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A B S T R A C T

High-resolution satellite images can provide abundant, detailed spatial information for land cover classification,
which is particularly important for studying the complicated built environment. However, due to the complex
land cover patterns, the costly training sample collections, and the severe distribution shifts of satellite
imageries caused by, e.g., geographical differences or acquisition conditions, few studies have applied high-
resolution images to land cover mapping in detailed categories at large scale. To fill this gap, we present a
large-scale land cover dataset, Five-Billion-Pixels. It contains more than 5 billion labeled pixels of 150 high-
resolution Gaofen-2 (4 m) satellite images, annotated in a 24-category system covering artificial-constructed,
agricultural, and natural classes. In addition, we propose a deep-learning-based unsupervised domain adaptation
approach that can transfer classification models trained on labeled dataset (referred to as the source domain) to
unlabeled data (referred to as the target domain) for large-scale land cover mapping. Specifically, we introduce
an end-to-end Siamese network employing dynamic pseudo-label assignment and class balancing strategy to
perform adaptive domain joint learning. To validate the generalizability of our dataset and the proposed
approach across different sensors and different geographical regions, we carry out land cover mapping on five
megacities in China and six cities in other five Asian countries severally using: PlanetScope (3 m), Gaofen-1
(8 m), and Sentinel-2 (10 m) satellite images. Over a total study area of 60,000 km2, the experiments show
promising results even though the input images are entirely unlabeled. The proposed approach, trained with
the Five-Billion-Pixels dataset, enables high-quality and detailed land cover mapping across the whole country
of China and some other Asian countries at meter-resolution.
1. Introduction

1.1. Motivation

Land cover information is crucial for various research fields in-
volving environment science, climate monitoring, food security, urban
planning, disaster management, and ecosystem protection (Zhang et al.,
2019). With the continuous development of technology and the econ-
omy, human activities have an increasing impact on both urban and
natural environments (Ban et al., 2015; Huang et al., 2017). There
is, therefore, an urgent need for timely and reliable large-scale land
cover information to guide the construction of human settlements and
to mitigate the negative environmental changes.

Over the past few decades, extensive studies have been devoted
to large-scale land cover mapping using low-/medium-spatial reso-
lution remote sensing images (Masiliūnas et al., 2021; Tsendbazar
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et al., 2021; Esch et al., 2017; Gong et al., 2019; Zhu et al., 2022;
CORINE-LandCover, 2018), e.g., Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Yu et al., 2013), Landsat Thematic Mapper
(TM) (Hermosilla et al., 2022; Huang et al., 2021), Enhanced Thematic
Mapper+ (ETM+) (Li et al., 2020) satellite imageries, and remarkable
achievements have been accumulated. However, due to the lack of
spatial information, these images are insufficient to distinguish het-
erogeneous land cover categories, especially for the categories mainly
distributed in the built environment, such as buildings, traffic infras-
tructures, artificial water areas, and urban green spaces. Recently,
based on Sentinel satellite imagery, European Space Agency (ESA) and
Google have released global 10 m land cover mapping projects, World
Cover (Zanaga et al., 2021) and Dynamic World (Brown et al., 2022),
respectively. Although they are highly accurate and real-time, they
vailable online 10 January 2023
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cover only basic land cover categories (11 and 9 classes) and have
limited ability to depict urban environments.

Owing to the advances in satellite technology, remote sensing im-
ages with higher spatial resolution are becoming increasingly available.
Compared with low-/medium-spatial resolution images, they provide
richer texture, shape, and spatial distribution information of ground
objects, which contribute significantly to detailed mapping in high het-
erogeneous areas, e.g., densely populated megacities. But at the same
time, the detailed information brings about much more complicated
land structures and patterns (Yuan et al., 2020), which leads to great
challenges in land cover classification with high-resolution images.
Furthermore, due to the narrow swath of high-resolution images and
the problem of cloud obscuration, it is often necessary to jointly use
numerous images captured at different times and positions by the
same sensor, or even by multiple satellite sensors, to mosaic large-
scale land cover maps (Xu et al., 2020). The attendant problem is that
diverse imaging conditions will lead to shifts in feature distributions
of ground objects, which causes the classification method optimal for
certain annotated images (referred to as the source domain) to drop
drastically in performance on newly acquired images (referred to as the
target domain) (Tuia et al., 2016; Tong et al., 2020). The above factors
render it difficult for high-resolution satellite images to be employed
practically for large-scale land cover mapping applications.

1.2. Related work

In recent years, tremendous effort has been dedicated to this chal-
lenging task. In the early stage, spectral and spectral–spatial features
were widely utilized to identify land cover categories based on pixel-
or object-spatial units (Bruzzone and Prieto, 2001; Bahirat et al., 2011;
Matasci et al., 2015; Liu et al., 2019). Nevertheless, restricted, hand-
crafted rules cannot fully define and represent the complicated land
structures or patterns in high-resolution images (Yuan et al., 2020).
To address this problem, deep learning has attracted broad attention
in the remote sensing community. Deep Convolutional Neural Net-
works (DCNNs) are able to adaptively approximate the relationship
between image information and land information through multi-layer
transformations (Zhu et al., 2017). Thus, compared with conventional
land cover classification methods, deep models can accurately char-
acterize complex contextual information contained in high-resolution
images (Tong et al., 2020; Huang et al., 2018a; Zhang et al., 2019;
Srivastava et al., 2019; Zhong et al., 2020). Although deep models have
reported great superiorities in many remote sensing issues (Zhu et al.,
2017; Ma et al., 2019; Zhu et al., 2021), their performance strongly
relies on the quality and quantity of training data (LeCun et al., 2015;
Xia et al., 2017; Ding et al., 2021), resulting in two main problems in
applying them to real-world land cover mapping:

- The application gap caused by limited representativity of land cover
datasets: Deep learning is a data-driven approach, and its potential
for practical land cover mapping depends heavily on whether the
training data fully reflects the distribution of real-world ground
objects. An insufficient amount of data may lead to overfitting
of the model, insufficient data diversity may lead to low gen-
eralization capability of the model, and an incomplete category
system will make the model unable to meet the actual mapping
requirements (Long et al., 2021; Xiong et al., 2022).

- The inadequate generalizability of deep models over different data
domains: Even if a practicable deep model is already trained on a
well-annotated dataset, it may not be valid for other geographical
areas or sensors because of the feature distribution shifts between
the source and target domains (Tuia et al., 2016; Tong et al.,
2020; Huang et al., 2023). To adapt this deep model to large-
scale land cover mapping, an intuitive way is annotating sufficient
samples for the target domain and performing model retraining.
However, dense annotation for each newly captured image is not
179

realistic. l
To alleviate the first problem, a number of densely labeled land
cover datasets with sub-meter to meter-spatial resolutions (0.05−10 m)
ave been released and contributed substantially to land cover classifi-
ation research. But most of them have geographical coverage areas be-
ow 10 km2 and are located in concentrated regions, such as ISPRS Pots-
am (ISPRS-Contest, 2018), ISPRS Vaihingen (ISPRS-Contest, 2018),
urich Summer (Volpi and Ferrari, 2015), RIT-18 (Kemker et al., 2018),
nd Zeebruges (Marcos et al., 2018). Existing large-scale datasets, with
overage areas more than 1000 km2 and wide geographical distribu-
ions, are typically annotated with about 10 classes, and do not contain
etailed urban functional categories, including SpaceNet (Van Etten
t al., 2018), DeepGlobe (Demir et al., 2018), MiniFrance (Castillo-
avarro et al., 2021), Gaofen Image Dataset (GID) (Tong et al., 2020;
ang et al., 2022), and LandCoverNet (Alemohammad and Booth,
020). Although these large-scale datasets possess adequate data
mount and data diversity, their incomplete land cover category sys-
ems prevent them from fully bridging the gap between algorithmic
esearch and real-world applications.

To solve the second problem, unsupervised domain adaptation
UDA) has been commonly considered by recent remote sensing lit-
rature (Tong et al., 2020; Liu and Qin, 2020; Zhong et al., 2020;
hang et al., 2021b; Ji et al., 2020; Saha et al., 2022). UDA aims
o adapt models trained on the source domain to the target domain
ithout supervised information (Tuia et al., 2016). Two major types
f deep-learning-based UDA have been studied: discrepancy-based
nd adversarial-based methods. Discrepancy-based methods minimize
he discrepancy criteria between the source and target domains to
educe the distance of their distributions (Liu and Qin, 2020; Zhong
t al., 2020). The discrepancy criteria are implemented in the form
f manually designed loss functions, such as Correlation Alignment
CORAL) (Sun and Saenko, 2016) and Maximum Mean Discrepancy
MMD) (Long et al., 2016). In contrast, adversarial-based methods, such
s the domain-adversarial neural network (DANN) (Ganin et al., 2016)
nd Adversarial Discriminative Domain Adaptation (ADDA) (Tzeng
t al., 2017), do not require manually designed criteria for domain
atching. They instead learn criteria by simultaneously training a

eature generator and a domain discriminator, which attempt to extract
ndistinguishable features for both domains and distinguish the features
f different domains, respectively (Zhang et al., 2021b; Ji et al., 2020).

The essential idea of these two types of UDA methods is to align
he feature distributions of the source and target domains (Sun and
aenko, 2016; Ganin et al., 2016; Wang et al., 2021). However, this
dea works on a key assumption that it is possible to find an appropriate
atch for the two distributions, while real-world situations are often
ot that ideal. First, for large-scale land cover mapping, both domains
ay contain images from diverse imaging conditions, resulting in a
idely dispersed feature space within each domain. In this context,
rigid alignment of two dispersive domains may further accumulate

ntra-domain variance (Tsai et al., 2018; Yan et al., 2019). Secondly,
lass imbalance is prevalent in the actual land cover patterns. The
ost common category may cover an area hundreds of times larger

han some other categories. During a global alignment, a few common
ategories may, thus, pull the entire domain toward their optimal
istribution, causing negative adaptation to other categories.

To improve the performance of UDA, recent works (Xu et al., 2020;
hang et al., 2021a; Wang et al., 2022) have combined distribution
lignment with pseudo-labeling. The main idea of pseudo-labeling is
o select valuable samples from the target domain for model train-
ng according to the predicted classification confidence. However, the
uality of pseudo-labels depends on the way they are selected. The
urrent approaches are empirically choosing a confidence threshold (Xu
t al., 2020; Peng et al., 2021) or setting a fixed proportion for sam-
le collection (Tong et al., 2020; Zhang et al., 2021a; Yan et al.,
019; Wang et al., 2022), which is hard to guarantee the accuracy of
seudo-labels assigned by the prediction model to its unknown domain.
urthermore, the model always tends to select more easy samples,
hich may exacerbate the category imbalance. These issues make it
ifficult for existing UDA methods to satisfy the demands of large-scale

and cover mapping applications.
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Fig. 1. Left: Distribution of 150 images of Five-Billion-Pixels. Right: Examples of GF-2 images and their corresponding label maps, where black indicates unlabeled areas. The
category system covers artificial-constructed, agricultural, and natural classes.
1.3. Contribution of this paper

To address the above-mentioned problems, in this paper, we pro-
pose the Five-Billion-Pixels dataset, which extends the land cover dataset
GID (Tong et al., 2020; Yang et al., 2022). Instead of 5/15 basic
categories of GID, it contains more than 5 billion labeled pixels of 150
high-resolution Gaofen-2 (GF-2) satellite images annotated in a more
complete category system, consisting of 24 land use and land cover
classes. Then, we propose a UDA approach for practical large-scale land
cover mapping. Instead of the domain alignment strategy, our approach
lets the deep model already defined on the source domain gradually
and adaptively learn the distribution of the target domain. Concretely,
we introduce a Siamese network (Zagoruyko and Komodakis, 2015)
with two branches that separately generate feature maps for images
from the source and target domain. The branches share the same fully
convolutional architecture and the same parameters pre-trained on
Five-Billion-Pixels. In the target domain branch, information entropy
of the feature maps is treated as the indicator to select image pixels
with high confidence, and category predictions on the selected pixels
are considered as pseudo-labels. These pseudo-labels are then used to
construct a joint classification loss with the source domain branch.
To trade off the adaptation over two domains, the number of pixels
assigned with pseudo-labels is dynamically changed with training it-
erations. To prevent over-adaptation to some common categories, the
joint classification loss is weighted according to the class distribution
in the source domain.

The main contributions of this paper are as follows:

- We present a large-scale land cover classification dataset, Five-
Billion-Pixels. It has the spatial resolution of 4 m, covers areas over
50,000 km2 in China, and contains more than 5 billion labeled
pixels. Its category system covers artificial-constructed, agricultural,
and natural classes, which well-reflects the distribution of real-
world ground objects and can widely benefit land-cover-related
studies.

- We propose a deep-learning-based UDA approach for large-scale
land cover mapping. It avoids changing the domain distributions
in a rigid way but softly corrects the domain shifts according
to the knowledge learned in the source domain. The negative
adaptation caused by intra-domain diversity and class imbalance
can, therefore, be mitigated by our approach even under very
complicated practical situations.
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- We carry out land cover mapping on five megacities in China and
six cities in other five Asian countries severally using unlabeled
PlanetScope (3 m), Gaofen-1 (8 m), and Sentinel-2 (10 m) satellite
images. Encouraging experimental results are achieved over a
total area of 60,000 km2, demonstrating the potential of the
proposed dataset and approach for high-quality, detailed land
cover mapping across the whole country of China and some other
Asian countries at meter-resolution.

Our data and code will be available online at https://x-ytong.
github.io/project/Five-Billion-Pixels.html.

2. Study data

To reduce the gap between high-resolution land cover datasets
and real-world application requirements, we reorganize and augment
the category system of the land cover dataset GID. GID is available
in versions with 5/15 classes; interested readers can refer to Tong
et al. (2020) and Yang et al. (2022). Our new dataset, named Five-
Billion-Pixels, consists of 150 GF-2 satellite images annotated in a more
complete category system (see Fig. 1). It has the advantages of rich cat-
egories, large coverage, wide distribution, and high-spatial resolution
of 4 m.

For the case study of large-scale land cover mapping, we perform
land cover classification for five megacities in China and six cities
in other five Asian countries using three data sources with diverse
spatial resolutions. Concretely, for Chinese megacities, PlanetScope
(PS) satellite images are used for Chengdu and Shanghai, Gaofen-
1 (GF-1) satellite images are used for Wuhan, and Sentinel-2 (ST-2)
satellite images are used for Beijing and Guangzhou. And for other
Asian cities: Bangkok, Thailand; Delhi, India; Naypyidaw, Myanmar;
Seoul, South Korea; Tokyo, Japan; and Yangon, Myanmar, ST-2 satellite
images are used. The Chinese megacities cover a total geographical
area of 53,088 km2 and are separately located in the eastern, western,
northern, southern, and central regions of China. And the other six
Asian cities are located in South, Southeast, and East Asia, respectively.

The Five-Billion-Pixels dataset is introduced in Section 2.1, and the
study areas with their data sources are introduced in Section 2.2.

2.1. Five-Billion-Pixels

2.1.1. Gaofen-2 imagery
GF-2 is the second satellite of the High-Definition Earth Observation

System (HDEOS) promoted by China National Space Administration

https://x-ytong.github.io/project/Five-Billion-Pixels.html
https://x-ytong.github.io/project/Five-Billion-Pixels.html
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Fig. 2. Examples of annotation details. Miscellaneous or unclear areas that are extremely difficult to annotate are considered as unlabeled. The labeled areas are double-checked
and ensured to be correct.
(CNSA). It is equipped with two panchromatic and multispectral (PMS)
sensors, providing a combined swath of 45 km. The effective spatial
resolution of the sensors is 1 m panchromatic (pan)/4 m multispectral
(MS). The MS images we used to construct Five-Billion-Pixels possess
a spectral range of blue (0.45−0.52 μm), green (0.52−0.59 μm), red
(0.63−0.69 μm), and near-infrared (0.77−0.89 μm), with an image
resolution of 6800 × 7200 pixels. Owing to the combination of high-
resolution and wide swath, GF-2 allows the observation of detailed land
information over large geographical areas.

2.1.2. Creation of Five-Billion-Pixels
The creation of Five-Billion-Pixels fully relied on human manual an-

notation. To maximize label consistency and minimize human error, the
annotation process contains four phases: coarse labeling, fine labeling,
fine checking, and spot checking.

First, the category system of Five-Billion-Pixels is determined with
reference to Chinese Land Use Classification Criteria (GB/T 21010-
2017), and the classes are adjusted based on the recognizability of 4
m-resolution optical remote sensing images. During the coarse labeling
process, the interpretation experts roughly delineate regions belonging
to different classes on each GF-2 image according to the category
system. For uncertain areas, Google Earth and Google Map with cor-
responding geographic coordinates are considered as references. These
rough annotations are then passed to the labeling crew for fine labeling.
The labeling crew uses the lasso tool in Adobe Photoshop software
to frame the ground objects so that the edge of the label map and
the edge of the ground objects can be strictly coincident; some details
of annotations are presented in Fig. 2. Fine checking consists of two
rounds, check of categories and check of edges. The interpretation
experts carefully collate each area of each label map and mark the
inaccurate categories or edges, which are then passed to the labeling
crew for correction. The final spot checking is to slice GF-2 images and
corresponding label maps into 500 × 500-pixel patch pairs, at which
scale it is easier to find errors, and present the patch pairs randomly
to the interpretation experts for inspection. The inspection results are
then given to the labeling crew for modification, and the interpretation
experts conduct the next round of spot checking on the revised results.
In the final round of spot checking, 10% samples of Five-Billion-Pixels
are examined and no obvious errors are observed.

2.1.3. Properties of Five-Billion-Pixels
Rich Categories: The category system of Five-Billion-Pixels con-

cretely includes: industrial area, urban residential, rural residential, sta-
dium, square, road, overpass, railway station, airport, paddy field, irrigated
field, dry cropland, garden land, arbor forest, shrub forest, park, natural
meadow, artificial meadow, river, lake, pond, fish pond, snow, bare land.
Miscellaneous or unclear areas that are extremely difficult to annotate
are considered as unlabeled. This category system covers artificial-
constructed, agricultural, and natural classes, more closely resembling
the distributions of ground objects in the real world. Notably, the
181

category system contains a number of land use classes subdivided from
land cover classes in GB/T 21010-2017, including: stadium and square
from public service land; road, overpass, railway station, and airport
from transportation land; park and artificial meadow from artificial
non-agricultural vegetated areas. This is designed to make full use
of the spatial information of high-resolution images and to enrich
the application scenarios of urban environmental analysis. As Five-
Billion-Pixels are mainly collected from human activity areas (cities,
villages, cultivated lands, and mountainous areas around cities), the
category system covers all land categories except mangroves, tundra
and permanent ice. The percentage of pixels belonging to each category
among all labeled pixels is listed in Table 1.

Large Coverage: The 150 GF-2 satellite images contained in Five-
Billion-Pixels have a total geographical coverage of over 50,000 km2.
On this basis, more than 5 billion pixels are carefully annotated, which
can provide abundant samples for advancing research in data-driven
methodologies.

Wide Distribution: The image source of Five-Billion-Pixels is col-
lected from more than 60 dispersed administrative districts in China,
as Fig. 1 shows. Due to the wide geographical distribution, Five-Billion-
Pixels can reflect the variation of landscapes with different climate,
altitude, and geology.

2.2. Study areas and data sources

2.2.1. Chinese megacities
We select five Chinese megacities with diverse geographical envi-

ronments, development degrees, and city structures as our study areas:
Beijing, Chengdu, Guangzhou, Shanghai, and Wuhan.

Real-time, large-scale land cover mapping may require the joint use
of images captured by multiple sensors; hence, the adaptation of the
classification approach to diverse sensors is of great significance. Based
on this consideration, we construct our study areas with imageries from
three different sensors, as shown in Fig. 3.

Specifically, the study data of Beijing are mosaicked from 9 ST-2 im-
ages acquired between November 8, 2020, and October 21, 2021. The
data of Chengdu are mosaicked from 205 PS images captured between
January 13, 2019, and December 31, 2019. The data of Guangzhou are
mosaicked from 3 ST-2 images collected between February 18, 2021,
and October 26, 2021. The data of Shanghai are mosaicked from 149 PS
images obtained between April 1, 2019, and December 13, 2019. And
the data of Wuhan are mosaicked from 22 GF-1 images taken between
March 28, 2016, and July 25, 2016.

There is great heterogeneity in images acquired by different sensors.
And, due to the impact of cloud obscuration, swath width, and revisit
period, it is necessary to utilize images captured in different seasons and
lighting conditions to mosaic the complete image map for each city. As
a result, not only are there significant differences between data sources,
but there are also distribution shifts between images within each city,

as displayed in Fig. 4.
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Table 1
The percentage of the number of pixels belonging to each category. The abbreviations for categories are defined as: Indu - industrial area, Urba - urban residential, Rura - rural
residential, Stad - stadium, Squa - square, Over - overpass, Rail - railway station, Airp - airport, Padd - paddy field, Irri - irrigated field, Dryc - dry cropland, Gard - garden land, Arbo -
arbor forest, Shru - shrub forest, Natu - natural meadow, Arti - artificial meadow, Rive - river, Fish - fish pond, Bare - bare land. The category proportion is not deliberately controlled,
but it is labeled according to the distribution of real-world ground objects. As can be seen, the category distribution of Five-Billion-Pixels is quite imbalanced.

Category Indu Urba Rura Stad Squa Road Over Rail Airp Padd Irri Dryc
Percent (%) 3.57 5.60 4.39 0.02 0.02 3.57 0.23 0.08 0.09 2.40 37.26 6.65

Category Gard Arbo Shru Park Natu Arti Rive Lake Pond Fish Snow Bare
Percent (%) 0.91 8.05 3.80 0.05 1.65 0.36 5.08 9.87 1.03 1.12 0.03 4.16
Fig. 3. Chinese megacities and their locations.
Fig. 4. Each column indicates images from the same city. There are obvious spectral shifts even between images within the same city due to differences in imaging illumination
and season. In addition, spatial resolutions of different data sources are distinctly diverse. These heterogeneities pose huge challenges to land cover mapping.
2.2.2. Additional Asian cities
To verify the applicability of our approach to different regions in

the world, we select six cities in five Asian countries as study areas:
Bangkok, Thailand; Delhi, India; Naypyidaw, Myanmar; Seoul, South
Korea; Tokyo, Japan; and Yangon, Myanmar, as shown in Fig. 5.

The data source used for land cover mapping of these Asian cities is
ST-2 satellite imagery. And the images for Bangkok, Delhi, Naypyidaw,
Seoul, Tokyo, and Yangon are separately captured on January 6, 2022;
March 5, 2022; February 1, 2022; May 17, 2022; February 21, 2021;
and January 7, 2022.

As can be seen, although we treat ‘‘city’’ as study subject, our
experimental areas actually contain other types of landscapes besides
built-up. For Chinese megacities, their administrative regions cover
182
large agricultural land and forests, and for the additional Asian cities,
we classify the entire images, i.e. including the surrounding areas
outside the administrative regions. Therefore, these study areas can test
the performance of classification approaches for urban, countryside,
agricultural, and mountainous scenes.

2.2.3. Data sources
PlanetScope: PS is a satellite constellation of about 130 individual

CubeSats operated by American Planet Lab. Its sensors capture MS
images in blue (0.46−0.52 μm), green (0.50−0.59 μm), red (0.59−0.67
μm), and near-infrared (0.78−0.86 μm) bands with a spatial resolution
of 3.7−4.1 m, which is resampled to approximately 3 m at data release.
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Fig. 5. Administrative areas of six Asian cities on ST-2 images.
Fig. 6. Two annotation strategies for quantitative evaluation. Sparse label: small polygons are evenly labeled throughout the entire image. Dense label: sub-regions with sizes of
1000 × 1000 and 500 × 500 pixels are labeled for Chinese megacities and the additional Asian cities, respectively.
Gaofen-1: GF-1 is the first satellite of HDEOS proposed by China. It
is configured with two PMS, providing a spatial resolution of 2 m pan/8
m MS and a combined swath of over 60 km. The MS images used in our
study cover the spectral range of blue (0.45−0.52 μm), green (0.52−0.59
μm), red (0.63−0.69 μm), and near-infrared (0.77−0.89 μm).

Sentinel-2: ST-2 is an Earth observation mission from the European
Union’s Copernicus Programme. It currently comprises a constellation
with two satellites, Sentinel-2 A and Sentinel-2B, offering 13 spectral
bands and a field of view of 290 km. Blue (central wavelength 0.49 μm),
green (central wavelength 0.56 μm), red (central wavelength 0.66 μm),
and near-infrared (central wavelength 0.83 μm) bands with a resolution
of 10 m are used in our study. Because of the free, open data policy
and the advantages in spatial and spectral resolution, ST-2 is one of
the most commonly used data sources for recent land cover mapping
studies (Griffiths et al., 2019; Ienco et al., 2019; Xu and Somers, 2021).

2.2.4. Test areas
Because the study areas are overly large, it is impossible to densely

annotate each test image for quantitative evaluation. We therefore
adopt two annotation strategies, sparse labeling and dense labeling.
Concretely, sparse labeling is to evenly annotate small polygons on
each image of each city, and dense labeling is to densely annotate
183
sub-regions for each city. For dense labeling strategy, each Chinese
megacity is labeled with two sub-regions of 1000 × 1000 pixels, and
each additional Asian city is labeled with a sub-region of 500 × 500
pixels since their administrative districts are smaller, as illustrated in
Fig. 6.

In total, the five Chinese megacities are sparsely labeled with 5.21×
107 pixels and densely labeled with 7.77×106 pixels, and the percentage
of each category in test areas is displayed in Table 2.

The additional Asian cities are sparsely labeled with a total of
2.40 × 106 pixels and densely labeled with a total of 1.29 × 106 pixels,
and the percentage of each category in test areas is listed in Table 3.

Sparse label covers all categories and can be used to evaluate the
performance of classification on the entire images. And dense label
can be utilized to verify the fineness of the classification results in
local areas. Note that these annotations are only used for accuracy
assessment and not for model training.

3. Methodology

To adapt the knowledge learned from the labeled dataset to land
cover mapping of large-scale areas, we propose a UDA approach that
can softly correct the domain shifts by adaptively learning the distri-
bution of unlabeled data. We refer to two domains, the source domain
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Table 2
The percentage of the number of pixels belonging to each category in Chinese megacity test areas. Sparse label contains 5.21 × 107 pixels and dense label covers 7.77 × 106

pixels.
Category Indu Urba Rura Stad Squa Road Over Rail Airp Padd Irri Dryc
Sparse (%) 7.04 5.49 2.93 1.02 0.50 11.25 2.66 2.25 1.96 1.89 18.11 1.50
Dense (%) 9.36 35.00 8.51 0.09 0.07 6.80 0.50 0.15 0.28 8.53 13.82 0.07

Category Gard Arbo Shru Park Natu Arti Rive Lake Pond Fish Snow Bare
Sparse (%) 3.44 6.45 0.45 2.28 1.41 0.65 14.47 7.47 1.34 1.64 0.61 3.16
Dense (%) 0.34 2.58 0.08 1.23 0.07 0.37 5.64 0.72 0.53 4.72 0 0.56
Table 3
The percentage of each category in the additional Asian city test areas. Sparse label includes 2.40 × 106 pixels and dense label covers 1.29 × 106 pixels.

Category Indu Urba Rura Stad Squa Road Over Rail Airp Padd Irri Dryc
Sparse (%) 5.81 3.89 11.56 0.29 0.35 4.75 0.94 0.69 1.20 5.72 31.39 0.19
Dense (%) 5.47 6.91 44.32 0 0 5.21 0.42 0.10 0.60 6.92 20.68 0

Category Gard Arbo Shru Park Natu Arti Rive Lake Pond Fish Snow Bare
Sparse (%) 2.23 12.05 0.97 0.39 0.07 0.33 7.46 4.56 2.39 0.25 0.24 2.26
Dense (%) 0.25 5.16 0.27 0 0 0.05 3.15 0 0.17 0 0 0.32
Fig. 7. Approach overview. We construct a Siamese network with two branches separately generating feature maps for images from 𝑫𝑺 and 𝑫𝑻 . In the target domain branch,
image pixels with high-confidence are assigned pseudo-labels. These pseudo-labels are then used to construct a joint classification loss with the source domain branch. U-Net is
used as the backbone of the Siamese network.
as 𝑫𝑺 and the target domain as 𝑫𝑻 , representing the Five-Billion-Pixels
dataset and the unannotated images used for land cover mapping,
respectively.

First, we utilize 𝑫𝑺 to pre-train a semantic segmentation model,
which is presented in Section 3.1. Subsequently, we take the pre-trained
semantic segmentation model as the backbone to construct a Siamese
network, of which the two identical branches separately process images
for 𝑫𝑺 and 𝑫𝑻 . In the 𝑫𝑻 branch, a fraction of image pixels with high
confidence is selected and then used to perform domain joint learning
with the 𝑫𝑺 branch, which is described in Section 3.2.

3.1. Semantic segmentation model for land cover classification

There are two general strategies for deep-learning-based land cover
classification: object-oriented approaches based on DCNNs and seman-
tic segmentation approaches based on end-to-end DCNNs. The former
ones use DCNNs to process images in the form of fixed-sized patches,
and then distinguish deep features with shallow classifiers or directly
employ the category predictions of DCNNs, to perform classification
based on object-spatial units (Huang et al., 2018a; Zhang et al., 2019;
Srivastava et al., 2019; Tong et al., 2020). In contrast, semantic segmen-
tation models can predict dense classification maps for arbitrary-sized
images in an end-to-end, pixels-to-pixels manner (Wurm et al., 2019;
Chen et al., 2020; Mou et al., 2019).

The latest semantic segmentation models typically consist of two
main paths: the encoder path that gradually reduces feature map size
184
and captures higher-level information, and the decoder path that gradu-
ally recovers spatial resolution as well as clear object boundaries (Chen
et al., 2018). In our work, we adopt U-Net (Ronneberger et al., 2015)
as the backbone for land cover classification and domain adaptation.
It is worth noting that U-Net specially achieves concatenation of each
corresponding encoding and decoding stages using skip connection of
feature maps, as illustrated in Fig. 7, so that more raw information
of the input image is retained and added to the decoding path. This
design helps to compensate for the information loss in the encoding
path, which is significant for the classification of satellite images that
rely heavily on spectral information.

To enable U-Net to process MS remote sensing images, we adjust
the channel number of its input to 4, i.e., we change the kernel size of
its first convolutional layer from 3 × 3 × 3 to 3 × 3 × 4. In addition, we
adjust the channel number of its output feature map according to our
category system, i.e., we set the kernel number of its last convolutional
layer to 24.

3.2. Domain joint learning for unsupervised domain adaptation

To adapt DCNNs to a new domain, there is no better way than
having examples of its feature distribution (Tuia et al., 2016). Faced
with 𝑫𝑻 without annotation information, we are inspired by pseudo-
labeling (Lee et al., 2013; Tong et al., 2020) and propose a UDA
approach that collects reliable pixel-wise examples from 𝑫𝑻 for model
adaptation. Compared to discrepancy-based and adversarial-based UDA
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Fig. 8. (a) Pseudo-label assignment. (b) Dynamic labeling and class balancing. The number of pixels assigned pseudo-labels is dynamically changed with training iterations, and
the joint classification loss is weighted according to the class distribution in 𝑫𝑺 .
methods, which force the two distributions to be aligned in feature
space, pseudo-labeling is more flexible and potentially more depend-
able for complicated real-world situations.

To prevent DCNNs from biasing toward incorrect pseudo-labels or
categories of easy samples, our approach introduces a Siamese net-
work (Section 3.2.1) to collect pseudo-labels of which the number is
dynamically increased with training iterations (Section 3.2.2). These
pseudo-labels are used to train jointly with the true labels from 𝑫𝑺 ,
and the joint classification loss is weighted according to the category
distribution of 𝑫𝑺 (Section 3.2.3).

3.2.1. Siamese network
To avoid introducing incorrect category information in the training,

only a very small number of pseudo-labels are used in the initial
iterations of domain joint learning, which leads to two problems: (1)
𝑫𝑻 can only provide very few training samples at the beginning; (2) the
samples selected from 𝑫𝑻 may be extremely homogeneous. Therefore,
to ensure that the parameters of DCNNs are effectively updated at each
training iteration, we pre-train U-Net on 𝑫𝑺 and use it as the backbone
to construct a Siamese network. Siamese network has two branches,
each of which have an input and an output (Zagoruyko and Komodakis,
2015). The two branches have an identical architecture and share
the same parameters during both initialization and training, which
allows the Siamese network to learn information from two distributions
simultaneously, as presented in Fig. 7.

Formally, given 𝑫𝑺 ⊂ R𝐻×𝑊 ×4 along with associated labels 𝐿𝑺 ⊂
[1, 𝐾]𝐻×𝑊 , and unlabeled 𝑫𝑻 ⊂ R𝐻×𝑊 ×4, where 𝐻 × 𝑊 indicates the
size of images and label maps, 𝐾 is the total number of classes. The
two branches of the Siamese network separately take images 𝑥𝑺 ∈ 𝑫𝑺
and 𝑥𝑻 ∈ 𝑫𝑻 and predict 𝐾-dimensional feature maps 𝐹𝑥𝑺 ∈ R𝐻×𝑊 ×𝐾

and 𝐹𝑥𝑻 ∈ R𝐻×𝑊 ×𝐾 .

3.2.2. Dynamic pseudo-label assignment
Unlike the existing pseudo-labeling methods that empirically choose

a threshold (Xu et al., 2020; Peng et al., 2021) or set a fixed pro-
portion for sample collection (Zhang et al., 2021a; Yan et al., 2019;
Tong et al., 2020), we assign pseudo-labels to a dynamic number of
samples at different training epochs, as demonstrated in Fig. 8. Shannon
Entropy (Xu et al., 2020) is employed as our indicator to quantify the
confidence of each image pixel. Lower information entropy represents
higher classification confidence. In the 𝑫𝑻 branch, entropy map 𝐸𝑥𝑻 ∈
R𝐻×𝑊 is calculated as

𝐸(ℎ,𝑤)
𝑥𝑻

= −1
log(𝐾)

𝐾
∑

𝑘=1
𝐹 (ℎ,𝑤,𝑘)
𝑥𝑻

log(𝐹 (ℎ,𝑤,𝑘)
𝑥𝑻

), (1)

where 𝐸(ℎ,𝑤) ∈ [0, 1] is the value of 𝐸 at pixel (ℎ,𝑤).
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𝑥𝑻 𝑥𝑻
We arrange all the pixels in entropy map 𝐸𝑥𝑻 in ascending order
and select the first 𝑁 pixels, where

𝑁 = 𝜆 ⋅𝐻 ⋅𝑊
𝑛𝑒
𝑁𝑒

, (2)

where 𝑛𝑒 denotes that the current training is the 𝑛𝑒th epoch, 𝑁𝑒 is the
total number of training epochs, and 𝜆 is used to control the overall
size of pseudo-labels. At the end of training, the proportion of selected
pixels in all pixels of 𝑥𝑻 is 𝜆.

An intuitive interpretation of this design is that the network may
give reliable predictions for only a small number of pixels when it is not
adapted to 𝑫𝑻 , and as the network gradually learns the distribution of
𝑫𝑻 , it can make reliable predictions for an increasing number of pixels.

For the selected pixel located at (ℎ,𝑤), the softmax function is used
to obtain its category probability vector:

𝑃 (ℎ,𝑤)
𝑥𝑻

=
exp(𝐹 (ℎ,𝑤)

𝑥𝑻 )
∑𝐾

𝑘=1 exp(𝐹
(ℎ,𝑤,𝑘)
𝑥𝑻 )

, (3)

where 𝐹 (ℎ,𝑤)
𝑥𝑻 ∈ R𝐾 is the feature vector of pixel located at (ℎ,𝑤), and

𝑃 (ℎ,𝑤)
𝑥𝑻 ∈ R𝐾 , of which the 𝑘th element represents the probability that

this pixel belongs to class 𝑘.
And its pseudo-label is assigned as

𝑙(ℎ,𝑤) = arg max
𝑘∈{1,…,𝐾}

𝑃 (ℎ,𝑤,𝑘)
𝑥𝑻

, (4)

where 𝑙(ℎ,𝑤) ∈ {1,… , 𝐾}.

3.2.3. Class-balanced domain joint training
Class balancing is a common strategy for the training of semantic

segmentation models (Long et al., 2015), but it is rarely used in UDA
approaches because the category information in the target domain is
unknown. Since we assign pseudo-labels to 𝑫𝑻 , it is possible to reduce
the distribution bias caused by unbalanced categories through this
strategy.

For 𝑫𝑺 , we count the ratio of the number of pixels in each category
to the number of all labeled pixels. Supposing that the ratio of the class
𝑘 is 𝜇𝑘, its weight is

𝑊𝑘 = 1
log(1 + 𝜇𝑘)

. (5)

Then, the loss function of the 𝑫𝑻 branch is calculated as

𝑜𝑠𝑠𝑫𝑻
=

𝑁
∑

𝑛=1
𝑊𝑙𝑛𝐶𝐸 (𝑙𝑛, 𝑃 𝑛

𝑥𝑻
), (6)

where 𝐶𝐸 (⋅) is the Cross Entropy loss function, 𝑙𝑛 and 𝑃 𝑛
𝑥𝑻

denote
the pseudo-label and the category probability vector of the 𝑛th pixel
selected from 𝑥 , respectively.
𝑻
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If there are errors in pseudo-labels, a small number of mistakes
may eventually lead to a relatively large bias during the iterative
training. When gradually learning the distribution of 𝑫𝑻 , to maintain
the discrimination of the network for the true labels, we adopt joint
learning of both the 𝑫𝑺 branch and the 𝑫𝑻 branch. The overall loss
unction of the Siamese network is

𝑜𝑠𝑠 = 𝑜𝑠𝑠𝑫𝑺
+ 𝑜𝑠𝑠𝑫𝑻

, (7)

here 𝑜𝑠𝑠𝑫𝑺
is calculated by all pixels of 𝑥𝑺 and is also applied with

lass-balanced weighting.
When the training of the Siamese network is completed, forward

ropagation is performed on only one of the branches during the
nference phase.

. Experiments

Our experiments comprise two parts: (1) to explore the perfor-
ance of different land cover classification approaches, we provide
benchmark on Five-Billion-Pixels of three types of representative al-

orithms, including object-oriented classification based on spectral–
patial features, object-oriented classification based on deep learning,
nd semantic segmentation based on deep learning; (2) to validate the
ffectiveness of the proposed UDA approach, we perform practical land
over mapping on 11 cities using images from three different sensors.
he implementation details, comparison approaches, and evaluation
etrics are introduced in Section 4.1. Section 4.2 presents the bench-
ark on Five-Billion-Pixels. Section 4.3 presents the results of land cover
apping.

.1. Experimental setup

.1.1. Setup for benchmark on Five-Billion-Pixels
Data Processing: Since object-oriented approaches and semantic

egmentation approaches have different requirements for training data,
.e., object-oriented approaches only allow each input sample to have
ne label, while semantic segmentation approaches require a label for
ach pixel of input sample, we prepare different training data for them.
he Five-Billion-Pixels dataset is randomly divided into a training set of
20 images and a test set of 30 images. For the two types of object-
riented approaches, we train the models using image patches with
ultiple scales (Tong et al., 2020). The patch scales are set to the

ptimal values. Specifically, patches of sizes 64 × 64 and 128 × 128
ixels are randomly sampled from images of the training set. If more
han 80% pixels in a patch are covered by the same category, this patch
s considered as a training sample. The ratio of the number of 64 ×
4-pixel patches to the number of 128 × 128-pixel patches is 3∶1. In
articular, for road, the size of all patches is 32 × 32 pixels. To balance
he categories, we control the proportion of patches belonging to each
lass. A total of 130,000 multi-scale patches are randomly selected for
odel training. For semantic segmentation approaches, the original

arge images are cropped into image tiles with a size of 512 × 512 pixels
or model training. To improve the training efficiency, we only use tiles
hat are more than 50% annotated and contain two or more categories.

total of 40,000 tiles are randomly selected from 120 training images.
Baseline Methods: For object-oriented classification based on

pectral–spatial features, we employ multi-feature fusion strategy to
ggregate spectral feature and gray-level co-occurrence matrix (GLCM)
Haralick et al., 1973) by normalization and vector concatenation.
ulti-layer perceptron (MLP) and random forest (RF) are utilized as

lassifiers. Selective search (Uijlings et al., 2013) is adopted for object-
patial unit segmentation. The parameters of these methods are set to
he optimal values. The window size of GLCM is 7 × 7 pixels. MLP has

hidden layers with 20 nodes per layer. The number of trees for RF
s 500. The initial segmentation size is 400 pixels for selective search.
lassifiers are trained with image patches and are used to classify test

mages in units of objects.
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For object-oriented classification based on deep learning, we em-
loy two representative DCNNs: GoogLeNet (Szegedy et al., 2015) and
esNet-101 (He et al., 2016). Both models are trained with the same
yper-parameters. The epoch number is 120, the batch size is 256,
he momentum value is 0.9, and the weight decay is 10−4. The initial
earning rate is 0.1 and is divided by 10 after every 30 epochs. In
raining, image patches are uniformly resized to 224 × 224 pixels
efore being input to the models, and 20% patches are used for model
alidation. Image augmentation strategies are adopted. In the testing
hase, selective search is used for object segmentation with an initial
egmentation size of 400 pixels. The test images are classified in
nits of 64 × 64-pixel patches and then the patch-level classification
ap and the object-level segmentation map are combined via voting

trategy (Tong et al., 2020).
For semantic segmentation based on deep learning, we utilize U-

et (Ronneberger et al., 2015) and DeepLabv3+ (Chen et al., 2018) as
aseline models. The backbone chosen for DeepLabv3+ is ResNet-101
re-trained on Five-Billion-Pixels. And the out stride of DeepLabv3+ is
et to 16. The weights of U-Net are randomly initialized. Both models
re trained under the same conditions. The epoch number is 120, the
atch size is 32, the momentum value is 0.9, the weight decay is 10−5.
he initial learning rate is 0.05, and the poly learning policy (Chen
t al., 2017a) is used to adjust the learning rate during epochs. In
he loss function, unlabeled regions are ignored, and class-balanced
eighting is implemented according to Table 1. During training, 20%

iles are randomly selected for model validation. Image augmentation
trategies are adopted. In the testing phase, models directly segment
he test images in units of 512 × 512-pixel tiles, and the overlap-tile
trategy (Ronneberger et al., 2015) is used to prevent context missing
n the border region of tiles, where the overlap ratio is set to 50%.
Evaluation Metrics: We assess the experimental results with overall

ccuracy (OA), mean F1-score (mF1), mean intersection over union
mIOU), and user’s accuracy (UA). mF1 is the category mean of F1-
core. mIOU is the category mean of the intersection over union (IOU),
nd IOU is obtained by dividing the intersection of prediction and truth
y their union (Long et al., 2015). mF1 and mIOU describes the ability
f the model to minimize both overestimation and underestimation for
ach category. UA indicates the performance of the model in reducing
verestimation (Olofsson et al., 2014).

.1.2. Setup for land cover mapping
Data Processing: To adapt deep models to satellite images with

ifferent resolutions, we construct a multi-scale source domain using
ive-Billion-Pixels. Image tiles with different sizes are randomly cropped
rom GF-2 according to the spatial resolution of multiple data sources,
ncluding 512 × 512, 1024 × 1024 (for GF-1), and 1280 × 1280 (for
T-2) pixels, and are then uniformly resized to 512 × 512 pixels. Since
he 3 m resolution of PS is obtained by resampling the raw data and
ts effective spatial resolution is 3.7−4.1 m, we use the original image
esolution of GF-2 to adapt it. The total number of tiles in the source
omain is 12,800, and the ratio of the three sizes is 2∶1∶1.

We prepare a data domain for each target city. The raw satellite
mages are cropped into non-overlapping tiles with a size of 512 ×
12 pixels. In particular, PS images are resized to 3∕4 of their original
mage resolution before cropping, equivalent to restoring their spatial
esolution to 4 m. The target domains of Beijing, Chengdu, Guangzhou,
hanghai, and Wuhan consist of 4126 ST-2 image tiles, 4144 PS image
iles, 1398 ST-2 image tiles, 3117 PS image tiles, and 1764 GF-1
mage tiles, respectively. And the target domains of Bangkok, Delhi,
aypyidaw, Seoul, Tokyo, Japan, and Myanmar separately contains
41 ST-2 image tiles.
Comparison Methods: We compare our approach with the recent

eading and representative UDA methods: AdaptSeg (Tsai et al., 2018),
dvEnt (Vu et al., 2019), CLAN (Luo et al., 2019), and FADA (Wang
t al., 2020), where AdaptSeg and CLAN are adversarial-based do-

ain alignment methods, while AdvEnt and FADA combine adversarial
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Table 4
Benchmark on Five-Billion-Pixels. The abbreviations for categories are defined as: Indu - industrial area, Urba - urban residential, Rura - rural residential, Stad - stadium, Squa - square,
Over - overpass, Rail - railway station, Airp - airport, Padd - paddy field, Irri - irrigated field, Dryc - dry cropland, Gard - garden land, Arbo - arbor forest, Shru - shrub forest, Natu -
natural meadow, Arti - artificial meadow, Rive - river, Fish - fish pond, Bare - bare land. Accuracy results are expressed as percentage values (%).

Method OA mF1 mIOU UA: Indu Urba Rura Stad Squa Road Over Rail Airp Padd

MLP+Fusion 23.89 15.81 9.78 48.49 38.58 13.69 0 0 9.27 0.76 0 0 22.90
RF+Fusion 27.40 17.16 10.23 38.36 23.30 11.99 0.65 0.41 10.39 0.80 0.05 3.13 22.21
GoogLeNet 69.19 39.70 28.99 51.07 66.68 71.95 78.30 8.54 37.87 14.35 15.70 34.92 47.58
ResNet101 69.55 45.73 33.59 58.44 69.22 70.89 82.55 8.93 42.70 12.20 27.32 54.05 50.71
DeepLabv3+ 79.87 54.84 42.12 76.87 74.89 79.80 86.36 18.11 82.59 58.50 56.16 24.40 64.53
U-Net 80.35 57.34 44.51 80.72 83.88 85.73 47.32 15.68 84.15 43.68 41.28 34.43 74.34

Irri Dryc Gard Arbo Shru Park Natu Arti Rive Lake Pond Fish Snow Bare

MLP+Fusion 47.11 20.85 6.44 54.01 0.58 0 33.21 2.51 52.99 73.68 5.91 22.35 0.13 0
RF+Fusion 59.05 29.21 2.61 58.53 0.43 0 37.22 3.65 44.96 65.04 7.88 31.98 4.50 21.47
GoogLeNet 85.25 77.70 10.29 82.88 12.89 18.14 64.47 51.88 72.53 71.60 9.89 55.53 0 71.78
ResNet101 87.45 79.20 14.23 86.61 17.08 18.40 69.77 64.59 67.01 69.28 9.45 59.41 52.44 78.47
DeepLabv3+ 87.80 79.18 14.40 94.38 19.80 56.49 81.75 81.00 91.71 75.12 21.23 76.13 86.60 90.57
U-Net 88.86 81.30 38.05 95.42 25.39 42.92 87.10 68.66 63.58 70.48 21.89 78.75 35.83 96.17
i
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domain alignment and pseudo-label learning. Specifically, AdaptSeg in-
corporates adversarial learning at different feature levels of the segmen-
tation model; CLAN aligns each class with an adaptive adversarial loss
to enforce local semantic consistency; AdvEnt minimizes the prediction
entropy of the target domain using adversarial loss and pseudo-label
loss; FADA implements fine-grained class-level feature alignment based
on the class information of pseudo-labels. U-Net is used as the generator
for these comparison methods. We also test the combination of these
methods and our dynamic pseudo-label assignment approach by adding
their loss functions. In addition, the baseline method is U-Net trained
only with the source domain.

U-Net is initialized using the network parameters trained on Five-
Billion-Pixels (see Section 4.1.1). For our approach, the batch size
is 16 for both the source and target branches (total 32). For the
comparison approaches, the batch size is 32. This is because our
approach inputs the source and target data simultaneously, while the
comparison methods alternately inputs the source and target data. The
initial learning rate for our approach is 0.001. And for the comparison
approaches, the initial learning rate are 0.001 and 0.0001 for the
generator and discriminator, respectively. For all methods, the epoch
number is 100, the momentum is 0.9, the weight decay is 10−5, and
the poly learning policy is used to adjust the learning rate during
epochs. Image augmentation strategies are adopted. And class-balanced
weighting is implemented according to Table 1. For our approach, 𝜆
see Section 3.2.2) is empirically set to 0.5.

To prevent different target domains from interfering with each
ther, we separately train a model for each city. Since the tile number
f the source domain is much larger than those of the target domains, at
ach epoch in training, tiles of equal number to the target domain are
andomly selected from the source domain. This results in a different
ub-source domain at each epoch, allowing the model to select pixels
ith diversity from the target domain.

.2. Benchmark on Five-Billion-Pixels

The baseline results for Five-Billion-Pixels are listed in Table 4. It
can be seen that deep-learning-based methods bring huge performance
margins compared with methods based on spectral–spatial features and
shallow classifiers. This shows that conventional methods lack dis-
criminative ability for high-resolution images with complicated spatial
information.

Within deep-learning-based methods, semantic segmentation mod-
els (U-Net and DeepLabv3+) significantly outperform object-oriented
methods (ResNet101 and GoogLeNet). This is because semantic seg-
mentation models can capture contextual information over larger areas
and simultaneously maintain more accurate edges for ground objects
by assigning labels to each pixel. The performance advantages of deep
187

learning, especially of semantic segmentation models, demonstrate the
importance of large-scale, pixel-wise annotated datasets for advancing
land cover classification research.

ResNet101 behaves better than GoogLeNet in overall and has sig-
nificantly superior results on railway station, airport, shrub forest, natural
meadow, and artificial meadow. Owing to the residual connection struc-
ture (He et al., 2016) that enables the combination of different levels of
features, ResNet101 can learn low-level features to distinguish natural
classes as well as high-level features to identify artificial buildings with
complex structures.

DeepLabv3+ achieves the best results for urban functional areas,
ncluding stadium, square, overpass, railway station, park, and artifi-
ial meadow, which contain complicated spatial structures. Due to the
trous convolution (Chen et al., 2017b) and spatial pyramid pool-
ng (Chen et al., 2018) adopted in DeepLabv3+, it can capture multi-
evel contextual information for these categories. U-Net behaves best
n industrial area, urban residential, rural residential, different agricul-
ure, and different forest classes. The recognition of these categories
elies heavily on textural and spectral information. U-Net has stronger
iscriminative ability for them because it retains more raw image
nformation through the concatenation structure (Ronneberger et al.,
015).

Another issue worth noting is that regardless of the method type,
here are high performance discrepancies of different categories. For
nstance, all methods behave poorly on square, overpass, railway station,
irport, garden land, park, and pond. This is due to two factors, first,

these categories represent small percentages in the Five-Billion-Pixels
dataset, and second, they are inherently easier to confuse with other
categories. These classes cover a much smaller area in the cities com-
pared to residential and agricultural categories, and the models will be
biased towards common and simple classes in training. In addition, the
distinctive characteristic of these categories is that they are composed
of multiple basic ground cover types; for example, railway station
contains multiple tracks and stadium-like building roof, park includes
grass and woods, and airport contains roads and lawns, which causes
them to be easily misclassified into other categories. This is why even
if we control the proportion of different categories to be consistent in
the object-oriented approaches (see Section 4.1.1), their accuracy still
cannot be improved.

To demonstrate the results more intuitively, a set of land cover
classification maps is displayed in Fig. 9. MLP+Fusion can identify some
water areas, RF+Fusion can identify some water, built-up, and paddy
field areas, but the rest of the map is heavily confused. GoogLeNet
and ResNet101 fail in extracting road and misclassify paddy field into
fish pond. In contrast, DeepLabv3+ and U-Net can segment clear road
networks and different built-up areas. DeepLabv3+ performs better on
river than U-Net. And U-Net can recognize lake and irrigated field more
accurately.
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Fig. 9. A set of land cover classification maps of different baseline methods. (a) Input GF-2 satellite image. (b) Ground truth, where black indicates unlabeled areas. (c)–(h) Results
of MLP+Fusion, RF+Fusion, GoogLeNet, ResNet101, DeepLabv3+, and U-Net, respectively.
Fig. 10. Land cover mapping results for five Chinese megacities. Clear, detailed resulting maps can be found at https://x-ytong.github.io/project/Five-Billion-Pixels.html.
4.3. Land cover mapping

4.3.1. Experimental results of Chinese megacities
The land cover maps of five Chinese megacities are demonstrated

in Fig. 10. Although images from different sensors are utilized, and
there is no annotated information on them, our approach is able to
distinguish industrial area, urban residential in city center, rural residen-
tial dispersed in suburb, transportation networks, and river systems for
each city. Fish pond along the coast of Guangzhou and paddy field in the
suburbs of Wuhan are correctly identified. Obvious errors occur in the
forested mountains and at the mosaic borders. Small areas of mountains
around Beijing are misclassified as water bodies, and some areas of
mountains around Chengdu are misclassified as irrigated field. This is
caused by the severe spectral shifts due to different image sources and
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different imaging conditions. Unlike artificial-constructed categories,
the classification of natural classes relies more on spectral information.
When the spectral shifts are particularly significant, pseudo-labels in-
evitably contain errors, which will continuously accumulate in iterative
domain adaptation learning.

Table 5 displays the quantitative evaluation results based on differ-
ent test strategies. It can be seen that the results on dense label are
generally better than that on sparse label in OA, while sparse label
outperforms dense label in mF1 and mIOU. This is because mF1 and
mIOU are more sensitive to overestimation and underestimation, in
other words, the edges of the ground objects. And sparse label marks
only portions of the ground objects, while dense label strictly outlines
the edges of the ground objects, which leads to poorer mF1 and mIOU
results on dense label. Whereas OA is the accuracy of the entire test

https://x-ytong.github.io/project/Five-Billion-Pixels.html
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Fig. 11. Details of mapping results of different Chinese megacities. The first column shows partial regions of the input satellite images; the second column shows the corresponding
classification results. And in the third column, the classification results are overlaid on the input images, which demonstrates the performance more visually.
Table 5
Quantitative evaluation of land cover mapping for five Chinese megacities based on
sparse label and dense label. Accuracy results are expressed as percentage values (%).

Megacity Sparse label Dense label

OA mF1 mIOU OA mF1 mIOU

Beijing 70.86 49.76 39.72 87.45 42.43 33.02
Chengdu 71.21 51.06 39.70 76.64 35.99 26.03
Guangzhou 71.23 48.56 39.52 81.97 46.25 38.09
Shanghai 74.80 56.84 44.19 74.70 48.22 39.50
Wuhan 82.29 63.12 52.59 85.62 61.06 50.14

area, and sparse label which is distributed evenly over the entire images
contains more areas that are difficult to identify, e.g. complex urban
functional areas, it therefore has lower OA values. More classification
details are displayed in Fig. 11. Our approach achieves promising
performance on different built-up, traffic, and agricultural classes, as
well as river, and bare land.
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Table 6 shows the quantitative evaluation of different UDA ap-
proaches, where all accuracy results are averaged across the five megac-
ities. It can be seen that 𝑫𝑺 constructed by multi-scale GF-2 image tiles
brings a significant improvement compared to U-Net pre-trained with
single-scale tiles. This indicates that it is feasible to adapt models to
images with different spatial resolutions by using multi-scale source
domain data. There is a decline in performance of AdaptSeg, AdvEnt,
and CLAN compared to the baseline (𝑫𝑺 -only). This is due to the
negative adaptation caused by the complex feature distributions of
both the source and target domains. In addition, the size of 𝑫𝑺 is
much larger than that of 𝑫𝑻 , and each training epoch uses a differ-
ent sub-source domain (see Section 4.1.2), bringing more confusion
into UDA approaches based on domain distribution alignment. FADA
performs better than other comparison methods because FADA aligns
intermediate level features rather than deep pixel-level features, which
avoids rigid global matching. In addition, FADA achieves fine-grained
class-level feature alignment according to the category information
of pseudo-labels, thus alleviating the negative adaptation caused by
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Fig. 12. Details of performance of different UDA approaches on Chinese megacities. ‘‘Baseline’’ means only using 𝑫𝑺 to train the Siamese network. ‘‘DPA’’ indicates dynamic
pseudo-label assignment.
Table 6
Comparison with the recent leading UDA approaches on Chinese megacities. ‘‘Pre-
trained’’ means U-Net pre-trained with single-scale GF-2 image tiles, and PS images
keep the original scale for this strategy. ‘‘𝑫𝑺 -only’’ is the baseline, meaning only using
the multi-scale 𝑫𝑺 to train the Siamese network. ‘‘DPA’’ indicates dynamic pseudo-label
assignment. Accuracy results are averaged over the five megacities and expressed as
percentage values (%).

Method Sparse label Dense label

OA mF1 mIOU OA mF1 mIOU

Pre-trained 70.56 46.33 37.64 75.42 38.93 28.25
𝑫𝑺 -only 72.65 49.95 40.01 78.19 42.31 32.55
AdaptSeg 67.18 42.28 31.18 73.00 36.96 26.82
AdaptSeg+DPA 70.91 46.90 33.92 76.80 39.18 28.90
AdvEnt 64.51 41.50 30.49 75.18 35.29 26.49
AdvEnt+DPA 68.69 45.42 32.51 76.85 38.58 28.62
CLAN 65.05 42.18 31.07 72.92 35.71 26.74
CLAN+DPA 69.68 45.65 32.84 75.99 38.57 28.49
FADA 69.83 50.86 39.57 78.64 41.85 33.68
FADA+DPA 73.95 53.15 41.03 81.23 45.26 36.33
Ours (DPA) 74.08 53.87 43.14 81.28 46.79 37.36

category imbalance. The combination of these methods and pseudo-
label assignment improves the accuracy, but is inferior to our method in
all evaluation results, indicating that pseudo-labeling is not enough to
compensate for the negative adaptation caused by domain distribution
alignment.

Fig. 12 illustrates details of the results obtained by different UDA
methods. Here we demonstrate the performance of combination of
AdaptSeg, AdvEnt, CLAN, and FADA with pseudo-labeling, which be-
haves better than these methods alone. In Beijing and Chengdu, the
comparison methods lost fine road and river in built-up areas. And in
Guangzhou, the comparison methods misclassify fish pond as river, pond,
and irrigated field. This is because these misclassified categories are
much less common, and the adversarial-based methods match domain
distributions in a global manner, causing the aligned feature space to
tend to prioritize the categories with larger sample amounts. In Shang-
hai and Wuhan, the results of bare land, road, gerden land, and paddy
field are significantly improved by our approach compared with the
baseline. This indicates that our approach can learn information of the
target domain while maintaining the ability to identify the distribution
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of both domains. In Chengdu, our approach misclassifies park into pond
and gerden land, which are the ground objects contained by the park.
It is probably because pseudo-labels in pixels are difficult to capture
contextual information, and the adapted model is more biased towards
the categories in local regions. In addition, it can be seen that for
different cities, the improvements of our approach compared to the
baseline are different, which is caused by the differences in feature
distributions and category distributions. When the features in the target
and source domains are quite distinct, the pseudo-labels are more
‘‘valuable’’ in domain joint training and can improve the transferability
of the model to the target domain more significantly. And when the
category distribution of the test area is very unbalanced, pseudo-labels
of the hard samples can also lead to greater performance improvements.

4.3.2. Experimental results of additional Asian cities
Fig. 13 shows the results of land cover mapping for the additional

six Asian cities. In particular, ‘‘rural residential’’ here refers to low-rise
residential buildings, and ‘‘urban residential’’ refers to high-rise resi-
dential buildings. Although the target and source domains of this set of
experiments are located in different countries with different geographi-
cal environment and urban landscapes, promising results are achieved.
Paddy field and garden land located in the suburbs of Bangkok and
Yangon are correctly identified, rural residential areas spread around
Delhi are accurately extracted, and the dense built-up areas of Seoul
and Tokyo are well distinguished. Obvious errors occur in water bodies,
where lake and river are heavily confused. Part of arbor forest in
Naypyidaw is misclassified as irrigated field. In addition, the extraction
results of road are much less refined than those in Chinese cities.

The quantitative evaluation of land cover mapping are presented
in Table 7, where all accuracy results are averaged across the six
cities. Compared to the baseline, our approach obviously boosts the
performance, which indicates that our approach can mine reliable
pseudo-labels even for very different geographical regions. The per-
formance gap between the comparison methods and our approach is
greater in these six cities than in Chinese megacities. This is because in
this scenario, the feature distributions of the source and target domains
are more disparate, it is harder for the adversarial-based approaches to
find a suitable match between the two distributions, and more intra-
domain variance is introduced into the model by the rigid alignment.
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Fig. 13. Land cover mapping results for the additional six Asian cities.
Table 7
Comparison with the recent leading UDA approaches on the additional six Asian
cities. ‘‘𝑫𝑺 -only’’ is the baseline, meaning only using the multi-scale 𝑫𝑺 to train the
Siamese network. ‘‘DPA’’ indicates dynamic pseudo-label assignment. Accuracy results
are averaged over the six cities and expressed as percentage values (%).

Method Sparse label Dense label

OA mF1 mIOU OA mF1 mIOU

𝑫𝑺 -only 79.59 48.35 37.81 76.23 50.98 38.75
AdaptSeg 61.19 26.02 18.23 58.58 30.23 20.61
AdaptSeg+DPA 64.46 32.35 19.21 60.80 34.94 22.37
AdvEnt 61.30 26.61 17.64 60.35 31.37 21.58
AdvEnt+DPA 63.94 30.73 19.58 62.23 35.28 22.85
CLAN 62.70 25.85 17.91 58.98 30.33 20.77
CLAN+DPA 64.66 31.27 19.20 61.08 34.35 22.38
FADA 68.43 42.39 32.95 77.62 40.46 32.81
FADA+DPA 70.86 46.84 35.74 79.21 43.50 34.35
Ours (DPA) 81.14 51.20 40.81 80.85 55.33 43.99

Another phenomenon is that the results on sparse label and dense label
are generally comparable. There are two reasons for this phenomenon,
on the one hand, the spatial resolution of ST-2 is lower than those of
PS and GF-1, and it cannot present very fine edges in both ground truth
and results. On the other hand, agricultural and natural categories that
are easier to classify occupy a larger total area in these six cities, and
there are fewer complex urban functional classes located in the test
areas. Therefore, neither sparse label nor dense label can pull apart the
gap between overall accuracy and edge accuracy.

More details can be seen in Fig. 14, our approach improves the
results of paddy field in Bangkok, railway station in Delhi, irrigated field
in Naypyidaw, arbor forest in Seoul, industrial area in Tokyo, and airport
in Yangon. However, even though the overall accuracy is encouraging,
road lines in this set of results are discontinuous. This is due to the
feature distribution differences caused by the diverse architectural
styles and city landscapes in different countries. The adversarial-based
UDA methods demonstrate severe negative adaptation; they tend to
classify complex areas into common categories when the distributions
of the source and target domains are very different. For instance, in
Delhi, Naypyidaw, and Seoul, the comparison methods classify built-up
areas into irrigated field, and in Tokyo, high-rise residential and industrial
area are misclassified as low-rise residential.
191
4.3.3. Sensitivity analysis
Some parameters have an impact on the domain adaptation results;

we analyze these factors on the sparse label of five Chinese megacities
in this section, including the number of training epochs and 𝜆 (see
Section 3.2.2).

We test three different epoch numbers to study its influence, which
are 50, 100, and 150, and the value of 𝜆 is fixed to 0.5. The relationship
between mF1 and the epoch number is presented in Fig. 15(a). It can
be seen that there is an obvious performance improvement when the
epoch number is raised from 50 to 100. However, from 100 to 150,
the change in performance flattens out. There are two reasons for this
phenomenon: On the one hand, a larger epoch number means fewer
pixels are selected at the beginning, which better ensures the quality
of the pseudo-labels. On the other hand, a larger number of training
iterations enables the model to fully adapt to the target domain. Since
150 epochs would take more computation resources, and the precision
improvements are not that significant, 100 epochs are more appropriate
in practice.

To investigate how 𝜆 affects our approach, we test a set of con-
tinuously varying values for it, and the epoch number is set to 100.
mF1 obtained by each 𝜆 value is shown in Fig. 15(b); it can be seen
that the accuracy of each city first rises as 𝜆 increases and then falls
as it becomes larger. The highest accuracy of Wuhan is reached when
𝜆 value is 0.7, while in other cities it is 0.5. This may be because
the sensors of GF-1 and GF-2 have more similar imaging processes,
resulting in closer distributions of the source and target domains, and
the quality of the pseudo-label can be guaranteed to some extent even
if 70% pixels are selected at the end of training, whereas using more
pseudo-labels in other cities would introduce more errors. And when
𝜆 is set to 0.9, 90% pixels in the target domain are involved in the
last training epoch, too many errors in pseudo-labels, thus, lead to an
obvious decrease in the accuracy of each city.

5. Discussion

5.1. What information is important for land cover classification?

The built environment and the quality of people’s lives are under the
combined effects of various land categories (Zhu et al., 2022), so it is
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Fig. 14. Details of results of different UDA approaches on the additional Asian cities. ‘‘Baseline’’ means only using 𝑫𝑺 to train the Siamese network. ‘‘DPA’’ indicates dynamic
pseudo-label assignment.
Fig. 15. Sensitivity analysis for epoch number and parameter 𝜆 on Chinese megacities.
significant to analyze the land cover information in a more complete
category system. However, the recognition of heterogeneous ground
objects in high-resolution satellite images is quite difficult. In addition,
it depends on different information to identify different categories.
For example, classifying independent urban functional buildings relies
more on structure and shape features, distinguishing dense built-up ar-
eas requires spatial relationships, and the identification of agricultural
and natural categories cannot be done without texture and spectral
information.

There is a noteworthy phenomenon in Table 4 and Fig. 9. The high-
est accuracy values for different categories are achieved by different
models, mainly DeepLabv3+ and U-Net. We show detailed classification
results for Five-Billion-Pixels obtained by these two models in Fig. 16. In
columns 1 to 3, DeepLabv3+ can segment more complete and smooth
airport, bare land, and stadium, respectively. And the results of U-Net
contain a lot of noise. In visual, DeepLabv3+ tends to identify ground
objects as independent ‘‘instances’’, whereas it seems difficult for U-Net
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to aggregate land information into homogeneous segmented regions.
This is because the deep features learned by DeepLabv3+ are better at
describing contextual and spatial relationships. However, U-Net shows
superior performance in columns 4 to 5, where it correctly classifies
irrigated field, which are partially misclassified by DeepLabv3+ as gar-
den land and road, which cannot be clearly extracted by DeepLabv3+
from dense built-up areas. This shows that U-Net can more accurately
represent the spectra, textures, and sharp boundaries of ground objects.

One explanation for these results is that the ‘‘low-level features’’
(those closest to the input image) used in DeepLabv3+’s decoder path
are the feature maps that have been forward-propagated through 101
layers and are 16 times smaller compared to the input image. In
contrast, U-Net uses ‘‘low-level features’’ that go through two layers
and have the same scale with the input image since it adopts the
concatenation of the encoder and decoder paths. Therefore, U-Net can
maintain more raw spectral and edge information to generate dense
classification maps.
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Fig. 16. Detailed classification results of DeepLabv3+ and U-Net on Five-Billion-Pixels. From top to bottom of each column: input satellite image, ground truth, classification result
of DeepLabv3+, and classification result of U-Net.
The above analysis gives us some inspiration, in future research, the
combination of ‘‘low-level’’ spectral, textural information and ‘‘high-
level’’ spatial contextual information is likely to facilitate land cover
classification in complex category systems.

5.2. How can the performance of land cover mapping be further improved?

As can be seen in Fig. 10, while our approach performs well in
most areas of each Chinese megacity, the results for mountainous
forest surrounding the cities, especially Beijing and Chengdu, are not
that satisfactory. To discuss this phenomenon, we visualize the feature
spaces of different data domains with t-SNE (Van der Maaten and
Hinton, 2008) in Fig. 17, where the combination of spectral features
and texture features (GLCM) is employed, and the coordinate systems
of the feature spaces are aligned.

Three characteristics of feature distributions can be observed from
Fig. 17: (1) distribution shifts occur between different domains; (2)
within each domain, the distribution of almost every category is dis-
persive; (3) within each domain, the distribution of different categories
may be partially mixed. The last case is evident in forest and cropland
categories of 𝑫𝑺 . This is because their features are largely influenced
by geographical location and seasonal changes. For example, the Five-
Billion-Pixels dataset covers a large amount of irrigated field reclaimed
in the mountains of northwestern China, and their spectral and texture
features may be similar to those of mountainous arbor forest in winter.
Then, in the process of domain joint learning, the DCNNs model is likely
to assign irrigated field pseudo-labels to a small number of arbor forest
samples in 𝑫𝑻 . And these errors will further accumulate in continuous
iterative training, eventually leading to misclassification in the land
cover mapping results.

Since this problem is caused by the inherent constraints of UDA and
the intrinsic properties of vegetation categories, in future studies, the
integration of other sources of information may lead to improvement.
For instance, the all-season sample dataset (Li et al., 2017) provides
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vegetation samples from multiple seasons at 30 m resolution, and multi-
temporal analysis methods (Shao et al., 2016; Hu et al., 2018) can
better distinguish the coverage of different vegetation categories. It is
promising to obtain more accurate, high-resolution mapping results for
both natural and urban areas by multi-source data fusion (Huang et al.,
2018b; Li et al., 2020) using the Five-Billion-Pixels dataset.

5.3. What can be further done based on our dataset and approach?

We achieve fully automated classification with unlabeled high-
resolution satellite images, which opens up new possibilities for large-
scale, real-time land cover mapping. Moreover, our approach is proven
to be generalizable across images captured by different sensors, espe-
cially for ST-2 images that are free and open. As a continuous, reliable,
quality-controlled data source, Sentinel satellite data are utilized in
the state-of-the-art global land cover mapping projects, ESA’s World
Cover (Zanaga et al., 2021) and Google’s Dynamic World (Brown et al.,
2022). Since there is some comparability at the same spatial resolution,
we compare our results of Beijing and Guangzhou with Dynamic World
and World Cover.

Due to the different acquisition time of the original images, we can
only make an approximate visual comparison. As shown in Fig. 18,
our results are able to distinguish forest, built-up, water bodies, and
cropland that are relatively consistent with Dynamic World and World
Cover. Furthermore, owing to our extensive, fine, and accurate an-
notating for Five-Billion-Pixels, our results present clear transportation
networks and river systems, as well as different agricultural and urban
functional areas. It can be seen that, because of the rapid urban
development in China, new high-rise residential buildings are mixed
with old ones, which have the same appearance as rural settlements,
creating a special urban landscape. The richer categories of our results
have the potential to contribute to studies on urban planning, urban
heat islands, urban quality of life, and so on.
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Fig. 17. Feature spaces of different domains (Five-Billion-Pixels and 11 Asian cities). For 𝑫𝑺 , 400 samples per category are presented. For each 𝑫𝑻 , 100 samples per category are
displayed.
Fig. 18. Comparison with Google’s Dynamic World and ESA’s World Cover in Beijing (ST-2) and Guangzhou (ST-2). (a–b) Land cover map of central area of Beijing from Dynamic
World and World Cover. (c) Our result of Beijing. (d–e) Land cover map of central area of Guangzhou from Dynamic World and World Cover. (f) Our result of Guangzhou.
Although we studied only 11 cities in this paper, our approach
can be easily generalized to other cities, towns, and villages through-
out China and even other Asian countries. In addition, the discrete
194
pseudo-labels used in our UDA approach are validated to be capable of
improving the classification results. This suggests that the annotation
of newly acquired images do not need to be dense and pixel-wise when
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a large-scale, well-annotated dataset is already available. Therefore, for
other countries and regions with very different land distributions and
land category systems than China, it has potential to perform land cover
mapping based on Five-Billion-Pixels and, for example, semi-supervised
omain adaptation with sparse annotations in the form of patches or
olygons. This is an issue of interest to us in the future.

. Conclusion

The increasing volume of high-resolution satellite data is a ‘‘gold
ine’’ waiting to be explored and mined. Yet land cover mapping

n a large-scale in high-resolution remains a challenging task. In this
aper, we present a large-scale land cover dataset, Five-Billion-Pixels,
hich can provide the remote sensing community with a high-quality
enchmark to advance land cover classification algorithms. At the same
ime, we propose an unsupervised domain adaptation approach that
an deal with complicated real-world distribution shifts. The land cover
apping results for five megacities in China and six cities in other Asian

ountries show the generalizability of our approach across different
ensors and geographical regions. In general, our work has the potential
o be extended to land cover mapping at country-scale and to contribute
o various applications involving land cover information.
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