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ABSTRACT: The tropical rain belt varies between unimodal and bimodal meridional precipitation

distributions, both regionally and on seasonal to geological timescales. Here we show that this

variation is largely driven by equatorial precipitation inhibition, and quantify it using an equatorial

modality index (EMI) that varies continuously between 1 and 2 for purely unimodal and bimodal

distributions. We show that tropical modality is a fundamental characteristic of tropical climate,

which we define as annual-mean EMI. We examine large-scale aspects of tropical modality across

73 climate models from phases 5 and 6 of the coupled model intercomparison project, 45 paleo

simulations (∼300 million years ago to present), and observations. We find increased tropical
modality to be strongly related to increased width of the tropical rain belt, wider and weaker merid-

ional overturning circulation, colder equatorial cold tongues, and more severe double intertropical

convergence zone bias in modern climate models. Tropical sectors (or global zonal means) with

low tropical modality are characterized by monsoonal seasonal variations (i.e., seasonal migrations

of rain bands following the Sun). In sectors with high tropical modality we identify three important

seasonal modes: (i) migration of the precipitation distribution toward the warmer hemisphere, (ii)

variation in the latitudinal separation between hemispheric rain bands, and (iii) seesaw variation

in the intensity of the hemispheric rain bands. In high tropical modality sectors, due to contrasting

shifts of the migration and separation modes, counter to general wisdom, seasonal migrations of

tropical rain bands cannot be generally assumed to follow the Sun.
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SIGNIFICANCE STATEMENT: The tropical rain belt is a band of intense precipitation that27

encircles the tropics. Important tropical phenomena such as monsoons and seasonal shifts of28

marine rain bands are driven by seasonal migrations of the tropical rain belt, which therefore29

govern key socio-economical aspects of tropical populations. This work examines how changes30

in the north-south profile of tropical precipitation affect large-scale aspects of tropical climate,31

on seasonal to geological timescales. Specifically, we examine the tendency of the profile of the32

tropical rain belt to vary from having one to two peaks (i.e., from being unimodal to bimodal). We33

define an objective quantitativemeasure of this modality variation, which varies between 1 and 2 for34

unimodal and bimodal profiles. We then show that the annual mean of this measure is an important35

general characteristic of tropical climate, which we define as tropical modality. We also show that36

in tropical regions where tropical modality is low (close to 1), rain bands follow the Sun in their37

seasonal migrations, and conform to the canonical model of the tropical overturning circulation,38

known as the Hadley circulation, which goes along with monsoonal seasonal variations. However,39

in regions with high tropical modality (i.e., close to 2), the common theoretical expectation that40

rain bands follow the Sun (or migrate toward the warming hemisphere) is not generally justified.41

Instead, we identify three important independent seasonal modes of variation: (i) migration of the42

precipitation distribution toward the warmer hemisphere, (ii) variation in the latitudinal separation43

between hemispheric rain bands (or width of the precipitation profile), and (iii) seesaw variation44

in the intensity of the hemispheric rain bands.45
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1. Introduction46

The ascending branches of the tropical atmospheric overturning circulation, invigorated by47

convective latent heating, form heavy rains that encircle Earth, known as the tropical rain belt48

(Webster 2020). Seasonal migrations of the tropical rain belt drive key regional variations such as49

monsoons and shifts of marine rain bands, which affect vast tropical populations. Wide-ranging50

variations in the tropical rain belt throughout Earth’s history challenge our understanding and51

provide insight on the nature of the climate system (Diaz and Bradley 2004; Schneider et al. 2014).52

However, limited paleo records and systematic biases in the representation of the tropical rain53

belt in modern climate models restrict our ability to explain past climates and to provide reliable54

predictions in a warming climate (Lin 2007; Bony et al. 2015; Harrison et al. 2015). Here we55

study a fundamental feature of the tropical rain belt: its variation between unimodal and bimodal56

meridional precipitation distributions, on seasonal to geological timescales. We show that this57

feature is important for understanding variations of the tropical rain belt across climates and for58

reconciling discrepancies across climate models.59

In the present climate, the prevailing dynamical regime of the tropics is the Hadley circulation.60

The latitude of peak tropical precipitation (or maximal near-surface convergence) is accordingly61

generally identified as the intertropical convergence zone (ITCZ), where the southern and northern62

Hadley cells meet (Schneider et al. 2014; Berry and Reeder 2014). According to the Hadley63

circulation paradigm, a single ITCZ is expected to follow the Sun in its seasonal migrations.64

However, land-ocean contrast, cloud radiative effects, and atmosphere-ocean coupling, introduce65

asymmetries that cause the underlying characteristics of the tropical rain belt to significantly deviate66

from the idealized Hadley paradigm (e.g., Roberts et al. 2017; Kang 2020; Atwood et al. 2020;67

Adam 2021; Donohoe et al. 2021). Indeed, several studies found double ITCZs to be a prominent68

feature of the present climate, that varies by region and season (Zhang 2001; Gu et al. 2005;69

Adam et al. 2016b; Popp and Lutsko 2017; Donohoe et al. 2019). Zonally averaged, the observed70

tropical precipitation distribution is doubly peaked about the equator, and the relative strengths of71

the precipitation peaks vary considerably during the seasonal cycle (Webster 2020). Systematic72

biases in modern climate models, which persist since the earliest generations of comprehensive73

climate models, exaggerate this tendency for a doubly-peaked tropical precipitation distribution –74
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a problem commonly known as the double-ITCZ bias (Mechoso et al. 1995; Lin 2007; Adam et al.75

2018a; Tian and Dong 2020).76

It is therefore important to understand and correctly model the degree to which single or double77

ITCZs dominate the precipitation distribution. To this end, an objective quantitative measure of the78

modality of the tropical rain belt is required. More generally, for strongly bimodal distributions,79

common diagnostics of the tropical rain belt such as ITCZ position, width, and intensity, which80

stem from the Hadley circulation paradigm (Popp and Lutsko 2017; Byrne et al. 2018), may81

fail to optimally characterize variations of the tropical rain belt. Indeed, Donohoe et al. (2021)82

showed that unlike the common expectation from Hadley-like circulations, over a wide range of83

simulated climates with dominant double ITCZs, the variance explained by changes in the width84

and intensity of the tropical rain belt far exceeds that associated with ITCZ shifts. The importance85

of acknowledging tropical modality also extends to seasonal variations. Specifically, Zhao and86

Fedorov (2020) found that in the western Pacific, where rain bands reside on either side of the87

equator year round, seasonal variations are characterized by seesaw-like changes in the intensity of88

the hemispheric rain bands, rather than the Hadley-like seasonal migrations seen in other sectors.89

Adam (2021) further found that for bimodal precipitation distributions, the mean ITCZ position and90

the positions of hemispheric rain bands can shift in opposite directions. Improved understanding91

of the modes of variability associated with bimodal precipitation distributions may also help trace92

the origin of the double-ITCZ bias, which is linked to the sensitivity of the tropical rain belt to93

seasonal forcing (Bellucci et al. 2010; Li and Xie 2014; Adam et al. 2018a; Tian and Dong 2020;94

Kim et al. 2021).95

Examples of modal variations in the tropical rain belt are shown in Fig. 1. In the present climate101

(Fig. 1a) the ITCZ is generally identified as the dominant tropical rain band in each region. In the102

Pacific, the rain band north of the equator is associated with the ITCZ, whereas the western rain103

band south of the equator is referred to as the south Pacific convergence zone (SPCZ;Vincent 1994).104

In the zonal mean, the existence of rain bands that straddle the equator, together with the tendency105

of the ITCZ to swiftly traverse the equator during transition seasons (Lindzen and Hou 1988; Dima106

and Wallace 2003), yield a northward-skewed doubly-peaked distribution. Figure 1b shows the107

tropical rain belt under pre-industrial conditions simulated by the UKMet Office HadCM3Lmodel108

(HadCM3L version 4.5, see section 2 for more details on the HadCM3L simulations; Lunt et al.109
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Fig. 1. Annual mean precipitation during (a) the present climate, and simulated (b) pre-industrial conditions,

and (c) the Pleinsbachian period, 189 millions of years ago (Ma). Side panels show zonal means and tropical

modality values (EMI, see section 3). Data taken from the European Center forMedium-RangeWeather Forecasts

(ECMWF) Interim Reanalysis (Dee et al. 2011) for the present climate (1979–2014), and simulations by the UK

Met Office HadCM3L model, version 4.5 (Lunt et al. 2016).

96

97

98

99

100

2016). Excessive precipitation south of the equator in the Pacific (i.e., a double-ITCZ bias) causes110

the zonal-mean precipitation peaks that straddle the equator to be of equivalent strength, leading111

to a bimodal, mostly hemispherically symmetric precipitation distribution. The tropical rain belt112

under Pleinsbachian (189 millions of years ago) paleogeographic conditions, simulated by the113
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HadCM3Lmodel, is shown in Fig. 1c. As in present day conditions, precipitation is stronger north114

of the equator. However, prominent rain bands that persist year-round on either side of the equator115

(supplemental Fig. S1), throughout a single wide ocean basin, lead to a skewed strongly bimodal116

distribution. Clearly, there are modal variations across the three examples. But how should these117

be quantified?118

Here we address three main questions: (i) How can we objectively quantify the modality of the119

tropical rain belt? (ii)What are the large-scale variations associatedwith tropicalmodality? and (iii)120

Howdoes the seasonal cycle of the tropical rain belt varywithmodality? For robustness, we explore121

the relation of tropical modality to the tropical rain belt across a wide range of climate models,122

simulated climate states, and observations. Our analysis indicates that tropical modality binds123

together fundamental properties of the tropical rain belt and its associated overturning circulation.124

The data andmethods are described in Section 2. Quantification of modality is discussed in Section125

3. Large-scale, seasonal, and regional aspects of tropical modality are analyzed in sections 4 and126

5, followed by summary and discussion in section 6.127

2. Data and methods128

a. Data129

Observed reference data is taken from the European Center forMedium-RangeWeather Forecasts130

(ECMWF) Interim Reanalysis (ERA-Interim; Dee et al. 2011) for the years 1979–2014. Net131

atmospheric energy input is calculated with mass-flux corrections that close the global energy132

budget, as described in Trenberth and Fasullo (2012). Our conclusions are not qualitatively133

sensitive to the choice of observed precipitation dataset, when compared with the National Oceanic134

and Atmospheric Administration’s (NOAA) Global Precipitation Climatology Project version 2.2135

(GPCP, Fig. S2a; Adler et al. 2003) and from the Climate Prediction Center Merged Analysis of136

Precipitation (CMAP, Fig. S2b; Xie and Arkin 1996).137

We analyze variations across 42 climate models from phase 5 (Taylor et al. 2012) and 31 models138

from phase 6 (Eyring et al. 2016) of the coupled model intercomparison project (CMIP5/6), based139

on availability (supplemental Tables 1-2). For each model we use monthly data from the first140

realization (r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6) of historical simulations (coupled climate141

models with present day atmospheric composition and radiative forcing). No critical distinctions142
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were found in the representation of the tropical rain belt between the two CMIP phases (Tian and143

Dong 2020; Samuels et al. 2021), which are therefore analyzed jointly. For consistency, analyses of144

climate models and observations are performed on monthly climatologies derived from the years145

1979–2005, linearly interpolated to a 1◦×1◦ horizontal grid (the results, which involve calculations146

of large scale variations, are not sensitive to this interpolation).147

We also analyze variations of monthly climatologies across multiple paleo climate simulations148

carried out using the UK Met Office HadCM3L climate model (v4.5), which includes cloud and149

vegetation feedbacks (Valdes et al. 2017). Themodel has 19 vertical levels in the atmosphere and 20150

vertical levels in the ocean, with a horizontal resolution of 3.75°longitude by 2.5°latitude. Details151

on the model configuration and setup for these simulations can be found in Lunt et al. (2016). The152

model uses present day orbital parameters and fixed CO2 concentration of 1120 ppmv. Climate153

variations are generated by changing the solar constant following Gough (1981, the solar constant154

monotonically increases with time by 2.5% over the past 300 Ma) and paleogeographic boundary155

conditions, taken from reconstructions of 44 geological stages, spanning 300–35 Ma (Lunt et al.156

2016; Jones et al. 2019). Due to the fixed CO2 concentration, global mean temperature variations157

in the simulated stages are significantly smaller than in paleo records. An additional simulation of158

pre-industrial conditions was analyzed, in which CO2 concentration is set to 280 ppmv. Due to this159

disparity in CO2 concentration, pre-industrial conditions are omitted in our analyses of variations160

across the simulated stages. The land masks, annual mean precipitation, and vertical wind at 500161

hPa in each of these simulations are shown in the SM, sorted by age (Figs. S3-4).162

As shown in Fig. 1b, the HadCM3Lmodel has a strong double-ITCZ bias, suggesting that biased163

representation of the tropical rain belt exists in all of the simulated geological states. However, the164

variations in the tropical rain belt across simulated climates are far greater than the precipitation165

biases associated with the double-ITCZ bias (Fig. S3). Therefore, while acknowledging the limi-166

tations of the HadCM3L simulations (i.e., double-ITCZ bias and limited global mean temperature167

variations due to fixed CO2 concentration), we interpret the suite of simulations across multiple168

geological stages as providing valuable information about climatic variations in the tropical rain169

belt and its associated large-scale tropical overturning circulation. Similarly, we interpret CMIP5/6170

simulations as representing variations across climate models, which may include systematic model171

biases (e.g., the double-ITCZ bias). The joint analysis of variations across CMIP5/6 models and172
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HadCM3L simulated climates therefore reduces the sensitivity of our analysis to specific climate173

models or climate states, allowing us to identify robust aspects of tropical modality. For simplicity,174

the joint dataset is referred to as CMIP5/6 and HadCM3L simulations.175

b. Calculation of large-scale parameters176

We explore the relation of variations in tropical modality to key large-scale parameters, listed177

below:178

• Global mean temperature (GMT) is calculated from near-surface (2m) air temperature;179

• Tropics to poles temperature difference (TPTD) is calculated from near-surface air temperature180

as the difference between area-weighted mean temperature equatorward of 20° and poleward181

of 70° (the results are not qualitatively sensitive to variations of these meridional boundaries182

within ±10°);183

• Atmospheric net energy input (NEI) is calculated as net radiative energy input at the top-184

of-atmosphere and at the surface, together with surface latent and sensible heat fluxes into185

the atmosphere. Equatorial NEI (NEI0) is calculated as the average of NEI equatorward of186

5° (Adam et al. 2016a);187

• A cold tongue index (CTI) in CMIP5/6 models is calculated as the mean sea surface temper-188

ature (SST) equatorward of 6° between 180°E–270°E, minus global mean SST (Deser and189

Wallace 1990). In HadCM3L simulations, where the width of the main ocean basin varies190

between different paleogeographies, CTI is calculated as the mean SST equatorward of 6° in191

the 25–75% quartiles of the zonal distance between the warmest and coldest equatorial points192

in the widest ocean basin, minus global mean SST;193

• The meridional overturning circulation (MOC) width is calculated as the distance between194

the poleward edges of the hemispheric Hadley cells, which are calculated as subtropical zero195

crossings of the meridional mass streamfunction at 500 hPa in each hemisphere, using the196

TropD software package (Adam et al. 2018b);197

• MOC intensity is defined as the sum of the absolute extremal values of the meridional mass198

streamfunction in each hemisphere;199
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• ITCZ width, defined as the width of the rising branch of the MOC, is calculated as the latitu-200

dinal distance between the northern and southern tropical extrema of the mass streamfunction201

at 500 hPa (Byrne et al. 2018);202

• Walker circulation (WC) intensity is calculated as the maximal difference between the 200 hPa203

and 850 hPa levels of the annual-mean zonally varying zonal wind, averaged equatorward of204

10°. In HadCM3L simulations, due to varying ocean basin width, the maximal difference is205

calculated from all longitudes (i.e., the Walker circulation is defined as the predominant zonal206

overturning circulation); in CMIP5/6 models and in HadCM3L pre-industrial conditions, it is207

calculated in the Pacific [100°E–280°E].208

We also characterize seasonal variations using parameters derived from the first four (area-209

weighted) moments of the zonal mean precipitation distribution: (i) the precipitation centroid210

(𝜙𝑐𝑒𝑛𝑡 or 𝑚1), (ii) standard deviation 𝜎 (
√
𝑚2), (iii) skewness (𝑚3), and (iv) kurtosis (𝑚4) (Wilks211

2011). Using curly brackets to denote the integral over tropical latitudes equatorward of 𝜙𝑇=30°,212

{(·)} ≡
∫ 𝜙𝑇

−𝜙𝑇
(·) cos(𝜙)d𝜙 (1)

the moments are calculated as213

𝜙𝑐𝑒𝑛𝑡 ≡ 𝑚1 =
{𝑃(𝜙)𝜙}
{𝑃(𝜙)} (2a)

𝑚2 =
{𝑃(𝜙) (𝜙−𝜙𝑐𝑒𝑛𝑡)2}

{𝑃(𝜙)} (2b)

𝑚3 =
1

𝑚
3/2
2

{𝑃(𝜙) (𝜙−𝜙𝑐𝑒𝑛𝑡)3}
{𝑃(𝜙)} (2c)

𝑚4 =
1
𝑚22

{𝑃(𝜙) (𝜙−𝜙𝑐𝑒𝑛𝑡)4}
{𝑃(𝜙)} (2d)

where 𝑃 denotes zonal mean precipitation. The precipitation centroid is a common metric214

for the position of the ITCZ (Frierson and Hwang 2012; Donohoe et al. 2013; Adam et al.215

2016a). The standard deviation provides a measure of the width of the tropical rain belt (Pearson216
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coefficient of correlation 𝑅 of annual mean 𝜎 with ITCZ width is 0.60 and 0.87 across CMIP5/6217

and HadCM3L simulations). However, since bimodal distributions are considered, it should not218

generally be used to infer normal distribution characteristics. The skewness provides a measure219

of the asymmetry of the distribution with respect to the precipitation centroid. It vanishes for a220

Gaussian precipitation distribution that migrates meridionally, and increases as the precipitation221

distribution leans toward the northern hemisphere (i.e., the precipitation centroid is north of222

the maximal value). Skewness therefore indicates the degree of hemispheric asymmetry of the223

precipitation distribution. The kurtosis increases with the weight of the tails of the precipitation224

distribution; it therefore complements the indices introduced in the next section, which vary with225

normalized equatorial precipitation.226

The latitudes of the precipitation peaks in each hemisphere are calculated using227

𝜙𝑝𝑒𝑎𝑘 =

∫ 𝜙2
𝜙1

𝜙 (cos(𝜙)𝑃)𝑛 d𝜙∫ 𝜙2
𝜙1

(cos(𝜙)𝑃)𝑛 d𝜙
(3)

where 𝜙1 and 𝜙2 denote meridional integration boundaries, and 𝑛 acts as a smoothing parameter228

(reducing grid dependence), yielding the precipitation centroid for 𝑛 = 1 (Eq. 2a) and the latitude of229

maximal precipitation for large 𝑛 (Adam et al. 2018b). Northern and southern hemisphere tropical230

precipitation peaks (𝜙N and 𝜙S) are calculated using 𝑛 = 10 and [𝜙1, 𝜙2] = [0,30◦N] and [30◦S,0],231

respectively, across all datasets.232

3. Quantifying tropical modality240

The zonal-mean precipitation and vertical wind for the examples in Fig. 1 are shown in Fig. 2,241

decomposed into hemispherically symmetric and anti-symmetric components (the corresponding242

meridional overturning circulations are shown in Fig. S5). We first note that, with some variation,243

the bimodal character of each of the examples persists during solstitial seasons (Fig. 2, left panels,244

thin lines). Specifically, the annual-mean bimodal precipitation distributions are characterized245

by off-equatorial peaks and an equatorial dip, which closely follow the vertical wind (cf. Fig.246

S6 showing an even better agreement of precipitation minus evaporation with the vertical wind).247

The equatorial dip, which is the key contributing factor to the bi-modality of the precipitation248

distributions, persists during solstitial seasons, and is linked only to the hemispherically symmetric249
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Fig. 2. Zonal-mean precipitation (blue) and vertical wind (𝜔, black, negative scaling) for observed conditions

(upper panels), and for pre-industrial (mid row) and Pleinsbachian (189 Ma, lower panels) conditions simulated

by the HadCM3L model, as in Fig. 1. For precipitation, annual means are shown in bold lines and Jun–Aug

and Dec–Feb means are shown in thin dashed and dotted lines, respectively. Middle and right panels show the

hemispherically symmetric and hemispherically anti-symmetric components, respectively, of precipitation and𝜔.

The hemispherically symmetric and anti-symmetric components are calculated as 𝐴symmetric = 12 [𝐴(𝜙) + 𝐴(−𝜙)]

and 𝐴anti-symmetric = 12 [𝐴(𝜙) − 𝐴(−𝜙)], respectively, where 𝜙 denotes latitude and 𝐴 is some zonal-mean field.

233

234

235

236

237

238

239

component (mid panels; the anti-symmetric component vanishes identically at the equator, as seen250

in the right panels of Fig. 2). The above examples therefore indicate that: (i) the modality of251

the tropical rain belt is closely related to the mean overturning circulation (MOC), and (ii) that252

tropical modality is particularly closely related to equatorial precipitation inhibition, which is itself253

a feature only of the hemispherically symmetric precipitation distribution. We therefore base our254

quantification of tropical modality on equatorial precipitation inhibition.255
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Fig. 3. (a) Depiction of the change in equatorial precipitation caused by off-equatorial shifts of a Gaussian

precipitation distribution (shift correction in Eq. 4). (a,b) Depictions of tropical precipitation distributions

yielding high- and low-EMI values for hemispherically symmetric and asymmetric conditions.

256

257

258

To quantify equatorial precipitation inhibition, we assume two contributions to equatorial pre-259

cipitation: (i) a component related to the hemispherically symmetric circulation, as shown in Fig.260

2; and (ii) changes in equatorial precipitation caused by meridional shifts of the precipitation distri-261

bution, which do not affect modality, as depicted in Fig. 3a. We accordingly define an Equatorial262

Modality Index (EMI) as263

EMI = 2−𝛼
𝑃0 + 𝜙2𝑐𝑒𝑛𝑡

2𝜎2

𝑃
. (4)

Here the zonal mean tropical precipitation [30°S–30°N] is adjusted such that its minimal and264

maximal values are [0 1], and 𝑃0 and 𝑃 denote adjusted zonal mean precipitation at the equator and265

averaged over the latitudes 30°S–30°N, respectively (to reduce grid dependence, 𝑃0 is calculated by266

linear interpolation at the equator). The term 𝜙2𝑐𝑒𝑛𝑡/2𝜎2 is a first order approximation of the change267

in equatorial precipitation for a Gaussian function shifted off the equator and normalized between268
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Fig. 4. Seasonal cycle of EMI (solid) and EMI without the shift correction (EMI0, dashed) for (a) CMIP5/6

simulations and ERA-Interim (green); (b) HadCM3L simulations. Bold lines show ensemble means; shadings

show ± 1 standard deviation across CMIP5/6 and HadCM3L simulations (blue for EMI and red for EMI0).

280

281

282

[0 1] (Fig. 3a). EMI approaches 2 in the limit of vanishing adjusted equatorial precipitation,269

indicating a strictly bimodal distribution. The coefficient 𝛼 = 0.45 is empirically set based on the270

CMIP5/6 and HadCM3L simulations to make annual mean EMI approach 1 when the adjusted271

precipitation distribution is maximal at the equator. Values calculated using Eq. (4) bellow 1 are272

set to 1. This constrains EMI values to the range [1 2], such that for Eq. (4) values smaller or larger273

than [1 2], precipitation distributions are assumed to be invariantly strictly unimodal or bimodal.274

For clarity, the terms ’low’ and ’high’ tropical modality are used throughout this work to indicate275

EMI values nearing 1 and 2 (i.e., unimodal and bimodal distributions), as opposed to modality276

in general, which implies unbounded variation in the number of modes. Depictions of low- and277

high-EMI precipitation distributions are shown in Fig. 3b-c for hemispherically symmetric and278

asymmetric conditions.279

To illustrate the effect of the Gaussian shift correction (𝜙2𝑐𝑒𝑛𝑡/2𝜎2), Fig. 4 shows EMI and283

EMI calculated without this correction (EMI0), derived from monthly climatological means (note284

that EMI0 is similar to the equatorial precipitation index derived in Adam et al. 2016c). In285
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Fig. 5. (a) Probability distribution function of EMI derived from annual mean precipitation in the 73 CMIP5/6

historical simulations (Tables S1-2). Vertical bars show observed values from the ERA-Interim (ERA-I, orange),

GPCP (yellow), and CMAP (purple) datasets.

295

296

297

contrast to the strong seasonal variations in EMI0, caused by the seasonal migrations of the ITCZ,286

EMI shows nearly constant values year-round, while maintaining a rather uniform spread across287

models and simulated climates. Annual mean EMI values derived from monthly climatological288

means are slightly smaller than those derived from annual mean precipitation; nevertheless, the289

two are extremely well correlated (coefficient of correlation across the CMIP5/6 and HadCM3L290

simulations is 0.99). Therefore, we base our analysis hereon on EMI derived from long-term291

means. We interpret this value as a general climate characteristic, which we refer to as "tropical292

modality". Tables S1-2 and Figs. S3-4 show the EMI values for each CMIP5/6 and HadCM3L293

simulation.294

Figure 5 shows the probability distribution function of EMI values for the 73 CMIP5/6 models.303

All of the EMI values are larger than 1 (Tables S1-2), so that the distribution function is unaffected304

by constraining EMI values to the range [1 2]. As expected from the double-ITCZ bias, modeled305

values are generally higher than observed (CMIP5/6 mean EMI is 1.36, compared to 1.21, 1.22,306

and 1.24, in the ERA-Interim, GPCP, and CMAP datasets, respectively).307

High- and low-EMI composites of tropical precipitation distributions are shown in Fig. 6. As312

expected, in the HadCM3L simulations, which cover a wide range of climate states, low- and313

high-EMI composites are strongly unimodal and bimodal, respectively. In the CMIP5/6 historical314

simulations, low-EMImodels show higher equatorial precipitation and smaller differences between315

equatorial precipitation and the peaks that straddle the equator (Popp and Lutsko 2017). Low-EMI316
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Fig. 6. Zonally averaged annual-mean precipitation in each of the (a) HadCM3L simulated climates (gray),

and (b) CMIP5/6 historical simulations (gray). Composites of high- and low-EMI profiles are shown in blue and

red, corresponding to lowest and highest 10 cases for HadCM3L simulations and 15 CMIP5/6 models. Panel b

also shows the model ensemble mean (MEM, black) across CMIP5/6 models, and observed values taken from

ERA-Interim (green).

298

299

300

301

302

models therefore show significantly reduced double-ITCZ bias, as well as reduced biases near the317

equator.318

Figure 7a,b shows the variation of EMI and globalmean temperature (GMT) across theHadCM3L319

simulations. GMT variations in paleo records are generally not captured by the HadCM3L sim-320

ulations, in which CO2 levels are fixed. Nevertheless, minimal tropical modality (EMI≈ 1) is321

seen around the Cretaceous thermal maximum (∼85–90 Ma, O’Brien et al. 2017), preceded by a322

monotonic transition frommaximal tropical modality (EMI≈ 2) during the early to mid Cretaceous323

(∼145–100 Ma). A dramatic increase in tropical modality is seen during the Triassic, which in324

paleo records is characterized by global cooling, following the hothouse climate of the late Permian325

(Hannisdal and Peters 2011). It is also interesting to note that in the simulated stages, the tropics326

to poles temperature difference (TPTD, Fig. 7c) is generally maximal during the Cretaceous and327
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Fig. 7. Values in each of the HadCM3L simulated stages of the (a) equatorial modality index (EMI), (b) global

mean temperature (GMT), and (c) tropics to poles temperature difference (TPTD). CO2 concentrations during

pre-industrial conditions are significantly lower than in other geological stages, resulting in significantly lower

GMT and higher TPTD values (15.8 and 48.5 ◦C, respectively), which are therefore not shown.

308

309

310

311

minimal during the late Permian, in accordance with paleo records (Taylor et al. 1992; Rees et al.328

2002; O’Brien et al. 2017). The variation of tropical modality with observed GMT records, as well329

as with decreasing TPTD despite nearly fixed simulated GMTs, suggests that tropical modality is330

strongly linked to the topical atmospheric and ocean overturning circulations, which govern pole-331

ward energy transport (Goddéris et al. 2014). We further explore the relation of tropical modality332

to large-scale aspects of the MOC in the next section.333

4. Large-scale aspects of tropical modality340

Since equatorial precipitation inhibition is closely linked to the MOC, EMI is indirectly related341

to phenomena in subtropical and even extratropical latitudes, which covary with the MOC. This is342
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Fig. 8. Correlations of the equatorial modality index (EMI) with annual-mean zonally-averaged precipitation

minus evaporation across the CMI5/6 models (black) and HadCM3L simulations (gray), per latitude.

334

335

evident in Fig. 8, showing correlations of EMI with zonal mean precipitation minus evaporation343

(which closely follows the mean vertical wind, as seen in Fig. S6) in the CMIP5/6 and HadCM3L344

simulations (cf. Fig. 1 in Adam et al. 2016c). Table 1 summarizes the correlations of EMI345

with large-scale parameters across the CMIP5/6 and HadCM3L simulations. EMI is positively346

correlated with the width of the MOC and with the width of the ITCZ, and negatively correlated347

with the intensity of the MOC across CMIP5/6 and HadCM3L simulations (cf. Fig. S5 where348

the MOC is wider and weaker under Pleinsbachian conditions). Due to the small variations in349

global mean temperature (GMT) across both CMIP5/6 and HadCM3L simulations, EMI is not350

significantly correlated with GMT (𝑅 = -0.08 and 0.09, respectively). Nevertheless, due the known351

strong correlation of GMT with ITCZ width and with MOC width and intensity (Byrne et al. 2018;352

Staten et al. 2018), GMT does not act as a confounding factor in the correlations shown in Table353

Table 1. Correlations of EMI with: tropics to poles temperature difference (TPTD), equatorial atmospheric

net energy input (NEI0), cold tongue index (CTI), MOC width and intensity, Walker circulation (WC) intensity,

and ITCZ width, across the CMIP5/6 and HadCM3L simulations. Correlations with 95% confidence levels are

bolded.

336

337

338

339

𝑅 (EMI, · ) TPTD NEI0 CTI MOC width MOC intensity WC intensity ITCZ width

CMIP5/6 -0.16 -0.52 -0.49 0.44 -0.50 0.17 0.70

HadCM3L -0.68 -0.65 -0.91 0.88 -0.81 0.69 0.86
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Fig. 9. Depictions of hemispherically symmetric (a) Hadley and (b) anti-Hadley circulations, and their relation

to single (unimodal) and double (bimodal) ITCZs.

369

370

1, thus raising the confidence of the statistical relations between EMI and each of the large-scale354

parameters.355

Cursory examination of the variations in paleogeography, precipitation, and circulation in the356

HadCM3L simulations (Figs. S3-4) suggests that tropical modality increases with the width of357

the dominant ocean basin. However, the effects of additional confounding variables affecting358

equatorial precipitation inhibition such as boundary layer, cloud, and ocean dynamics must also359

be considered. Specifically, in the present climate, the equatorial cold tongues that emerge in the360

Pacific and Atlantic due to wind-driven ocean circulation inhibit precipitation by stabilizing the361

atmospheric column and by suppressing surface convergence (Lindzen and Nigam 1987; Philander362

et al. 1996). Indeed, EMI is negatively correlated with the cold tongue index (CTI), indicating363

increased equatorial precipitation inhibition as the cold tongue intensifies. Consistent with this364

relation, EMI is also positively correlated with Walker circulation intensity, which is dynamically365

linked to the cold tongue strength via the Bjerknes feedback (Bjerknes 1969; Webster 2020). This366

correlation, however, is significant only in the HadCM3L simulations, pointing to the important367

role of paleogeography.368

Convective dynamics can also inhibit equatorial precipitation, and can lead to doubly-peaked371

tropical precipitation distributions, even for a static ocean (Möbis and Stevens 2012; Blackburn372

et al. 2013; Voigt et al. 2014; Medeiros et al. 2015; Popp and Silvers 2017; Talib et al. 2018). Given373

the diversity of mechanisms that determine the distribution of the tropical rain belt, an energetic374

approach has been shown to simplify the analysis and effectively capture bifurcations from single375
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Fig. 10. Upper panels: Annual mean vertical pressure velocity at the 500 hPa level during (a) the present

climate, and simulated (b) pre-industrial conditions, and (c) the Pleinsbachian period (189 Ma). Lower panels:

the corresponding zonally varying EMI calculated using running sector means of 10°.

388

389

390

to double ITCZs (Bischoff and Schneider 2016; Adam et al. 2016b). Specifically, a deficit in energy376

input into the atmosphere at the equator (i.e., lower NEI0), caused by either dynamic or convective377

processes (Talib et al. 2018), or by increased equatorial ocean heat uptake at the cold tongues378

(Adam 2021), can lead to a meridional overturning circulation that transports energy toward the379

equator (Bischoff and Schneider 2016). This circulation can be described as anti-Hadley, with380

ascending branches on either side of the equator and a descending branch at the equator (Fig. 9).381

EMI is indeed negatively correlated with NEI0, in accordance with the expectation of bifurcation382

to double ITCZs as NEI0 decreases (Bischoff and Schneider 2016; Adam et al. 2016b). Similarly,383

elevated EMI in CMIP5/6 models (Fig. 5) is consistent with the double-ITCZ bias in CMIP5/6384

models, which goes along with a too cold and westward extended Pacific cold tongue (Mechoso385

et al. 1995; Li and Xie 2012; Zheng et al. 2012), and lower than observed NEI0 (Adam et al. 2018a;386

Kim et al. 2021).387

The relation of EMI and the MOC can be further understood by examining the zonal variation391

in the tropical vertical wind and in EMI, as shown in Fig. 10 (the same plot with hemispherically392

symmetric vertical wind is shown in Fig. S7). The regional MOC in sectors with a rising branch393

at the equator can be described as Hadley-like (characteristic of monsoonal regions; Dima and394
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Wallace 2003); sectors with an equatorial descending branch and ascending branches that straddle395

the equator can be characterized as having anti-Hadley-like regional MOC, which occurs mostly396

over oceans along cold tongues (Bischoff and Schneider 2016;Adamet al. 2016b;Adam2021). (We397

note, however, that the sector mean vertical wind is also strongly affected by the zonal overturning398

circulation; Raiter et al. 2020; Galanti et al. 2022). As seen in Fig. 10, the zonal variation from399

Hadley-like to anti-Hadley-like sector-mean MOC follows EMI. Zonal mean EMI can therefore be400

interpreted as describing the relative contributions of regions with Hadley- and anti-Hadley-like401

circulations. Thus, for example, in the present climate Hadley-like circulation dominates in most402

sectors, leading to a low-EMI climate; in contrast, under Pleinsbachian conditions anti-Hadley-like403

circulation dominates in most sectors, leading to a high-EMI climate. We note, however, that in the404

present climate, the low EMI in the Asian monsoon sector may result from the persistent rain band405

in the southern Indian ocean (Zhang et al. 2022), rather than the Hadley-like monsoonal variations.406

We next turn to examining the differences in the seasonal cycle between low- and high-EMI407

climates, which, as can be inferred from the above discussion, also vary regionally.408

5. Seasonal and regional aspects of tropical modality416

a. Seasonal variations of the zonal mean precipitation distribution417

Monthly climatologies of statistical properties of the zonal-mean tropical precipitation distribu-418

tion in the CMIP5/6 and HadCM3L simulations are shown in Fig. 11, with high- and low-EMI419

composites denoted by blue and red lines. Low-EMI climates and models show:420

i. Reduced extent of seasonal migrations by the mean position of the ITCZ (as captured by the421

precipitation centroid, Fig. 11a,b);422

ii. Reduced width of the tropical rain belt (as captured by the standard deviation of zonal mean423

tropical precipitation, Fig. 11c,d, consistent with Table 1);424

iii. Reduced seasonal skewness (Fig. 11e,f); and425

iv. Increased kurtosis (Fig. 11g,h).426

These characteristics are consistently seen across the CMIP5/6 and HadCM3L simulations, but427

are generally not statistically significant for theCMIP5/6 historical simulations inwhich inter-model428
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Fig. 11. Monthly climatologies of statistical properties of the zonal mean tropical precipitation distribution

for HadCM3L simulations (left panels), CMIP5/6 historical simulations (right panels), and observations (ERA-

Interim, green, right panels). Shown are the (a,b) precipitation centroid, (c,d) standard deviation, (e,f) skewness,

and (g,h) kurtosis. CMIP5/6 and HadCM3L model ensemble means (MEM) are shown in black. High- and

low-EMI composites are shown in blue and red, corresponding to lowest and highest 10 cases for HadCM3L

simulations and 15 CMIP5/6 models. Blue shading indicates ±1 standard deviation across CMIP5/6 and

HadCM3L simulations.
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410

411

412

413

414

415

variance is weaker. We therefore conclude that tropical modality has the potential to efficiently429

differentiate seasonal variations of the tropical rain belt, as represented by the first four moments.430

For CMIP5/6 models, consistent with the double-ITCZ bias, excessive seasonal migrations of the431

precipitation centroid during the southern hemisphere rainy season (Li and Xie 2014; Adam et al.432

2018a) go along with coincident positive biases in both skewness and kurtosis. Since equatorial433

precipitation is strongly influenced by the seasonal migrations of the ITCZ across the equator (Fig.434

S8), the excessive migrations in CMIP5/6 models lead to a semi-annual variation in kurtosis, which435

is not seen in the present climate.436
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Fig. 12. Monthly climatologies of the positions of the northern and southern peaks in zonal-mean tropical

precipitation (𝜙N and 𝜙S, respectively; upper panels), and the latitudinal separation between 𝜙N and 𝜙S (lower

panels), for HadCM3L simulations (left panels), CMIP5/6 historical simulations (right panels), and observations

(ERA-Interim, green, right panels). CMIP5/6 and HadCM3Lmodel ensemble means (MEM) are shown in black.

High- and low-EMI composites are shown in blue and red, corresponding to lowest and highest 10 cases for

HadCM3L simulations and 15 CMIP5/6 models. Blue shading indicates ±1 standard deviation across CMIP5/6

and HadCM3L simulations.
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b. Seasonal variations of hemispheric rain bands437

The seasonal properties of the tropical precipitation distribution can also be understood by450

considering seasonal variations of the hemispheric rain bands. As shown below, additional degrees451

of freedom become important with increasing tropical modality. Figure 12 shows the seasonal452

migrations of the precipitation peaks north (𝜙N) and south (𝜙S) of the equator. To ensure only453

doubly-peaked distributions are considered, the calculations in Fig. 12 are done only for CMIP5/6454

and HadCM3L simulations with EMI greater than 1.1, so that the low-EMI composites have EMI455

values somewhat larger than the composites shown in other plots.456

The hemispheric peaks generally migrate seasonally following the Sun (Fig. 12 upper panels),457

but also show a semi-annual variation in the latitudinal separation between the peaks (Fig. 12 lower458

panels), in accordance with the semi-annual cycle in kurtosis and equatorial precipitation (Figs.459

11g-h and S8). Therefore, in addition to the mean position of the ITCZ, which is captured by the460
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Fig. 13. Seasonal cycle of the observed meridional marine precipitation distributions in (a) the western Pacific

sector [170°E–240°E], and (b) the Atlantic sector [300°E–340°E]. Orange and yellow lines show the locations of

the sector-mean precipitation centroid (𝜙𝑐𝑒𝑛𝑡 ) and of the northern and southern rain bands (𝜙N, 𝜙S), respectively.
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precipitation centroid (𝜙𝑐𝑒𝑛𝑡), tropical modality introduces an additional degree of freedom, which461

can be interpreted as the separation between the northern and southern peaks (𝜙𝑠𝑒𝑝 = 𝜙N − 𝜙S).462

This can also be interpreted as variation in the width of the tropical rain belt (correlation of 𝜙𝑠𝑒𝑝463

with ITCZ width is 0.92 and 0.82 for the CMIP5/6 and HadCM3L simulations, respectively).464

Thus, in the limit of a strictly unimodal distribution, consistent with the Hadley paradigm,465

the precipitation centroid captures the seasonal migrations of the ITCZ. However, as tropical466

modality increases, the precipitation centroid captures only the general tendency of the precipitation467

distribution to shift toward the warmer hemisphere, and the separation between hemispheric peaks468

provides additional critical information. In the annual mean, the correlation between the 𝜙𝑠𝑒𝑝 and469

𝜙𝑐𝑒𝑛𝑡 is generally weak (0.37 across HadCM3L simulations and 0.04 across CMIP5/6 models, with470

p-values 0.01 and 0.7, respectively), indicating that 𝜙𝑐𝑒𝑛𝑡 and 𝜙𝑠𝑒𝑝 (or ITCZ width) indeed provide471

generally independent information.472
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Fig. 14. As in Fig. 13, for the CSIRO-Mk-6-0 and CESM1-CAM5 CMIP5 models, both with high-EMI values

in the western Pacific.

448

449

c. Seasonal and regional variations of hemispheric rain bands473

The differences between unimodal and bimodal precipitation distributions are also seen across474

regions. Fig. 13 contrasts the observed seasonal cycles in the Pacific, characterized by a bimodal475

precipitation distribution (regional EMI = 1.70), and the Atlantic, characterised by a unimodal476

precipitation distribution (EMI = 1.00). In the Atlantic, a single ITCZ migrates seasonally but477

remains north of the equator year-round. In accordance with the Hadley paradigm, the precipitation478

centroid closely covaries with the position of the northern precipitation peak. Moreover, since in479

the Atlantic a single rain band migrates back and forth, the seasonal contrast in precipitation is480

significant (i.e., monsoonal-like). In contrast, in thewestern Pacific, the northern rain bandmigrates481

with the precipitation centroid, but at a much lower amplitude. As a result, seasonal precipitation482

contrasts are weak. Further, the southern rain band (deep tropical branch of the SPCZ) shifts483

counter to the precipitation centroid during boreal summer. Consistent with seasonal variations484

in the strength of the Pacific cold tongue, the northern and southern rain bands are nearest during485

boreal spring, when the cold tongue is weakest (van der Wiel et al. 2016; Adam 2018).486
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Finally, as shown by Zhao and Fedorov (2020) and Adam (2021), for high-EMI regions or climate487

states, changes in the intensity of the hemispheric rain bands become important. Fig. 14 shows488

the seasonal variation in the western Pacific for two climate models with high EMI values in the489

western Pacific. In the SCIRO-Mk3-6-0 model, hemispheric ITCZs remain mostly stationary year490

round, and the seasonal variation is characterized primarily by seesaw changes in precipitation491

intensity. In contrast, for the CESM1-CAM5 model, all three of the seasonal modes mentioned492

above are important: (i) migration of the precipitation distribution following the Sun (captured493

by the precipitation centroid), (ii) variation in the separation between the hemispheric rain bands494

(captured by 𝜙𝑠𝑒𝑝 or ITCZ width), and (iii) seesaw changes in the intensity of the hemispheric rain495

bands.496

6. Summary and discussion497

The tropical rain belt is composed of rain bands that lie along the rising branches of the tropical498

overturning circulation. The modality of the zonal mean tropical precipitation distribution is499

therefore strongly linked to the overturning circulation regime of the tropics. In the present climate,500

the prevailing tropical circulation regime is the Hadley circulation, which under ideal conditions501

leads to a unimodal precipitation distribution. However, regional and meridional deviations from502

idealized Hadley circulation give rise to precipitation distributions that vary between uni- and bi-503

modality. Here we show that modality is an essential characteristic of the tropical rain belt, which504

"summarizes our ignorance" (borrowing a phrase from Neelin and Held 1987) of the underlying505

dynamic and convective processes that give rise to key properties of the tropical rain belt.506

We quantify the modality of the tropical rain belt using an Equatorial Modality Index (EMI) that507

increases in proportion to equatorial precipitation inhibition, and varies continuously between 1508

and 2 (uni- and bi-modality; Eq. 4). We define EMI calculated from the long-term mean of the509

tropical precipitation distribution as "tropical modality", which we argue is a general characteristic510

of tropical climate.511

We examine variations of the tropical rain belt across observations, 73 historical simulations512

of models from phases 5 and 6 of the coupled model intercomparison project (CMIP5/6, Tables513

S1-2), and 45 simulations by the UK Met Office HadCM3L model with varying paleogeographic514

conditions spanning the past 300 million years (Figs. S3-4). Using these datasets, which represent515
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variations across a diversity of climate models and simulated climate states, we identify robust516

large-scale aspects of tropical modality.517

Since equatorial precipitation inhibition is closely linked to the mean overturning circulation518

(MOC), EMI is strongly correlated with large-scale processes in equatorial, subtropical, and519

even extratropical latitudes (Fig. 8 and Table 1). Specifically, it is associated with increased520

cold-tongue strength and reduced equatorial atmospheric net energy input, which both inhibit521

equatorial precipitation (Bischoff and Schneider 2016; Adam et al. 2016b). EMI is also negatively522

correlated with the intensity of the Hadley circulation, and positively correlated with the total523

width of the tropical MOC, as well as with the width of its rising branch (ITCZ width). In the524

HadCM3L simulations, despite generally negligible changes in global mean temperature (due to525

fixed CO2 levels), the tropics to poles temperature difference (TPTD) decreases with EMI, pointing526

to the important role of the large-scale circulation regime in regulating poleward energy transport527

(Goddéris et al. 2014).528

The seasonal cycle of the tropical rain belt is particularly sensitive to variations in tropical529

modality. Specifically, increased tropical modality is found to be associated with wider excursions530

of the mean position of the ITCZ, increased width of the tropical rain belt, increased seasonal531

skewness of the precipitation distribution, and reduced kurtosis (Fig. 11). These characteristics532

can vary across regions. For example, in the observed climate, the precipitation distribution is533

strongly bimodal in the western Pacific and unimodal in the Atlantic (Figs. 10, 13).534

For unimodal precipitation distributions (either regional or in the zonal mean), the dominant535

seasonal mode is migration of rain bands following the Sun (monsoonal mode, Fig. 13b). In536

contrast, for bimodal distribution we identify three critical seasonal modes of variation:537

i. Migration of the precipitation distribution toward the warmer hemisphere, which is captured538

by the precipitation centroid (migration mode);539

ii. Variation in the separation between hemispheric rain bands (separation mode); and540

iii. Seesaw variation in the intensity of hemispheric rain bands (seesaw mode).541

Here we distinguish between the monsoonal mode, which characterizes unimodal distributions and542

leads to large seasonal contrasts, and the migration mode for bimodal distributions, which does not543

necessarily lead to strong seasonal contrasts. In addition, for bimodal distributions showing distinct544
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hemispheric rain bands (e.g., Fig. 14a), while the latitudinal distance between the hemispheric545

peaks 𝜙𝑠𝑒𝑝 is well correlated with indices of the width of the precipitation distribution (i.e., ITCZ546

width and 𝜎), 𝜙𝑠𝑒𝑝 is nevertheless a more appropriate descriptor.547

The seasonal modes described above, which depend on tropical modality, project onto annual548

mean variations in themean position, width, and intensity of the precipitation distribution (Donohoe549

et al. 2021), and are therefore critical for understanding variations of the tropical rain belt on550

seasonal to geological timescales. In the present climate, this is particularly true in the tropical551

western Pacific, which is strongly bimodal (Fig. 13a). Indeed, Zhao and Fedorov (2020) found552

that the seesaw mode dominates seasonal variations in the western Pacific. Similarly, Yan et al.553

(2015) found that the precipitation response in the western Pacific to the volcanic eruptions that554

instigated the Little Ice Age is inconsistent with the commonly assumed monsoonal mode. The555

notorious double-ITCZ bias in modern climate models can also be described as a positive bias in556

Pacific tropical modality.557

More generally, for climate conditions with large tropical modality, failure to account for all558

three of the above mentioned modes may lead to erroneous interpretations. For example, Adam559

(2021) showed that wind-driven ocean energy transport generally damps shifts of the precipitation560

centroid but can amplify shifts of hemispheric precipitation peaks – stressing the need to consider561

both the migration and separation modes. Moreover, under some conditions, the separation mode562

can counter the migration mode, such that hemispheric rain bands cannot be assumed to always563

follow the Sun in their seasonal migrations (e.g., Figs. 13a and 14b, southern ITCZ during boreal564

autumn).565

Finally, here we argue that the concept of tropical modality is important for understanding and566

describing variations in the tropical rain belt. We propose EMI as an objective quantitative measure567

of tropical modality. But other measures may be similarly effective, such as ITCZ width (Byrne568

et al. 2018), geometric characterizations of the precipitation distribution (Popp and Lutsko 2017;569

Donohoe et al. 2021), or measures based on the mean overturning circulation. Important aspects of570

tropical modality such as its relation to the zonal overturning circulation, global mean temperature,571

systematic precipitation biases in climate models, and climate variability, have only been briefly572

addressed here and deserve further investigation.573
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