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A B S T R A C T   

The detectability of wake components is affected by influencing parameters, which can be categorized into ship 
properties, environmental conditions and image acquisition settings. The characteristics of influences of most 
influencing parameters on the detectability are established. However, a consequent investigation and systema
tization of influences regarding differences in settings of various SARs have not been published. 

In this study, data from four different SARs missions, namely TerraSAR–X (TSX), CosmoSkymed (CSK), 
Sentinel–1 (S1) and RADARSAT–2 (RS2), were collected and analyzed with focus on detectability of ship wake 
components. The sensors operate on different orbit altitudes and radar frequency bands: TSX and CSK work with 
X–Band, S1 and RS2 work with C–Band. Using methods from the field of Data Science, the detectability of wake 
components is modelled for each of the four sensors using machine leaning by the support vector machine (SVM) 
method. The created SVM-models are then compared in order to derive statements regarding relative detect
ability of individual wake components. A measure of detectability model’s uncertainty and an alternative 
analysis based on accumulated backscattering statistics is presented to support the derived statements. 

In conclusion, sensors with shorter slant ranges and X–Band in comparison to C–Band were found to be better 
suited for the detection of ship wakes. However, these characteristics only hold for wake components detectable 
due to the Bragg scattering mechanism, i.e. Kelvin wake arms and V-narrow wakes. No significant difference for 
near and far field of turbulent wakes is recognized.   

1. Introduction 

Spaceborne synthetic aperture radar (SAR) is a powerful instrument 
for monitoring seas. The newest methods for processing SAR data with 
increased precision allow detecting maritime objects and estimating 
environmental meteo-marine information with local variabilities in near 
real time (Pleskachevsky, et al., 2022). For large areas, in oceans where 
no in-situ measurements are available, this information source is indis
pensable for global shipping and other maritime activity. 

The study at hand combines methods for estimation of meteo-marine 
parameters with the task of indirect detection of moving ships by their 
wake signatures. Objective of this study is comparison of detectability of 
ship wake components between different SAR sensors, which are oper
ating on different orbit altitudes and with either X–Band or C–Band SAR 
onboard. 

As in the article a variety of abbreviations and notations are used, 

Table A1 is attached in the appendix for nomenclature. 

1.1. On detectability of ship wakes in SAR 

The detectability of ships and their wakes in SAR imagery is influ
enced by several parameters, which can be categorized into ship prop
erties, environmental conditions and SAR acquisition settings. (Tings, 
et al., 2018; Tings, et al., 2019; Tings, 2021). Ship wakes are the result of 
multiple interacting wave systems closely beneath and on the ocean 
surface, produced by the interaction of the ship’s hull with the water. In 
studies on ship wakes in SAR imagery four wake components are 
distinguished: turbulent wake, Kelvin wake, V-narrow wake and inter
nal waves wake (Lyden, et al., 1988). Fig. 1 shows a schematic repre
sentation of the various wake components recognized in SAR imagery. 
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• Turbulent wakes consist of two parts: the near field and the far field 
(Reed & Milgram, 2002). The near field normally refers to the rough 
ocean surface region a few ship lengths behind the ship. The far field 
describes the smooth ocean surface region, which sometimes is 
visible in SAR images a long time after the actual ship’s passage, 
resulting in ocean surface anomalies up to hundreds of kilometers in 
length (Reed & Milgram, 2002; Milgram, et al., 1993). In this study, 
all kinds of rough ocean surfaces generated by the ship’s movement 
and in the vicinity of the ship are considered as one wake component, 
which is here denoted as near-hull turbulence (NT). Besides the near 
field, near-hull turbulences also include turbulences imaged at the 
bow and at the side of a ship. As the predominantly visible part of the 
turbulent wake is actually the far field, in the following the term 
turbulent wake (TW) is only referring to the turbulent wake’s far field, 
without the near field.  

• Kelvin wakes also consist of multiple parts: typically, two wave 
systems with oscillating nature are generated by ships namely 
divergent waves and transverse waves (Darmon, et al., 2014; Rabaud & 
Moisy, 2013). In SAR those two wake components themselves are not 
frequently detectable (around 5 % of X-Band cases (Tings, 2021)), 
but distinct surface anomalies are imaged on a line of their 
constructive interference. These take the form of two bright lines 
with a V-like shape originating from the ship’s bow or stern. While 
the term Kelvin wake combines all kinds of wake components 
belonging to the described pattern, in this study, only the two bright 
lines are considered as wake component and in the following are 
referred to by Kelvin wake arms (KW).  

• V–narrow wakes: A V–shaped signature is also formed by the so- 
called V–narrow wakes (VW). V–narrow wakes consist of two bright 
lines with narrow angle close to the turbulent wake’s region. Until 
today, the origin of the anomaly has not unambiguously been 
established and has a series of explanations (Zilman & Miloh, 1997). 
Independent from their origin of formation, V–narrow wakes are 
recognizable in SAR imagery due to the resulting Bragg scattering 
(Zilman & Miloh, 1997).  

• Internal waves are not considered in this study, as they are 
encountered in SAR imagery only under rare conditions (below 1 % 
of X-Band cases (Tings, 2021)), mainly depending on the level of 
water stratification (Tunaley, et al., 1991; Hogan, et al., 1996; Wang, 
et al., 2017; Dysthe & Trulsen, 1989). 

1.2. On comparison of detectability of ship wakes in SAR 

By different SAR sensors, the wake components summarized in Fig. 1 
can be detected with different probability (Tings, et al., 2020). As a 
glimpse Fig. 2 presents a collection of rare wake samples, where multiple 
wake components are imaged at once by four different SAR sensors. 
Several publications with focus on the comparison of ship wakes imaged 
by different SAR sensors can be found, but most of the published in
vestigations only compare SAR sensors with frequency bands of signif
icant differences in frequencies, e.g. L-Band wake signatures are often 
compared to C-Band or X–Band wake signatures, e.g. in (Alpers, et al., 
1981; Lyden, et al., 1988; Milgram, et al., 1993; Oumansour, et al., 
1996). Also, the publications only consider certain wake components 
and/or influencing parameters involved in the complex wave interac
tion, development and imaging of ship wakes. Therefore, instead of 
differences between C-Band and X–Band, some authors even conclude 
similarities, e.g. Milgram et at. with respect to wave attenuation and 
growth in the turbulent wake’s region and the surrounding sea or 
Hennings et al. with respect to Kelvin wake arms (see next paragraph). 
However, it should be noted the only publications with focus on the 
detectability of ship wakes were previously published by the authors 
involved in this study (Tings & Velotto, 2018; Tings, et al., 2019; Tings, 
et al., 2020; Tings, 2021) and all other publications were only inter
preted under this aspect, while their focus actually was not on detect
ability. Such interpretations of only a few publications reveal definite 
differences between X-Band and C-Band SAR sensors, i.e. Hennings et al. 
(Hennings, et al., 1999) and Gade et al. (Gade et al., 1998a, 1998b) as 
summarized in the next two paragraphs. Investigations of the effect of 
different slant ranges on the SAR imaging of ship wakes cannot be found 
in any published scientific studies. 

Hennings et al. (Hennings, et al., 1999) compared Kelvin wake arms’ 
signatures from L–Band, C–Band and X–Band SARs and simulated the 
relative mean Normalized Radar Cross Section (NRCS) of the cusp waves 
with respect to the background. They conclude that Kelvin wake arms 
are similarly detectable in C–Band as well as X–Band imagery and in 
contrast L–Band Kelvin wake arms are less distinctive from the back
ground. Also, Gade et al. (Gade et al., 1998a, 1998b) compared SAR 
acquisitions between L-, C- and X–Band, showing that the dampening 
ratio of surface films increases with increasing radar frequencies. Tur
bulent wakes appear in SAR imagery due to ascending surfactants and 
bubbles after the ship’s passage, which alter viscosity, temperature, 

Fig. 1. Schematic representation of wake components detectable in SAR imagery (Tings, 2021).  
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surface tension and elasticity of the upper water layers (Soloviev, et al., 
2010). These alterations result in a dampening of short surface waves 
visible in SAR in contrast to the background ocean surface (Pichel, et al., 
2004). Therefore, the conclusions from Gade et al. (Gade et al., 1998a, 
1998b) are here considered as analogy. 

In (Tings & Velotto, 2018), the impact of different SAR sensors on the 
detectability of ship wakes was compared using three different SAR 
missions. It was summarized that ship wakes are better detectable in 
TerraSAR–X (TSX) data than in RADARSAT–2 (RS2) or Sentinel–1 (S1) 
data. The TSX satellites use X–Band–SAR sensors (Pitz & Miller, 2010) 
while RS2 and S1 use C-Band SAR sensors (Canadian Space Agency 
(CSA), 2019; European Space Agency (ESA), 2020). The other major 
difference between the three missions is the orbit altitude, which is 
much lower for TSX with 514 km (Pitz & Miller, 2010) compared to RS2 
with 798 km (Canadian Space Agency (CSA), 2019) and S1 with 693 km 
(European Space Agency (ESA), 2020). Therefore, in (Tings & Velotto, 

2018) could not be clarified if the orbit altitude or the radar frequency is 
responsible for the better detectability of ship wakes in TSX data. 

Data from the CosmoSkymed (CSK) mission can be used as an 
additional dataset complementing the study setup of (Tings & Velotto, 
2018). CSK satellites use X-Band SAR sensors and operate at 619 km 
(Italian Space Agency (ISA), 2007), an orbit altitude closer to S1 than to 
TSX. In (Tings, et al., 2020) a qualitative and quantitative comparison of 
the detectability of whole wake signatures between the four different 
sensors was conducted. The conclusion in (Tings, et al., 2020) is that the 
detectability between the four sensors is not comparable when ship 
wakes are considered as a whole, so the detectability of wake compo
nents should be considered individually. 

1.3. Research questions 

In this study, a comparison of detectability of the four individual 
wake components (near-hull turbulence (NT), turbulent wake (TW), 
Kelvin wake arms (KW) and V-narrow wakes (VW)) between the four 
sensors (TSX, CSK, RS2 and S1) is presented. In fact, environmental 
conditions, ship properties and image acquisition settings influence the 
detectable length of wake components in SAR imagery. The specific 
parameters describing physical conditions with influence on the 
detectable wake component length are denoted influencing parameters. 
The wake component length can be used as indicator for wake compo
nent detectability in dependency to those influencing parameters (Tings, 
2021). 

The distance between sensor and moving target directly influences 
the displacement of targets by Doppler effects in resulting SAR images. 
In this way, slant range plays a key role in nonlinearities in SAR imaging. 
Therefore, the focus in this paper is shifted from satellite orbit altitude to 
slant range R. Slant range can approximately be expressed as a function 
of orbit altitude h and incidence angle θ (McCandless & Jackson, 2004) 
by 

R = h/cosθ (1) 

The motivation of this paper is to answer the two research questions:  

RQ1 Are X-Band or C-Band missions better suited for the detection of 
ship wake components?  

RQ2 Are shorter slant ranges or longer slant ranges better suited for 
the detection of ship wakes? 

This paper presents the newest extended study on detectability of 
ship wakes and continues a series of preliminary investigations (Tings & 
Velotto, 2018; Tings, et al., 2019; Tings, et al., 2020; Tings, 2021) 
published before. Currently, this study and the sequence of previous 
studies are the only available publications with focus on detectability of 
ship wakes. The characteristics of influences on wake component 
detectability were concluded in (Tings, 2021), where for one SAR sensor 
with static orbit altitude also the influence of incidence angle was taken 
into account alongside a series of other influencing parameters. For 
multiple SAR sensors with different orbit altitude a missing differential 
point of view was recognized in (Tings, 2021). The intention of this 
study is to fill in this gap. Thus, one novelty of this study is the 
consideration of the impact of slant range on wake detectability, which 
is here considered solely and in combination to the two radar frequency 
bands: X–Band and C–Band. Another novelty is the explicit comparison 
of C-Band and X-Band SAR sensors, which operate frequency bands, 
which are often considered as having no significantly differentiating 
impact with respect to wake component detectability. Machine learning 
methods are used for comparison of wake component detectability. 

2. Materials and method 

In this section the used datasets are described. The applied method 
for detectability modeling is reviewed and the methods for detectability 

Fig. 2. Image collection of wakes from ships with movement directions roughly 
parallel to Azimuth (left column) or Range (right column) acquired by four 
different SAR missions. 
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comparisons and estimation of uncertainties are introduced. 

2.1. Data and parameters for detectability modeling 

Table 1 summarizes the properties of the datasets acquired by the 
four spaceborne SAR sensors: TSX, CSK, S1 and RS2. Each wake sample 
in the datasets is the result of a manual inspection procedure, which was 
executed by the authors on thousands of SAR images to identify ocean 
surface areas where a ship wake must have been generated by a moving 
vessel. Only product types with projection to ground range are used. In 
detail, the executed manual inspection was as follows: 

1. Intersection of SAR images with data from the Automatic Identifi
cation System (AIS) to locate all AIS–reported ship positions in the 
SAR images  

2. Identification of candidate wake samples, i.e. all reported positions, 
where a minimum vessel velocity was reported  

3. Filtering of all positive identifications containing SAR artifacts or 
anomalies not related to ship movements  

4. Pre-processing of SAR images, i.e. radiometric calibration into NRCS, 
filtering of land and maritime objects and rescaling into uniform 
pixel spacing of 1.5 m per pixel  

5. Selecting subimages from pre-processed SAR images with dimension 
of 5100 m in Azimuth and Range (3400 pixels each dimension)  

6. Manual tracing of the four wake components (near-hull turbulence, 
turbulent wake, Kelvin wake arms, V-narrow wakes) in the sub
images to build tracing vectors, which define the shape of each wake 
component by multiple image coordinates  

7. Calculation of wake component lengths from the tracing vectors 
(zero means respective wake component is not detectable in the SAR 
image) 

The generated data used in the study for modelling detectability of 
wake components is made available to the public (Tings, 2022). 

Fig. 3 provides a graphical overview of the proportion of candidate 
wake samples in each of the four sensor’s datasets, where one or more 
wake components were detected simultaneously. The graphs present the 
Complementary Cumulative Distribution Function (CCDF) build for 
detected wake components for each satellite. CCDF is equal to “1-CDF” 
(Cumulative Distribution Function). For example, two wake components 
will be detected in ~ 67 % of all cases for CSK and only in ~ 33 % of all 
cases for RS2. 

For this study, the influences are quantified by five influencing pa
rameters, as introduced in Table 2. Note that instead of slant range the 
incidence angle is used for the modelling, as it implies a linear scaling of 
the parameter’s value range, similar to the other influencing parameters, 
while the slant ranges over Range direction of the ground range pro
jected image are scaling with 1/cosθ. This facilitates the application of a 
linear model as motivated in the next subsection. 

Table 1 
Properties of the manually generated wake datasets used in this study.  

Sensor whole name TerraSAR-X CosmoSkymed Sentinel-1 RADARSAT-2 

Sensor name abbreviations in set S TSX CSK S1 RS2 
Frequency Band / radar wavelength [cm] X / 3.1 X / 3.1 C / 5.6 C / 5.6 
Orbit-Altitude [km] 514 619 693 798 
Approx. slant range [km] at 30◦ / 50◦ incidence angle 593 / 800 715 / 963 800 / 1078 922 / 1242 
Acquisition modes / product types SL, SM / MGD HIMAGE / DGM IW / GRDH MF, F, S / SGF 
Number of total wake samples (HH / VV) 2692 (2273 / 419) 83 (83 / 0) 582 (0 / 582) 389 (389 / 0) 
Proportion of no detected wake component [%] 21 17 29 41 
Proportion of near-hull turbulences [%] 60 60 65 54 
Proportion of turbulent wakes [%] 62 70 44 33 
Proportion of Kelvin wake arms [%] 31 63 23 11 
Proportion of V-narrow wake arms [%] 42 55 21 14  

Fig. 3. Complementary Cumulative Distribution Function build for detected 
wake components for each satellite. For example, for RS2 at least one wake 
component was detected in ~ 59 % of cases, while all four wake components 
were detected simultaneously in ~ 3 % of cases. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 2 
List of the five influencing parameters with descriptions, value ranges and settings for numerical analysis of the five-dimensional feature space.  

Nr 
xi 

Parameter name (units) Description Value range Discrete bins Bi Bin count 
|Bi|

xmin
i xmax

i 

x1 AIS-Vessel-Velocity (m/s) Velocity of the vessel derived from AIS messages interpolated to the image acquisition 
time 

1 10 {x1 ∈ N|1 ≤ x1 ≤ 10} 10 

x2 AIS-Length (m) Length of the corresponding vessel based on AIS information 5 35 13,20, 100,200,300 5 
x3 AIS-CoG (degree) The Course over Ground (CoG) based on AIS information relative to the radar looking 

direction (0◦ means parallel to range, 90◦ mean parallel to Azimuth). 
0 90 0, 15,30,45, 60, 75, 90 7 

x4 Incidence-Angle (degree) Incidence angle of the radar cropped to TSX’s full performance value range 20 45 {x4 ∈ N|20 ≤ x1 ≤ 45} 26 
x5 SAR-Wind-Speed (m/s) Wind speed estimated from the SAR background around the vessel using the XMOD-2 

(X–band) and CMOD-5 (C–band) geophysical model functions 
2 9 {x5 ∈ N|2 ≤ x1 ≤ 9} 8  
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2.2. Model function 

The method for modelling and comparing wake component detect
ability is based on training a Support Vector Regression (SVR) model. 
Modelling wake component detectability by this method is adopted from 
(Tings, 2021). In the following, only a brief introduction to the method is 
provided, all details can be found in (Tings, 2021). 

The setting of the SVR’s hyperparameters is identical to (Tings, 
2021), i.e. SVM–type is Epislon–SVR, Kernel-type is polynomial, 
Epsilon-loss is 0.001, Cost is 1.0 and Gamma is 0.0. Only the degree of 
the polynomial kernel is changed to first-degree polynomial. The 
reduction of the SVR’s complexity is motivated in (Tings, 2021), where 
it was concluded that a second-degree polynomial would only be 
required for modelling the influence of AIS-CoG on the detectability of 
turbulent wakes. All other influences would be reproducible by the 
model, also when a first-degree polynomial is set. As the purpose of this 
study is the comparison of absolute wake component detectability be
tween sensors, the error introduced by this simplification is irrelevant. 

The model’s complexity is reduced to increase robustness of the re
sults, because the smaller dataset sizes used in this study facilitate 
overfitting. Here, robustness specifies the ability of the model to 
reproduce the same characteristics of influences on wake component 
detectability after additions and/or removals of data to the noisy 
training datasets were applied. 

Each individual SVR model is trained for each wake component w for 
each sensor s, where w ∈ W = {NT,TW,KW,VW} and s ∈ S = {TSX,
CSK,RS2, S1} resulting in 16 independently trained models. Input fea
tures to the SVR models are the five influencing parameters xi. The 
models’ prediction parameter (models’ output) is the respective wake 
component’s length lw,s. It was calculated for the training data from the 
tracing vectors in the last step of the manual inspection procedure (see 
numeration in previous Subsection 2.1). This means, each SVR model 
fw,s learns the dependency between the influencing parameters and the 
wake component’s length in the form: 

lw,s = fw,s(x1,⋯, x5) (2)  

2.3. Detectability comparison 

When wake component’s lengths are on average longer in the data of 
one sensor than in the data of another sensor, it can be assumed that the 
detectability of this wake component is for the one sensor higher than 
for the other sensor, which means the one sensor is better suited for the 
detection of this wake component. In order to make detectability of 
wake components comparable, the predicted wake component length 
lw,s needs to be converted to a measure of detectability with uniform 
scale. In (Tings, 2021) the so-called Detectable Length Metric (DLM) was 
introduced, which is adopted for this study. To obtain each DLMw,s, each 
predicted value of wake component length is linearly normalized be
tween the respective wake component’s minimum length boundary lmin

w 
and maximum length boundary lmax

w , so that the unit of measurement 
[DLM] is a value between zero and one (0 = lowest detectability, 1 =
highest detectability, linearly scaled) (i.e. DLMw,s ∈ [0, 1]). lw,s is trun
cated to those boundaries before the calculation of results, but not for 
the calculation of uncertainties. The truncated lw,s is denoted l′w,s and 
DLMw,s is then calculated by the following formula: 

DLMw,s
(
l′w,s

)
=

(
l′w,s − lmin

w

)/⃒
⃒lmax

w − lmin
w

⃒
⃒ (3) 

The applied settings for lmin
w and lmax

w in Table 3 are defined in (Tings, 
2021) on the basis of percentiles. 

In contrast to (Tings, 2021), in this work the detectability models are 
built for datasets of CSK, S1 and RS2, in addition to TSX. Due to the 
smaller size of the additional datasets the complexity of the detectability 
models is further reduced by only taking five influencing parameters 
into account. The reduction from nine to five influencing parameters is 
also established in (Tings, 2021). 

For comparison between the sensors a uniform absolute measure of 
detectability is required. For this purpose, the average of DLMw,s

(
l′w,s

)
is 

calculated. The average DLMw,s over the whole feature space can be 
calculated for each sensor s and wake component w by: 

DLMw,s =
1

Δx1⋯Δx5

∫

⋯
∫

V

DLMw,s
(
l′w,s

)
dx1⋯dx5 (4) 

where Δxi = xmax
i − xmin

i with 
[
xmax

i , xmin
i

]
as defined in Table 2. The 

multidimensional integration over the five-dimensional feature space is 
restricted by the volume V =

[
xmax

1 , xmin
1

]
× ⋯×

[
xmax

5 , xmin
5

]
⊆ R5. 

2.3.1. Uncertainty estimation 
The original datasets are noisy with respect to the values of wake 

component length and of influencing parameters. The datasets are also 
unbalanced with respect to the distribution of samples over the value 
ranges, meaning some parts of the value range could have higher 
weighting. For this reason, comparing wake component lengths directly 
from the original datasets is not applicable. Each mean DLMw,s, as a 
result of integrating the models’ prediction parameters, represents a 
mean wake component length from the input data balanced by a linear 
function over the five-dimensional feature space. Therefore, for 
comparing the detectability between sensors, DLMw,s is calculated from 
the detectability models as being more appropriate. 

The models still possess uncertainties, which have to be assessed 
when comparing the overall detectability by this method. The models’ 
compositions are of interest in the conducted analyses, as they are 
designed to represent the characteristics of influences of influencing 
parameters on wake component detectability. This means, the model’s 
degree of freedom is not optimized for estimating the measurements of 
wake component’s lengths as they are included in the input datasets. 
Thus, those measurements cannot be applied for evaluating the models’ 
performances, as they represent not the ground truth of the analyses. 
Consequentially, no metric of uncertainty requiring ground truth can be 
provided. The proposed method for uncertainty quantification evalu
ates, whether the models’ compositions are learned systematically or 
randomly. 

The following method provides not only means for analyzing un
certainty quantitatively, but also qualitatively: Each dataset is denoted 
Dw,s and its number of wake samples is denoted 

⃒
⃒Dw,s

⃒
⃒. Each Dw,s is split 

into n subsets Dj
w,s with its number of wake samples of 

⃒
⃒
⃒Dj

w,s

⃒
⃒
⃒ =

⃒
⃒Dw,s

⃒
⃒/n, 

where j ∈ {j ∈ N|1 ≤ j ≤ n}. The samples are systematically drawn from 
Dw,s so that the five-dimensional feature space, spanned by the influ
encing parameters, is populated for each subset by samples distributed 
symmetrically over the parameters’ value ranges. Then a detectability 
model f j

w,s is trained for each subset Dj
w,s. 

As the learned SVR models are based on the first-degree polynomial 
kernel, they can be visualized mathematically by linear hyperplanes 
lying in a six-dimensional hyperspace (five influencing parameters plus 
wake component length). It is assumed in an ideal case (no manually 
introduced error, no unconsidered influences, etc.) with an infinite 
number of wake samples in all of the datasets that the linear hyperplanes 
trained for each of the n subsets Dj

w,s would exactly superpose each other. 

Table 3 
Definitions of minimum length boundary and maximum length boundary for 
each wake component (in meters).  

w Wake component name lmin
w [m] lmax

w [m] 

nt Near-hull turbulence 0 200 
tw Turbulent wake 200 1250 
kw Kelvin wake arms 200 1500 
vw V-narrow wake arms 200 1750  
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This means, the distance between the planes in the direction of the 
lw,s-dimension would be zero for any setting of the influencing param
eters. In the non-ideal case of this study with a limited number of 
samples the deviations between the hyperplanes are used to express the 
uncertainty of the detectability model fw,s. 

Each of the models f j
w,s is contrasted against the respective other four 

models fo
w,s with o ∈ {o ∈ N|1 ≤ o ≤ n⋀o ∕= j} resulting in m pairs of 

hyperplanes 
(

f j
w,s, fo

w,s

)
. In order to quantify the deviation between each 

pair of hyperplanes, the influencing parameters are systematically 
sampled (Bi as defined in Table 2) and combined into a set of discrete 
model inputs. Then for all discrete model inputs the distances in the 
lw,s-dimension are calculated for each pair of hyperplanes by: 

Δf j,o
w,s

(
x1,k1 ,⋯, x5,k5

)
= f j

w,s

(
x1,k1 ,⋯, x5,k5

)
− f o

w,s

(
x1,k1 ,⋯, x5,k5

)

∀j ∈ {j ∈ N|1 ≤ j ≤ n}, ∀o ∈ {o ∈ N|1 ≤ o ≤ n⋀o ∕= j},
∀ki ∈ {ki∈ N|1 ≤ki ≤ |Bi| }

(5) 

Those distances Δf j,o
w,s are in the following called intra-model-differ

ences. From these intra-model-differences, the root mean square error 

(RMSE) is calculated for each pair of hyperplanes 
(

f j
w,s, fo

w,s

)
by: 

RMSEj,o
w,s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|B1|⋯|B5|

∑|B1 |

k1=1
⋯

∑|B5 |

k5=1

(
Δf j,o

w,s

(
x1,k1 ,⋯, x5,k5

) )2

√
√
√
√

∀j ∈ {j ∈ N|1 ≤ j ≤ 5}, ∀o ∈ {o ∈ N|1 ≤ o ≤ 5⋀o ∕= j} (6) 

The mean of RMSEj,o
w,s over all m pairs then provides quantitative 

insight into the model’s uncertainty: 

RMSEw,s =
1
m

∑n

j=1

∑n,j∕=o

o=1,j∕=o

RMSEj,o
w,s (7) 

With n = 5 and m = 20 in this study the datasets are each split into 
five subsets and results in twenty pairs of hyperplanes being used for 
calculation of intra-model-differences and RMSEw,s. Further, for quali
tative analysis, from all intra-model-differences normalized histograms 
are derived. The histograms are presented in Section 3. 

2.3.2. Detectability comparison based on models 
With an infinite number of wake samples in all datasets, the differ

ence in detectability between the sensors could be depicted by the dis
tance in the lw,s-dimension between the hyperplanes. This means, when 
the hyperplane of one sensor with respect to lw,s on average lies above 
the hyperplane of another sensor, then the one sensor would have better 
wake detection performance. 

Using the average DLMw,s as calculated in (Eq. (4)) the mean dif
ference of detectability between respectively-two sensors s1 and s2 can 
be determined by: 

ΔDLMw,s1 ,s2 = DLMw,s1 − DLMw,s2 (8) 

In order to account for manually introduced error and unconsidered 
influences for our datasets with limited numbers of wake samples, all 
distances between all hyperplanes of one sensor f j

w,s to all hyperplanes of 
the other sensors f j

w,t with t ∈ {t ∈ S⋀t ∕= s} within the volume V are 
collected. When using n = 5 hyperplanes for each of the two compared 

sensors, there are 
(

5
2

)

= 10 combinations i.e. pairs of hyperplanes, 

from which the mean ̂ΔDLMw,s1 ,s2 is calculated. The procedure is similar 
to the calculation of the intra-model-differences for uncertainty esti
mation. Therefore, the collected distances are denoted inter-model-dif
ferences in the following. 

For qualitative analysis, also for all inter-model-differences the histo
grams are derived and presented in Section 3 together with the intra- 

model-differences in the corresponding figures. For the calculation of 
̂ΔDLMw,s1 ,s2 only the absolute differences between the hyperplanes are 

used (the algebraic sign does not play a role). However, to build the his
tograms of inter-model-differences, the differences between the hyper
planes are calculated in both directions (meaning from f j

w,s to f j
w,t and from 

f j
w,t to f j

w,s). So, the histograms are symmetrical at the x-axis’ origin. 

2.3.3. Detectability comparison based on superimpositions of backscatter 
intensities 

In addition to the analysis using the detectability models as basis (see 
Subsection 2.3.2), a redundant independent analysis based on the distri
bution of backscatter intensities in the wake components and in their 
surrounding is provided. Providing a redundant independent analysis re
duces the possibility that the statements are originating from errors 
introduced during the manual tracing of wake components. For this 
redundant analysis, only an approximate position of the wake’s origin 
point is required. Here, the wake’s origin point from the manual inspection 
is used. For future analyses, it could also be gathered from automatic wake 
detection algorithms, as proposed in (Graziano, et al., 2016; Graziano, 
2020). The results of this redundant analysis are presented in the discus
sion in case high uncertainty of the detectability models is encountered. 

In order to create a uniform data basis, all images are rotated at the 
wake’s origin points so that the ship’s track is directed from left to right. 
A combination of ship heading and wake’s centerline is used as basis for 
rotating the images. When rotated images are then superimposed with 
their respective wake’s origin points in the center, then the individual 
wake components accumulated over all images are roughly lying on top 
of each other. The rotation is accomplished in three steps:  

1. Polar transformation of the image into polar coordinate projection  
2. Resampling of the polar transformed image in ascending angular 

order, beginning at the angle of the wake’s centerline and ending at 
the angle before (phase unwrapping applied at the 360◦ to 0◦ switch)  

3. Back transformation of the resampled image from polar coordinate 
system into Cartesian coordinate system. 

Then all resampled, back transformed images are superimposed for 
accumulation of backscatter intensities. At the end, the accumulated 
intensities need to be divided by the amount of accumulations to obtain 
the original uniform scale of sigma naught values (NRCS). The super
impositions provide means for comparing the distinctiveness of wake 
signatures from ocean background between the sensors. Example su
perimpositions are shown in Fig. 4. 

A set of such superimpositions Sw,s,k are constructed for each wake 
component w, for each sensor s and for four data subsets k, which are 
defined in Table 4. 

The four data subsets are extracted from each dataset of wake 
component w and sensor s. They are defined so that wake images 
contributing to a corresponding superimposition were acquired under 
similar ranges of influencing parameters. Incidence angles are converted 
to slant range to find matching ranges. 

For better comparability, the information in the distribution of 
backscatter intensities of the superimpositions are condensed further so 
that the information can be plotted by curves into graphs, as follows: 

1. The pixels Pα,r in the surrounding of the wake’s origin point are 
assigned to one angular bin α and one radial bin r, where α and r are defined 
by angular and radial intervals fragmenting the region around the wake’s 
origin point by α ∈ {[β, β + 1)|∀β ∈ N,0 ≤ β ≤ 359 } (in degree) and r ∈
[[0, 200), [200,400), [400, 800), [400, 1600), [1600,3200) ] (in meters). 

The mean over all 
⃒
⃒Pα,r

⃒
⃒ intensities of pixels Pα,r is calculated for each 

superimposition Sw,s,k: 

Sw,s,k(α, r) =
1

⃒
⃒Pα,r

⃒
⃒

∑

p∈Pα,r

Sw,s,k(p) (9) 
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3. For each radial bin one curve is then plotted for each superim
position Sw,s,k, with the angular bins α on the x-axis and the mean in
tensity Sw,s,k(α, r) on the y-axis. The angular bin α = 0 marks the position 
of the wake’s centerline. 

While those graphs in the Figs. 10 to 13 constitute a qualitative 
analysis, they are accompanied by calculations of ratios of clutters’ and 
wake component’s mean intensity for quantitative analysis. The ratios 
for each dataset i are calculated as follows:  

1. The intensity values of all background pixels are collected for each 
sensor s into set Iclutter,s,k  

2. The intensity values of all pixels of each wake component w are 
collected for each sensor s into set Iw,s,k  

3. Mean clutter intensities μclutter,s,k are calculated for the sets Iclutter,s,k 
and mean wake component intensities μw,s,k are calculated for the 
sets Iw,s,k 

4. Ratios of clutter’s and wake component’s mean intensity are deter
mined by: 

qw,s,k = μw,s,k

/
μclutter,s,k (10) 

It should be noted that pixels were extensively discarded from cal
culations by introducing a buffer area around the wakes as a combina
tion of all detected wake components and by filtering invalid regions like 
land or ship signatures. 

3. Results 

In the following, the comparison of detectability between the four 
satellite missions for the four ship wake components are presented. The 
sensor specific measurements are presented in sensor specific colors, i.e. 
TSX in blue, CSK in orange, RS2 in green and S1 in yellow. (For inter
pretation of the colour in the figures, the reader is referred to the web 
version of this article.) The results for each wake component are 
depicted in individual Figures:  

• near–hull turbulences (Fig. 5(a) and Fig. 6)  
• turbulent wakes (Fig. 5(b) and Fig. 7)  
• Kelvin wake arms (Fig. 5(c) and Fig. 8)  
• V–narrow wakes (Fig. 5(d) and Fig. 9) 

In Fig. 5 the model derived information is depicted for each sensor s 
by accordingly colored bars and for each wake component w in a 
dedicated plot numbered from (a) to (d), respectively. The X–Band 
sensors TSX and CSK are located on the left side in the plots and the 
C–Band sensors to the right side. Also, in the plots the sensors are sorted 
in ascending order from left to right according to their orbit altitudes, e. 
g. RS2 has the longest slant ranges and TSX the shortest. The plots show 
the calculated means DLMw,s. For comparison to the respective other 

sensors, the calculated ̂ΔDLMw,s1 ,s2 are added to DLMw,s and the 
respective offsets are indicated by colored symbols, which are unique for 
each sensor. In the figures, also RMSEw,s is visualized for each sensor in 

the form of an error bar. In fact, the differences ̂ΔDLMw,s1 ,s2 are identical, 

so drawing all symbols of the summations of DLMw,s with ̂ΔDLMw,s1 ,s2 for 
each sensor is redundant. However, the plots were designed in that way 
so that the RMSEw,s error bars can be plotted for each DLMw,s in relation 

to DLMw,s and ̂ΔDLMw,s1 ,s2 . 
From initial evaluation of these results can be recognized: 

• that both C-Band sensors reach lower DLMs for most wake compo
nents than X-Band sensors  

• that the sensor with longest slant ranges, i.e. RS2, is the sensor with 
lowest DLMs for all wake components. 

Based on this first guess, the next section discusses the main ques
tions of this study, which were defined in the introduction section. 

Fig. 4. Examples of superimpositions of wake samples containing turbulent wakes acquired under short slant ranges by TSX (left) and CSK (right).  

Table 4 
Definition of data (sub)sets for superimposition of backscatter intensities.  

Dataset index 
k 

Slant ranges Incidence angle 

1 Shortest ranges of each 
sensor 

20◦ to 30◦

2 Medium ranges of each 
sensor 

30◦ to 40◦

3 Longest ranges of each 
sensor 

40◦ to 50◦

4 TSX: 700 m to 750 m Variable to achieve matching slant 
ranges: CSK: 675 m to 800 m 

S1: 800 m to 850 m 
RS2: 900 m to 1000 m  

B. Tings et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 306–324

313

Fig. 5. Results of DLMw,s, RMSEw,s and the relative representations of ̂ΔDLMw,s1 ,s2 . The vertical axis is labelled by [DLM] as the thee variables DLMw,s, RMSEw,s, 
̂ΔDLMw,s1 ,s2 are measurements in the scale of this unit. In case the bars are not visible in the plots, this means DLMw,s = 0. The calculated ̂ΔDLMw,s1 ,s2 are added to 

DLMw,s and the respective offsets are indicated by colored symbols, which are unique for each sensor. RMSEw,s is visualized for each sensor in the form of an error bar. 
(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.) 
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Fig. 6. Histograms of intra-model-differences and inter-model-differences for near-hull turbulences. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 7. Histograms of intra-model-differences and inter-model-differences for turbulent wakes. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 8. Histograms of intra-model-differences and inter-model-differences for for Kelvin wake arms. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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In the Figs. 6 to 9, for each sensor and each wake component, the 
histogram of intra-model-differences and the corresponding three other 
histograms of inter-model-differences are presented for each wake 
component in one graph. In each graph the histogram of intra-model- 
differences is depicted by solid bars in the respective sensor’s color 
and the corresponding other three inter-model-differences are depicted 
by transparent bars in the respective other three sensors’ colors. This 
means, with the four compared sensors, for each wake component four 
graphs each with four histograms are shown in Figs. 6 to 9. It should be 
noted that the histograms of intra-model-differences are symmetric to 
the x-axis’s origin, because Δf j,o

w,s estimate non-absolute values and for 
each Δf j,o

w,s the counterpart Δfo,j
w,s exists. The graphs can be considered for 

a deeper understanding of the connection between RMSEw,s, DLMw,s and 
̂ΔDLMw,s1 ,s2 and are referred to in the discussion in the next section. 

4. Discussion 

The dependency of detectability of individual wake components on 
radar frequencies and/or slant ranges is studied qualitatively and 
quantitatively. For all pairs of sensors, the significance of differences in 

detectability is determined. Quantitatively the differences ̂ΔDLMw,s1 ,s2 

and uncertainties RMSEw,s in Fig. 5 are contrasted and qualitatively the 
histograms of intra-model-differences and inter-model-differences in 
Figs. 6 to 9 are interpreted. 

As additional indicator for wake detectability, the image contrast 
between ocean background and wake affected area from the superim
positions of backscatter intensities accumulated over data subsets is used 

and also the ratios of clutter’s mean intensity to wake component’s mean 
intensity are considered. These redundant independent analyses are 
added for reviewing significance of conclusions about differences in 
detectability. The respective Figs. 10 to 13 are shown in the flow of 
discussion below. 

It is essential to consider the model’s uncertainty of both sensors, 

when contrasting ̂ΔDLMw,s1 ,s2 with RMSEw,s during the quantitative 
analysis. When only one of the two RMSEw,s1 or RMSEw,s2 is higher than 

̂ΔDLMw,s1 ,s2 , then difference in detectability can be considered as insig
nificant. The elevation of DLMw,s1 of one sensor s1 over DLMw,s2 of the 

other sensor s2 can only be considered as significant when RMSEw,s1 <

̂ΔDLMw,s1 ,s2 and RMSEw,s2 < ̂ΔDLMw,s1 ,s2 . 
The following also holds for each wake component w: when the 

peaks of a histogram of inter-model-differences of sensor s1 are located 
between two peaks of the histogram of intra-model-differences of sensor 
s2, then the hyperplanes trained for the five subsets X′ j

w,s2 
have in total 

larger distances to each other than to the hyperplanes trained for the five 
subsets X′ j

w,s1
. This means, the model’s uncertainty is higher than the 

differences in detectability between s1 and s2. So, by qualitative analysis 
the model’s uncertainty renders statements on differences insignificant. 
Insignificance by qualitative analysis can also be indicated when histo
grams of intra-model-differences and inter-model-differences can visu
ally not intuitively be separated from each other, i.e. they show a strong 
overlap between each other. 

In the following, the two principal research questions RQ1 and RQ2 
as defined in Subsection 1.3 are discussed. Each question will be 

Fig. 9. Histograms of intra-model-differences and inter-model-differences for V-narrow wakes. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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discussed in a separate subsection. In the Subsections 4.1 and 4.2, ex
planations are provided for each wake component separately at first and 
then followed by a general conclusion. Finally, all results are summa
rized by Table 5 in Subsection 4.3. 

4.1. Comparison of detectability between X-Band and C-Band SAR 
sensors 

In this subsection the research question RQ1 is discussed, separately 
for each wake component in 4.1.1 to 4.1.4 and generally in 4.1.5. 

4.1.1. Comparison of X-Band with C-Band with respect to detectability of 
near-hull turbulences 

The need for estimating the models’ uncertainties becomes most 
evident here. In fact, Fig. 5(a) shows that 
DLMNT,S1 > DLMNT,RS2 > DLMNT,CSK > DLMNT,TSX. So, by only considering 
DLMNT,s the postulation could be derived that C–Band would even perform 
better than X–Band on the detection of near–hull turbulences. But, the 
respective model’s uncertainties RMSENT,s are highest for this wake 

component. RMSENT,s is larger than most ̂ΔDLMNT,s1 ,s2 differences, except 

for the two cases RMSENT,TSX < ̂ΔDLMNT,TSX,CSK and 

RMSENT,RS2 < ̂ΔDLMNT,RS2,CSK , where the uncertainties of the TSX and the 
RS2 models are lower than the mean differences of detectability towards 
CSK. Conversely, the uncertainty of the CSK model is higher than the mean 

differences of detectability towards the other three sensors: RMSENT,CSK >

̂ΔDLMNT,CSK,sn , ∀sn ∈ {TSX, S1, RS2}. So, none of the differences 
̂ΔDLMNT,s1 ,s2 are considered significant. 

This insignificance is also indicated by the histograms of intra- 
model-differences and inter-model-differences in Fig. 6. It can be 

recognized in Fig. 6 that the histogram of intra-model-differences for 
CSK (solid orange histogram) shows two peaks symmetric to the x-axis’ 
origin. The histograms of the other three sensors are located between 
those peaks. This means, by qualitative analysis the differences in 
detectability of near-hull turbulences between CSK and each TSX, RS2 as 
well as S1 are not significant with respect to the model’s uncertainty. 
Fig. 6 also shows that histograms of TSX and RS2 intra- and inter-model- 
differences are overlapping with more than ~ 50 % of the histogram’s 
areas. As the histogram curves cannot be separated from one another, 

the offsets ̂ΔDLMNT,TSX,RS2 and ̂ΔDLMNT,RS2,TSX from DLMNT,TSX with 
RMSENT,TSX and DLMNT,RS2 with RMSENT,RS2, respectively, are not 
considered significant. For completeness, it should be noted that the 
histograms of TSX and S1 are visually separable. So, by qualitative 
analysis of the detectability models TSX would be better suited for 
detecting near-hull turbulences than S1, but this was already discarded 
as explained in the previous paragraph. 

In order to answer the question for TSX and S1 also qualitatively with 
the alternative analysis, Fig. 10 is considered: Although the general 
magnitude of mean backscatter intensities differs significantly between 
the sensors, a contrast between the wake’s centerline (at 0◦ on the x- 
axis) and the ocean background can only be observed until the 800 m 
wake length bins. The higher variability of mean backscatter intensities 
of the CSK, RS2 and S1 graphs reflects the higher model’s uncertainty 
indicated by the respective intra-model-differences in Fig. 6 as well as 
RMSENT,CSK, RMSENT,S1 and RMSENT,RS2, which is highest for CSK. The 
graphs in Fig. 10 for TSX and S1 show maxima with similar relative 
heights at the position of the wake’s centerline for the range bins 200 m, 
400 m and 800 m. This means, for both sensors near-hull turbulences 
only produce higher ocean backscatter contrasting from the ocean 
background up to 800 m aft the ship. Therefore, no significant difference 
in detectability between TSX and S1 is also concluded by the alternative 

Fig. 10. Distribution of mean backscatter intensities of superimpositions based on matching slant ranges for near-hull turbulences. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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qualitative analysis. With respect to Fig. 10 also no significant difference 
can be recognized between the other sensors. The slant ranges are set to 
matching value ranges for all four sensors. Thus, it can be ruled out that 
a better detectability of near–hull turbulences in C-Band than in X-Band 
imagery is not recognizable due to a compensation of the nonlinear 
decrease of detectability with increasing slant ranges. 

This conclusion is also supported by the quantitative alternative 
analysis with the ratios of clutter’s and near-hull turbulences’ mean 
intensity qNT,s also shown in Fig. 10, from which no trend can be derived: 
The ratios are highest for TSX and second highest for RS2, while qNT,CSK 

reveal that relative backscatter of near-hull turbulences is only little 
higher in contrast to the ocean background. 

4.1.2. Comparison of X-Band with C-Band with respect to detectability of 
turbulent wakes 

Taking the studies of Gade et al. (Gade et al., 1998a, 1998b) as analogy 
for turbulent wakes would imply that due to higher damping ratio of 
surface films in X–Band imagery in comparison to C–Band imagery, tur
bulent wakes should be better detectable in X–Band imagery. Indeed, the 
results in Fig. 5(b) show ~ 9 % higher DLMTW,TSX for TSX and even ~ 31 % 
higher DLMTW,CSK for CSK in contrast to RS2 and S1, which have similar 
DLMTW,s (only ~ 4 % distance), i.e. 
DLMTW,CSK≫DLMTW,TSX > DLMTW,S1≳DLMTW,RS2. 

However, when taking RMSETW,s or the histograms of intra-model- 
differences and inter-model-differences in the Fig. 7 into account, by 
quantitative and qualitative uncertainty analysis the elevation of 
DLMTW,TSX over DLMTW,RS2 and DLMTW,S1 is not significant: 

RMSETW,S1 > ̂ΔDLMTW,S1,TSX , RMSETW,RS2 > ̂ΔDLMTW,RS2,TSX and the 
respective histograms of intra- and inter-model-differences are over
lapping with more than ~ 50 % of the histogram’s areas. Therefore, it 

can be concluded that CSK is indeed better suited for the detection of 

turbulent wakes than RS2 and S1 (RMSETW,CSK < ̂ΔDLMTW,CSK,sn , ∀sn ∈

{TSX, S1,RS2} and RMSETW,sn <
̂ΔDLMTW,sn ,CSK , ∀sn ∈ {TSX, S1,RS2}), 

but not that X–Band is better suited than C–Band. 
This conclusion can mainly be confirmed by the alternative consid

eration of the mean backscatter intensities as depicted in Fig. 11. No 
significant difference of minimum backscatter intensities at the wake’s 
centerline angle with 800 m to 3200 m distance to the wake’s origin 
point is recognizable between TSX and S1. In RS2 turbulent wake sig
natures are rarely encountered above 800 m distance. That RS2 might 
have lower performance than TSX and S1 is not indicated by the 
quantitative and qualitative analysis of the detectability models and 
therefore neglected. The minimum at the wake’s centerline for CSK 
(highlighted in Fig. 11 by the red ellipsis) show significantly higher local 
contrast in comparison to the other three sensors. The expected char
acteristic pattern of turbulent wakes (i.e. low radar backscatter some
times enclosed by brighter backscatter due to Kelvin wake arms) is 
clearly recognizable. This indicates that in CSK images the ocean surface 
smoothed by the turbulent wake is better observable than in imagery 
from the other sensors. Again, the plots were generated for matching 
slant ranges so that the impact of varying slant ranges between the 
sensors is compensated. 

Also, for turbulent wakes the quantitative alternative analysis does 
not show clear similarities or differences between C-Band and X-Band 
sensors. Furthermore, the better performance of CSK cannot be 
confirmed by the quantitative alternative analysis. 

4.1.3. Comparison of X-Band with C-Band with respect to detectability of 
Kelvin wake arms 

The DLMKW,RS2 ≈ DLMKW,S1 ≈ 0 and its low RMSEKW,RS2 as indicated 

Fig. 11. Distribution of mean backscatter intensities of superimpositions based on matching slant ranges for turbulent wakes; the curves for the 200 m and 400 m 
radial bins are not displayed; the red ellipsis marks the minimum NRCS at the wake’s centerline. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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in Fig. 5, imply that almost all RS2 and S1 wake samples did show no or 
only very short signatures of those wake components. The correspond
ing detectability models represent hyperplanes with low elevation in the 
lw,s-dimension. However, with higher RMSEKW,S1 > 0.2 the previous 
implication does not hold for Kelvin wake arms in S1 imagery. As 

RMSEKW,S1 > ̂ΔDLMKW,S1,TSX TSX cannot be considered significantly 
better suited for detection of Kelvin wake arms than S1. With 

RMSEKW,RS2 < ̂ΔDLMKW,RS2,sn , ∀sn ∈ {TSX,CSK} and RMSEKW,sn <

̂ΔDLMKW,sn ,RS2 , ∀sn ∈ {TSX,CSK} TSX and CSK are significantly better 
suited than RS2. It should be noted that CSK does outperform all other 
sensors. 

The histogram of intra-model-differences of TSX is visually separable 
from the histograms of inter-model-differences of S1 and RS2. Vice versa 
the histogram of inter-model-differences of TSX is only separable from 
the histogram of intra-model-differences of RS2 not of S1 (as presented 
in Fig. 8). Both histograms of CSK are can be separated from all other 
histograms. This implies that all statements from the quantitative 
analysis can be confirmed by the qualitative analysis of the detectability 
models. Basically, this conclusion agrees with Hennings et al. (Hennings, 
et al., 1999) stating that C–Band or X–Band should be similar in terms of 
detectability of Kelvin wake arms. However, in Hennings et al. only the 
mean NRCS of the Kelvin wake arms relative to the background was 
taken into account, the wake component length was not considered. 
Nevertheless, it can be seen in the Figures in (Hennings, et al., 1999) that 
the Kelvin wake arms are longer for X–Band than for C–Band imagery. 
Further, the better detectability of Kelvin wake arms in higher frequency 
SARs (in (Hennings, et al., 1999) C-Band and X-Band) compared to lower 
frequency SARs (in (Hennings, et al., 1999) L-Band) could analogically 
apply for the difference in detectability between C-Band and X-Band 
SARs as well, because C–Band means lower frequencies than X–Band. 

The alternative analysis of the mean backscatter intensities reveals 
that the characteristic Kelvin wake pattern consisting of two bright lines 
with 19.47◦ angle from the wake’s centerline is essentially observable 
under such low incidence angles or analogically short slant ranges, as 
they are only reached by the two X-Band sensors (as depicted in Fig. 12). 
For incidence angles above 30◦ the characteristic Kelvin wake pattern is 
not as dominant as under lower incidence angles. However, it is still 
recognizable for TSX, CSK and even for S1 (see Fig. 13), but not for RS2. 
As RS2 has the longest slant ranges of all four sensors and Kelvin wakes 
are not found significantly lower detectable in S1 imagery, the differ
ence in detectability is attributed to the different slant ranges of the 

sensors, not to the different radar frequencies. 
By the quantitative alternative analysis this statement can be 

confirmed. The longer the slant ranges become the closer the ratios of 
clutter’s and Kelvin wake arm’s mean intensity converge to one. This 
means, under shorter slant ranges the cusp waves in the Kelvin wake 
arms produce higher backscatter relative to the background clutter in 
contrast to the cusp waves under longer slant ranges, which makes 
Kelvin wake arms under shorter slant ranges better detectable. 

4.1.4. Comparison of X-Band with C-Band with respect to detectability of 
V-narrow wakes 

Similar to Kelvin wake arms the DLMVW,RS2 ≈ DLMVW,S1 ≈ 0 and its 
low RMSEVW,S1 and RMSEVW,RS2 imply that almost all wake samples did 
not show any signature of V–narrow wakes in S1 and R2 imagery. In 
contrast, the uncertainties RMSEVW,S1 and RMSEVW,RS2 are so low that the 
high uncertainties RMSEVW,TSX and especially RMSEVW,CSK are not rele

vant, as RMSEVW,sn < ̂ΔDLMVW,sn ,sm ,∀sn ∈ {TSX,CSK},∀sm ∈ {S1,RS2}

and RMSEVW,sm < ̂ΔDLMVW,sm ,sn ,∀sn ∈ {TSX,CSK},∀sm ∈ {S1,RS2}. 
The qualitative uncertainty analysis in the Fig. 9 shows clearly 

separable histogram peaks of C–Band histograms from X–Band histo
grams. In conclusion, the difference in detectability of V–narrow wakes 
between C–Band and X–Band is found to be significant. 

As a low level of uncertainty of the detectability models for V-narrow 
wakes is encountered, the results are significant and no alternative 
analysis is required. Anyway, the characteristic pattern of V–Narrow 
wakes with the small angle of ~ 2◦ between the V–narrow wake arms is 
not resolved in the superimpositions of backscatter intensities. 

4.1.5. Summary of detectability comparison between X-Band and C-Band 
As discussed in the previous Subsections 4.1.1, 4.1.2 and 4.1.3 near- 

hull turbulences, turbulent wakes and Kelvin wake arms were not found 
significantly better detectable in X–Band than in C–Band imagery. 
However, according to the Subsection 4.1.4, V–narrow wakes are 
significantly better detectable in X–Band than in C–Band imagery. Due 
to the high proportion of V–Narrow wake arms (see Table 1) in the X- 
Band datasets, it is therefore concluded that X–Band is better suited for 
the detection of ship wakes than C–Band. 

Fig. 12. Distribution of mean backscatter intensities of superimpositions based on low incidence angles in the range of 20◦ to 30◦ for Kelvin wake arms; no samples 
available for S1 and RS2 with this image acquisition setting; the curves for the 200 m and 400 m radial bins are not displayed. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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4.2. Comparison of detectability between shorter and longer slant range 
missions 

In this subsection the research question RQ2 is discussed, separately 
for each wake component in 4.2.1 to 4.2.4 and generally in 4.2.5. 

4.2.1. Comparison of shorter and longer slant ranges with respect to 
detectability of near-hull turbulences 

Fig. 5(a) shows that DLMNT,S1 >DLMNT,RS2 >DLMBT,CSK >DLMNT,TSX. 
So, only on the basis of mean DLM, the two sensors with longer slant 
ranges would perform even better on the detection of near-hull turbu
lences than the two sensors with shorter slant ranges. However, as 
already explained in Subsection 4.1.1, no significant differences be
tween the sensors can be concluded after analysis of model’s un
certainties and distribution of backscatter intensities in the 
superimpositions. 

4.2.2. Comparison of shorter and longer slant ranges with respect to 
detectabilty of turbulent wakes 

As already described in Subsection 4.1.2, CSK performs significantly 
better on the detection of turbulent wakes than S1 and RS2, but TSX with 
even shorter slant ranges than CSK and S1 with shorter slant range than 
RS2 does not. Therefore, no significant difference in detectability be
tween sensors with shorter and longer slant ranges can be concluded. 

4.2.3. Comparison of shorter and longer slant ranges with respect to 
detectabilty of Kelvin wake arms 

In Subsection 4.1.3 was already stated that the difference in detect
ability is attributed to slant ranges instead of radar frequencies. 
Although the slant ranges differ between TSX, CSK and S1 in Fig. 13 the 
characteristic Kelvin wake pattern is similarly well recognizable. For 
RS2 with its significantly longer slant ranges the characteristic pattern 
cannot be recognized. Therefore, it is assumed that the decrease in 
detectability of Kelvin wake arms with increasing slant ranges is 
nonlinear. Rather the detectability drops significantly at longer slant 
ranges. 

4.2.4. Comparison of shorter and longer slant ranges with respect to 
detectability of V-narrow wakes 

V–narrow wakes are significantly better detectable in X-Band im
agery than in C-Band imagery (see Subsection 4.1.4). But, in contrast to 
Kelvin wake arms no significant difference between RS2 and S1 can be 
recognized and the difference between TSX and CSK is even reversed. 
Therefore, the difference in detectability is attributed to the different 
radar frequencies, not to the different slant ranges. 

4.2.5. Summary of detectability comparison between shorter and longer 
slant ranges 

Only for Kelvin wake arms the difference in detectability can be 
attributed to the different slant range. For the other wake component 
based on Bragg scattering, the V-Narrow wake, also a lower detectability 

Fig. 13. Distribution of mean backscatter intensities of superimpositions based on low incidence angles in the range of 30◦ to 40◦ for Kelvin wake arms; the curves for 
the 200 m and 400 m radial bins are not displayed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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in imagery of sensors with longer slant ranges can be observed, but the 
difference is not significant. As Kelvin wake arms are observable in 
roughly-one third of TSX images and the majority of CSK images, it can 
be concluded that shorter slant ranges are generally better suited for the 
detection of ship wakes. 

4.3. Summary 

X-Band radar frequencies or shorter slant ranges are better suited for 
the detection of ship wakes than C–Band radar frequencies or longer 
slant ranges. However, this general conclusion is only based on the 
differences in detectability, which were encountered for Kelvin wake 
arms and V–narrow wakes. For those wake component the respective 
research questions lead to different conclusions. The conclusions of the 
previous subsections are summarized in Table 5. 

5. Conclusions 

In this study, the differences in detectability of wake components 
between four SAR sensors are evaluated. For that purpose, quantitative 
and qualitative analyses were conducted and a measure for the detect
ability models’ uncertainties was introduced. The two research ques
tions RQ1 and RQ2 can now be concluded. 

The analyses of this study show that near-hull turbulences and tur
bulent wakes are neither significantly affected by C–Band or X–Band 
radar frequencies nor by shorter or longer slant ranges. 

It was concluded that Kelvin wakes arms are significantly better 
detectable under shorter slant ranges. Kelvin wakes are the wake com
ponents, which consist of various systems of gravity waves. This means, 
varying surface slopes and orbital motions are present so that Kelvin 
wakes are connected to the scattering mechanisms of tilt modulation, 
hydrodynamic modulation and velocity bunching (Holt, 2004). Espe
cially the velocity bunching effect is dependent on the slant range: With 
increasing slant range also the nonlinear distortions of velocity bunching 
become more prominent, because the azimuth shift of moving point 
targets becomes larger. With respect to ocean waves it is known that 
such distortions can completely destroy the imaged ocean wave pattern 
(Hennings et al., 1999; Holt, 2004). Analogically, the characteristic 
pattern of Kelvin wakes can be destroyed, resulting in decreased 
detectability. This relationship between Kelvin wakes and velocity 
bunching explains, why detectability of Kelvin wakes decreased with 
increasing slant ranges. 

From the analyses of V–narrow wake arms were concluded that they 
are significantly better detectable by X–Band SAR sensors than by C- 
Band SAR sensors. All other wake components are connected to a variety 
of scattering mechanisms, i.e. Rayleigh and Bragg scattering, specular, 
dihedral and corner reflection as well as the already mentioned tilt 
modulation, hydrodynamic modulation and velocity bunching (Holt, 
2004; Thompson, 2004). The development of V-Narrow wakes is only 
the result of Bragg Scattering. This explains, why the detectability of this 
wake component is found most dependent on the radar frequency band, 

in contrast to the other wake components. The radar frequency band 
determines the first and higher order Bragg wavelength, which must be 
met by the circularly propagating waves on the V-narrow wakes arm’s 
regions (Lyden, et al., 1988; Reed & Milgram, 2002). In conclusion, the 
longer Bragg wavelengths of C–Band sensors are more difficult to meet 
than the shorter Bragg wavelengths of X–Band sensors. 

However, it was also shown that also V–narrow wakes are better 
detectable under shorter slant ranges and that also Kelvin wake arms are 
better detectable by X-Band SAR sensors, but those differences were 
found to be insignificant during the uncertainty analysis. Both wake 
components are based on Bragg scattering. Due to this similarity and the 
fact that those differences are recognizable, even though not significant, 
it can generally be concluded that slant ranges and radar frequencies 
have an effect on both wake components. From the results, it is further 
concluded that the detectability of those two wake components does not 
linearly decrease with increasing slant ranges. 

The generally better detectability of ship wakes in TSX imagery 
compared to RS2 and S1 imagery, which was stated in (Tings & Velotto, 
2018), can now be explained: Both Bragg-based wake components have 
considerable proportions in the datasets. Therefore, the detectability of 
ship wakes increases generally, when sensors with shorter slant ranges 
and X-Band instead of C-Band radar frequencies are used. 

The additionally introduced CSK dataset showed the best perfor
mance with respect to wake detection for turbulent wakes and Kelvin 
wake arms. However, as a high level of uncertainty was encountered 
during all analyses of this dataset, this peculiarity is discarded. 

The presented analyses rely on a manual inspection procedure 
executed by humans. So, it cannot be ruled out that a human error is 
involved. The intention of uncertainty analysis and the provision of an 
alternate analysis of distribution of backscatter intensities is to mitigate 
this human error. Various methods for fully automatic wake detection 
exist, but those methods detect individual wake components, only when 
wake signatures are well developed (Graziano et al., 2016). Once robust 
methods for wake component detection are developed, the presented 
analysis could be repeated with less human error involved. 
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Table 5 
Summary on detectability of four ship wake components by different SAR sensors.  

Ship wake components Summary on differences in detectability 
Not better suited= “-“ 
Better suited = “+” 

X-band better suited than C-band? Shorter slant range better suited than longer slant range? 

near-hull turbulence (4.1.1, 4.2.1) – – 
turbulent wakes (4.1.2, 4.2.2) – – 
Kelvin wake arms (4.1.3, 4.2.3) – +

V–narrow wake (4.1.4, 4.2.4) + – 
In general (4.1.5, 4.2.5) + +
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