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Pericytes surround capillaries in every organ of the human body. They are

also present around the vasa vasorum, the small blood vessels that supply the

walls of larger arteries and veins. The clinical interest in pericytes is rapidly

growing, with the recognition of their crucial roles in controlling vascular

function and possible therapeutic applications in regenerative medicine.

Nonetheless, discrepancies in methods used to define, isolate, and expand

pericytes are common and may affect reproducibility. Separating pure

pericyte preparations from the continuum of perivascular mesenchymal cells

is challenging. Moreover, variations in functional behavior and antigenic

phenotype in response to environmental stimuli make it difficult to formulate

an unequivocal definition of bona fide pericytes. Very few attempts were

made to develop pericytes as a clinical-grade product. Therefore, this

review is devoted to appraising current methodologies’ pros and cons and

proposing standardization and harmonization improvements. We highlight the

importance of developing upgraded protocols to create therapeutic pericyte

products according to the regulatory guidelines for clinical manufacturing.

Finally, we describe how integrating RNA-seq techniques with single-cell

spatial analysis, and functional assays may help realize the full potential of

pericytes in health, disease, and tissue repair.

KEYWORDS

pericytes, regenerative medicine, methods, isolation and expansion, cardiovascular

1. Background

Benjamin Rouget was the first to describe and give his name to a particular type
of cell within the capillary basement membrane with projections protruding to enwrap
the vessel wall (1). In 1923, Zimmerman renamed these Rouget cells “Pericytes.” Under
this broad name, they included many forms of cells from different tissue origins located
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around capillaries (2). Then, research on pericytes entered
a hibernation period until 20 years ago, when the pericytes’
regenerative potential started attracting translational interest
(3, 4). Nonetheless, a discrepancy persists in the literature
regarding pericytes vs. other cardiovascular cells. For instance,
pericytes are plentiful in the heart. However, there were only 73
publications on cardiac pericytes in PubMed during 2021 (out of
687 publications retrievable using the general term “pericytes”)
compared with 5,400 for cardiomyocytes and 1,150 for coronary
endothelial cells. This data highlights the need for more research
on this cell population.

Several teams have reported technologies for the isolation
and derivation of pericytes. Culture expansion allows the
generation of stocks for use as a product for cell therapy
and tissue engineering. Nonetheless, the consensus on
pericyte-related techniques remains far behind that of human
endothelial cells (ECs) (5–7). In particular, the diversity of
pericytes’ properties and antigenic expression in different
organs, together with the overlapping with other perivascular
mesenchymal cells, represents a significant obstacle to using one
method that fits all experimental conditions. Ad hoc standard
operating procedures (SOP) may better accomplish distinct
scientific/medical goals. For instance, pure pericyte products
are necessary for obtaining regulatory approval for patients’
treatment. Semi-purified preparations are more suitable for
deciphering the transition of pericytes across different antigenic
and functional phenotypes in response to environmental
stimuli. The main characteristics of pericytes are illustrated in
Figure 1 and relevant text sections.

2. Aims

This review article aims to present, compare, and discuss
the experience of deriving pericytes from different organs and
species. We initially report current nomenclature, functional
roles, and antigenic profiles that distinguish pericytes from
other perivascular cell populations. The main body of
the review is then devoted to (i) documenting the pros
and cons of current techniques for isolation, expansion,
and characterization of bona fide pericytes, (ii) suggesting
avenues for standardization and harmonization, (iii) upgrading
protocols for clinical manufacturing, and (iv) prospecting
the potential of novel single-cell technologies in advancing
pericyte research.

3. Origin and nomenclature of
pericytes

Developmentally, pericytes in the cephalic region and
thymus originate from the neuroectoderm. The ones found
in the liver, lungs, and heart derive from mesothelium. The

mesoderm gives rise to pericytes in other organs (such as
kidneys, liver, and pancreas) (8–10). Intriguingly, Yamazaki
et al. proposed that a subgroup of pericytes may also derive
from the hematopoietic cell lineage (11). Tracing studies
may help reveal additional embryological contributors to
vascular pericytes.

In the adult organism, microvascular pericytes are classically
located within the basement membrane in direct contact with
capillary ECs in different organs. In addition, pericytes are
present in the vascular adventitia, the blood vessel’s outer layer
near the vasa vasorum (3, 12). The nomenclature of these
intravascular pericytes is inconsistent: the term “adventitial
stromal cells/CD34 + cells” refers to the in situ expression
of CD34, a transmembrane glycoprotein, while “adventitial
pericyte-like progenitors” denotes their plasticity and positivity
for typical stem cell markers (12–15). For clarity, we will refer to
these cells as adventitial pericytes.

4. Functional roles of pericytes

Pericytes are essential for vasculature’s physiological
stability, as exemplified by the prominent pericyte-endothelial
interactions forming the blood-brain barrier (16). Reduction in
pericytes abundance, pericyte detachment from capillaries, and
accrual of senescence markers are associated with microvascular
fragility and dysfunction, as observed in aging, ischemic disease,
fibrotic and neurodegenerative disorders, diabetes, tumors, and
COVID-19 (17–21). Moreover, capillary pericytes modulate
blood flow in different organs. Mice with brain pericyte
ablation reportedly developed an acute blood-brain barrier
breakdown, severe blood flow decrease, and rapid neuron
loss (22). Pericyte contraction participates in the no-reflow
phenomenon, the failure of blood to reperfuse an ischemic
tissue after the vascular obstruction has been removed or
bypassed (23–26).

In addition to their vascular functions, pericytes exert
immunomodulatory tasks, sensing inflammatory stimuli
through pattern-recognition receptors, and promoting
monocyte and neutrophil migration and homing via a
PDGFRβ signaling mechanism (27, 28). They also express
ligands interacting with activated T cell receptors during
adaptive immunity responses (29).

Lastly, pericytes play critical roles in tissue restoration,
promoting, and stabilizing reparative neovascularization, as
reviewed in Navarro et al. (30). Accordingly, regenerative
therapies using exogenous pericytes have been preclinically
tested (31–37). Pericytes were delivered either as dispersed
preparations or as a part of a “tissue-engineered” product to
models of myocardial infarction (MI) (33, 36, 37), congenital
heart disease (34, 35), limb ischemia (38), muscular dystrophy
and skeletal muscle injuries (39–42), blood-brain barrier
disorders (43–48), diabetic retinopathy (49–51), and kidney
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FIGURE 1

Characteristics of pericytes. (A) Immunofluorescence microscopy image of NG2 positive (green) pericytes, with endothelial cells labeled in red
and nuclei in blue. (B) Cartoon of pericyte around a capillary lined internally by endothelial cells. (C) Aspect of pericytes in culture.
(D) Overlapping of antigens with other mesenchymal cells. For clarity, refer to text for the overlapping with perivascular fibroblasts. (E) Key
pericyte functions. Image in (A) has been reproduced with permission from the original article in Avolio et al. (3).

fibrosis (52). These preclinical studies have paved the way for
future therapeutic applications in human diseases.

5. Antigenic profile of pericytes in
relation to function and
localization

Like other mesenchymal cells, pericytes are positive for
CD105, CD29, CD44, and CD90 and negative for CD45 and
CD31. They typically express Platelet-Derived Growth Factor
Receptor beta (PDGFRβ), the cell surface glycoprotein MUC18
(CD146), GTPase signaling 5 (RGS5), chondroitin sulfate
proteoglycan 4 (NG2), myosin heavy chain 11 (Myh11), and the
transmembrane metalloprotease CD13 (12, 53–55).

The expression of antigenic markers can vary according to
organ location. Capillary and adventitial pericytes express
both NG2 and PDGFRβ. However, capillary pericytes
are positive for CD146, whereas adventitial pericytes are
positive for CD34 and negative for CD146 (3, 12, 56, 57).
Kramann et al. and Crisan et al. illustrated a difference in
the antigenic profile of pericytes according to their vascular
site. They classified the pericytes into two types. Capillary
(type I) pericytes (NG2+/Desmin−/α-SMA−) and pre-
capillary (type II) pericytes (NG2+/Desmin+/α-SMA+) (58,

59). Bergers et al. identified post-capillary (type III) pericytes
(NG2−/αSMA+) (60). Moreover, coronary artery pericytes were
classified as endocardial-derived (NG2−/ PDGFRβ+/αSMA−)
and epicardial-derived (NG2+/PDGFRβ+/αSMA+)
(61, 62). Three different subgroups of aortic pericytes
were identified based on similarities to fibroblasts
(PDGFRβ+/PDGFRα+/CD34+), VSMCs (PDGFRβ+/αSMA+),
and neural cells (PDGFRβ+/PLP1+/CNP+) (63).

Pericytes can change phenotype when transiting from
a quiescent to an activated state. NG2 distinguishes
topical pericyte properties such as the capacity to control
vascular permeability in the brain (64–66), participation in
myofibroblast differentiation during the process of cardiac
and renal fibrosis (67, 68), and progenitor cell activity
in the coronary microvasculature (69). The concurrent
expression of CD133, CD34, and Kinase Insert Domain
Receptor (KDR) identifies fetal aorta-derived pericytes’
ability to differentiate into endothelial or muscular lineages
(15). Adult aortic pericytes express the stemness marker
SRY (sex determining region Y)-box 2 (Sox2) (12). and
microvascular cardiac pericytes express OCT3/4, GATA−4, and
Homeobox protein NANOG (32). The upregulation of another
pluripotency gene, Krüppel-like factor 4 (KLF4), marked the
switch of perivascular cells to a less differentiated state in
tumors (70).
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In angiogenesis, the transition from quiescent to actively
proliferating pericytes is accompanied by profound changes
in the antigenic and secretory profile (71). The expression of
alpha-smooth muscle actin (α-SMA) and the downregulation
of protein tyrosine kinase Tie2 reportedly mark the pericyte
participation in pathological angiogenesis (72–74). Using RNA-
Seq transcriptomics, we unveiled new markers distinguishing
the differentiation stages of human cardiac pericytes into
pro-angiogenic, contractile cells. Naive pericytes express
the Cell Adhesion Molecule 3 (CADM3). The expression
of the angiogenesis-related Cellular Retinoic Acid–Binding
Protein 2 (CRABP2) and Aquaporin 1 (AQP1) distinguished
contractile pericytes from naive pericytes and coronary VSMCs
(55). In addition, we reported that epigenetic modifications
can influence the pericyte pro-angiogenic activity (75).
Transplantation of human adventitial pericytes to a murine
limb ischemia model improved perfusion recovery and
muscular angiogenesis. The therapeutic effect varied among
different donor lines. Whole genome screening showed that this
variation was significantly associated with the DNA methylation
state at the promoter and gene body levels (75).

Gubernator et al. identified two types of skeletal muscle
pericytes relevant to adipogenesis and myogenesis (76). Type
I pericytes’ antigenic profile (NG2+/Nestin−/PDGFRα+) is
linked to a differentiation fate to adipocytes and is associated
with fat accumulation (77). Type II expressional profile
(NG2+/Nestin+/PDGFRα−) is linked to myocyte commitment
and associated with skeletal muscle regeneration (78).

6. Distinction from other cells
within the perivascular niche

The microenvironment within or in proximity to the
blood vessel wall, the perivascular niche, contains mesenchymal
stromal cells (MSCs), fibroblasts, and pericytes. Perivascular
MSCs express CD146, CD105, alkaline phosphatase (ALP)+,
Stro-1, and VCAM1 in humans, and CD105, PDGFRα, Sca1,
CD44, CD29, and VCAM1 in the mouse (79). It remains
unclear whether MSCs and pericytes have a lineage relationship
or represent functionally distinct mesenchymal populations
that share a perivascular location. Some studies support the
possibility that pericytes constitute a more primitive version of
MSCs (15, 80), while others suggest that all MSCs are pericytes
with some narrow exceptions (81). In line with the latter
possibility, a study from Crisan demonstrated that pericytes
isolated from different organs express almost all the known
markers of MSCs, especially CD10, CD13, CD44, CD73, CD90,
and CD105 (82).

Moreover, a strict relationship exists between fibroblasts and
pericytes. Fibroblasts are mesenchymal cells in the interstitial
space of all organs (83). They express mesenchymal markers
such as vimentin, PDGFRα, and type I collagen, along with

some tissue-specific markers, such as Transcription Factor 21
(TCF21) and periostin (84). In the brain, perivascular fibroblasts
surround cortical penetrating arterioles and their branches in
the arteriole-capillary transition zone. Still, they are absent in
the capillary zone where pericytes prevail (85). Recent single-
cell transcriptomics studies in mice showed that perivascular
fibroblast-like cells in the adult mouse brain express unique
markers compared with other mural cells (86–88). In the heart,
the periostin-expressing myofibroblast originates from tissue-
resident fibroblasts and plays critical roles in adaptive healing
and fibrosis, according to genetic lineage tracing of cardiac
cells (84). A study in the Zebrafish, using a combination of
in vivo live imaging, genetic ablation, and CRISPR mutant
analysis, demonstrated that perivascular fibroblasts play dual
roles in stabilizing nascent intersegmental vessel sprouts from
the dorsal aorta and later functioning as pericyte progenitors
(89). Furthermore, Birbrair et al. distinguished two bona
fide pericyte subtypes in the skeletal muscle interstitium of
mice, naming them type-1 (Nestin-GFP−/NG2-DsRed+) and
type-2 (Nestin-GFP+/NG2-DsRed+) pericytes. In vitro, type-1
pericytes were profibrotic, and type-2 pericytes were myogenic.
The latter fate was confirmed after transplantation of type-2
pericytes in young mice and, to a lesser extent, in older mice.
Moreover, type-2 pericytes participate in normal and tumoral
angiogenesis (77, 78). Therefore, transition states and shared
functions between pericytes and perivascular fibroblasts may
coexist in disease states.

Given that there is no single-specific pericyte marker,
adopting the concept of “Identifying Package’ seems more
plausible (82).

7. Current protocols for the
derivation of pericyte populations

The different steps of pericyte derivation and purification
are illustrated in Figure 2.

7.1. Tissue harvesting and pericyte
extraction

The harvesting procedure can affect the subsequent isolation
steps. For instance, cardiac surgeons use two techniques to
prepare saphenous veins for coronary artery bypass grafting.
Removal of perivascular tissue from the vein may damage
the adventitia, thereby precluding the isolation of resident
pericytes. We prefer to isolate pericytes from veins obtained
through the “no-touch” technique (90, 91). The optimal
time from harvesting to cell isolation varies according to
the tissue source. Blood vessels can be stored for up
to 7 days, while cardiac samples must be processed for
digestion within 48 h.
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FIGURE 2

Advantages and disadvantages of different methods of isolation and purification methods. Figure created in Biorender.com source.

The isolation is generally performed using enzymatic
digestion or microdissection techniques. The enzymatic
digestion approach is particularly useful for pericyte isolation
from biopsies and surgery leftovers. The tissue is finely
chopped and subjected to one or multiple rounds of enzymatic
digestion. Samples with a high collagen content should undergo
mechanical dissociation to increase the cell yield (39, 46, 47, 92,
93). Quality control of reagents’ purity and stability includes
checking the batch enzymatic activity, determining the activity
decay with storage, and ensuring that the final concentration is
appropriate to the tissue source and sample quantity. A highly
purified mix of Collagenase I and II, commercially available as
Liberase TM, is used to digest and isolate pericytes from human
and swine saphenous veins and heart (12, 32–35). A mix of
Collagenase Dispase, Dnase I, and Tosyl-L-lysyl-chloromethane
hydrochloride (TLCK) is used to isolate swine and bovine
pericytes from the brain (45). A Papain and Dnase I are
employed to isolate mouse brain pericytes (43). A precise tuning
of the enzyme volume in relation to the tissue weight is essential
to ensure efficient cell isolation (3, 12). An excessively aggressive
procedure can impact cell viability, while incomplete tissue
processing can compromise cell yield. The incubation time for
tissue digestion is also critical. For pericytes extraction from the
heart, we treat the chopped tissue with Liberase for up to 1 h at
37◦C under gentle rotation.

Microdissection is usually applied to outgrowth/explant
cultures. The tissue is dissected into small pieces using a scalpel

or scissors, washed to avoid red blood cell contamination,
and distributed over the surface of a culture dish with
or without extracellular matrix (ECM) coating. Pre-warmed
media is then added to cover the fragments completely.
Explanted cultures are kept undisturbed for a few days
until pericytes become visible as migrated cells from the
tissue pieces (31, 41, 94). The advantages of this isolation
technique are the increased yield of collected cells, low cost,
and avoidance of the destructive stress caused by enzymes
(95). However, enzymatic pre-treatment may sometimes
become necessary, as in the case of micro-vessels from the
placenta (91).

Laser capture microdissection (LCM) enables the operator
to separate the cells of interest from the whole tissue
specimen under the microscope using a cutting beam of
UV laser (96, 97). This separation strategy does not require
prior mechanical or enzymatic digestion. Thus, it allows
for preserving the native cell phenotype, gene expression,
and function (98). The disadvantage is represented by costs,
complexity, and personnel specialization (99, 100). LCM was
used to isolate pericytes from snap-frozen human and mouse
brains (101).

Enzymatic dissociation and microdissection are generally
followed by separation of antigenically defined cell populations
by FACS or immunomagnetic columns. This could be associated
with using selective culture media during cell expansion
(31, 102).
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7.2. Purification

Table 1 shows the negative and positive markers used for
sorting, while Table 2 illustrates the methods for enhancing
purity.

In preparation for immunomagnetic sorting, the crude
preparation from digestion or microdissection is passed through
70-, 40-, and 30-µm strainers to eliminate debris. Using
immunomagnetic columns, cells are labeled with magnetic
microbeads conjugated with antibodies and exposed to a
magnetic field (90). Three platforms are available for this
purpose: the magnetic separator, a column-free magnetic
separation fitting tube containing cells labeled with antibodies,
and magnetic particles. The labeled cells are retained in the
tube walls, and the unlabeled cells are discarded. MACS columns
and Dynabeads are widely used to isolate pericytes due to
the simplicity and rapidity of the procedure (32–35, 94, 103).
The harsh magnetic field may cause damage or rupture of
the cell membranes of fragile cells. Furthermore, column-based
separations generally employ a limited number of positive and
negative markers, resulting in a semi-purified cell population.

Fluorescent-Activated Cells Sorting (FACS) is more reliable
than immunomagnetic columns. The final population is
highly pure for the selected antigens, but cell yields may
be insufficient for immediate applications requiring large cell
quantities. The strategy for gating cells can make a profound
difference in the outcomes (12, 39, 41, 42, 44, 52, 90,
104, 105).

7.3. Expansion

This step requires fine-tuning environmental conditions
for pericytes’ rapid and consistent growth and suppression of
contaminant cells. Essential elements and components include
appropriate cell seeding density, flasks/plates coating, media,
growth factors (GFs), and antibiotics.

Pericytes have elongated cytoplasmic processes which
enable the in vitro cell-cell communication necessary for the
production and secretion of their “sensome,” a novel term
used to indicate different GFs sensed by these cells (106).
Hence, calculating the correct cell seeding density is essential
to avoid growth arrest and senescence caused by the lack
of physical contact. To support pericytes adherence to the
culture surface, 0.1–0.2% (w/v) gelatin solution is widely
used for precoating.

Dulbecco’s Modified Eagle Medium (DMEM) has been
used for the expansion of pericytes sourced from the
brain (107), kidney (108), lung (109), skeletal muscle
(110, 111), and skin (112). A DMEM version including
many additional factors (e.g., zinc, thymidine) could
help improve the growth rate (113). The addition of
Fetal Bovine Serum (FBS) is debated due to the reagent’s

complexity (114–116). Additionally, pericytes from the heart
(32), saphenous vein (117), and umbilical cord (31) were
expanded in Endothelial Cell Growth Medium 2 (EGM-2),
while bone marrow pericytes were cultured with α-MEM
containing FBS (105). Antibiotic treatment with penicillin
and streptomycin is usually added to the culture medium to
reduce contamination.

The expansion by single-cell cloning allows for
enriching progenitor cells within the bulk preparation
of sorted pericytes (118, 119). Single cells are sorted
into a Terasaki multi-well plate to give rise to clones
and subclones (12, 111). Mechanical and chemical stress
during the sorting procedure can result in poor recovery
and reduced clonogenic expansion. Moreover, the FACS
system requires a high level of daily maintenance and
sterility to preserve the cell culture environment from
possible contamination.

Even adopting a very stringent expansion protocol,
expansion efficiency may vary depending on the donor’s tissue
source, age, and clinical conditions. Using a good manufacturing
practices-compliant SOP, we expanded dozens of pericyte lines
from the saphenous vein and heart. Neonatal cardiac pericytes
grew faster and better than adult pericytes. From a sample
weighing less than 100 mg, we could obtain ≈20 million cells at
passage 5, in 4–6 weeks of culture expansion. Ten times larger
amounts of the vein were necessary to reach these quantities
(32). Moreover, older patients’ pericytes undergo proliferative
senescence at earlier passages (75). Experts generally consider
a cell preparation’s optimum purity and viability above 90%.

8. Isolation of pericytes from
human tissues

Pericytes have been isolated from different tissues.

8.1. Brain

Brain pericytes could be isolated from the white and the gray
matter using enzymatic digestion and explant culture (92, 107,
120–122). They express PDGFRβ, αSMA, CD13, NG2, CD146,
and desmin (121). Brain pericytes are expanded in culture with
DMEM/F12 supplemented with 10% (v/v) FBS (120).

8.2. Heart

Cardiac pericytes were isolated from atria and ventricles
using enzymatic digestion, filtration, and immunomagnetic
separation to obtain CD31−/CD34+ cells (21, 32, 55). Cardiac
pericytes are expanded in a dedicated medium supplemented
with human recombinant GFs (ECGM2) and 2% FBS. This
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TABLE 1 Positive and negative pericytes’ markers in different species and tissues.

Organ Species Positive markers Negative markers References

Brain Mouse CD13, PDGFRβ, NG2, α-SMA CD31, CD45, CD11b, GFAP, GLAST-1, GFAP,
AQP4, MAP2, NeuN, VWF, Iba1

(44, 166–169)

Swine NG2, α-SMA GFAP, VWF (45)

Human NG2, PDGFRβ IB4 (170)

Skeletal muscle Mouse NG2, PDGFRβ, CD146, Nestin Pax7, Myf5, FSP1, Scleraxis, CD31, CD45 (39, 77, 78, 171)

Swine NG2, PDGFRβ, α-SMA Not examined (40)

Human CD146, PDGFRβ, NG2, SMA and
ALP

CD34, CD45
CD31, CD62L, CD71, CD106, CD117 CD133

(111, 172)

Heart Mouse NG2, PDGFRβ, CD146 CD31, CD34, CD45 (173)

Human CD34, NG2, PDGFRβ, Vimentin CD31, CD146 (55)

Swine CD34, NG2, PDGFRβ, α-SMA CD31, CD146, CD45 (34, 35)

Aorta Mouse NG2, PDGFRβ, α-SMA CD31, VE-Cad (64, 102)

Lung Human 3G5, PDGFRβ, α-SMA, CD146 Wnt5a, CD31, CD45, CD34 (174, 175)

Mouse PDGFRβ, NG2, CD146, α-SMA CD31, CD45, CD326, Ter199, EpCAM (176–178)

Retina Mouse PDGFRβ CD31 (179)

Rat NG2, PDGFRβ, α-SMA. Desmin vWF, GS, GFAP, SMMHC (49)

Bovine PDGFRβ, NG2 VWF, Collagen IV (50, 180)

Human PDGFRβ CD31 (179)

Bone marrow Human CD146, α-SMA CD45, CD34, CD31 (105)

Adipose tissue Human CD146 CD31, CD45, CD56, CD34 (181)

Equine CD146, CD34 CD45, CD144 (42)

Placenta Human CD146, NG2, PDGFRβ, α-SMA,
Desmin

CD31, VWF (181, 182)

Endometrium Equine NG2, CD146 CD34, CD45, MHC-II (183)

Umbilical cord Human CD146 CD34, CD45, CD31 (31, 172)

Saphenous vein Swine CD34, NG2, PDGFRβ CD31 (33)

Human CD34, NG2, PDGFRβ CD31 (12)

Kidney Mouse PDGFRβ, Coll1a1, NG2 CD31, CD45, CD326, CD144, CD11b (178, 184)

Liver Human PDGFRβ, α-SMA, CD146 CD34 (174)

Intestine Mouse ALP, NG2, PDGFRβ CD31 (100)

Ear (cochlea) Mouse NG2, PDGFRβ, Desmin VWF, GS-IB4 (185)

Somatic cells from
human body: iPSC-PCs

Human PDGFRβ, NG2
CD13, CD146

CD31, CD144 (144–148)

medium was superior to mesenchymal stromal cell media such
as MACS + 10%FBS and DMEM + 20%FBS (32).

8.3. Skeletal muscle

Skeletal muscle-derived pericytes were mainly isolated
by explant culture. Distinct populations, such as alkaline
phosphatase/CD56− cells and CD146+/NG2+/αSMA+/
CD45−/CD31−/CD34− cells, could be purified by FACS or
immunomagnetic microbeads (77, 78, 93, 123, 124). Type I

collagen-coated plates are expanded in DMEM containing 5%
(v/v) FBS (41, 111).

8.4. Bone marrow

Bone marrow pericytes can be isolated immunomagnetically
using a microbead cell sorting strategy. Bone marrow samples
are treated with Ficoll Histopaque 1,077 to obtain mononuclear
cells. Firstly, cell populations are negatively purified from
CD45+/CD34+ fractions. Then, CD146+ cells are selected and
further expanded, with final confirmation of purity for the
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TABLE 2 Different strategies and methods for enhancing purity in isolation and purification of pericytes from different species and tissues.

Methods Organs Species Purity enhancement References

Enzymatic digestion (isolation) Retina Bovine, human, rat - Selective media (DMEM, BCS) (49, 50, 138, 139, 180)

umbilical cord Human CD146-MACS (137)

Brain Human, mouse, swine - Selective media (DMEM) (43, 45, 92, 122, 166)

Kidney Human CD146-FACS (128, 129)

Lung Human - PDGFRβ-MACS
- Selective media (anti-Trop2)

(109, 130, 131)

Endometrium Equine Mucin-Dynabeads (183)

Skeletal muscle Swine - Selective media (DMEM). (40)

MACS (isolation and
purification)

Heart Human, swine, Mouse CD34-MACS, 3G5-MACS (35, 55, 94)

Saphenous vein Human, Swine CD34-MACS (12, 33)

Placenta Human CD146-MACS (31)

Liver Human CD146, PDGFRβ-FACS (174)

Bone marrow Human CD146-MACS (105)

FACS (isolation and
purification)

Brain Human, mouse CD90-FACS, CD13-FACS (44)

Skeletal Muscle Mouse PDGFRβ-FACS, CD146-FACS (38, 39)

Retina Mouse PDGFRβ-FACS (51)

Adipose Tissue Equine CD146-FACS, CD34-FACS (42)

Kidney Mouse NG2-FACS (52)

Skin Human VLA-1 -FACS (112, 135)

Lung Mouse PDGFRβ-FACS (177)

Laser microdissection (selective
isolation)

Brain Human, mouse Isolation of vessels < 10 µm only (101)

Explant outgrowth (isolation) Umbilical cord Human NG2-MACS (31)

Skeletal muscle Human, mouse - Repeated re-culture.
- ALP-FACS

(41, 111)

Brain Human Selective media (DMEM) (120)

Small intestine Mouse Selective media (megacell enriched) (100)

Ear (cochlea) Mouse Selective media (185)

Aorta Mouse Selective media (102)

CD45−/CD34−/CD146+ combination by flow cytometry and
immunocytochemistry (105). The bone marrow pericytes can be
grown in α-MEM basal medium supplemented with 20% FBS
(105, 125).

8.5. Kidney

Kidney pericytes are essential in regulating permeability,
formation of myofibroblasts, angiogenesis, and renal medullary
blood flow (126–128). After tissue digestion using a collagenase
cocktail (IA, II, and IV), cells are FACSorted to obtain
a population of CD146+/CD34−/CD45−/CD56− pericytes,
which also express the classical makers PDGFRβ and NG2.

Culture expansion is performed on gelatin-coated dishes (108,
128, 129).

8.6. Lung

The methods for human lung pericyte isolation include
enzymatic digestion, magnetic microbead sorting, and FACS
selection (109, 130–132). Then, cells are sorted to collect
the CD45−/CD31−/CD326−/PDGFRβ+ fraction (109, 130).
In addition, Kramann et al. isolated lung pericytes using
a selection medium that contained AY16 (an anti-Trop2
monoclonal antibody)-DT3C conjugate to eliminate epithelial
stem cells and endothelial cells (131). The modified medium
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selected cells express PDGFRβ and chondroitin sulfate
proteoglycan 4 (CSPG4).

8.7. Skin

Pericytes have been isolated from the neonatal foreskin
or adult female breast skin (133). After digestion with type
II collagenase or dispase (134), a VLA-1bri/CD45− population
was sorted by FACS or immunomagnetic microbeads (112, 133,
135). In addition, skin pericytes express Human high molecular
weight-melanoma-associated antigen (HMW-MAA), PDGFRβ,
desmin, αSMA, α1β1-integrin, α- and γ-actin isoforms, and
myosin (136).

8.8. Umbilical cord

Human umbilical cord pericytes can be isolated by
enzymatic digestion and explant culture (31). Helmbold et al.
performed immunomagnetic sorting of cells using CD146-
conjugated microbeads to separate the CD146+ population
(137). Cathery et al. isolated pericytes by explant culture. The
migrated cells underwent immunomagnetic sorting, and the
CD31−/NG2+ population was acquired (31). All the isolated
populations showed the characteristic negative expression of
CD34, and positive expression of CD146 and NG2.

8.9. Retina

After separation from the pigmented layer, the human
retinal pericytes are isolated by enzymatic dissociation. The
cells are seeded on gelatin-precoated dishes and cultured with
DMEM/F-12 containing FBS. The characteristic morphology
of retinal pericytes is identified by immunofluorescent staining
of NG2, αSMA, glial fibrillary acidic protein, and cytoskeletal
structural proteins (138, 139).

9. Isolation and expansion of
pericytes from animal tissues

Although human cells constitute the final therapeutic
product for patients, animal-derived cells represent a suitable
surrogate in preclinical safety and efficacy studies (140). Using
donors and recipients from the same species, ideally from
the same litter, eliminates the need for immunosuppression,
which is instead required when transplanting human cells
into an animal model (33). Recent technological progress
makes swine-derived cells, tissues, and organs attractive
for immune-compatible xenotransplantation. The cells are
genetically modified to remove the immunogenic factors.
Human transgenes can be expressed to suppress rejection (141).

Lack of uniformity in cell manufacturing between human
and animal species might influence the interpretation
and translatability of preclinical results. Therefore, robust
approaches for isolation, culture, expansion, characterization,
and appropriate in vivo testing of pericytes in larger animal
species are of utmost importance.

9.1. Protocols for isolation and
expansion

Animal primary cells may incur bacterial or fungal
contamination because of the poor sterile conditions used
to collect the starting material. Therefore, using antibiotics
and Amphotericin B and manipulating cells in the laminar
flow cabinets is fundamental to maintaining sterile conditions
and avoiding the spread of cross-infection to the cells.
An accurate selection of the proper culture medium, GFs,
percentage of serum, and plate coating is key to simulating
the in vivo environment and allowing adequate expansion
(142). Significant changes may need to be introduced to adapt
protocols initially devised for human pericytes. For instance,
swine pericytes grown in autologous or allogeneic serum
displayed a 100% success of expansion and high doubling time
compared with the standard xenogeneic FBS employed for the
growth of human pericytes (12, 32, 33).

10. Pericyte generation from iPSCs

Induced Pluripotent Stem Cells (iPSC) derived through
reprogramming somatic cells with pluripotency factors
(OCT3/4, SOX2, c-MYC, KLF4) can be differentiated to a
specific cell line, including pericytes. 3D-culture systems of
iPSC-derived cardiovascular cells have provided a novel in vitro
model to study the interplay among different cell types and
potentially develop new personalized treatments for congenital
and acquired cardiac diseases (116, 143–145).

The developmental origin of cardiac pericytes is thought
to be the epicardium. Differentiation of iPSCs to epicardial
cells can be achieved through the modulation of Wnt/β-
catenin signaling and treatment with pericyte growth factors,
such as PDGF-BB (144, 146, 147). Szepes et al. applied a
mesodermal induction using BMP4, VEGFA, and activation
of Wnt/β-catenin signaling with further VEGFA and TGFβ

inhibition. FACS staining and sorting for PDGFRβ and CD31
markers and further expansion were carried out for antigenic
characterization, gene expression, and function in an endothelial
tube formation assay. A tri-cultured bioartificial cardiac
tissue model was generated using iPSC-derived pericytes,
cardiomyocytes, and ECs to study vascularization and fibrosis
in vitro (145). Faal et al. reported two protocols using
mesoderm and neural crest to obtain brain pericytes from
iPSCs generated from healthy subjects and Alzheimer’s disease
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patients. Briefly, human iPSCs were cultured on a Matrigel-
coated plate in a mesodermal induction medium with growth
factors. The activation of Wnt/β-catenin signaling initiated
neural crest differentiation through specific medium and
supplements. Mesodermal and neural crest-derived cells were
differentiated in pericytes seeded on gelatin or Matrigel-coated
plate. Both pericyte types were passaged, split, and kept in
the pericyte medium for their characterization and functional
trans-endothelial electrical resistance assay with ECs (146).
Jamieson et al. generated pericytes from human iPSCs obtained
from mesodermal lineage. In brief, iPSCs were cultured on a
feeder layer of mouse embryonic fibroblasts and gelatin-coated
plates. For the differentiation, iPSCs were detached with EDTA,
strained, and seeded on a collagen-coated plate using α-MEM,
FBS, and β-mercaptoethanol. Following further detachment,
they were grown in EC growth medium, TGFβ inhibitor, and
VEGF to promote vascular cell specification and proliferation.
After an enzymatic dissociation, DMEM + FBS was added to
an uncoated plate to support the pericyte selection. Generated
iPSC-derived pericytes were used for developing a microvessel
model of the blood-brain barrier (148).

11. Standardization and
harmonization

It has been shown that fewer than one-third of biomedical
papers can be reproduced, resulting in associated costs of
about $28 billion each in the US only, mainly attributable to
the wasted follow-on work that the initial study has inspired
(149, 150). Reproducibility of results from peer-reviewed papers
by researchers at pharmaceutical companies failed at rates
upwards of 75% (151). This reflects the inconsistent use and
communication of standardized processes to achieve efficiency,
quality, and uniformity of performance. The main body of
information on pericytes methodologies can be retrieved from
original papers, which show large variability regarding the depth
of details. The following paragraphs are devoted to suggesting
improvements to current methodologies.

11.1. Increasing reproducibility

It is highly recommended that the entire SOP is published as
an accompanying material or companion paper and deposited
in an accessible database (152). Open access public repositories,
such as Zenodo,1 SEEK (153), OpenAIRE,2 FAIRsharing3 are
available for SOP submission.

We have previously reported the SOP for GMP production
of human adventitial pericytes, which consists of: (i) Cell

1 https://zenodo.org

2 https://explore.openaire.eu/participate/deposit-publications

3 https://fair-dom.org/platform/

Isolation, (ii) Cell expansion (iii) Cell splitting, (iv) Cell
freezing/thawing, and (v) Extraction of serum from blood. Each
section contains a checklist of 6 to 44 operational steps that the
named operator has to do (154). An attached document reports
details of the collection, the code associates the sample to the
NHS patient’s records and informed consent form and ethical
approval, code and storage conditions for reagents, equipment,
and deviations from the protocol. An electronic copy was
stored in a dedicated folder of the institutional server at the
University of Bristol.

11.2. Upgrading

GMP manufacture is a quality assurance system
pharmaceutical companies use to ensure that the final medicinal
product meets proper specifications. GMP covers both the
manufacturing and testing of the final product. Translation
of the GMP concept to cell therapy and tissue engineering
remains vague, mainly because most cell products are early
stage prototypes studied in academic laboratories (155). To
the best of our knowledge, our previous study remains the
only one to have upgraded human adventitial pericytes to
GMP (154). We have verified that the clinical-grade, xeno-free
reagents worked like the research-grade ones. Then, the whole
production process was transferred to the GMP facilities at
the NHS Blood and Transplant (NHSBT) Unit in Bristol.
NHSBT is authorized by the Human Tissue Authority (HTA)
and Medicine and Healthcare products Regulatory Agency
(MHRA) to manufacture advanced therapy products for cell
therapy trials.

11.3. Quality control

Introducing quality and quantity control (QQc) systems
to produce pericytes provides two significant improvements.
Namely, it reduces production costs and certifies the cell
product. We process only samples that exceed a minimum
weight. Using this quantity control criterion, we calculated a
33% cost saving thanks to avoiding expansion failure.

Quality and quantity control analyses include a cell
viability/death test by Calcein/EDthIII assay and Trypan
Blue, repeated antigenic characterization using both positive
and negative markers to exclude that contaminant cells had
emerged during expansion, karyotyping to ensure that cells
do not accumulate chromosomic damage and functional
characterization (33, 75). Among the most widely used tests,
the Matrigel assay demonstrates the pericytes’ capacity to
improve the network-forming activity of ECs, while measuring
angiogenic factors in the media allows recognizing the pericytes’
ability to release typical angiogenic factors such as Hepatocyte
Growth Factor (HGF) and Angiopoietin 2 (Ang-2) (32). More
sophisticated tests aiding the characterization of pericytes
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include the assessment of contraction and relaxation using
the Electrical Cell Intuitive Sensing (ECIS) platform, barrier
integrity by analyzing membrane current, permeability using
co-culture of ECs and pericytes on Transwell filters and
microfluidic models, mechano-transduction properties, and
circadian rhythms regulating the crosstalk between pericytes
and endothelial cells (32, 55, 156–159).

11.4. Integrating methodologies

All the derivation techniques described above have pros
and cons. Appropriate combinations could increase the
purity and yield of production. For instance, repeating
immunomagnetic separation can help maintain a high purity
level during expansion. When massive production of pericytes
is needed, using Multi-Flasks provides an optimal cell
culture environment, simplifies the workflow by eliminating
multiple steps, and reduces the risk of contamination. A step
forward, automated pericyte culture systems could deliver high
throughput, high purity, and high yield cell growth, perform
large-scale screening, and run several experiments in parallel,
thereby allowing for reducing inter-assay variability.

Another attractive approach is based on the use of multi-
omics. Potent technologies such as single-cell RNAseq have
been applied to pericyte research, providing a spatial atlas
of the vascular niche in different organs, and revealing
organ-specific pericyte markers and identities (88, 160, 161).
In the brain, a continuum phenotypic change (zonation)
along the arteriovenous axis for ECs was contraposed by
a punctuated continuum for mural cells. Among the latter
population, pericytes coexisted with a population of perivascular
fibroblast-like cells localized at all vessel types except capillaries
(88). In the heart, large-scale single-cell and single-nucleus
transcriptome analyses identified 6 anatomical regions (162).
The vascular compartment included 17 distinct populations of
ECs, VSMC, pericytes, and mesothelial cells. Pericytes formed
4 clusters, of which one was transcriptionally distant from
other vascular cells, while another constituted a transitional
state between pericytes and ECs. The relevance of this new
sub-classification should be validated at the level of the
functionome. Multifunctional microwell arrays that enable
single-cell functional analysis have already been used to study
lymphocytes (163). Live-cell imaging and analysis unveiled
cell transition dynamics that could not be captured by
classical snapshot imaging (164). Other emerging single-cell
methodologies promise to define cell heterogeneity on the
protein and DNA epigenetics levels (165).

12. Conclusion

This review highlighted the significant efforts made by
different teams to develop effective protocols of isolation
and in vitro expansion of human pericytes. A consensus on

these protocols and the integration of methodologies will help
speed up research at the highest level of reproducibility
and translatability. Moreover, additional research is
needed to dissect the functional diversification of pericytes
according to their zonal distribution and the surrounding
microenvironment. More work is also necessary to trace
pericytes in tissues during vascular remodeling. Expanding
and refining the atlas of different perivascular niches at the
single-cell level will clarify the enigmatic phenotype of pericytes
and the relevance of expressional deviations in response to
organ injury. This novel technological approach should be
integrated into the dimensions of space and time, for instance,
by clustering dynamic gene expression profiles from single-cell
RNA-Sequencing databases and associating transcripts to
functionomics analysis. Most studies on pericytes have been
performed in rodent models. More research in large animal
models is needed to demonstrate therapeutic utility.
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