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Key Question
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• Draping composites on doubly curved 
surfaces is inherently difficult

• Euclidean onto non-Euclidean surface
• Gauss: induces stretching
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• How does nature produce much more 
complicated shapes?

• Curved material deposition? Or 
transition from Euclidean to non-
Euclidean?
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Case for Support 
Bioinspired manufacturing of non-Euclidean morphologies 

1. Background & Research Vision 
High-value manufacturing processes for engineering materials used in the aerospace, automotive, 
and wind energy sectors generally attempt to minimise process-induced residual stresses. These 
residual stresses occur, for example, in the quenching of metals or during the curing process of 
layered fibre-reinforced plastics (composite materials). The reason why residual stresses are 
avoided during manufacturing is because they can significantly influence the strength and stiffness 
of engineering materials and therefore need to be quantified to allow for safe operation of engineered 
products. In addition, residual stresses lead to geometrical distortions that, when uncontrolled, can 
lead to manufactured components falling outside pre-specified tolerances.  

Nature, on the other hand, astutely exploits residual stresses in its manufacturing processes, i.e. 
growth & atrophy, swelling & shrinkage, and material remodelling [1]. In particular, differential growth 
that varies in space and/or in time across a growing body leads to internal residual stresses that 
cause complex geometric patterns through bending, wrinkling, and/or folding. Examples include the 
fractal rippling at the edges of leaves [2], the wrinkling of multilayered tissues (e.g. human skin), and 
the gyrification of the cerebral cortex [3]. In many cases, the geometrical distortions that occur 
because of growth-induced residual stresses are inextricably linked to biological function, the best 
example being cortical folding of mammalian brains which is directly linked to healthy brain function. 
In summary, while engineers avoid residual stresses in the design of mechanical systems, nature 
opts to precisely control residual stresses for tailored functionality.  

Over the last three decades, the mathematical framework of continuum mechanics, which is used 
to analyse and predict the deformations, strains, and stresses within engineering materials, has been 
adapted to model (i) the behaviour of biological materials under load, and (ii) the growth, atrophy 
and remodelling of biological materials during development. This latter field of growth mechanics, 
also known as morphoelasticity [1], has evolved as a powerful tool to model growing systems and 
provides valuable insights into the mechanisms of growth in health and in disease (see Fig. 1 for 
examples of the PI’s work on growing plants). In morphoelasticity, microenvironmental cues 
(chemical or mechanical) are transposed into a macromechanical growth law that is then applied at 
the continuum level to analyse diverse problems that occur in biological development. 

Fig. 1. Examples of non-Euclidean 3D geometries in thin biological membranes. These 
morphologies can be described and understood using morphoelastic models as shown in grey. 
With the help of morphoelastic models, the macroscale mechanics that drive the formation of 

complex and intricate morphologies are now understood. However, there is still very little interaction 
between engineering mechanics and biology, and a disconnect in the way the two disciplines explore 
the topic of growth. There is thus immense potential in applying insights from developmental biology 
to reimagine industrial production processes in cleaner and more sustainable ways, and 
simultaneously, to feed engineering manufacturing approaches back into synthetic biology to aid in 
the design of engineered biological systems. As elastic instabilities such as buckling, wrinkling, and 
rippling are scale invariant [4], methods developed at the macro-scale of mechanical engineering 
can readily be translated to the smaller length scales of synthetic biology.  

For example, the intricate morphologies that are the norm in thin biological structures are now 
finding increasing application in the design of micro-architected solar panels and morphing structures 
[4]. These undulating geometries with spatially varying curvature (so-called non-Euclidean 
geometries [2]) are very difficult and costly to manufacture using current subtractive or additive 
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 2 

manufacturing processes [4]. Could material therefore be deposited in a flat (Euclidean) manner and 
the introduction of controlled residual stresses lead to the formation of more complex geometries? 
At the same time, could an understanding of the physical triggers, such as swelling or temperature 
gradients, that are best used to control residual stresses at the macroscale, also influence the 
production of engineered biological tissues by controlling similar variables at the microscale?  

This research proposal seeks to take the first step in the breakthrough idea of creating a two-way, 
interactive communication channel between engineering mechanics and synthetic biology in high-
value manufacturing. Reimagining high-value manufacturing processes in a biologically inspired way 
will make industrial processes more sustainable but also open-up entirely new manufacturing 
capabilities at the microscale of synthetic biology such as 3D printing of biological tissues, 
replacement organs, and skin grafts.  
2. Proposal Objectives and Methodology 
The objectives of the proposed research are two-fold: 

1. The development of a bioinspired manufacturing process that uses architected material 
deposition on a 2D surface and targeted physical stimuli to induce tailored residual stresses 
that lead to complex 3D shapes. 

2. To feed successful approaches of controlling residual stresses at the macroscale back into 
synthetic biology to aid in the manufacture of synthetic bio tissues. 

To achieve these objectives the project will involve three distinct work packages focused on 
computational development, manufacturing of prototypes, and collaboration and interaction with the 
BrisSynBio group at the University of Bristol. The key to creating complex 3D geometries from 
material deposited on a 2D surface is tailoring residual stresses during manufacturing. In particular, 
the presence of compressive stresses causes thin sheets to buckle out-of-plane, to wrinkle, crease, 
or fold. Residual stresses can be introduced, for example, by combining materials with different 
thermal expansion coefficients and curing the assembly at high temperature. The challenge herein 
lies in accurately controlling the spatial distribution of the residual stresses to achieve the target 
shape. Fibre-reinforced composite materials are ideal candidates in this regard as their orthotropic 
properties (the direction along the fibres has different material properties than the direction across 
the fibres) means that a laminate comprised of individual layers with differing fibre directions will 
automatically incur residual stresses when cured and cooled, because individual layers wish to 
expand and contract by different rates.  

Recent research at the Bristol Composites Institute of the University of Bristol has pioneered a 
novel manufacturing process that allows fibre-reinforced plastics to be deposited in curvilinear rather 
than the usual straight fibre paths (see Fig. 2). This so-called fibre steering technology means that 
the fibre orientation—and therefore the degree of orthotropy and induced residual stress during 
curing—can be controlled and tailored spatially. In this manner, fibre steering creates the possibility 
of smoothly changing material properties across a manufactured component to tailor the distribution 
of residual stresses during manufacturing. Hence, by spatially blending material, compressive 
residual stresses can be tailored to induce a target shape during curing at high temperature (Fig. 2).  

Fig. 2. Example of fibre steering, which can be used to create a tailored stiffness distribution across 
a flat disc that, when cured and cooled, morphs into a 3D monkey saddle shape. 

To demonstrate the feasibility of this approach the first work package (WP1) of the project will 
further develop the curing and process modelling capabilities of the PI’s research group [5]. In 
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Crinkling of a Stretched Edge
4

• Analogous to tearing a plastic sheet

• Due to plastic deformation the sheet’s
metric changes

• Associated Gaussian curvature

• Saddle-like configurations. If f(y)
pronounced: saddles on saddles

R.M.J. Groh Computer Methods in Applied Mechanics and Engineering 394 (2022) 114839

Fig. 7. A thin plastic sheet that is torn along an initial notch as shown in (a) develops a fractal wrinkling pattern along the torn edge due
to the strongly increasing plastic stretch towards the edge as depicted in (b,c). The same fractal pattern is also observed in many growing
biological tissues such as the leaves of common kale (Brassica oleracea var. sabellica) shown in (d).

conditions could lead to one mode (four- or five-lobed monkey saddle) being preferred over the other. As shown in
the following sections, this scenario of multi-stability triggered by consecutive and closely spaced bifurcations from
a fundamental state occurs for various geometries and growth laws, and may therefore be a general mechanism by
which different morphologies evolve from nearly identical starting conditions.

4.3. Fractal wrinkling at a growing edge

Fractal wrinkling patterns at free edges have been observed in diverse scenarios ranging from growing leaves to
torn plastic sheets [5] (see, e.g., Fig. 7). The underlying mechanics of this pattern formation is driven by spatially
varying changes to the original surface metric as a result of plastic deformation or internal growth [3,61,62].

In the case of a plastic sheet torn along an initial notch (shown in Fig. 7a–c) the induced plastic stretch is
maximum at the torn edge and decreases rapidly to zero in the direction perpendicular to the edge (denoted as the
y-axis in Fig. 7b). The length of a differential line element on the torn surface is given by dl2 = f (y)2dx2 + dy2,
where f (y) describes the ratio of plastically strained differential length at position y to the initial length prior to
tearing. The metric tensor induced by tearing the sheet is thus given by G = f (y)2ex ⌦ ex + 1ey ⌦ ey with f (y)
tending to unity far from the edge (no plastic deformation) and increasing convexly towards the torn edge [3]. In
general, different tearing velocities, material properties, and sheet dimensions lead to different metric functions f (y),
and thus different wrinkling patterns. For any surface with the above metric tensor, the associated Gaussian curvature
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In Section 2.3 we mentioned the similarities in modelling plasticity and growth based on the multiplicative
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y = 3 cm clamped (all dofs constrained). The sheet is discretised into 249 ⇥ 61 nodes in the x- and y-directions,
respectively, which are then assembled into 930 25-noded spectral elements. The element distribution in the
y-direction is logarithmic with a bias of finer density towards the free edge. The shear modulus of the sheet is
taken as µ = 4⇥103 N/cm2 and the bulk modulus as K = 4⇥105 N/cm2. A one-dimensional and spatially varying
growth law is defined in the global Cartesian coordinate system Fg(y, �g) = diag(gx (y, �g), 1, 1), where gx (y, �g)

20

Torn bin bag: crinkled edge

R.M.J. Groh Computer Methods in Applied Mechanics and Engineering 394 (2022) 114839
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biological tissues such as the leaves of common kale (Brassica oleracea var. sabellica) shown in (d).
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Fig. 8. Different exponential and power law functions used to model longitudinal edge growth in an initially flat sheet. Only the sharp
power law represented by the solid line leads to a fractal wrinkling pattern at the free edge.

describes longitudinal growth in the x-direction with greatest magnitude (parametrised through growth factor �g)
at the free edge, y = 0 cm, and smallest magnitude gx (y, �g) ! 1 at the clamped edge, y = 3 cm.

In the following, two different types of growth law are assumed for gx (y, �g), where the x-direction metric always
increases convexly towards the free edge. The first case is inspired by Marder et al. [3] and assumes exponential
growth towards the free edge with gx (y, �g) = 1 + �ge�5y . For clarity, the exponential function is visualised in
Fig. 8 by the dashed line. Qualitatively identical results can also be produced by using power law growth of the
form gx (y, �g) = 1 + �g(1 + y/ l)�a with a = 2 and a characteristic length-scale parameter of l = W/10 cm
(W = 3 cm is the width of the sheet in the y-direction). The power law function is visualised in Fig. 8 by the
dotted curve and is almost coincident to the previous exponential law towards the free edge (y = 0 cm). The second
case modelled herein shortens the characteristic length-scale parameter of the power law to l = W/100 cm to
produce a sharper increase in longitudinal growth towards the free edge of the sheet (see the solid curve in Fig. 8).
This second growth law leads to (i) a significantly greater mismatch between the free lengths of grown material
fibres over a specific length scale close to the free edge; and (ii) a more rapidly scaling negative Gaussian curvature
of the associated free surface metric towards the edge.

These two scenarios of more benign exponential growth (or equivalent power law growth with l = W/10 cm)
and the steeper power law growth (l = W/100 cm) are now studied in turn. Fig. 9a shows an equilibrium manifold
for the exponential growth law in terms of the thickness-normalised out-of-plane displacement w/h at one free
corner of the sheet vs. the growth factor �g. As shown in the inset of Fig. 9a the growing sheet initially remains flat
(w/h = 0) but this flat equilibrium state loses stability at a supercritical pitchfork bifurcation. In fact, there are two
closely spaced bifurcation points on the fundamental path. The eigenvector of the first critical point corresponds to
one full wave forming at the free edge (see Fig. 9b-A), while the eigenvector of the second critical point corresponds
to 1.5 waves (see Fig. 9b-a). Branch switching from these two bifurcation points leads to the two intertwined post-
critical equilibrium branches shown in Fig. 9a. Both of these paths are seen to weave backwards and forwards with
alternating negative and positive values of w/h. The deformation modes in Fig. 9b show that the two post-critical
equilibrium paths describe pattern formation sequences into increasing number of edge waves and increasingly
smaller wavelength. The post-critical equilibrium path branching from the first critical point corresponds to mode
shapes that are left–right symmetric (crests or valleys at both free corners, see points A–D in Fig. 9b), whereas
the post-critical equilibrium path branching from the second critical point corresponds to mode shapes that are
left–right antisymmetric (crest at one free corner and valley at the other, see points a–d in Fig. 9b). The first post-
critical path is initially stable (see inset in Fig. 9a) such that the flat sheet buckles onto this path to begin with. As
the growth factor �g increases further both equilibrium paths exchange stability by undergoing a series of re- and
destabilisations at additional bifurcation points. As shown in Fig. 9a, the two post-critical paths are connected by
unstable segments between bifurcation points. Hence, as the growth factor �g increases the sheet successively snaps
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For each point in the deformed shell volume Be
t , we now have a new set of covariant basis vectors
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To make the shell formulation consistent with a first-order shear and normal deformable theory, we only retain the
underlined parts of Eq. (18). These are given by:
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The inconsistency of the six-parameter shell formulation becomes apparent when we enforce  = 0, in which case
the term accounting for the linear variation of the through-thickness strain vanishes, i.e. 33 = 0.

2.3. Growth kinematics

To introduce the kinematics of growth, the deformation gradient tensor at time t is decomposed in a multiplicative
fashion [18] as follows

F = Fe Fg, (20)

where Fe is the elastic deformation tensor defined in a fictitious and intermediate, stress-free configuration Bg .
Hence, Fe maps a differential line element dX̂ from the intermediate, stress-free configuration Bg into the
differential line element dx in the stressed configuration Bt . In addition, the growth tensor Fg maps a differential
line element dX from the original, undeformed configuration B0 into the intermediate configuration Bg . As shown
in Fig. 2, the multiplicative decomposition accounts for stress-free and kinematically incompatible growth of a
body into an intermediate, fictitious state followed by additional elastic and stress-inducing deformations that
ensure geometric compatibility. In this process it is assumed that the density of the growing body remains constant
(⇢0 = ⇢g = ⇢t ) such that any change in mass leads to a change in volume. By assuming that all elastic deformations
from Bg to Bt are incompressible, we have Je = det Fe = 1 and J = det F = det Fg = Jg.
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Fig. 10. Wrinkling at a free edge of a flat sheet due to steeper power law edge growth. Two pitchfork bifurcations (critical points
�⇤

g1 = 1.97 ⇥ 10�3 and �⇤

g2 = 1.99 ⇥ 10�3) that branch from the flat fundamental state are intertwined and correspond to left–right
symmetric and antisymmetric wrinkling modes. (a) and (b) show the equilibrium paths of growth factor �g vs. the thickness-normalised
out-of-plane displacement w/h at one free corner of the sheet. (a) Shows the region of growth factor �g < 0.1 where wrinkling occurs
over one length scale, whereas (b) shows an extended equilibrium manifold �g < 0.35 with wrinkling occurring over two length scales for
�g ' 0.2. (c) Deformation plots of different points marked on the equilibrium curves in (a) and (b) with all out-of-plane displacements
amplified by a factor of 3.

Fig. 10a shows the equilibrium manifold for steeper power law growth (l = W/100 cm) in terms of the thickness-
normalised out-of-plane displacement w/h at one free corner of the sheet vs. the growth factor �g. As discussed
for the exponential growth law, we observe two post-critical equilibrium paths that branch from closely spaced
bifurcation points on the fundamental equilibrium path of the flat sheet (w/h = 0). The two post-critical paths are
again intertwined, connected by unstable segments, and describe left–right symmetric and left–right antisymmetric
wrinkling patterns of increasingly shorter wavelength as the growth factor �g increases. Contrary to the exponential
growth law in Fig. 9a, the out-of-plane deformation w/h grows much slower with increasing �g; for example, when
�g ⇡ 0.1 we have max(w/h) ⇡ 3.5 in Fig. 10a compared to max(w/h) ⇡ 12 in Fig. 9a. Furthermore, a greater
number of back-and-forth oscillations occur in the two equilibrium paths for the steeper power law, indicating more
transitions to shorter wavelengths over the same range of growth factor. Indeed, the deformation modes shown for
points A and B in Fig. 10c visually highlight the greater number of undulations at the edge of the sheet compared
to the same level of growth in Fig. 9.

Above a critical threshold of steep power law growth the wrinkling behaviour of the sheet changes qualitatively.
Fig. 10b extends the equilibrium path of the left–right symmetric wrinkling pattern to the range �g < 0.35.
For �g ' 0.2 the equilibrium path breaks the previous regular pattern of weaving backwards and forwards and
significantly increases the out-of-plane displacement w/h by initiating a second wave at a longer length scale. As
shown in the deformation modes for points C and D in Fig. 10c, the transition in behaviour above �g ⇡ 0.2 freezes
the wavelength of the existing wrinkling pattern and an additional longer wavelength undulation forms.

For the steeper power law growth we therefore have a scenario where the sheet initially accommodates the
growing length of the free edge by forming undulations of shorter and shorter wavelength. At a certain threshold of
growth, a further reduction of the wavelength becomes energetically more expensive than forming a secondary longer
wavelength undulation. Returning to the analogy of the beam on an elastic foundation, energy minimisation of the
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Fig. 9. Wrinkling at a free edge of a flat sheet due to exponential edge growth. Two pitchfork bifurcations (critical points �⇤

g1 and �⇤

g2)
that branch from the flat fundamental state are intertwined and correspond to left–right symmetric and antisymmetric wrinkling modes. (a)
The equilibrium paths of growth factor �g vs. the thickness-normalised out-of-plane displacement w/h at one free corner of the sheet; (b)
Deformation plots of different points marked on the equilibrium curves in (a).

between the left–right symmetric and left–right antisymmetric undulation modes, all the while increasing the wave
number and decreasing the wavelength at the free edge.

The two intertwined equilibrium paths that describe mode changes into greater and greater wave numbers are
at first sight reminiscent of homoclinic snaking [63] that governs the pattern formation in axially compressed
cylinders [64,65]. However, homoclinic snaking describes a process whereby an initially localised post-critical
solution multiplies through a series of limit point instabilities into a periodic waveform. Crucially, the wavelength of
the original localised cell remains constant and does not modulate as the pattern multiplies. Furthermore, in snaking
the forcing parameter oscillates within a bounded pinning region around the so-called Maxwell load [66] where the
pre-critical and periodic post-critical modes have equal energy. As none of these characteristics are observed in the
present case, the pattern formation must be governed by different mechanics. Here, a useful analogy can be made
to an initially straight beam resting on an elastic stiffening foundation. If we model the infinitesimal longitudinal
line of the sheet at y = 0 cm as a 1D beam, then the rest of sheet acts as an equivalent restraining foundation
because the edge is defined to grow the most. With increasing growth factor �g, the effective restraint, and hence
the stiffness of the equivalent foundation, increases as the spatial mismatch in growth is proportional to �g. As is
well known from buckling of a beam on an elastic foundation, the buckling wavelength scales inversely with the
foundation stiffness, and we should therefore expect a shortening of the wavelength for increasing �g. This is indeed
what we observe in Fig. 9.

Another trend in the equilibrium manifold of Fig. 9a is that the two post-critical paths spread out both on
the horizontal (w/h) and vertical (�g) axes. Hence, the incremental change in growth factor (��g) between two
successive wave numbers increases, and the out-of-plane deformation magnitude of each wave (|w/h|) also increases
significantly with increasing �g. Therefore, as growth proceeds the sheet increasingly accommodates the extra
length at the free edge through out-of-plane deformation rather than favouring further shortening of the buckling
wavelength. Indeed, this trend of accommodating differential edge growth predominantly through out-of-plane
deflection continues well beyond the ordinate range �g < 0.1 shown in Fig. 9a. An extension of the present
analysis up to �g = 2 leads to large out-of-plane deflections of |w/h| > 35 with little increase in the wave number,
and ultimately to self-contact of individual wrinkles at the free edge. Hence, these findings corroborate previous
observations by Marder et al. [3] that a benign exponential or power law growth function towards a free edge does
not lead to fractal wrinkling patterns.
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Case for Support 
Bioinspired manufacturing of non-Euclidean morphologies 

1. Background & Research Vision 
High-value manufacturing processes for engineering materials used in the aerospace, automotive, 
and wind energy sectors generally attempt to minimise process-induced residual stresses. These 
residual stresses occur, for example, in the quenching of metals or during the curing process of 
layered fibre-reinforced plastics (composite materials). The reason why residual stresses are 
avoided during manufacturing is because they can significantly influence the strength and stiffness 
of engineering materials and therefore need to be quantified to allow for safe operation of engineered 
products. In addition, residual stresses lead to geometrical distortions that, when uncontrolled, can 
lead to manufactured components falling outside pre-specified tolerances.  

Nature, on the other hand, astutely exploits residual stresses in its manufacturing processes, i.e. 
growth & atrophy, swelling & shrinkage, and material remodelling [1]. In particular, differential growth 
that varies in space and/or in time across a growing body leads to internal residual stresses that 
cause complex geometric patterns through bending, wrinkling, and/or folding. Examples include the 
fractal rippling at the edges of leaves [2], the wrinkling of multilayered tissues (e.g. human skin), and 
the gyrification of the cerebral cortex [3]. In many cases, the geometrical distortions that occur 
because of growth-induced residual stresses are inextricably linked to biological function, the best 
example being cortical folding of mammalian brains which is directly linked to healthy brain function. 
In summary, while engineers avoid residual stresses in the design of mechanical systems, nature 
opts to precisely control residual stresses for tailored functionality.  

Over the last three decades, the mathematical framework of continuum mechanics, which is used 
to analyse and predict the deformations, strains, and stresses within engineering materials, has been 
adapted to model (i) the behaviour of biological materials under load, and (ii) the growth, atrophy 
and remodelling of biological materials during development. This latter field of growth mechanics, 
also known as morphoelasticity [1], has evolved as a powerful tool to model growing systems and 
provides valuable insights into the mechanisms of growth in health and in disease (see Fig. 1 for 
examples of the PI’s work on growing plants). In morphoelasticity, microenvironmental cues 
(chemical or mechanical) are transposed into a macromechanical growth law that is then applied at 
the continuum level to analyse diverse problems that occur in biological development. 

Fig. 1. Examples of non-Euclidean 3D geometries in thin biological membranes. These 
morphologies can be described and understood using morphoelastic models as shown in grey. 
With the help of morphoelastic models, the macroscale mechanics that drive the formation of 

complex and intricate morphologies are now understood. However, there is still very little interaction 
between engineering mechanics and biology, and a disconnect in the way the two disciplines explore 
the topic of growth. There is thus immense potential in applying insights from developmental biology 
to reimagine industrial production processes in cleaner and more sustainable ways, and 
simultaneously, to feed engineering manufacturing approaches back into synthetic biology to aid in 
the design of engineered biological systems. As elastic instabilities such as buckling, wrinkling, and 
rippling are scale invariant [4], methods developed at the macro-scale of mechanical engineering 
can readily be translated to the smaller length scales of synthetic biology.  

For example, the intricate morphologies that are the norm in thin biological structures are now 
finding increasing application in the design of micro-architected solar panels and morphing structures 
[4]. These undulating geometries with spatially varying curvature (so-called non-Euclidean 
geometries [2]) are very difficult and costly to manufacture using current subtractive or additive 

Biomechanics & Growth

Rumex Crispus Leaf

Narcissus Petal

From Understanding Biomechanics

• Pattern formation not “just” patterned 
deposition of material

• Varying planar growth laws lead to 
complex doubly curved shapes

To Bioinspired Manufacturing

Steered Fibre
Paths

Cure and Cool

• Straightforward mechanical analogy 
between growth & thermal expansion

• Use planar variations of expansion 
coefficient to create complex shapes?



Feasibility study
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• Isotropic plate with varying 
expansion factor

• Exponential distribution of CTE 
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Orthotropic expansion factors of composites
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• In the fibre direction, larger Young’s modulus but 
essentially zero CTE

• When we cool down composites from curing, 
composites tend to
Ø expand slightly in the fibre direction
Ø contract across the fibre direction

Typical CFRP lamina properties



Tow-Steered Design
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• Smoothly vary fibre trajectory to:

Ø Induce spatially varying residual stresses 
during cooling 

Ø Create doubly curved shapes from flat 
preform through buckling

Roller Edge

Fr
ee

Free

Free

• Rectangular plate with 8-layer 
(balanced, symmetric layup)

• Fibre angle variation: 

• General guidelines
ØFibre direction aligned with the x’ axis 
where wrinkling occurs (no contraction)  

ØFibre variation in the y’ direction to 
produce contraction internally



Results
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• Stable symmetric and anti-symmetric 
wrinkling modes. 

• Critical wrinkling pattern is a symmetric 
mode with 3 waves. 

• Further mode progression is not 
observed due to the relatively large 
thickness at the free edge.



Cylindrical shell inspired from daffodil’s corona
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Path B

Path A

• Deformation at ΔT=250 K

Path A:
(15 waves)

Path B:
(14 waves)



Conclusion and Future Work
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• Complex patterns can form in growing materials through:
• spatially varying growth laws
• excess length leads to compressive stresses and buckling
• shape is doubly curved (usually saddles)

• Analogy between growth and thermal expansion:
• use planar variations in expansion coefficients to induce residual stresses → 

tow-steered composites
• can we create other shapes (not just saddles)?
• scope for inverse design?
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