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1. Introduction

Paper-based biosensors are microfluidic devices designed from

cellulose and nitrocellulose fibres [1]. They are commonly used for

on-site, non-laboratory-based testing because they are light-weight, robust,

inexpensive, small-in-size (millimetres or centimetres) and highly portable.

Additionally, they can be created from biodegradable renewable resources

[2], and they can accommodate a range of liquid sample types, including bio-

logical (e.g., blood, urine, saliva, sputum), environmental (e.g., water, soil)
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and chemical (e.g., clinical and veterinary medicines). Using paper also has

the benefit of filtering out environmental contaminants from samples. These

qualities also align with the World Health Organization’s ASSURED

criteria (Affordable, Sensitive, Specific, User-friendly, Rapid & Robust,

Equipment free, Deliverable) [3], making them excellent diagnostic tests

for resource-poor settings. Indeed, paper-based biosensors have a range of

uses, including clinical diagnostics, veterinary diagnostics, environmental

sampling, and food safety. Recently, smartphones have been identified as

an important way to be complimentary for the enhancement of data that

can be collated from these devices to make paper-based biosensors even

more useful.

2. Paper-based biosensors

There are many different types of paper-based diagnostics, but they all

function on a similar principle: fluid is placed on an inlet, and then trans-

ferred across a membrane, usually through capillary action, to an outlet

where a chemical or biochemical reaction takes place. Some tests can even

be multiplexed to provide more than one reaction or result. The reactions

are usually colorimetric and can be seen with the naked eye. Paper is

particularly beneficial for colorimetric analysis: it is normally white, which

provides strong contrast for colour-change based detection. Broadly, paper-

based diagnostics can be separated into the three categories depending on

how they are designed: the dipstick assay, the lateral flow device (LFD),

and microfluidic paper-based analytical devices (μPADs) (Fig. 1).

2.1 The dipstick assay
The dipstick assay is widely cited as a simple, low-cost diagnostic tool. It is

comprised of a water-resistant plastic backing, lined with multiple absorbent

pads embedded with chemical reagents (Fig. 1A). The assay is briefly placed

into a liquid sample and then removed; analytes from the sample interact

with the embedded chemical reagents to provide a colorimetric change that

indicates a result. Dipsticks can contain more than one assay on each stick.

One of the most common examples is litmus paper. Litmus paper is impreg-

nated with chemicals that change colour depending on the pH of the

solution; this is because the pH alters how protonated the chemical is [4].

For example, at a low pH, bromothymol blue is fully protonated and has

a yellow colour; however, at higher pH’s, bromothymol blue loses protons

and shifts to a blue colour.
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The urinalysis dipstick assay is another commonly used dipstick assay. It is

a screening tool for urinary tract infection (UTIs) [5]. UTIs are caused by

gram-negative bacteria that convert urine nitrates into nitrites. Here, the

absorbent pad contains Griess reagent. A urine sample is placed on the paper:

nitrites interact with the Griess reagent [6] to produce a red coloured azo dye

(Fig. 2). Urine does not normally contain nitrites, therefore, if nitrites are

detected, it is likely due to a bacterial infection [7].

Fig. 1 Examples of different types of paper-based biosensor. (A) The dipstick assay is
briefly submerged into a liquid sample. It has multiple discrete zones for sample anal-
ysis, typically via chemical reagents embedded on small nitrocellulose membranes
attached to a plastic backing card. Analytes in the sample interact with the embedded
chemical reagents to change the colour gradient and indicate a positive or negative
result. (B) A small liquid sample is placed into the sample port of the lateral flow assay.
Capillary action pulls the liquid sample across a series of membranes where there is a
test line (T) and a control line (C) to indicate results, usually by immunological reactions.
(C) μPADs range from relatively simple to very complex paper-based devices. In most
cases, a liquid sample is placed into a sample port. Capillary action draws the sample
through a series of channels, where various chemical reactions can provide discrete
results, or build upon each other in a multi-step reaction to produce a result.

Fig. 2 The Griess Reagent system uses sulfanilamide and N-1-naphthylethylenediamine
dihydrochloride, in conjunction with nitrites and acidic conditions, to produce a red
coloured azo dye. The reaction cannot proceed without a nitrite intermediary; therefore,
the sample pad will only turn red in the presence of nitrites.
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The urine dipstick assay commonly includes additional tests for blood,

ketones, glucose, pH, protein, bilirubin, urobilinogen, and/or leukocyte

esterase, all on the same test strip. The dipstick assay has also been adapted

for many purposes, for example, to detect pathologies in animals [8] and to

monitor environmental pesticides [9,10].

2.2 The lateral flow device (LFD)
The lateral flow device (LFD) is more complex than the dipstick assay. It is

comprised of multiple different membranes arranged linearly (Fig. 1B). A

liquid sample is placed at one end of the device, and capillary action moves

the sample across various zones on the device, where different reactions can

take place. Briefly, the different zones of the test are:

1. The sample pad. A liquid sample is placed on this pad, which controls the

distribution of the sample flow to the rest of the test. In addition, reagents

can be embedded here and once the sample pad is wet, can then be

released to flow across the device.

2. The conjugation pad. Here, analytes in the sample interact with a detec-

tion molecule that can indicate their presence (or lack thereof ).

3. A test line. Here, the final reactions take place to indicate a positive or a

negative result. Some tests can have more than one test line.

4. A control line. This zone indicates that the liquid sample has successfully

moved across the test in sequential order to completion.

5. An absorbent pad. This pad controls the sample flow rate across the

membranes via capillary action and catches any excess fluid.

2.2.1 Detection molecules
Detection molecules can be a variety of different molecules, including anti-

bodies, aptamers, and even nucleotide sequences.When antibodies are used,

the test is often called a lateral flow immunoassay (LFIA). Antibodies are

small immune proteins that bind to an analyte. They are a natural, adaptive

immune response in vertebrates [11]. They have been used in bioanalysis for

over five decades because they are easy to produce and can be highly specific

[12] to chosen targets. There are two types of antibodies used in the LFIA:

polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs). PAbs are

generated in vivo by immunising an animal, most commonly a rabbit or

sheep, with the analyte of interest, and then by purifying the resultant anti-

bodies from the animal’s blood. This has the advantage of being very quick,

however, due to the polyclonal nature, batch-to-batch consistency can vary

[13,14]. MAbs are similarly generated by immunising an animal, usually
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mice, with an analyte of interest, however, here, the antibody producing

cells, the B lymphocytes, are harvested and immortalised, meaning the anti-

bodies can be produced in vitro forever [12]. This method ensures more

robust batch-to-batch consistency, however, there can still be some genetic

drift. Thus each batch of pAbs or mAbs needs to be thoroughly validated

after production and purification [13,14].

Aptamers are short single-stranded DNA or RNA that can be designed

with specific 3-dimensional conformations that bind to an analyte [15,16].

Aptamers are 10 to 100 nucleotides in length, depending on the analyte size,

and, like antibodies, they can be very specific to their target. Indeed, aptamers

can be used as a substitute for antibodies for all bioanalysis applications, and in

some cases are superior. Aptamers are smaller in size, meaning that more indi-

vidual molecules can be used to detect the antigen, potentially making the test

more sensitive. Additionally, because aptamers are nucleotide sequences, they

are more stable, particularly at high temperatures, making for a more robust

diagnostic test with a longer shelf-life. Furthermore, aptamers lack immuno-

genicity, and thus are less likely to cross react with other biological molecules

in the sample. Finally, once an aptamer has been identified, it is much easier to

ensure consistent reproduction and batch-to-batch consistency. That said,

identifying suitable aptamers can be much more difficult. This point should

not be taken lightly. Aptamers are produced in vitro, utilising a combinatorial

DNA library and a technique called Systematic Evolution of Ligands

Exponential Enrichment (SELEX) [17,18]. SELEX can be inefficient, making

it difficult to develop high affinity aptamers to specific targets [19–21].
However, this has been an area of constant improvement over the past two

decades with multiple modified methods showing increasing promise [22].

Antibodies or aptamers can be used in conjunction with nucleotide acid

sequences to produce a nucleic acid lateral flow immunoassay (NALFIA). In

this type of assay, haptens are incorporated into DNA primers targeting

specific nucleotide sequences. If the sequence is present during PCR-

amplification, the resultant product will have haptens on either side of

the DNA sequence; antibodies or aptamers can then capture and label the

complex by binding with the hapten. For example, Seidel et al. [23] devel-

oped a NALFIA to rapidly detect methicillin resistance genes in bacterial

samples. Their method was more sensitive and significantly faster than tra-

ditional assays, such as culture or real-time PCR. The hapten does not

always have to interact with an antibody; other reactions can be suitable.

For example, the hapten can be biotin with avidin as the capture or detector

molecule [24].
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2.2.2 Visual labels
Regardless of which detection molecule is used, it must be conjugated to a

visual marker. There are a myriad of visual labels available to use. The most

common labels provide a colorimetric change with the naked eye; for exam-

ple, colloidal gold nanoparticles are the most common visual markers for

reporting LFIA results. They come in a variety of sizes (nanometre scale)

and are spherical in shape. They are environmentally friendly, easy to pro-

duce, and can be functionalised for conjugation to an antibody or aptamer.

Colloidal gold nanoparticles have a signature red colour that can easily be

seen with the naked eye. Other examples of visual markers that can be seen

with the naked eye include coloured latex beads [25], carbon nanoparticles

[26–28], carbon nanotubes [29], and enzymes [30]; the different sizes and

structures have different nanostructures to improve binding capacity depending

on the antigen. Uniquely, enzymes have been used for chemiluminescence

detection, for example Kawde et al. [30] used horseradish peroxidase labelled

antibodies to detect carcinoembryonic antigen in human plasma. Here, the

benefits of using an enzyme assay improved sensitivity compared to colloidal

gold, however, at the same time it increases the complexity of the assay with

multiple time-limited steps and a development phase.

When used with the naked eye, these tests are qualitative, providing a

simple yes or no answer to whether the analyte of interest is present.

Some tests can become semi-quantitative by including a gradient card with

pre-printed lines of varying intensity that correspond with a numerical

result. This is very similar to a dipstick assay, whereby the user can visually

compare the intensity of their test line to a known standard. However, it can

be difficult to get accurate results; most dipstick assays rely on a range of col-

our changes to delineate ranges more clearly, whereby the user is comparing

line colour intensity. As an alternative, some tests can include an optical

reader, such as a handheld camera device [31] or even a smartphone camera

[32], which can take away some of the subjectivity in analysing the results

and also produce more accurate quantitation if needed.

Similarly, magnetic nanoparticles as a label can be used both by the naked

eye and with external devices to understand the test results [33]. Magnetic

particles can be coloured, to produce a test line result that is visible to the

naked eye or by an optical reader. Uniquely, the magnetic signals at the test

line can also be used as a signal and detected by a magnetic reader.

Reportedly, these signals are more stable compared to optical signals and sig-

nificantly more sensitive [34]. This means the test can be stored for long

periods of time and the results reviewed again at a future date.
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There are also many different types of visual marker that can’t be seen

with the naked eye but are still useful. For example, fluorescent molecules

can sometimes be more sensitive than colloidal gold due to the very strong

signal each individual molecule emits. That said, with these devices, the

labels absolutely require an external device that can excite fluorophores

and detect the emission. They also suffer from decreased stability and pho-

tobleaching [35]. More recently, quantum dots have been developed to

address some of these shortcomings. For example, due to their inorganic

nature, they are more stable and more resistant to photobleaching [36].

However, they can be more difficult to conjugate to detection molecules

[37], and thus are not so widely used yet. Other examples of this type of label

include lanthanide chelate labels [38], up-converting phosphor [39], and

fluorochrome dye [40].

2.2.3 LFIA formats
There are two main types of lateral flow assay, the sandwich assay and the

competitive assay (Figs. 3 and 4). Sandwich assays are normally used for

larger analytes because they have multiple binding sites and thus can accom-

modate multiple molecules binding simultaneously. Common examples

include hormone testing [41], infectious disease antigens [42], and food

Fig. 3 Examples of positive and negative lateral flow sandwich immunoassay results.
Results are dependent on the presence of an antigen: if there is antigen in the sample,
it is ‘sandwiched’ between two antibodies at the test line, producing a colour change to
indicate the positive result. Conversely, if there is no antigen in the sample, a ‘sandwich’
cannot be built at the test line, and thus there is no colour change, and a negative result
is achieved. This format is particularly useful for larger antigens that can accommodate
multiple binding sites.
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allergens [43]. In this format, as the analyte migrates across the membranes, it

first interacts with the detection molecule (Fig. 3). This molecule should be

very specific to the analyte of interest. Next, as this analyte-complex con-

tinues to move across the membrane, it interacts with another very specific

‘capture’ molecule that has been immobilised at the test line, building a

sandwich: capture molecule—analyte—detection molecule. This creates a

line of colour that can be seen with the naked eye, indicating a positive

result. If there is no analyte in the sample, the capture molecule and detec-

tion molecule will not interact, and thus there will be no line of colour, indi-

cating a negative result.

The home pregnancy test was the first commercial LFIA [44] and is the

most common example of a sandwich assay. Here, antibodies are

immobilised at the test line and also used as the detector molecule to detect

human chorionic gonadotrophic (hCG) to predict pregnancy [45]. hCG is a

hormone, usually only present in pregnant women, and is excreted in urine.

The competitive assay is sometimes referred to as an inhibition assay. It is

normally reserved for analytes that are too small to have multiple binding

sites. Common examples include drugs testing [46] and toxin testing

[47–49]. In this format, there is not a capture molecule at the test line,

Fig. 4 Examples of positive and negative competitive lateral flow immunoassay results.
Results are inverse compared to a sandwich assay. Results are still dependent on the
presence of an antigen: in this format, if there is antigen in the sample, it will bind with
the labelled antibody, preventing the antibody from interacting at the test line. Thus,
there will be no colour change at the test line. Conversely, if there is no antigen in
the sample, the labelled antibodies will be free to interact at the test line, producing
a colour change that indicates a negative result. This format is particularly useful for
smaller antigens that cannot accommodate multiple binding sites.
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instead, synthetic target analyte is immobilised here (Fig. 3). As above, if the

sample contains analyte of interest, it will first interact with a detector mol-

ecule at the conjugation pad, however, this complex will not interact at

the test line. There will be no colour change, indicating a negative result.

On the other hand, if there is no analyte of interest in the sample, the detec-

tor molecule will interact with the immobilised synthetic analyte at the test

line, producing a line of colour, indicating a positive result.

Both the sandwich and competitive formats potentially allow for mul-

tiplexing multiple test lines into the paper strip to detect multiple different

analytes [50–52]. This can be very useful in contaminant or toxin monitor-

ing in food safety applications whereby simultaneous occurrence can occur

and in the case of shellfish toxins as referenced prevents the need for three

separate tests with three different sample preparation methods. Multiplexing

can also be useful when multiple diseases that produce similar symptoms are

endemic to the same region. For example, this is particularly useful for

febrile illnesses such as dengue fever and yellow fever [53], as early identi-

fication can lead to timelier treatment. Due to the highly specific nature of

antibodies, a multiplex LFIA can even distinguish between different variants

of the same disease, such as different dengue serotypes [54]; this can be useful

because different serotypes are associated with the severity of the disease

[55]. That said, it can be very challenging to multiplex LFIAs and there

are some key points to consider during development. For example, increas-

ing the number of test zones on themembranemeans that the test zones have

to spaced more closely together or the test must be bigger [56]. In the first

example, this can make it more difficult to distinguish between test lines, in

the second example, this can increase test run time. Furthermore, due to the

2-dimensional nature of the LFIA, reactions occur in sequence. This means

that the binding interactions at the first test line can subsequently interfere

with downstream test lines by slowing the liquid flow across the membrane,

or even blocking other antibody/analyte complexes from proceeding

past. In this case, careful consideration must be given to the compatibility

of different antigens on the same test, the order the lines are printed [57],

or how the lines are printed [52].

No matter the format—sandwich, competitive, singleplex, or multi-

plex—there is always a control line that functions independently from the

test line(s). Here, a capture molecule is immobilised that will detect a sep-

arate detection molecule—neither of which should interact with molecules

found in the liquid sample. For example, Houghton et al. designed an LFIA

to detect capsular polysaccharide in patient blood samples [58]. Here, they
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used conjugated chicken antibodies in the conjugation pad, and anti-

chicken antibodies at the control line—neither of which interacted with

the many biological molecules found in human blood.

2.3 Microfluidic paper-based analytical devices (μPADs)
Microfluidic paper-based analytical devices (μPADs) further expands upon

lateral flow technology. Like the LFD, μPADs rely on capillary action to

move a sample across a series of membranes, however, these membranes

are not always arranged linearly and there are often additional elements

embedded into the device to manipulate the sample’s pathing through

the device for more complex reactions (Fig. 1C). Here, there are many dif-

ferent approaches. For example, one approach is ‘3D-printed’ biosensors,

whereby the paper membrane is printed with a hydrophobic substrate that

produces channels that guide the liquid flow across the paper (Fig. 5A).

There are many different printing methods available, examples include:

wax printing [59], inkjet printing [60], digital light processing (DLP) [61],

photolithography [62], laser treatment [63], plasma processing [64], flexo-

graphic printing [65], and chemical vapour deposition [66]. In these exam-

ples, hydrophobic physical barriers are deposited onto a hydrophilic

membrane to guide the liquid sample through a series of zones or areas.

There are benefits and disadvantages for each method, usually centred

around resolution and cost. For example, wax printing is inexpensive and

uses a printer to deposit wax channels on paper, however this method is

low resolution and can be inconsistent due to the way wax spreads on paper

membranes [59]. Martinez et al. [62] describe the use of photolithography to

print photoresist polymer channels on paper to measure glucose and BSA

protein levels in urine; this method is fast, making it ideal for prototype

testing. Additionally, it is high resolution, and can produce multiple

millimetre-sized channels that only require a very small amount of sample

to process (5μL). On the downside, it has high equipment andmaterial costs.

Plasma processing is another high-resolution method. This method is

unique in that the paper is rendered hydrophobic whilst hydrophilic chan-

nels are etched into the paper. This allows for highly complex patterns to be

etched into the paper that allow for more complex fluid control, such as

on-off flow switches [67] and fluid control channels [68]. That said, plasma

etching is significantly more expensive than other methods.

Fluid does not only move horizontally; it can also move vertically.

Another method for designing μPADs is ‘3D-folding’, whereby the paper

10 Michael J. Dillon and Katrina Campbell

ARTICLE IN PRESS



Fig. 5 Examples of Microfluidic paper-based analytical devices (μPADs). (A) ‘3D-printed’
biosensors, are paper membranes printed with a hydrophobic substrate that produces
channels to guide the liquid flow across the paper. The channels can be made from a
variety of substrates, including wax or ink. (B) Some μPADs are designed in both the
horizontal and vertical spaces. For example, a liquid sample can be diverted through
layers of paper to increase the complexity of the sample’s pathing allowing for more
complicated biochemical reactions. (C) An absorbent shunt can be used to slow a liquid
sample across a membrane. Upon encountering the shunt, the liquid will not be able to
proceed until the shunt is completely saturated. (D) The difference in height between
the inlet and outlet can alter the liquid sample’s velocity via pressure. The greater the
height difference, the greater the pressure difference, and the faster the liquid sample’s
velocity. (E) Surfactants can be impregnated into the membrane to alter or slow the liq-
uid sample’s velocity. This can allow multi-step reactions to occur in a controlled
sequence.
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membrane itself is layered or folded in such a way to control the sample’s

pathing (Fig. 5B). This can include using 3-dimensional geometrical pat-

terns, layering different types of membrane together, and/or by altering

the physical properties of the membrane. In a proof-of-concept study,

Martinez et al. [69] fabricated a 3D paper-based biosensor by stacking layers

of patterned paper with double sided sticky tape in a way that channelled the

liquid within and between layers of paper. Here, a liquid sample could pass

from a single inlet at the top of the device into multiple distinct outlets at the

bottom of the device allowing the device to detect multiple analytes simul-

taneously. Liu and Crooks [70] expanded on this idea with a single sheet of

photolithographic printed chromatography paper that could be folded,

which they call the origami Pad (oPad); this method reduces production

costs simplifies the device design as the output can be on any folded layer.

Once the test is complete, the paper can be unfolded and the outputs read. A

variety of 3D μPADs have since been developed, including devices to mon-

itor glucose levels [71] and for malaria/dengue detection [72] and with new

tests constantly being developed as proof of concepts.

Besides layering and folding, there are many additional techniques

μPADs can implement to control fluid flow and pathing. These can range

from the relatively simple, for example, narrowing or widening the mem-

brane [73], to more complex methods incorporating additional materials

into the μPAD; this can be physical or chemical additions that can slow

the liquid sample’s velocity, speed it up, or divert it into additional channels.

There are many ways to slow a liquid’s velocity through a membrane.

For example, a membrane shunt can be included in the fluid’s path to slow

the fluid’s velocity [74] (Fig. 5C); liquid is absorbed into the shunt until sat-

uration before being able to pass to the next zone of the test. Similarly,

sucrose gradients can be used to slow the sample’s pathing; Lutz et al.

[75] described a method combining multiple sample paths of varying sucrose

gradients to control the order in which reagents approach the detection

zone; a sucrose gradient delays the fluid flow due to the dissolving time

and by changing the liquid’s viscosity. This allowed them to incorporate

multiple wash steps and finally a gold enhancement reagent to improve

the sensitivity of their malaria diagnostic biosensor. There are also

approaches using pressure paper to restrict fluid movement and reduce

velocity [76]. In this approach, by simply compressing parts of the mem-

brane decreases pore size and permeability, thus decreasing the flow rate

in the affected area. The amount of pressure applied changes the flow rate,
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with more pressure meaning slower flow rates; this is another way to control

multistep reactions [77].

On the other hand, pressure can also be used to increase a fluid’s velocity

through a membrane. In this approach, the pressure is not derived from

physical interaction with the test, rather by the height difference between

the inlet and outlet reservoirs [78]. In summary, the larger the height

difference, the greater the pressure, and the faster the liquid’s velocity

(Fig. 5D). Another way to increase a fluid’s velocity is to sandwich the paper

membrane between two films: this can reduce evaporation and thus liquid

velocity is increased [79]. Still another approach involves layering hollow

tubes into the biosensor [80]; this can significantly increase velocity, reduce

testing time, and has the additional benefit of allowing larger molecules to be

transported, such as whole cells, that would not normally be able to pass

through a membrane.

Alternatively, valves and polymers can be integrated to divert the sam-

ple’s pathing. These can perform various functions, for example turn fluid

flow off, turn it on, or divert it into multiple channels. Many types of valves

have been developed and range from relatively simple to relatively complex.

For example, dissolvable sucrose bridges can break the link between chan-

nels and prevent additional liquid from moving to the next area of the test

[81]. Alternatively, Kong et al. [82] designed an actuator valve by folding

chromatography paper; wetting of the valve causes the paper to unfurl

and connect two channels. Using this method, they were able to design

an autonomous colorimetric μPAD to detect three analytes in saliva.

Similarly, expandable valves have been designed to expand when wet (like

a sponge) and move the fluid to another channel [83].

Additionally, there are methods that alter the membrane itself, for exam-

ple with surfactants. Here, dried surfactants are deposited into the μPAD
channel; when the fluid interacts with them, the surfactant dissolves,

increasing the surface tension in the region and slowing or preventing

fluid flow [84,85] (Fig. 5E). There have been similar methods developed

with hydrogels. For example,Wei et al. [86] used an aptamer-based hydro-

gel as a target-responsive flow regulator. Here, in the absence of a target, a

hydrogel barrier forms in the μPAD channel that prevents an output

signal from developing. If there is a target in the liquid sample, the aptamers

preferentially bind to that; thus, no hydrogel is formed, and an output

signal can develop. This approach is robust, even in complex biological

matrices.
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Regardless of the method, dipstick, LFD, or μPAD, they all function

under the same overarching principles. In each method, biological and

chemical reagents are deposited in discrete zones on the membrane, similar

to a dipstick assay; the main benefit here is that multiple different reactions

can be linked together in sequence. The format is very versatile and has been

adapted for a variety of situations, such as: infectious disease diagnosis,

cancer screening, glucose detection, environmental monitoring, and food

safety tests.

3. Smartphones

Recently, smartphones have become ubiquitous. They are a necessary

part of everyday life and are widely available across the world; current esti-

mates predict that over 6.6 billion people have access to a smartphone as of

February 2022 [87], roughly 82% of the global population. There are many

companies that mass produce them, making them inexpensive. They con-

tinually get better each year. They have a plethora of features that come stan-

dard, such as a high-powered camera, large amounts of random access

memory (RAM), and high-speed central processing units (CPUs) that

can run complex analysis. Most smartphones also contain a global position-

ing system (GPS), can connect to Wi-Fi and cellular networks, and can

download apps. Together, this means that diagnostic tests can be imaged,

analysed, and results stored securely on-device, in the cloud, and also sent

to additional stakeholders. Additionally, results can be tagged with appropri-

ate metadata in real-time, such as time and location. These features are sim-

ilar to and can even replacemodern-day laboratory computers. For example,

smartphones can be used as microscopes, spectrometers, luminometers, and

colorimetric devices. Together, these features can help paper-based biosen-

sors become truly integrated solutions [88].

3.1 Smartphone cameras
As described thus far, paper-based biosensors are qualitative or semi-

quantitative; they rely on the naked eye to detect a colour change, which

informs the result. Whilst this can be effective when the analyte is in excess

or when quantification is unnecessary, there are many scenarios where it

would be helpful to have a quantifiable result, for example when monitoring

HIV titres during treatment. Additionally, results can be more difficult to

interpret when approaching the limit of detection of the test; different peo-

ple have different visual acuity which can affect how they interpret the

results. Smartphone cameras can substantially expand the capabilities of
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paper-based biosensors by capturing an image of the test zone. This image

can then be sent to a qualified professional for additional interpretation [89],

or in some cases analysed on device by an algorithm. This can help standard-

ise results. That said, there are some key challenges.

First, image capture can be difficult. Smartphone cameras use comple-

mentary metal-oxide-semiconductor (CMOS) arrays, which integrate many

functions that simplify photography for a more general consumer, such as

auto-focusing, auto-exposure, and auto white balance (AWB). Some of

these features can easily be disabled, however, for example, AWB can be

difficult or impossible to disable. This feature automatically adjusts the

Red, Green, Blue (RGB) signals at different ratios to brighten images and

makes themmore aesthetically pleasing. However, changing theRGB signal

can disrupt the accuracy of a diagnostic test, especially when trying to analyse

intensity for quantification [90]. Next, different ambient lighting conditions

can affect the image quality. Everything absorbs light in a specific wave-

length range whilst reflecting the rest; the smartphone camera is measuring

the intensity of the reflected light. The intensity can change due to many

variables, for example to the position of the light source, the light temper-

ature, and where the picture is taken, e.g., indoors or outdoors. Similarly,

even the angle the camera is held at can interfere with the quality of the

results, by changing the reflectivity of the test device surface.

The best way to avoid this problem is to manually control all camera

functions to ensure consistency between tests, and indeed, almost all com-

mercially available tests to date do this, by providing their own camera reader

devices (at an additional cost). The camera is normally enclosed in a light-

shielding box, and tests are imaged inside the device to prevent ambient

lighting distortions. However, this is not realistic in a resource-poor setting,

where people are not likely to have access to these singular bespoke camera

devices, and indeed it can be wasteful whenmost people already have a func-

tioning camera device in their pocket. Here, there are two main approaches.

One approach uses image-processing algorithms to analyse the results;

this method is called digital image calorimetry (DIC). Everything absorbs

light in a specific wavelength range whilst reflecting the rest; when a reaction

occurs at the test zone, the analyte-reagent complexes changes the absor-

bance and reflected intensity of the zone, typically over a wide range of

wavelengths. The smartphone camera can measure these changes in inten-

sity with RGB measurements, and these can be transformed to other colour

spaces as needed, such as: CMYK (Cyan, Magenta, Yellow, Black), HSB

(Hue, Saturation, Brightness), or CIE L*a*b* (CIELab) measurements

(Fig. 6).
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Fig. 6 Diagrams of various colour spaces. (A) Red, Green Blue (RGB). The RGB colour
space is an additive model where colours are defined by how much red, green or blue
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3.2 Red, green, blue (RGB)
The smartphone camera natively records red, green, and blue (RGB) mea-

surements; thus, these are the most commonly used [91]. TheRGB system is

often represented on three axes’, with each colour (Red, Green, or Blue)

assigned to an XYZ axis with a scale from 0 to 256 (Fig. 6A). Along each

axis, colour is represented by no contribution of that colour, some contri-

bution of that colour, or full contribution by that colour. This is an additive

model where colours are defined by howmuch red, green or blue is present.

For example, pure red would be represented by the coordinates [256, 0, 0].

Pure blue would be represented as [0, 256, 0]. It is important to note that

this is a non-uniform model. For example, Purple (a combination of

red and blue), would be represented exactly between Red and Blue at

[128, 128, 0]. However, this is not exactly how human vision recognises

purple. It is also important to note that black is represented by [0, 0, 0]

(the absence of all colours) whilst white is represented by [256, 256,

256] (max saturation of all colours).

Here, the smartphone cameras use a CMOS assay that assign a red, green,

or blue value to each pixel photographed, and thus can measure broad col-

our shifts that occur at a test line. For example, Jalalvand et al. [32] describe

RGBmeasurements to detect nitrate in food samples. Their platform is sim-

ilar to the dipstick assay; a piece ofWhatman filter paper is impregnated with

Griess reagent and nitrate reductase. A liquid sample is placed on the paper:

nitrate reductase converts any nitrates into nitrites, which interact with

Griess reagents to produce a red coloured azo dye. The reaction is photo-

graphed with a smartphone and an algorithm calculates the concentration of

nitrates in the sample based on the RGB colour intensities.

is present. (B) Cyan, Magenta, Yellow, Black (CMYK). The CMYK colour space a subtractive
model that measures how much cyan, magenta, yellow, or black is present. (C) Hue,
Saturation, Brightness (HSB). The HSB model neither additive nor subtractive; it is purely
mathematical. Hue represents the colour on a 360° colour wheel, saturation is how
injected in with colour it is (from 0% to 100%), whilst brightness is the intensity of
reflected light (from 0% to 100%). (D) CIE L*a*b* (CIELab). CIELab is a system for defin-
ing colours in a plane that is closely aligned to how humans see colour. L* is luminance,
how dark or bright the colour is, from 0 (black) to 100 (white). a* is the red to green
coordinates, with +a* being more red and �a* being more green. b* represents the
yellow to blue coordinates, where +b* is more yellow and �b* being more blue.
Neutral grey occurs where the two colour axes intersect.

17Hyphenating paper-based biosensors with smartphones

ARTICLE IN PRESS



3.3 Cyan, magenta, yellow, and black (CMYK)
Other models may be more robust depending on the reaction at the test line,

however, the RGB data must first be transformed with some mathematical

model. For example, the CMYK colour space is very similar to the RGB

colour space, except it measures Cyan, Magenta, Yellow, and Black

(Fig. 6B). Importantly, this is a subtractive model, meaning White is set

at [0, 0, 0] whilst Black is at [256, 256, 256]. Guo et al. [92] describe using

a barcode assay for the detection and quantification of pesticides residues.

Here, the reaction produced a yellow product inversely proportional to

the amount of pesticide in the sample. Yellow and White overlap on the

RBB matrix, thus will look similar, particularly low intensities of yellow

could be miscategorised as white, so the signal was transformed to the

CMYK model using app-based software. As the CMYK model is subtrac-

tive, White and Yellow do not overlap and thus are more easily

distinguished.

3.4 Hue, saturation, brightness (HSB)
Another alternative to RGB measurements is HSB. This method defines

colour space in 360 degrees based on 3 parameters, hue, saturation, and

brightness. Hue is the colour type, such as red, green or blue, saturation

is the intensity of the colour, and brightness is dark or light exists in the col-

our (Fig. 6C). HSB is neither additive nor subtractive, rather colours are

defined mathematically. Most work done to date has centred around the

hue value. For example, Cantrell et al. [93] report the hue value from

smartphone-camera imaged membranes as a robust and sensitive method

for quantifying bitonal results. Here, they have shown that the hue value

is easy to obtain, sensitive, and stable; because there is only one variable

being measured, small changes in the assay conditions, such as lighting,

do not greatly change the results.

3.5 CIE L*a*b* (CIELab)
Whilst the methods described thus far are effective for a singular colour

change, this can be more complicated when there is a wider range of colour

changes available with differing colours indicating differing results. Yang

et al. [94] describe a commercially urinalysis dipstick with 11 gradient tests;

for example, pH can be measured, where pH5 is orange, pH7 is green, and

pH9 is teal. Here, RGB measurements are less useful because the RGB

matrix is non-uniform; the absolute distance between orange and green
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on an RGB scale, including the gradients between, is not accurately repre-

sented for this purpose. To overcome this challenge, they wrote an algo-

rithm to transform RGB values from a smartphone camera image to

CIELab values to quantitatively or semi-quantitatively evaluate all 11 urinal-

ysis dipstick tests.

CIELab is a system designed by the International Commission on

Illumination (CIE) for defining colours in a plane that is very closely aligned

to how humans see colour; in the current iteration, L* stands for luminance,

a* represents the colour change from red to green, and b* represents the

colour change from yellow to blue (CIE L*a*b* or CIELab) (Fig. 6D).

Essentially, it is a system where each colour is defined by 2 coordinates, thus

it is perpetually uniform [95]. This makes it useful for quantitative calcula-

tions where the colour change is more nuanced. That said, there is a risk of

colour degradation from processing or transforming the image using a dif-

ferent model [96].

In these examples, the workflow includes photographing a colour refer-

ence chart to calibrate the smartphone camera before starting. It is important

to note that different smartphone cameras have different CMOS arrays, and

thus need to be calibrated separately. Even still, these algorithms can be

incredibly useful for analysing the intensity of the colour change at the test

line in order to correlate test results to the concentration of analyte in the

sample. Indeed, DIC has been implemented for a variety of paper biosensors,

including to quantify metals and heavy metals, herbicides, pesticides, anti-

biotics, toxins, biological targets, and infectious diseases.

3.6 Add-on devices
A second solution is the use of add-on equipment, for example: external

light sources, lenses, filters, holders, and/or attached enclosures. There

can be many benefits to using additional hardware with the smartphone

camera. For example, filters can be used in conjunction with the smart-

phone camera to record enzymatic activities that would not normally be

visible to the naked eye. These assays can be much more sensitive than

traditional colorimetric assays. For example, a smartphone camera with

the appropriate filters can detect light emitted upon the excitement and

decay of target-fluorophore complexes. Here, the light is emitted across a

narrow emission spectrum, amplifying the signal, and reducing the limit

of detection. For example, Grawe et al. [97] developed a membrane-based

biosensor that could detect Superfolder green fluorescent protein (sfGFP) as
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an indirect reporter of mercury in drinking water. A second system was

developed to detect sfGFP as an indirect reporter of gamma-butryic acid

(GHB) the date rape drug. Uniquely, these systems use cell-free protein syn-

thesis (CFPS) to link sfGFP concentrations to their respective analyte.

sfGFP is an ideal reporter for fluorescent detection because it folds rap-

idly, remains stable under harsh conditions, and small amounts are easy to

detect [98], albeit not with the naked human eye nor with the standard

smartphone CMOS array. To overcome this challenge, Graw et al. [97] used

a two-filter systemwhereby one filter was placed in front of the flash and one

filter was placed in front of the camera lenses. Here, the flash is used to excite

the fluorophore, whilst the camera records the decay. Another challenge is

that a dark environment is required for accurate fluorescence detection.

Graw et al. [97] designed and produced a 3D-printed box to photograph

the images inside. This device has the added benefit of automatically aligning

the smartphone camera with the filters and the membrane, ensuring consis-

tency and reproducibility between tests. In some sense this simplifies the

process and helps overcome many of the challenges of using a smartphone

camera as outlined above, albeit at an additional cost and reduced

accessibility.

3.7 Digital connectivity
Smartphones can enhance paper-based biosensors via their ability to connect

to Wi-Fi and cellular networks. This has many benefits for the user. For

example, as described, because paper-based biosensors are user-friendly,

inexpensive, lightweight, and portable, they are primarily used in a dec-

entralised manner: at home, on-site or in the field. However, even though

they are user-friendly, the end-user can still intentionally or unintentionally

make mistakes. Here, having connectivity allows for image- or video-based

telemedicine; a professional to video call the user, explain the procedure, and

then monitor for compliance. This can be particularly helpful to reduce the

spread of disease and limit risk to healthcare providers, as they do not have to

be in physical proximity to those being tested. For example, this method

was used extensively during the covid-19 pandemic, where healthcare pro-

viders could certify that people were administering self-tests appropriately to

reduce the spread of SARS-CoV-2, for example during air travel [99,100].

Here, it is important to make sure those being tested have access to adequate

support, especially in the advent of a positive result. Whilst telemedicine in
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this way can improve accessibility to healthcare, it can also be isolating and

worrying, particularly when the result can be life changing.

After administering the test, the results can be securely uploaded to the

cloud for backup and also for instant sharing with key stakeholders that can

help interpret results, offer advice, and/or use the data as a part of wider

research efforts. Furthermore, results can be interpreted based on historical

data and with other metadata in mind, such as the time, date, and location

where the test was performed. For example, Matthews et al. [101] devel-

oped a smartphone system for detection and notification of dengue fever.

Here, if infection is suspected, patients can be administered a diagnostic

μPAD. As in other described tests, results are photographed, and an

on-device algorithm analyses the colour change at the test line to report

if the patient is infected or not. Additionally, results are uploaded to the

United States Center for Disease Control (CDC) for further analysis

and uploaded to a web server to provide healthcare providers with

up-to-date spatial information on outbreaks.

3.8 Additional tools
More recently, some paper-based biosensors have also begun integrating

electronic components to improve sensitivity of the test and increase the

limit of detection. In their seminal work, Dungchai et al. [102] developed

the first electrochemical paper-based biosensor; it can monitor levels of glu-

cose, lactate, and uric acid in biological samples. Photolithography was used

to make microfluidic channels into filter paper, and screen-printing was

utilised to integrate electrodes directly onto the device. Glucose, lactate,

and uric acid are detected with oxidase enzyme reactions and an external

potentiometric device. More recently, potentiometric devices have been

integrated with the smartphone, for example through the audio jack

[103,104], through USB [105], or through Bluetooth [106]; this reduces

the cost, increases portability, and allows the user to benefit from all of

the aforementioned digital connectivity advantages a smartphone provides.

3.9 Challenges
It is a very exciting time, with improvements constantly being made and a

seemingly never-ending research and development pipeline. That said, it is

important to remember that whilst smartphones seem ubiquitous, there is

still much work to be done before they become ubiquitous as companion

diagnostic devices.
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3.9.1 Technical limitations
Smartphones are produced by a variety of manufacturers and operate a

variety of mobile operating systems. Android and iOS are currently the

dominant operating systems, however, there are still many smartphones

in circulation that use other systems, for example Windows Phone,

BlackBerry 10, Symbian, and Tizen. Some of these are no longer being

developed or supported, for example Windows Phone was discontinued

in 2020 after just 10 years in circulation [107]. Similarly, the Blackberry

10 OS was discontinued after just 7 years in use [108]. Herein lies the first

challenge: diagnostics developers do not have control over the smartphone

platform. If the operating system stops being supported, this can cause the

underlying coding and application programming interfaces (APIs) to stop

working, rendering the device useless for its diagnostic intentions. Indeed,

even working with the dominant operating systems comes with risk: Apple

(iOS) and Alphabet (Android) release yearly updates to their operating systems

that change different APIs. This means applications must be regularly

supported and updated to continue to work.

Next, there are a plethora of smartphone manufacturers that all use dif-

fering hardware. As previously discussed, this can cause obvious problems

for imaging, as different smartphone camera CMOS arrays do not always

take comparable images. But different smartphones also have differing levels

of random-access memory (RAM) and central processing units (CPU)

which may limit their processing powers. Some of the tests discussed utilised

audio jacks or Bluetooth to transfer data, but here again, not all smartphones

have audio jacks and there are multiple differing Bluetooth standards available.

Additionally, Wi-Fi and cellular network standards are constantly evolving,

with older network technologies being discontinued. For example, many

mobile phone operators in the USA are shutting down their 3G networks,

meaning phones that depend on 3G connectivity will no longer be able to

connect to the internet and users will need to purchase a new device.

Software and hardware updates not only bring out new features and

APIs, but they also update security protocols. If devices are not updated

or if suppliers continue to rely on outdated hardware or unsupported oper-

ating systems, they risk being open to security vulnerabilities and privacy

violations. This can have serious legal ramifications, especially when

processing sensitive health information.

3.9.2 Regulatory compliance
Together, these can feed into difficulties maintaining regulatory compliance,

especially when used as a diagnostic medical device. In every region, medical
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devices must comply with safety and efficacy regulations because these

devices can strongly influence personal health. For example, diabetic

patients must monitor their blood glucose levels to help make diet and med-

ication dosing decisions; currently, this is often done with an LFD and a

handheld reader [109]. That said, these devices can also strongly influence

public health. For example, biosensors measuring the concentration of algal

toxins in shellfish [47–49] can influence whether a grower harvests and dis-

tributes their catch; here, inaccuracies could result in contaminated stock

being consumed by the general public. Similarly, LFDs were widely used

to inform people if they needed to self-isolate to prevent the spread

SARS-CoV-2 pandemic [110]; inaccuracies here could cause further spread

of disease.

The path to regulatory approval is complicated, different depending on

the category of device, and different in different regions; see Gupta

(2015) [111] for a comprehensive list of medical device regulatory bodies

and laws by country or region. Medical device regulatory bodies usually

require pre-market and post-market surveillance [111]. Pre-market surveil-

lance includes research data demonstrating safety and effectiveness, essen-

tially, showing that the device is safe to use and will not harm users when

using it or, for example, by providing unreliable diagnostic results. On

the other hand, post-market surveillance involves monitoring the device

whilst it is actively being used in real-world situations. Specifically, regula-

tory bodies are looking at device-related malfunctions, injuries, or death

caused by the device or caused by unreliable diagnostic readings.

Many countries use a 3-tier or a 4-tier risk-based system for classifying

medical devices [111]. Lower class devices are least likely to cause harm

to a patient or user, whilst higher classes can have a much higher risk on mal-

function or even be life-sustaining devices. For example, the Food and Drug

Administration (FDA) oversees the marketing of medical devices in the

United States [112]. Here, a 3-tiered risk-based system is used where

Class I is the lowest risk, Class II has intermediate risk, and Class III has

the highest risk. Most paper-based biosensors are considered Class II devices.

This means they must be approved by the FDA before they are launched,

however, assessment can come in the form of laboratory research or animal

testing and does not necessarily require clinical testing [113]. An example of

a Class I device would be an elastic bandage, whereas an example of a

Class III device is a pacemaker.

Regulatory approval in one country does not always guarantee approval

in another country. For example, the European Union places in vitro diag-

nostics into their own distinct category, separate frommedical devices [114].
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Here, they are still classified into four risk-based tiers: A (low risk), B (mod-

erate risk), C (high risk for individual patients) and D (high public health

risk). These tiers are dependent on the function of the test [115]. For exam-

ple, a cholesterol self-testing would be considered Class B as the results will

only affect the patient and are not immediately life-threatening. On the

other hand, an infectious disease diagnostic test could be considered

Class D because the results will not only affect the patient, but could also

impact the spread of disease to others. Each member state is responsible

for nominating its own competent authorities to approve the diagnostic test.

That said, not all paper-based biosensors are medical devices; there are

many other uses, including food safety and environmental sampling. In

the United States these categories of test still fall under the FDA’s remit

for regulatory approval, however, in other countries, there may be separate

legislation responsible for approving non-medical biosensors. For example,

in the European Union, Commission Regulation (EU) No. 853/2004 stip-

ulates the specific hygiene and testing standards for monitoring marine

toxins in shellfish [116], whilst Commission Regulation (EU) No.

519/2014 stipulates the requirements for mycotoxin testing in food supple-

ments [117]; in the United Kingdom, these are overseen by the Food

Standards Agency [118]. These regulations also stipulate the regulatory

methods of analysis mainly as complicated high performance liquid chroma-

tography and mass spectrometry-based methods. However, the production

industry is in desperate need of portable tools for in field testing for product

release systems as the turnaround time of these regulatory methods can be

detrimental to their industry in an ever-changing tidal environment.

Lateral flow immunoassays are available commercially [119] and are also

now being considered in different parts of the world as regulatory tools

for shellfish toxin analysis or as part of end product release systems for shell-

fish harvest [120]. Some of these devices are already available and used in

tandem with reader devices for the three main groups of toxins [47–49]
and in development as multiplex tools [51], but the added immediate con-

nectivity a smartphone could offer could be beneficial in a harvesting season

for predictive monitoring in a network.

It is important to remember that regulatory approval extends to both the

biosensor, and also to any adjunct device or software, for example, if using

the biosensor in conjunction with a smartphone camera and smartphone

application. This can be tricky as mobile operating system updates and appli-

cations updates can outpace approval processes [121,122].
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4. Looking ahead

Paper-based biosensors are becoming increasingly popular due to their

versatility. From the humble dipstick assay to much more complex μPADs,

paper-based biosensors have the opportunity to make diagnostic testing more

equitable and accessible, especially in resource-poor settings. They are light-

weight and small in size, making them easily portable. They are robust and

inexpensive to produce with biodegradable materials and they can accommo-

date an incredibly diverse range of sample types and applications, including

clinical diagnostics, veterinary diagnostics, food safety sampling, and environ-

mental sampling. More recently, the smartphone has been identified as

adjunct to make these devices even more compelling. Smartphones can

improve connectivity, helping users administer their test properly and under-

stand their results. They can help key stakeholders monitor results remotely

across large populations, for example, to better understand the spread of dis-

ease. Additionally, smartphone cameras can improve imaging and allow for

evenmore sensitive testing strategies. These benefits comewithminimal addi-

tional costs, as smartphones are ubiquitous devices that large swathes of the

global population already have in their pockets. Going forward, there will

be some key challenges to ensure compatibility between smartphones, support

for legacy devices, ensuring regulatory compliance across regions, and

maintaining pace with operating system upgrades and application update ver-

sions. However, as we have observed, paper-based biosensors have come a

long way since their early designs. They are proven to be robust and relatively

reliable diagnostic test kits, and there is no doubt they will continue to thrive

and adapt into the future.
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