the infrastructure. The benefit of performing measure-

ments on the infrastructure simultaneously with the daily operation can be highlighted

therefore particularly for the railway domain.

Probably the most straight-forward use-case is to monitor road traffic infrastructure

using the discussed approach as an example. For this task, it needs to be ensured, that

Lukas Hösch 90

5.1 Traffic-Telematics related Evaluation 5. Conclusion

the sensors are mounted to vehicles that use the infrastructure frequently and exten-

sively. Namely, private vehicles may not be the best choice for this purpose, as they

might be used irregularly. Depending on the road infrastructure that shall be moni-

tored, sensors could be fitted to taxis, city or overland buses vehicles for public main-

tenance or long or short distance trucks. In particular, city-associated infrastructure,

such as road signs, traffic lights, markings for traffic lanes and pavements could be

monitored meaningfully by taxis, city buses or locally operating delivery trucks fitted

with the necessary sensors. Infrastructure on national roads and highways, such as

tunnels, bridges and guard rails would need to be surveyed by long-distance buses or

trucks equipped with sensors. Precise global positioning requires the ability of GNSS

positioning, that is installed in almost all modern cars. Additionally, an increasing

number of vehicles are provided with optical sensors, that are determined to assist in

autonomous usage of the vehicle. With the positioning and optical sensors in place,

the requirements for precise spatial mapping information are fulfilled regarding the

sensor hardware. As discussed throughout this work, a considerable number of train-

ing datasets designated for self-driving cars does already exist, that could be used as

training data for an application that monitors road infrastructures.

The use of optical sensor data encourages the development towards autonomous ves-

sels in the IWT domain. The semantic segmentation solution proposed in this work

may be applied to identify navigable areas and docking locations. The retrieved infor-

mation is supported with precise spatial mapping information provided by the LiDAR

sensor. Optical flow estimation enables distinguishing the river bank and other static

objects from oncoming and side-ways moving vessels. Optical sensors can offer a valu-

able contribution to collision avoidance, especially when supported with dense optical

flow estimation. This application is already established in the automotive domain and

could be implemented for the IWT application using a comparable approach. Finally,

optical sensor data can support in short-term navigation tasks in case of GNSS outages.

In the IWT domain, several scenarios can occur, that state a challenge for GNSS posi-

tioning. The passage under longer bridges can affect the availability of GNSS signals.

In the automotive domain, an effect referred to as urban canyon causes reduced satellite

visibility due to very high buildings to both sides of the street. Similar effects can be

encountered in the IWT domain when a vessels enters a water-way lock at a low water

Lukas Hösch 91

5.2 Outlook and Future Work 5. Conclusion

level. In these cases, a combination of optical sensor and IMU data can be used not

only for collision avoidance, but also for short-term navigation and orientation of the

vessel until reliable GNSS data is available again.

Overall, optical sensor data offers possibilities for precise and low-effort spatial map-

ping as well as advantages in autonomous vehicle applications in a broad spectrum of

relevant traffic and transportation modes. With the application to spatial mapping of

inland waterways, this work examined one of the possible use-cases.

5.2 Outlook and Future Work

In this work, a solution for optical sensor data processing for the application of self-

updating inland waterway charts was proposed. Namely, a training dataset for seman-

tic segmentation in the IWT domain has been generated and applied successfully to the

associated task. Possibilities of combining camera and LiDAR data for semantic scene

understanding as well as precise spatial mapping information have been discussed.

Finally, different approaches of optical flow estimation have been compared with re-

spect to the possible use-cases. While investigating the topic, several other interesting

fields opened up, of which not all could be covered in this work.

As shown by the results, the semantic segmentation model was trained with averagely

optimal hyperparameters. In future research, it would be beneficial to perform further

hyperparameter optimization to achieve best performance of the model. One approach

to this challenge could be to use stochastic optimization algorithms for hyperparame-

ter optimization. Due to constraints in time and computational resources, this is a field

left for future work.

For evaluating semantic segmentation results, the mean IoU is a more suitable metric

than the accuracy. In one of the training scenarios, the mean IoU was even used as loss

function. Another promising way to assess semantic segmentation results is the Haus-

dorff distance, as a geometrical, rather than a stochastic measure. Generally, the Haus-

dorff distance measures the distance between two subsets in a metric space, which is

a promising approach when performing shape-estimation related tasks. The practical

implementation of the Hausdorff distance as a metric in the current implementation of

the training environment is an interesting field for future work. The training may ben-

Lukas Hösch 92

5.2 Outlook and Future Work 5. Conclusion

efit from using the Hausdorff distance as loss function, which may exhibit additional

challenges and is therefore another point left for future research.

Within this work, a new dataset was generated for semantic segmentation in the IWT

domain. The dataset initially contained 190 examples. From the already comparably

small dataset, various annotated masks were compromised in a way that made them

unsuitable for training a NN. Within ongoing activities in this field, the compromised

masks could be corrected to allow for addition to the existing dataset. In general, more

images from the data collected during the measurement campaign could be annotated.

To achieve the largest possible variety in the training data, also further measurement

campaigns in different regions at different times of the year could be performed. In-

deed, further measurement campaigns are planned already to enhance the increase of

the BerlinIWT dataset. For ongoing annotation activities, however, it would be ben-

eficial to define even stricter standards for the generated mask. This includes a more

precise definition of the classes beforehand and even stricter control mechanisms on

the quality of the mask. The application of a different annotation tool should be dis-

cussed. More application-related training data is a time-costly, but a straight-forward

way to improve the performance of the model. The BerlinIWT dataset constitutes a

novel and relevant contribution for the research community. Even more relevant, such

dataset will encourage the German authorities to commission a testbed for (semi-) au-

tonomous vessels in the waterways of Berlin.

The model in this work has been trained for 100 epochs on a dataset combined from the

BerlinIWT and the MaSTr1325 dataset. The training on the augmented dataset required

20 hours on a NVidia Jetson Xavier AGX developer kit. For development of the best

possible training conditions (used model, hyperparameters, dataset), it is desirable to

decrease the time required for training. Presumably, small gains in the computational

time could be achieved by optimizing the code in use. However, for more significant

improvements, the use of a more powerful hardware is unavoidable. This would offer

the possibility to perform more training epochs and reach the point where the model

starts to exhibit overfitting behaviour on the mean IoU metric. With this knowledge,

the best possible model for the use-case in discussion could be trained and selected.

With test mean IoU values of over 90 %, the results achieved by this implementation

show already very decent performance. For real-world use, further improvements of

Lukas Hösch 93

5.2 Outlook and Future Work 5. Conclusion

the mean IoU would be necessary, as the desired survey task requires high labelling

accuracy, even of fine structures. The current state of the implementation might be

sufficient to identify navigable areas. However, providing suitable chart data requires,

that clearing heights and widths can be measured with centimetre-accuracy. For this

goal, more accurate segmentation performance and the alignment of 3D point clouds

with the segmentation masks is needed.

For the practical implementation of aligning semantically segmented RGB images and

the corresponding 3D LiDAR point clouds, an existing algorithm called LDLS can be

used. The installation requires a NVidia GPU. This requirement can be met by the

Jetson Xavier used for training the NN. However, the space on the hard-disk of this

device is limited. The installation of LDLS requires an additional hard-disk for the

device, which could not be added in time. The practical implementation of LDLS and

consequently LiDAR point cloud to RGB image alignment therefore needs to be left for

future work.

Dense optical flow estimation offers the possibility to assist in semantic segmentation

problems. This ability could be exploited in future implementations. To fully bene-

fit from this advantage, the algorithm would need to adjusted in a way that prevents

small waves on the waterway from being recognized as features. Furthermore, the

current implementation is not capable of estimating the relative speed of the tracked

features. A comparison between the speed retrieved from the GNSS solution and the

velocity provided by the optical flow estimation would be extremely interesting. Op-

tical flow estimation is particularly useful to estimate the movement of the measuring

platform and provide assistance for SLAM-solutions. Towards the development of

self-updating inland waterway charts, the implementation of a SLAM algorithm is the

next logical step. Within this scope, the discussed solutions for optical flow estimation

could perform a valuable contribution to the overall use-case.

Lukas Hösch 94

Bibliography

[1] H. M. Müller. “Akademie für Raumforschung und Landesplanung (Ed.): Hand-

wörterbuch der Stadt- und Raumentwicklung, ISBN 978-3-88838-559-9,” in: ed.

by Akademie für Raumforschung und Landesplanung. 2018. Chap. Binnen-

schifffahrt, pp. 243–251.

[2] Florian Hofbauer and Lisa-Maria Putz. “External costs in inland waterway trans-

port: An analysis of external cost categories and calculation methods”. In: Sus-

tainability 12.14 (2020), p. 5874.

[3] Rainer Strenge, Michael Hoppe, Martin Bröschel, et al. “Assistenzsysteme für

die Binnenschifffahrt basierend auf Hochpräzisions-DGNSS (Forschungspro-

jekt LAESSI)”. In: Deutsche Beiträge. 34. Internationaler Schifffahrtskongress; Panama

City, Panama, 07.-11. Mai 2018 (2018), pp. 59–68.

[4] 2022 BBC. Ever Given: Ship that blocked Suez Canal sets sail after deal signed. July

2021. URL: https://www.bbc.com/news/world-middle-east-57746424.

[5] wasserstraßen und Schifffahrtsamt Elbe. Wasserstraßenkreuz Magdeburg. Aug.

2022. URL: https://www.wsa-elbe.wsv.de/Webs/WSA/Elbe/DE/Wasserstrassen/

04_WassstrkreuzMagdeburg/WassstrkreuzMagdeburg_text.html.

[6] ResearchGate. Figure 1. Feb. 2022. URL: https : / / www . researchgate . net /

figure/3D- model- of- Cernadela- Bridge- obtained- by- photogrammetry-

and-camera-positions_fig1_273981291.

[7] generaldirektion Wasserstraßen und Schifffahrt. Verkehrsnetz Bundeswasserstraßen.

Feb. 2022. URL: https://www.gdws.wsv.bund.de/SharedDocs/Downloads/

DE / Karten / Karten _ neu / DBWK1000 _ Generaldirektion . pdf ; jsessionid =

Lukas Hösch 95

https://www.bbc.com/news/world-middle-east-57746424
https://www.wsa-elbe.wsv.de/Webs/WSA/Elbe/DE/Wasserstrassen/04_WassstrkreuzMagdeburg/WassstrkreuzMagdeburg_text.html
https://www.wsa-elbe.wsv.de/Webs/WSA/Elbe/DE/Wasserstrassen/04_WassstrkreuzMagdeburg/WassstrkreuzMagdeburg_text.html
https://www.researchgate.net/figure/3D-model-of-Cernadela-Bridge-obtained-by-photogrammetry-and-camera-positions_fig1_273981291
https://www.researchgate.net/figure/3D-model-of-Cernadela-Bridge-obtained-by-photogrammetry-and-camera-positions_fig1_273981291
https://www.researchgate.net/figure/3D-model-of-Cernadela-Bridge-obtained-by-photogrammetry-and-camera-positions_fig1_273981291
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12

Bibliography Bibliography

DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&

v=12.

[8] You Li and Javier Ibanez-Guzman. “Lidar for autonomous driving: The princi-

ples, challenges, and trends for automotive lidar and perception systems”. In:

IEEE Signal Processing Magazine 37.4 (2020), pp. 50–61.

[9] Yuhui Yuan, Xiaokang Chen, Xilin Chen, et al. “Segmentation transformer: Object-

contextual representations for semantic segmentation”. In: arXiv preprint arXiv:1909.11065

(2019).

[10] D. Pierrotteta; F. Amzajerdianb; L. Petwayb; B. Barnesb; G. Lockardb; M. Ru-

bio. “Linear FMCW Laser Radar for Precision Range and Vector Velocity Mea-

surements”. In: Materials Research Society symposia proceedings. Materials Research

Society (2008).

[11] You Li and Javier Ibanez-Guzman. “Lidar for autonomous driving: The princi-

ples, challenges, and trends for automotive lidar and perception systems”. In:

IEEE Signal Processing Magazine 37.4 (2020), pp. 50–61.

[12] Xiaolong Liu, Zhidong Deng, and Yuhan Yang. “Recent progress in semantic

image segmentation”. In: Artificial Intelligence Review 52.2 (2019), pp. 1089–1106.

[13] Jussi Taipalmaa, Nikolaos Passalis, and Jenni Raitoharju. “Different Color Spaces

In Deep Learning-Based Water Segmentation For Autonomous Marine Opera-

tions”. In: 2020 IEEE International Conference on Image Processing (ICIP). 2020,

pp. 3169–3173.

[14] Laura Lopez-Fuentes, Claudio Rossi, and Harald Skinnemoen. “River segmen-

tation for flood monitoring”. In: 2017 IEEE international conference on big data (Big

Data). IEEE. 2017, pp. 3746–3749.

[15] Panqu Wang, Pengfei Chen, Ye Yuan, et al. “Understanding convolution for se-

mantic segmentation”. In: 2018 IEEE winter conference on applications of computer

vision (WACV). Ieee. 2018, pp. 1451–1460.

[16] Marvin Teichmann, Michael Weber, Marius Zoellner, et al. “Multinet: Real-time

joint semantic reasoning for autonomous driving”. In: 2018 IEEE intelligent ve-

hicles symposium (IV). IEEE. 2018, pp. 1013–1020.

Lukas Hösch 96

https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12
https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Karten/Karten_neu/DBWK1000_Generaldirektion.pdf;jsessionid=DC0C84B2AF9BEB81AEF406FEA065DD13.live21322?__blob=publicationFile&v=12

Bibliography Bibliography

[17] Farnoush Zohourian, Borislav Antic, Jan Siegemund, et al. “Superpixel-based

Road Segmentation for Real-time Systems using CNN.” In: VISIGRAPP (5: VIS-

APP). 2018, pp. 257–265.

[18] Dan Levi, Noa Garnett, Ethan Fetaya, et al. “StixelNet: A Deep Convolutional

Network for Obstacle Detection and Road Segmentation.” In: BMVC. Vol. 1. 2.

2015, p. 4.

[19] Jens Behley, Martin Garbade, Andres Milioto, et al. “SemanticKITTI: A Dataset

for Semantic Scene Understanding of LiDAR Sequences”. In: 2019 IEEE/CVF

International Conference on Computer Vision (ICCV). 2019, pp. 9296–9306.

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous

driving? the kitti vision benchmark suite”. In: 2012 IEEE conference on computer

vision and pattern recognition. IEEE. 2012, pp. 3354–3361.

[21] Weisong Wen, Yiyang Zhou, Guohao Zhang, et al. “Urbanloco: A full sensor

suite dataset for mapping and localization in urban scenes”. In: 2020 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 2310–

2316.

[22] G. Kuschk M. Meyer. “Automotive Radar Dataset for Deep Learning Based3D

Object Detection”. In: Proceedings of the 16th European Radar Conference (2019).

[23] Borja Bovcon and Matej Kristan. “Obstacle detection for usvs by joint stereo-

view semantic segmentation”. In: 2018 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS). IEEE. 2018, pp. 5807–5812.

[24] Borja Bovcon and Matej Kristan. “A water-obstacle separation and refinement

network for unmanned surface vehicles”. In: 2020 IEEE International Conference

on Robotics and Automation (ICRA). IEEE. 2020, pp. 9470–9476.

[25] Wei Wang, Banti Gheneti, Luis A. Mateos, et al. “Roboat: An Autonomous Sur-

face Vehicle for Urban Waterways”. In: 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). 2019, pp. 6340–6347.

[26] Wei Wang, Tixiao Shan, Pietro Leoni, et al. “Roboat II: A Novel Autonomous

Surface Vessel for Urban Environments”. In: 2020 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). 2020, pp. 1740–1747.

Lukas Hösch 97

Bibliography Bibliography

[27] Wenqiang Zhan, Changshi Xiao, Yuanqiao Wen, et al. “Autonomous visual per-

ception for unmanned surface vehicle navigation in an unknown environment”.

In: Sensors 19.10 (2019), p. 2216.

[28] Thales Shoiti Akiyama, José Marcato Junior, Wesley Nunes Gonçalves, et al.

“Evaluating different deep learning models for automatic water segmentation”.

In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

IEEE. 2021, pp. 4716–4719.

[29] H. Skinnemoen L. Lopez-Fuentes C. Rossi. “River segmentation for flood mon-

itoring”. In: 2017 IEEE International Conference on Big Data (BIGDATA) (2017).

[30] Pedro Santana, Ricardo Mendonça, and José Barata. “Water detection with seg-

mentation guided dynamic texture recognition”. In: 2012 IEEE International Con-

ference on Robotics and Biomimetics (ROBIO). 2012, pp. 1836–1841.

[31] Jussi Taipalmaa, Nikolaos Passalis, Honglei Zhang, et al. “High-Resolution Wa-

ter Segmentation for Autonomous Unmanned Surface Vehicles: a Novel Dataset

and Evaluation”. In: 2019 IEEE 29th International Workshop on Machine Learning

for Signal Processing (MLSP). 2019, pp. 1–6.

[32] Yuwei Cheng, Mengxin Jiang, Jiannan Zhu, et al. “Are we ready for unmanned

surface vehicles in inland waterways? The usvinland multisensor dataset and

benchmark”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 3964–3970.

[33] Borja Bovcon, Jon Muhovič, Janez Perš, et al. “The mastr1325 dataset for train-

ing deep usv obstacle detection models”. In: 2019 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 3431–3438.

[34] Mathieu Labbé and François Michaud. “RTAB-Map as an open-source lidar and

visual simultaneous localization and mapping library for large-scale and long-

term online operation”. In: Journal of Field Robotics 36.2 (2019), pp. 416–446.

[35] Keiron O’Shea and Ryan Nash. “An introduction to convolutional neural net-

works”. In: arXiv preprint arXiv:1511.08458 (2015).

[36] medium.com. Implementing A Simple Artificial Neural Network from Scratch in

Python. May 2022. URL: https : / / miro . medium . com / max / 1200 / 1 * Rfpe _

jQjK2iRyKhM9Go6uw.png.

Lukas Hösch 98

https://miro.medium.com/max/1200/1*Rfpe_jQjK2iRyKhM9Go6uw.png
https://miro.medium.com/max/1200/1*Rfpe_jQjK2iRyKhM9Go6uw.png

Bibliography Bibliography

[37] Bing Xu, Naiyan Wang, Tianqi Chen, et al. “Empirical evaluation of rectified ac-

tivations in convolutional network”. In: arXiv preprint arXiv:1505.00853 (2015).

[38] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, et al. “Unsupervised learn-

ing of invariant feature hierarchies with applications to object recognition”. In:

2007 IEEE conference on computer vision and pattern recognition. IEEE. 2007, pp. 1–

8.

[39] Muhammad Usama, Junaid Qadir, Aunn Raza, et al. “Unsupervised Machine

Learning for Networking: Techniques, Applications and Research Challenges”.

In: IEEE Access 7 (2019), pp. 65579–65615.

[40] Mirza Cilimkovic. “Neural networks and back propagation algorithm”. In: In-

stitute of Technology Blanchardstown, Blanchardstown Road North Dublin 15.1 (2015).

[41] Léon Bottou et al. “Stochastic gradient learning in neural networks”. In: Pro-

ceedings of Neuro-Nımes 91.8 (1991), p. 12.

[42] Michael Meyer and Georg Kuschk. “Automotive radar dataset for deep learn-

ing based 3d object detection”. In: 2019 16th european radar conference (EuRAD).

IEEE. 2019, pp. 129–132.

[43] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.

In: arXiv preprint arXiv:1609.04747 (2016).

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[45] Valentina Emilia Balas, Raghvendra Kumar, and Rajshree Srivastava. Recent

trends and advances in artificial intelligence and internet of things. Springer, 2020.

[46] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Equivariance through

parameter-sharing”. In: International conference on machine learning. PMLR. 2017,

pp. 2892–2901.

[47] Diego Pierrottet, Farzin Amzajerdian, Larry Petway, et al. “Linear FMCW laser

radar for precision range and vector velocity measurements”. In: MRS Online

Proceedings Library (OPL) 1076 (2008).

Lukas Hösch 99

Bibliography Bibliography

[48] Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, et al. “Inception re-

current convolutional neural network for object recognition”. In: arXiv preprint

arXiv:1704.07709 (2017).

[49] Li Deng. “The mnist database of handwritten digit images for machine learn-

ing research [best of the web]”. In: IEEE signal processing magazine 29.6 (2012),

pp. 141–142.

[50] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”.

In: arXiv preprint arXiv:1711.05101 (2017).

[51] Chiyuan Zhang, Samy Bengio, Moritz Hardt, et al. “Understanding deep learn-

ing (still) requires rethinking generalization”. In: Communications of the ACM

64.3 (2021), pp. 107–115.

[52] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep

network training by reducing internal covariate shift”. In: International confer-

ence on machine learning. PMLR. 2015, pp. 448–456.

[53] Leslie N. Smith. “Cyclical Learning Rates for Training Neural Networks”. In:

2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 2017,

pp. 464–472.

[54] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, et al. “On large-

batch training for deep learning: Generalization gap and sharp minima”. In:

arXiv preprint arXiv:1609.04836 (2016).

[55] Kaichao You, Mingsheng Long, Jianmin Wang, et al. “How does learning rate

decay help modern neural networks?” In: arXiv preprint arXiv:1908.01878 (2019).

[56] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, et al. “Deeplab: Se-

mantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs”. In: IEEE transactions on pattern analysis and machine

intelligence 40.4 (2017), pp. 834–848.

[57] Liang-Chieh Chen, George Papandreou, Florian Schroff, et al. “Rethinking atrous

convolution for semantic image segmentation”. In: arXiv preprint arXiv:1706.05587

(2017).

Lukas Hösch 100

Bibliography Bibliography

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep residual learning for

image recognition”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, pp. 770–778.

[59] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term de-

pendencies with gradient descent is difficult”. In: IEEE transactions on neural

networks 5.2 (1994), pp. 157–166.

[60] Olga Russakovsky, Jia Deng, Hao Su, et al. “Imagenet large scale visual recogni-

tion challenge”. In: International journal of computer vision 115.3 (2015), pp. 211–

252.

[61] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, et al. “Color transfer between

images”. In: IEEE Computer graphics and applications 21.5 (2001), pp. 34–41.

[62] SICK AG. Operating Instructions - SICK MRS6000. SICK Sensor Intelligence. July

2019.

[63] Alberding GmbH 2021. AutonomSOWII. July 2022. URL: https://www.autonomsow.

de/.

[64] DLR. Spree-Oder-Wasserstraße wird digitales Testfeld für hochautomatisierte und ver-

netze Binnenschifffahrt. July 2022. URL: https://www.dlr.de/content/de/

artikel/news/2021/03/20210928_von-der-strasse-aufs-wasser.html.

[65] BEHALA Berliner Hafen und Lagerhausgesellschaft mbH. BEHALA - individu-

elle Logistik- und Immobilien-Lösungen aus dem Zentrum Berlins. July 2022. URL:

https://www.behala.de/.

[66] Intel technologies. Computer Vision Annotation Tool. July 2022. URL: https://

cvat.org/auth/login.

[67] Piotr Skalski. MakeSense.ai. July 2022. URL: https://www.makesense.ai/.

[68] Tsung-Yi Lin, Michael Maire, Serge Belongie, et al. “Microsoft coco: Common

objects in context”. In: European conference on computer vision. Springer. 2014,

pp. 740–755.

[69] Antonio Torralba, Bryan C Russell, and Jenny Yuen. “Labelme: Online image

annotation and applications”. In: Proceedings of the IEEE 98.8 (2010), pp. 1467–

1484.

Lukas Hösch 101

https://www.autonomsow.de/
https://www.autonomsow.de/
https://www.dlr.de/content/de/artikel/news/2021/03/20210928_von-der-strasse-aufs-wasser.html
https://www.dlr.de/content/de/artikel/news/2021/03/20210928_von-der-strasse-aufs-wasser.html
https://www.behala.de/
https://cvat.org/auth/login
https://cvat.org/auth/login
https://www.makesense.ai/

Bibliography Bibliography

[70] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, et al. “Generalized Intersec-

tion Over Union: A Metric and a Loss for Bounding Box Regression”. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2019.

[71] You Li. “Stereo vision and Lidar based dynamic occupancy grid mapping: Ap-

plication to scenes analysis for intelligent vehicles”. PhD thesis. Université de

Technologie de Belfort-Montbeliard, 2013.

[72] Jiaxin Li and Gim Hee Lee. “Deepi2p: Image-to-point cloud registration via

deep classification”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition. 2021, pp. 15960–15969.

[73] Zhuangwei Zhuang, Rong Li, Kui Jia, et al. “Perception-Aware Multi-Sensor

Fusion for 3D LiDAR Semantic Segmentation”. In: 2021 IEEE/CVF International

Conference on Computer Vision (ICCV). 2021, pp. 16260–16270.

[74] Pouria Babahajiani, Lixin Fan, Joni-Kristian Kämäräinen, et al. “Urban 3D seg-

mentation and modelling from street view images and LiDAR point clouds”.

In: Machine Vision and Applications 28.7 (2017), pp. 679–694.

[75] Ran Cheng, Christopher Agia, Yuan Ren, et al. “S3cnet: A sparse semantic scene

completion network for lidar point clouds”. In: arXiv preprint arXiv:2012.09242

(2020).

[76] Kanrun Huang et al. “End-to-End Multi-Sensor Fusion for 3d Object Detection

in Lidar Point Clouds”. In: Applied & Educational Psychology 2.1 (2021), pp. 67–

72.

[77] Brian H. Wang, Wei-Lun Chao, Yan Wang, et al. “LDLS: 3-D Object Segmenta-

tion Through Label Diffusion From 2-D Images”. In: IEEE Robotics and Automa-

tion Letters 4.3 (2019), pp. 2902–2909.

[78] Jorge Beltrán, Carlos Guindel, Francisco Miguel Moreno, et al. “Birdnet: a 3d

object detection framework from lidar information”. In: 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE. 2018, pp. 3517–3523.

Lukas Hösch 102

Bibliography Bibliography

[79] Carlos Guindel, David Martín, and José María Armingol. “Joint object detec-

tion and viewpoint estimation using CNN features”. In: 2017 IEEE International

Conference on Vehicular Electronics and Safety (ICVES). IEEE. 2017, pp. 145–150.

[80] Andres Milioto, Ignacio Vizzo, Jens Behley, et al. “RangeNet ++: Fast and Accu-

rate LiDAR Semantic Segmentation”. In: 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). 2019, pp. 4213–4220.

[81] Joel M. Esposito and Mitchell Graves. “An algorithm to identify docking lo-

cations for autonomous surface vessels from 3-D LiDAR scans”. In: 2014 IEEE

International Conference on Technologies for Practical Robot Applications (TePRA).

2014, pp. 1–6.

[82] Ulla Wandinger. “Introduction to lidar”. In: Lidar. Springer, 2005, pp. 1–18.

[83] Diego Pierrottet, Farzin Amzajerdian, Larry Petway, et al. “Linear FMCW laser

radar for precision range and vector velocity measurements”. In: MRS Online

Proceedings Library (OPL) 1076 (2008).

[84] Ryan S. Kaminsky, Noah Snavely, Steven M. Seitz, et al. “Alignment of 3D point

clouds to overhead images”. In: 2009 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops. 2009, pp. 63–70.

[85] Xiaoshui Huang, Guofeng Mei, and Jian Zhang. “Feature-metric registration:

A fast semi-supervised approach for robust point cloud registration without

correspondences”. In: Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 2020, pp. 11366–11374.

[86] Bichen Wu, Alvin Wan, Xiangyu Yue, et al. “Squeezeseg: Convolutional neu-

ral nets with recurrent crf for real-time road-object segmentation from 3d lidar

point cloud”. In: 2018 IEEE International Conference on Robotics and Automation

(ICRA). IEEE. 2018, pp. 1887–1893.

[87] Sundar Vedula, Simon Baker, Peter Rander, et al. “Three-dimensional scene

flow”. In: Proceedings of the Seventh IEEE International Conference on Computer

Vision. Vol. 2. IEEE. 1999, pp. 722–729.

[88] Zike Yan and Xuezhi Xiang. “Scene flow estimation: A survey”. In: arXiv preprint

arXiv:1612.02590 (2016).

Lukas Hösch 103

Bibliography Bibliography

[89] Jisoo Jeong, Jamie Menjay Lin, Fatih Porikli, et al. “Imposing Consistency for

Optical Flow Estimation”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2022, pp. 3181–3191.

[90] Guo Lu, Wanli Ouyang, Dong Xu, et al. “Dvc: An end-to-end deep video com-

pression framework”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2019, pp. 11006–11015.

[91] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. “Video compression

through image interpolation”. In: Proceedings of the European conference on com-

puter vision (ECCV). 2018, pp. 416–431.

[92] Myunggi Lee, Seungeui Lee, Sungjoon Son, et al. “Motion feature network:

Fixed motion filter for action recognition”. In: Proceedings of the European Confer-

ence on Computer Vision (ECCV). 2018, pp. 387–403.

[93] Zixi Cai, Helmut Neher, Kanav Vats, et al. “Temporal hockey action recogni-

tion via pose and optical flows”. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops. 2019, pp. 0–0.

[94] Kireeti Bodduna and Joachim Weickert. “Removing multi-frame Gaussian noise

by combining patch-based filters with optical flow”. In: Journal of Electronic

Imaging 30.3 (2021), p. 033031.

[95] Valéry Dewil, Jérémy Anger, Axel Davy, et al. “Self-supervised training for

blind multi-frame video denoising”. In: Proceedings of the IEEE/CVF winter con-

ference on applications of computer vision. 2021, pp. 2724–2734.

[96] Kiran Kale, Sushant Pawar, and Pravin Dhulekar. “Moving object tracking us-

ing optical flow and motion vector estimation”. In: 2015 4th international confer-

ence on reliability, infocom technologies and optimization (ICRITO)(trends and future

directions). IEEE. 2015, pp. 1–6.

[97] Thomas Brox Huizhong Zhou Benjamin Ummenhofer. “Deeptam: Deep track-

ing and mapping”. In: Proceedings of the European conference on computer vision

(ECCV) (2018).

[98] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with

an application to stereo vision. Vol. 81. Vancouver, 1981.

Lukas Hösch 104

Bibliography Bibliography

[99] Román Mondragón, Joaquín Alonso-Montesinos, David Riveros-Rosas, et al.

“Determination of cloud motion applying the Lucas-Kanade method to sky cam

imagery”. In: Remote Sensing 12.16 (2020), p. 2643.

[100] Ahmad El-Sallab Pavel Krizek Mohamed El-Helw Hazem Rashed Senthil Yo-

gamani. “Optical Flow augmented Semantic Segmentation networksfor Auto-

mated Driving”. In: https://doi.org/10.48550/arXiv.1901.07355 (2019).

[101] Gunnar Farnebäck. “Disparity estimation from local polynomial expansion”.

In: SSAB Symposium on Image Analysis, March 2001, Norrköping, Sweden. 2001,

pp. 77–80.

[102] Shivangi Anthwal and Dinesh Ganotra. “Optical Flow Estimation in Synthetic

Image Sequences Using Farneback Algorithm”. In: Advances in Signal Processing

and Communication. Springer, 2019, pp. 363–371.

Lukas Hösch 105

Erklärung

Hierdurch erkläre ich, dass ich die von mir am heutigen Tage eingereichte Diplomar-

beit selbständig verfasst und andere als die angegebenen Hilfsmittel nicht benutzt

habe.

Dresden, 26. August 2022

Lukas Hösch 106

	Introduction
	Overall Idea of the Project
	Contribution of this work
	Outline

	Semantic Segmentation on Images
	Related Work
	Applied Methodology
	Modes of Learning
	Learning Process
	Optimization Algorithms
	Convolutional Neural Networks
	Train / Test Splitting
	Overfitting and Regularization
	Batch Normalization
	Hyperparameter Choice

	Proposed Solution for IWT Semantic Segmentation
	Used Model
	Training Procedure
	Generation of the BerlinIWT Dataset
	Measurement Campaign
	Hardware in Use
	Covered Trajectory
	Collected Data

	Annotation

	Training Environment
	Results of a Five-class Dataset
	Results for a Dual Class Dataset: Bridge Detection
	Comparative Results

	LiDAR Assisted Spatial Mapping
	Related Work
	Spatial Mapping Information from LiDAR Sensors
	Pixel-wise LiDAR to RGB Alignment
	Optical Flow Estimation
	Sparse Optical Flow Estimation: The Lucas-Kanade Method
	Dense Optical Flow Estimation: The Farneback Method

	Conclusion
	Traffic-Telematics related Evaluation
	Outlook and Future Work

	Bibliography

