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Abstract 
 

The environmental drivers of white spruce growth and regeneration at Arctic treeline in a 

changing climate 

Johanna Elizabeth Jensen 
 

As a temperature-delineated boundary, Arctic treeline is predicted to shift poleward and 

tree growth is expected to increase in response to rapid warming. The massive scale of the Arctic 

treeline magnifies these changes to impact energy balance, carbon balance, and climate-related 

feedbacks at local, regional, and global scales. Yet, not all sections of the Arctic treeline are 

reporting growth, suggesting factors other than temperature may be becoming more limiting as 

the climate continues to change. This dissertation investigates how water availability and tree 

size may modify the response to climate change of a dominant conifer species (white spruce, 

Picea glauca) growing at an Arctic treeline site in the Brooks Range, Alaska, USA. The first 

chapter examines the influence of temperature and water availability on population regeneration 

and individual tree growth during the 20th century. A climatic shift towards a warmer and drier 

climate after 1975 caused divergent responses of sapling regeneration and mature tree growth, 

suggesting that, while individuals have grown, this section of treeline has remained relatively 

stationary. The second chapter explores the present-day relationships between tree size, 



 

 

temperature, moisture availability, and tree growth by examining the response of intra-annual 

radial stem growth rate to changing environmental conditions at the Arctic treeline. Tree size and 

water availability play important roles in moderating the growth response to climate change. 

Finally, in the third chapter, the environmental cues which trigger the onset of radial stem growth 

in spring are identified. The results suggest a combination of winter chilling and subsequent 

spring heat accumulation initiates onset, like trees growing at lower latitudes. However, the 

chilling and heating thresholds at this Arctic treeline site were far colder than those identified at 

lower latitudes, suggesting local adaptation to harsh Arctic winters and springs. Through these 

new findings, this dissertation advances our understanding of Arctic treeline dynamics and will 

help to predict the future of the Arctic treeline more accurately in a rapidly changing climate.
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1 

 

Introduction 

Biomes represent broad biological communities formed in response to several ecological 

filters (Smith et al. 1997). Most often, terrestrial biomes can be defined by just two filters: 

temperature and precipitation regimes (Whittaker 1970). For example, the seminal Whittaker 

biome graph (1970) categorizes Earth’s terrestrial ecosystems into nine biomes with long-term 

temperature and precipitation as the defining features. However, as climate change continues to 

substantially alter temperature and precipitation regimes worldwide, plants and animals must 

either adapt or move to occupy spaces with suitable climate. The best place to study how biomes 

are reacting to climate change is at their ecotones, or the transition zones between biomes, which 

are already existing at the physiological extreme. Therefore, changes occur here first and hold 

key clues to understanding the future.  

The Arctic treeline (a.k.a. the forest-tundra ecotone) represents the transition from the 

coniferous boreal forest to the south and treeless Arctic tundra to the north (Callaghan et al. 

2002a, Körner 2012). Arctic treeline spans the circumpolar region crossing 13,400 km through 

the United States (Alaska), Canada, Iceland, Norway, Finland, and Russia (Callaghan et al. 

2002b). When observed from air or space, Arctic treeline may look like a continuous line. 

However, on the ground, this interface between ecosystems is complex and varies in space and 

time due to numerous local and regional conditions. Decades of research conclude that the 

position of treeline is delineated by an air temperature isotherm of 6.4 °C (Paulsen and Körner 

2014) and that growth of individuals here was limited by temperature (Körner 2012).  
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However, as the Arctic warms at more than four times the global average (Rantanen et al. 

2022), the temperature-limitation on the current treeline should be alleviated and the treeline 

should advance to keep pace with the northward/poleward shifting isotherm (ACIA 2005, 

Callaghan et al. 2005, Pearson et al. 2013, Zhang et al. 2013). Trees should grow more, therefore 

increasing the above-ground C sink and helping to mitigate climate change (ACIA 2005, 

Callaghan et al. 2005, Pearson et al. 2013, Zhang et al. 2013).. Such change would significantly 

influence global energy balance (Harding et al. 2002), biodiversity (Skre et al. 2002), ecosystems 

services (Callaghan et al. 2002a), biogeochemical cycling (Zhang et al. 2013), carbon balance, 

and climate-related feedbacks (Wilmking et al. 2006, Pearson et al. 2013).  

However, evidence of treeline advance and increased tree growth is not ubiquitous 

(Harsch et al. 2009, Rees et al. 2020), despite relatively uniform increases in temperature 

(Overland et al. 2019), highlighting that temperature is not the only limiting factor at treeline 

position and tree growth (Rees et al. 2020). Instead, increasing evidence points toward the 

interaction between temperature and water regimes in explaining this unexpected result (e.g., see 

Wilmking et al. 2004, 2005, Driscoll et al. 2005, Wilmking and Juday 2005, Lange et al. 2020, 

Rees et al. 2020, Camarero et al. 2021). While temperature has increased across the Arctic, 

precipitation varies locally, based on factors such as topography, and regional weather patterns. 

Over the last several decades, both treeline advance and individual tree growth have increased in 

wetter sections of treeline, such as those in the Western Brooks Range, AK, USA, whereas drier 

sections have remained stationary and individual tree growth has decreased (Wilmking and 

Juday 2005, Rees et al. 2020). Of course, many other factors can affect the position and growth 

of treeline (e.g., see Lloyd 2005, Kambo and Danby 2018a, 2018b, Gustafson et al. 2021, Maher 

et al. 2021), but the strong association between limited/decreased water availability (including 
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drought) (Rees et al. 2020), decreased growth, and no change in treeline position suggest a strong 

mechanistic link at play.  

Water availability can influence treeline behavior (i.e., advance, stationary, or retreat; 

Rees et al. 2020) and individual tree growth in many ways. Snowfall in winters protects 

seedlings and young saplings from harsh winter conditions by creating a protective boundary 

layer under the snow (Körner 2012, 2016). Therefore, less snowpack can decrease the depth of 

the boundary layer and expose young trees earlier than experienced by trees established in 

previous decades. Additionally, less snowpack can decrease the amount of water available in 

spring, which is particularly important during the rehydration of the stem an onset of growth in 

spring (Vaganov et al. 1999). Warmer temperature in spring and fall can lengthen the growing 

season and increase growth, provided that water is available to supply the necessary turgor 

pressure when growing new cells. Summertime growth has been particularly linked with water 

availability (e.g., low VPD, high RH, high precipitation). Survival of seedlings through the 

summer also relies on water availability as young trees have smaller root systems, preventing 

them from reaching deeper water reserves available to larger, mature trees. The dynamics 

between water availability and temperature are complex and require an in-depth examination to 

help us understand treeline behavior and help predict how treeline will respond to future climate 

change. 

In this dissertation, I present three studies that investigate why Arctic treeline has 

exhibited such diverse responses in treeline behavior and growth. All three chapters focus on 

white spruce (Picea glauca) growing at Arctic treeline in the Brooks Range, AK, USA and are 

linked by a common pair of questions: How do temperature and water availability influence 

growth of white spruce at Arctic treeline; and how do these relationships change between 
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saplings and trees? In the first chapter, I identify how trees at our study site responded to climate 

change in the past (i.e., during the 20th century). In the second and third chapters, I narrow my 

focus to the present-day relationships between weather and growth at an intra-annual timescale 

using highly resolved point dendrometers. Ultimately, the two hypotheses I assess, in different 

ways in each chapter, are that (1) water availability is a secondary control on growth so that 

when temperature limitation is alleviated, water availability dictates the growth response at 

Arctic treeline and (2) the secondary control of water availability is more intense for saplings 

than trees. 

 In Chapter 1, I use historical records of temperature and precipitation, present-day age 

structure, and tree ring records to investigate the relationships between climate change, treeline 

behavior, and tree growth during the 20th century. I found that a warmer but significantly drier 

climate beginning circa 1975 was strongly associated with decreased regeneration of saplings, 

suggesting treeline remained stationary despite climate warming. This finding supports our 

hypothesis that once temperature limitation is alleviated, water availability acts as a secondary 

control on growth at Arctic treeline in saplings. However, our data also showed a significant 

increase in growth of mature trees after 1975. These opposite responses of saplings and mature 

trees support our hypothesis that the secondary control of water availability is more severe for 

saplings than mature trees. Further, the tree ring records revealed temperature divergence after 

circa 1990, suggesting additional drying in the future will begin to negatively impact growth of 

mature trees.  

In Chapter 2, I explore the present-day relationships between tree life stage, temperature, 

moisture availability, and radial stem growth by examining the response of intra-annual radial 

stem growth rate to changing environmental conditions at Arctic treeline. To do so, I used a 
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generalized linear mixed effects model to predict radial stem growth rate using air temperature, 

vapor pressure deficit (VPD), volumetric water content, and their interactions as drivers. 

Diameter at breast height (DBH) is added to the model as a proxy for tree life stage. Our results 

sugest that VPD and VWC are influence growth rate more than air temperature. In addition, 

while low VPD increased growth in both saplings and mature trees, the effect was greater in 

mature trees. These results support our hypothesis that trees at our Arctic treeline site are 

increasingly water-stress with rapid warming, and that tree size plays an important role in 

determining the growth response. The result of this study suggests that we may be currently 

witnessing that the transition towards water-limitation predicted from Chapter 1.      

In Chapter 3, I explore how the onset of intra-annual radial stem growth will change in 

response to climate change. Using a Bayesian analysis, I compare the process of onset of radial 

stem growth and the type of environmental triggers (air temperature, soil temperature, or both). 

In this chapter, I used soil temperature as a proxy for water availability in spring, as 

discontinuous permafrost will not allow liquid water to be available for plant uptake until soil 

temperatures exceed freezing. Our results suggest that air temperature was a better predictor of 

the onset of radial growth in spring than either soil temperature or a combination of both. I also 

found that a combination of extreme cold followed by heat accumulation triggers radial growth. 

These results suggest that air temperature is more important than water availability in dictating 

the start of the growing season.  
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Chapter 1: Growth increases but regeneration declines in response 

to warming and drying at Arctic treeline in white spruce (Picea 

glauca) 

Johanna Jensen, Natalie Boelman, Jan Eitel, Lee Vierling, Andrew Maguire, Rose Oelkers, 

Carlos Silva, Laia Andreu-Hayes, Rosanne D’Arrigo, Kevin L. Griffin 

1.1 Abstract 

As a temperature-delineated boundary, the Arctic treeline is predicted to shift northward 

in response to warming. However, the evidence for northward movement is mixed, with some 

sections of the treeline advancing while others remain stationary or even retreat. To identify the 

drivers of this variation, we need a landscape-level understanding of the interactions occurring 

between climate, tree growth (i.e., radial stem growth), and regeneration. In this study, we assess 

population regeneration alongside annual tree growth and climate during the 20th century. To do 

so, we use an age-height model combined with tree height estimates from aerial lidar to predict 

age structure of 38,652 white spruce trees (Picea glauca) at a section of Arctic treeline in the 

central Brooks Range, Alaska, USA. We then use age structure analysis to interpret the trends in 

regeneration and tree-ring analysis to interpret changes in annual radial stem growth. Results 

show that the climate became significantly warmer and drier circa 1975, coinciding with 

divergent responses of regeneration and radial tree growth. Circa 1975, regeneration of saplings 

(trees ≤ 2 m tall) decreased compared to previous decades whereas annual growth in mature trees 

(trees > 2 m tall) increased by 54% after 1975 (p < 0.0001, Wilcoxon test). Tree ring width was 

positively correlated with May - August temperature (p < 0.01, Pearson coefficient) during the 

20th century. However, the presence of temperature divergence and strong positive correlation 
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with July precipitation (p < 0.01, Pearson coefficient), suggests that continued drying may limit 

future growth at this section of Arctic treeline. We conclude that while warmer temperatures 

appear to benefit annual radial stem growth in mature trees, the warmer and drier environmental 

conditions in spring and summer inhibit regeneration and therefore may be inhibiting the 

northward advance at this Arctic treeline site. Researchers should consider the interactions 

between temperature, water availability, and tree age when examining the future of treeline in a 

changing climate.  

1.2 Introduction 

Biomes and the ecotones, or transitions, between them are expected to shift as individual 

species respond to climate change (Körner 2012). The Earth’s largest ecotone, the Arctic 

treeline, extends more than 13,400 km around the circumarctic region (Callaghan et al. 2002a, 

Ranson et al. 2011), and is believed to be delineated by an isotherm beyond which constraints on 

physiological processes prohibit the growth and establishment of trees (Sveinbjörnsson et al. 

2002, Körner 2012, Paulsen and Körner 2014, Körner et al. 2016). As the Arctic is warming at 

nearly four times the rate of the global average (Rantanen et al. 2022), the treeline-delineating 

Arctic isotherm is expected to shift poleward (Körner 2012). If treeline species can keep pace 

with the shifting isotherm, models suggest that individual trees will increase in size (Körner 

2012) and treeline may advance 7 – 20 km poleward per year and displace 11% to 50% of Arctic 

tundra with woody growth (trees and shrubs) by 2050-2080 (ACIA 2005, Callaghan et al. 2005, 

Pearson et al. 2013, Zhang et al. 2013). The combination of individual growth and population 

regeneration of treeline at this scale would have profound local, regional, and global impacts on 

energy balance (Harding et al. 2002), biodiversity (Skre et al. 2002), ecosystem services 
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(Callaghan et al. 2002a), biogeochemical cycling (Zhang et al. 2013), carbon balance, and 

climate-related feedbacks (Wilmking et al. 2006, Pearson et al. 2013).  

However, the evidence for such rapid northward advance of Arctic treeline is mixed 

(Harsch et al. 2009, Van Bogaert et al. 2011, Mamet and Kershaw 2012, Rees et al. 2020, Maher 

et al. 2021), suggesting a potential delayed response (Körner 2021) and suggesting that 

temperature alone does not accurately describe treeline position and behavior (i.e., advance, 

stationary, retreat) (Rees et al. 2020, Maher et al. 2021). For example, in a recent circumarctic 

meta-analysis of 151 altitudinal and latitudinal treelines, Rees et al. (2020) found that 52.3% of 

the sites studied showed advancing, whereas 45.6% exhibited no change, and 2.1% showed 

retreating treeline behavior. Further, they found that variation in treeline behavior was mainly 

associated with precipitation rather than temperature, during both the growing and non-growing 

seasons (Rees et al. 2020). Evidence of increased individual tree growth (i.e., radial stem growth) 

due to warming is also mixed; some treeline sites have shown increased growth while others 

have mixed or no response, a difference largely attributed to changes in water regimes (Briffa et 

al. 1998, Barber et al. 2000, Wilmking and Juday 2005, D’Arrigo et al. 2008). Therefore, when 

attempting to understand what drives the response of Arctic treeline to climate change, 

researchers must increasingly consider the influence of temperature alongside variables related to 

water availability (Rees et al. 2020), such as precipitation, snow and vapor pressure deficit 

(VPD).  

Temperature and water availability impact treeline behavior both at the individual level through 

tree growth and at the population level through regeneration. The influences of temperature and 

water availability on tree growth at treeline can vary with tree size due to several physiological 

constraints in saplings, including higher respiration rates (Griffin et al. 2021) and limited root 
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structures (Smith et al. 2003) compared to mature trees. Here, we consider early life stages as 

trees < 2 m tall, hereafter referred to as ‘saplings’; conversely, mature trees are ≥ 2m tall 

(Tranquillini 1979). Mature tree growth at treeline generally increases with increasing 

temperature (Kozlowski et al. 2008, Körner 2012). However, the correlation between 

temperature and radial stem growth (i.e., the growth of annual tree rings) is fading in areas of the 

Arctic treeline across the globe (Camarero et al. 2021), particularly in the boreal forest (Briffa et 

al. 1998, D’Arrigo et al. 2008, Andreu-Hayles et al. 2011), while the correlation between radial 

stem growth and precipitation typically strengthens. This phenomenon, known as ‘temperature 

divergence,’ may suggest that radial stem growth at treeline is switching from temperature- to 

water-limited (Hofgaard et al. 2019). The causes of this phenomenon, called ‘temperature 

divergence,’ are still under debate but some proposals include recent warming, global dimming 

(i.e., decrease in solar radiation in recent decades), and temperature-induced drought stress which 

may indicate a shift from temperature-limited growth to water-limited growth (D’Arrigo et al., 

2008). Therefore, dissecting the nuances of how temperature and water availability influence 

growth is necessary to understand the future of this ecotone.  

 In addition to growth, we must investigate how climate change has influenced population 

regeneration, as treeline advance cannot occur without population growth. Population 

regeneration is defined here as the cumulative effect of recruitment and mortality of new trees 

during early life stages (i.e., several years), hereafter, simply “regeneration.” Regeneration is 

influenced by temperature and water availability (Holtmeier 2009, Brodersen et al. 2019, 

Holtmeier and Broll 2019). However, investigating treeline regeneration in response to changing 

temperature and water availability poses several practical challenges that call for the 

development of novel approaches. Current in situ methods which measure forest recruitment, 
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survival, and individual tree growth via plot-level monitoring or age-structure reconstructions are 

the gold standard. However, these methods are labor-intensive, restricted to relatively accessible 

portions of the Arctic treeline, and—in the case of plot-level monitoring—require decades of 

historical data to capture the current effects of climate change on demographic rates. Further, 

while Rees et al. (2020) provide the most comprehensive plot-level dataset of circumarctic 

treeline behavior to date, large portions of Arctic treeline have not been studied as they are 

difficult to access. Products from satellite remote sensing, such as those derived from Landsat, 

e.g., Global Forest Cover (Ranson et al. 2011, Hansen et al. 2013), offer access to remote 

sections of treeline but cannot distinguish between tall shrubs and trees and so greatly 

overestimate treeline advance (Timoney and Mamet 2020). A more accurate estimate can be 

obtained via high spatial resolution satellite imagery, but such data do not extend far enough 

back in time to evaluate the status of treeline advance (Rees et al. 2020). Lastly, the methods to 

observe treeline must be more easily repeatable to actively monitor changes in treeline behavior 

in response to climate change.  

In this study, we present a novel approach that is uniquely adapted to improve 

understanding of the impacts of climate change on treeline behavior. Our methodology requires 

minimal in situ labor, approximates historical demographic trends with one year of forest 

structure data (aerial lidar-derived tree height), and estimates forest regeneration on a scale that 

better reflects the scale of the Arctic treeline (hundreds of hectares and 104 to 105 trees) than 

plot-level studies (typically tens of hectares and 102 of trees). We implement this method at an 

Alaskan Arctic treeline site with the following exploratory goals: (1) to reveal qualitative trends 

in regeneration of a dominant treeline species (white spruce, Picea glauca) during the 20th 

century and evaluate the trends alongside historical climate; (2) to use tree-ring analyses to 
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observe if and how growth of both saplings and mature trees at our study site responded to 

climate change. We hypothesize that warmer but drier conditions in recent decades have caused 

trees growing at Arctic treeline become more water limited. Therefore, we predict that a study of 

climate, growth, and regeneration over the 20th century will show that growth and regeneration 

would decrease if conditions became drier; however, if conditions stayed the same or became 

wetter, growth and regeneration would increase. 

1.3 Methods 

1.3.1 Study Area 

Field data were collected south of the Brooks Range in Alaska (AK), USA. We 

established a short (5.5 km) north-south transect at the Arctic treeline along the Dalton Highway 

(67°59′ 40.92’’ N, 149°45′ 15.84’’W, 727 m a.s.l.) (Figure 1.1). Along this transect, pockets of 

boreal forest transition into treeless tundra along the floodplain of the Dietrich River and gently 

sloping lower elevations before tundra vegetation dominates at only slightly higher elevations. 

We obtained monthly measurements from 1900-2015 of temperature, vapor pressure 

deficit (VPD), and precipitation at the study area from the Integrated Ecosystem Model for 

Alaska and Northwest Canada (McGuire et al. 2016). The average annual temperature from 

2000-2015 was -8.25 ± 0.65°C and the average growing season temperature (May – July) was 

7.15 ± 0.91°C (mean ± SD). The area is a semi-arid environment (Simpson et al. 2002), 

receiving 304 ± 77.1 mm of precipitation per year, 45% of which is snow. 

Continuous permafrost underlies the Arctic treeline where tree cover predominantly 

consists of white spruce (Picea glauca (Moench) Voss) with occasional black spruce (Picea 

mariana (Mill.) BSP). The understory is dominated by tundra vegetation such as sedges (e.g., 
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Eriophorum spp.), moss and lichen (e.g., Cladonia rangiferina), short evergreen shrubs (e.g., 

Arctostaphylos uva-ursi), and low (< 1.5 m) deciduous shrubs (e.g., Salix spp., Betula nana L., 

Alnus spp.). White spruce, our study species, are monoecious and produce cones every year that 

shed seeds from late August to September (Walker et al. 2012). To the best of our knowledge, 

there have been no stand clearing disturbances (e.g., fires, insect outbreaks, stand clearing 

floods) within the study area in the last 200 years, minimizing transient dynamics associated with 

stand development and succession that otherwise could confound the effects of climate on 

demographic history (e.g., self-thinning, succession). We found no evidence of bark beetle 

outbreaks in the field or in tree cores sampled from the area. There are very few standing dead 

trees (personal observation), likely due to the harsh winter winds and thawing permafrost which 

can topple dead trees.  

1.3.2 Summarizing climate conditions during the 20th century 

Using the historical climate data, we calculated the monthly precipitation received as 

snow (SNO) from the monthly temperature and precipitation means; if the mean monthly 

temperature was ≤ 0°C, the mean monthly precipitation was considered SNO. The annual 

amount of SNO received was calculated by summing the SNO during the growth year (Aug – 

Jul). To better understand the overall growing conditions during the 20th century, we used a 

modified version of the climate index developed by Barber et al. (2000). The climate index 

differentiates between cool and moist years (positive values) and warm and dry years (negative 

values) by subtracting the normalized growing season temperature from normalized growth year 

precipitation. We modified the months included in the growing season to Jun-Aug and growth 

year to Sep-Aug based on the observed start and end dates of radial stem growth at our sites 

(Eitel et al. 2020).  



 

 

13 

1.3.3 Assessing qualitative regeneration at Arctic treeline 

We assessed the qualitative regeneration at treeline by first creating a model fitted with in 

situ data that predicts tree age from tree height (Section ‘Age Height Model’). We then obtained 

individual tree heights in a 278-ha forest stand using aerial lidar scanning and an individual tree 

detection algorithm (Section ‘Aerial lidar observations of tree height across forest stands’). The 

lidar-derived tree height was then used within the age-height model to predict the age of each 

tree identified by the tree detection algorithm. Static age structure was constructed by binning the 

number of individuals in each age class into one-year bins (Section ‘Constructing static age 

structure’). We then interpreted the shape of the static age structure to assess the forest 

regeneration (Section ‘Deducing regeneration from age structure’).  

Development of the age-height model from ground observations 

Field sampling of tree age and height occurred at six study plots in June 2016 and 2017. 

All sampled trees were selected within a 20 m radius of a previously established plot center 

(Eitel et al. 2019). To obtain tree age, a tree core or stem disk was collected from white spruce 

trees in a random stratified sampling format with five height classes: 0-0.49 m, 0.5-0.99 m, 1-

1.49 m, 1.5 – 1.99 m, ≥ 2 m. At each site, one tree from each of the four smallest height classes 

and three or more trees in the tallest class (≥ 2 m) were selected (n = 70). Additionally, 33 

seedlings (≤ 0.3 m) growing in 48 one-meter square quadrants were included (eight quadrants 

per site, located 10 m from plot center in the cardinal directions; total n = 103).  

Tree Age 

Seedling age was measured by counting the number of whorls (i.e., annual terminal bud 

scars) on the main stem while in the field (n = 33). To determine the age of mature trees, cores 
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were extracted using increment borers (5.15 mm diameter) and stem disks were collected by 

felling trees. For trees < 5 cm basal diameter, we collected stem disks at basal height (0 cm) (n = 

28). In trees ≥ 5 cm basal diameter, cores were extracted at ~ 25 cm height to accommodate the 

12” increment borer handle (n = 34). Cores and disks were transported to the Lamont Doherty 

Earth Observatory’s Tree Ring Lab (LDEO-TRL) for tree-ring measurements. Cores and stem 

disks were stored in cool, dry conditions before being mounted, sanded with progressively finer 

sandpaper, and scanned using a high-resolution flatbed scanner (3200 dpi resolution). Tree-ring 

boundaries were marked digitally on the scanned images to the micrometer resolution 

(0.001mm) and widths were measured and cross-dated using the computer software programs 

CooRecorder and CDendro 8.1 (Larsson 2016, Stockton Maxwell and Larsson 2021). The age of 

a tree was calculated as the number of rings between the innermost ring, or pith, and the ring 

corresponding to 2016, when height was measured. In cases where the cores did not contain a 

pith (23% of samples), the number of years to the pith was estimated by using CooRecorder’s 

digital pith estimator. In these cases, the estimated number of rings to the pith ranged from 1-7 

rings. Ring widths were cross-dated against an existing white spruce tree-ring chronology site 

near Dalton Highway in Alaska (68.5N, -141.63W) (Jacoby and Davi 2000). Cores that could not 

be cross-dated, either due to very low correlation with the Dalton tree-ring chronology or rot near 

the pith, were excluded from the study. The final dataset for the age-height model included 94 

trees.  

We defined ‘tree age’ as a tree’s age in 2016, when height was measured. The ‘year of 

establishment’ is the year a tree germinated. Because cored trees were sampled at ~25 cm rather 

than at basal height, the true age of cored trees would have been slightly older than the age at the 

core’s pith. To compensate for the time it took a cored tree to grow to 25 cm tall, we added 14 
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years, the equivalent to the mean age of a 25 cm tall tree in an age-height model of only trees 

sampled at basal height (trees aged via whorls or stem disks; n = 63).  

Tree Height 

Tree height was measured in the field (for trees < 1.5 m tall) or by high-resolution 

terrestrial lidar scans (TLS) of the study plots taken in June 2016 with a Leica Scan Station C10 

(Leica Geosystems Inc., Heerbrugg, Switzerland, see Maguire et al., 2019). The laser instrument 

has a beam divergence of 0.14 mrad, a scan rate of up to 50,000 points s-1, a maximum sample 

density of < 1 mm, and a maximum range of 134 m at 18% albedo. The nominal distance 

accuracy is 4 mm and the nominal positional accuracy is 6 mm. Each study plot was scanned 

from four to six positions to minimize occlusion by vegetation canopies. Three common 

reflectance targets surrounding each plot were geolocated with a global positioning system (GPS 

- Trimble R7, Trimble, Dayton, Ohio) and an external Zephyr Geodetic antenna. Both the 

vertical and horizontal accuracy of the GPS are ± 5 mm (Trimble, Dayton, Ohio). For each plot, 

scans were georegistered using these common reflectance targets using Cyclone 9.1 software 

(Leica Geosystems Inc., Heerbrugg, Switzerland). UTM coordinates for each tree were manually 

extracted from the georegistered TLS point cloud for the top of each tree crown. Crown height 

for each tree was derived from the georegistered TLS point cloud by manually identifying the 

top of crown and base of bole laser returns, respectively, using Cyclone 9.1 and calculating the 

difference of the z-values of UTM coordinates (1 cm resolution). 

Age-Height Model 
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Age and height were log-transformed to achieve normality and homoscedasticity prior to 

fitting a simple linear model. In linear space, the linear model becomes a power function with the 

form  

𝑦 = 𝑏 ∗ 𝑥!                                                         Eq. 1.1 

where y is tree age, x is tree height, and b and m are model coefficients describing the y-

intercept and rate of increase, respectively. To obtain posterior distributions of coefficients b and 

m, we fit the linear model to a random subset (75%) of the log-transformed data for 100,000 

iterations in R statistical software (R Core Team 2021). Model iterations which were identified 

as heteroscedastic using a Breusch-Pagan test were excluded from the study (0.4%), resulting in 

99,638 final iterations. Model fitting parameters (i.e., r2 and root mean squared error, RMSE) 

were calculated for each model iteration.  

Aerial lidar observations of tree height across forest stands 

An individual tree detection (ITD) algorithm (Silva et al. 2016) identified the location 

and height of each tree within five ALS tiles containing the six study plots taken by the Alaska 

Department of Transportation (Hubbard et al. 2011) in May and July 2011 (Figure 1.1b) 

covering 278 ha of Arctic treeline. ALS data were collected by a Leica ALS60 sensor mounted 

on a Cessna Caravan 208Bs aircraft (Hubbard et al. 2011). ALS data were processed using 

LAStools (Isenburg 2017) in three steps using the lidar point cloud data to ultimately obtain the 

canopy height model. First, ground returns were classified using progressive triangulated 

irregular network densification algorithm (Axelsson 2000), to create a one-meter resolution 

digital terrain model. Second, height above ground was normalized by subtracting the elevation 

of the digital terrain model. Lastly, a 0.5-m resolution canopy height model was created. ALS-
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derived 0.5 m canopy height models were smoothed by a 3 × 3 mean filter to remove spurious 

local maxima caused by tree branches, and individual trees were detected using fixed treetop 

window size of 3x3 (Silva et al. 2016). In addition, we limited the study to trees ≥ 30 cm tall as is 

typical in lidar studies elsewhere in at the Arctic treeline (Streutker and Glenn 2006, Naesset and 

Nelson 2007).  

To ensure the trees included in the study were white spruce, as opposed to tall Salix spp., 

the tiles were visually classified into six land cover types using high resolution (1.8 x 1.8 m) 

World-View 2 (WV-2) imagery in QGIS (QGIS Development Team 2022): white-spruce-

dominated canopy, tundra, rivers, ravines, roads, and pipeline. Only trees within the spruce-

dominated canopy were considered in this analysis. To reduce the influence of an 

anthropologically created edge and/or hydrology on growth rate, trees were excluded from the 

study if growing within a 20 m buffer of roads (Dalton highway and pull outs) and the Dietrich 

River (flood plains) as well as those within 15 m of ravines and the Dalton Highway pipeline. 

Such supervised classification based on collocated imagery of shrubs is commonly done with 

great success (Timoney and Mamet 2020). 

Constructing static age structure 

 To obtain the static age structure of our study area, we used the age-height model 

(Section ‘Age-Height Model’) to predict the age of each tree detected in the ALS tiles (Section 

‘Aerial lidar observations of tree height across forest stands’). To ensure that the error of the 

age-height model would not alter our conclusions of regeneration, we propagated the model error 

into the age structure in the following manner. First, we randomly sampled the posterior 

distributions of the parameters once (posterior distributions were obtained by fitting the model 

100,000 times) and predicted the age of each tree detected in the ALS tile. Then, we constructed 
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age structure by binning the number of trees in each one-year age class. We repeated this process 

1,000 times starting with another random sample (with replacement) from the posterior 

distributions each time to create 1,000 possible versions of age structure at our study area. Then, 

we averaged the number of individuals in each one-year bin across the 1,000 age structures to 

obtain a mean and 95% confidence interval of the number of individuals in each age class. 

Lastly, because aerial tree detection of trees was limited to trees ≥ 30 cm tall (Section ‘Aerial 

lidar observations of tree height across forest stands’), the age structure was truncated to the 

corresponding age (i.e., 16 years according to the age-height model).  

Deducing regeneration from age structure 

 We deduced regeneration by observing the shape of static age structure, or the number of 

trees in each age class at a given time. The age structure in mature, undisturbed forests has many 

saplings and exponentially fewer old trees (e.g., negative exponential shape). This shape, called a 

Type III survival curve, is representative of a forest that is continuously regenerating and 

therefore maintaining or growing the population (Vlam et al. 2017). However, if a regeneration 

has recently failed to recruit new individuals into the population, the static age structure is 

unimodal: the drop in older trees is due to accumulated mortality, while the drop in younger trees 

is due to decreased regeneration relative to previous rates. In this way, the shape of a forests’ 

static age structure is indicative of the relative rates of regeneration influenced by favorable or 

unfavorable conditions (Vlam et al. 2017). 

1.3.4 Radial stem growth during the 20th century 

Growth of saplings and mature trees before and after 1975 
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Circa 1975, climate factors, tree ring chronologies, and tree age structures all underwent 

notable changes (see Results). Therefore, we further analyzed changes in growth in two periods: 

before and after the year 1975.  To evaluate the degree to which the growth rate of saplings and 

mature trees varied with tree age before and after 1975, we repurposed the tree cores and disks 

that were collected and measured for tree age (see Section ‘Tree Age’). Growth rate was 

calculated from the raw ring width as the basal area increment per year, or BAI (cm2 yr-1).  BAI 

was derived by first calculating basal area over the tree’s lifetime via the area of a circle where 

the radius is the cumulative sum of ring widths from the pith to the respective year. BAeis then 

the difference in basal area between the current and previous year. We then developed two 

generalized linear models with the form 

𝑦"#$%&# =	𝐵' + 𝐵(𝑎 + 	𝜖                                           Eq. 1.2 

𝑦)$*#& =	𝐵+ + 𝐵,𝑎 + 	𝜖                                           Eq. 1.3 

where y is growth rate and the subscript indicates before or after 1975; a is tree age; B0 

and B2 are the y-intercepts; and B1 and B3 are coefficients.   

We assembled separate datasets for saplings and mature trees, and applied both models to 

each. Both datasets included cores with complete ring records from pith to 2016. Missing rings, 

which frequently occur in conifers during particularly stressful years (e.g., defoliation or dry 

growing conditions; see Wilmking et al. 2012a, Leland et al. 2016, Novak et al. 2016), were 

identified via cross-dating and interpreted as zero growth. We considered a sapling to be < 2 m 

tall, which is generally equivalent to < 50 years old (see Results, Figure 1.4a). However, because 

the oldest trees established after 1975 were 40 years (i.e., oldest in 2016), we limited our analysis 

of saplings to those ≤ 40 years old. Additionally, we restricted our data set for saplings to basal 



 

 

20 

area grown during the period in which the tree was established to avoid any unintended bias (i.e., 

we excluded cases where trees established before 1975 grew after 1975). Outliers beyond the 5th 

and 95th percentiles were removed to reduce noise in evaluating relationships. The final data set 

for saplings included 59 trees with 1,483 observations of growth rate. For the analysis of mature 

trees, we selected trees ≥ 50 years old (≥ 2 m tall; see Results) which grew both before and after 

1975, resulting in 14 trees with 910 observations of growth rate (age range: 68 to 153 years). 

Because growth rate was non-normally distributed, we employed generalized linear 

models fit by maximum likelihood estimation (Laplace Approximation) using the ‘lme4’ 

package in R (Bates et al. 2015). We selected the best distribution and link function by 

comparing the Akaike Information Criterion (AIC) (Akaike 1973) of models with two types of 

distributions (i.e., Gamma and Poisson) and three types of link functions (i.e., ‘log’, ‘inverse’ 

and ‘identity’ link functions). For both saplings and mature trees, we selected the gamma 

distribution with ‘identity’ link function because it had the lowest AIC, and therefore best fit. We 

added tree ID as a random effect to address the repeated sampling structure of our data 

(Supplementary Material Table 1.1). However, since this made the sapling models singular, the 

random effect was retained only in the mature tree model. We then compared the model 

equations (Eq. 1.2 and and Eq. 1.3) within each group (saplings and mature trees). For the 

sapling models, we used a t-test while the random intercept of the mature tree models required a 

z-test (Bates et al. 2015). A significant difference between the two models would indicate that 

the relationship between age and growth rate changed after 1975.  

Relationships between radial stem growth and 20th century climate 

 We compared the tree-ring width record with meteorological data to elucidate the effects 

of temperature, precipitation, VPD, and SNO on radial stem growth during the 20th century. To 
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ensure that the trees selected for tree-ring analysis exhibited little-to-no age-related growth 

trends, we limited our sample to trees whose cores spanned at least 100 years from 1900-2015 

(sampled in 2016). The radial-growth sample includes 22 cores from our six study plots, 17 of 

which cover the entire study period and the remainder covering at least 103 years (mean age 141 

years; range: 103 to 232 years). Therefore, this tree-ring analysis is representative of only mature 

white spruce trees at the Arctic treeline study site. 

Raw tree ring widths were used to build ring width chronologies and then compared to 

monthly climate during the 20th century. Following standard dendrochronology practices (Cook 

and Kairiukstis 1990), the ring widths were detrended using two methods: (1) a modified 

negative exponential (MNE) which removes age-related changes in ring width and (2) a two-

thirds spline which ensures a minimum loss of low-frequency variance (Cook 1985, Cook et al. 

1995). Using the resulting detrended data, we built two mean tree-ring chronologies (TRC) 

which provide annual tree-ring width. The detrended data were whitened prior to averaging using 

an autoregressive time series model. The chronologies were truncated to the year in which the 

sample depth (number of cores in the chronology) was substantial enough to create a minimum 

subsample signal strength of 0.85 (Cook and Kairiukstis 1990). 

Pearson correlations coefficients, r, were calculated from the TRC and monthly climatic 

data from previous January to current September. Stationary bootstrapping was used to calculate 

the significance and confidence intervals of each correlation according to Politis and White 

(2004). Correlations were considered significant at α =  0.01. To elucidate how the climate 

variables which were significantly correlated with TRC changed over the 20th century, we 

compared the mean monthly climate before and after 1975 using a t-test.  
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We used the two chronologies to satisfy different purposes: First, we interpreted the 

MNE chronology as analogous to that of annual production or growth since the effect of 

detrending with the MNE method is generally modest in mature trees (Cook and Kairiukstis 

1990). This was corroborated by the fact that there was no major difference between the 

correlations of the MNE chronology and climate and those of raw ring width and climate. 

Therefore, correlations between climate and the MNE chronology can be interpreted as the 

correlations between climate and annual growth. We also evaluated the stability between TRC, 

radial stem growth, and climate during the 20th century by computing 31-year rolling 

correlations between the standard TRC and the mean monthly temperature and precipitation to 

assess divergence. Tree-ring analyses were facilitated using the R package ‘dplR’ (Bunn et al. 

2010) for detrending and building chronologies, and the R package ‘treeclim’ (Zang and Biondi 

2015) for conducting climate analyses. 

1.4. Results 

1.4.1 Climate during the 20th century: Before and after 1975 

We found that the climate index decreased after 1975, revealing a significantly warmer 

and drier climate compared to previous decades (p < 0.001; Table 1.1, Figure 1.2). For example, 

from 1900 to 1975, only 37% of the years were classified as warm and dry while the remainder 

were typically cool and wet. However, from 1975 - 2015, the number of years classified as warm 

and dry was much higher at 74%. This shift to a warmer and drier climate is reflected in the 

annual temperature, precipitation, and SNO during the 20th century (Figure 1.3). After 1975, 

annual temperature increased by 1°C (t-test, p < 0.001) (Table 1.1; Figure 1.3a). However, 

growing year (August-July) precipitation remained relatively stable throughout the 20th century 

(p > 0.05) (Table 1.1, Figure 1.3c). The growing year SNO decreased significantly by an average 
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of 25.7 mm after 1975 (p < 0.01) (Table 1.1, Figure 1.3d). The drying trend was not reflected in 

annual VPD (p > 0.05) (Table 1.1, Figure 1.3b); however, summer months were significantly 

drier after 1975 relative to before (Table 1.1, Figure 1.3f). 

For coherency and conciseness, we present only trends in monthly climate variables 

which were significantly correlated with TRC (see Section 3.4.1). Trends in monthly climate 

variables are generally similar to annual trends, with the exception of VPD. Mean temperatures 

during spring and summer (i.e., May, June, July, and August) increased by 0.9 – 1.4°C after 

1975 (p < 0.0001) (Table 1.1, Figure 1.3e). Additionally, there was no significant difference in 

July precipitation between the periods prior to and after 1975 (p > 0.05) (Table 1.1, Figure 1.3g). 

SNO in March and May decreased by 38% and 50% after 1975, respectively (p < 0.01), while 

September SNO remained stable throughout the study period (p > 0.05) (Table 1.1, Figure 1.3h). 

VPD increased in May and June by 12% and 5%, respectively (p <0.001), and decreased by 33% 

in February (p < 0.01) (Table 1.1, Figure 1.3f). 

1.4.2 Assessing regeneration: tree age-height relationship and stand-level height and 

age structure 

Figure 1.4a shows the relationship between age and height in log and linear space. The 

value of the y-intercept, b, and the exponential rate of increase, m, were 32.44 ± 0.71 and 0.58 ± 

0.01, respectively (mean ± SD). The average r2 value of the model was 0.8932 ± 9.90x10-8 (mean 

± SEM) and ranged from 0.8453 to 0.9293. The RMSE was 23.8 years.  

The individual tree detection algorithm identified 38,652 white spruce trees at our study 

area. The average observed height was 2.46 ± 1.47 m (mean ± SD) and the maximum height was 

15.28 m. The stem density at the study plots was 427.07 ± 46.04 stems ha-1 and ranged between 
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358.1 – 501.34 stems ha-1. At the landscape level (i.e., across the ALS tiles), the average stem 

density was 513.12 ± 252.86 stems ha-1 and ranged between 100 – 1400 stems ha-1. The height 

structure at the study area revealed an exponential relationship in stems 1.4 m – 15.28 m tall 

(Figure 1.4b). However, the number of stems in each 0.1 m bin between 0.3 m (lowest detectable 

height) and 1.4 m tall were approximately equal. 

The age structure at our study area was unimodal with a peak in the number of trees 

which were 36 years old in 2011 (year of aerial lidar scanning; see Section 2.3.2) (Figure 1.4c), 

which corresponds to a tree established circa 1975 (Figure 1.4a). The predictions of individual 

tree age ranged from 16 – 182 years old. The average and median age of trees was 48.4 and 47 

years old, respectively. Data could not be derived for trees less than 16 years old as these trees 

were < 0.3 m tall and therefore undetectable by the individual tree detection algorithm (see 

Section 2.3.2). According to age structure analyses (see e.g., Vlam et al. 2017), unimodal age 

structure such as that observed in Figure 1.4c is indicative of a population which has recently 

failed to recruit new individuals, so regeneration has decreased.  

1.4.3 Growth rate of saplings and mature trees 

The models of growth rate in saplings and mature trees were both statistically different 

from the null model (ANOVA, chi-squared p <<0.0001), confirming that growth rate did vary 

with age. In saplings, growth rate increased with age, but this relationship did not differ after 

1975 (Table 1.2, Figure 1.5a). However, in mature trees, the relationship between growth rate 

and age did change significantly between the two periods (Table 1.2, Figure 1.5b). Before 1975, 

growth rate decreased modestly with every additional year in age (𝐵( = -0.2 cm2 year-1; Table 

1.2, Figure 1.5b), but after 1975, growth rate increased significantly with age by 1.67 cm2 year-1 
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(z-test, p <0.0001). The RMSE of the sapling and mature tree models are 1.20 and 0.39 cm2 year-

1, respectively. 

1.4.4 Tree-ring width and radial stem growth vs. climate 

Tree ring-climate analyses 

The MNE tree ring chronology echoed the results of radial stem growth in mature trees: 

After 1975, tree ring width increased by 54% relative to previous decades (Figure 1.6; p < 

0.0001, Wilcoxon test). The trend in radial stem growth is less prominent (7% increase; p = 0.64, 

Wilcoxon test) in the spline chronology due to the intrinsic nature of the detrending method. The 

correlations between the MNE tree ring chronology and the monthly climate variables 

highlighted some prominent trends between annual growth (proxy as TRC) and environmental 

conditions (Table 1.3). Generally, warmer springs (May) and summers (June, July, August) of 

the current and previous years were associated with increased annual growth. Additionally, 

annual growth increased when the spring (May) and early- to mid-summer (June, July) of the 

current and previous year were drier (higher VPD) and when the previous February was wetter 

(lower VPD). Precipitation in July of the previous year was positively correlated with annual 

growth the following year. As SNO decreased in the spring (March, May) and fall (September) 

of the previous year, annual growth increased. Lastly, the correlation between climate index and 

TRC was negative (r = -0.43 ± 4.6x10-7, mean ± SEM; p-value < 0.0001, df = 78), suggesting 

that annual growth increased as the climate became warmer and drier. 

Temperature divergence 

The 31-year running correlations between TRC, current June temperature, and July 

precipitation revealed some signs of temperature divergence in our tree ring chronology. We 
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examined the correlations with June temperature and July precipitation specifically because their 

correlations with the spline chronology from 1900-2015 was statistically significant (see 

Methods). Overall, the correlation between temperature and TRC weakened over the 20th 

century but was variable (Figure 1.7). For example, c. 1955, the correlation between TRC and 

current June temperature decreased and became statistically insignificant after circa 1955. After 

circa 1965, June temperature correlations began increasing again, only to decrease circa 1988. 

Meanwhile, the correlation between TRC and current July precipitation increased steadily until 

circa 1980 before decreasing again. The running correlations between TRC and current July 

precipitation were never statistically significant.  

1.5 Discussion 

Our findings reveal that climate at our latitudinal treeline site in Alaska became warmer 

and drier after circa 1975. Concurrently, the unimodal age structure suggests that forest 

regeneration decreased circa 1975 relative to previous decades, corroborating our hypothesis that 

warmer but drier conditions would decrease regeneration. However, in contrast to our 

hypothesis, our analysis of growth rate before and after 1975 showed that the warmer and drier 

climate did not appear to affect growth rates in saplings but increased the growth of mature trees 

substantially. Radial stem growth of mature trees was substantially larger after 1975 despite the 

overall drying trend, suggesting that mature tree growth was not or was minimally water-limited 

during the 20th century. However, the tree ring chronology of mature trees exhibited positive 

correlations with July precipitation as well as temperature divergence starting in mid-1900s, 

suggesting that a shift towards water-limitation could occur if drying trends continue (Andreu-

Hayles et al. 2011, Hofgaard et al. 2019). Together, our results show divergent responses of 
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regeneration and radial stem growth of white spruce growing at Arctic treeline in response to the 

same climatic stimuli. 

The decrease in regeneration beginning circa 1975 was likely driven by changes in the 

climate. Success in early life stages relies on adequate water availability during germination 

(Angell and Kielland 2009), establishment (Walker et al. 2012), and seedling development 

(Angell and Kielland 2009) because smaller root systems make saplings highly vulnerable to 

water stress (Smith et al. 2003). Additionally, saplings are more likely to survive when well-

covered by snow during winter since the snowpack decouples them from the harsh conditions of 

the free atmosphere (Körner 2012, 2016, Renard et al. 2016). While we do not have data 

available for tracking snow depth during the 20th century, we observed significant decreases in 

precipitation received as snow (SNO) during spring (i.e., -38% decrease in March and -100% 

decrease May after 1975) and fall (i.e., - 28% decrease in September) in the years after 1975. 

Such a shift could have decreased the snow depth and therefore exposed seedlings to the free 

atmosphere earlier, ultimately decreasing survival. 

While approximately half of the studied Arctic treeline sites have advanced during 

periods of warming (Rees et al. 2020), advance seems unlikely at our study site. The observed 

decrease in population regeneration at this site suggests that the tree population has not grown, 

and therefore treeline has not advanced. Other stationary treeline sites around the circumarctic 

had similar responses to climate trends such as warmer springs and summers and drier springs 

and falls (Rees et al. 2020). Further, the decreasing moisture gradient from western to eastern 

Alaska (Wilmking and Juday 2005) may explain why treeline has advanced on the Seward 

Peninsula (Suarez et al. 1999, Lloyd and Fastie 2002) but not at our study site in the Brooks 

Range. Of course, the decreased regeneration could also be explained by non-climatic factors. 
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Many seedlings, saplings, and mature trees within the vicinity of and at our study site exhibited 

mild to severe browsing damage from snowshoe hares (personal observation). In multiple cases, 

snowshoe hare browsing girdled the stem and killed the tree, highlighting the strong control 

herbivores can have on tree survival and treeline advancement (e.g., see Olnes et al. 2018). Other 

factors could have affected regeneration but were beyond the scope of this study such as 

nitrogen-limitation (Gustafson et al. 2021), permafrost thaw (Lloyd 2005, Maher et al. 2021), 

nutrient availability, and seed dispersal (Kambo and Danby 2018a, 2018b). While we cannot 

definitively conclude that climate was the main driver in decreasing regeneration after 1975, the 

striking synchronicity of the shift in climatic conditions and the shift in regeneration, plus the 

knowledge demonstrated from prior research that climate constrains regeneration in tree 

populations, strongly suggests a mechanistic link. 

In contrast to the decrease in regeneration of saplings, the growth rates of mature trees 

increased in response to warming and drying after circa 1975. This finding contradicts our 

hypothesis that both growth and regeneration would decrease in response to warming and drying. 

However, these differing responses may be explained by studies which show that climate change 

influences saplings and mature trees differently, often because of their difference in size (Körner 

2012, 2016, Stovall et al. 2019). For example, larger, mature trees may be able to grow under 

drier conditions than saplings because of their more developed root systems which can more 

easily access deeper water reserves (Körner 2012, Kambo and Danby 2018a, 2018b). While it 

appears that the growth response of mature trees at our site is not currently water-limited, the 

presence of temperature divergence in our tree ring chronology suggests that continued drying 

and warming may cause future water-limitation to impede growth (Hofgaard et al. 2019, Peters 

et al. 2021).  
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Surprisingly, our results show that relative to before 1975, the growth of saplings did not 

change significantly after 1975. At face value, one might conclude that the growth of saplings 

was not impacted by warming and drying conditions, although seedling and sapling mortality 

were not measured and may confound this conclusion. This presents a question for future 

research: How and why would warming and drying conditions affect regeneration but not sapling 

growth? Recent studies suggest that sapling survival depends on overcoming higher respiratory 

carbon losses (Griffin et al. 2021) which may in turn affect growth. Furthermore, the carbon 

balance constraints resulting from high respiratory rates and low photosynthetic rates are 

exaggerated at treeline relative to the southern range limit of white spruce (Griffin et al. 2022, 

Schmiege et al. 2022). Future research is necessary to identify the physiological explanations for 

this finding and might consider investigating the growth and carbon balance of both small and 

large spruce trees growing in different water regimes.  

The age-height model enabled us to predict the age of trees detected by aerial-lidar and 

therefore expand our scope to the landscape level. Tree height is not typically an accurate proxy 

for tree age due to several factors which can stunt or accelerate the growth of individuals such as 

gap dynamics or environmental (Kuuluvainen et al. 2002). However, in this population we 

validated the relationship and found a strong relationship between age and height (r2 = 0.82, 

RMSE = 23.8 years). More research is required to understand this unusually strong relationship 

in trees; however, it is likely because trees at our study site are well spaced, therefore the effects 

of gap dynamics and competition are limited. We do observe an increase in the variation of age 

among mature trees, possibly due to variation in environmental stress. When studying other 

species or older populations, we recommend verifying age-height models, as the mature trees in 

this study are still relatively young in a general context.   
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Future research may advance the method presented here by improving the predictive 

accuracy of the age-height model, diversifying the species in the model, and using lidar with 

improved vertical accuracy to decrease the height detection threshold of individual trees. Adding 

other predictor variables to the age-height model, such as diameter at breast height or distance to 

nearest neighbor, could greatly improve model accuracy. Additionally, developing age-height 

models for other treeline species would make our methods more widely applicable. Lastly, using 

higher resolution aerial lidar scans (> 8 returns per m2) and higher vertical accuracy in future 

studies would enable the observation of trees below the height detection threshold (i.e., 30 cm) 

and decrease the possibility that small shrubs (i.e., > 30 cm tall) were misclassified as spruce 

seedlings and vice versa. If small trees were misclassified as shrubs, then regeneration could be 

higher than reported. Conversely, if shrubs were misclassified as small trees in the sample 

population assessed in this study, regeneration was even more negatively affected by climate.  

Conclusion 

The results of our study show that at our Arctic treeline site in interior Alaska, shifts 

towards a drier and warmer climate were highly associated with a decrease in regeneration of 

saplings and increased growth of mature trees. Together, this lends evidence that this section of 

treeline has remained stationary since circa 1975 while mature tree growth has increased. 

However, only one or two successful cohorts are necessary to advance treeline position (Körner 

2016). Should the many stochastic factors necessary for increased regeneration temporarily 

align, this section of the Arctic treeline may advance. Therefore, we stress that continued 

monitoring is necessary to properly assess current treeline behavior. Our novel method for 

monitoring regeneration offers a means to do so that is less labor-intensive than traditional 

methods. Wide application of this method has the potential to open research to more less well-
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documented locations of the Arctic treeline and clarify the varied responses of Arctic treeline to 

climate change.  
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1.7 Figures and Tables 

Table 1.1. Comparison of annual and monthly climate means at Arctic treeline in central Brooks Range, AK before and after 1975. 
The selected months are presented because they are significantly correlated with the MNE chronology (TRC; see Table 1.3). 
Terms in bold are statistically different after 1975 (p < 0.01, t-test). 

Climate 
Variable 

Annual1 

or Month 

Mean ± Standard Deviation  
Increase 
or 
Decrease  

t-statistic df p-value2 

Before 1975 After 1975 

Temperature 

Annual -10.1 ± 1 -8.8 ± 1 + 6.52 83.2 **** 
May 0.3 ± 1.4 1.7 ± 1.9 + 4.15 65.6 **** 
Jun 7.6 ± 1.1 8.6 ± 0.9 + 5.02 96.7 **** 
Jul 9.7 ± 0.9 10.7 ± 0.9 + 5.63 82.0 **** 
Aug 6.9 ± 1.2 7.8 ± 1.3 + 3.81 75.9 *** 

VPD 

Annual 0.14 ± 0.01 0.14 ± 0.01  0.686 73.4 ns 
Feb 0.03 ± 0.03 0.02 ± 0.02 - -3.14 106. ** 
Apr 0.08 ± 0.02 0.08 ± 0.02  0.07 102. ns 
May 0.25 ± 0.03 0.28 ± 0.03 + 3.86 65.5 *** 
Jun 0.41 ± 0.03 0.43 ± 0.04 + 3.99 75.3 *** 
Jul 0.37 ± 0.04 0.38 ± 0.04  1.87 83.2 ns 

 Growing Year 310.6 ± 49.6 298.9 ± 48.4  -1.23 87.3 ns 
Precipitation Jul 47.8 ± 23.4 54.8 ± 24.1  1.52 80.5 ns 

SNO 

Growing Year 162.3 ± 38.6 136.6 ± 43.6 - -3.17 77.4 ** 
Mar 15.1 ± 13.1 9.4 ± 8.5 - -2.84 110 ** 
May 6.2 ± 7.9 3.1 ± 3.6 - -2.88 110 ** 
Sep 36.5 ± 24.9 26.4 ± 32.6  -1.72 63.3 ns 

Climate 
Index Annual 0.5 ± 1.3 -0.8 ± 1.3 - -5.40 88.6 **** 

1 Annual means were calculated from Jan-Dec and growing year from Aug-Jul. 
2 * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001, ns p > 0.05.   
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Table 1.2. Coefficient estimates, standard error, and significance for fixed effects in the models for growth rate of white spruce 
saplings and trees at Arctic treeline in the central Brooks Range, AK. Bold terms are significant (p < 0.0001). 

Model Maturity 
Fixed 
Effect 

Random 
Effect Symbol 

Coefficient 
Estimate 

Std. 
Error 

t-
value P-value¹ 

Model 
1 

Saplings 
 

Intercept 

- 

B0 -0.73 0.46 -1.60 0.111 
Age B1 1.34 0.07 18.9 < 0.0001 
Period B2 0.09 0.69 0.13 0.898 
Age*Period B3 0.02 0.10 0.20 0.842 

Model 
2 

Mature 
Trees 
 

Intercept 

Tree ID 

B0 160.4 22.3 7.20 < 0.0001 
Age B1 -0.196 0.035 -5.65 < 0.0001 
Period B2 -130.6 17.6 -7.44 < 0.0001 
Age*Period B3 1.87 0.162 11.56 < 0.0001 

¹ p-values derived from a t-test for saplings and from a Z-test for mature trees   
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Table 1.3. Significant Pearson correlation coefficients, r, between monthly climate and the mean negative exponential tree ring 
chronology (TRC) from 1900-2015 (𝒑 ≤ 𝟎. 𝟎𝟏) of white spruce trees at Arctic treeline in the central Brooks Range, AK. Months of 
the previous year are lower case abbreviations, and the current year are in all caps. Values within parentheses indicate the 99% 
confidence interval around the mean. 

Temperature VPD Precipitation  SNO 
Month r Month r Month r Month r 
May 0.37 (0.14, 0.53) Feb -0.21 (-0.43, -0.02) Jul 0.21 (0.03, 0.39) Mar -0.27 (-0.47, -0.05) 
Jun 0.36 (0.05, 0.52) May 0.31 (0.04, 0.49)   May -0.25 (-0.38, -0.10) 
Aug 0.25 (0.02, 0.42) Jun 0.30 (0.02, 0.47)   Sep -0.24 (-0.39, -0.04) 
JUN 0.48 (0.23, 0.62) JUN 0.43 (0.21, 0.61)     
JUL 0.41 (0.12, 0.54)       
AUG 0.27 (0.03, 0.48)       
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Figure 1.1. The study area at Arctic Treeline in the central Brooks Range, AK, USA. (A) 
Elevation map of Alaska with site location. (B) Black and white aerial imagery of the study 
area in winter, highlighting snow covered tundra (white) and tree cover (black). Yellow dots 
represent the location of six study plots, the Dietrich River as a blue line and the boundaries 
of the five forest stands as yellow boxes. (C) Photograph of the northernmost study plot 
looking south at treeline. 
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Figure 1.2. Climate trend from 1900-2016 at Arctic treeline in central Brooks Range using the 
climate index developed by Barber et al (2000). The index differentiates between relatively 
cool, wet years (positive values) and warm, dry years (negative values). A loess smoothing 
curve (blue line) with 95% confidence intervals (grey shading) shows the overall trend 
through time. The vertical red line indicates the year 1975. 
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Figure 1.3. Trends in yearly (a, b, c, d) and monthly (e, f, g, h) climate means from 1900 – 2015 
at Arctic treeline in central Brooks Range, AK. Annual means were calculated from Jan-Dec 
and growing year from Aug-Jul. The selected monthly climate variables are presented 
because of their significant correlations with tree ring width during the 20th century (see 
Table 1.1). The y-axis of all variables is expressed in scaled units where zero is record mean 
(1900 – 2015) and units are standard deviation. Loess smoothing curves (blue line for annual 
means; colors for monthly means, legend on each panel) highlight the overall trend through 
time. The vertical red line indicates the year 1975. Asterisks show p-values from t-tests of the 
mean before and after 1975 (* p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001, ns p > 0.05).
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Figure 1.4. Forest structure at Arctic treeline in central Brooks Range, AK. (a) Relationship 
between age and height for white spruce at the Alaskan treeline (black line is the mean and 
grey shading is the 95th percent confidence interval; inset is the relationship in log-log space) 
(n = 94; mean r2 = 0.89). (b) The lidar-derived height structure for white spruce at the study 
area (~250 ha). Bin widths are each 0.1 m. (c) Age structure of white spruce trees at the study 
area in 2011. Columns represent the mean number of individuals in each age class, where 
error bars represent the 95% confidence interval. The vertical red line indicates the year 1975. 
Note, that trees below 0.3 meters tall were not detectable (dashed vertical line in b) which 
limited the age structure to those established before 1995 (dashed vertical line in c).
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Figure 1.5. The relationship between growth rate (basal area increment, BAI; cm2 yr-1) and age 
(years) of white spruce saplings (a) and mature trees (b) before (blue) and after (red) 1975 at 
Arctic treeline in the central Brooks Range, AK. The equations of the lines (i.e., Equations 2 
and 3) are presented on each panel with the colors also corresponding to period. To simplify 
the figure and highlight the change in slope, the lines/equations present the means of the 
coefficients (see Table 1.1) and exclude the error and random effects, if applicable. The 
difference in slope between the two periods was only significant in mature trees (p< 0.0001; 
z-test).
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Figure 1.6. Tree ring width chronologies with two types of detrending (modified negative 
exponential and two-thirds spline) of white spruce trees at Arctic treeline in the central 
Brooks Range, AK. Y-axis shows the ring-width index (RWI), or standardized ring width 
after detrending. Grey shading and secondary y-axis indicate the sample depth, or the 
number of cores in the chronology. The vertical red line indicates the year 1975.  
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Figure 1.7. Running 31-year Pearson correlation, r, between spline-detrended TRC and mean 
June temperature (red line) and July precipitation (blue line) demonstrating temperature 
divergence of white spruce trees at Arctic treeline in the central Brooks Range, AK. The 
dashed, grey lines represent the 95% confidence limits, outside of which the correlation is 
significant. The vertical red line highlights the year 1975. Mean June temperature and July 
precipitation is presented because it was found to be optimal for the tree ring series analysis 
from 1900-2015 (see Table 1.3). 
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Chapter 2: Temperature vs moisture: dissecting the relative 

influence of temperature, vapor pressure deficit, and soil moisture 

on intra-annual radial stem growth at Arctic treeline 

Johanna Jensen, Natalie Boelman, Jan Eitel, Lee Vierling, Andrew Maguire, and Kevin 

L. Griffin 

2.1 Abstract 

Individual tree growth at Arctic treeline is expected to increase in response to warming, 

but evidence of increased growth is mixed, suggesting factors other than temperature may be 

becoming more limiting as the climate continues to change. Further, chapter 2 concluded that the 

growth of saplings and mature trees varied in their response to climate change during the 20th 

century.  Therefore, in this study, we ask: (1) How do present-day intra-annual dynamics in air 

temperature, vapor pressure deficit (VPD), and soil volumetric water content (VWC) interact to 

influence radial stem growth of white spruce trees at Arctic treeline? and (2) Do the growth rates 

of saplings and mature trees respond differently to these dynamics in environmental conditions, 

and if so, in what way? We hypothesize that: (1) the influence of temperature will be moderated 

by VPD and soil moisture, and that; (2) compared to mature trees, the growth rate of saplings 

will be more susceptible to low water availability and/or high atmospheric evaporative demand. 

We obtained near continuous, sub-daily measurements of temperature, VPD, soil moisture, and 

stem radius using automated point dendrometers from two growing seasons (2018 and 2019) at 

an Arctic treeline site in the foothills of the central Brooks Range, AK. A generalized linear 

mixed effects model revealed that VPD, VWC, and tree size were statistically more important to 
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determining growth rate than air temperature. Lower VPD positively influenced the growth in 

general but was especially influential in large trees. Further, growth in mature trees benefitted in 

wetter soil conditions. Our results support that the growth rate of mature trees is more susceptible 

to low water availability and/or high evaporative demand. Together, these results suggest that 

while VPD and volumetric water content affect trees of all sizes at this section of Arctic treeline, 

saplings are less water-stressed than mature trees. We recommend considering life stage and the 

interactions between temperature and moisture availability when making predictions about 

growth at treeline in a changing climate.  

2.2 Introduction 

Arctic treeline is the largest ecotone on the planet (Callaghan et al. 2002a) and represents 

the northern-most extent of the ecological niche space of tree species (Körner 2012, 2021). The 

ecotone’s northern limit is thought to be primarily delineated by cold temperatures (Körner 2012, 

2021, Paulsen and Körner 2014) and thus growth at Arctic treeline serves as a sensitive indicator 

of climate change as trees are functioning at the limit of their physiological tolerance (Körner 

2012, 2021, Griffin et al. 2022). Given that the Arctic has warmed almost four times more 

rapidly than the global average (Rantanen et al. 2022), it follows that tree growth at Arctic 

treeline is commonly predicted to increase into the future (ACIA 2005, Callaghan et al. 2005, 

Pearson et al. 2013, Zhang et al. 2013). However, evidence of increased tree growth due to 

warming is mixed, with some treeline sites showing increased growth while others have mixed 

or no response (Briffa et al. 1998, Barber et al. 2000, Wilmking and Juday 2005, D’Arrigo et al. 

2008). Additionally, the recent deterioration of positive correlations between air temperature and 

tree growth at Arctic treeline, commonly known as ‘temperature divergence’, suggests that 
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increasing temperatures do not always benefit growth (D’Arrigo et al. 2008). This suggests that 

other environmental conditions and their interactions (Ellison et al. 2019), as well as genetic 

(Zacharias et al. 2021), age-related and physiological (Körner 2012) factors are becoming 

important in limiting local tree growth (Körner 2012, Ellison et al. 2019, Zacharias et al. 2021).  

A growing body of evidence suggests that water availability (e.g. vapor pressure deficit 

and soil moisture) may limit growth once temperature-limitation is alleviated (Barber et al. 2000, 

Driscoll et al. 2005, Wilmking and Juday 2005, Peng et al. 2011, Wilmking et al. 2012b, Lange 

et al. 2020, Tumajer et al. 2022). In the southern foothills of the Brooks Range, AK, white spruce 

(Picea glauca) growth responded positively to warming in the 20th century in the wetter, 

western regions while the response decreased and ceased in the drier central and eastern regions 

(Wilmking et al. 2004, Wilmking and Juday 2005, Brownlee et al. 2016). In fact, water-

limitation is one of the most common hypotheses to explain temperature divergence (Wilmking 

et al. 2004, 2005, Driscoll et al. 2005, Wilmking and Juday 2005, Lloyd and Bunn 2007, 

D’Arrigo et al. 2008, Porter and Pisaric 2011, Lange et al. 2020). Exploring the influence of 

water availability on intra-annual growth may help to elucidate the ways that tree growth is 

responding to a changing climate. 

Tree size also plays a critical role in how trees respond to environmental conditions 

(Körner 2016, Stovall et al. 2019), and likely influences dynamics in radial stem growth of 

different sized trees at Arctic treeline (Körner 2012). The physiology of taller, often more mature 

trees, is more tightly coupled to atmospheric conditions than shorter saplings, making them more 

susceptible to changes in environmental conditions such as temperature and vapor pressure 

deficit (Körner 2016). While taller trees have greater water demands (Körner 2016), their larger 
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root structures allow them access to more belowground water relative to smaller trees, especially 

under drought conditions (Jackson et al. 1996). Together, these previous studies suggest that 

predicting how radial stem growth at Arctic treeline will respond to the rapid warming associated 

with climate change requires an improved understanding of how temperature, vapor pressure 

deficit, water availability, and tree size interact at Arctic treeline to influence local tree growth. 

Such an understanding will help elucidate how ongoing climate change shapes the ecotone’s 

ability to store carbon aboveground, extend northward, and thereby mitigate future climate 

change (Wilmking et al. 2006, Pearson et al. 2013). 

In this study, we ask: (1) How do intra-annual dynamics in air temperature, vapor 

pressure deficit (VPD), and soil volumetric water content (VWC) interact to influence radial 

stem growth of white spruce trees at Arctic treeline? and (2) Do the growth rates of saplings and 

mature trees respond differently to these dynamics in environmental conditions, and if so, in 

what way? To answer these questions we obtained near continuous, sub-daily measurements of 

temperature, VPD, soil moisture, and stem radius using automated point dendrometers from two 

growing seasons (2018 and 2019) at an Arctic treeline site in the foothills of the central Brooks 

Range, AK. We then determined periods of active growth from stem radius measurements using 

a zero-growth model (Zweifel et al. 2016) and compared patterns of intra-annual relative growth 

rate between saplings and mature trees. Next, we used a generalized linear mixed effects model 

to infer the impacts of temperature, VPD, and moisture availability on growth rate. We 

hypothesized that: (1) the positive influence of increasing temperature will be moderated by 

VPD and soil moisture, and that; (2) compared to saplings, the growth rate of mature trees will 

be more susceptible to low water availability and/or high atmospheric evaporative demand (i.e.,  

high temperature, low VPD conditions). 
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2.3 Methods  

2.3.1 Study site  

Our study was conducted from June 2016 – Sept 2019 along a 5.5 km north-south 

transect bordering the Dalton Highway in the foothills of the Brooks Range, AK (67°59′ 40.92’’ 

N, 149°45′ 15.84’’W, 727 m a.s.l.). According to monthly climate data from the Integrated 

Ecosystem Model for Alaska and Northwest Canada (McGuire et al. 2016), the mean annual 

temperature was -8.25 ± 0.65°C and the average precipitation was 304 ± 77.1 mm year-1, with 

approximately half (45%) received as snow between 2000-2015. The site receives 24-hours of 

daylight from May 27 to July 18. Along the transect, the forest transitions to treeless tundra in 

patches and is underlain by discontinuous permafrost. The canopy is dominated by white spruce 

(Picea glauca) (Moench) while the understory consists mostly of sedges (e.g., Eriophorum spp.) 

and deciduous shrubs (e.g., Betula nana L., Alnus spp.) (Eitel et al. 2019).  

2.3.2 Radial tree growth rate  

In June 2016, we selected 36 white spruce trees along the transect using stratified random 

sampling with a diameter at breast height (DBH) of 10 cm as the stratification variable. Trees 

with a 5-10 cm DBH were considered saplings (n = 18) and those with a DBH greater than 10 

cm were considered mature trees (n = 18) (Tranquillini 1979, Körner 2012, Griffin et al. 2021). 

The mean DBH of saplings and mature trees included in this study was 6.62 cm and 18.4 cm, 

respectively. The average height of saplings was 4.15 m tall while mature trees were more than 

twice that height at 9.74 m tall. The mean tree age was predicted from height (see Chapter 1) and 

revealed that saplings were on average 73 years old while mature trees were on average 122 

years old.  
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Measurements of radial stem growth were made from June 2016 to September 2019. 

Each study tree was fitted with a point dendrometer, fabricated from a linear motion, spring-

loaded potentiometer (LP-10F; Midori USA). Dendrometers were placed at a height of 1.37 m on 

the north side of each tree (to minimize exposure to direct solar radiation) after removing any 

loose outer bark. Each potentiometer was calibrated at the time of installation with stem DBH to 

derive the stem radius and basal area (BA), so that: 

𝑅' =	
𝐷'
2 	

𝑅* =	𝑑* + 𝑅'		

𝐵* = 𝜋𝑅*+	

where 𝐷' and 𝑅'	 are the DBH and stem radius at the time of installation, respectively; 𝑑* is the 

linear distance measured by the dendrometer (0.001 cm) at time t; 𝑅* is the stem radius at time t; 

and 𝐵* is basal area at time t. Data were recorded on one of two types of dataloggers: a CR300 

from Campbell Scientific or an EM50 data logger from METER Group. The linear distance 

displaced by fluctuations in stem radius was recorded at five- or 20-minute intervals (for EM50 

and CR300 data loggers, respectively). A more detailed description of dendrometer 

measurements can be found in (Eitel et al. 2020). 

The onset of annual radial stem growth for each tree was defined as the day (at midnight) 

that the mean daily stem radius of the current year surpassed the 95th percentile of the mean daily 

stem radius of the previous year (May – August) (Figure 2.1) (Etzold et al. 2022). Similarly, the 

cessation of annual radial stem growth was defined as the date at which the 95th percentile of 

growth for the current year (May – August) was reached. However, if the data in the previous 
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season lacked >10% of the daily observations, we defined the onset of annual radial stem growth 

as the day that the mean daily stem radius of the current year surpassed the mean daily stem 

radius of the previous August. A more detailed description on determination of the onset and 

cessation of annual radial stem growth can be found in Eitel et al. (2020). The onset and 

cessation of annual growth demarcated the growing season. It is important to note that we define 

the cessation of annual radial growth as the cessation of radial expansion; cellular wall 

thickening continues through August (Cuny et al. 2015) but is not a limitation in answering our 

question which centers on irreversible radial stem growth.  

Within the growing season, we identified periods of irreversible radial stem growth (i.e., 

production of wood) using the ‘zero-growth model,’ which assumes that stem expansion beyond 

the previous maximum is driven by xylogenesis and those below the previous maximum were 

due to tree-water deficit (Zweifel et al. 2016). Therefore, the raw growth rate was the positive 

change in stem radius (cm per 20-mins).  Following Tumajer et al. (2022), we standardized the 

raw growth rate at each timestamp by the cumulative annual growth of a specific tree during the 

growing season to determine the contribution of each timestamp to annual growth, hereafter 

called ‘GRO contribution’. 

2.3.3 Microclimate 

Alongside changes in stem radius, we measured air temperature, RH, and VWC at each 

of the 18 mature and 18 saplings studied. Air temperature and RH were measured using VP-4 

sensors (METER Group) placed approximately 1.5 m above the ground on the south side of each 

tree within the dripline but outside of the foliage. VPD was then calculated using RH and air 

temperature by calculating the difference between saturated vapor pressure and the vapor 
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pressure of the air (Jones 1992). VWC sensors (ECH2O 5TM, METER Group) were installed in 

18 of the 36 trees at 10 cm depth on the north side of the tree just inside the drip line. All weather 

data were recorded at five-minute intervals on a EM50 datalogger. 

2.3.4 Statistical analysis and visualization of intra-annual growth  

We manually reviewed the dendrometer and microclimate data to identify and remove 

outliers or periods of sensor malfunction. For each tree, we limited our analysis to datasets 

collected: (1) during days for which growth data were collected for at least 75% of the day (i.e., 

≥ 55 observations out of a possible 74 per day), (2) from trees for which growth data were 

collected for at least 90% of the days between May 1 – Aug 31 (≥110 days of 123 total days) 

during which stems begin and cease growth (See Section 2.3.2), and (3) from trees that grew 

during our study period (i.e., stem radius at onset of annual growth was greater than that after 

cessation). After applying these restrictions, the data included in our analysis were from six 

saplings and five mature trees across two years of study (Table 2.1). Then, five-minute intervals 

were averaged over the previous twenty minutes to provide a consistent unit of measurement 

between the two types of dataloggers (i.e., CR300 from Campbell Scientific or an EM50 data 

logger from METER Group). 

To answer our study questions, we predicted relative growth rate from the environmental 

conditions and tree size using a generalized linear mixed effect model (GLMM) in R statistical 

software (R Core Team 2021) with the R package ‘nlme’ (Pinheiro et al. 2022). The predictor 

variables included day of year (DOY), air temperature (airT), VPD, VWC, and tree size (DBH). 

The full model included additive effects of each predictor variable, the interactions between size 

and the weather variables, as well as interactions between each weather variable. Correlations 
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between the continuous predictor variables were examined but none were excluded from the 

model since each were necessary to answer our study question. This resulted in a model with the 

form:  

𝑦-,*	~	𝛽' + 𝛽(	𝑥/01,* + 𝛽+𝑥2-3#,-,* +	𝛽,𝑥)-&4,-,* + 𝛽5𝑥67/,-,* + 𝛽8𝑥69:,-,* + 𝛽;𝑥)-&4,-,*𝑥2-3#,-,*

+ 𝛽<𝑥67/,-,*𝑥2-3#,-,* + 𝛽=𝑥69:,-,*𝑥2-3#,-,* + 𝛽>𝑥)-&4,-,*𝑥67/,-,* + 𝛽('𝑥)-&4,-,*𝑥69:,-,*

+ 𝛽((𝑥67/,-,*𝑥69:,-,* + 𝑒- 	

where, 𝑦-,*	represents the growth rate of tree i at time t; x represents the predictor variable (see 

subscript); 𝛽' is the y-intercept, 𝛽( through 𝛽(( are coefficients relating the predictor variable(s) 

of each term to the growth rate; and 𝑒- is the random intercept per tree, i.  

GLMMs relax the assumptions of normality and homoscedasticity required by linear 

regression models by specifying the distribution of the dependent variable and a link function 

(McCullagh and Nelder 1990, Zuur et al. 2009). Because relative growth rate was non-normally 

distributed, we compared the above model with multiple distributions and link functions using 

the Akaike Information Criterion (AIC) (Akaike 1973). The distribution and link function that 

had the lowest AIC, and therefore the best fit to the data, was a gamma distribution with a log 

link. Because the observations of growth rate were not independent (e.g., we tested the same 

individuals repeatedly), we tested random effects of tree ID, plot location, and year in our model. 

In the end, we included only tree ID as a random effect as it produced a model with the lowest 

AIC and including any combination of the three potential random effects made the model 

singular. Laplace estimation (Gelfand and Dey 1994) for the model converged easily.  

The quality of the models was assessed by marginal (R2m) and conditional (R2c) pseudo-

R2 statistics (Nakagawa and Schielzeth 2013). We then interpreted the relationships between 
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growth rate and the predictor variables. Individual terms within the model were deemed 

significant predictors of growth rate if p < 0.05 in a z-test. We interpreted the effect of each 

predictor variable on relative growth rate with the aid of a heat map. The heat map was created 

by predicting relative growth rate at every possible combination of weather conditions for a 

sapling (DBH = 6.6 cm) and a mature tree (DBH = 18.4 cm) in the early growing season (June 

10; DOY= 162).    

2.4 Results 

2.4.1 Environmental conditions 

Environmental conditions during the growing season of 2019 were warmer and drier than 

those of 2018 (Figure 2.2). The mean, maximum and minimum growing season air temperatures 

were significantly warmer in 2019 (14.6°C, 31.7°C, and 0.2 °C, respectively) compared to in 

2018 (11.6°C, 27°C, and -7.18°C, respectively) (Wilcoxon test, p < 0.0001). Conditions were 

also significantly more arid in 2019 than in 2018, with the mean VPD of 0.78 and 0.46 kPa, 

respectively (Wilcoxon test, p < 0.0001). VWC was significantly lower in 2019 than in 2018 

(Wilcoxon test, p < 0.0001). We found statistically significant correlations among the day of year 

(DOY) and all the weather variables in the model (Figure 2.3). Despite these correlations, we 

retained all variables in the model to answer our hypothesis.  

2.4.2 Radial stem growth 

At the annual scale (i.e., the total width of the tree ring grown between onset and 

cessation of annual growth), growth rate of saplings and mature trees was statistically identical 

when quantified as basal area increment (BAI, cm2; Table 2.1). However, when annual growth 
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was quantified as the percent increase relative to starting basal area, we found that saplings grew 

3.6 and 4.1 times more than mature trees in 2018 and 2019, respectively (Wilcoxon test, p < 

0.05; Table 2.1). The growth rate as GRO contribution (percent grown of the total annual growth 

per timestamp) was significantly higher in mature trees compared to saplings (Wilcoxon test, p < 

0.001) (Figure 2.4). The time during which growth occurred for saplings and mature trees 

significantly differed between tree size and year (Wilcoxon, p < 0.0001 for all comparisons; 

Figure 2.5). Mature trees most frequently grew in the early morning hours (4:00 – 8:00), whereas 

saplings tended to grow throughout the day, with modest peaks in the early morning hours.  

Environmental conditions vs. radial tree growth.   

Radial stem growth most commonly occurred when air temperature was 7-14°C, VPD 

was 0–0.5 kPa and VWC was 30 – 45%. Saplings more commonly grew at slightly warmer 

temperatures than mature trees (11.4°C on average compared to 9.8°C, respectively; Wilcoxon, p 

< 0.0001; Figure 2.6 left). Mature trees grew at a narrower range of VPD than saplings, with 

75% of growth occurring at VPD between 0-0.33 kPa in mature trees compared to 0 – 0.65 kPa 

in saplings (Wilcoxon, p < 0.0001; Figure 2.6 middle). Growth occurred at a wide range of soil 

moisture (14-70 % VWC). No discernible optima were found for saplings or mature trees, 

however, the distributions were significantly different (Wilcoxon, p < 0.0001; Figure 2.6 right). 

The fixed effects of the model captured 6.8% of the variance in the relative growth rate 

data (marginal R2). Including random effects of tree ID (Supplementary Material Table 2.1 and 

2.2) increased the variance captured to 42% (conditional R2). The only significant terms in the 

model were those for VPD, the interaction between VPD and tree size, and the interaction 

between VWC and tree size (Table 2.2). In general, GRO contribution decreased significantly 
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with increasing VPD in trees of all sizes (VPD,  𝛽5), but higher VPD particularly affected larger, 

mature trees (VPD:DBH,  𝛽<). While VWC alone was not a significant predictor of relative 

growth rate (VWC,  𝛽8), higher VWC positively influenced the growth response of larger, 

mature trees (VWC:DBH, 𝛽=).  

Interpreting the overall effect of the variables on relative growth rate is complicated by 

the multiple interaction terms. Figure 2.7 helps to illustrate the effect of these interactions on 

relative growth rate. Trees generally grew more than saplings however, the range of 

environmental conditions beneficial for growth is narrower. Barring changes in VWC, growth 

rate of mature trees responded more positively to decreased VPD than saplings (i.e., relative 

growth rate increases mainly along the y-axis). Increasing VWC increased growth rate in mature 

trees but decreased growth rate of saplings (i.e., relative growth rate increases across panel 

columns), especially under warmer temperatures. Increasing temperature alone did not have a 

significant effect on either saplings or mature trees, as it was not a significant term in the model. 

While both saplings and mature trees grew most when conditions were moderately cool (8-12°C) 

and VPD was low (<0.5 kPa), saplings grew most when the soil was dry (10-30%) (Figure 2.7 

top, left) and mature trees grew most when the soil was wet (50-70%) (Figure 2.7 bottom, right).  

2.5 Discussion 

The results of our study suggest that VPD, VWC, and tree size were statistically more 

important to determining growth rate than air temperature. This confounds our first hypothesis, 

which expected our variables of water availability to moderate the influence in temperature. 

Lower vapor pressure deficit positively influenced the growth in general but was especially 

influential in large trees. Further, growth in mature trees benefitted in wetter soil conditions. 
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These support our second hypothesis that the growth rate of mature trees is more susceptible to 

low water availability and/or high evaporative demand. Together, these results suggest that while 

VPD and volumetric water content affect trees of all sizes at this section of Arctic treeline, 

saplings are less water-stressed than mature trees. As Arctic treeline continues to become warmer 

and drier (Overland et al. 2019, Rantanen et al. 2022), we can expect the radial growth in trees of 

all sizes to decrease but mature trees will likely be first to be negatively affected.  

In addition to the results of our model, the timing of growth during the day suggests that 

mature trees are more water-limited than saplings at Arctic treeline (Wilmking et al. 2004, 

Wilmking and Juday 2005, Brownlee et al. 2016). Mature tree growth mainly occurred in the 

early morning hours (4:00- 5:00) when VPD is lowest (data not shown), whereas sapling growth 

occurred throughout the day. Tree stem radius growth usually occurs at night when VPD is low, 

and stems have overcome daily water deficits enough to continue growth (Zweifel et al. 2021). 

The physiological explanation behind why saplings appear less water-limited than mature trees 

may lie in the structural difference between these two life stages. Taller, mature trees are more 

coupled to the atmosphere than shorter saplings which are protected by the surrounding canopy 

and boundary layer (Körner 2012, 2016). As a result, mature trees experience more variation in 

climate conditions than saplings, including larger fluctuations in temperature and VPD (Körner 

2006, 2016). Further, drier conditions at the top of the canopy may create a larger evaporative 

demand on mature trees than saplings, increasing the likelihood of cavitation and embolism of 

xylem cells (Maruta et al. 2020). Therefore, growth in mature trees at our Arctic treeline site may 

be limited to conditions during which VPD is lowest, and evaporative demand and risk of 

cavitation is minimized. In contrast, saplings may be able to exhibit a riskier growth response 

compared to their larger conspecifics.  
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By including tree size and interactions between climate variables in our model, we were 

able explain more variance in growth rate (Rm2 = 0.07) than those which only included 

temperature and VPD (Rm2 = 0.01) but analyzed trees together, regardless of variation in their 

size (Tumajer et al. 2022). The remaining unexplained variance in relative growth rate could be 

due to several other abiotic and biotic conditions at the Arctic treeline. These include but are not 

limited to mean wind velocity (Lyu et al. 2019), evapotranspiration (Lyu et al. 2019), sunlight 

(Lyu et al. 2019), nutrient limitation (Ellison et al. 2019, Möhl et al. 2019, Gustafson et al. 

2021), nutrient cycling from denning animals (Lang 2019), structure damage from browsing 

(Olnes and Kielland 2017, Olnes et al. 2017), and mycorrhizal associations (Ellison et al. 2019). 

We recommend future studied which implement logistic regression or random forest to 

differentiate which climatic/environmental conditions stimulate irreversible radial growth from 

fluctuations in radius due to tree water status (e.g., Ziaco and Biondi 2016). 

Our results support that climate warming is alleviating temperature-limitation while 

increasing water-limitation in Arctic treeline and boreal ecosystems (Barber et al., 2000; Driscoll 

et al., 2005; Lange et al., 2020; Peng et al., 2011; Wilmking et al., 2012; Wilmking & Juday, 

2005) but stresses that tree size plays an influential role in growth response to these new 

conditions (Körner 2016). In addition, our findings help to temperature divergence at Arctic 

treeline (Briffa et al. 1998, Barber et al. 2000, Wilmking and Juday 2005, D’Arrigo et al. 2008) 

by showing that changes in VPD and soil moisture play a dominant role in growth rate at Arctic 

treeline, especially in mature trees which are commonly used for dendrochronological studies. 

As increasingly warm and dry conditions are expected throughout Arctic and boreal regions 

because of climate change (Overland et al. 2019, Rantanen et al. 2022), growth in mature trees 

may decrease relative to previous decades. However, saplings may continue to respond 
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positively to these conditions until reaching maturity and becoming more coupled with the 

atmosphere (Körner 2016).  
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2.7 Figures and Tables 

Table 2.1. Structural characteristics and annual growth for white spruce growing at Arctic 
treeline, AK. Annual growth is shown in basal area increment and percent increase in basal 
area relative to the basal area at the onset of growth. 

Size 
Category 

Tree 
ID* 

DBH 
(cm) 

 

Height** 
(m) 

Predicted Age (years)** 
Mean ± SD (min, max) 

Annual Growth 
Basal Area Increment, cm2 
(% increase of Basal Area) 

2018 2019 

Saplings 
(< 10 cm 

DBH) 

1E 5.0 3.00 61 ± 2 (56, 65) 1.2 (5.9) 2.1 (9.3) 
1F 6.5 3.82 70 ± 2 (64, 76) 2.7 (6.8) 4.7 (10.9) 
2E 8.7 5.81 90 ± 3 (81, 1) 1.5 (2.2) 1.8 (2.7) 
2F 5.8 3.5 67 ± 3 (61, 72) - 0.4 (1.5) 
4A 7.85 4.88 81 ± 2 (74, 88) 1.1 (2.0) - 
6B 5.9 3.86 71 ± 2 (65, 76) 0.5 (1.5) 0.9 (2.5) 

Mature 
Trees 

(≥ 10 cm 
DBH) 

1A 20.6 7.84 107 ± 4 (96, 117) 2.3 (0.7) 3.7 (1.0) 
1F 19.1 11.86 137 ± 5 (121, 151) - 3.2 (1.2) 
4D 23.1 10.71 129 ± 5 (114, 142) 3.5 (0.9) 5.6 (1.4) 
6A 16.0 10.13 125 ± 4 (111, 137) 2.3 (1.1) 2.9 (1.3) 
6D 13.5 8.17 110 ± 4 (98, 120) 2.2 (1.5) 2.4 (1.6) 

* Tree ID corresponds to the ID’s assigned in the data published in Eitel et al. (2020). 
**Height was measured in 2016, therefore predicted age (from height) is the age in 2016. 
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Table 2.2. Coefficient Estimates, standard error, and significance for the model predicting 
GRO contribution of white spruce growing at Arctic treeline, AK. P-value was determined 
using a z-test. Bolded terms indicate significance (p < 0.05). Note: Coefficient estimates are 
scaled to the data (see Supplementary Material Table 2.3) and in log-space due to the log-link 
in the model.  

Predictor 
Variable 

Coefficient 
Abbreviation Estimate Std. Error t value p-value1 

(Intercept) 𝛽' -0.12 0.28 -0.43  
DOY 𝛽( -0.01 0.02 -0.73  
DBH 𝛽+ -0.25 0.28 -0.87  
airT 𝛽, 0.01 0.02 0.51  
VPD 𝜷𝟒 -0.09 0.03 -2.94 ** 
VWC 𝛽8 0.03 0.02 1.25  

airT:DBH 𝛽; 0.02 0.02 0.93  
VPD:DBH 𝜷𝟕 -0.08 0.02 -4.34 **** 
VWC:DBH 𝜷𝟖 0.08 0.03 3.2 ** 

airT:VPD 𝛽> 0 0.01 -0.2  
airT:VWC 𝛽(' -0.02 0.02 -0.97  
VWC:VPD 𝛽(( 0.03 0.02 1.46  

1Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001 
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Figure 2.1. Visualization of intra-annual growth periods and irreversible radial stem growth 
of a white spruce tree (Tree 6D) growing at Arctic treeline, AK from Jun - Aug 2019. 
Irreversible stem growth (blue) is detected from stem radius (black) using the ‘zero-growth 
approach’ (Zweifel et al., 2016). Vertical dashed lines represent the onset date (left) and 
cessation date (right) of annual growth and horizontal dashed lines represent the equivalent 
starting (bottom; 95th percentile of 2018 stem radius) and ending (top; 95th percentile of 2019 
stem radius) stem radius for those times.  
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Figure 2.2. Timeseries of white spruce radial stem growth and weather during the growing 
seasons of 2018 and 2019 at the Arctic treeline, AK. (first row) Daily mean stem size as the 
percent change in basal area for one sapling (red; Tree 2E) and one mature white spruce tree 
(blue; Tree 6D) in 2018 (left column) and 2019 (right column). Vertical dashed and dotted 
lines represent the onset and cessation of radial stem growth, respectively, and are extended 
across all panels for reference. Site-level climate throughout the growing season includes 
(second row) air temperature, (third row) vapor pressure deficit (VPD), and (fourth row) 
volumetric water content (VWC) where solid lines represent the daily mean and shading 
represents the daily minimum and maximum. Note: VWC sensors were installed in early 
June 2018, hence no data for VWC is presented before this period. 
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Figure 2.3. Relationships between climate variables and day of year during active growth of 
white spruce growing at Arctic treeline, AK, USA. Pearson correlation matrix of air 
temperature (airT), day of year (doy), VPD, and VWC. All correlations were statistically 
significant (Pearson correlations alpha < 0.01). 
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Figure 2.4. Growth rate as GRO contribution (% grown of annual growth per timestamp) for 
white spruce saplings and trees growing at Arctic treeline, AK in 2018 and 2019. The box 
represents the first and third quartiles; the bold line as the median. The arithmetic mean is 
represented by a red asterisk. The whiskers extend from the hinge to the smallest/largest 
value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or 
distance between the first and third quartiles). Outlying points beyond this range are plotted 
individually. Results of a Wilcoxon test of growth rate in saplings and trees within each year 
are shown as text on the top of the panel.  
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Figure 2.5. Frequency of growth occurrence in saplings (red) and mature trees (blue) during 
each hour of the day for 2018 (left) and 2019 (right). Results of a Wilcoxon test between 
saplings and trees within each year are shown as text on the top of the panel.  
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Figure 2.6. The number of timestamps with growth occurrence during specific intervals of 
environmental conditions. Air temperature is shown in 1°C intervals; VPD in 0.1 kPa 
intervals, and VWC in 1% intervals. Occurrence of saplings growth is shown in red, and 
mature trees growth in blue. All distributions differed significantly between saplings and 
trees (Wilcoxon, p < 0.0001).  
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Figure 2.7. Heat map of the model showing the relationships between white spruce growth 
rate and the weather variables at Arctic treeline, AK. Interactions between predicted growth 
rate (color; GRO contribution), temperature (x-axis; °C), relative humidity (y-axis; %), and 
three levels of soil moisture (columns; % VWC) impact white spruce saplings (top row; DBH 
= 6.6 cm) and trees (bottom row; DBH = 18.4 cm) differently. Relationships are shown for 
growth early in June 10 (DOY 162) but were similar throughout the growing season. Low, 
moderate, and high values for soil moisture were chosen to represent the range of conditions 
experienced during the growing season. The size of the points describes the frequency 
(number of 20-min timestamps) that combination of weather conditions occurred during the 
growing seasons of 2018 and 2019. 
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Chapter 3: Extreme cold and subsequent thermal accumulation 

provide the environmental cues for initiating radial stem growth at 

the Arctic treeline: A dendrometer study of white spruce (Picea 

glauca) in central Alaska, USA  

Johanna Jensen, Natalie Boelman, Jan U. H. Eitel, Lee Vierling, and Kevin L. Griffin 
 

3.1 Abstract 

Climate change is expected to advance the seasonal onset of radial stem growth and 

lengthen the duration of the growing season. Such a change could potentially increase radial 

stem growth and above-ground carbon accumulation at Arctic treeline. Here, we identify the 

main environmental cues that initiate radial stem growth in spring for white spruce (Picea 

glauca) growing at Arctic treeline in the Brooks Range, AK, USA. We then simulate how 

additional warming may alter the timing of onset in radial stem growth. We hypothesize that the 

onset of radial stem growth of white spruce trees at our Arctic treeline site is triggered by winter 

chilling and spring heat accumulation, as found at slightly lower latitudes. Further, we expect 

soil temperature to play an important role in the onset of radial growth as soil temperature 

controls the presence of liquid water in permafrost and is necessary for radial growth. Therefore, 

we expect that soil temperature thresholds will predict onset more accurately than air 

temperature. To that end, we made continuous measurements of air temperature, soil 

temperature, and stem radius using automated point-dendrometers from 2016-2019. Our results 

confirm our first hypothesis: winter chilling interacts with warming spring temperature to initiate 

radial stem growth in spring. However, air temperature was a better predictor of onset than soil 

temperature. The extremely cold winter chilling threshold compared to studies elsewhere in the 
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boreal forest suggest that environmental conditions initiating radial stem growth may be species, 

site, and/or regionally specific, complicating predictions of radial growth onset in a changing 

climate. The simulation to predict onset of radial growth in a warming climate suggest that the 

onset of radial stem growth could occur one to two weeks earlier with 1-4°C warming.  

3.2 Introduction 

Trees synchronize their lives to the environment, relying on environmental signals to cue 

critical physiological functions (Purnell 2003). This adaptation is particularly important in cold 

climates where the growing season lasts only 100-110 days (Deslauriers et al. 2008, Körner 

2012, Rossi et al. 2014a) and most radial stem growth occurs within only the first 60-70 days 

(Rossi et al. 2008). To take advantage of such a short growing season, it is critical for trees to 

synchronize the onset of radial stem growth with the first availability of suitable environmental 

conditions (Körner 2012). Climate change is expected to advance the seasonal onset of radial 

stem growth and lengthen the duration of the growing season (Piao et al. 2007, Wang et al. 

2019). This is particularly important at Arctic treeline as longer growing seasons could 

substantially increase radial stem growth, woody biomass, and thus above-ground carbon 

accumulation and storage which in turn would mitigate climate change (Rahman et al. 2020). 

Determining the species-specific environmental conditions that cue the onset of radial stem 

growth at Arctic treeline is therefore an important variable for forest research (Delpierre et al. 

2019). 

 

Environmental conditions cue the onset of radial stem growth.  Observational studies have 

found that the spring onset of radial stem growth in cold environments is often driven by 

photoperiod and air temperature in some way (e.g. Moser et al. 2010, Delpierre et al. 2016, 
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Begum et al. 2018). As such, these factors are the primary focus for the three most widely 

supported models being tested to understand how environmental conditions trigger radial stem 

growth: the temperature threshold model, the heat sum model, and the chilling-induced heat sum 

model (Chuine et al. 2013, Chuine and Régnière 2017). The temperature threshold model 

suggests that the onset of radial stem growth occurs once a critical temperature threshold is 

reached (Deslauriers et al. 2008, Rossi et al. 2008, 2011) The heat sum model, also known as the 

‘cambial reactivation index’ (Begum et al. 2010, Li et al. 2017), is a degree day model that 

suggests that the onset of radial stem growth occurs after sufficient exposure to temperatures 

above a critical threshold (Wang 1960, Seo et al. 2008, Swidrak et al. 2011, Rahman et al. 2020). 

Lastly, the chilling-induced heat sum model suggests that the onset of radial stem growth is 

determined by winter chilling below a threshold temperature and spring heat sum above a 

different threshold temperature (Ford et al. 2016, Delpierre et al. 2019). In each model, 

photoperiod is used to define the days during which warming and/or chilling can occur.  A 

comparison of these models, Delpierre et al. (2019) concluded that while the chilling-induced 

heat sum model determined the onset of radial stem growth in four species of high latitude 

conifers (Picea mariana Mill.,  Pinus sylvestris L., Picea abies L. Karst., and Larix decidua 

Mill.), the environmental thresholds were species-specific.  

In addition to air temperature and photoperiod, soil temperature may also be an important 

environmental cue in triggering the onset of radial stem growth at Arctic treeline, as it is an 

important influence on the reactivation of the vascular cambium in spring (Vaganov et al. 1999, 

Hoch and Körner 2003, Körner and Paulsen 2004, Körner and Hoch 2006). Since this ecotone is 

underlain by discontinuous permafrost, soil water remains biologically unavailable throughout 

the winter and into spring (Chabot and Mooney 1985). This contributes to winter desiccation of 
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tree stems until the active layer thaws, at which point liquid water becomes available and stems 

are able to rehydrate (Maruta et al. 2020). Stem rehydration is essential for cambial reactivation 

to occur (Sanmiguel-Vallelado et al. 2021) and for turgor pressure to be sufficient for radial stem 

growth (Cabon et al. 2020, Peters et al. 2021). Therefore, research aimed at understanding 

environmental cues that trigger the onset of radial stem growth at Arctic treeline should consider 

both air and soil temperatures (Turcotte et al. 2009). 

 

Determining the onset of radial stem growth in remote locations.  To study the onset of radial 

stem growth, precise measurements of either cell division or stem diameter are needed. Micro-

cores can detect the onset of radial stem growth if taken at regular, frequent intervals (i.e., daily 

to weekly) throughout the spring (i.e., late April to June at Arctic treeline) (Turcotte et al. 2009). 

However, the need for high temporal resolution in measurement intervals over the course of 

several consecutive weeks renders this method difficult to implement at remote locations such as 

most pan-Arctic treeline sites. In addition, micro-coring is difficult to master and requires 

substantial post-processing to produce a dataset of radial stem growth (Tardif et al. 2001). 

Alternatively, autonomous point dendrometers continuously record tree diameter with high 

spatial and temporal precision (i.e., <3 μm at 5- to 20-minute intervals), making them ideal for 

studies of Arctic treeline (Eitel et al. 2020).  

After dendrometer measurements have been collected, a post-processing technique must 

be used to detect when the expansion of newly formed xylem, and thus radial stem growth, 

begins each year. The prevailing technique, hereafter referred to as the ‘95th percentile method’, 

considers the onset of radial stem growth to be the day on which stem radius of the current spring 

surpasses the 95th percentile of the previous year’s radial stem growth (Zweifel et al. 2016, Eitel 
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et al. 2020, Nezval et al. 2021, Etzold et al. 2022). However, this method requires the previous 

season’s data, which limits its accuracy and utility in two ways. First, it is sensitive to the 

inclusion of commonly incomplete records of stem radius that are due to sensor malfunction. 

Incomplete records will skew the value of the 95th percentile and therefore provide erroneous 

dates of onset. Second, this method cannot be used to detect the onset of growth in the first year 

that stem radius measurements were made. A new technique is needed that provides statistically 

indistinguishable dates of onset to the 95th percentile method but that circumvents these 

limitations.  

 

The overall goal of our study is to gain better understanding of the main environmental 

cues that initiate radial stem growth in spring for trees at Arctic treeline, and how additional 

warming may alter the timing of onset in radial stem growth. We focus on the dominant tree 

species (white spruce, Picea glauca) at our study site, which is located in the southern foothills 

of the central Brooks Range, AK, USA. We made continuous measurements of air and soil 

temperature, as well as stem radius using automated point-dendrometers from 2016-2019. We 

create and validate alternative to the ‘95th percentile method’ to detect the onset of radial stem 

growth, hereafter referred to as the ‘plateau method’, that both accounts for incomplete records 

of stem radius and leverages patterns present in the current year’s stem radius only. We then use 

a Bayesian analysis to test our hypothesis that the onset of radial stem growth of white spruce 

trees at our Arctic treeline site is triggered by winter chilling and spring heat accumulation. We 

expect that modifying the chilling-induced heat sum model to incorporate soil temperature 

during spring warming will predict onset most accurately. Then we conduct a simple simulation 
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to test our second hypothesis that onset of radial stem growth will occur earlier if temperature 

increases due to climate warming. 

3.3 Methods 

3.3.1 Site Description 

We conducted our field work along a ~5 km long, latitudinal transect at Arctic treeline 

bordering the Dalton Highway just south of the Brook Range in Alaska, USA (67°59′ 40.92″ N 

latitude, 149°45′ 15.84″ W longitude) from June 2016 to September 2019. Along this transect, 

trees become increasingly sparse until the landscape transitions into treeless tundra. The site is 

underlain by discontinuous permafrost and dominated by white spruce (Picea glauca). The 

understory is populated by tundra and boreal sedges (e.g., Eriophorum spp.) and deciduous 

shrubs (e.g., Betula nana L., Alnus spp.) (Eitel et al. 2020). We established six plots at the forest-

tundra transition where canopy trees were ≥ 2 m tall.  

Based on in situ weather stations (VP-4 air temperature and EM50 data loggers; METER 

Group, Inc., Pullman, WA 99163), the average annual air temperature is -3.16°C. Air 

temperatures reach as low as -40.0°C in the winter and as high as 31.3°C in the growing season. 

Soil temperatures are buffered by the insulating snowpack in winter but still vary annually from -

3.8°C to 12.2°C. Average annual soil temperature is -1.90°C. As an Arctic ecosystem, there is 24 

hours of darkness between Dec 10th - Jan 3rd (24 days) and 24 hours of light from May 27th - July 

18th (52 days) (data based on GPS position; local topography from the Brooks Range may affect 

these numbers). Local weather data from three nearby stations (Wiseman, Atigun Pass, and 

Chandalar Shelf) indicate that the area receives 521 mm of precipitation on average with 44% 

received as snow (Eitel et al. 2020). 
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3.3.2 Environmental Data 

Each tree was equipped with a micro-meteorological station which recorded air and soil 

temperature at five-minute intervals on a datalogger (VP-4 air temperature; 5TM soil 

temperature and moisture; and EM50 data loggers; METER Group, Inc., Pullman, WA 99163). 

Air temperature sensors were installed at approximately 130 cm from the soil surface, just within 

the canopy perimeter. Soil temperature sensors were installed 10 cm into the active layer just 

within the drip line. The environmental data were manually checked for sensor malfunctions, 

outliers were removed, and daily averages were calculated from days with ≥ 90% data coverage. 

Daily photoperiod (hours of sunlight per day) was computed from the date and the geographic 

coordinates in the ‘geosphere’ package (Hijmans 2019). All statistical analyses were conducted 

using the open-source software package R version 3.6.2 (R Core Team 2021).  

3.3.3 Onset of Radial Stem Growth  

Measurement of radial stem growth 

At each plot we selected six white spruce trees to monitor (n = 36). To select for trees 

with a wide range of structural characteristics we used a stratified random sampling approach 

with diameter at breast height (DBH, 1.37 m above the ground) as the stratification variable; half 

the trees selected at each site had a DBH between 5 and 10 cm and half with DBH > 10 cm. The 

diameter at breast height of trees included in the study ranged from 5.1 to 25.0 cm in 2016. High 

precision point dendrometers were installed on each tree at breast height following the methods 

outlined in Eitel et al. (2020). Each dendrometer was calibrated and related to the DBH at 

installation to derive the linear changes in stem radius from the voltage difference signal. The 

dendrometers had a spatial and temporal resolution of <3 μm and 20 minutes, respectively. 
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Dendrometer data were quality-checked using methods for data treatment in Zweifel et al. (2016) 

and manually reviewed before any calculations or statistical analyses were performed. We 

excluded trees from the study that did not grow during that season (i.e., missing rings, dead trees, 

etc.). We also excluded and those whose sensors malfunctioned or had insufficient data (i.e., < 

90% of the daily observations recorded) around the time of onset (i.e., May 14 – June 14). 

Detecting of the onset of radial stem growth  

In this study, we developed the ‘plateau method’ to detect the onset of radial stem growth 

which capitalizes on the following general pattern in the temporal dynamics in stem radius data 

collected by the point dendrometers. This pattern is also observed in several species of conifers 

growing in cold environments (Tardif et al. 2001, King et al. 2013) that we discuss later in the 

text. During the winter, the stem shrinks and rapidly swells in the spring (Zweifel and Häsler 

2000, Tardif et al. 2001). Swelling lasts approximately 10 - 14 days (Tardif et al. 2001) 

beginning around May 1st each year at our site and should not be confused with radial stem 

growth (see Discussion) (Tardif et al. 2001). After this initial swelling, the stem radius plateaus 

for two-weeks at the end of May; the stem radius then begins to increase once again and 

continues to do so through the growing season (e.g., see Figure 3 in Eitel et al 2020, and Figures 

1 and 2 in Tardif et al., 2001). This pattern was present in the data collected for each of the study 

trees (Supplementary Material Figures 3.1 and 3.2). The following describes the plateau method, 

which is visualized in Figure 3.1a. First, the mean and standard deviation of the stem radius 

during the last two weeks of May were calculated. The date of growth onset was defined as the 

first day that the stem radius exceeded the mean + 3 standard deviations of the stem radius 

during the last two weeks of May.  
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To assess the performance of plateau method, we compared the dates of growth onset 

predicted for each study tree to those predicted by the widely used 95th percentile method 

(Zweifel et al. 2016, Eitel et al. 2020, Nezval et al. 2021). According to this method, the onset of 

radial stem growth occurs when the stem radius of the current year exceeds the 95th percentile of 

the stem radius of the previous growing season (May 14 – Aug 1). Using the 95th percentile 

instead of the maximum stem radius is less affected by sporadic outliers and therefore provides a 

more stable approach in detecting the onset of radial stem growth (Eitel et al. 2020). Because the 

95th percentile method requires a complete growing season of stem radius measurements from 

the previous year to detect onset of the current year (data in 2016 began part-way through the 

growing season), growth onset could only be detected in 18 tree-years using the 95th percentile 

method. As a result, dates of growth onset for each tree, as predicted by each of the two methods, 

were compared for the stem radius data collected during the years of 2018 and 2019. A paired 

Wilcoxon rank sum test for non-parametric data confirmed that the two methods provided 

statistically identical dates of onset in 2018 (n = 11, p = 0.052) or 2019 (n = 7, p = 0.171, 

Wilcoxon test), indicating that the plateau method could be used to predict the onset of radial 

stem growth for each tree in all of the years (i.e. including the first year, 2017) in which 

measurements of radial stem growth were made. As such, our study included 9,748 observations 

of daily stem radius yielding 56 observations of radial stem growth onset (tree-years) across 27 

white spruce trees and three years.  

3.3.4 Models relating environment to onset of radial stem growth 

Model Descriptions 

The following is a summary of the three models whose equations are explained in detail 

in Delpierre et al. (2019). The three models build upon one another to become increasingly 
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complex. The temperature threshold model (Tt model) assumes that the onset of radial stem 

growth occurs when thresholds of photoperiod, 𝐷𝐿∗,	and temperature, 𝑇∗, have been crossed 

(Chuine et al. 2013, Chuine and Régnière 2017). The heat accumulation model (HS model) is a 

degree day model which assumes that after surpassing 𝐷𝐿∗,	 heat accumulates above 𝑇∗ until it 

reaches a heat accumulation threshold, 𝐹∗, and triggers the onset of radial stem growth (Seo et al. 

2008, Delpierre et al. 2019). The chilling-induced heat sum model (CiHS model) suggests that 

𝐹∗ is modified by the severity of winter. The severity of the winter is measured by the number of 

‘chilling days’, 𝐶*%*, defined as the number of days below a chilling temperature threshold, 𝑇C∗, 

occurring between two photoperiod thresholds, 𝐷𝐿C2*)&* and 𝐷𝐿C#DE. The heat accumulation 

threshold, 𝐹∗, necessary to trigger radial stem growth is then linearly modified by the number of 

days below the chilling threshold, 𝐶*%*, so that 

𝐹∗(𝑑) = 𝑔 ∗ 𝐶*%* + ℎ	

where 𝑔 (°C-days/chill day) is the slope of the relationship between winter severity and 

heat accumulation and ℎ is the heat accumulation necessary to trigger onset in the absence of 

chilling (Cannell and Smith 1983, Delpierre et al. 2019). Similar to the HS model, the period of 

heat accumulation begins once a threshold of photoperiod, 𝐷𝐿$2*)&*, is reached and accumulates 

above a temperature threshold, 𝑇$∗. In this model, the periods of winter chilling and heat 

accumulation are representative of endo- and ecodormancy, respectively (Delpierre et al. 2019). 

Therefore, to encompass the possibilities that endo- and ecodormancy can be sequential or 

parallel (Cooke et al. 2012, Chuine et al. 2013, Delpierre et al. 2016, Chuine and Régnière 2017), 

the model allows the 𝐷𝐿C2*)&*, 𝐷𝐿C#DE, and 𝐷𝐿$2*)&* to vary widely and overlap (i.e., between 0 

and 24 hours of light).  
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Parameter estimation and model comparisons 

The model parameters for the three models discussed above were estimated via Bayesian 

inference. This method produces estimates of the parameters and their uncertainties in the form 

of a posterior distribution. The global mode of the posterior distribution, or point of maximum 

likelihood, represents the most likely value of the parameter. All models used a gaussian 

likelihood and uniform prior distributions bounded by the natural extremes of the photoperiod, 

temperature, or soil temperature of the dataset depending on the environmental variables used by 

the model. The posterior distributions were calculated using a differential evolution Markov 

Chain Monte Carlo (MCMC) in the R package ‘BayesianTools’ (Hartig et al. 2019). For each 

model, we ran 300,000 MCMC iterations. To confirm proper chain convergence, we required the 

Gelman-Rubin criterion (psrf) to be less than 1.05 after burn-in (Gelman et al. 1996). 

To compare the models, we calculated the mean of the residuals (the mean difference 

between the predicted onset calculated at the point of maximum likelihood and the observed 

onset), the root mean square error (RMSE; calculated at the point of maximum likelihood), the 

Akaike information criterion corrected for small sample biases (AICC; Akaike 1973), the 

deviance information criterion (DIC; Spiegelhalter et al. 2002), and the widely-applicable 

information criterion (WAIC; Watanabe 2010) for Bayesian analyses. According to the 

information criterion, the model with the lowest value is the model of best fit. The model of best 

fit as represented by RMSE and the mean of the residuals is the model whose value is closest to 

zero.  

Onset of growth in a changing climate 
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We explored how onset of radial stem growth may differ in a changing climate by 

following methods established in Rahman et al. (2020). We calculated onset using the model of 

best fit after adding 1, 2, 3, or 4 °C to the observed temperature data from 2017-2019. We chose 

these scenarios to replicate the predicted  4°C increase in global temperature by 2050 under the 

ambitious low emission scenario, RCP 2.6) (IPCC 2013, Taylor et al. 2013). We compared the 

calculated onset for each warming scenario to the observed onset using a paired Wilcoxon rank 

sum test grouped by year.  

3.4 Results 

3.4.1 Onset of radial stem growth 

During the study period, the median onset of radial stem growth occurred on June 7 with 

statistically significant year-to-year variation (Figure 3.2). The median radial onset in 2019 

occurred on June 4, which was five days earlier than in 2017 (p < 0.001) and four days earlier 

than in 2018 (p < 0.0001; Wilcoxon test). There was no significant difference between the radial 

stem growth onset between 2017 and 2018. Of the sampled trees, the earliest onset observed 

occurred on June 2 in 2018 and 2019, and June 3 in 2017. The latest observed onset occurred on 

Jun 16, 2017, June 14, 2018, and June 9, 2019. Therefore, all the studied trees began growing 

within the two weeks of each other in 2017 and 2018, and within the one week in 2019. The 

onset of radial stem growth did not vary with tree size (DBH, Pearson's product-moment 

correlation, p = 0.11).  

3.4.2 Environmental conditions before and during growth onset 

Figure 3.3 illustrates the changes in air and soil temperature alongside stem radius and 

onset of radial stem growth during the study period for Tree 5D. Mean daily air temperature 
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ranged between -36.5°C and 17.1°C from the winter solstice to the date of onset and did not 

differ significantly year-to-year (Figure 3.4a; Wilcoxon test). However, soil temperature before 

onset became significantly warmer each year (p < 0.0001; Wilcoxon test) increasing from an 

average of -4.77°C in 2017 to -2.77°C and -1.85°C in 2018 and 2019, respectively (Figure 3.4c). 

During onset, mean daily soil temperature was significantly warmer in 2019 (3.10°C) 

when compared to 2017 (1.50°C; p < 0.01) and 2018 (1.63°C; p < 0.0001; Wilcoxon test) and 

ranged from 0.3 to 5.1°C (Figure 3.4d). Mean daily air temperature during onset was 11.5°C 

when averaged across the study period and ranged from 1.9 to 16.2°C (Figure 3.4b). Air 

temperature during onset was coolest in 2018 (10.1 ± 3.18°C), however this difference was only 

significant between 2017 and 2018 (p < 0.01; Wilcoxon test).  

3.4.3 Model performance for detecting environmental controls of growth onset 

The models generally improved with increasing model complexity so that the most 

complex model, CiHS, outperformed the simpler HS and Tt models (Table 3.1). Further, models 

with air temperature as the predicting variable outperformed those with soil temperature as they 

yielded mean residuals and RMSE closer to zero and the lower information criteria scores. Mean 

residuals showed that all models except for CiHS with air temperature tended to predict onset 

three to six days earlier than was observed.  

 The chilling-induced heat-sum model with air temperature had the best mean residual, 

RMSE, DIC, and WAIC values, signaling it as the best performing model when compared with 

these criteria. While the HS model had the lowest AICC score, the CiHS model’s AICC score was 

within 1 unit, suggesting they were not significantly different when compared with this criterion 

(Akaike 1973). Therefore, the CiHS model with air temperature was identified as the best-

supported model for predicting the onset of radial stem growth at our Arctic treeline site. 
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3.4.4 Posterior distributions of parameters reveal environmental thresholds 

The parameter estimates of the CiHS model revealed multiple environmental cues which 

lead to onset of radial stem growth (Figure 3.5). First, according to our model, the winter chilling 

associated with triggering the onset of radial stem growth occurs on days with 10.4 – 13 hours of 

daylight (𝐷𝐿C2*)&* and 𝐷𝐿C#DE, respectively), corresponding to March 7 and March 27. During 

this time, ‘chilling days’ are those with daily average air temperatures below -19.2°C (𝑇C∗). 

Spring warming begins when there is at least 10 hours of daylight per day (𝐷𝐿$2*)&*), 

corresponding to March 4 and ends at the onset of radial stem growth. Heat accumulates when 

the daily average air temperatures (𝑇$∗) is above 1.4°C. The heat accumulation threshold (𝐹∗) 

necessary to trigger radial stem growth is at least 172 degree-days (h) and increases by 6.9 

degree-days per chilling day (g). There was a median of nine chilling days in 2017, two days in 

2018 and zero chilling days in 2019.  

3.4.5 Onset of radial stem growth under 1-4°C of warming 

Under the hypothetical conditions where current mean daily air temperature was 1-4°C 

warmer, the average onset of radial stem growth varied anywhere from 2 – 13 days earlier than 

the actual date of onset depending on the degree of warming (Figure 3.6). Apart from 2017 under 

+1°C of warming, the earlier onset dates were significantly different for all years and climate 

scenarios tested (paired Wilcoxon test, p< 0.01). For example, when 4°C was added to the 

observed mean daily air temperature at Tree 5B, the CiHS model predicted that the onset of 

radial stem growth would begin 10 – 18 days earlier (Figure 3.6) on May 28, 26, and 24 in 2017, 

2018, and 2019, respectively (Figure 3.7). At the current conditions, heat accumulation above 𝑇$∗ 

mainly began in early May. However, adding 4°C to the daily mean temperature caused heat 
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accumulation to begin an average of 2, 12, and 44 days earlier in 2017, 2018, and 2019, 

respectively. For example, when 4°C was added to the air temperature observed in 2019, heat 

accumulation began as early as March 18 but was modest until late April (Figure 3.7 bottom). In 

addition, when 4°C were added to the observed air temperature the number of chilling days 

below 𝑇$∗ decreased from an average of 10.6 days to six days in 2017 and 1.5 to zero days in 

2018 (Figure 3.7 middle), decreasing the heat accumulation threshold from 244 °C-days to 

213°C-days in 2017 and from 182 °C-days to 172°C-days in 2018. This combined with the 

earlier heat accumulation caused the calculated onset of radial stem growth to occur two weeks 

earlier than under the current conditions. When three or more degrees were added to the 

observed air temperature during the study period, no chilling days were observed in 2018 or 

2019, and decreased the number of chilling days in 2017 by an average of 4 days (range 2-8 

days).  

3.5 Discussion 

Our results partially confirm our hypothesis: the onset of radial stem growth of white 

spruce trees at our Arctic treeline site between 2018 and 2019 was best described by the chilling-

induced heat sum model. However, air temperature alone was found to be a better predictor of 

onset than models including soil temperature or a combination of air and soil temperature. These 

results support similar studies of high latitude and alpine treeline conifers which suggest a 

common mechanism for the onset of radial growth of conifers in cold environments (Körner 

2012, Delpierre et al. 2019). The chilling-induced heat sum model with air temperature revealed 

that extreme chilling below -19.2°C in winter (during days with 10.4 - 13 hours of light per day) 

increased the spring heat accumulation above ≥ 1.4°C (on days with ≥ 10 hours of light per day) 

necessary to trigger radial stem growth at our Arctic treeline site. Our simple simulation of 
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climate warming decreased the chilling in winter and increased the warming in spring so that the 

onset of radial stem growth was earlier in all scenarios. Together, these results suggest the onset 

of radial stem growth of white spruce growing at Arctic treeline is largely driven by air 

temperature and photoperiod.  

Winter and Spring temperatures combine to trigger the onset of radial stem growth.  

Our study adds to mounting evidence suggesting that both winter chilling and spring 

heating of air temperature trigger the onset of radial stem growth in conifers in cold climates 

(Cannell and Smith 1983, Körner 2012, Delpierre et al. 2019). However, two things make our 

results stand out. First, the specific chilling threshold (-19.2°C) and heat accumulation threshold 

(+1.4°C) for white spruce at our Arctic treeline site is far colder than the chilling threshold 

identified for all four conifer species growing in western Canada describe in Delpierre et al. 

(2019) (ranging from -5.6°C to +6.1°C). Second, we found that warmer winters decrease heat 

accumulation threshold necessary to trigger the onset of radial stem growth at Arctic treeline. 

These results directly contrast the findings of Delpierre et al. (2019) and Cannell and Smith 

(1983). According to their theory, temperatures below the chilling temperature threshold signal 

the passage of winter so that even low quantities of heat accumulation indicate the oncoming 

spring and trigger radial stem growth (Cannell and Smith 1983). Our conflicting results may be 

explained by local adaptation as the trees at Arctic treeline are located at comparatively higher 

latitudes and experience colder winter temperatures (68°N and -40°C) compared to those studies 

in boreal western Canada (47.54°N - 50.68°N and -10°C) (Delpierre et al. 2019).  

A possible explanation for why the soil temperature models did not perform as well as air 

temperature models may be because soil temperature is a trigger for stem rehydration prior to 

growth. This is supported by patterns in the stem radius from winter to onset. As described in the 
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plateau method, the stem shrinks in winter due to desiccation and rapidly swells as it is 

rehydrated in spring (Tardif et al. 2001). Winter desiccation can be so severe that conifer trees 

experienced complete loss of xylem conductivity in winter due to excessive winter drought stress 

at comparable sites at alpine treeline in Japan (Maruta et al. 2020). But approximately two weeks 

prior to the onset of radial growth, xylem conductivity rapidly recovered, and stem radius 

swelled once soil temperatures were warm enough to hold liquid water (>0°C; Maruta et al. 

2020). Importantly, this initial swelling due to rehydration in spring should not be confused with 

radial stem growth (Fraser 1956, Tardif et al. 2001), but instead represents the rehydration of the 

cambium which always precedes the onset of radial growth by ‘several’ weeks (Fraser 1956, 

Kozlowski and Peterson 1962, Kozlowski and Winget 1964, Tardif et al. 2001). Thus, because 

rehydration must occur prior to growth, soil temperature is still important to physiological 

processes leading to onset but may not be identified as a trigger of onset itself (Lupi et al. 2012a, 

2012b). To identify a clear physiological link, we recommend further research investigating the 

changes in stem radius from winter to onset alongside measurements of xylem conductivity, air 

temperature, water stress, wind speed, and cellular development using histological analyses (i.e., 

microcores). Additionally, we recommend developing a model which incorporates winter 

chilling alongside the spring warming of both soil and air temperature.  

The plateau method: Pros and cons 

The plateau method for the detection of onset in radial growth presented here is a 

valuable tool for understanding the growth of trees in remote locations. For example, the plateau 

method provided quantitatively similar estimates to those of the 95th percentile method but 

detected onset in three times the number of tree-years. However, because the plateau method is 

based on an observed feature of our dataset, it cannot necessarily be applied to other species 
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growing in different environments. Instead, the plateau method may be uniquely suited for 

detecting onset in cold environments where trees experience severe winter desiccation and rapid 

spring rehydration prior to growth. For example, severe winter desiccation, rapid spring 

hydration, and a plateau prior to radial stem growth occurred ubiquitously in 40 trees of seven 

boreal tree species growing in northwestern Quebec including white spruce, black spruce (Picea 

mariana), jack pine (Pinus banksiana), red pine (Pinus resinosa), northern white cedar (Thuja 

occidentalis), and North American fir (Abies balsamea) (Tardif et al. 2001). The pattern can also 

be observed in the dendrometer series in European larch (Larix decidua) and Norway spruce 

(Picea abies) in the central Swiss Alps (see Figure 4 in King et al. 2013). 

 However, the plateau pattern is not observed in white spruce trees growing in temperate 

conditions of New York, USA (Griffin et al. 2020). While white spruce stems in temperate 

conditions desiccated during the winter and stem radii contracted sharply when air temperature 

decreased below -5°C (Griffin et al. 2020), the degree of desiccation was less severe (~ 250-400 

um in Figure 6 of Griffin et al., 2020 compared to ~ 700-800 um at our sites) and rehydration 

was not rapid, extending throughout several weeks compared to the 10-14 days observed at our 

sites and in other cold environments (Tardif et al. 2001). Therefore, this pattern in stem radius 

may be unique to trees growing in very cold environments such as at high latitudes or altitudes. 

Local adaptation is common in phenology of other tree organs, such as for budburst (see, e.g.,  

Chuine, Mignot, & Belmonte, 2000; Osada et al., 2018; Vitasse, Delzon, Bresson, Michalet, & 

Kremer, 2009; von Wuehlisch, Krusche, & Muhs, 1995). As a result, we suggest that the plateau 

method be used as a tool to detect the onset of radial stem growth in cold environments where 

these patterns are distinct and reliable.  

Continued warming could advance the onset of radial stem growth.  
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Our results suggest that if the mean daily air temperature increased by ≥ 3° C, the onset 

of radial stem growth in white spruce growing at Arctic treeline would occur one to two weeks 

earlier. Under the ambitious low emission scenario (RCP 2.6), +4°C of warming in the Arctic 

will occur by 2050 (IPCC 2013). Our results echo those of Rossi et al. (2011) and Rahman et al. 

(2020), who found that spring warming would cause earlier onset over the next decades. The 

earlier onset date from our model can be attributed to the combination of both fewer chilling 

days in winter and earlier heat accumulation in spring. In fact, in the case of 4°C warming air 

temperature rarely (1-2 times over the three years studied) occurred below the chilling threshold 

and the onset of radial stem growth was only driven by heat accumulation. However, these 

conclusions assume the chilling and heat accumulation thresholds are static within species. 

Future research identifying these threshold temperatures for white spruce growing in warmer 

conditions (like those at the southern range of the species distribution) would elucidate if these 

thresholds are locally adapted.  

An earlier onset date may lengthen the brief growing season and thus potentially increase 

radial stem growth at Arctic treeline (Rossi et al. 2011). However, the degree of radial stem 

growth – and therefore the degree of carbon sequestration – will also depend on the weather 

conditions during the summer (Rossi et al. 2011). Chapter 2 suggested that radial stem growth 

during the growing season relied on water availability as much as temperature. Therefore, while 

onset of radial stem growth is earlier, the potential to sequester more carbon depends on climate 

conditions remaining adequate throughout the growing season to effectively use the additional 

time (Deslauriers et al. 2014, Rossi et al. 2014a, 2014b).  

Conclusion  
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 We found that the process triggering the onset of radial stem growth of white spruce at 

the Arctic treeline is similar to that observed at alpine treeline (Körner 2012) and the boreal 

forest (Delpierre et al. 2019): winter chilling interacts with warming spring air temperature to 

initiate radial stem growth in spring. However, the extremely cold winter chilling threshold 

compared to studies elsewhere in the boreal forest suggest that environmental conditions 

initiating radial stem growth may be species, site, and/or regionally specific, complicating 

predictions of radial growth onset in a changing climate. As winters and springs at Arctic treeline 

become warmer due to climate change (Overland et al. 2019, Rantanen et al. 2022), our results 

suggest onset of radial stem growth significantly earlier. Such a change could increase the 

aboveground C sink at Arctic treeline if growing season conditions remain appropriate for radial 

growth (Rossi et al. 2011).  
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3.7 Figures and Tables 

Table 3.1. Comparison of model performance between the models tested to understand how 
environmental conditions trigger radial stem growth in white spruce at Arctic treeline, AK. 
Model criteria include the mean of the residuals (days; i.e., the mean difference between the 
predicted onset calculated at the point of maximum likelihood and observed onset); root 
mean squared error (RMSE; days; calculated at the point of maximum likelihood); the 
differential Akaike information criterion corrected for small sample sizes (Δ AICC); the 
differential deviance information criterion (ΔDIC); and the differential widely-applicable 
information criterion (ΔWAIC). The information criterions are calculated as the difference 
(Δ) from the minimum across all models. According to the information criteria metrics, the 
best performing model has a score of zero and models within two points are not considered 
significantly different. Bolded terms indicate the best performing model according to that 
criterion. 

Model 
Category 

Temperature 
Variable Included 

in Model a 

Mean of 
Residuals 

(days) 

RMSE 
(days) 

Δ 
AICC ΔDIC ΔWAIC 

CiHS Air 0 3.1 0.5 0 0 
HS Air -3.5 4.8 0 31.8 1.3 

CiHS Air & Soil -3.6 4.7 7.0 45.2 10 
Tt Air -3.0 4.3 18.0 47.7 18.4 
HS Soil -3.7 5.3 18.9 49.3 18.6 
Tt Soil -6.6 8.2 71.8 101.6 73.8 

a all models include photoperiod.  
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Figure 3.1. Visualization of the plateau method for detecting onset in radial stem growth at 
Arctic treeline, AK, and comparison to the 95th percentile method. (a) Visualization of the 
plateau method for detecting the onset of radial stem growth via point dendrometers in 
white spruce (Picea glauca) trees growing at the Arctic treeline in central Alaska, USA. Solid 
lines show basal area (cm2 on primary y-axis; stem radius in cm on secondary y-axis) as 
measured by point dendrometers at Arctic treeline in AK (Tree 1C) over three growing 
seasons (panels). The last two weeks of May are shaded in grey to highlight the plateau in 
basal area before beginning radial stem growth during the growing season. The colored, 
horizontal dashed lines and shading represent the mean stem radius and three standard 
deviations, respectively, during the plateaued period for the corresponding year (colors); 
Lines are extended into the panel of the previous year to highlight the equivalence to the end 
of last year’s growth. Onset derived via the 95th percentile method (vertical dashed lines) 
and the plateau method (vertical dotted lines) are identical in 2018 and differ by one day 2019 
for Tree 1C. Note, onset derived via the 95th percentile method was not possible in 2017 as 
this was the first year with a complete growing season of data. (b) Onset of radial stem 
growth as detected by the plateau method did not differ significantly in either 2018 (n = 11, p 
= 0.052) or 2019 (n = 7, p = 0.171, Wilcoxon test). Primary y-axis shows day of year (DOY) while 
secondary y-axis shows corresponding date. Boxes represent the first and third quartiles, the 
bold line as the median. The whiskers extend from the box hinge to the smallest/largest 
value no further than 1.5 * inter-quartile range. Outlying points beyond this range are plotted 
individually. 
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Figure 3.2. Onset of radial stem growth in white spruce growing at the Arctic treeline, AK 
from 2017 - 2019. Primary y-axis shows day of year (DOY) while secondary y-axis shows 
corresponding date. Boxes represent the first and third quartiles. Median and mean date of 
onset are represented by bold horizontal lines and red stars, respectively. The whiskers 
extend from the box hinge to the smallest/largest value no further than 1.5 * inter-quartile 
range from the hinge. Outlying points beyond this range are plotted individually. Brackets 
indicate Wilcoxon test results for non-parametric data (ns p > 0.05; *** p < 0.001; **** p < 
0.0001).  
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Figure 3.3. Time series of mean daily stem radius (a), air temperature (b), and soil 
temperature (c) from a white spruce tree (Tree 5D) growing at the Arctic treeline, AK from 
Jan 2017 – Oct 2019. Generally, the stem radius goes through three periods each year 
(Turcotte et al. 2009): a period of winter desiccation followed by rapid rehydration (light grey 
regions), plateau (dark grey regions), and radial stem growth (white region). Vertical lines 
represent the onset of radial stem growth on June 8, 2017 (dashed), June 4, 2018 (dotted), and 
June 2, 2019 (dash-dotted); horizontal lines represent the corresponding stem radius at onset. 
Gaps in data are missing data due to sensor malfunction but did not interfere with the 
calculations of onset. (b) The blue rectangle highlights the chilling period (bounded by 
𝑫𝑳𝒄𝒔𝒕𝒂𝒓𝒕 and 𝑫𝑳𝒄𝒆𝒏𝒅) where days with mean daily temperature below 𝑻𝒄∗ (-19.2°C, top of blue 
rectangle) accumulate according to the best fit model (CiHS with air temperature only). 
Similarly, the red rectangle highlights the heat accumulation period (bounded by 
𝑫𝑳𝒇𝒔𝒕𝒂𝒓𝒕and the onset of radial stem growth) where heat accumulates above 𝑻𝒇∗  (1.4°C, bottom 
of red rectangle). Dark red or blue shading within these periods highlight the accumulation 
of heat or extreme chilling, respectively.   
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Figure 3.4. Mean daily air temperature (top row) and soil temperature (bottom row) 
conditions on the day of onset (left column) and from the winter solstice to the onset of radial 
stem growth (right column) in white spruce growing at the Arctic treeline, AK. The box 
represents the first and third quartiles. Median and mean values are represented by bold 
horizontal lines and red stars, respectively. The whiskers extend from the box hinge to the 
smallest/largest value no further than 1.5 * inter-quartile range from the hinge. Outlying 
points beyond this range are plotted individually. Brackets indicate Wilcoxon test results for 
non-parametric data; only significant differences are shown (** p < 0.01; *** p < 0.001; **** p < 
0.0001).  
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Figure 3.5. Posterior distributions of parameters in the best performing model (CiHS) with 
air temperature fit to white spruce growing at the Arctic treeline, AK. Parameters associated 
with winter chilling (top row) are in blue, spring warming (middle row) in red. The 
parameters in black (𝒈 and 𝒉; bottom row) are used in the linear model to determine the heat 
accumulation threshold, 𝑭∗, as predicted by the number of chilling days below the chilling 
threshold, 𝑻𝒄∗. The point of maximum likelihood of each distribution appears in the top right 
corner and as a vertical dashed line on the panel. 
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Figure 3.6. The changes in the onset of radial stem growth of white spruce growing at Arctic 
treeline, AK for the various climate scenarios. Climate scenarios were (ACIA 2005) calculated 
by the addition of 1-4 °C to the temperatures experienced in 2017-2019 (colors). Columns 
show the mean and error bars show the standard deviation. All predicted dates of onset were 
significantly different (paired Wilcoxon test, p< 0.01) except for those in 2017 under +1°C of 
warming (p = 0.09). 
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Figure 3.7. Graphical representation of the difference in onset of radial stem growth in a 
white spruce tree (Tree 5B) after the addition of 4°C (dark red line) to the actual daily mean 
temperature (black line) in 2017 (top), 2018 (middle), and 2019 (bottom). Onset of radial stem 
growth is represented by vertical dashed lines. Heat accumulation period is represented by 
the red shaded region and the chilling period by the blue shaded region. Red shaded areas 
under the temperature lines represent the accumulated temperature above the threshold, 𝑻𝒇∗ , 
until onset of radial stem growth is triggered. Heat accumulation under 4°C warmer climate 
begins earlier (red arrows) than under current conditions (black arrows). Meanwhile, the 
number of days below the chilling threshold,	𝑻𝒄∗, during the chilling period (blue shaded 
areas above the temperature lines, top row) decreases with 4°C warmer climate.  
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Conclusion  

As the northern edge of the largest terrestrial biome on Earth (Apps et al. 2006, Brown et 

al. 2010), the dynamics of Arctic treeline in response to climate change have global importance 

(Callaghan et al. 2002a, 2002b, Skre et al. 2002). The position and growth of trees at Arctic 

treeline will continue to have significant impacts on the global carbon cycle (Kurz and Apps 

1993, Wilmking et al. 2006, Pearson et al. 2013), human resources (Callaghan et al. 2002a, 

Brown et al. 2010) and much more (Harding et al. 2002, Skre et al. 2002, Zhang et al. 2013). 

Until recently, research suggested that temperature-limitation on tree growth has delineated the 

global position of Arctic treeline (Körner and Paulsen 2004, Paulsen and Körner 2014). 

However, the predictions of treeline position and actual treeline position are different (Rees et al. 

2020), suggesting a knowledge gap in our understanding of the limiting factors on tree growth 

when temperature-limitation is alleviated. A secondary control of water availability on growth at 

Arctic treeline may be critical to understanding this surprising behavior. As tree seedlings and 

saplings are the future of Arctic treeline, it is also critical to examine how water availability 

affects all tree life stages. Studies examining growth in response to air temperature alongside 

measurements of water availability will test this hypothesis and provide the foundation on which 

to assess the future of Arctic treeline in a rapidly changing climate.  

This dissertation examined the relationships between climate (i.e., air temperature and 

water availability) and growth in the past and present in order to help examine the diverse 
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responses of treeline behavior and growth in white spruce growing at Arctic treeline. First, I 

examined recruitment and the long-term growth response to temperature and precipitation in 

saplings and mature trees during the 20th century (Chapter 1). The decrease in sapling 

recruitment was strongly associated with a warming but drying climate, however sapling growth 

remained unaffected. Mature tree growth initially increased but showed signs of water limitation 

towards the end of the century. I delved further into this finding by exploring how vapor pressure 

deficit, soil moisture, and air temperature drive the present-day growth response (Chapter 2). 

Results showed that vapor pressure deficit and VWC had a more prominent influence on growth 

than air temperature, especially in mature trees. Together, my first and second chapters show that 

radial stem growth at this section of Arctic treeline has recently become significantly affected by 

water availability. Finally, I identified the environmental cues triggering the onset of growth in 

spring to ascertain how future climate change may affect the duration of the growing season 

(Chapter 3). I found that a combination of extreme chilling and thermal accumulation of air 

temperature triggers the onset of growth at Arctic treeline. While the onset of growth is triggered 

mainly by air temperature, the capacity for trees to capitalize on longer growing seasons may still 

be limited by moisture. The results of these three studies lead me to conclude that the secondary 

control of water availability is strongly linked to the divergent responses of treeline behavior and 

growth in the Arctic.  

In addition to increasing the understanding of the complex drivers of treeline position 

these studies have additional implications and highlight critical areas of research. These findings 

suggest decreases in regeneration and growth at Arctic treeline from water limitation may 

become more widespread as drier conditions in the Arctic become more frequent and intense 

(Overland et al., 2019). Therefore, I hypothesize that water limitation will be critical in 
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determining carbon storage capacity in boreal forests. Together these findings lay the 

groundwork for a better understanding of the dynamics at Arctic treeline and, more broadly, for 

understanding the distribution of the boreal forest biome. Even so, much remains to be 

understood, particularly regarding the physiological mechanisms driving these associations and 

the long-term impacts water-limitation. For example, while my work provides key information 

on the past and present dynamics between regeneration, growth, temperature-, and water-

limitation at a section of Arctic treeline in interior Alaska, the long-term impacts at local and 

circumpolar scales remain to be elucidated. 

My work indicates that temperature isotherm models predicting treeline position no 

longer provide accurate assessments in the rapidly changing Arctic. Future research that 

incorporates variables such as precipitation, vapor pressure deficit, and soil moisture/temperature 

into models of northern forests will greatly improve our estimates of how changes at Arctic 

treeline will affect global carbon cycling, nutrient cycling, and future climate change. 

Additionally, future research identifying the physiological mechanisms explaining the strong 

associations between water availability, regeneration, and growth at Arctic treeline are critical. 

Future research may consider investigating growth and carbon balance of saplings and mature 

trees in different water regimes. Lastly, future research must continue to explore the factors 

affecting seedling establishment and survival in a drier Arctic environment, such as herbivory 

(Olnes and Kielland 2016, Olnes et al. 2017, 2018), boundary layer dynamics (e.g., changes in 

snowpack), and microenvironment (Maguire et al. 2019).  

At the broadest definition, terrestrial biomes are defined by their temperature and 

precipitation regimes (Whittaker 1970).  However, up until now, temperature has been the 

dominant driver of Arctic treeline position and growth (Körner 2012). But as the climate rapidly 
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warms and the isotherm, which previously delineated treeline position so ubiquitously, shifts 

northward (Körner 2012), precipitation and other plant water sources now limit the northern 

distribution of boreal forest biome. This dissertation links past and present climate, growth, and 

regeneration of white spruce growing Arctic treeline and paves the way for exploring the 

physiological mechanisms driving this link. Through these new findings, I believe that this 

dissertation advances our understanding of Arctic treeline dynamics and will help to predict the 

future of Arctic treeline more accurately in a changing climate.   
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Appendix A. Supporting Information for Chapter 1 

Supplementary Material Table 1.1. Variance of Random Effects in Growth Rate v.s. tree age 
model in mature trees before and after 1975. 

Groups Name Variance Std. Dev. 
Tree ID Intercept 2273.7 47.7 
Residual  0.16  0.40 
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Appendix B. Supporting Information for Chapter 2 

Supplementary Material Table 2.1. Variance of Random Effects in the model. 
Groups Name Variance Std. Dev. 
Tree ID Intercept 0.1225 0.3500 
Residual  0.8114 0.9008 
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Supplementary Material Table 2.2. Estimates and standard deviation of random intercepts for the 
11 studied trees in the model. 

Tree ID 
(Intercept) Estimate Standard 

deviation 
1A 0.18 0.14 
1E -0.35 0.16 
1F -0.03 0.16 
2E -0.61 0.12 
2F 0.51 0.20 
4A -0.05 0.10 
4B 0.10 0.14 
4D -0.19 0.12 
6A 0.25 0.12 
6B 0.40 0.17 
6D -0.27 0.13 
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Supplementary Material Table 2.3. Center and scaling factors for transforming x-variables.  
Variable Center Scale 

DOY 178.5594 16.33805 
Air Temperature 11.79463 4.01741 

Vapor Pressure Deficit 0.3687728 0.431494 
Vol. Water Content 0.4025955 0.1221045 

Tree Size (DBH) 13.15693 5.880221 
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Supplementary Material Figure 2.1. Relationship between tree age, DBH, or height (x-axes) with 
annual growth (y-axis) in terms of magnitude (top row, BAI, cm2) and percent relative to tree 
size at the start of the growing season (bottom row).   
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Appendix C. Supporting Information for Chapter 3 

Supplementary Material Figure 3.1. Timeseries of changes in stem radius (µm) highlighting the 
similarity between detection methods of the onset of radial stem growth in 2018 (mustard 
yellow) and 2019 (purple). The light grey shaded region highlights the last two weeks of May 
during which the stem radius ‘plateaus.’ For each year, stem radius is normalized so that the 
minimum stem radius during the period shown is equal to zero. Each panel represents one of the 
16 trees in which it was possible to detect the onset of radial stem growth using both methods. 
The vertical lines represent the onset of radial stem growth detected by the plateau method (solid 
lines) and the 95th percentile method (dashed lines). The difference in onset between the methods 
was not statistically different (Figure 1b, p > 0.01 Wilcoxon test, n = 18). 
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Supplementary Material Figure 3.2. Timeseries of the additional 38 tree-years used in the study with onset of radial stem growth 
detected by the plateau method. For various reasons (mainly missing data), detecting the onset of radial stem growth via the 95th 
percentile method was not possible in the trees presented here.  Lines represent changes in stem radius in 2017 (dark blue), 2018 
(mustard yellow), and 2019 (purple). The light grey shaded region highlights the last two weeks of May during which the stem radius 
‘plateaus.’ For each year, stem radius is normalized so that the minimum stem radius during the period shown is equal to zero. The 
vertical lines represent the onset of radial stem growth detected by the plateau method.  
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