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2 Poincaré inequalities for Markov chains: a

meeting with Cheeger, Lyapunov and Metropolis

Christophe Andrieu, Anthony Lee, Sam Power, Andi Q. Wang

School of Mathematics, University of Bristol

August 11, 2022

Abstract

We develop a theory of weak Poincaré inequalities to characterize con-

vergence rates of ergodic Markov chains. Motivated by the application of

Markov chains in the context of algorithms, we develop a relevant set of

tools which enable the practical study of convergence rates in the setting

of Markov chain Monte Carlo methods, but also well beyond.
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1 Introduction

This report is the result of a research programme initiated in [1] that aims to
understand and develop functional-analytic tools to characterize the rate of con-
vergence to equilibrium of discrete-time Markov chains. While analysis of the
right-spectral gap of time-reversible Markov chains is fairly standard and has
played an important rôle in the analysis of Markov chain Monte Carlo (MCMC)
algorithms, functional-analytic results for nonreversible or subgeometrically con-
vergent Markov chains are scarce. Notable exceptions are [15] and [11], the latter
being the closest in spirit to our work. On the other hand, the characterization
of the convergence to equilibrium of continuous-time processes, both reversible
and nonreversible, geometric and subgeometric, is considerably more developed.
Study of subgeometric rates of convergence can be traced back to [27], which
was later generalized and developed in [38], with a general framework relying
on weak Poincaré inequalities (WPIs). Further significant contributions to the
analysis of diffusion processes were made by the French school in the late 2000s
– early 2010s in a series of contributions, for instance [3, 4, 9, 8].

Beyond the scattered nature of this literature, the continuous-time scenario
possesses a plethora of specific technical difficulties, which often render it diffi-
cult to penetrate for the uninitiated. On the other hand, while the discrete-time
Markov chain setup is indeed technically simpler, it has its own subtleties and
challenges, which have not thus far been covered in a comprehensive way in the
literature. As such, many of our present results are not merely transpositions
of existing continuous-time results into the discrete-time setting.

Importantly, the main motivation behind our work being our interest in
MCMC methods – and more generally algorithms which utilize ergodic Markov
chains – we address numerous questions not addressed in the existing litera-
ture, concerning for example optimality and comparison of Markov chains. Our
own recent experience shows that these functional-analytic tools we develop are
complementary to the classical drift and minorization approach, à la Meyn and
Tweedie [32], which has proved particularly useful and fruitful in the context
of MCMC algorithms. We provide several concrete examples and applications
of our techniques which are relevant for the analysis of MCMC methods; in
particular we have been able to answer some questions (see, for instance, [1] or
Subsection 5.3) which had eluded us and others previously.

1.1 A roadmap

Beyond an attempt to develop a coherent and self-contained document on WPIs
for Markov chains, we also make a number of novel contributions.

This manuscript can be summarized as follows:

• Section 2 focuses on definitions of weak Poincaré inequalities (WPIs) in the
discrete-time setting and their immediate implications. In Subsection 2.1
three equivalent parametrizations of WPIs are discussed in detail and we
summarise their implications for rates of convergence to equilibrium. In

3



Subsection 2.2, we connect convergence for bounded functions in L2 with
convergence of Lp functions. We establish in Subsection 2.3 reverse im-
plications: showing that a given rate of convergence implies the existence
of a WPI. In Subsection 2.4 we show how WPIs can be used to bound
directly the asymptotic variance of ergodic averages. In Subsection 2.5
we draw links between WPIs and subgeometric rates of convergence with
spectral properties of the operators involved.

• Section 3 is dedicated to the notion of optimal WPIs (Subsection 3.1),
lower bounds on rates of convergence (Subsection 3.2), comparison results
of the Peskun–Tierney type (Subsection 3.3), optimal sieve functionals
(Subsection 3.4) and a form of duality (Subsection 3.5).

• Section 4 develops practical tools for establishing WPIs in practice. In
Subsection 4.1 we generalize Cheeger inequalities for Markov chains to es-
tablish WPIs. In Subsection 4.2 we establish links between µ−irreducibility
and the existence of WPIs via the abstract RUPI condition. Subsec-
tion 4.3 discusses connections between drift and minorization techniques
with Poincaré inequalities. We discuss an alternative strategy to establish
WPIs: a local Poincaré inequality for a restricted version of the Markov
chain is combined with a drift condition. Finally in Subsection 4.4, we
study how the knowledge of SPIs for restricted versions of a given Markov
chain can be used to deduce WPIs for the unrestricted chain.

• In Section 5 we present applications of the theory in particular scenar-
ios. In Subsections 5.1–5.2 we establish lower bounds on the rate of con-
vergence of a type of pseudo-marginal algorithm and the random walk
Metropolis (RWM) algorithm targeting heavy-tailed distributions. In Sub-
section 5.3 we establish dimension dependence of d−1 of the spectral gap
of the RWM algorithm for a class of light-tailed target distributions, ef-
fectively providing the first direct proof of this result. This result is spe-
cialized to the Gaussian scenario in Subsection 5.4. In Subsection 5.5 we
show how our results can be used to establish the existence of a central
limit theorem for ergodic averages.

• Finally the Appendix contains some deferred proofs and miscellaneous
results omitted from the main body of the text.

The highlights of this report will ultimately be turned into standard, more
succinct and focussed manuscripts for specialists.

1.2 Notation

We will write N = {1, 2, . . . } for the set of natural numbers, N0 := N∪ {0}, and
R+ = (0,∞) for positive real numbers.

Outside of specific examples, we will be working throughout on a general
measurable space (E, E ).
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• For a set A ∈ E , its complement in E is denoted by A∁. We denote the
corresponding indicator function by 1A : E → {0, 1}.

• We assume that (E, E ) is equipped with a probability measure µ, and
write L2 (µ) for the Hilbert space of (equivalence classes of) real-valued
µ–square-integrable measurable functions with inner product

〈f, g〉 =
∫

E

f (x) g (x) dµ (x) ,

and corresponding norm ‖ · ‖2,µ, and if there is no ambiguity, we may just
write ‖ · ‖2. We write L2

0 (µ) for the set of functions f ∈ L2 (µ) which also
satisfy µ(f) = 0.

• More generally, for p ∈ [1,∞), we write Lp (µ) for the Banach space of real-

valued measurable functions with finite p-norm, ‖f‖p :=
(∫

E
|f |p dµ

)1/p
,

and Lp
0 (µ) for f ∈ Lp (µ) with µ (f) = 0.

• We assume that the diagonal is measurable in E×E, i.e. {(x, x) : x ∈ E} ∈
E ⊗ E . This assumption holds, for instance, on a Polish space endowed
with its Borel σ-algebra.

• We write E+ := {A ∈ E : µ(A) > 0}.

• For µ and ν probability measures on (E, E ), we let ‖µ− ν‖TV := supA∈E |µ (A)− ν (A)|.

• For a measurable function f : E → R, let ‖f‖osc := essµ sup f − essµ inf f .

• For two probability measures µ and ν on (E, E ) we let µ ⊗ ν (A×B) =
µ (A) ν (B) for A,B ∈ E . For a Markov kernel P (x, dy) on E × E ,
we write for Ā ∈ E ⊗ E , the minimal product σ-algebra, µ ⊗ P

(

Ā
)

=
∫

Ā
µ (dx)P (x, dy).

• A point mass distribution at x will be denoted by δx (dy).

• Id : L2 (µ) → L2 (µ) denotes the identity mapping, f 7→ f . We also use
this symbol for the identity Id: X → X.

• Given a bounded linear operator T : L2 (µ) → L2 (µ), we let E (T, f) be
the Dirichlet form defined by 〈(Id− T ) f, f〉 for any f ∈ L2 (µ).

• For such an operator T , we write T ∗ for its adjoint operator T ∗ : L2 (µ) →
L2 (µ), which satisfies 〈f, T g〉 = 〈T ∗f, g〉 for any f, g ∈ L2 (µ).

• For such an operator T , we denote its spectrum by σ (T ). We denote the
spectrum of the restriction of T to L2

0 (µ) by σ0(T ).

• For a µ9invariant Markov kernel T we let the right-spectral gap be

GapR (T ) := inf
g∈L2

0(µ),g 6=0

E (T, g)

‖g‖22
.
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• For a given f ∈ L2 (µ), the asymptotic variance is defined as var (T, f) :=
limn→∞ nvar

(

1
n

∑n
i=1 T

nf
)

.

• We will write a∧ b to mean the (pointwise) minimum of real-valued func-
tions a, b and a ∨ b for the corresponding maximum. For s ∈ R, we will
write (s)+ := s ∨ 0 for the positive part.

• inf A denotes the infimum of set A ⊂ R and inf ∅ = ∞.

• For a norm |·|, which will always be clear from the context, we define the
closed ball of radius r around x to be

B(x, r) := {y ∈ E : |y − x| ≤ r} .

• We adopt the following O (resp. Ω) notation to indicate when functions
grow no faster than (resp. no slower than) other functions. For a ∈
R ∪ {∞}

– If f(x) ∈ O(g(x)) as x → a, this means lim sup
x→a

∣

∣

∣

f(x)
g(x)

∣

∣

∣
< ∞. When

a = +∞ then we may drop explicit mention of a.

– If f(x) ∈ Ω(g(x)) as x → a, this means lim inf
x→a

∣

∣

∣

f(x)
g(x)

∣

∣

∣
> 0. In partic-

ular f ∈ O(g) ⇐⇒ g ∈ Ω(f).

2 Fundamentals

2.1 Definitions and basic properties

We first give the basic definitions needed in order to define a weak Poincaré
inequality.

Definition 1. a). We call a functional Φ : L2 (µ) → [0,∞] a sieve functional,
or sieve, if for any f ∈ L2 (µ), c > 0, it holds that

Φ (cf) = c2Φ (f) , ‖f − µ (f)‖22 6 aΦ (f − µ (f)) ,

for a finite constant a := supf∈L2
0(µ)\{0} ‖f‖

2
2 /Φ (f).

b). Let P be a µ9invariant Markov kernel. We say that a sieve is P9non-
expansive if Φ (Pf) 6 Φ (f) for f ∈ L2

0 (µ).

For simplicity and when no ambiguity is possible, we may refer to a P9non-
expansive sieve simply as a sieve.

Example 2. Our main example of a P–non-expansive sieve, for any P , is
Φ = ‖·‖2osc, with a ≤ 1.

There are two ways to parameterize weak Poincaré inequalities for P , which
are equivalent under a mild assumption.
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Definition 3. We say that a µ9reversible kernel T satisfies a (Φ, α) 9weak
Poincaré inequality, abbreviated (Φ, α) 9WPI, if for a sieve Φ and a decreas-
ing function α : (0,∞) → [0,∞),

‖f‖22 ≤ α (r) E (T, f) + rΦ (f) , ∀r > 0, f ∈ L2
0(µ). (1)

Secondly, using the same notation, we can parameterize in terms of β: we say
that a (Φ, β) 9WPI holds if:

‖f‖22 ≤ sE (T, f) + β (s)Φ (f) , ∀s > 0, f ∈ L2
0 (µ) , (2)

where β : (0,∞) → [0,∞) is a decreasing function with β (s) → 0 as s→ ∞.

If T satisfies a (Φ, α)-WPI or a (Φ, β)-holds but the specific α or β are not
relevant, we may say that a Φ-WPI holds.

In practice, we are interested in bounding the convergence to equilibrium of
a given µ-invariant Markov kernel, P . To obtain such bounds, in the framework
of Definition 3, we will take T = P ∗P , or if P is µ-reversible, we may take
directly T = P .

Remark 4. Given a general µ-invariant Markov kernel T (which is not necessarily
reversible), one can still define a WPI for T , namely the requirement that (1)
holds for our general kernel T . However, it is enough to define (1) only for
reversible kernels, since

E (T, f) = 〈(Id− T ) f, f〉
= 〈(Id− (T + T ∗) /2) f, f〉
= E ((T + T ∗) /2, f) ,

due to the fact that (T − T ∗) /2 is antisymmetric, and we are considering real-
valued f . Since the kernel (T + T ∗) /2 is reversible, it is thus sufficient to
consider WPIs for reversible kernels.

For any decreasing function F : R+ → R we let F 9 : R → [0,∞] given by
F 9 (x) := inf {y > 0: F (y) 6 x}, for x ∈ R, be its generalized inverse. The
following proposition shows that one can straightforwardly move between the
two formulations of WPIs.

Proposition 5. Let P be a Markov kernel on
(

E, E
)

, Φ be a sieve, and a :=

supf∈L2
0(µ)\{0} ‖f‖

2
2 /Φ (f).

a). If a (Φ, α) 9WPI holds with α (r) = 0 for r > a, then a (Φ, β) 9WPI, with
β := α9 on (0,∞), holds and for any r, s > 0,

i α9 ◦ α (r) 6 r with equality when α is strictly decreasing;

ii s 6 α ◦ α9 (s) if α is right continuous;

iii β 6 a.

b). If a (Φ, β) 9WPI holds with β 6 a, then a (Φ, α) 9WPI holds, with α := β9

on (0,∞), and for any r, s > 0,
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i β9 ◦ β (s) 6 s;

ii r 6 β ◦ β9 (r) if β is right continuous;

iii α (r) = 0 for r > a.

c). If α in a) (resp. β in b)) is right continuous then (α9)
9
= α (resp. (β9)

9
=

β); that is, the two parametrizations are equivalent.

Proof. Statement a). Assume that a (Φ, α) 9WPI holds, let s > 0 and R (s) :=
{r > 0 : α (r) 6 s} 6= ∅, where the nonemptiness follows from the assumption
on α. Then for any r ∈ R (s), it holds that

‖f‖22 6 sE (T, f) + rΦ (f) ,

and therefore

‖f‖22 6 inf {sE (T, f) + rΦ (f) : r ∈ R (s)}
= sE (T, f) + α9 (s)Φ (f) .

Note that α (r) = 0 for r > a implies that for any s > 0,

α9 (s) := inf {r > 0 : α (r) 6 s} = inf{r ∈ (0, a] : α (r) 6 s} 6 a .

We use the results of [14], stated for an increasing function T, but directly
applicable here by setting, using their notation, T = −α and noting that α9 (s) =
T
9 (−s). From [14, Proposition 1, (2)], α9 is decreasing.

For any ε > 0, let s (ε) := supr>ε α (r). If s (0) <∞, then α9 (s) = 0 for s >
s (0). Otherwise, limε↓0 s (ε) = ∞, since α is decreasing. Therefore for any ε > 0
and any s > s (ε), we have inf {r > 0 : α (r) 6 s} 6 inf {r > 0 : α (r) 6 s (ε)} 6

ε and α9 (s) ≤ α9 (s (ε)) 6 ε. Hence, lims→∞ α9 (s) = 0, and thus a (Φ, β) 9WPI
with β := α9 holds.

The other listed properties are standard for generalized inverse (monotone)
functions [14, Proposition 1, (3) and (4)], using that α9 ◦ α (r) = α9 (−T (r)) =
T
9 ◦ T (r) and noting that here α9 6 a <∞.

The second statement b) follows along the same lines.
For statement c) we use that from [14, Proposition 1, (5)], α (r) > s ⇐⇒

r 6 α− (s), therefore

(α9)
9
(r) = inf {s > 0 : α9 (s) 6 r}

= inf {s > 0 : α9 (s) < r}
= inf {s > 0 : α (r) 6 s}
= α (s) .

The proof for β is identical.

Definition 6. In the situation where a (Φ, α) 9WPI (resp. (Φ, β)−WPI) holds
for α (resp. β) right continuous, we refer to it as a (Φ, α, β) 9WPI where β = α9

(resp. α = β9).
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The main interest of WPIs is summarized below:

Theorem 7 (Theorem 8 [1]). Let P be a µ−invariant Markov kernel on
(

E, E
)

and assume that T := P ∗P satisfies a (Φ, β)−WPI for a sieve Φ. Then for
f ∈ L2

0 (µ) such that 0 < Φ (f) <∞ and any n ∈ N, it holds that

‖Pnf‖22 ≤ γ (n)Φ (f) , (3)

where γ (n) := F−1
a

(n), where Fa : (0, a] → R is the decreasing convex and
invertible function

Fa (x) :=

∫

a

x

dv

K∗ (v)
,

with K∗ : [0,∞) → [0,∞] defined as K∗ (v) := supu≥0 {uv −K (u)}, the convex
conjugate of K : [0,∞) → [0,∞) given by K (u) := u β (1/u) for u > 0 and
K (0) := 0.

The function γ satisfies γ (n) → 0 as n→ ∞.

Remark 8. In practice, the precise value of a as given in Definition 1 may not be
known, however an upper bound a ≥ a is typically known, as in Example 2. The
conclusions of Theorem 7 remain true when we consider Fa :=

∫ a

· dv/K∗(v) =
Fa + c for c =

∫ a

a
dv/K∗(v) ≥ 0, and we obtain the convergence bound in (3)

with γ = γ(·; a) := F−1
a = F−1

a
(· − c) ≥ F−1

a
.

Remark 9. Our proof of this theorem actually supplies a collection of bounds
on ‖Pnf‖22 which trade off tightness for tractability. In particular, writing

vn = ‖Pnf‖22 /Φ (f), one can deduce (in decreasing order of tightness) the
bounds

for all n > 1, vn 6 vn−1 −K∗ (vn−1)

=⇒ vn 6 (Id−K∗)◦n (v0)

=⇒ ‖Pnf‖ 2
2 6 Φ (f) · (Id−K∗)◦n

(

‖f‖22
Φ (f)

)

and

for all n > 1, Fa (vn)− Fa (vn−1) > 1

=⇒ Fa (vn) > n+ Fa (v0)

=⇒ ‖Pnf‖ 2
2 6 Φ (f) · F−1

a

(

n+ Fa

(

‖f‖22
Φ (f)

))

.

Each of these forms will be useful in deducing converse results, i.e. converting
rates of convergence into WPIs.

Remark 10. Given only a WPI for P , one can deduce variance dissipation for the
continuous-time semigroup obtained by Poissonizing P , i.e. let Pt = exp (tL)
with L = P − I, then

‖Ptf‖2 6 Φ (f) · γ (2t) .
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Definition 11. A µ−invariant Markov kernel P satisfying (3) with γ ↓ 0 as
n → ∞ is said to be (Φ, γ) 9convergent. If the specific rate γ is not important,
we may say that P is Φ-convergent.

The Dirichlet form E (P ∗P, f) may not be tractable or straightforward to
work with. In the reversible scenario, it is possible to deduce a (Φ, β)−WPI for
E
(

P 2, f
)

from simpler Dirichlet forms or properties of P .

Theorem 12 ([1], Theorem 21 and Theorem 42). Let P be a µ−invariant

Markov kernel on (E, E ) and assume that P satisfies a
(

Φ̃, β+

)

−WPI for a

sieve Φ̃. Then,

a). if, in addition, P is µ-reversible and (−P ) satisfies a
(

Φ̃, β−
)

−WPI, we

have that P 2 satisfies a (Φ, β)−WPI with, for s > 0 and f ∈ L2
0 (µ),

β (s) := inf {s1β+ (s2) + β− (s1) |s1 > 0, s2 > 0, s1s2 = s} ,
Φ (f) := Φ̃ (f) ∨ Φ̃

(

(Id + P )1/2 f
)

;

b). if for any (x,A) ∈ E × E we have P (x,A) > ε (x) ·
∫

A
δx (dy) for some

ε : E → [0, 1], we have that P 2 satisfies a (Φ, β)−WPI with, for s > 0 and
f ∈ L2

0 (µ),

β (s) := inf {s1β− (s2) + β+ (s1) |s1 > 0, s2 > 0, s1s2 = s} ,
Φ (f) := Φ̃ (f)∨‖f‖2osc ,

where here β− (s) := 1
2µ
(

ε (X)
−1

> s
)

.

For practical purposes it may be useful to note that K∗ = K∗
+ ◦K∗

− and K∗ =
K∗

− ◦ K∗
+ in the respective cases above, with K∗

± defined as in Theorem 7, but
for β±.

2.2 (‖ · ‖2
p
, γp)−convergence from (‖ · ‖2

osc
, γ)−convergence

In practice it can sometime be difficult to establish that a candidate sieve Φ,
found through calculations, is indeed a sieve. In contrast the cases Φ = ‖ ·‖2∞ or
Φ = ‖ · ‖2osc can simplify calculations greatly. This appears at first sight to be at
the expense of generality in terms of the class of functions for which convergence
can be established. The following, which follows directly from [8, Lemma 5.1],
shows that (‖·‖2osc, γ)9convergence automatically implies (‖·‖2p, γp)9convergence.
(We note that the result of [8, Lemma 5.1] is even more general, but this full
generality is not needed here.) We will make use of this result throughout this
manuscript in order to simplify presentation. An alternative strategy to handle
broader classes of functions is suggested in [1, Proposition 37, Theorems 38, 42],

where
(

‖·‖2p , βp := β1−1/p
)

9WPIs for p ∈ [2,∞] are considered directly. We do

not know whether either of these two approaches is suboptimal in general but
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have observed that one recovers similar rates in the polynomial scenario. We
note however that we have found the approach given in [1] more difficult to use
in practice. We provide a proof of the result of [8, Lemma 5.1] in Appendix A
for the reader’s convenience.

Proposition 13. Let P be a µ9invariant Markov kernel, assumed to be
(

‖·‖2osc , γ
)

9convergent. Then P is also
(

‖·‖2p , γp
)

9convergent for p > 2, with

γp (n) 6 24+4/p [γ (n)]
1− 2

p , n ∈ N.

Since the bound for γ2 is not decreasing, the above result does not provide
an L2 convergence rate for all L2 functions. However, as mentioned in [38],
we can deduce uniform L1 convergence for all L2 functions from uniform L2

convergence for all bounded functions.

Proposition 14. The following are equivalent:

lim
n→∞

sup
f :µ(f2)≤1

‖Pnf − µ(f)‖1 = 0, (4)

and
lim
n→∞

sup
f :‖f‖∞≤1

‖Pnf − µ(f)‖2 = 0. (5)

Proof. We start with (4)⇒(5). So consider f with ‖f‖∞ ≤ 1.

‖Pnf − µ(f)‖22 =

∫

|Pnf − µ(f)| · |Pnf − µ(f)| dµ

≤ 2

∫

|Pnf − µ(f)| dµ,

and this final expression converges uniformly over f to 0 by (4), since {f :
‖f‖∞ ≤ 1} ⊂ {f : µ(f2) ≤ 1}. We now consider the converse, (5)⇒(4). With-
out loss of generality we may consider f ∈ F = {g ∈ L2

0(µ) : ‖g‖2 ≤ 1}. Let ǫ >
0 be arbitrary; we will show that for n large enough, supf :‖f‖2≤1

∫

|Pnf | dµ ≤ ǫ.

Take K = 4/ǫ and N large enough such that

sup
g:‖g‖

∞
≤K

‖PN (g)− µ(g)‖2 ≤ ǫ

2
,

which is valid due to (5). Decomposing an arbitrary f ∈ F as f = f ·1A+f ·1A∁

for A ∈ E , we have
∫

∣

∣PNf
∣

∣ dµ ≤
∫

∣

∣PN (f · 1A)
∣

∣ dµ+

∫

∣

∣PN (f · 1A∁)
∣

∣ dµ,

by Minkowski’s inequality. Now by Jensen’s inequality, µ-invariance of PN , and
Cauchy–Schwarz,

∫

∣

∣PN (f · 1A∁)
∣

∣ dµ ≤
∫

|f · 1A∁ | dµ ≤ ‖f‖2 µ(A∁)1/2 ≤ µ(A∁)1/2.

11



Take A = {x ∈ E : |f(x)| ≤ K}, and we obtain by Markov’s inequality

µ(A∁) = µ(1|f |2>K2) ≤ 1

K2
.

From
|µ(f · 1A∁)| ≤ µ (|f · 1A∁ |) ≤ 1/K,

and µ(f) = 0 we also obtain |µ(f · 1A)| ≤ 1/K. Finally, we deduce that
∫

∣

∣PNf
∣

∣ dµ ≤
∫

∣

∣PN (f · 1A)
∣

∣ dµ+

∫

∣

∣PN (f · 1A∁)
∣

∣ dµ.

≤
∫

∣

∣PN (f · 1A)− µ(f · 1A)
∣

∣ dµ+ |µ(f · 1A)|+
1

K

≤ ǫ

2
+

2

K
≤ ǫ.

Since f ∈ F was arbitrary, the result follows.

2.3 Deducing WPIs from subgeometric rates of conver-

gence

Given a quantitative estimate of the convergence of ‖Pnf‖22, it is possible to
deduce a quantitative WPI for E (P ∗P, f).

Proposition 15 ([1, Proposition 24; see also Remark 25]). Let P be a µ−invariant
Markov kernel on

(

E, E
)

, and let Φ be a sieve.

a). Suppose that for some K∗ nonnegative, increasing, convex, and satisfying
K∗ (0) = 0, there holds for all f ∈ L2

0 (µ) such that 0 < Φ (f) <∞ and for

all n > 0 an estimate of the form ‖Pnf‖ 2
2 6 Φ (f) · (Id−K∗)◦n

(

‖f‖2
2

Φ(f)

)

.

It then follows that E (P ∗P, f) > Φ (f) ·K∗
(

‖f‖2
2

Φ(f)

)

b). Suppose that for a function F : R+ → (0,∞) which is decreasing, con-
tinuous, divergent at 0, with an inverse function F−1 which is decreasing,
continuous, and convex, and such that log

(

−DF−1
)

is convex, there holds
for all f ∈ L2

0 (µ) such that 0 < Φ (f) < ∞ and for all n > 0 an estimate

of the form ‖Pnf‖ 2
2 6 Φ (f) · F−1

(

n+ F
(

‖f‖2
2

Φ(f)

))

. It then follows that

E (P ∗P, f) > Φ (f) ·K∗
(

‖f‖2
2

Φ(f)

)

, where K∗ = Id − F−1 (1 + F (·)) is non-

negative, increasing, convex, and satisfies K∗ (0) = 0.

c). Suppose that for a function γ : R+ → (0,∞) which is decreasing and has
limit 0 at ∞, there holds for all f ∈ L2

0 (µ) such that 0 < Φ (f) <∞ and for
all n > 0 an estimate of the form ‖Pnf‖ 2

2 6 Φ (f)·γ (n) . Suppose also that

P is µ-reversible. It then follows that E (P ∗P, f) > Φ (f) ·K∗
(

‖f‖2
2

Φ(f)

)

, for

some K∗ which is nonnegative, increasing, convex, and satisfies K∗ (0) =
0.

12



Remark 16. Note that for reversible kernels P , it holds for all f ∈ L2
0 (µ) that

the sequence γf : n 7→ ‖Pnf‖ 2
2 is decreasing, continuous, convex, and that

log (−Dγf ) is convex, and hence that the assumption in Part 2 of the above
Proposition holds.

2.4 Bounds on the Asymptotic Variance

A by-product of the WPI analysis is that the asymptotic variance of ergodic
averages of the Markov chain in question can be upper-bounded for suitable
functions.

Theorem 17. Let P be a µ−reversible Markov kernel on
(

E, E
)

and let Φ be a
sieve such that for all f ∈ L2

0 (µ) such that 0 < Φ (f) < ∞, the optimized WPI
holds:

E (P ∗P, f)
Φ (f)

> K∗
(

‖f‖22
Φ (f)

)

.

Assume also that the map v 7→ v−K∗ (v) is increasing on (0, a]. Define B (v) =
∫ v

0
w

K∗(w) dw, which is assumed to be finite for v ∈ [0, a]. Then the asymptotic
variance of f can be bounded as

var (P, f) 6 4 · Φ (f) ·B
(

‖f‖22
Φ (f)

)

.

Proof. Using reversibility of the kernel, we write the asymptotic variance of f
as

var (P, f) =

∫ 1

−1

νf (dλ) ·
1 + λ

1− λ
.

Bounding 1+λ
1−λ = (1+λ)2

1−λ2 6 4 · 1
1−λ2 , we can thus bound

var (P, f) 6 4 ·
∫ 1

−1

νf (dλ) ·
1

1− λ2

= 4 ·
∑

n>0

‖Pnf‖22 .

Recall now our tightest discrete-time bound on the variance of the semigroup,
with S := Id−K∗,

‖Pnf‖ 2
2 6 Φ (f) · S◦n

(

‖f‖22
Φ (f)

)

,

we write v =
‖f‖2

2

Φ(f) and bound the asymptotic variance as

13



var (P, f) 6 4 · Φ (f) ·
∑

n>0

S◦n (v)

=: 4 · Φ (f) · B̃ (v) .

We now control the growth of B̃. Noting that S is nonnegative, increasing,
and concave, a simple induction argument proves that S◦n also has these prop-
erties, and since B̃ is a nonnegative combination of these functions, it too has
these properties.

Now, isolating the first term in the sum which defines B̃, we have the recur-
sion B̃ (v) = v + B̃ (S (v)), which allows us to write

v = B̃ (v)− B̃ (S (v))

=

∫ v

S(v)

B̃′ (w) dw.

By concavity, it holds that for w ∈ [S (v) , v], B̃′ (w) > B̃′ (v), whence

v > (v − S (v)) · B̃′ (v)

= K∗ (v) · B̃′ (v)

=⇒ B̃′ (v) 6
v

K∗ (v)
.

Now, arguing that B̃ (0) = 0 and integrating, we obtain the expression

B̃ (v) ≤ B (v) :=

∫ v

0

w

K∗ (w)
dw

from which the result follows.

Remark 18. An analogous result can be shown for a continuous-time Markov
process {Pt : t > 0}, by defining the Dirichlet form in terms of the infinitesimal
generator.

Remark 19. It is plausible that the assumption that v 7→ v−K∗ (v) is increasing
might follow from the defining properties of K and/or β, but we have been
unable to establish this directly. In all of our explicit examples, this condition
holds.

2.5 Towards spectral interpretations

In the reversible scenario, spectral representations of the operator P can provide
useful insights. Subgeometric convergence naturally implies that the spectral
radius of P is one and therefore that the spectrum accumulates at −1 or 1. The
following are attempts to make these ideas more concrete.
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2.5.1 Concentration of the spectrum

When P is reversible, we can utilize the spectral projection-valued measure
representation of P . Thus for a given f ∈ L2

0(µ), let νf (dλ) be the positive
measure on σ(P ) which satisfies

〈Pnf, f〉 =
∫

σ(P )

λn νf (dλ).

Note that νf is a probability measure precisely when ‖f‖2 = 1. From our
(Φ, β)−WPI, we can conclude (Φ, γ)– convergence of ‖Pnf‖22 for some γ : N0 →
R with γ (n) ↓ 0 as n→ ∞. This gives some control on the moments of νf : for
any f ∈ L2

0(µ) with ‖f‖2 = 1,

‖Pnf‖22 =
∫

σ(P )

λ2n νf (dλ) ≤ Φ (f) γ (n) . (6)

In particular, we have

sup
f :‖f‖2=1

{∫

σ(P )
λ2n νf (dλ)

Φ (f)

}

≤ γ (n) ,

from which we may deduce by Markov’s inequality

sup
f :‖f‖2=1

{

Pνf

(

λ2 > exp (−δ)
)

Φ (f)

}

≤ inf
n≥1

{

γ (n)

exp (−δn)

}

.

For example, if γ(n) ≤ cn−k, then there exists C such that

sup
f :‖f‖2=1

{

Pνf

(

λ2 > exp (−δ)
)

Φ (f)

}

≤ Cδk.

This may be viewed as the subgeometric counterpart to the fact that if γ(n) = ρn

then this implies by the same reasoning that Pνf (λ
2 > ρ) = 0 for all f with

Φ(f) <∞ and ‖f‖2 = 1.

2.5.2 Spectrum of the Independent Metropolis–Hastings algorithm

Consider the Independent Metropolis–Hastings (IMH), also known as an in-
dependence sampler, on a countable state space E = N0. For a fixed target
distribution π and proposal distribution q on E, at position Xn = x, the chain
proposes a move to Y ∼ q, and conditional on Y = y, accepts this move with

probability 1 ∧ π(y)q(x)
π(x)q(y) and sets Xn+1 = y, otherwise the move is rejected and

Xn+1 = x. For brevity, we define

w(x) :=
π(x)

q(x)
, x ∈ E.
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For the IMH, the spectrum of the transition kernel P has been characterized in
[16]:

σ(P ) = {rw : w ∈ W} ∪ {1},
where W = {w(x) : x ∈ E}, rw := P(X1 = x |X0 = x,w(x) = w) are the
rejection probabilities.

In order to be concrete, we consider a specific choice of π, q: we take ge-
ometric π(x) = (1 − a) · ax and q(x) = (1 − b) · bx for x ∈ E = N0, where
0 < b < a < 1. In this case, the Markov chain will converge subgeometrically,

with rate n− b
a−b for bounded functions (this can be seen by a straightforward

adaptation of the example in [1, Section 2.3.1]). In this countable state space
setting, it is furthermore possible to explicitly characterize the spectrum [16].
By computing explicitly the rejection probabilities rw, we find that

σ(P ) =

{

Λm := 1− 1− b

1− a
·
(

b

a

)m

+
a− b

1− a
· bm : m ∈ N0

}

∪ {1}. (7)

Since Λm ↑ 1 as m → ∞, we see there is no spectral gap, and indeed choosing
a smaller value of b – which leads to a slower rate of convergence for bounded
functions – causes the spectrum to concentrate even more tightly around 1.

Given a test function f ∈ L2
0(π) with ‖f‖2 = 1, we can consider its spectral

measure νf (·) on σ(P ), which has the property that 〈Pnf, f〉 =
∫

σ(P )
λn νf (dλ)

for all n ∈ N0. Since f has unit norm, νf is a probability mass function sup-
ported on {Λm : m ∈ N0}. The function f is thus entirely characterized by the
measure νf , and many of its properties can be read off from this.

For example, if
∫

σ(P )

(1− λ)−1 νf (dλ) =
∑

m∈N0

(1 − Λm)−1 νf (Λm) <∞, (8)

then f will have a finite asymptotic variance. Given our expression for the Λm

(7), we see this will be the case when the masses νf (Λm) decay strictly faster
than (a/b)m, to ensure the sum in (8) is finite.

3 Optimal choices of α, β,Φ and ordering

Given our formulation of a WPI in Definition 3, it is natural to ask how one
might optimize the constituent components: that is, how to make formal the
notion of a “best” possible α, β or Φ.

3.1 Optimal α and β

We start by fixing a given sieve Φ, and seeking an optimal α and β. We assume
that Φ is such that there exist functions f such that 0 < Φ (f) < ∞. Since
varµ (f) ≤ aΦ (f), Φ(f) = 0 ⇒ varµ(f) = 0 and so this assumption means only
that we avoid the scenario where the only functions such that Φ (f) < ∞ are
constant functions.
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We define minimal α and β functions, for a given sieve Φ, as the (pointwise)
minimal functions satisfying Definition 3.

Definition 20. For a µ−invariant Markov kernel T and sieve Φ define,

a). for any r > 0,

α⋆ (r; Φ) := sup

{

‖g‖22
E (T, g)

(

1− r

‖g‖22

)

: g ∈ L2
0 (µ) ,Φ (g) = 1

}

∨ 0,

noting that if r ≥ a, α⋆ (r; Φ) = 0;

b). for any s > 0,

β⋆ (s; Φ) := sup
{

‖g‖22 − sE (T, g) : g ∈ L2
0 (µ) ,Φ (g) = 1

}

∨ 0 .

When Φ = ‖·‖2osc we shall plainly write α⋆ (·) := α⋆ (·; Φ) and β⋆ (·) := β⋆ (·; Φ).

Despite their definitions it is not clear that the functions α⋆ and β⋆ satisfy
all the conditions required for a WPI to hold. The following theorem clarifies
this point and also establishes that α⋆ and β⋆ are inverses of each other when
restricted to appropriate domains. The statement requires the existence of some
(Φ, α)- or (Φ, β)-WPI, which we note can be established with the results of
Subsection 4.2 for Φ = ‖ · ‖2osc. In particular Corollary 63 establishes that
µ−irreducibility is a sufficient condition for the existence of a WPI.

Theorem 21. Suppose that the µ−invariant kernel T possesses some (Φ, α)-
or (Φ, β)-WPI. Then α⋆(·; Φ) defines a (Φ, α⋆)9WPI and β⋆(·; Φ) defines a
(Φ, β⋆)9WPI. Furthermore, the functions α⋆(·; Φ) : (0, a] → [0,∞) and β⋆(·; Φ) :
[0,∞) → [0, a] are convex and continuous. In addition, β⋆ is strictly decreasing
to 0 and α⋆ = (β⋆)−1 is the inverse function, which is well-defined on (0, a] and
strictly decreasing.

Proof. We consider the β formulation, and drop explicit reference to the fixed
Φ under consideration; the α formulation is analogous. By assumption, we
know that T possesses a (Φ, β)-WPI, for some function β as in Definition 3 (c.f.
Proposition 5). By definition of β⋆, we have that 0 ≤ β⋆ ≤ β pointwise and
so β⋆(s) → 0 as s → ∞. Since the pointwise supremum of affine functions (of
s) is convex, we obtain convexity and continuity of β⋆, from the fact that it is
the composition of a nondecreasing convex continuous function, s 7→ max{0, s},
with a convex function. We observe that β⋆(0) = a. Now, let s0 := inf{s >
0 : β⋆(s) = 0}, which may be infinite. Since β⋆ is convex and continuous, it
is strictly decreasing on (0, s0). It follows that β⋆ is invertible on (0, s0) with
inverse (β⋆)−1 : (0, a] → [0,∞) that is also convex and strictly decreasing.

Now we show that α⋆ = (β⋆)−1. For r ∈ (0, a], let s := (β⋆)−1(r). For any
f ∈ L2

0(µ) with Φ(f) = 1 we have

‖f‖22 − sE(T, f) ≤ β⋆(s) = r,
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and this implies

α⋆(r) = sup
f :Φ(f)=1

‖f‖22
E(T, f) −

r

E(T, f) ≤ s.

Assume for the sake of contradiction that α⋆(r) = t < s. For any f ∈ L2
0(µ)

with Φ(f) = 1 we have
‖f‖22

E(T, f) −
r

E(T, f) ≤ t,

and so
β⋆(t) = sup

f :Φ(f)=1

‖f‖22 − tE(T, f) ≤ r = β⋆(s),

which is a contradiction since β⋆ is decreasing, and we conclude.

Remark 22. The function α⋆ may be upper and lower bounded using the func-
tion ψ : R+ → [0,∞),

ψ(t; Φ) := inf
f :Φ(f)=1,‖f‖2

2>t

E(T, f)
‖f‖22

,

which is nondecreasing. The behaviour of ψ(·; Φ) as t decreases to 0 gives bounds
on α⋆(·; Φ). Indeed, we find that for any t > r,

1

ψ(t; Φ)

(

1− r

t

)

≤ α⋆(r; Φ) ≤ 1

ψ(r; Φ)
.

Taking t = 2r we obtain

1

2ψ(2r; Φ)
≤ α⋆(r; Φ) ≤ 1

ψ(r; Φ)
,

and we may also deduce that limr↓0 α⋆(r; Φ) = ψ(0; Φ)−1. We see that α⋆ is
intimately connected to the rate at which ψ decreases as t decreases, i.e. as
the variance of functions f with Φ(f) = 1 is allowed to decrease to 0. We will

see in Theorem 38 that, when Φ = ‖·‖2osc, upper and lower bounds may also be
obtained by considering only indicator functions. One can also bound β⋆ in a
similar manner using the function ψ−(u) := sup{t : ψ(t) ≤ u}, in which case
one finds

1

2
ψ−
(

1

2s
; Φ

)

≤ β⋆(s; Φ) ≤ ψ−
(

1

s
; Φ

)

.

In fact, if Φ defines a subspace F of L2
0(µ) then one may view ψ(0; Φ) as

the right spectral gap associated with T as an operator on the closure of F ;
see Lemma 116. In the case where T = P ∗P and ψ(0; Φ) > 0 then this implies

‖Pnf‖22 ≤ {1− ψ(0; Φ)}n ‖f‖22 for functions f ∈ F ; see Remark 117. This is also
natural by observing that if we define α⋆(0; Φ) := limr↓0 α⋆(r; Φ) = ψ(0; Φ)−1 we

observe that a (Φ, α⋆)-WPI implies that ‖f‖22 ≤ α⋆(0; Φ)E(T, f) for all f ∈ F ,

from which the same bound on ‖Pnf‖22 may be directly obtained. Finally, when

Φ = ‖·‖2osc then ψ(0; Φ) is the L2
0(µ) spectral gap; see Lemma 116.
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3.2 Lower bounds on convergence rates

In principle, noting that α⋆ and β⋆ are pointwise minimal functions, any function
f ∈ L2

0(µ) with Φ(f) = 1 may be used to construct a lower bound. For example,
for any such function, β⋆ satisfies

β⋆(s) ≥ ‖f‖22 − sE(T, f), s > 0.

In practice, to produce an informative lower bound for the whole function β⋆,
one will need to identify an appropriate sequence of functions. Indicator func-
tions of measurable sets are always in L2

0(µ), have finite oscillation, and they
can provide a tractable source of such functions as E(P,1A) has a natural prob-
abilistic interpretation. We show that such functions can provide both lower
and upper bounds for β⋆ in Section 4.1.

We now show that a lower bound on β1 in a (Φ, β1)-WPI for P can imply a
lower bound on β2 in a (Φ, β2)-WPI for P ∗P .

Lemma 23 ([11, Remark 3.1]). Let P be µ-invariant. Then

E(P ∗P, f) ≤ 2E(P, f), f ∈ L2
0(µ).

Remark 24. If P is µ-reversible, one can obtain E(P 2, f) ≤ (1 + λ⋆)E(P, f) by
using the spectral theorem, where λ⋆ = supσ0(P ). However, since the focus
here is on WPIs, the case λ⋆ < 1 is less relevant.

We note that a converse may be obtained when P , and therefore P ∗, satisfies
P (x, {x}) ≥ ε on a µ-full set; see Lemma 49.

Lemma 25. Let P be µ-invariant, and assume it satisfies a (Φ, β⋆
1 )-WPI, where

β⋆
1 is pointwise minimal. Assume P ∗P satisfies a (Φ, β⋆

2)-WPI where β⋆
2 is

pointwise minimal. Then β⋆
2 (s) ≥ β⋆

1 (2s).

Proof. Let F = {f ∈ L2
0(µ) : Φ(f) = 1}. By Lemma 23 we have E(P ∗P, f) ≤

2E(P, f). We may write

β⋆
1 (s) = 0 ∨ sup

f∈F
varµ(f)− sE(P, f).

We then have

β⋆
2 (s) = 0 ∨ sup

f∈F
varµ(f)− sE(P ∗P, f)

≥ 0 ∨ sup
f∈F

varµ(f)− 2sE(P, f)

= β⋆
1(2s),

and we conclude.

In the case where P is µ-reversible, we can then deduce from a (Φ, β1)-WPI
for P a lower bound on a separable rate of convergence for ‖Pnf‖.

19



Proposition 26. Assume P is µ-reversible, satisfies (2) and the pointwise min-
imal β⋆ satisfies β⋆(s) ∈ Ω(s−p) for some p > 0. Then it cannot hold that with
q > p, ‖Pnf‖22 ∈ O(n−q) for all f ∈ L2

0(µ) with Φ(f) <∞.

Proof. If β⋆(s) ∈ Ω(s−p) then we may deduce by Lemma 25 that if P 2 satisfies
(2), its pointwise minimal β⋆

2 also satisfies β⋆
2(s) ∈ Ω(s−p). Now assume for

the sake of contradiction that ‖Pnf‖22 ∈ O(n−q) for all f ∈ L2
0(µ) such that

Φ(f) < ∞. Then by [1, Proposition 24 and Remark 25], we deduce that a
WPI for P 2 holds with β2(s) ∈ O(s−q), which contradicts β⋆

2 (s) ∈ Ω(s−p) being
pointwise minimal.

The following result establishes a lower bound on β⋆ for Markov kernels P
that can exhibit sticky behaviour in regions of the state space. [37, Theorem 5.1]
showed that for a µ-invariant Markov kernel P with µ not concentrated at
a single point, that essµ supx P (x, {x}) = 1 implies that P cannot converge
geometrically. In [26, Theorem 1] conductance is used to prove the same when
P is µ-reversible, and the following provides a quantitative refinement.

Theorem 27. Let P be µ−reversible satisfying a (Φ, β)9WPI for Φ = ‖ · ‖2osc.
For any ε > 0, define the set Aε :=

{

x ∈ X : P (x, {x}) ≥ 1 − ε
}

. Then for any
s > 0,

β(s) ≥ β⋆(s) ≥ sup
ε∈(0,1)

{µ(Aε)(1 − sε− µ(Aε))} .

Proof. For any A ⊂ X, from Lemma 118, we have E(P,1A) = µ ⊗ P
(

A × A∁
)

and var
(

1A

)

= µ⊗ µ
(

A×A∁
)

. Since Φ(1Aε) ≤ 1, for any ε > 0 we have

β⋆(s) := sup
{

‖f‖22 − sE(P, f) : f ∈ L2
0(µ),Φ(f) ≤ 1

}

≥ varµ(1Aε)− s

∫

µ(dx)P (x, dy)1Aε (x)1A∁
ε
(y)

≥ varµ(1Aε)− s

∫

µ(dx)P (x, {x}∁)1Aε(x)

≥ µ(Aε)µ(A
∁
ε)− sµ(Aε)ε

= µ(Aε)(1− sε− µ(Aε)).

Thus we conclude.

Example 28. Assume Cεα ≥ µ(Aε) ≥ cεα for some α, c, C > 0 and for all ε > 0
sufficiently small. Then for s > 0, we seek to maximize ζ(ε) = εα(1−sε−Cεα).
One can check that

ζ′(ε) = (1 + α)εα−1

[

α

1 + α
− sε− Cεα

]

,

and since R+ ∋ ε 7→ sε + cεα is increasing, there is a unique ε∗ such that
ζ′(ε∗) = 0, ζ(ε) > 0 (resp. ζ(ε) < 0 ) for ε < ε∗ (resp. ε > ε∗). Note that for
s ≥ α/(1 + α), ε∗ ∈ (0, 1) and let

ε0 :=
α

1 + α
s−1,
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from above. Then notice that ζ(ε0) ≤ 0 and ε′0 = ε0 − Cs−1ε0 is such that
ζ′(ε

′

0) ≥ 0, implying ε0 − cs−1ε0 ≤ ε∗ ≤ ε0 and we obtain the lower bound, for
s > 0

β⋆(s) ≥ β⋆(s) := c

(

α

1 + α

)α

s−α

[

1

1 + α
− C

(

α

1 + α

)α

s−α

]

,

which is positive for s sufficiently large. Therefore, since from earlier results
β⋆ ≥ β⋆ implies γ⋆(n) ≤ γ⋆(n) if µ(Aε) ≥ cεα then the corresponding Markov
chain cannot converge at a rate faster than the polynomial rate γ⋆(n) ∝ n−α.

Example 29. In the case of the Independent Metropolis-Hastings (IMH) we
are interested in lower bounding the probability

̟(ε) := π

(
∫

π(dy)min
{

w−1(X), w−1(y)
}

< ε

)

.

Note that for any x ∈ X we have

∫

π(dy)min
{

w−1(x), w−1(y)
}

≤ w−1(x),

therefore, since for random variables Z(ω) ≤ Z ′(ω) implies P(Z(ω) < ε) ≥
P(Z ′(ω) < ε)

̟(ε) ≥ π
(

w−1(X) < ε
)

= π
(

w(X) > ε−1
)

.

As a result for s > 0

β⋆(s) ≥ sup
ε∈(0,1)

{

π
(

w(X) > ε−1
) (

1− sε− π
(

w(X) > ε−1
))}

,

therefore implying a lower bound on the fastest rate of convergence possible.

3.3 Ordering of α’s, β’s and γ’s and Peskun–Tierney or-

dering

Theorem 30. Let P1 and P2 be µ−invariant Markov kernels such that for a
sieve Φ, P ∗

1 P1 satisfies a (Φ, α1, β1)9WPI and P ∗
2 P2 a (Φ, α2, β2)9WPI respec-

tively. Then we have

a). α2(·; Φ) ≥ α1(·; Φ) if and only if β2(·; Φ) ≥ β1(·; Φ);

b). β2(·; Φ) ≥ β1(·; Φ) implies γ2(·; Φ) ≥ γ1(·; Φ).

Proof. First statement: we drop Φ for notational simplicity. For the direction
( =⇒ ) : for any s > 0 we have {r > 0: α2(r) ≤ s} ⊂ {r > 0: α1(r) ≤ s} and
hence β2 = α9

2 ≥ α9
1 = β1; (⇐=) follows along the same lines. For the second

statement: from their definitions, K1 ≤ K2 and hence K∗
1 ≥ K∗

2 . As a result,
F1,a ≤ F2,a and consequently γ1 := F−1

1,a ≤ F−1
2,a =: γ2.
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We know from [42] that for P1, P2 µ−reversible, then E(P1, g) ≥ E(P2, g) for
any g ∈ L2(µ) implies var(P1, f) ≤ var(P2, f) for f ∈ L2(µ) and GapR(P1) ≥
GapR(P2), the latter being useful when GapR(P1) > 0, and say P1 and P2 are
positive, since this implies faster convergence to equilibrium in most scenarios
of interest. The following generalizes the latter statement to the subgeometric
setup – the statement on asymptotic the variances remains naturally true.

Theorem 31. Let P1, P2 be µ−invariant Markov kernels such that for a sieve
Φ,

a). P ∗
1 P1 (resp. P ∗

2 P2) satisfies a (Φ, α1, β1)9WPI (resp. a (Φ, α2, β2)–WPI),

b). E(P ∗
1 P1, g) ≥ E(P ∗

2 P2, g) for any g ∈ L2(µ) such that Φ(g) ≤ 1.

Then with α⋆
i (·; Φ) and β⋆

i (·; Φ) for i = 1, 2 defined as in Definition 20, a
(Φ, α⋆

i , β
⋆
i )9WPI holds for i = 1, 2 and we have for the corresponding conver-

gence rates γ⋆1 ≤ γ⋆2 .

Proof. From the ordering of Dirichlet forms we have for any g ∈ L2(µ)

‖g‖22 − sE(P ∗
1 P1, g) ≤ ‖g‖22 − sE(P ∗

2 P2, g),

from Definition 20 we deduce β⋆
1 (·; Φ) ≤ β⋆

2 (·; Φ) and from Theorem 30 we
conclude γ⋆1 ≤ γ⋆2 .

3.4 Optimal Φ

On the other hand, we can fix a bounded β, say and seek the optimal class of
functions defined by a sieve Φ for this β. As a starting point, we assume that
some (Φ, β)−WPI holds for T = P ∗P :

‖f‖22 ≤ sE(P ∗P, f) + β(s)Φ(f), ∀s > 0, f ∈ L2
0(µ),

for a given Φ. By Theorem 7, we obtain the convergence bound:

‖Pnf‖22 ≤ Φ(f)γ(n),

for a function γ : N0 → R+ which satisfies γ(n) → 0 as n→ ∞.
We now seek the smallest sieve Φ⋆

β such that a (Φ⋆
β , β)−WPI still holds.

Definition 32. We define for any f ∈ L2
0(µ),

Φ⋆
β(f) := sup

n∈N0

Φβ(P
nf),

where

Φβ(f) := sup
s>0

‖f‖22 − sE(P ∗P, f)
β(s)

= ‖f‖22 · sup
s>0

1− sδ(f)

β(s)
,

where δ(f) := E(P ∗P, f)/‖f‖22 and satisfies 0 < δ(f) ≤ 1.
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Lemma 33. The functional Φ⋆
β is a nonexpansive sieve for P .

Proof. Note that for any f ∈ L2
0(µ), and Φβ(cf) = c2Φβ(f), and furthermore

Φβ(f) ≥ ‖f‖22/β(0), where β(0) := lims→0 β(s), which exists and is finite and
nonzero by monotonicity and boundedness of β. Thus Φβ satisfies condition a)
from Definition 1.

Now Φ⋆
β(f) ≥ Φβ(f), and hence Φ⋆

β also satisfies condition a) from Defi-
nition 1. Finally, Φ⋆

β is nonexpansive for P by construction, and hence is a
nonexpansive sieve.

With this definition of Φ⋆
β , it is clear that we have a (Φ⋆

β , β)−WPI: for all

s > 0, f ∈ L2
0(µ),

‖f‖22 ≤ sE(P ∗P, f) + β(s)Φ⋆
β(f),

and so we can obtain the convergence bound

‖Pnf‖22 ≤ Φ⋆
β(f)γ(n),

for the same γ, and by construction Φ⋆
β ≤ Φ.

Example 34. When β(s) = s−α, we can calculate that

Φβ(f) = ‖f‖22
αα

(α+ 1)α+1
[δ(f)]

−α
.

Then we have

δ(Pnf) =
E(P 2, Pnf)

‖Pnf‖22
=

〈(Id− P 2)Pnf, Pnf〉
‖Pnf‖22

= 1−
∫

σ(P )
λ2n+2 νf (dλ)

∫

σ(P )
λ2n νf (dλ)

.

Thus the mapping n 7→
∫

σ(P )
λ2n νf (dλ) will dictate for a given f ∈ L2

0(µ)

whether or not Φ∗
β(f) is finite or infinite. As a concrete example, consider

the situation when σ(P ) = [0, 1] and when νf (dλ) has density proportional to

λa−1dλ for some a > 1. Then the 2nth moment is
∏2n−1

r=0
a+r

a+1+r = a
a+2n , and

so the ratio is
∫

σ(P )
λ2n+2 νf (dλ)

∫

σ(P )
λ2n νf (dλ)

=
a+ 2n

a+ 2 + 2n
.

In particular, we find

1−
∫

σ(P ) λ
2n+2 νf (dλ)

∫

σ(P )
λ2n νf (dλ)

=
2

a+ 2 + 2n
.

Thus we see that asymptotically, Φβ (P
nf) must grow like ‖Pnf‖22 · nα. This

will diverge to infinity as n→ ∞ if nα dominates the rate of convergence to 0 of
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‖Pnf‖22. So informally speaking, if we consider the set
{

f ∈ L2
0 (µ) : Φ

⋆
β (f) <∞

}

,

Φ⋆
β is in effect ‘sieving out’ functions f ∈ L2

0(µ) whose spectral measures νf (dλ)
place too much mass close to 1.

To be more explicit, by applying Chernoff’s inequality to (6), we can conclude
that for f ∈ L2

0 (µ) with ‖f‖22 = 1, for any δ > 0,

∫ 1

1−δ

λ2 νf (dλ) ≤ C · Φ (f) · δα,

for a constant C > 0 independent of f , thus demonstrating that νf cannot place
mass in an arbitrary fashion in a neighbourhood of 1.

3.5 Duality

The preceding two sections suggest the following natural approach to deriving
convergence bounds and then refining them:

a). Choose a class of functions we seek convergence bounds for, and the corre-
sponding Φ. For example, we could consider the class of bounded functions
and correspondingly take Φ = ‖·‖2osc. As argued in Section 2.2, this choice
is in a sense canonical.

b). Given this function class and its Φ, derive an optimal β⋆(·; Φ) for this
class, as given in Definition 20.

c). Given this optimal β⋆(·; Φ), find the optimal Φ⋆ := Φ⋆
β⋆(·;Φ), given in

Definition 32.

This procedure in fact is optimal after a single iteration; recursing these steps
does not lead to any improvement.

Proposition 35. We have that

β⋆(·; Φ⋆) = β⋆(·; Φ).

Proof. By definition,

β⋆(s; Φ⋆) = sup
f∈L2

0(µ),Φ
⋆(f)≤1

{

‖f‖22 − sE(P ∗P, f)
}

. (9)

Firstly, note that since Φ⋆ is optimal,

Φ⋆(f) ≤ Φ(f), ∀f ∈ L2
0(µ).

Therefore,
{

f ∈ L2
0(µ) : Φ(f) ≤ 1

}

⊂
{

f ∈ L2
0(µ) : Φ

⋆(f) ≤ 1
}

.

Thus the supremum in the definition of β⋆(s; Φ⋆) (9) is over a larger class of
functions than that of β⋆(s; Φ) in Definition 20. Therefore we can immediately
conclude that

β⋆(s; Φ⋆) ≥ β⋆(s; Φ), ∀s > 0. (10)
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However, by definition, if Φ⋆(f) ≤ 1, we have that

sup
s>0,n∈N0

‖Pnf‖22 − sE(P ∗P, Pnf)

β⋆(s; Φ)
≤ 1,

which in particular (taking n = 0) implies that for any s > 0,

‖f‖22 − sE(P ∗P, f) ≤ β⋆(s; Φ).

Thus
β⋆(s; Φ⋆) ≤ β⋆(s; Φ), ∀s > 0,

which taken together with (10), establishes the result.

4 Establishing WPIs

4.1 Cheeger meets Poincaré

In this section we discuss the connections between weak Poincaré inequalities
and methods based on the concept of conductance. In particular, we define
the notion of weak conductance, which extends the traditional definition of
conductance to the subgeometric setting. Similar ideas were proposed in [38,
Sections 4, 5] in the (continuous time) diffusion setting, but our arguments differ
significantly and are inspired by the discrete-time proofs of [25, 12]. We fix a
µ-reversible Markov transition kernel P on our measure space (E, E ).

Definition 36. For a µ-reversible kernel P , we define the weak conductance
κ : [0,∞) → [0,∞] to be

κ(u) := inf
A∈E :u<µ⊗µ(A×A∁)

E(P,1A)

‖1A − µ(A)‖22
= inf

A∈E :u<µ⊗µ(A×A∁)

µ⊗ P (A×A∁)

µ⊗ µ(A×A∁)
.

The last inequality follows from Lemma 118 in the Appendix. Note that since
for any A ∈ E , µ ⊗ µ(A × A∁) ≤ 1/4, by convention we have κ(u) = ∞ for
u ≥ 1/4.

The definition of (strong) conductance [25] is recovered by taking u = 0;
κ(0) is Cheeger’s constant, which in the subgeometric case is 0.

Remark 37. Following [23] rather than [25], some authors use a slightly different
definition of conductance:

κ∗ := inf
A∈E ,µ(A)≤1/2

µ⊗ P
(

A×A∁
)

µ(A)
,

which possesses a clear probabilistic interpretation. We note however that κ∗ ≤
κ(0) ≤ 2κ∗, and the key quantity used to establish Cheeger’s inequalities, and
our generalization, relies on κ as in Definition 36.
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There is some resemblance between the weak conductance κ and the s-
conductance introduced by [29]. However, it is not straightforward to compare
the two or the type of convergence results obtained; see, e.g., [2, Lemma 2.1].

Cheeger’s inequality [25] obtains a lower bound on E(P, f)/‖f‖22 for all f ∈
L2
0(µ), f 6= 0, from a lower bound on this same quantity when restricted to

functions f = 1A − µ(A) for A ∈ E (namely, κ(0)). This leads to the following
celebrated inequalities when κ(0) > 0:

κ2(0)/8 ≤ GapR(P ) ≤ κ(0). (11)

We generalize this idea to the scenario where the quantity κ(0) is zero, so there
is no right-spectral gap. As we shall see, this generalization involves an upper
and lower bound for the function α in (1).

This generalization will be particularly useful when we seek to establish the
existence of WPIs from the abstract RUPI condition in Section 4.2.

Theorem 38. Let P be a µ-reversible kernel and Φ = ‖ · ‖2osc.
Provided that κ(u) > 0 for all u ∈ (0, 1/4), a (Φ, α)9WPI holds for P , with

α(r) :=
16

κ2(r/16)
, r > 0.

Conversely, if a (‖ · ‖2osc, α)9WPI holds for some α : (0,∞) → [0,∞), we have
the bound

1

α(r)
≤ inf

u>1

{

κ(ur)
u

u− 1

}

≤ 2κ(2r), r > 0. (12)

Remark 39. In the notation of Section 3, and in analogue with (11), we can
succinctly express this theorem in terms of the optimal α⋆ as:

κ2(r/16)

16
≤ 1/α⋆(r) ≤ inf

s>1

{

s

s− 1
κ(sr)

}

≤ 2κ(2r), r > 0.

From Theorem 30, inequality (12) implies that convergence to equilibrium can-
not occur at a rate γ faster fast than that obtained with α(r) = [2κ(2r)]−1.

The proof is a direct consequence of Propositions 40 and 41. We first show
that the conductance always provides a lower bound for α if a (‖ · ‖2osc, α)9WPI
holds.

Proposition 40. Let P be a µ-reversible kernel satisfying a (‖ · ‖2osc, α)9WPI.
We have the bound (12).

Proof. Consider the function

f =
1A − µ(A)
√

µ(A)µ(A∁)
,
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for a measurable set A ∈ E such that 1 > µ(A) > 0. By construction, f ∈ L2
0(µ)

with ‖f‖22 = 1. Plugging this into the weak Poincaré inequality, we find that
for any r > 0,

1 ≤ α(r)
µ ⊗ P (A×A∁)

µ ⊗ µ(A×A∁)
+

r

µ⊗ µ(A×A∁)
.

Rearranging this, we obtain that for any r > 0,

1

α(r)

(

1− r

µ⊗ µ(A×A∁)

)

≤ µ⊗ P (A×A∁)

µ⊗ µ(A×A∁)
.

Now for any s > r > 0, we consider only A ∈ E such that µ ⊗ µ(A × A∁) > s,
yielding

1/α(r) ≤
(

1− r

s

)−1 µ⊗ P (A×A∁)

µ⊗ µ(A×A∁)
.

Therefore for r > 0 we have

1/α(r) ≤ inf
s>r

s

s− r
κ(s) = inf

u>1

u

u− 1
κ(ru) ≤ 2κ(2r).

where we have used the change of variable u = s/r for the equality and taken
u = 2 for the final inequality.

We now prove the trickier converse: we show that the weak conductance
gives rise to an α such that a (‖ · ‖2osc, α)9WPI holds. We make use of the
fundamental Lemma 119 of [25] which provides a bridge between Dirichlet forms
of indicator functions and general functions and can be found in the appendix
for the reader’s convenience.

Proposition 41. Let P be a µ-reversible kernel. Then provided κ(u) > 0 for
all u ∈ (0, 1/4), a (‖ · ‖2osc, α)−WPI holds with

α(r) :=
16

κ2 (r/16)
, r > 0. (13)

Proof. Let us fix f ∈ L2
0(µ) with ‖f‖22 = 1. Our goal is to show that α as defined

in (13) gives rise to a valid weak Poincaré inequality for P with Φ = ‖ · ‖2osc;
since we have fixed ‖f‖22 = 1 this amounts to showing that for r > 0,

1 ≤ 16

κ2 (r/16)
E(P, f) + r‖f‖2osc.

We make use of the following two results, the proof of which can be found in
[25, 12, 39]. Let g := f + c for c ∈ R. Firstly, it can be shown using the
Cauchy–Schwarz inequality that

Eµ⊗P

[

|g2(X)− g2(Y )|
]2

Eµ [g2(X)]
≤ 8E(P, f). (14)
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Note that since ‖f‖22 = 1 and µ(f) = 0, Eµ

[

g2(X)
]

= ‖g − c + c‖2 = 1 + c2.
Secondly, it can also be established (following the proof in [39], say) that

max

{

lim
c→∞

Eµ⊗µ

[

|g2(X)− g2(Y )|
]2

Eµ[g2(X)]
,
Eµ⊗µ

[

|f2(X)− f2(Y )|
]2

1

}

≥ 1, (15)

where the second term in the braces corresponds to the choice c = 0. The bound
in (15) is used below to lower bound the left-hand side of (14). Consider the
family of sets Ts := {t ≥ 0 : µ⊗ µ(At, A

∁
t ) > s} ⊂ [0,∞) for s > 0. Then using

successively Lemma 119 with ν = µ ⊗ µ, the bound (a + b)2 ≤ 2a2 + 2b2, the
definition of κ(s), Lemma 119 with ν = µ⊗P and (14), we obtain for any c ∈ R

and s > 0,

Eµ⊗µ

[

|g2(X)− g2(Y )|
]2

2Eµ[g2(X)]

=

(

2
∫∞
0
µ⊗ µ(At, A

∁
t ) dt

)2

2Eµ[g2(X)]

=

(

2
∫

Ts
µ⊗ µ(At, A

∁
t ) dt+ 2

∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

2Eµ[g2(X)]

≤

(

2
∫

Ts
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]
+

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]

≤

(

1
κ(s)2

∫

Ts
µ⊗ P (At ×A∁

t ) dt
)2

Eµ[g2(X)]
+

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]

≤
1

κ2(s)Eµ⊗P

[

|g2(X)− g2(Y )|
]2

Eµ[g2(X)]
+

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]

≤ 8

κ2(s)
E(P, f) +

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]
.

We now focus on the second term. We begin with the case c = 0. For t ∈ T ∁
s ,

µ(At)µ(A
∁
t ) = µ(g2(X) ≥ t)µ(g2(X) < t) ≤ s.

In particular, since we are assuming that ‖f‖∞ <∞, if t > (‖f‖∞ + |c|)2, then
µ(g2(X) ≥ t) = 0. This enables us to bound, in the case c = 0: since we have
‖f‖2∞ ≤ ‖f‖2osc,

∫

T ∁
s

µ⊗ µ(At, A
∁
t ) dt ≤

∫ ‖f‖2
∞

0

s dt

≤ s‖f‖2osc.
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From Lemma 119 we also have the bound
∫

T ∁
s

µ⊗ µ(At, A
∁
t ) dt ≤ Eµ⊗µ

[

|g2(X)− g2(Y )|
]

≤ 2Eµ

[

f2(X)
]

= 2 .

Using these two bounds to upper bound the square below, we obtain that for
c = 0,

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]
≤ 4s‖f‖2osc · 2.

We now consider the case c → ∞. Since we are interested in the case when
c > ‖f‖∞, we know that g > 0 everywhere. In particular, this implies that if

t > (essµ sup f + c)
2
, then µ(g2(X) ≥ t) = 0. Similarly, if t < (c + essµ inf f)2,

then µ(g2(X) < t) = 0. Thus we bound

∫

T ∁
s

µ⊗ µ(At, A
∁
t ) dt

=

∫ ∞

0

µ⊗ µ(At, A
∁
t )1T ∁

s
(t) dt

=

∫ (essµ sup f+c)2

(c+essµ inf f)2
µ⊗ µ(At, A

∁
t )1T ∁

s
(t) dt

≤ s
[

(essµ sup f + c)2 − (c+ essµ inf f)2
]

= s
[

(essµ sup f)
2 − (µ9essµ inf f)

2
+ 2c (essµ sup f − essµ inf f)

]

= s
[

(essµ sup f)
2 − (essµ inf f)

2
+ 2c‖f‖osc

]

.

So ultimately we obtain

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]
≤ s

4
[

(essµ sup f)
2 − (essµ inf f)

2
+ 2c‖f‖osc

]

√
1 + c2

× Eµ⊗µ

[

|g2(X)− g2(Y )|
]

√

Eµ[g2(X)]
.

Then taking the limit, we get

lim sup
c→∞

(

2
∫

T ∁
s
µ⊗ µ(At, A

∁
t ) dt

)2

Eµ[g2(X)]
≤ s · 8‖f‖osc · 2‖f‖osc

= s · 16‖f‖2osc.

Rearranging then gives the desired bound.
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4.2 WPIs from RUPI and µ-irreducibility

Given our notion of a WPI in Definition 3, a natural question to ask is under
what general conditions on a kernel T , a WPI for T will hold. In particular, a
WPI for the kernel T = (P ∗)k P k for k ∈ N enables one to deduce (subgeometric)
convergence bounds for ‖P knf‖2, where f ∈ L2

0(µ) is such that Φ(f) <∞. Thus,
we seek simple conditions on a Markov kernel T under which (1) will hold, for
sieve Φ = ‖ · ‖2osc, with T = P or T = (P ∗)kP k for k ∈ N, for a finite-valued
function α.

We will see that for a Markov operator T , a necessary and sufficient condi-
tion for a (‖ ·‖2osc, α)−WPI to hold is the resolvent-uniform-positivity-improving
(RUPI) property. This property appeared in [18], and in [43] it was suggested
that an equivalence between the RUPI property and the existence of a WPI was
already established in an unpublished manuscript by L. Wu. However, we have
not been able to access this manuscript, and so in Section 4.2.1 we provide a
direct proof of this equivalence.

In Section 4.2.2 we will demonstrate that arbitrarily small, uniform holding
probabilities allow one to relate the existence of ‖ · ‖2osc-WPIs for P , P ∗P and
‖ · ‖2osc-convergence of P (see Proposition 58), and also to deduce that ‖ · ‖2osc-
convergence of P and its additive reversibilization can similarly be closely related
with a non-zero holding probabilities (see Proposition 55).

Furthermore, a simple sufficient condition for RUPI (and hence a WPI) is
µ-irreducibility, which we discuss in detail in Section 4.2.3; see Corollary 63.

Hereafter we may omit the statement A,B ∈ E to alleviate notation; no
confusion should be possible.

4.2.1 Equivalence of ‖·‖2osc-WPI and RUPI

Definition 42 (UPI and RUPI). A kernel T is uniform-positivity-improving
(UPI) if for each ǫ > 0,

inf{〈1A, T1B〉 : µ(A) ∧ µ(B) ≥ ǫ} > 0.

A Markov kernel T is said to be resolvent-uniform-positivity-improving (RUPI)
if for some (and hence all) 0 < λ < 1, we have that the resolvent

R (λ, T ) :=

∞
∑

n=0

λnT n = (Id− λT )−1 ,

is UPI.

Theorem 43. Suppose that T is a µ–invariant Markov kernel. Then T satisfies
an ‖·‖2osc-WPI if and only if T is RUPI.

Proof. This follows from Proposition 47 and Proposition 51 below.

We follow [43] and give an equivalent condition for RUPI which will be
convenient to work with.
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Lemma 44. An equivalent condition for a Markov kernel T to be RUPI is the
following: for any ǫ > 0, there exists m ∈ N such that

inf

{〈

1A,
m
∑

n=0

T n
1B

〉

: µ(A) ∧ µ(B) ≥ ǫ

}

> 0. (16)

Proof. The condition in Lemma 44 directly implies RUPI. To see this, take λ ∈
(0, 1), ǫ > 0 and letm ∈ N such that inf {〈1A,

∑m
n=0 T

n
1B〉 : µ(A) ∧ µ(B) ≥ ǫ} >

0, which exists by assumption. Write

〈1A, R (λ, T )1B〉 =
〈

1A,

∞
∑

n=0

λnT n
1B

〉

>

〈

1A,

m
∑

n=0

λnT n
1B

〉

> λm ·
〈

1A,

m
∑

n=0

T n
1B

〉

to deduce that

inf{〈1A, R (λ, T )1B〉 : µ(A) ∧ µ(B) ≥ ǫ}

> λm · inf
{〈

1A,

m
∑

n=0

T n
1B

〉

: µ(A) ∧ µ(B) ≥ ǫ

}

> 0

from which the RUPI condition follows.
Conversely, suppose that T is RUPI, fix λ ∈ (0, 1) and assume that for some

ǫ > 0, (16) does not hold for any m ∈ N. We show that this leads to a contra-
diction. By the RUPI assumption we have that δ := inf{〈1A,

∑∞
n=0 λ

nT n
1B〉 :

µ(A) ∧ µ(B) ≥ ǫ} > 0. Choose m ∈ N large enough so that

∞
∑

n=m+1

λn < δ/2.

Since we have assumed that (16) is violated for ǫ > 0 and m ∈ N as chosen
above there exists a sequence {(Aj , Bj)}∞j=1 of sets all with mass at least ǫ such
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that 〈1Aj ,
∑m

n=0 T
n
1Bj 〉 → 0, therefore implying for any j ∈ N,

δ ≤
〈

1Aj ,
∞
∑

n=0

λnT n
1Bj

〉

=

〈

1Aj ,
m
∑

n=0

λnT n
1Bj

〉

+

〈

1Aj ,
∞
∑

n=m+1

λnT n
1Bj

〉

6

〈

1Aj ,

m
∑

n=0

T n
1Bj

〉

+

∞
∑

n=m+1

λn

6

〈

1Aj ,

m
∑

n=0

T n
1Bj

〉

+
δ

2

j→∞→ δ

2
,

therefore leading to a contradiction. The conclusion follows.

We first establish that for reversible kernels, RUPI implies a WPI for the
resolvent.

Lemma 45. Suppose that a reversible Markov kernel T is RUPI. Then for any
λ ∈ (0, 1), the resolvent Markov kernel Sλ := (1 − λ)R(λ, T ) is reversible and
has the following property: for any ǫ > 0,

inf
A:µ(A)µ(A∁)≥ǫ

E(Sλ,1A)

µ(A)µ(A∁)
> 0.

Thus by Theorem 38, Sλ satisfies an ‖ · ‖2osc-WPI.

Proof. Fix ǫ > 0 and λ ∈ (0, 1). By the RUPI condition, inf{〈1A, Sλ1B〉 :
µ(A) ∧ µ(B) ≥ ǫ} > 0. In particular, if A is such that µ(A)µ(A∁) ≥ ǫ, we must
have that both µ(A) ≥ ǫ and µ(A∁) ≥ ǫ. Thus since

E(Sλ,1A) = 〈1A, Sλ1A∁〉,

we must have that
〈1A, Sλ1A∁〉 ≥ δ > 0

for some δ > 0, whenever µ(A)µ(A∁) ≥ ǫ.

We now establish one direction of Theorem 43 through a sequence of lemmas:
we first consider the case when T is reversible, and then deduce the case for
general T ; see Remark 4.

Lemma 46. Suppose T is a reversible Markov kernel that is RUPI. Then T
satisfies an ‖ · ‖2osc-WPI.

Proof. Since T is RUPI, we have established above in Lemma 45 that the re-
solvent Sλ := (1− λ)R(λ, T ) satisfies a WPI. In other words, we can find some
αλ : (0,∞) → [0,∞) such that for any f ∈ L2

0(µ) and r > 0,

‖f‖22 ≤ αλ(r)〈(Id − Sλ)f, f〉+ r‖f‖2osc.
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Now, given a function g ∈ L2
0(µ), define f := Id−λT

1−λ g ⇔ g = (1−λ)(Id−λT )−1f .
(Note that since 0 < λ < 1, the operator is (Id− λT ) invertible.)

Now since g ∈ L2
0(µ), we have that f ∈ L2

0(µ); for instance, consider the
power series representation of R(λ, T ). Furthermore, we have that

‖g‖22 = (1− λ)2‖(Id− λT )−1f‖22
≤ (1− λ)2‖(Id− λT )−1‖2‖f‖22
≤ ‖f‖22,

since the operator norm ‖(Id − λT )−1‖ ≤ 1
λ · 1

1/λ−1 = 1
1−λ , by standard norm

bounds for resolvents based on the distance to the spectrum.
Thus we have

‖g‖22 ≤ ‖f‖22 ≤ αλ(r)〈(Id − Sλ)f, f〉+ r‖f‖2osc
= αλ(r)〈(Id − (1− λ)(Id − λT )−1)f, f〉+ r‖f‖2osc

= αλ(r)

〈

Id− λT

1− λ
g − g,

Id− λT

1− λ
g

〉

+ r‖f‖2osc

= αλ(r)

〈

λ

1− λ
(Id− T )g, g +

λ

1− λ
(Id− T )g

〉

+ r‖f‖2osc

= αλ(r)

{

λ

1− λ
〈(Id− T )g, g〉+

(

λ

1− λ

)2

‖(Id− T )g‖2
}

+ r‖f‖2osc.

Now we have that

‖(Id− T )g‖2 = 〈(Id− T )g, (Id− T )g〉
= 〈(Id− T )g, g〉 − 〈(Id− T )g, T g〉.

It is enough to bound this final term by

−〈(Id− T )g, T g〉 ≤ 〈(Id− T )g, g〉.
To see why this inequality is true, note that it is equivalent to

0 ≤ 〈(Id − T )g, (Id + T )g〉
= 〈(Id + T )(Id− T )g, g〉
= 〈(Id − T 2)g, g〉,

where we have made use of reversibility of T . And we certainly have that
0 ≤ 〈(Id− T ∗T )g, g〉 = 〈(Id− T 2)g, g〉.

Overall, this gives us that

‖g‖2 ≤ αλ(r)

(

λ

1− λ
+ 2

(

λ

1− λ

)2
)

〈(Id− T )g, g〉+ r

∥

∥

∥

∥

Id− λT

1− λ
g

∥

∥

∥

∥

2

osc

≤ αλ(r)

(

λ

1− λ
+ 2

(

λ

1− λ

)2
)

〈(Id− T )g, g〉+ r · (1 + λ)2

(1− λ)
2 ‖g‖2osc.

By reparameterizing with r′ = r · (1+λ)2

(1−λ)2
, this is a standard WPI for T .
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Proposition 47. Suppose a µ-invariant Markov kernel T is RUPI. Then T
satisfies an ‖ · ‖2osc-WPI.

Proof. It suffices to show that (T + T ∗)/2 is RUPI, as then by Lemma 46,
(T + T ∗)/2 possesses a WPI, which is equivalent to T possessing a WPI (see
Remark 4). Since T is RUPI, for any ǫ > 0, we can find some δ > 0 and N ∈ N

such that whenever µ(A) ∧ µ(B) ≥ ǫ,

〈

1A,

N
∑

n=0

T n
1B

〉

≥ δ > 0. (17)

So now we wish to obtain such a statement for the kernel (T + T ∗)/2. So fix
ǫ > 0, and consider

〈

1A,
N
∑

n=0

(

T + T ∗

2

)n

1B

〉

=

〈

1A,
N
∑

n=0

T n

2n
1B

〉

+ 〈1A, R1B〉 ,

where R is a sum of operators of the form cT a1 (T ∗)b1 · · · · · T ar (T ∗)br for some
r ∈ N, ai, bi ∈ N0 for all i = 1, . . . , r and c ≥ 0. Thus since T and T ∗ are
Markov kernels, we have that 〈1A, R1B〉 ≥ 0. So we can continue and have, for
any sets with µ(A) ∧ µ(B) ≥ ǫ,

〈

1A,
N
∑

n=0

(

T + T ∗

2

)n

1B

〉

≥
〈

1A,
N
∑

n=0

T n

2n
1B

〉

≥ 2−N 〈1A,

N
∑

n=0

T n
1B〉

≥ δ/2N > 0,

since each summand is positive, and we have used the fact that T is RUPI
(17).

For the other direction, we first prove some auxiliary lemmas.
Lemma 49 is a general state space extension of the argument referenced by

[34, Remark 2.16].

Lemma 48. P (x, {x}) = P ∗(x, {x}) for µ-almost all x.

Proof. Let D = {(x, y) ∈ E
2 : (x = y)}, s(x) := P (x, {x}) and s∗(x) :=

P ∗(x, {x}) for x ∈ E. For any B ∈ E , we have

µ(1B · s) = µ⊗ P (D ∩B2) = µ⊗ P ∗(D ∩B2) = µ(1B · s∗),

and so taking B+ = {x ∈ E : s(x) > s∗(x)} and B− = {x ∈ E : s(x) < s∗(x)}
we deduce

µ
(

(s− s∗)+
)

= 0 = µ
(

(s− s∗)−
)

,

and hence s = s∗ µ-almost everywhere.
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Lemma 49. Assume P (x, {x}) ≥ ε for µ-almost all x. Then E(P ∗P, f) ≥
2εE(P, f).
Proof. We have P ∗(x, {x}) ≥ ε for µ-almost all x by Lemma 48. Hence,

E(P ∗P, f) =
1

2

∫

µ(dx)P ∗P (x, dy) {f(x)− f(y)}2

≥ 1

2

∫

µ(dx) {εP (x, dy) + εP ∗(x, dy)} {f(x)− f(y)}2

= 2εE(P, f).

The following is a useful implication of ‖·‖2osc-convergence, that we will rely
on below and also in Section 4.2.2.

Lemma 50. Assume T is ‖·‖2osc-convergent. Then for any ǫ > 0, there exists
n0 ∈ N such that for any N ≥ n0

inf
{〈

1A, T
N
1B

〉

: µ(A) ∧ µ(B) ≥ ǫ
}

> 0.

In particular, for all k ∈ N, T k is RUPI and T k satisfies an ‖·‖2osc-WPI.

Proof. Let ǫ > 0 be arbitrary. Since T is ‖·‖2osc-convergent, we may take n0 ∈ N

large enough such that ‖TNf‖2 ≤ ‖f‖oscǫ2/2 for all N ≥ n0. Let A,B ∈ E be
such that µ(A) ∧ µ(B) ≥ ǫ. For any N ≥ n0 we have

〈1A, T
N
1B〉 = 〈1A, (T

N − µ)1B〉+ 〈1A, µ1B〉
= 〈1A, (T

N − µ)1B〉+ µ(A)µ(B).

Let f = 1B − µ(B) and we have by Cauchy–Schwarz,

|〈1A, (T
N − µ)1B〉| = |〈1A, T

Nf〉| ≤ µ(A)1/2‖f‖oscǫ2/2 ≤ ǫ2/2,

and therefore
〈1A, T

N
1B〉 ≥ −ǫ2/2 + ǫ2 = ǫ2/2 > 0,

from which we can conclude. Now let k ∈ {1, 2, . . .} be arbitrary. Since we may
choose N to be a multiple of k it follows from Lemma 44 that T k is RUPI.
Hence, by Proposition 47 T k satisfies an ‖·‖2osc-WPI.

Proposition 51. Let T be a µ-invariant Markov kernel satisfying a (‖·‖2osc, α)−WPI
for some α : (0,∞) → [0,∞). Then T is RUPI.

Proof. Consider the Markov operator T̃ := 1
2 (Id+T ), which satisfies T̃ (x, {x}) ≥

1/2 by construction. Note that

E
(

T̃ , f
)

= 〈(Id− (Id + T )/2)f, f〉

=
1

2
〈(Id− T )f, f〉

=
1

2
E(T, f).
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Therefore, since T satisfies a (‖ · ‖2osc, α)−WPI, we have that T̃ satisfies a (‖ ·
‖2osc, 2α)−WPI:

‖f‖22 ≤ α(r)E(T, f) + r‖f‖2osc
= 2α(r)E

(

T̃ , f
)

+ r‖f‖2osc.

Since essµ infxT̃ (x, {x}) ≥ 1/2, by Lemma 49 we have the inequality E(T̃ , f) ≤
E(T̃ ∗T̃ , f), so we deduce a (‖ · ‖2osc, 2α)−WPI for T̃ ∗T̃ . Hence, T̃ is ‖·‖2osc-
convergent by Theorem 7.

We will now verify the condition for RUPI in Lemma 44. Let ǫ ∈ (0, 1)

be arbitrary. Since T̃ is ‖·‖2osc-convergent, Lemma 50 implies that there exists
N ∈ N such that

δ = inf
{〈

1A, T̃
N
1B

〉

: µ(A) ∧ µ(B) ≥ ǫ
}

> 0.

Now,

T̃N =

(

Id + T

2

)N

=
1

2N

N
∑

k=0

akT
k,

for binomial coefficients {ai}. Since
∑N

i=0 ai = 2N and 1A, 1B are non-negative,
we have

〈

1A,

N
∑

k=0

T k
1B

〉

≥
〈

1A,

(

Id + T

2

)N

1B

〉

, A,B ∈ E ,

and this implies that

inf

{〈

1A,
N
∑

k=0

T k
1B

〉

: µ(A) ∧ µ(B) ≥ ǫ

}

≥ δ > 0,

so T is RUPI.

4.2.2 Holding probabilities, WPIs and ‖·‖2osc-convergence

Definition 52. For a µ-invariant Markov kernel T , and ǫ ∈ (0, 1) we denote by
Tǫ the µ-invariant kernel Tǫ = ǫId + (1− ǫ)T .

We show in this section that there are close connections between existence of
an ‖·‖2osc-WPI for a Markov kernel P , and existence of an ‖·‖2osc-WPI for P ∗

ǫ Pǫ,
where ǫ is any non-trivial holding probability. This is also closely connected to
‖·‖2osc-convergence.

Throughout this section, we write S := (P+P ∗)/2 for the additive reversibi-
lization of P .

Proposition 53. Let ǫ ∈ (0, 1). Then P satisfies an ‖·‖2osc-WPI if and only if
P ∗
ǫ Pǫ satisfies an ‖·‖2osc-WPI.
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Proof. This follows from Lemmas 59 and 60.

Remark 54. Proposition 53, and some of the results below could also be phrased
in terms of the alternative multiplicative reversibilizations of Pǫ, i.e. PǫP

∗
ǫ .

Proposition 55. The following hold:

a). If P is ‖·‖2osc-convergent, then S2 satisfies an ‖·‖2osc-WPI and S is ‖·‖2osc-
convergent.

b). Let ǫ ∈ (0, 1). If S or P are ‖·‖2osc-convergent then P ∗
ǫ Pǫ satisfies an

‖·‖2osc-WPI and Pǫ is ‖·‖2osc-convergent.

Proof. For the first part, if P is ‖·‖2osc-convergent, then Lemma 50 implies that

P 2 is RUPI and satisfies an ‖·‖2osc-WPI. We may then deduce that S2 satisfies

an ‖·‖2osc-WPI because for any f ∈ L2
0(µ),

E(S2, f) =
1

4

{

E(P 2, f) + E((P ∗)2, f) + E(PP ∗, f) + E(P ∗P, f)
}

≥ 1

4
E(P 2, f).

It follows that S is ‖·‖2osc -convergent by Theorem 7. For the second part, if S

or P are ‖·‖2osc -convergent then Lemma 50 implies that S, or equivalently P ,

satisfies an ‖·‖2osc-WPI. Hence, by Proposition 53, P ∗
ǫ Pǫ satisfies an ‖·‖2osc-WPI,

from which we can deduce ‖·‖2osc-convergence by Theorem 7.

Remark 56. The appearance of ǫ ∈ (0, 1) in the implication S is ‖·‖2osc-convergent

⇒ Pǫ is ‖·‖2osc-convergent cannot be removed, since it is possible that S is

‖·‖2osc-convergent but P is not; see Example 57. On the other hand, S being

‖·‖2osc-convergent is a necessary condition for P to be ‖·‖2osc-convergent. The

appearance of ǫ ∈ (0, 1) in the implication P is ‖·‖2osc-convergent ⇒ P ∗
ǫ Pǫ satis-

fies an ‖·‖2osc-WPI also cannot be removed; see Proposition 67 and note that in

that example S2 is µ-irreducible and so S is ‖·‖2osc-convergent by Corollary 63.

Example 57 (Walks on the circle). For x, y ∈ E = {1, . . . ,m} let P (x, y) =
1{1,...,m−1}(x)1{x+1}(y)+1{m}(x)1{1}(y) so that P ∗(x, y) = 1{2,...,m}(x)1{x−1}(y)+
1{1}(x)1{m}(y). Then the Markov chain associated with P is deterministic

and one can deduce that P is not ‖·‖2osc-convergent. On the other hand,

S = (P +P ∗)/2 encodes a random walk on {1, . . . ,m} and is ‖·‖2osc-convergent.

In practice, the following result may be useful.

Proposition 58. Assume P is µ-invariant and satisfies essµ infx P (x, {x}) ∈
(0, 1). Then the following are equivalent.

a). P satisfies an ‖·‖2osc-WPI;

b). P ∗P satisfies an ‖·‖2osc-WPI;
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c). P is ‖·‖2osc-convergent;

d). PP ∗ satisfies an ‖·‖2osc-WPI;

e). P ∗ is ‖·‖2osc-convergent.

Proof. (b. ⇒ c.) follows from Theorem 7, and (c. ⇒ a.) follows from Lemma 50.
We now show (a. ⇒ b.). Let ε = essµ infx P (x, {x}) ∈ (0, 1). Then T := (P −
εId)/(1− ε) is also a µ-invariant Markov kernel and also satisfies an ‖·‖2osc-WPI
since E(T, f) = (1 − ε)−1E(P, f). Since P = Tε, we deduce by Proposition 53

that P ∗P = T ∗
ε Tε satisfies an ‖·‖2osc-WPI.

We now show that the cycle (a. ⇒ d. ⇒ e. ⇒ a.) can also be deduced.
Observe that essµ infx P

∗(x, {x}) = essµ infx P (x, {x}) by Lemma 48, and P

satisfying an ‖·‖2osc-WPI is equivalent to P ∗ satisfying an ‖·‖2osc-WPI, since
E(P, f) = E(P ∗, f). Because (P ∗)∗P ∗ = PP ∗, we have that (a. ⇒ d.) is
equivalent to (a. ⇒ b.) and (d. ⇒ e.) is equivalent to (b. ⇒ c.) and (e. ⇒ a.)
is equivalent to (c. ⇒ a.).

Lemma 59. Let P be µ-invariant and assume P , or equivalently S, satisfies a
(Φ, α)-WPI. For ǫ ∈ (0, 1), P ∗

ǫ Pǫ satisfies a (Φ, 1
2ǫ(1−ǫ)α)-WPI.

Proof. It is straightforward to verify that P ∗
ǫ = ǫId + (1− ǫ)P ∗, and therefore

P ∗
ǫ Pǫ = ǫ2Id + ǫ(1− ǫ)(P ∗ + P ) + (1− ǫ)2P ∗P.

It follows that

E(P ∗
ǫ Pǫ, f) ≥ 2ǫ(1− ǫ)E

(

P ∗ + P

2
, f

)

= 2ǫ(1− ǫ)E (P, f) ,

from which we may conclude.

Lemma 60. Let ǫ ∈ (0, 1). If P ∗
ǫ Pǫ satisfies an ‖·‖2osc-WPI then P satisfies an

‖·‖2osc-WPI.

Proof. First, suppose we have a Markov kernel T such that T ∗T satisfies an
‖·‖2osc-WPI. Then for ST := (T + T ∗)/2 we have that

S2
T =

1

4

{

T 2 + (T ∗)2 + TT ∗ + T ∗T
}

,

and so E(S2
T , f) ≥ E(T ∗T, f)/4. This implies that S2

T also satisfies an ‖·‖2osc-
WPI.

Hence, P ∗
ǫ Pǫ satisfying an ‖·‖2osc-WPI implies that (Sǫ)

2 satisfies an ‖·‖2osc-
WPI, where Sǫ := (Pǫ +P ∗

ǫ )/2. It follows from Theorem 43 that (Sǫ)
2 is RUPI,

which implies that Sǫ is RUPI since for any m ∈ N,

〈

1A,

m
∑

k=0

(Sǫ)
2k
1B

〉

≤
〈

1A,

2m
∑

k=0

(Sǫ)
k
1B

〉

.

38



Since Sǫ = (Pǫ + P ∗
ǫ )/2 = ǫId + (1− ǫ)S with S = (P + P ∗)/2, we may further

deduce that S is RUPI since for any m ∈ N,

〈

1A,

m
∑

k=0

(Sǫ)
k
1B

〉

=

〈

1A,

m
∑

k=0

k
∑

j=0

ak,jS
j
1B

〉

≤ m

〈

1A,

m
∑

k=0

Sk
1B

〉

,

where we have used the fact that for each k ∈ {0, . . . ,m}, ak,0, ak,1, . . . , ak,k ≥ 0

and
∑

j ak,j = 1. It follows that S and therefore P satisfy an ‖·‖2osc-WPI.

4.2.3 µ-irreducibility implies a WPI

To establish that a given kernel T is RUPI, it is sufficient to show a simple
irreducibility condition.

Definition 61. We say that a Markov kernel T on (E, E ) is ν-irreducible for a
measure ν on (E, E ) if for any measurable set A ∈ E with ν(A) > 0, we have
that ∞

∑

n=0

λnT n(x,A) > 0, ∀x ∈ E,

for some (and hence all) 0 < λ < 1.

Proposition 62 ([18, Corollary 4.5]). Suppose that T is µ-irreducible. Then T
is RUPI.

Thus we immediately obtain by Theorem 43 that µ-irreducibility is a suffi-
cient condition for the existence of an ‖ · ‖2osc-WPI.

Corollary 63. Suppose the Markov kernel T is µ-irreducible. Then T possesses
an ‖·‖2osc-WPI by Proposition 62 and Theorem 43. Moreover, if essµ infx T (x, {x}) >
0 then T ∗T possesses an ‖·‖2osc-WPI and T is ‖·‖2osc-convergent by Proposi-
tion 58.

It is important to note that P possessing a WPI does not necessarily im-
ply that ‖Pnf‖2 → 0 for all relevant functions. Indeed, a reversible, periodic

Markov kernel may satisfy an ‖·‖2osc-WPI yet ‖Pnf‖2 cannot converge to 0 for
all bounded functions.

Remark 64. When P is reversible, it is possible to deduce the existence of a
WPI for P 2 = P ∗P from a WPI for P , provided that one has some additional
control on the left spectral gap; see [1, Section 2.2.1]. In turn, the existence
of a WPI for P can often be straightforwardly deduced from Corollary 63 by
establishing irreducibility of P .

Remark 65. Corollary 63 allows us to guarantee the existence of a ‖·‖2osc-WPI

for T = (P ∗)k P k, for some k ∈ N, in many situations. If P is reversible then
P ∗P = P 2 being µ-irreducible implies that a WPI exists for P ∗P . Note that if
P 2 is not µ−irreducible, then neither is (P ∗)k P k = (P 2)k for any k > 1. If P is
µ-invariant and admits an L2

0(µ)-spectral gap then there exists some k ∈ N such
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that
∥

∥P kf
∥

∥

2
≤ C ‖f‖2 for some C < 1 and all f ∈ L2

0(µ) and hence (P ∗)k P k

admits a strong Poincaré inequality. However, if P is nonreversible then even
if ‖Pnf‖2 decays geometrically for bounded functions, it is possible that for all

k ∈ N, (P ∗)k P k is not µ-irreducible and does not admit a WPI; see Example 66
and Proposition 67.

The following example demonstrates (in case 1) that for an arbitrary k ∈ N,

there exists nonreversible P such that (P ∗)k P k is µ-irreducible while (P ∗)i P i

is not µ-irreducible for any positive integer i < k. It also demonstrates (case
2) that (P ∗)kP k cannot be µ-irreducible for any k ∈ N even though P is µ-
irreducible, and in this case it is not clear that one can define an appropriate
WPI that provides a vanishing upper bound on ‖Pnf‖22.

In fact, similar examples have been considered by [19] and [40, Section 6],
who are essentially interested in geometrically ergodic Markov chains for which
a CLT fails to hold for an L2 function, or which do not admit an L2

0 spectral gap.
We construct such an example in Proposition 67. Our consideration of the fol-
lowing family of examples is very natural; because there can be arbitrarily long
periods of deterministic behaviour, lack of µ-irreducibility is straightforward to
deduce.

Example 66. Let E = {1, 2, . . .}2, and ν a probability mass function on
{1, 2, . . .} such that ν(1) ∈ (0, 1) and ν has a finite mean. Define

P (i, j; i′, j′) =



















1 j < i, i′ = i, j′ = j + 1,

ν(i′) j = i, j′ = 1,

1 ν(i)1{j ≤ i} = 0, (i′, j′) = (1, 1),

0 otherwise.

The intuition is that the Markov chain moves to the right along “level” i deter-
ministically until it reaches the point (i, i), at which point it jumps to the start
of another level (K, 1) where K ∼ ν. The third statement is concerned with
initialization of the chain outside the support of the invariant distribution µ,
which one can verify directly is given by

µ(i, j) =
ν(i)1{j ≤ i}
∑∞

k=1 ν(k)k
.

P is µ-irreducible with an accessible, aperiodic atom (1, 1) and its Markov chain
converges to µ in total variation from any starting point (by, e.g., [12, Theo-
rem 7.6.4]).

By viewing P ∗ as the time-reversal of P , and satisfying µ(i, j)P ∗(i, j; i′, j′) =
µ(i′, j′)P (i′, j′; i, j), we may define

P ∗(i, j; i′, j′) =



















1 j > 1, i′ = i, j′ = j − 1,

ν(i′) j = 1, j′ = i′,

1 ν(i)1{j ≤ i} = 0, (i′, j′) = (1, 1),

0 otherwise.
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Case 1: Assume that for some i0 ∈ {2, 3, . . .}, ν(i) > 0 for all i ≤ i0 and
ν(i) = 0 for i > i0. This means there is a maximum level length of i0. We see
that if k < i0 then

(P ∗)kP k(i0, i0; i0, i0) = 1,

since (P ∗)k(i0, i0; i0 − k, i0 − k) = 1 and P k(i0 − k, i0 − k; i0, i0) = 1. Hence
(P ∗)kP k is reducible for any k < i0 − 1. On the other hand, for k ≥ i0, we
may deduce that (P ∗)kP k is µ-irreducible. In particular, since P ∗(1, 1; 1, 1) =
P (1, 1; 1, 1) = ν(1) ∈ (0, 1), we see that (P ∗)k(i, j; 1, 1) > 0 for all (i, j) ∈ E,
from which one may deduce that (P ∗)kP k(i, j; i′, j′) > 0 for all i, j, i′, j′ ∈ E

such that µ(i′, j′) > 0. Note that since P (i, j; 1, 1) = 1 for all (i, j) such that
µ(i, j) = 0, this is essentially a finite state space Markov chain after 1 step, and
hence convergence is geometric.

Case 2: Assume that ν(i) > 0 for all i ∈ {1, 2, . . .}. For any k ∈ N we
may consider level i > k and we see that (P ∗)kP k(i, i; i, i) = 1 so (P ∗)kP k is
reducible. Hence, there does not exist k ∈ N such that (P ∗)kP k is µ-irreducible.

Our final result in this section shows that P being Φ-convergent does not
imply that there exists k ∈ N such that (P ∗)kP k admits a Φ-WPI when P is
nonreversible, even in the case where γ decays geometrically. We note that by
Proposition 13, geometric convergence can be extended to all functions in Lp

0(µ)
for any p > 2.

Proposition 67. For the chain in Example 66, let ν(i) = (1− a)ai−1 for some
a ∈ (0, 1). Then

a). P is geometrically ergodic and

‖Pnf‖22 ≤ ‖f‖2osc Cρ2n, f ∈ L2
0(µ),

for some C > 0 and ρ ∈ (0, 1);

b). (P ∗)kP k does not admit an ‖·‖2osc-WPI for any k ∈ N.

Proof. We will apply [5, Theorem 1.1]. We may consider the state space to be
the µ-full set E = {(i, j) ∈ {1, 2, . . .}2 : j ≤ i} for simplicity. We now verify the
assumptions (A1)-(A3) in [5]. We first define the set C = {(i, j) ∈ E : i = j}.
We define the probability measure ν̃(i, j) = ν(i)1{j = 1}, and we have that

P (x,A) = ν̃(A), x ∈ C.

For any λ ∈ (
√
a, 1) we may define the Lyapunov function V (i, j) := λj−i and

we observe that V ≥ 1 on E, with PV (x) ≤ λV (x)1C∁(x) +K1C(x), where

K = ν̃(V ) =
∑

i≥1

ν(i)V (i, 1) ∝
∑

i≥1

aiλ1−i <∞,

since λ >
√
a > a. Finally, we note that ν̃(C) = ν(1) > 0. It then follows by

the theorem that there exist M > 0, ρ ∈ (0, 1) such that

sup
f :|f |≤V,µ(f)=0

|Pnf(x)| ≤MV (x)ρn.
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Hence, we may deduce that for f such that |f | ≤ V

‖Pnf‖22 ≤M2µ(V 2)ρ2n,

and since λ >
√
a, we have

µ(V 2) =
∑

i≥1

i
∑

j=1

µ(i, j)V (i, j)2

∝
∑

i≥1

ai
i
∑

j=1

λ2(j−i)

≤ λ2

1− λ2

∑

i≥1

ai

λ2i

<∞.

The bound on ‖Pnf‖22 for bounded functions then follows since V ≥ 1.
For the second part, let k ∈ N be arbitrary. LetAk = {(i, i) : i > k} and fk =

1Ak
− µ(Ak), which satisfies µ(fk) = 0. Then

∥

∥P kfk
∥

∥

2

2
=
〈

(P ∗)k P kfk, fk

〉

=

〈fk, fk〉 = ‖fk‖22, so E((P ∗)kP k, fk) = 0. Since ‖fk‖2 > 0, (P ∗)kP k cannot

satisfy a ‖·‖2osc-WPI.

4.3 Lyapunov meets Poincaré

A difficulty with functional-analytic approaches to the study of Markov chains
is the challenge posed by unbounded supports for µ; in particular, handling the
tails of µ. A general strategy consists of splitting the state space E into a distin-
guished set C on which a form of strong Poincaré inequality is established, while
the behaviour of the chain on C∁ is handled with a Lyapunov drift function.
Such ideas have been primarily explored for certain classes of continuous-time
Markov processes, with [3] establishing quantitative strong Poincaré inequali-
ties for the overdamped Langevin process; these results were later extended to
heavy-tailed target distributions in [9] to establish WPIs. It is only recently
that some of these ideas were extended to discrete-time Markov chains in [41]
where a strategy to establish strong Poincaré inequalities is proposed; we note
also the recent contribution of [7]. In this subsection we first briefly review the
key results of [41], show how they can be improved in the spirit of [3] by us-
ing local Poincaré inequalities (Subsection 4.3.1). In Subsection 4.3.2, we show
how these results can be extended to subgeometric drift conditions in order to
establish WPIs.

We first define precisely the restriction of the µ-invariant kernel P to the set
C and the notion of local Poincaré inequality.

Definition 68. For some C ∈ E+, we define the restriction of µ to C to be the
probability measure µC supported on C given by

µC(A) :=
µ(A ∩ C)
µ(C)

, A ∈ E ,
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and the restriction of P to C is defined to be the kernel PC defined as: for each
x ∈ E,

PCf(x) := P (f · 1C)(x) + f(x)P (x,C∁) .

We will say that a restricted Poincaré inequality holds for P on C if a strong
Poincaré inequality holds for PC : for some Cr > 0 and all f ∈ L2

0(µC),

‖f‖2µC ,2 = µ(C)−1

∫

f2(x)1C(x)µ(dx)

≤ CrE(PC , f), (18)

where E(PC , f) :=
∫

µC(dx)PC(x, dy) [f(y)− f(x)]
2

for any f ∈ L2(µC).
This can equivalently be expressed as requiring: for any f ∈ L2(µ),

µC

(

f2
m

)

≤ CrE(PC , f),

with m := µ(f · 1C)/µ(C) and fm := f −m.
Finally, we will say that a local Poincaré inequality holds for P on C if

for some Cl > 0, for all f ∈ L2(µ), there is some m ∈ R such that setting
fm := f −m, we have

‖fm1C‖22 ≤ ClE(P, f). (19)

We note that when P is reversible, the restriction PC is simply a Metropolis–
Hastings Markov kernel targeting µC and using proposal distribution P . The
µC -reversibility of such restrictions is well-known; a proof is provided for com-
pleteness. For a nonreversible, µ-invariant P it is also well-known that PC is
not necessarily µC -invariant.

Lemma 69. Let P be a µ−reversible Markov kernel. Then the kernel PC is
µC−reversible, and furthermore if a restricted Poincaré inequality (18) holds for
PC , then the the following local Poincaré inequality for P on C holds: for any
f ∈ L2(µ),

‖fm1C‖22 ≤ CrE(P, f),
with m := µ(f1C)/µ(C) and fm := f −m.

Proof. We first check µC -reversibility of PC . For f, g ∈ L2(µ), let

v =

∫

f(x)g(x)µC(dx)P (x,C
∁),

and by the µ−reversibility of P , we have
∫

f(x)g(y)µC(dx)PC(x, dy) =
1

µ(C)

∫

f(x)1C(x)g(y)1C(y)µ(dx)P (x, dy) + v

=
1

µ(C)

∫

f(y)1C(y)g(x)1C(x)µ(dx)P (x, dy) + v

=

∫

f(y)g(x)µC(dx)PC(x, dy).
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Now from the restricted Poincaré inequality, we have
∫

f2
m(x)1C(x)dµ(dx) ≤ µ(C) · Cr

2

∫

µC(dx)PC (x, dy) [f(y)− f(x)]
2

=
Cr

2

∫

µ(dx)P (x, dy) 1C(x)1C (y) [f(x)− f(y)]2

≤ Cr

2

∫

µ(dx)P (x, dy) [f(x)− f(y)]
2

= CrE(P, f) .

In Section 4.3.3, we show how one can deduce local Poincaré inequalities
when µ has a strongly log-concave density and a coupling argument

4.3.1 The geometric scenario

The following is the adaption of [3] to the discrete time scenario by [41] where
we here replace the minorization condition with a local Poincaré inequality.

Theorem 70 ([41]). Assume the existence of C ⊂ X, a Lyapunov function
V : E → [1,∞), and constants K, b,> 0 and λ ∈ (0, 1] such that

PV 6 (1− λ) V + b1C , (20)

and that we have the following local Poincaré inequality for P on C: for any
f ∈ L2

0(µ), there exists some m > 0 such that for fm := f −m,
〈

f2
m,1C

〉

6 K 〈f, (Id− P ) f〉 . (21)

Then we have the following (strong) Poincaré inequality for P : for any f ∈
L2(µ),

λ

1 +Kb
‖f − µ(f)‖22 6 〈f, (Id− P ) f〉 .

Proof. From PV ≤ (1 − λ)V + b1C we obtain λV ≤ (Id − P )V + b1C , and so
for f ∈ L2(µ),

f2
m ≤ 1

λ

f2
m(Id− P )V

V
+
b

λ

f2
m

V
1C .

We observe also that PV/V ≤ 1 + b <∞. Hence, using the variational charac-
terization of the mean, key Lemma 71 (noting that supx∈E PV/V (x) <∞) and
(21),

‖f‖22 ≤ ‖fm‖22
≤ 1

λ

〈

f2
m, 1− PV/V

〉

+
b

λ

〈

f2
m,1C

〉

≤ 1 +Kb

λ
〈f, (Id− P )f〉 ,

and we conclude.
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The proof relies on the important lemma.

Lemma 71 ([41]). Let P be µ−reversible, V : E → [1,∞) such that ‖PV/V ‖∞ <
∞. Then for any f ∈ L2(µ), m ∈ R we have

〈

(f −m)2, 1− PV/V
〉

≤ 〈f, (Id− P ) f〉 .

Proof. We have for any g ∈ L2(µ),

0 6
1

2
·
∫

µ (dx) ·P (x, dy) · V (x) · V (y) ·
(

g (y)

V (y)
− g (x)

V (x)

)2

=
〈

g2, PV/V
〉

− 〈g, Pg〉
= 〈g, g〉 −

〈

g2, 1− PV/V
〉

− 〈g, g〉+ 〈g, (Id− P )g〉
= 〈g, (Id− P )g〉 −

〈

g2, 1− PV/V
〉

.

Further we notice that for any f ∈ L2(µ) and m ∈ R,

〈f −m, (Id− P ) (f −m)〉 = 〈f −m, (Id− P ) f〉
= 〈f, (Id− P ) f〉 −mµ

(

(Id− P )f
)

= 〈f, (Id− P ) f〉 ,

and we conclude.

4.3.2 The subgeometric scenario

The following is a useful, simple result, which is related to [32, Theorem 14.3.7]
and [12, Proposition 4.3.2] but with slightly different conditions and conclusions.

Lemma 72. Let X be a Markov chain with Markov operator P and unique
invariant probability measure µ. Suppose V , f and s are nonnegative, finite-
valued functions on E such that

PV ≤ V − f + s.

Then µ(f) ≤ µ(s), whether or not µ(f) = ∞.

Proof. We have

0 ≤ PnV (x)

= V (x) +

n
∑

i=1

Ex [V (Xi)− V (Xi−1)]

= V (x) +
n
∑

i=1

Ex [PV (Xi−1)− V (Xi−1)]

≤ V (x) +

n
∑

i=1

Ex [s(Xi−1)− f(Xi−1)] ,
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and hence we find

Ex

[

n−1
∑

k=0

f(Xk)

]

≤ V (x) + Ex

[

n−1
∑

k=0

s(Xk)

]

.

Since P has a unique invariant probability measure, we may apply Birkhoff’s
ergodic theorem; see, e.g., [12, Theorems 5.2.6 and 5.2.1]. First suppose g ≥ 0
is such that µ(g) = ∞. Then by the ergodic theorem, for µ-almost all x and
any m ≥ 0,

lim
n→∞

1

n
Ex

[

n−1
∑

k=0

m ∧ g(Xk)

]

= µ(m ∧ g),

and taking m → ∞ we obtain limn→∞ 1
nEx

[

∑n−1
k=0 g(Xk)

]

= ∞ = µ(g). Next,

suppose g ≥ 0 with µ(g) < ∞. Then by the ergodic theorem, for µ-almost all
x,

µ(g) = lim
n→∞

1

n
Ex

[

n−1
∑

k=0

g(Xk)

]

.

Hence, for µ-almost all (and therefore some) x,

µ(f) = lim
n→∞

1

n
Ex

[

n−1
∑

k=0

f(Xk)

]

≤ lim
n→∞

1

n

{

V (x) + Ex

[

n−1
∑

k=0

s(Xk)

]}

= µ(s),

and so we may conclude that µ(f) ≤ µ(s).

Theorem 73. Let P be a µ−reversible Markov kernel, µ its unique invariant
probability measure, such that:

a). there exists a set C ∈ E , a function V : E → [1,∞) and b > 0 such that

PV ≤ V − φ ◦ V + b1C ,

where φ : [1,∞) → (0,∞) is a concave, continuous and increasing func-
tion;

b). a local Poincaré inequality holds: there exists K > 0 such that for any
f ∈ L2(µ),

‖fm1C‖22 ≤ KE(P, f) , (22)

with m = µ(f · 1C)/µ(C) and fm := f −m.

Then for any f ∈ L2
0(µ) and s > 0,

‖f‖22 ≤ sE(P, f) + β(s)‖f‖2osc,

where

β(s) :=
bµ(C)

φ ◦ (Id/φ)−1
(

s/(1 +Kb)
) .
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Proof. From PV ≤ V − φ ◦ V + b1C we obtain φ ◦ V ≤ (Id − P )V + b1C and
for f ∈ L2(µ) we obtain

f2
m ≤ f2

m(Id− P )V

φ ◦ V + b
f2
m

φ ◦ V 1C .

Now with A(s) := {x ∈ E : s φ ◦ V (x) ≥ V (x)} for s > 0 we have

f2
m1A(s) ≤

f2
m(Id− P )V

φ ◦ V 1A(s) + b
f2
m

φ ◦ V 1C∩A(s) ,

≤ s
f2
m(Id− P )V

V
1A(s) + sb

f2
m

V
1C∩A(s) .

Hence for s > 0, we have

f2
m = f2

m1A(s) + f2
m1A∁(s)

≤ s
f2
m(Id− P )V

V
+ sb

f2
m

V
1C + f2

m1A∁(s).

We observe also that PV/V ≤ 1 + b < ∞. Consequently, we can take expecta-
tions with respect to µ, yielding

‖fm‖22 ≤ s
〈

f2
m, 1− PV/V

〉

+ sb ‖fm1C‖22 + ‖fm‖2∞ µ(A∁(s))

≤ sE(P, f) + sb ‖fm1C‖22 + ‖f‖2osc µ(A∁(s)),

where we have used V ≥ 1, Lemma 71 and ‖fm‖2∞ ≤ ‖f‖2osc since ess infx |f(x)| ≤
m ≤ ess supx |f(x)|. Since φ is concave, increasing and continuous, the function
x 7→ x/φ(x) is increasing and continuous and therefore invertible, and we can
write A∁(s) = {x ∈ E : φ ◦ (Id/φ)−1(s) < φ ◦ V (x)}, and therefore

µ(A∁(s)) = µ
(

φ ◦ V > φ ◦ (Id/φ)−1(s)
)

≤ µ
(

φ ◦ V ≥ φ ◦ (Id/φ)−1(s)
)

≤ µ(φ ◦ V )

φ ◦ (Id/φ)−1(s)
,

where µ(φ ◦ V ) ≤ bµ(C) by Lemma 72. Using f ∈ L2
0(µ) and (22),

‖f‖22 ≤ ‖fm‖22 ≤ (1 +Kb)sE(P, f) + bµ(C)

φ ◦ (Id/φ)−1(s)
‖f‖2osc.

and we conclude.

Remark 74. The assumption that P is reversible can be relaxed to some extent.
If

1

2
(P + P ∗)V ≤ V − φ ◦ V + b1C ,

then the conclusion also holds for nonreversible P . In particular, this condition
allows for the use of Lemma 71, which is the only part of the proof utilizing
reversibility.
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As pointed out by [41], a standard minorization condition yields a local PI
19.

Lemma 75 ([41, Equation (8)]). Let P be a µ−invariant Markov kernel satis-
fying

P (x,A) ≥ ǫν(A)1{x ∈ C}.

Then with m = µ(f1C)/µ(C),

‖fm1C‖22 ≤ 2

ǫ
E(P, f).

While this provides a relatively straightforward route to establishing a local
PI, such an approach may not be sufficiently precise when one is interested in
quantitative estimates. In Lemma 69 the minorization condition is replaced
with a local PI on C, but P is assumed µ−reversible. This mirrors [3, Proof of
Theorem 1.4].

Example 76. When φ(v) = cvα for α ∈ [0, 1), we obtain (Id/φ)−1(s) =
(cs)1/(1−α) and therefore φ ◦ (Id/φ)−1(s) = c(cs)α/(1−α). We conclude that
β(s) ∝ s−α/(1−α), and thereby obtain γ(n) ∝ n−α/(1−α). Drift and minori-
sation techniques directly lead to a total variation rate of n−α/(1−α), which
we do not recover since [1, Remark 12] gives a total variation rate of γ1/2(n).
On the other hand, Proposition 114 implies a CLT for bounded functions if
α/(1− α) > 1, i.e. α > 1/2. This improves upon the condition α ≥ 2/3 in [20,
Theorem 4.2] and is close to the condition α ≥ 1/2 obtained when the existence
of an atom is assumed [20, Theorem 4.4]. We can straightforwardly obtain rates
of convergence and CLTs for functions in Lp

0(µ), for p > 2 using Proposition 13
and Remark 115, which may be more convenient than considering functions
dominated by a power of the Lyapunov function V .

Example 77. If φ(v) = cv/ log(v)α then

v

φ(v)
= c−1 log(v)α = s ⇐⇒ v = exp

(

(cs)1/α
)

and therefore

β(s) ∝ s exp
(

− (cs)1/α
)

≤ exp
(

− (c′s)1/α
)

which leads to a rate of convergence

C′ exp
(

−{C(1 + α)n}1/(1+α)
)

which is similar to what is obtained by [12].
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4.3.3 Local Poincaré and isoperimetric inequalities

We use some general results, largely inspired by their recent use in [13].

Lemma 78 ([10, Theorem 4.2], Isoperimetric inequality). Let µ be a probability
measure on E ⊂ R

d, whose density µ(x) ∝ exp(−U(x)) w.r.t. Lebesgue is m-
strongly log-concave, i.e.

U (x+ z)− U (x) − 〈∇U (x) , z〉 > m

2
|z|2 .

Then for any (nonempty) S1, S2, S3 ⊂ E defining a partition of E we have

µ (S3) > log 2 · √m · d (S1, S2) · µ (S1) · µ (S2) ,

where d (S1, S2) := inf {|z − z′| : (z, z′) ∈ S1 × S2}.
Remark 79. In the original result of [10, Theorem 4.2], the hypothesis on µ is
formulated in terms of the log-concavity of the Radon–Nikodym derivative of µ
with respect to an appropriate Gaussian measure. We have rephrased the result
slightly to emphasize the relationship with the strong convexity of the potential,
which is consistent with the presentation of [13, Section 5.4].

Theorem 80 ([28, 6, 13]). Let µ be a probability measure on E ⊂ R
d, whose

density w.r.t. Lebesgue is m-strongly log-concave, and C ⊆ E be a convex set.
Let P be a µ−invariant Markov kernel and assume that there exist δ, ǫ > 0 such
that for z, z′ ∈ C, |z − z′| 6 δ implies

‖P (z, ·)− P (z′, ·)‖TV < 1− ε .

Then for any A ∈ E ,

µ⊗ P
(

A×A∁
)

>
ε

4
min

{

1,
log 2

8
δ
√
m

}

min
{

µ (A ∩C) , µ
(

A∁ ∩ C
)}

,

and

µ⊗ P
(

A×A∁
)

>
1

µ(C)

ε

4
min

{

1,
log 2

4
δ
√
m

}

µ (A ∩ C)µ
(

A∁ ∩ C
)

.

Proof. Let δ, ǫ > 0 be as above. For A ∈ E define the sets

S1 :=
{

z ∈ A ∩C : P
(

z, A∁
)

< ε/2
}

S2 :=
{

z ∈ A∁ ∩ C : P (z, A) < ε/2
}

and S3 := C ∩
(

S1 ∪ S2

)∁
. We consider two cases. First we establish that when

either µ (S1) 6
1
2µ (A ∩ C) or µ (S2) 6

1
2µ
(

A∁ ∩C
)

, then

µ⊗ P
(

A×A∁
)

>
1

4
· ε ·min

{

µ (A ∩C) , µ
(

A∁ ∩C
)

}

.
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If µ (S1) 6
1
2µ (A ∩ C) then

µ (A ∩C) = µ (S1) + µ ((A ∩ C) \ S1)

6
1

2
µ (A ∩ C) + µ ((A ∩ C) \ S1) ,

that is 1
2µ (A ∩ C) 6 µ ((A ∩ C) \ S1) . Now,

µ⊗ P
(

A×A∁
)

> µ⊗ P
(

((A ∩ C) \ S1)×A∁
)

>
1

2
· ε · µ ((A ∩ C) \ S1)

>
1

4
· ε · µ (A ∩ C) .

Similarly if µ (S2) 6
1
2µ
(

A∁ ∩ C
)

then

µ
(

A∁ ∩ C
)

= µ
(

S2

)

+ µ
(

(

A∁ ∩ C
)

\ S2

)

.

6
1

2
µ
(

A∁ ∩ C
)

+ µ
(

(

A∁ ∩ C
)

\ S2

)

that is 1
2µ
(

A∁ ∩ C
)

6 µ
(

(

A∁ ∩ C
)

\ S2

)

and arguing as before:

µ⊗ P
(

A∁ ×A
)

> µ⊗ P
((

(

A∁ ∩ C
)

\ S2

)

×A
)

>
1

2
· ε · µ

(

(

A∁ ∩C
)

\ S2

)

>
1

4
· ε · µ

(

A∁ ∩ C
)

.

As noticed by [13], reversibility is not required to establish the following

µ⊗ P
(

A×A∁
)

= µ⊗ P
(

X× A∁
)

−
[

µ⊗ P
(

A∁ × X

)

− µ⊗ P
(

A∁ ×A
)]

= µ
(

A∁
)

− µ
(

A∁
)

+ µ⊗ P
(

A∁ ×A
)

= µ⊗ P
(

A∁ ×A
)

,

and this allows us to establish our first claim. Using the fact that for B ∈ E ,

1 ≥ µ(B ∩ C)
µ(C)

,

we may also deduce that if µ (S1) 6
1
2µ (A ∩ C) or µ (S2) 6

1
2µ
(

A∁ ∩ C
)

then

µ⊗ P
(

A×A∁
)

>
1

4µ(C)
· ε · µ (A ∩ C) · µ

(

A∁ ∩ C
)

.
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In the second case, µ (S1) >
1
2µ (A ∩C) and µ

(

S2

)

> 1
2µ
(

A∁ ∩ C
)

. We then

compute

µ⊗ P
(

A×A∁
)

=
1

2
µ⊗ P

(

A×A∁
)

+
1

2
µ⊗ P

(

A∁ ×A
)

>
1

2
µ⊗ P

((

A ∩ C ∩ S∁
1

)

×A∁
)

+
1

2
µ⊗ P

((

A∁ ∩ C ∩ S∁
2

)

×A
)

>
1

4
· ε · µ

(

A ∩ C ∩ S∁
1

)

+
1

4
· ε · µ

(

A∁ ∩ C ∩ S∁
2

)

=
1

4
· ε · µ

(

C ∩ (S1 ∪ S2)
∁
)

=
1

4
· ε · µ (S3) .

Now for (z, z′) ∈ S1 × S2 we have

‖P (z, ·)− P (z′, ·)‖TV > P (z, A)− P (z′, A)

= 1− P
(

z, A∁
)

− P (z′, A)

> 1− ε.

This implies that d (S1, S2) = inf {|z − z′| : (z, z′) ∈ S1 × S2} > δ, since for
z, z′ ∈ X, |z − z′| 6 δ implies

‖P (z, ·)− P (z′, ·)‖TV < 1− ε.

From Lemma 78 applied to the measure µC (·) := µ (· ∩ C) /µ (C), we can thus
write that

µ (S3) > µ (C) · log 2 · √m · d (S1, S2) ·
µ (S1)

µ (C)
· µ (S2)

µ (C)

>
log 2

µ (C)
· √m · δ ·

(

1

2
µ (A ∩ C)

)

·
(

1

2
µ
(

A∁ ∩ C
)

)

and consequently that

µ⊗ P
(

A×A∁
)

> µ (C)
−1 · log 2

16
· ε · √m · δ · µ

(

A ∩ C
)

· µ
(

A∁ ∩ C
)

.

The second result then follows. To obtain the first result, since p · (1− p) >
1
2 ·min (p, 1− p) for 0 < p < 1, it holds that

µ (A ∩ C) · µ
(

A∁ ∩ C
)

= µ (C)
2 ·
[

µ (A ∩ C)
µ (C)

]

·
[

1− µ (A ∩C)
µ (C)

]

>
1

2
· µ (C)2 ·min







µ (A ∩ C)
µ
(

C
) ,

µ
(

A∁ ∩ C
)

µ
(

C
)







=
1

2
· µ (C) ·min

{

µ (A ∩ C) , µ
(

A∁ ∩ C
)}

.
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Corollary 81. Under the conditions of Theorem 80, we can deduce that if P
is also reversible then a restricted Poincaré inequality holds for P on C, and a
local Poincaré inequality holds for P on C.

Proof. We obtain from the conclusion of Theorem 80 that for any A ∈ E with
A ⊆ C,

µC ⊗ PC(A×A∁) ≥ ε

4
min

{

1,
log 2

8
δ
√
m

}

min
{

µC (A) , µC

(

A∁
)}

,

and

µC ⊗ PC

(

A×A∁
)

>
ε

4
min

{

1,
log 2

4
δ
√
m

}

µC (A)µC

(

A∁
)

.

Since P is reversible, (11) implies that PC admits a strong Poincaré inequality.
Lemma 69 then implies that a local Poincaré holds for P on C.

4.4 Restricted Markov chains and vanishing Poincaré con-

stants

In this subsection, we establish a link between the existence of SPIs for restric-
tions of a Markov chain P to suitable sets and WPIs for the unrestricted chain.
Roughly speaking, for subgeometric chains, it is possible that the restriction of
the chain to a ‘nice’ set A exhibits a strong Poincaré inequality, but as µ (A)
grows, the constant in this inequality necessarily degenerates. We will show that
the rate at which this constant degenerates as A grows allows one to deduce a
quantitative weak Poincaré inequality for P . In what follows, we let Φ = ‖·‖2osc.
Note that varµ(f) ≤ Φ(f).

In the following result we upper and lower bound E(P, f) by quantities in-
volving Dirichlet forms associated to the restriction of P to a set A.

Lemma 82. Let P be µ-reversible. Let A ∈ E+ and PA be the µA-reversible
restriction of P to A. Then

µ(A)E(PA, f) ≤ E(P, f) ≤ µ(A)E(PA, f) + µ(A∁)Φ(f).

Proof. We have

E(P, f) = 1

2

∫

µ(dx)P (x, dy) {f(x)− f(y)}2

≥ 1

2
µ(A)

∫

µA(dx)PA(x, dy) {f(x)− f(y)}2

= µ(A)E(PA, f),
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and

E(P, f) = 1

2

∫

µ(dx)P (x, dy) {f(x)− f(y)}2

=
1

2

∫

A×A

µ(dx)P (x, dy) {f(x)− f(y)}2

+
1

2

∫

(A×A)∁
µ(dx)P (x, dy) {f(x)− f(y)}2

≤ µ(A)

2

∫

µA(dx)PA(x, dy) {f(x)− f(y)}2

+
1

2
Φ(f)

{

µ⊗ P (A∁ × E) + µ⊗ P (A×A∁)
}

≤ µ(A)E(PA, f) + µ(A∁)Φ(f),

where we have used the fact that since P is µ-invariant,

µ⊗ P (A× A∁) ≤ µ⊗ P (E ×A∁) = µ(A∁).

Now let Π be the Markov kernel such that Π(x, ·) = µ(·) for all x ∈ E,
and let ΠA be the corresponding restriction as in Definition 68: for B ∈ E ,
ΠA(x,B) = µ(A∩B) + µ(A∁)1B(x), which is not necessarily equal to µA(B) =
µ(A)−1µ(A ∩B). In fact, we have the following.

Lemma 83. For A ∈ E+, E(ΠA, f) = µ(A)varµA(f).

Proof. We have

E(ΠA, f) =
1

2

∫

µA(dx)ΠA(x, dy) {f(x)− f(y)}2

=
1

2

∫

µA(dx)Π(x, dy)1A(y) {f(x)− f(y)}2

=
1

2
µ(A)

∫

µA(dx)µA(dy) {f(x)− f(y)}2

= µ(A)varµ(f).

Corollary 84. Letting P = Π in Lemma 82, we obtain

µ(A)2varµA(f) ≤ varµ(f) ≤ µ(A)2varµA(f) + µ(A∁)Φ(f), A ∈ E+.

Theorem 85. Let P be µ-reversible. For A ∈ E+, define γP (A) to be the (right)
“spectral gap”

γP (A) = inf
f∈L2(µ)

E(PA, f)

varµA(f)
.
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Then a P satisfies a (Φ, β)-WPI with

β(s) = 1 ∧ inf
A∈E+

{

µ(A∁) : γP (A) ≥
µ(A)

s

}

.

Proof. Let s > 0. If S = {A ∈ E+ : γP (A) ≥ µ(A)/s} is empty, we may take
β(s) = 1 since varµ(f) ≤ Φ(f). Otherwise, let A ∈ S. By Corollary 84 and
Lemma 82, we obtain that for any f ∈ L2(µ),

varµ(f) ≤ µ(A)2varµA(f) + µ(A∁)Φ(f)

≤ µ(A)2

γP (A)
E(PA, f) + µ(A∁)Φ(f)

≤ µ(A)

γP (A)
E(P, f) + µ(A∁)Φ(f)

≤ sE(P, f) + µ(A∁)Φ(f),

from which we may deduce that one may take β(s) = µ(A∁). The result then
follows by taking the infimum over A ∈ S.

We may revisit the WPI obtained for the IMH in [1] from this perspective
as follows; the argument is essentially the same.

Example 86. Consider the IMH with target π and proposal q, and let w =
dπ/dq. If we define A = {x : w(x) ≤ s} then we may write

E(PA, f) =
1

2

∫

πA(dx)PA(x, dy) {f(x)− f(y)}2

=
1

2

∫

πA(dx)q(dy)

{

1 ∧ w(y)

w(x)

}

1A(y) {f(x)− f(y)}2

≥ 1

2s
π(A)

∫

πA(dx)πA(dy) {f(x)− f(y)}2

=
π(A)

s
varπA(f).

It follows that γP (A) ≥ π(A)/s, and so by Theorem 85 we may take β(s) =

π(A∁) in a (‖·‖2osc , β)-WPI. This argument is clearly related to the well-known
fact that the IMH has a spectral gap if and only if w is upper bounded by a
finite constant [31, Theorem 2.1], and we obtain the subgeometric rate here by
considering the measures of a sequence of sets on which w is upper bounded by
an increasing sequence of constants.

Remark 87. One may equivalently deduce a (Φ, α)-WPI with

α(r) = inf
A∈E+

{

µ(A)

γP (A)
: µ(A) ≥ 1− r

}

.

If we define γP (t) = supA∈E+
{γP (A) : µ(A) ≥ 1 − t} then we see that α(r) ≤

1/γP (r) and the rate at which γP (r) → 0 as r → 0 provides an upper bound on
the convergence rate.
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To our knowledge, the observation that a subgeometric rate of convergence
can be related to the rate of decay of the spectral gap on an appropriate sequence
of sets is novel. Considering restrictions of µ and P to a set A is reminiscent
of the notion of spectral profile introduced by [17], which involves instead con-
sidering E(P, f)/varµ(f) when f ≥ 0 has support restricted to appropriately
chosen sets (St), and considering the decay as µ(St) → 1. However, it is not
clear how to relate the two concepts, and we note that the spectral profile was
introduced to obtain bounds on mixing times whereas we are interested here in
subgeometric rates of convergence.

Remark 88. Clearly if P has a (right) spectral gap γP = γP (E) > 0 then we
have β(s) = 0 for s ≥ γ−1

P .

For some Markov kernels P with state space E = R
d, the restriction of P to

a ball around the origin will have a non-zero right spectral gap. In such cases,
the sequence of balls with increasing radius defines a sequence of restrictions
and the rate at which the gap decreases together with the rate at which the
µ-measure of the balls tends to 1 can be used to deduce a WPI.

Example 89. Assume that for a Markov kernel P there is a family of sets
(At)t≥1 constants C, a, b > 0 such that for all t ≥ 1,

γP (At) ≥ Ct−a, µ(A∁
t ) ≤ Dt−b.

Then we find that for γP (At) ≥ 1
s is satisfied by taking t = (Cs)

1
a , and we then

find µ(A∁
t ) ≤ D(Cs)−

b
a . Hence P satisfies a (Φ, β)-WPI with β(s) = D(Cs)−

b
a .

This argument may be valid when P is a random-walk Metropolis kernel on
a heavy-tailed target, and At is a ball of radius t around the origin, although
proving rigorously the lower bounds on γP (At) is not trivial.

5 Examples and applications

5.1 Lower bounds for pseudo-marginal MCMC

We consider a specific and theoretically tractable ABC example covered by
positive results from [1]. We show now that there is a quantitative version of
the argument in [26] that ABC with local proposals is subgeometric, and that
the lower bound on the polynomial rate matches the upper bound given by [1].

In this subsection, we let P̃ be the pseudo-marginal Markov kernel, and in
particular we focus on complementing the results in [1]. For any measurable A
such that (x,w) 6∈ A, we may write

P̃ (x,w;A) =

∫

q(x, dy)Qy(du)
{

1 ∧ r(x, y) u
w

}

1A(y, u),

where {Qx : x ∈ E} is a family of probability measures such that
∫

Qx(dw)w =
1. We focus on the ABC example in [1, Section 4.3], with some prior ν and an
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approximate, intractable likelihood ℓABC. In particular, for some N ∈ N and
any x ∈ E we denote

Qx(A) = Qx,N(A) = Px

(

1

N

N
∑

i=1

Wi ∈ A

)

,

where under Px, Wi =
1

ℓABC(x)Bi andB1, . . . , BN are independent Bernoulli(ℓABC(x))

random variables. The parameter N thereby controls the concentration of
W ∼ Qx around 1, and we use the subscript N to emphasize this dependence.

Proposition 90. Consider the general ABC example in [1, Section 4.3], and
take for a, q ∈ (0, 1),

ν (x) = (1− q) qx−1
1{1,2,...}(x),

ℓABC (x) = ax−1
1{1,2,...}(x),

and q (x, x− 1) = q (x, x+ 1) = 1/2. Then, for any N > 1, if P̃ admits a

(Φ, β)-WPI then β (s) ∈ Ω
(

s−
log(aq)
log(a)

)

.

Proof. The ABC posterior is πABC (x) = (1− aq) (aq)
x−1

1{1,2,...}(x), i.e. Geometric (1− aq).
We define the pseudo-marginal target distribution on (x,w) to be π̃. We may
define the set, with ρ ∈ N,

Aρ = {(x,w) : x > ρ} ,
and we obtain π̃ (Aρ) = πABC (x > ρ) = (aq)

ρ
.

Let u < aq/4, and take ρ = ⌊log (2u) / log (aq)⌋. Since x− 1 ≤ ⌊x⌋ ≤ x, we
deduce that 2u ≤ π̃(Aρ) < 1/2, and hence π̃(Aρ)π̃(A

∁
ρ) > 2u · 1

2 = u. Now, we
find that for (x,w) ∈ Aρ, and any N ∈ N, we have the bound

P̃
(

x,w;A∁
ρ

)

6 1{ρ+1}(x)q (ρ+ 1, ρ)

∫

Qρ,N (du)

{

1 ∧ πABC (ρ)

πABC (ρ+ 1)
· u
w

}

6 1{ρ+1}(x)
1

2
Qρ,N (u > 0)

6 1{ρ+1}(x)
N

2
aρ−1,

where we have used Bernoulli’s inequality to deduce that

Qρ,N (u > 0) = 1−
(

1− aρ−1
)N

6 1−
(

1−Naρ−1
)

6 Naρ−1.

Hence, we obtain that

π̃ ⊗ P̃
(

Aρ, A
∁
ρ

)

6 π̃ (Aρ)
N

2
aρ−1

6 π̃ (Aρ)
N

2
a

log(2u)
log(aq)

−2.
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It follows that the weak conductance satisfies

κ (u) 6
π̃ ⊗ P̃

(

Aρ, A
∁
ρ

)

π̃ ⊗ π̃
(

Aρ, A∁
ρ

)

6 Na
log(2u)
log(aq)

−2

= Na−2 (2u)
log(a)
log(aq) .

and so we see that κ (u) ∈ O
(

u
log(a)
log(aq)

)

. This then implies that α⋆ (r) ∈

Ω
(

r−
log(a)
log(aq)

)

as r ↓ 0 and β⋆ (s) ∈ Ω
(

s−
log(aq)
log(a)

)

.

Remark 91. [1] considered the setting where the marginal chain is geometric
with strong Poincaré constant CP. They showed that one may take β(s) =
β′(CPs)/CP where β′(s) = π̃ (w > s). In the case N = 1, we see that

π̃ (w > s) = π̃

({

x :
1

ax−1
> s

})

= π

({

x : x >
log (s)

− log (a)
+ 1

})

= (aq)⌈
log(s)

− log(a)⌉

∼ s−
log(aq)
log(a) .

Alternatively, [1] showed that for any N ∈ N and p ∈ N, β (s) ∈ O (s−p) if
∫

ν (dx) ℓABC (x)
−(p−1)

< ∞, which in this case corresponds to q/ap−1 < 1, or
equivalently p < log (aq) / log (q), matching the lower bound above.

5.2 Lower bounds for RWM targeting heavy-tailed distri-

butions

In this subsection, we assume |·| is a norm. We consider P a µ-invariant kernel
that is local in the sense that

b (r) := inf
x∈E

P (x,B(x, r)) ,

is a real-valued function with limr→∞ b(r) = 1. We assume in this subsection

that Φ(·) = ‖·‖2osc.
When µ has polynomial tails, we seek to demonstrate that arguments used to

show that κ (0) = 0, and hence that P does not admit a spectral gap, may also
be used to lower bound α or β in a WPI for P . In this sense, such arguments can
be made quantitative, although we require more information on the measure of
suitable sets to deduce rate information. The following argument is inspired by
the approach taken in the proof of [35, Theorem 6.3].

The first lemma upper bounds µ⊗ P
(

A×A∁
)

.
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Lemma 92. Let

φ (ρ,K) :=
Pµ (|X | > ρ+K)

Pµ (|X | > ρ)
.

Then with A = B(0, ρ)∁ and any K > 0,

µ⊗ P
(

A×A∁
)

6 µ (A) {1− φ (ρ,K) · b (K)} .

Proof. Let (X,Y ) ∼ µA ⊗ P , where µA is as defined in Definition 68, and
consider the representation Y = X + ξX . We bound

P (|Y | > ρ) > P (|X | > ρ+K, |Y | > ρ)

= P (|X | > ρ+K, |X + ξX | > ρ)

> P (|X | > ρ+K, |ξX | 6 K)

> φ (ρ,K) · b (K) .

where we have used that the two conditions |X | > ρ + K, |ξX | 6 K =⇒
ρ+K −K ≤ |X | − |ξX | ≤ |X + ξX | and the fact that X ∼ µA. It follows that

∫

µA (dx)P (x,A) > φ (ρ,K) · b (K) ,

and hence

µ⊗ P
(

A×A∁
)

=

∫

A

µ (dx)P
(

x,A∁
)

= µ (A)

∫

µA (dx)P
(

x,A∁
)

6 µ (A) {1− φ (ρ,K) b (K)} .

In the following, the µ considered is a multi-dimensional version of the styl-
ized one-dimensional case considered in [22, Eq. 52]. Although the argument is
likely to be useful in other cases, it is necessary to have fairly precise control on

both µ (B(0, ρ)) and µ
(

B(0, ρ)∁
)

in order to quantify how φ (ρ,K) tends to 1

as ρ and K increase.

Proposition 93. Assume that for some t > 0,

µ
(

B(0, ρ)∁
)

= ρ−t, ρ ≥ 1.

Assume there exist D, η > 0 such that P satisfies

b (K) > 1−DK−η, K > 0,

where b(·) is as defined in Lemma 92. Then β⋆ (s) ∈ Ω
(

s−t η+1
η

)

.
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Proof. Let ρ0 = 21/t, which satisfies µ (B(0, ρ0)) = 1
2 , from which we may

deduce that µ (B(0, ρ)) > 1/2 for all ρ > ρ0. This will be the smallest ρ which
we consider, and it satisfies

µ⊗ µ
(

Bρ0 (0)
∁ ×Bρ0 (0)

)

=
1

2
ρ−t
0 =

1

4
=: u0.

Given any u < u0, we take ρ = (2u)
− 1

t > ρ0 and A = B(0, ρ)∁, which satisfies

µ
(

A∁
)

> 1/2, and so it holds that

µ⊗ µ
(

A×A∁
)

>
1

2
ρ−t = u.

By Lemma 92, we obtain that for any K > 0,

κ (u) 6
µ⊗ P

(

A×A∁
)

µ⊗ µ
(

A×A∁
)

=
1− φ (ρ,K) b (K)

µ
(

A∁
)

6 2 {1− φ (ρ,K) b (K)} .

Letting v = 2u, we thus find that

φ (ρ,K) =
Pµ (|X | > ρ+K)

Pµ (|X | > ρ)

=
(ρ+K)

−t

ρ−t

=
1

v
(

v−
1
t +K

)t

=
1

(

1 + v
1
tK
)t .

Hence, we have the bound

1− φ (ρ,K) b (K) 6 1− 1−DK−η

(

1 + v
1
tK
)t ,

and by taking K = v−
1

t+ηt , we may deduce that

lim
v↓0











v−
1
t ·

η
η+1











1− 1−DK−η

(

1 + v
1
tK
)t





















= t+D,
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from which we may conclude that κ (u) ∈ O
(

u
1
t ·

η
η+1

)

. Since α⋆ (r) > 1
2κ(2r)

by Remark 39, we obtain α⋆ (r) ∈ Ω
(

r−
1
t ·

η
η+1

)

as r ↓ 0, and so β⋆ (s) ∈
Ω
(

s−t η+1
η

)

.

Remark 94. If P is µ-reversible, one may then deduce that by Proposition 26 if

ǫ > 0 then ‖Pnf‖2 cannot be in O
(

n−tη+1
η −ǫ

)

for all f ∈ L2
0(µ) with Φ(f) <∞.

We see that, similar to [21] and [22], the lower bounds suggest that faster rates
are possible if η is close to 0, i.e. P (x, ·) is heavy-tailed for all x.

5.3 Spectral gap of the RWM in high-dimensions

We let X = Z = R
d throughout. Let P be the Markov transition probability of

the Random Walk Metropolis (RWM) with Gaussian proposal, defined for any
(x,A) ∈ X× X

Qx(A) =

∫

1A(x + d−1/2z)Q(dz),

where Q = N
(

0, σ2Id
)

. Then, for any (x,A) ∈ X× X ,

P (x,A) =

∫

A

α
(

x, d−1/2z
)

Q (dz) + 1A (x) [1− α (x)] ,

with for any (x, z) ∈ X× Z, α (x, z) := min {1, r (x, z)} and

r (x, z) :=
π (x+ z)

π (x)
,

α(x) :=

∫

α
(

x, d−1/2z
)

Q (dz) , (23)

and π : X → [0,∞) is a target density with respect to Lebesgue measure with
π (x) ∝ exp (−U (x)). In this section and in Section 5.4, we denote by |·| the

Euclidean norm in R
d, i.e. |x| =

(

∑d
i=1 x

2
i

)1/2

.

Assumption 95. We assume the following properties of our target distribution:

a). U is spherically symmetric with U(x) = u(|x|2), for some increasing func-
tion u : [0,∞) → [0,∞). In particular, U attains its minimum at 0.

b). For some L > m > 0, the potential U is m-strongly convex and L-smooth,
i.e. for all x, z, one has the bounds

m

2
|z|2 6 U (x+ z)− U (x)− 〈∇U (x) , z〉 6 L

2
|z|2 .

We impose here spherical symmetry on the potential to make our proof sim-
ple, noting that similar results could be expected to hold without this assump-
tion. A very natural example of π satisfying the above is the normal distribution
with covariance matrix σ2

0Id, for which one can take m = L = 1
σ2
0
.
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Example 96. Assume π is N (0, σ2
0Id), so U(x) = 1

2σ02
|x|2. Then

U(x+ z)− U(x) − 〈∇U(x), z〉 = 1

2σ2
0

|z|2 ,

so we have L = m = 1/σ2
0 .

Another natural class of examples with strongly convex and smooth poten-
tials (but not spherical symmetry) comes from considering Bayesian posterior
measures for which the prior is normal, and the log-likelihood is concave with
bounded Hessian.

Example 97. Consider the task of Bayesian logistic regression, taking as prior
π0 = N (0, σ2

0Id), and observing covariate-response pairs {(ai, yi)}Ni=1 ⊂ R
d ×

{0, 1}. The potential corresponding to the posterior measure is then given by

U (x) =
1

2σ02
|x|2 +

N
∑

i=1

{log (1 + exp (−〈ai, x〉))− yi 〈ai, x〉}

Writing A for the n×dmatrix with columns given by the {ai}, one can check that
U is m-strongly convex and L-smooth with m >

1
σ2
0

and L 6
1
σ2
0
+ 1

4λMax

(

AA⊤).

The strategy of the proof of the following is to combine two different coupling
arguments, in combination with a global application of Theorem 80, which itself
rests on the isoperimetric inequality of Lemma 78. Recall that the proposal
increments are N (0, σd−1/2). We define “the centre” of the space to be {x :
|x| ≤ bκσd

1/2} for some constant bκ > 0, and we always consider points that
are close to each other, in that |x− y| ≤ bδσd

−1/2 for some (small) constant
bδ. The proposals Qx and Qy can be made close in total variation by Pinsker’s
inequality for sufficiently small bδ.

a). When x and y are both in “the centre”, we can then ensure that P (x, ·) and
P (y, ·) are close in total variation by additionally ensuring that the accep-
tance probability is uniformly lower bounded in the centre by a constant
strictly above 1/2 since then

‖P (x, ·)− P (y, ·)‖TV ≤ ‖P (x, ·) −Qx‖TV+‖Qx −Qy‖TV+‖P (y, ·)−Qy‖TV

can be made less than 1 by taking bδ and bκσ
2 sufficiently small. This part

of the proof that imposes a maximal value of σ, which is slightly at odds
with the common practice of making the acceptance probability close to
1/4 rather than larger than 1/2.

b). When at least one of x and y are not in “the centre”, we can use a different
coupling argument that takes advantage of the fact that the set of points
{w : |w| ≤ |x| ∧ |y|} will be accepted as proposals from both x and y, and
is sufficiently large if bκ is large enough. This overlap allows one to obtain
a non-trivial bound on ‖P (x, ·)− P (y, ·)‖TV with an acceptance rate that
is less than 1/2, which is important because in the tails of the distribution
one cannot obtain an acceptance rate larger than 1/2.
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Theorem 98. Let Assumption 95 hold. Let σ = ς/
√
L with ς ≤ ς⋆ = 0.073.

Then the conductance (see equation (11)) is lower bounded as follows:

κ(0) ≥ 8.46× 10−5ς

√

m

Ld
,

and hence
Gap(P ) = GapR(P ) ≥ 8.94× 10−10 · ς2 · m

Ld
.

Proof. Let κ := (4 + 1/16)σ and δ := σ/16. Let S := B
(

0, κ · d1/2
)

. Assume

x, y ∈ E satisfy |x− y| ≤ δd := δd−1/2. In either case (x, y) ∈ S × S or
(x, y) 6∈ S × S, then ‖P (x, ·) − P (y, ·)‖TV ≤ 31

32 by Lemma 105 Lemma 108
respectively. Hence, we may apply Theorem 80 with C = E to deduce

κ(0) = inf
A∈E

µ⊗ P (A×A∁)

µ⊗ µ(A×A∁)

≥ ε

4
min

{

1,
log 2

4

σ

16

√

m

d

}

≥ 1

4 · 32 min

{

1,
log 2

4

ς

16

√

m

Ld

}

≥ 1

128
min

{

1, 0.01083ς

√

m

Ld

}

≥ 8.46× 10−5ς

√

m

Ld
,

noting that m ≤ L by Assumption 95, ς ≤ ς⋆ < 1 and d ≥ 1. The bound on
GapR(P) follows by (11), and we have Gap(P ) = GapR(P ) by [5, Lemma 3.1],
since Q is Gaussian.

Remark 99. If π = N (0, σ2
0Id), then m/L = 1 and L = 1/σ2

0. Hence, we see that
σ should scale proportionally with σ0 as one would expect by a reparametriza-
tion argument, and that the bound is then independent of σ0. The conduc-
tance/spectral gap lower bound is maximized by taking σ = 0.073/

√
L, and for

our argument one cannot take σ larger than this. Theorem 110 below shows
that a more specific argument allows for a stronger statement allowing arbitrary
ς > 0 while retaining the same dimension dependence.

Remark 100. In several places in the proof we have adopted dimension-independent
bounds, e.g. by taking d = 1, which are certainly sub-optimal for large d. Sim-
ilarly, for the sake of clarity we have made a few choices of constants that are
certainly not optimal. Hence, we can expect that a more refined analysis would
produce a larger lower bound on the conductance and a larger maximum value
of σ

√
L. However, the proof strategy of ensuring a high acceptance rate in the

centre does seem to naturally force σ to be artificially small.

Remark 101. We can inspect Assumption 95 when u : R+ → R is continuously
differentiable. It is useful to understand conditions on the function u which will
guarantee that the desired estimates hold. First, compute explicitly that
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∇U (x) = 2 · u̇
(

|x|2
)

· x,

∇2U (x) = 2 ·
[

2 · ü
(

|x|2
)

· x · x⊤ + u̇
(

|x|2
)

· Id
]

.

For sufficiently smooth potentials, strong convexity and smoothness can be for-
mulated in terms of the first two derivatives of u. In particular, m-strong con-
vexity requires that for all x, it holds that

m 6 inf
v

{

v⊤∇2U (x) v

|v|2

}

= 2 · inf
v







2ü
(

|x|2
)

(

v⊤x
)2

+ u̇
(

|x|2
)

|v|2

|v|2







= 2 · inf
v







2ü
(

|x|2
)

(

v⊤x
)2

|v|2
+ u̇

(

|x|2
)







= 2 ·
{

2 ·min
(

0, ü
(

|x|2
)

· |x|2
)

+ u̇
(

|x|2
)}

,

i.e. that infs>0 {2 ·min (0, ü (s) · s) + u̇ (s)} >
m
2 . Similar calculations show

that L-smoothness requires that sups>0 {2 ·max (0, ü (s) · s) + u̇ (s)} 6 L
2 . To

be more concrete, suppose that u satisfies 0 < m1 6 u̇ (s) 6 L1 and |ü (s)| 6
L2s

−1 with L2 6
m1

2 , i.e. it is increasing, essentially sandwiched between two
affine functions, and its derivative has slow variation at infinity. It then follows
that

2 ·min (0, ü (s) · s) + u̇ (s) > m1 − 2 · L2

2 ·max (0, ü (s) · s) + u̇ (s) 6 L1 + 2 · L2,

i.e. that we can take m = m1 − 2 · L2 > 0, L = L1 + 2 · L2.
The following two lemmas are known and useful bounds on the total variation

distance between two normal distributions, and tail probabilities for χ2 random
variables.

Lemma 102. For any ǫ > 0 and x, y ∈ X such that |x− y| 6 ǫ · d−1/2 it holds
that

‖Qx −Qy‖TV ≤ ǫ

2σ
.

Proof. This is obtained via Pinsker’s inequality. Compute that

KL (Qx, Qy) = Eu∼N (x,d−1σ2Id)

[ |u− y|2
2σ2/d

− |u− x|2
2σ2/d

]

=
d

2 · σ2
· Eξ∼N (0,Id)

[

|x− y + σd−1/2 · ξ|2 − |σd−1/2 · ξ|2
]

=
d

2 · σ2
· |x− y|2.
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Hence, if |x − y| 6 ǫ · d−1/2 then it follows that KL (Qx, Qy) 6
ǫ2

2·σ2 · Recalling
Pinsker’s inequality, we deduce that

‖Qx −Qy‖TV 6

√

KL (Qx, Qy) /2

=
ǫ

2σ
,

as claimed.

Lemma 103 ([24, Lemma 1]). If W ∼ χ2
d then for u > 0 we have

P

(

W > d+ 2
√
du+ 2u

)

≤ exp (−u) .

In particular, for ǫ ∈ (0, 1), with exp (−u) = ǫ, χ (ǫ, d) := 1+2
√

log ǫ−1

d +2 log ǫ−1

d

and χ (ǫ) := χ (ǫ, 1), we have

P (W > d · χ (ǫ)) 6 P (W > d · χ (ǫ, d)) 6 ǫ .

We also have, for u > 0,

P

(

W ≤ d− 2
√
du
)

≤ exp (−u) .

Lemma 104. Assume that U attains its minimum at 0, and is L−smooth. For
any ǫ > 0, if κ ≥ σ and

κσ ≤ 1

L
· − log(1− ǫ

2 )

χ( ǫ4 )
· 2
3
,

then for all x ∈ B
(

0, κ · d1/2
)

‖Qx (·)− P (x, ·)‖TV ≤ ǫ .

Proof. First, note that for (x,A) ∈ E× E ,

|Qx(A) − P (x,A)| =
∣

∣

∣

∣

∫

1{x+ d−1/2z ∈ A}[1− α(x, d−1/2z)]Q(dz)− [1− α(x)]1{x ∈ A}
∣

∣

∣

∣

,

with α (x) :=
∫

α
(

x, d−1/2z
)

· Q (dz) as in (23), which is maximized for A =
E\{x} or A = {x} since we are considering the difference of non-negative terms.
Therefore

‖Qx (·)− P (x, ·)‖TV =

∫

|1− α
(

x, d−1/2z
)

| ·Q (dz) = 1− α (x) .

As suggested in [13] we use Markov’s inequality, that is for a ∈ (0, 1],

α (x) > a ·Q
(

r

(

x, d−1/2z
)

> a
)

, (24)
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which motivates seeking a lower bound for

r

(

x, d−1/2z
)

=
π
(

x+ d−1/2z
)

π (x)
= exp

(

U (x)− U
(

x+ d−1/2z
))

.

We begin by noting that for (x, z) ∈ X× Z,

U
(

x+ d−1/2z
)

− U (x) ≤
〈

∇U (x) , d−1/2z
〉

+
L

2

∣

∣

∣
d−1/2z

∣

∣

∣

2

.

If Z ∼ Q = N (0, σ2Id), then 〈∇U (x) , Z〉 ∼ N
(

0, σ2 · |∇U (x)|2
)

and from the

equivalent characterization of L−smoothness [13, Lemma 9] with ∇U (0) = 0
we have |∇U (x)| 6 L · |x| . Hence supx∈B(0,κ·d1/2) |∇U (x)| 6 L · κ · d1/2, and

from Chernoff’s inequality for a normal random variable Z̄ ∼ N (0, 1), that is
P
(

Z̄ > u
)

≤ exp
(

− 1
2u

2
)

for u > 0, we can write that

Q
(〈

∇U (x) , d−1/2z
〉

> u
)

= P

(

Z̄ · σ · |∇U (x)|
d1/2

> u

)

6 P

(

Z̄ · σ · L · κ · d1/2
d1/2

> u

)

= P

(

Z̄ >
u

σ · L · κ
)

6 exp

(

− u2

2 · σ2 · L2 · κ2
)

.

In particular, taking u = σ · L · κ ·
√

2 · log
(

4
ǫ

)

, we see that

Q

(

〈

∇U (x) , d−1/2z
〉

> σ · L · κ ·
√

2 · log
(

4

ǫ

)

)

6
ǫ

4
.

From Lemma 103, we have that

Q

(

L

2
·
∣

∣

∣
d−1/2 · z

∣

∣

∣

2

> σ2 · L
2
· χ
( ǫ

4

)

)

6
ǫ

4
.

Note that for random variables X,Y we have P (X + Y > a+ b) 6 P (X > a)+
P (Y > b) for a, b ∈ R, because

P (X + Y > a+ b) =P (X > a,X + Y > a+ b) + P (X < a, Y > a+ b−X)

≤P (X > a) + P (Y > b) .

Consequently for x ∈ B
(

0, κ · d1/2
)

,
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Q
(

U
(

x+ d−1/2z
)

− U (x) > σ · L · χ
( ǫ

4

)

·
(

κ+
σ

2

))

6 Q

(

〈

∇U (x) , d−1/2z
〉

+
L

2

∣

∣

∣
d−1/2z

∣

∣

∣

2

> σ · L · κ · χ
( ǫ

4

)

+
σ2

2
· L · χ

( ǫ

4

)

)

6 Q
(〈

∇U (x) , d−1/2z
〉

> σ · L · κ · χ
( ǫ

4

))

+Q

(

L

2

∣

∣

∣
d−1/2z

∣

∣

∣

2

>
σ2

2
· L · χ

( ǫ

4

)

)

6 Q

(

〈

∇U (x) , d−1/2z
〉

> σ · L · κ ·
√

2 · log
(

4

ǫ

)

)

+Q

(

L

2

∣

∣

∣
d−1/2z

∣

∣

∣

2

>
σ2

2
· L · χ

( ǫ

4

)

)

6
ǫ

4
+
ǫ

4
=
ǫ

2
,

that is,

Q
(

r
(

x, d−1/2z
)

> exp
(

−σL · χ
( ǫ

4

)

·
(

κ+
σ

2

)))

> 1− ǫ

2
.

It follows that by taking a = exp
(

−σ · L · χ
(

ǫ
4

)

·
(

κ+ σ
2

))

in Markov’s inequal-
ity (24) and assuming κ ≥ σ we can bound

α (x) > exp
(

−σ · L · χ
( ǫ

4

)

·
(

κ+
σ

2

))

·
(

1− ǫ

2

)

> exp

(

−L · χ
( ǫ

4

)

· 3
2
κσ

)

·
(

1− ǫ

2

)

.

Now if

κσ ≤ 1

L
· − log(1− ǫ

2 )

χ(ǫ/4)
· 2
3
,

then exp
(

−L · χ
(

ǫ
4

)

· 3
2κσ

)

> 1− ǫ
2 , so that α (x) >

(

1− ǫ
2

)2
> 1−ǫ, and hence

that 1− α (x) 6 ǫ, as claimed.

Lemma 105. Assume that U attains its minimum at 0, and is L−smooth.
Let σ ≤ ς/

√
L with ς ≤ ς⋆ := 0.073, κ := (4 + 1/16)σ, and δ := σ/16. Let

S = B
(

0, κ · d1/2
)

. Then for (x, y) ∈ S × S such that |x− y| ≤ δd−1/2 we have

‖P (x, ·)− P (y, ·)‖TV ≤ 31

32
.

Proof. We have

‖P (x, ·) − P (y, ·)‖TV ≤ ‖P (x, ·)−Qx‖TV + ‖Qx −Qy‖TV + ‖P (y, ·)−Qy‖TV .
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We have ‖Qx −Qy‖TV ≤ 1/32 by Lemma 102. We wish to show that for x ∈ S,

‖P (x, ·)−Qx‖TV ≤ 15/32.

This is ensured by Lemma 104: taking ǫ = 15/32 we need to verify that for
bκ := 4 + 1/16,

κσ = bκσ
2 ≤ 1

L
· − log(1 − ǫ

2 )

χ( ǫ4 )
· 2
3
,

and so it is sufficient to take

σ2 ≤ 0.0732

L
≤ 1

L
· − log(4964 )

χ(15/128)
· 2
3
· 1

4 + 1/16
.

Lemma 106. If |y − x| ≤ δ and |y| ≥ δ then |x|2 ≥ (|y| − δ)2.

Proof. Let x = y + r where |r| ≤ δ ≤ |y|. Then by Cauchy–Schwarz,

|x|2 = |y|2 + 2 〈y, r〉+ |r|2

≥ |y|2 − 2 |y| |r|+ |r|2

= (|y| − |r|)2 ,
from which we can conclude.

Lemma 107. For any β ∈ (0, 1), let zβ denote the β-quantile of the N (0, 1)
distribution, namely P(Z1 ≥ zβ) = 1 − β for Z1 ∼ N(0, 1). For any α < 1/2,
let x ∈ R

d satisfy |x| ≥ cσd1/2 for some c > (2αz1−α)
−1. Then if W ∼ Qx,

P(|W | ≤ |x|) ≥ α− 1

2cz1−α
> 0.

In particular, if α = 1/4 and c > 3, P (Z ∈ A) > 1
4 − 3

4c = 1
4 (1− 3

c ) > 0.

Proof. Without loss of generality, we may assume that x = (− |x| , 0, . . . , 0). Let
W = x+ σd−1/2Z where Z ∼ N (0, Id), and w = x+ σd−1/2z. Then

A = {z : |w| ≤ |x|}
= {z :

∣

∣

∣
x+ σd−1/2z

∣

∣

∣
≤ |x|}

=

{

z : 2
σ

d1/2

d
∑

i=1

xizi +
σ2

d

d
∑

i=1

z2i ≤ 0

}

=

{

z :
σ

d1/2

d
∑

i=1

z2i ≤ −2

d
∑

i=1

xizi

}

=

{

z :

d
∑

i=1

z2i ≤ 2

σ
|x| z1d1/2

}

⊇
{

z :

d
∑

i=1

z2i ≤ 2cv1d

}

∩ {z : z1 ≥ v1} ,

67



for any v1 > 0. Now take v1 = z1−α. Then,

P (Z ∈ A) ≥ P

(

|Z|2 ≤ 2cz1−αd, Z1 ≥ z1−α

)

≥ P

(

|Z|2 ≤ 2cz1−αd
)

+ P(Z1 ≥ z1−α)− 1

= P

(

|Z|2 ≤ 2cz1−αd
)

+ α− 1.

By Markov’s inequality, we have

P

(

|Z|2 > 2cz1−αd
)

≤ 1

2cz1−α
,

and so

P (Z ∈ A) ≥ α− 1

2cz1−α
.

For the last part, observe that if α = 1/4 then z1−α > 2/3, and the conclusion
follows.

Lemma 108. Assume U(x) = u(|x|2) with u : [0,∞) → [0,∞) increasing.
For σ > 0, let κ = bκσ, δ = bδσ for some constants bκ > bδ. Let (x, y) ∈
(

B
(

0, κ · d1/2
)

× B
(

0, κ · d1/2
))∁

. Then if |x− y| ≤ δd−1/2, we have that

‖P (x, ·) − P (y, ·)‖TV ≤ 3

4
+

3

4(bκ − bδ)
+
bδ
2
. (25)

In particular, if we take bκ = 4 + 1/16 and bδ = 1/16, then we obtain

‖P (x, ·)− P (y, ·)‖TV ≤ 31

32
.

Proof. For x, y ∈
(

B
(

0, κ · d1/2
)

× B
(

0, κ · d1/2
))∁

, we construct a coupling
(X ′, Y ′) such that X ′ ∼ P (x, ·) and Y ′ ∼ P (y, ·), and will show that P(X ′ =
Y ′) ≥ 1 − ǫ, with ǫ as in the right-hand side of (25). Without loss of gen-
erality, assume |x| ≤ |y|. Hence, we have by Lemma 106 the (crude) bound
|y| ≥ |x| ≥ κd1/2−δd−1/2 ≥ (κ−δ)d1/2. Let (Wx,Wy) be distributed according
to a maximal coupling of Qx and Qy. By Lemma 102,

P(Wx =Wy) = 1− ‖Qx −Qy‖TV ≥ 1− δ/2σ.

On the event Wx = Wy , we have X ′ = Y ′ = Wx if |Wx| ≤ |x|, since U(x) =
u(|x|) so the proposals will be accepted with probability one. Note that Wx =
x+ σd−1/2Z, where Z ∼ N (0, Id). Hence, by Lemma 107,

P(|Wx| ≤ |x|) ≥ α− 1

2cz1−α
,

68



for any α < 1/2 and c = (κ− δ)/σ. Hence we have the bound

P(X ′ = Y ′) ≥ P(Wx =Wy, |Wx| ≤ |X |)
≥ P(Wx =Wy) + P(|Wx| ≤ |X |)− 1

≥ P(|Wx| ≤ |X |)− δ

2σ

≥ α− σ

2(κ− δ)z1−α
− δ

2σ
.

Now, taking α = 1/4, we obtain

P(X ′ = Y ′) ≥ 1

4
− 3

4(bκ − bδ)
− bδ

2
,

and we conclude by the coupling inequality ‖P (x, ·) − P (y, ·)‖TV ≤ P(X ′ 6=
Y ′).

5.4 Spectral gap for the RWM on a Gaussian target

When π is N (0, σ2
0Id), it is possible to obtain more precise bounds on the con-

ductance and spectral gap, and also for the proposal standard deviation to be
an arbitrary multiple of σ0, when scaled appropriately by d−1/2.

Lemma 109. Assume U(x) = 1
2σ2

0
|x|2. Let X ′ ∼ P (x, ·) with proposal W =

x+ σdZ, where σd = ςd−1/2σ0 for some ς > 0 and Z ∼ N (0, Id). Then

P(X ′ =W ) ≥ exp

{

− ς
2

2

[

1 + 2d−1/2 + 2d−1
]

}

· 1
2
· (1 − e−1).

Proof. Since the proposal and target are spherically symmetric, we may assume
without loss of generality that x = (x1, 0, . . . , 0). Then

∣

∣

∣
x+ σd−1/2z

∣

∣

∣

2

= |x|2 + 2σd 〈x, z〉+
σ2

d
|z|2

= |x|2 + 2σdx1z1 + σ2
d |z|2 .

Hence,

U(W )− U(x) =
1

2σ2
0

{

2σdx1Z1 + σ2
d |Z|2

}

. (26)

Now, for rd > 0,

P

(

x1Z1 ≤ 0,
σ2
d

2σ2
0

|Z|2 ≤ rd

)

=
1

2
P

(

|Z|2 ≤ drd ·
2

ς2

)

,

since I(Z1 > 0) is independent of |Z|2. By Lemma 103, we have

P

(

|Z|2 ≤ d

{

1 + 2

√

u

d
+ 2

u

d

})

≥ 1− exp(−u).

69



So, taking u = 1, we set

rd =
ς2

2
(1 + 2d−1/2 + 2d−1),

which gives

P

(

x1Z1 ≤ 0,
σ2
d

2σ2
0

|Z|2 ≤ rd

)

≥ 1

2
· {1− exp(−1)} .

It thus follows from (26) that

P(U(W )− U(x) ≤ rd) ≥
1

2
· (1 − e−1),

and so

P

(

U(W )− U(x) ≤ ς2

2

{

1 + 2

√

1

d
+ 2

1

d

})

≥ 1

2
· (1− e−1),

from which we may conclude, since on this event the proposal is accepted with

probability at least exp
{

− ς2

2

[

1 + 2d−1/2 + 2d−1
]

}

.

Theorem 110. Assume U(x) = 1
2σ2

0
|x|2, and let σ = ςσ0 for any ς > 0. Then

the conductance

κ(0) ≥ 0.00216 exp
{

−ς2
[

1 + 2d−1/2 + 2d−1
]}

· ςd−1/2,

and hence

Gap(P ) = GapR(P ) ≥ 5.83× 10−7 · exp
{

−2ς2
[

1 + 2d−1/2 + 2d−1
]}

· ς2d−1.

Proof. Let v = exp
{

− ς2

2

[

1 + 2d−1/2 + 2d−1
]

}

· 12 · (1− e−1). Let δd = vσd−1/2,

and x, y ∈ X such that |x− y| ≤ δd. Then ‖Qx −Qy‖TV ≤ v/2 by Lemma 102.
We construct a specific coupling of (X ′, Y ′) such that X ′ ∼ P (x, ·) and Y ′ ∼
P (y, ·). Without loss of generality, we may assume that |x| ≤ |y|. First, let
(Wx,Wy) be distributed according to a maximal coupling of Qx and Qy. Then,
with U ∼ Uniform(0, 1) we define

X ′ | {Wx = wx,Wy = wy,U = u} =

{

wx u ≤ π(wx)/π(x),

x u > π(wx)/π(x).

Similarly we define

Y ′ | {Wx = wx,Wy = wy ,U = u} =

{

wy u ≤ π(wy)/π(y),

y u > π(wy)/π(y).
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By Lemma 102,

P(Wx =Wy) = 1− ‖Qx −Qy‖TV ≥ 1− v

2
.

On the event {Wx = Wy} ∩ {X ′ = Wx}, we have X ′ = Y ′ = Wx since π(y) ≤
π(x). Hence, using Lemma 109, we have

P(X ′ = Y ′) ≥ P(Wx =Wy, X
′ =Wx)

≥ P(Wx =Wy) + P(X ′ =Wx)− 1

= 1− ‖Qx −Qy‖TV − 1 + P(X ′ =Wx)

≥ −v
2
+ v

=
v

2
.

Hence, ‖P (x, ·)− P (y, ·)‖TV ≤ P(X ′ 6= Y ′) ≤ 1 − v
2 by the coupling inequality.

We now take ε = v
2 will apply Theorem 80 with C = E. Recall that m = 1/σ2

0

from Example 96, and since log 2
4 vςd−1/2 ≤ 1 for any d ∈ N and ς > 0, we deduce

that

κ(0) = inf
A∈E

µ⊗ P (A×A∁)

µ⊗ µ(A×A∁)

≥ ε

4
min

{

1,
log 2

4
vσd−1/2

√
m

}

=
v

8
min

{

1,
log 2

4
vςd−1/2

}

=
v2

32
log 2 · ςd−1/2

= exp
{

−ς2
[

1 + 2d−1/2 + 2d−1
]}

· 1
4
· (1− e−1)2 · log 2

32
· ςd−1/2

≥ 0.00216 · exp
{

−ς2
[

1 + 2d−1/2 + 2d−1
]}

· ςd−1/2.

The bound on GapR(P) follows by (11), and we have Gap(P ) = GapR(P ) by
[5, Lemma 3.1], since Q is Gaussian.

Remark 111. The conductance lower bound is in Ω(d−1/2) and the spectral gap
lower bound is in Ω(d−1). Fixing ς , we obtain

lim
d→∞

inf κd(0)d
1/2 ≥ 0.00216 · exp

{

−ς2
}

· ς.

The maximizing ς for the bound is obtained by ς2 = 1/2, and this value of ς2

gives
lim
d→∞

inf κd(0)d
1/2 ≥ 0.000926.
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This particular bound-maximizing value of ς is likely an artifact of the proof
technique; optimal scaling results suggest that ς ≈ 2.38 is optimal in high
dimensions [36], although they do not provide a bound on the conductance
or spectral gap of the associated Markov operator.

To complement this result, we can show that the conductance must decrease
at least as O(d−1/2) when the proposal standard deviation scales as d−1/2,
and that this is the slowest polynomial decay possible. Hence, we may infer
that in terms of optimizing conductance and spectral gap, d−1/2 is the correct
polynomial scaling of the standard deviation.

Proposition 112. Consider the RWM with Gaussian proposal of standard de-
viation σd = ςσ0d

−β for some β ∈ R. Then the conductance is bounded as

κ(0) ≤ 2min

{

2ςd−β, exp

(

− d

16

)

+ exp

(

−ς2 d
1−2β

8

)}

,

and the upper bound is maximized for large d by taking β = 1/2, giving κd(0) ≤
4ςd−1/2.

Proof. First, let A = {x ∈ X : x1 ≥ 0}, and we observe that π(A) = 1
2 . We

let Z ∼ N (0, Id), and by neglecting the acceptance probability and using the
Chernoff bound P(Z1 ≤ −z) ≤ exp(−z2/2) for z > 0, we obtain the bounds

π ⊗ P (A×A∁) =

∫

A

π(dx)P (x,A∁)

≤
∫

A

π(dx)P(x + σdZ ∈ A∁)

=

∫

A

π(dx)P(x1 + σdZ1 < 0)

=
1

√

2πσ2
0

∫ ∞

0

exp

{

− x21
2σ2

0

}

P

(

Z1 < −x1
σd

)

dx1

≤ 1
√

2πσ2
0

∫ ∞

0

exp

{

− x21
2σ2

0

− x21
2σ2

d

}

dx

=

(

σ2
d

σ2
d + σ2

0

)1/2

≤ σd
σ0

= ςd−β ,

and it follows that κd(0) ≤ ςd−β/π⊗ π(A×A∁) = 4ςd−β, giving the first upper
bound.

Now let B := {x : |x| ≤ δd}, where δd := σd

√
d

4
√
2
∧ cd = σd−β+1/2

4
√
2

∧ cd, where

cd is chosen so that π(|x| ≤ cd) = 1/2. Hence, π(B) ≤ 1
2 and π(B∁) ≥ 1

2 . We
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observe that for x ∈ B,

|x+ σdz|2 − |x|2 = |x|2 + 2σd 〈x, z〉+ σ2
d |z|2 − |x|2

≥ −2σd |x| |z|+ σ2
d |z|2

≥ −2σdδd |z|+ σ2
d |z|2

= σd |z| (σd |z| − 2δd) . (27)

By Lemma 103,
P(|Z|2 ≤ d− 2

√
du) ≤ exp(−u),

and taking u = d/16 and Cd = dσ2
d/2 we obtain

P(σ2
d |Z|2 ≤ Cd) = P(|Z|2 ≤ d/2) ≤ exp(−d/16).

Since 2δd
√
Cd ≤ Cd/2, on the event σ2

d |Z|
2 ≥ Cd we have from (27) that

|x+ σdZ|2 − |x|2 ≥
√

Cd

(

√

Cd − 2δd

)

= Cd − 2δd
√

Cd ≥ Cd/2.

It follows that for x ∈ B, the acceptance probability satisfies

E [1 ∧ r(x, σdZ)] = E

[

1 ∧ exp

{

− 1

2σ2
0

(

|x+ σdZ|2 − |x|2
)

}]

≤ 1 · P
(

σ2
d |Z|2 ≤ Cd

)

+ exp

{

− 1

2σ2
0

(

Cd − 2δd
√

Cd

)

}

· P
(

σ2
d |Z|2 > Cd

)

≤ exp

(

− d

16

)

+ exp

{

− 1

2σ2
0

(

Cd − 2δd
√

Cd

)

}

≤ exp

(

− d

16

)

+ exp

(

− Cd

4σ2
0

)

= exp

(

− d

16

)

+ exp

(

−dσ
2
d

8σ2
0

)

.

Therefore,

π ⊗ P (B ×B∁)

π ⊗ π(B ×B∁)
=

∫

πB(dx)P (x,B
∁)

π(B∁)

≤ 2

∫

πB(dx)P (x, {x}∁)

≤ 2

{

exp

(

− d

16

)

+ exp

(

−ς2d
1−2β

8

)}

,

and we conclude.

A natural question is whether the lower bound for the spectral gap is of the
correct order when the proposal standard deviation scales as d−1/2, i.e. whether
indeed Gap(P ) scales as d−1. In this case, we can verify directly that this is the
case.

73



Proposition 113. Let π be such that Eπ[X1] = 0 and Eπ[X
2
1 ] = σ2

0, and the
proposal satisfy Qx(A) =

∫

A N (y;x, σ2
dId)dy for A ∈ X . Then

Gap(P ) ≤ σ2
d

2σ2
0

.

Proof. We use the fact that GapR(P ) = inff∈L2
0(π)

E(P, f)/ ‖f‖22. Let f(x) = x1.
Then we compute

E(P, f) = 1

2

∫

π(dx)P (x, dy)(y1 − x1)
2

≤ 1

2

∫

π(dx)Qx(dy)(y1 − x1)
2

=
1

2
σ2
d,

while ‖f‖22 = σ2
0 , and we conclude from Gap(P ) ≤ E(P, f)/ ‖f‖22.

5.5 Central limit theorems

Obtaining a central limit theorem follows in a relatively straightforward manner
when ‖Pnf‖22 decays quickly enough.

Proposition 114. Let f ∈ L2
0(µ) with Φ(f) <∞. Let (Xn) be a Markov chain

with Markov kernel P . Assume ‖Pnf‖22 ≤ Φ(f)γ(n) with γ(n) ∈ O(n−a) for
some a > 1. Then for µ-almost all X0,

1√
n

n−1
∑

i=0

f(Xi)
L→ N (0, σ2),

where σ2 = limn→∞ 1
nEµ

[

{

∑n−1
i=0 f(Xi)

}2
]

<∞.

Proof. We will verify the Maxwell–Woodroofe condition:

∞
∑

n=1

n−3/2 ‖Vnf‖2 <∞, (28)

where Vnf =
∑n−1

k=0 P
kf . The central limit theorem then follows from [30,

Corollary 1]. Minkowski’s inequality gives

‖Vnf‖2 =

∥

∥

∥

∥

∥

n−1
∑

k=0

P kf

∥

∥

∥

∥

∥

2

≤
n−1
∑

k=0

∥

∥P kf
∥

∥

2
≤ Φ1/2(f)

n−1
∑

k=0

γ1/2(k).
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For a > 1 then we may write γ1/2(k) ≤ C(k + 1)−a/2 for some C > 0 and note
that γ(0) <∞ . Then

1

C

n−1
∑

k=1

γ1/2(k) ≤
n−1
∑

k=1

(k + 1)−a/2

=

n−1
∑

k=1

(k + 1)−a/2

≤
∫ n

1

x−a/2dx

≤ 2

2− a
n1− a

2 ,

from which we may deduce that if a ∈ (1, 2) then
∑n−1

k=0 γ
1/2(k) ∈ O(n1/2−ǫ)

for some ǫ > 0 and (28) holds. If a ≥ 2 then γ(n) ∈ O(n−b) for any b ∈ (1, 2)
and we can also conclude that (28) holds.

Remark 115. One may verify that γ(n) ∈ O(n−a) by verifying a (Φ, β)-WPI
with β ∈ O(s−a); see [1, Lemma 15]. We observe that if γ(n) ∈ O(n−b) with

Φ = ‖·‖2osc and b > 1, then by Proposition 13 we may deduce that for p > 2,

‖Pnf‖22 ≤ ‖f‖2Lp(µ) γp(n) for f ∈ Lp
0(µ) with γp(n) ∈ O(n−b(1− p

2 )). It then

follows that a CLT holds for all f ∈ Lp
0(µ) if p > 2b/(b−1). If γ(n) decays faster

than polynomially, then a CLT holds for all f ∈ Lp
0(µ) with p > 2 arbitrary.

A Miscellaneous results and proofs

Proof of Proposition 13. We follow the proof of [8, Lemma 5.1]. So we choose
some g ∈ Lp

0(µ) with ‖g‖p = 1, and for R > 1 to be chosen later, define
gR := g ∧R ∨ (−R), and set mR :=

∫

gR dµ. So we also obtain

|mR| ≤ ‖g‖pp/Rp−1

and
‖g − gR‖22 ≤ ‖g‖pp/Rp−2.

Then we bound using the fact that Pn is a contraction on L2(µ),

‖Png‖2 ≤ ‖Png − PngR‖2 + ‖Pn(gR −mR)‖2 + |mR|
≤ ‖g − gR‖2 + ‖Pn(gR −mR)‖2 + |mR|
≤ ‖g‖pp/R

p−2
2 + γ1/2(n)‖gR −mR‖osc + ‖g‖pp/Rp−1

≤ 1/R(p−2)/2 + 2Rγ1/2(n) + 1/Rp−1

≤ 2Rγ1/2(n) + 2/R(p−2)/2.

Finally this can be optimized by choosing R = 22/pγ−1/p(n). The result then
follows.
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Lemma 116. Assume Φ defines a subspace of L2
0(µ), F = {f ∈ L2

0(µ) : Φ(f) <
∞}. Let T be self-adjoint and assume that f ∈ F ⇒ Tf ∈ F . Let S denote the
restriction of T to the Hilbert space F̄ , the closure of F . Then ψ in Remark 22
satisfies

ψ(0; Φ) = GapR(S).

If Φ = ‖·‖2osc, then F̄ = L2
0(µ) and ψ(0; Φ) is the L2

0(µ) spectral gap of T .

Proof. F is a normed vector space with norm ‖·‖2, and hence F̄ is a Hilbert
space. We may deduce that the restriction of T to F is an operator from F to
F̄ , and that S is its unique extension as a bounded linear operator from F̄ to
F̄ . By [12, Theorem 22.A.19] we have supf∈F̄,‖f‖2=1 〈Sf, f〉 = supσ(S) so that

inff∈F̄ E(S, f)/ ‖f‖22 = GapR(S).

Now assume that Φ = ‖·‖2osc. For any f ∈ L2
0(µ) we may define fn = 1An · f

and gn = fn−µ(fn), whereAn = {x : −n ≤ fn(x) ≤ n}. Then (gn) is a sequence
of bounded functions in L2

0(µ) with gn → f pointwise and |gn| ≤ |f |. We have

|µ(fn)| = |µ(fn)− µ(f)| ≤ µ(|fn − f |) = ‖fn − f‖L1(µ) ≤ ‖fn − f‖2 ,

from which we obtain that ‖gn − f‖2 ≤ 2 ‖fn − f‖2 → 0 by dominated conver-
gence, and hence F̄ = L2

0(µ).

Remark 117. If T = P ∗P , then T is self-adjoint and positive, and by [12,
Theorem 22.A.17 and Corollary 22.A.18] we may further deduce that

‖S‖F̄→F̄ = ‖R‖2F̄→F̄ = 1− ψ(0; Φ),

where R is the restriction of P to F̄ .

Lemma 118. Let P be a µ-reversible Markov transition kernel P on (E, E ).
Then for any A ∈ E

E(P,1A) = µ⊗ P
(

A×A∁
)

and var
(

1A

)

= µ⊗ µ
(

A×A∁
)

.

Proof. Let A ∈ E . By polarization, considering when |1A(x) − 1A(y)| = 1 6= 0
and using the symmetry of µ⊗ P we have

E(P,1A) =
1

2

∫

[

1A(x) − 1A(y)
]2
µ⊗ P (dx, dy)

=
1

2

∫

[

1A(x)1A∁(y) + 1A∁(x)1A(y)
]

µ⊗ P (dx, dy)

=

∫

1A(x)1A∁(y)µ⊗ P (dx, dy) .

The result on the variance follows by considering P (x,A) = µ(A) for (x,A) ∈
E× E and the classical identity var

(

1A

)

= 1
2Eµ⊗µ

[

(

1A(X)− 1A(Y )
)2
]

.
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Lemma 119 ([25]). Let ν be a symmetric probability measure on (E×E, E ⊗E ).
Then for any h : E×E → R+ such that h ∈ L1(ν) and for any x ∈ E, y → h(x, y)
is constant. Writing h(x) := h(x, y) for notational simplicity, define Au := {x ∈
E : h(x) ≤ u} for u ≥ 0 . Then we have

Eν [|h(X)− h(Y )|] = 2

∫

ν(At, A
∁
t ) dt . (29)

Proof. We have by symmetry of ν and Fubini,

Eν [|h(X)− h(Y )|] = 2

∫ ∫

ν(dx, dy)1{h(x) ≤ t < h(y)} dt

= 2

∫

ν(At, A
∁
t ) dt ·
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