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Abstract 

The Major Histocompatibility Complex Class I in the Pathogenesis of B-Cell Lymphomas 

Karen Gomez 

 

 Immune evasion is an emerging hallmark of cancer. Dysregulation of the major 

histocompatibility complex class I (MHC-I) is a frequent mechanism of immune evasion utilized 

by tumor cells and is particularly relevant to the pathogenesis of B-cell lymphomas, including 

diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin lymphoma (cHL). A better 

understanding of MHC-I dysregulation in B-cell lymphomas is necessary to identify factors related 

to the risk, development, and progression of these tumors. 

 In this thesis, we investigate the role of MHC-I dysregulation in DLBCL and cHL through 

the application of computational approaches to study genomic data. First, we introduce some 

background information about the normal function of MHC-I in the immune response to cancer 

and viral infection as well as the phenomenon of MHC-I dysregulation in the context of cancer. 

We provide an overview of how factors such as germline zygosity of HLA class I (HLA-I) genes 

and somatic alterations in the genes B2M and HLA-I that encode the protein subunits of MHC-I 

contribute to the development of DLBCL and cHL.  

Second, we present a study of the effects of HLA-I allele zygosity on survival in a cohort 

of 519 DLBCL patients treated with R-CHOP immunochemotherapy stratified by molecular 

subtype. Homozygosity in HLA-I was associated with a worse overall survival in patients whose 

tumors were classified in the “EZB” subtype, associated with somatic mutation in the epigenetic 

regulator EZH2. We find an association between the zygosity of the genes HLA-B and -C 

specifically and overall survival in EZB-DLBCL. These findings indicate that HLA-I zygosity may 



 

 

be a risk factor for worse clinical prognosis in patients with the EZB subtype of DLBCL. 

 Third, we present a study of the genetic landscape of cHL tumors that are associated with 

infection with Epstein-Barr virus (EBV). We analyze inherited HLA-I allele types, somatic 

mutations, copy number changes, and mutational signatures in a cohort of 57 cHL patients (15 

EBV-positive). We find that EBV-positive cHL is genetically distinct from EBV-negative cHL 

and is characterized by lower somatic mutation load and different activities of mutation signatures. 

Further, we find that cHL tumors are characterized by different patterns of MHC-I dysregulation 

depending on the EBV infection status. Germline homozygosity in HLA-I was associated with the 

EBV-positive subtype of cHL, while somatic alterations in HLA-I were associated with the EBV-

negative subtype of cHL. These results suggest that inherited HLA-I homozygosity may be a risk 

factor for the EBV-positive subtype of cHL.  

 Fourth, we expand our study of HLA-I in virus-associated cHL to perform a comparative 

analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find 

that virus-positive tumors occur more frequently in males and show geographical disparities in 

incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct 

mutation signatures, recurrent mutations in the RNA helicases DDX3X and EIF4A1, and a lower 

somatic mutation burden compared to virus-negative tumors of the same cancer type. We find that 

germline homozygosity in HLA-I is a potential risk factor for the development of EBV-positive 

cHL, but not other common virus-associated solid or hematological malignancies.  

Finally, we present in the Appendix a study of the genomic characterization of 

plasmablastic lymphoma (PBL), a rare EBV-associated B-cell lymphoma that occurs in the context 

of immunodeficiency caused by human immunodeficiency virus (HIV) infection. We find that 

PBL is characterized by mutations leading to constitutive activation of the JAK-STAT pathway. 



 

 

We additionally identify recurrent mutations in immune-related genes, such as B2M. These 

findings indicate a potential role for MHC-I and immune dysregulation in the pathogenesis of other 

B-cell lymphomas. 
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Chapter 1: Introduction 

1.1 The major histocompatibility complex class I in the adaptive immune response 

The major histocompatibility complex class I (MHC-I) is a heterodimer on the surface of most 

nucleated cells whose function is to present endogenous peptides for recognition by cytotoxic T 

lymphocytes (CTLs) [1]. Its structure consists of a heavy chain molecule encoded by one of three 

HLA class I (HLA-I) genes and a light chain molecule, beta-2 microglobulin, encoded by the gene 

B2M (Figure 1.1). The heavy chain molecule consists of three extracellular domains, alpha1, 

alpha2, and alpha3, encoded by exons 2, 3, and 4 of the HLA-I gene, respectively [2]. The alpha1 

and alpha2 domains form the peptide binding cleft. The alpha3 domain anchors the heavy chain to 

the transmembrane region and binds to the CD8 receptor on CTLs [1]. A human cell displays an 

estimated 100,000 peptide-loaded MHC-I molecules on its surface at a time [3, 4], which are 

continuously degraded and replaced to provide the immune system with an up-to-date picture of 

the proteins being produced by the cell [5]. 

 
Figure 1.1: Structure of the MHC-I molecule, consisting of the heavy chain (light blue) 

encoded by HLA-I, and the light chain (dark blue) encoded by B2M. 

 

Peptides are loaded onto the MHC-I in the lumen of the endoplasmic reticulum (ER) [6]. 

Most of the peptides presented by MHC-I derive from newly synthesized, defective ribosomal 

products [7] that are degraded into fragments 8-14 amino acids in length [8] by the ubiquitin-

    

     microglobulin

  C I
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proteasome pathway in the cytosol. Protein fragments are transported into the ER lumen by the 

transporter associated with antigen processing (TAP) [6]. There, fragments are bound to the 

peptide binding cleft of a newly synthesized MHC-I molecule, and the loaded peptide-MHC-I is 

secreted to the cell membrane. There are over 1015 unique combinations of peptides and MHC-I 

molecules that can be produced through this system [9].  

The MHC-I is an important part of the adaptive immune response that allows CTLs to 

recognize and eliminate cells that display immune-stimulating proteins, or antigens. This may be 

seen in the response to viral infection. A cell that is infected by a virus produces viral antigens that 

are presented by MHC-I. An infected antigen presenting cell (APC), such as a dendritic cell, travels 

to a peripheral lymphoid organ, such as a lymph node, where it meets a naïve T cell [10]. The T 

cell is activated through binding of the T cell receptor (TCR) and CD8 co-receptor with the MHC-

I of the APC, along with co-stimulation through binding of the T cell CD28 receptor to B7 protein 

on the APC [11]. The activated T cell then travels to the site of infection and clears other cells that 

display the viral antigen. This is accomplished by stimulating apoptosis through either injection of 

perforin and granzyme B or binding of Fas on the target cell surface [10].  

Similarly, MHC-I allows CTLs to recognize cells that have undergone malignant 

transformation into cancer cells, through a process called immune surveillance [12]. A cancer cell 

can display antigens due to inappropriate expression of proteins not normally expressed in the 

tissue type (e.g. cancer testis antigens) or overexpression of lineage-specific proteins (e.g. MART-

1/Melan-A in melanocytes and melanoma cells) [13]. While these antigens are also found in 

normal cells, their abnormal expression patterns in tumor cells can allow them to overcome 

immune self-tolerance. Inappropriately expressed high quantities of self-antigen may allow for the 

activation of rare CTL clones that previously escaped negative selection against self-antigens in 
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the thymus [14, 15]. Additionally, a cancer cell can display antigens that derive from translation 

of somatically mutated genes, termed neoantigens [15]. The earliest evidence for tumor-specific 

neoantigens came from the work of Gross and colleagues who observed that mice whose tumors 

were surgically resected did not develop another tumor after inoculation with the same tumor cells 

[16]. More recently, the widespread availability of DNA sequencing technologies has enabled the 

discovery of neoantigens in many types of cancer [15].  

The presentation of neoantigens, enabled by MHC-I, and subsequent elimination of 

recognized tumor cells is an important selective pressure that drives the proliferation of tumor 

clones that are able to evade this immune response [17]. This is supported by the observation that 

MHC-I expression is decreased in 40-90% of human tumors [18]. Immune evasion is one of the 

most recently recognized hallmarks of cancer [19], and understanding this process is crucial to 

understanding cancer pathogenesis. 

1.2 Heterogeneity of MHC-I in human populations 

The MHC-I region is encoded on the 6p22.1-21.3 region of the genome on the telomeric end 

of the MHC complex (coordinates chr6:28,510,120-33,480,577 in the GRCh38 reference assembly 

[20]). The MHC-I region consists of three classical HLA-I genes (HLA-A, HLA-B, and HLA-C) 

that encode the MHC-I heavy chain [10], and two clusters of nonclassical HLA-I genes that 

perform alternative immune functions [21]. B2M, which encodes the MHC-I light chain, is not 

located in the MHC-I region but on chromosome 15 [22].  

HLA-I gene alleles follow a standard four-field nomenclature (Figure 1.2). The first two 

digits of the allele name refer to the type, or allele group, usually corresponding to the serological 

antigen. The next two digits refer to nonsynonymous differences in amino acid sequence that 

produce the specific HLA protein. This is followed by the synonymous/silent substitutions and 
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intronic changes. In some cases, a suffix may be added with additional information about the 

expression of the HLA protein, if known [23].    

 
Figure 1.2: HLA allele nomenclature.  

 The class I HLA genes are among the most polymorphic genes in the human genome. In a 

study of genome-wide rates of polymorphism, all three HLA-I genes ranked within the top 10 most 

polymorphic genes normalized by gene length [24]. As of October 2022, the Immuno-

Polymorphism Database / ImMunoGeneTics (IPD/IMGT) HLA Database  reports 24,350 unique 

classical HLA-I alleles that have been identified in human populations [25]. The most 

heterogeneous HLA-I gene is HLA-B, consisting of 9,097 known alleles, followed by HLA-A, 

consisting of 7,644 alleles, and lastly HLA-C, consisting of 7,609 alleles. Thus, an individual 

typically has six HLA-I alleles (two each for HLA-A, -B, and -C) and the combination of HLA-I 

alleles is different from most other people in the population. Unlike the heavy chain HLA-I genes, 

the light chain B2M is highly conserved among human populations and does not display such 

polymorphism [26].  

 It has been hypothesized that the genetic diversity of HLA-I has evolved as a result of 

selective pressures from viruses. According to the   C “heterozygote advantage” hypothesis first 

proposed by Doherty and Zinkernagel in 1975, individuals with two different alleles for a HLA-I 

gene will have a more extensive repertoire of antigens that can be presented on MHC-I than 
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patients who are homozygous in the same gene [27]. The HLA-I heterozygote will thus have a 

more robust immune response to viral infection, and heterozygosity in the HLA-I loci will be under 

positive selection. Following from this idea, Parham and Ohta in 1996 hypothesized that among 

HLA-I heterozygotes, those whose alleles encode proteins with a capacity to present a wider variety 

of antigens will have an advantage over those whose alleles have an overlapping peptide repertoire 

[28]. Some recent studies describe this as the “divergent allele hypothesis.” [29] The extent of this 

“divergence,” or physiochemical dissimilarity, may be quantified using the Grantham distance 

metric given the amino acid sequences of two residues i and j: 

𝐷 = [𝛼(𝑐𝑖 − 𝑐𝑗)
2
+ 𝛽(𝑝𝑖 − 𝑝𝑗)

2
+ 𝛾(𝑣𝑖 − 𝑣𝑗)

2
]1/2 

where c is the composition or ratio of noncarbon to carbon elements in the side chain, p is the 

polarity, v is the molecular volume, and α, β, and γ are constants [30]. Evidence for MHC 

heterozygote advantage may be seen in the observation that genetic diversity of class I HLA within 

populations is positively correlated with the diversity of pathogens in the geographical region [31]. 

In the general population, the majority of people (around 80%) are heterozygous at all three HLA-

I alleles, while around 20% of people are homozygous in at least one HLA-I locus [32].    

1.3 Germline HLA-I and cancer risk1 

HLA-I has been associated with a variety of human diseases due to its function in the adaptive 

immune response. Specific HLA-I alleles have been associated with the development of 

autoimmune diseases, including Graves disease (HLA-B*08 [34]), myasthenia gravis (HLA-B*08 

[35]), psoriasis (HLA-C*06:02 [36]), ankylosing spondylitis (HLA-B*27 [37]), and many others. 

 
1 Material in this section is published in part in [33] by Marco Fangazio*, Erik Ladewig*, Karen Gomez*, Laura 

Garcia-Ibanez, Rahul Kumar, Julie Teruya-Feldstein, Davide Rossi, Ioan Filip, Qiang Pan-Hammarström, Giorgio 

Inghirami, Renzo Boldorini, German Ott, Annette M Staiger, Björn Chapuy, Gianluca Gaidano, Govind Bhagat, 

Katia Basso, Raul Rabadan**, Laura Pasqualucci**, and Riccardo Dalla-Favera** 

*Contributed equally.  **Contributed equally. 
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Specific links have also been described between HLA-I allele type and/or zygosity and response 

towards infections with some pathogens, including HIV, HCV, HTLV-1, dengue virus, malaria, 

Leishmania, Plasmodium, and Mycobacterium [23, 38, 39]. For instance, the alleles HLA-

B*13:01:01:G and HLA-B*61 are associated with more effective infection clearance in patients 

with HBV [40]. HTLV-1 patients with HLA-A*02 have a decreased risk of developing HTLV-1 

associated myelopathy compared to patients with other allele types [23]. HIV-1 patients who carry 

the HLA-I alleles HLA-B*35 or HLA-C*04 develop AIDS earlier than HIV-1 patients who do not 

have these alleles. Consistent with the heterozygote advantage hypothesis, individuals infected 

with HIV-1 who are homozygous in one or more HLA-I genes develop AIDS more rapidly and 

have worse overall survival compared to HIV-1-infected individuals who are fully heterozygous 

for HLA-I [41]. Overall however, fewer associations between HLA-I alleles and infectious diseases 

have been described compared to autoimmune diseases, in part due to smaller cohort sizes in the 

infectious disease studies [39]. 

 The association of HLA-I with response to pathogens is relevant to cancer because 15-20% 

of cancers are directly linked to infection, the majority by viruses (termed “oncoviruses”)  [42-44] 

(Figure 1.3, Table 1.1). Thus, factors that increase susceptibility to pathogen infection, or inhibit 

an effective response to infection, may be expected to increase susceptibility to the associated 

cancer. One example in support of this hypothesis is classical Hodgkin lymphoma (cHL), a B-cell 

lymphoma with both EBV-positive and EBV-negative subtypes with distinct clinical and 

molecular characteristics [45]. HLA-A*01:01 and HLA-A*02:01 have been associated with an 

increased and decreased risk of developing EBV-positive cHL, respectively [46]. There is a 10-

fold increase in risk of developing EBV-positive cHL in patients homozygous in HLA-A*01 

compared to patients homozygous in HLA-A*02 [47].  
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Given the role of MHC-I in cancer immune surveillance, one might hypothesize that HLA-

I allele type is associated with the risk of developing cancer, independent of viral infection. Allele 

association studies have failed to find strong associations between HLA-I type and risk of 

developing nonviral solid tumors. However, some HLA-I allele associations with hematological 

malignancies have been noted, including HLA-B*08*01 with diffuse large B-cell lymphoma 

(DLBCL) [48] and HLA-B*05 with classical Hodgkin lymphoma (cHL) [49]. More recently, there 

is emerging evidence that nonspecific HLA-I allele zygosity contributes to the risk of developing 

hematological malignancies. HLA-I typing of 610 non-Hodgkin lymphoma (NHL) cases and 555 

controls of non-Hispanic white descent in the United States revealed that individuals who were 

homozygous in 2 or more HLA-I loci had a 1.81-fold increased risk of developing DLBCL, while 

those homozygous in all 3 HLA-I loci had a 3.66-fold increased risk of DLBCL, suggesting a 

heterozygote advantage in HLA-I for DLBCL [50]. While this study did not report whether any 

tumors were associated with viruses, the majority of DLBCLs would be expected to be nonviral 

 

 
 

Figure 1.3: Estimated incidence of virus-associated cancers worldwide in 2018. Data 

obtained from de Martel et al [44].   
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Virus Associated Cancer 
% Caused by Virus 

Infection 

 uman papilloma virus ( PV) 

Cervical Cancer (CC) 95% [51] 

 ead and neck squamous cell 

carcinoma 
 0% [52] 

 epatitis B  epatocellular carcinoma ( CC) 56% [53] 

 epatitis C  epatocellular carcinoma ( CC)  0% [53] 

Epstein Barr Virus (EBV) 

 odgkin lymphoma ( L)  0 50% [45] 

Burkitt lymphoma (BL) 
95% (endemic) [54] 

 0% (sporadic) [55] 

Plasmablastic lymphoma (PBL) 70% [56] 

Primary central nervous system 

lymphoma (PCNSL) (post  

immunosuppression) 

 00% [57] 

NK T cell lymphoma (NKTCL)  00% [58] 

Gastric carcinoma (GC) 9% [59] 

Nasopharyngeal carcinoma (NPC)  00% [60] 

 uman herpesvirus 8 (  V8) Kaposi sarcoma (KS)  00% [61] 

 uman T lymphotropic virus 

type   ( TLV  ) 
Adult T cell leukemia (ATL)  00% [62] 

 erkel cell polyomavirus 

( CPyV) 
 erkel cell carcinoma ( CC) 80% [63] 

 

Table 1.1: Human cancers linked to viral infection with the seven known oncoviruses.  

 

in origin, as EBV contributes to <5% of DLBCLs in Western countries [64]. A follow-up study of 

HLA types in 9,922 NHL patients and 8,753 controls of European descent found that homozygosity 

at class I HLA-B and -C were associated with an increased odds DLBCL and marginal zone 

lymphoma with an OR of 1.31 and 1.45, respectively [65]. It is unknown whether HLA-I germline 

zygosity may play a similar role in Hodgkin lymphomas, either viral or non-viral in origin. 
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However, it is known that different lymphoma subtypes may share inherited predisposing factors. 

A study of 12,148 B-cell lymphoma patients in Sweden found that relatives of DLBCL patients 

were at increased risk of developing DLBCL or cHL but not indolent lymphomas, and relatives of 

cHL patients were at increased risk of developing cHL or DLBCL, but not indolent lymphomas 

[66]. 

 Recently, our group investigated HLA-I allele type and risk of DLBCL and other tumors in 

the Cancer Genome Atlas (TCGA) and the UK BioBank as part of a larger study of mechanisms 

of HLA-I loss in DLBCL in collaboration with Dr. Laura Pasqualucci and Dr. Riccardo Dalla-

Favera at Columbia University (Figure 1.4) [33]. We found that individuals with DLBCL have a 

greater rate of homozygosity in one or more HLA-I genes compared to individuals with other 

cancer types as well as the general population. Through analysis of UK BioBank [67] data of over 

500,000 individuals from the United Kingdom, we found that there is an elevated odds ratio of 

DLBCL which increases with number of homozygous HLA-I genes: 1.11 (0.94 – 1.31, 95% CI) 

for one homozygous HLA-I gene, 1.27 (0.97-1.67) for two genes, and 1.47 (1.05-2.04) for three 

genes. We also saw a similar trend when comparing OR of DLBCL versus other cancers given 

germline homozygosity in HLA-I: 1.09 (0.92 – 1.29) for one homozygous HLA-I gene, 1.18 (0.90 

– 1.56) for two genes, and 1.37 (0.98 – 1.91) for three genes. These results are consistent with the 

previous reports of an elevated OR of DLBCL with germline homozygosity in HLA-I. 

Additionally, we found an elevated rate of homozygosity in one or more HLA-I genes in 

individuals with cHL in the UK BioBank, suggesting HLA-I zygosity may be implicated in cHL 

as well. 

Thus, an individual’s inherited HLA-I alleles may contribute to his or her risk of developing 

certain subtypes of B-cell cancers. Next, we briefly describe the pathology of these tumors, which 
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are broadly grouped as non-Hodgkin and Hodgkin lymphomas. We then discuss evidence for 

somatic abrogation of MHC-I over the course of tumor development that further implicates MHC- 

I disruption as an important component in the pathogenesis of B-cell lymphomas.  

 
 

Figure 1.4. Rates of germline homozygosity in HLA-I genes across different cancers. The 

relative fraction of patients with one, two, or all three major HLA-I germline genes in 

homozygosity is shown for each of the indicated tumor types, as assessed in the TCGA (A) 

and UK Biobank (B) databases. Cohorts marked with an asterisk (*) had a significantly 

different homozygosity rate than the background normal rate calculated in healthy 

individuals from the UK Biobank (23%; used for comparison in the UK Biobank cohort), or 

from GTEx (21%; used for comparison in TCGA) (p < 0.05, binomial test, 95% CI shown). 

UK BioBank patients: Adrenal (n=64); Bile Duct (n=314); BL, Burkitt lymphoma (n=40); 

Bladder (n=3026); Brain (n=764); Breast (n=16245); Cervix (n=1074); CHL, Classical 
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Hodgkin lymphoma (n=562); Colon (n=4787); DLBCL, Diffuse large B-cell lymphoma 

(n=1004); Esophagus (n=1036); Kidney (n=1692); Liver (n=358); Lung (n=3332); Melanoma 

(n=4504); Mesothelioma (n=339); Oropharynx (n=1478); Ovary (n=1670); Pancreas 

(n=983); Prostate (n=10243); Sarcoma (n=850); Stomach (n=889); Testis (n=788); Thymus 

(n=38); Thyroid (n=708); Uterus (n=2144). TCGA patients: ACC, Adrenocortical carcinoma 

(n=78); BLCA, Bladder urothelial carcinoma (n=407); BRCA, Breast invasive carcinoma 

(n=1079); CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma 

(n=294); CHOL, Cholangiocarcinoma (n=35); COADREAD, Colon adenocarcinoma/ 

Rectum adenocarcinoma (n=562); DLBCL, Diffuse large B-cell lymphoma (n=48); GBM, 

Glioblastoma multiforme (n=381); HNSC, Head and neck squamous cell carcinoma (n=508); 

KIRC, Kidney renal clear cell carcinoma (n=507); KIRP, Kidney renal papillary cell 

carcinoma (n=280); LGG, Brain lower grade glioma (n=512); LIHC, Liver hepatocellular 

carcinoma (n=366); LUAD, Lung adenocarcinoma (n=256); LUSC, Lung squamous cell 

carcinoma (n=254); MESO, Mesothelioma (n=84); NSCLC, Non-small cell lung cancer 

(n=482); OV, Ovarian serous cystadenocarcinoma (n=418); PAAD, Pancreatic 

adenocarcinoma (n=128); PRAD, Prostate adenocarcinoma (n=494); SARC, Sarcoma 

(n=251); SKCM, Skin cutaneous melanoma (n=363); STAD, Stomach adenocarcinoma 

(n=225); STES, Esophagus-stomach cancers (n=203); TGCT, Testicular germ cell tumors 

(n=133); THCA, Thyroid carcinoma (n=499); THYM, Thymoma (n=116); UCEC, Uterine 

corpus endometrial carcinoma (n=528); UCS, Uterine carcinosarcoma (n=56); UVM, Uveal 

melanoma (n=76). Modified from [33]. 

 

1.4 MHC-I dysfunction in non-Hodgkin lymphomas 

Non-Hodgkin lymphoma (NHL) is a highly heterogeneous category of lymphomas, of which 

90% are of B-cell origin and 10% are of T-cell origin [68]. B-NHL includes diffuse large B-cell 

lymphoma (DLBCL, the most common NHL), follicular lymphoma (FL), Burkitt lymphoma (BL), 

mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), and primary central nervous 

system lymphoma (PCNSL), among others. The majority of these tumors originate in the germinal 

center of the secondary lymphoid organs, which is the site of normal B cell activation and affinity 

maturation [69].  

 Somatic loss of expression of MHC-I has been described in several types of B-NHL. Early 

studies of small cohorts of NHLs described MHC-I loss in primary mediastinal lymphoma [70] 

and follicular lymphoma [71]. A study of DLBCL of the brain and testis found 2/15 tumor samples 

with loss of membrane MHC-I had inactivating mutations of B2M [72]. Analysis of the coding 



12 

 

genome of nodal DLBCL by Pasqualucci and colleagues revealed frequent inactivating mutations 

and deletions in B2M [73]. A follow-up study of 132 DLBCLs found inactivation of B2M by 

mutations and/or deletions in 29% of nodal DLBCLs [74]. These truncating B2M mutations were 

associated with lack of B2M expression, which in turn was associated with loss of HLA-I 

expression on the cell surface. B2M mutations were absent from 108 other B-NHLs analyzed the 

in the same study, including BL, FL, CLL, and MZL, suggesting that B2M truncation is unique to 

the pathogenesis of DLBCL. However, B2M mutations alone cannot completely explain the loss 

of expression of MHC-I that has been detected in up to 75% of de novo DLBCLs [74]. 

 In our recent study of the genetic mechanisms of HLA-I loss in DLBCL, we found that loss 

of surface MHC-I was preferentially associated with DLBCL compared to other NHLs including 

FL and BL through immunohistochemical analysis of a panel of 657 lymphoma biopsies [33]. 

Analysis of tumor genetic sequencing data from 74 DLBCL samples revealed that in addition to 

B2M, HLA-I genes were frequent targets of somatic inactivation through truncating mutations 

and/or deletion. Somatic inactivation of B2M or HLA-I was found in 76.2% of DLBCLs with 

negative MHC-I expression on the cell surface. The mechanisms of HLA-I loss in the remaining 

fraction of MHC-I negative patients is still unknown, but may involve epigenetic silencing [75] or 

signals from the tumor microenvironment, such as TGF-β, which has been shown to downregulate 

HLA-I [76, 77].   

 DLBCL is a heterogeneous type of B-NHL that itself can be classified into different 

subtypes on the basis of genetic and phenotypic characteristics. The early “cell of origin” subtyping 

scheme described by Alizadeh and Staudt classified DLBCL into germinal center B cell-like 

(GCB) or activated B cell-like (ABC) on the basis of gene expression profiles [78]. ABC-DLBCL 

have a worse overall survival compared to GCB-DLBCL [78]. More recently, sequencing of large 



13 

 

cohorts of hundreds of DLBCL tumors by three independent groups (NCI [79, 80], Harvard [81], 

and UK-HMRN [82]) has led to the development of molecular subtyping classifications based on 

clustering of mutational co-occurrence. The key features of the molecular subtypes identified in 

these studies largely overlap, revealing 5-8 unique molecular subtypes of DLBCL [83]. In the 

nomenclature used by LymphGen (NCI), these include: MCD (MYD88L265P and CD79B mutation), 

EZB (BCL2 translocation and EZH2 mutation), BN2 (BCL6 fusion and NOTCH2 mutation), ST2 

(SGK1 and TET2 mutations), A53 (TP53 mutation and aneuploidy), N1 (NOTCH1 mutation), as 

well as genetically composite (features of more than one subtype) and unclassified cases (lacking 

features of any previously described subtype) [79, 80] (Table 1.2). The MCD and N1 subtypes are 

mostly ABC, and the EZB and ST2 subtypes are mostly GCB [79, 80, 83]. Mutations in MHC-I 

components have been described as features of specific subtypes. The LymphGen classification 

assigned B2M mutation as a feature of the A53 subtype [80], while the Harvard and UK-HMRN 

classifications assigned it to clusters more similar to BN  (termed “C ” and “NOTC  ” in the 

 

Molecular 

Subtype 
Genetic Features 

BN2 NOTCH2, SPEN, BCL6 tx, TNFAIP3, BCL10, PRKCB mut 

MCD MYD88L265P, CD79A/B, HLA-I, PIM1, CDKN2A mut 

EZB BCL2 mut/tx, EZH2, TNFRSF14, CREBBP, REL mut 

A53 TP53 mut, B2M inactivation, aneuploidy 

ST2 SGK1, TET2, DUSP2, JUNB mut 

N1 NOTCH1, IRF4, ID3 mut 

Genetically 

Composite 
Features of more than one subtype 

Unclassified Lacking features of any one subtype 

 

Table 1.2: Genetic features of DLBCL molecular subtypes described by Wright et al. [72] 

(LymphGen classification scheme). Select genetic features potentially associated with MHC-

I loss are indicated in bold font. 
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original studies, respectively) [81, 82]. The LymphGen classification assigned somatic mutations 

in all three classical HLA-I genes to the MCD subtype [80], while the Harvard classification 

assigned HLA-A to MCD and HLA-B to BN  (“C5” and “C ” in the original study, respectively) 

[81]. Other mutated genes may modulate MHC-I expression, such as EZH2, which has been linked 

to reduced MHC-I expression on the cell surface via epigenetic silencing of HLA-I [75]. These 

findings highlight how different DLBCL subtypes are characterized by different mutations 

implicated in MHC-I loss.   

1.5 MHC-I dysfunction in Hodgkin lymphoma 

Hodgkin lymphoma (HL) is a type of B-cell lymphoma that is distinguished by the 

presence of Hodgkin-Reed Sternberg (HRS) cells [84]. The most common type of HL (85%) is 

classical Hodgkin lymphoma (cHL). These tumors consists of a few HRS cells on a background 

of extensive immune cell infiltrate. Around 15% of HL cases are nodular lymphocyte predominant 

Hodgkin lymphoma (NLPHL), which has fewer HRS cells compared to the classical type and an 

abundance of CD20+ lymphocyte predominant cells. Classical Hodgkin lymphoma can be further 

subcategorized into four subtypes based on histopathology of the tumor: nodular sclerosis (NS) 

(tumor nodules containing HRS on a background of fibrotic sclerosis and immune cell infiltrate), 

mixed cellularity (MC) (HRS cells in a mixed inflammatory cell background without sclerosis 

[85]), and lymphocyte-depleted or -rich [84]. Of these, nodular sclerosis and mixed cellularity are 

the most common subtypes, constituting 70% and 25% of cHL cases, respectively [86]. 

Approximately 20% of cHL cases in North America and Europe [45] and 74% of cHL cases in 

Africa [87] are observed in the context of Epstein-Barr virus (EBV) infection, which is associated 

with the mixed cellularity subtype.  

 Somatic dysregulation of MHC-I is frequent in HL. In a study of 361 classical Hodgkin 
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lymphoma samples for which MHC-I expression was assessed by immunohistochemistry staining, 

the rate of loss of MHC-I expression on the cell surface of cHL was 63% [88], similar to the rates 

of MHC-I loss seen in DLBCL. The same study found the rate of MHC-I loss was greater in EBV-

negative (83.2%) compared to EBV-positive (27.4%) tumors. This is consistent with other reports 

that have found the rate of MHC-I loss in cHL was greater in EBV-negative (55-81%) compared 

to EBV-positive cHL (8-25%) [89-91]. One likely mechanism of this MHC-I loss is mutation of 

B2M, which is among the most frequent targets of somatic mutation in cHL. Mutations in B2M are 

associated preferentially with the NS subtype and are rarely seen in the MC subtype or EBV-

positive cases [92, 93].   

1.6 MHC-I and response to therapy in cancer 

 Finally, there is emerging evidence that MHC-I may be implicated in therapy response and 

survival in cancer. In a study of over 1,500 patients with advanced melanoma or non-small cell 

lung cancer, Chowell and colleagues found that homozygosity in at least one HLA-I locus was 

associated with worse overall survival in patients treated with immune checkpoint blockade (ICB) 

compared to patients that were fully heterozygous [94]. A follow-up study by the same group 

found that among patients that were fully heterozygous at HLA-I, those whose HLA-I alleles 

encoded proteins with a greater physiochemical difference (greater Grantham distance) had a 

better overall survival compared to patients whose alleles were more similar [95]. These results 

supports the hypothesis of a heterozygote advantage and a “divergent allele” advantage in the 

immune response to tumors undergoing ICB therapy. Similar results have subsequently been 

observed in gastrointestinal cancers [96] and kidney cancers [97] undergoing ICB therapy.  

There is relatively little data available about whether a similar heterozygote advantage 

might be observed in the response of cancers to other kinds of treatment regimens. This question 
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is of particular interest in DLBCL, for which ICB therapy response rates are poor [98] and standard 

of care treatment remains rituximab (an anti-CD20 antibody) plus CHOP (cyclophosphamide, 

doxorubicin, vincristine, prednisone), termed R-CHOP, immunochemotherapy [99]. Although the 

addition of rituximab to CHOP chemotherapy has significantly improved DLBCL patient 

outcomes since its introduction two decades ago, approximately 30% of patients still fail to 

respond [100]. At the same time, the interaction between inherited risk factors such as HLA-I type 

and survival in DLBCL through the framework of the recently described molecular subtypes 

remains to be explored.  

1.7 Statement of problem and organization of the thesis 

In this thesis, we investigate the problem of how MHC-I dysregulation impacts the risk and 

development of B-cell lymphomas, with a focus on DLBCL and cHL. We develop strategies to 

assess MHC-I status at the germline and somatic level utilizing genetic sequencing data from DNA 

and RNA of these tumors. We correlate the genetic findings with clinical data including overall 

survival (in DLBCL) and virus infection status (in cHL). 

 This thesis is organized into four chapters, a conclusion, and an appendix. In Chapter 2, we 

explore the effect of HLA-I zygosity on overall survival in a cohort of DLBCL patients treated 

with standard of care R-CHOP immunochemotherapy. We perform HLA-I allele typing and 

survival analysis on 519 DLBCL patients, previously classified by molecular subtype on the basis 

of their somatic lesions. We find that HLA-I zygosity is associated with different overall survival 

trends depending on the molecular subtype of DLBCL. 

 In Chapter 3, we investigate the genetic characteristics of EBV-positive and EBV-negative 

subtypes of cHL. We analyze genetic sequencing data from 57 cHLs including 32 newly sequenced 

by whole genome sequencing and describe the landscape of somatic mutations detected in these 
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tumors. We find that EBV-positive cHL have fewer somatic mutations and different patterns of 

somatic mutation compared to EBV-negative cHL. Through HLA typing of normal DNA samples 

from these patients, we detect differences in the germline and somatic status of HLA-I depending 

on virus infection status in cHL. EBV-positive cases have a higher rate of germline homozygosity 

in HLA-I compared to EBV-negative cases, while EBV-negative cases have a greater frequency of 

somatic lesions in HLA-I.  

 In Chapter 4, we analyze common trends among nine virus-associated cancers, including 

cHL. We find that virus-associated cancers follow distinct epidemiological trends including a 

greater incidence in males and geographical variation in incidence. Analysis of DNA sequencing 

data reveals virus-positive tumors have a lower somatic mutation load compared to virus-negative 

tumors in general and are recurrently mutated in the RNA helicases DDX3X and EIF4A1. Through 

HLA-I allele typing of 1,255 patients, we find that the association between EBV-positive status 

and HLA-I germline zygosity is unique to cHL compared other virus-associated malignancies.  

 In the Appendix, we report (in its published format) our characterization the genomic 

landscape of plasmablastic lymphoma, a rare EBV-associated cancer that occurs most often in the 

context of immunodeficiency, such as AIDS [101]. We describe mutations in immune-regulatory 

genes, including B2M. These results indicate a potential role of MHC-I or other immune loci in 

the pathogenesis of some other B-cell lymphomas beyond DLBCL and cHL.   
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Chapter 2: HLA class I zygosity and overall survival in diffuse large 

B-cell lymphoma by molecular subtype 

2.1 Introduction 

The major histocompatibility complex class I (MHC-I) presents non-self antigens on the 

cell surface to cytotoxic CD8+ T lymphocytes as part of the adaptive immune response. Loss of 

expression of the surface MHC-I is a key mechanism by which tumors evade the immune system. 

MHC-I loss is common in diffuse large B-cell lymphoma (DLBCL), and 55-75% of DLBCL cases 

fail to express surface MHC-I [74]. Loss of MHC-I in DLBCL is attributed to B2M truncating 

mutations in 29% of cases [74, 88]. Somatic MHC-I loss may also be caused by mutations or copy 

loss of HLA-I or other immune genes [33]. Additionally, there is emerging evidence that the 

germline allele zygosity of HLA-I can predispose to the development of DLBCL. There is an 

elevated OR of DLBCL with germline homozygosity at HLA-I genes [33, 65], and germline 

homozygosity in HLA-I is more frequent in DLBCL compared to other cancers and the normal 

population [65].  

DLBCL is a clinically aggressive, genetically heterogeneous B-cell lymphoma which can 

be classified into 5-8 molecular subtypes based on recurrent somatic mutations [79-82]. Several 

molecular subtypes of DLBCL are characterized by mutations in genes implicated in MHC-I loss. 

For instance, in the LymphGen classification scheme [80], mutations in B2M were attributed to 

the A53 subtype, while mutations in HLA-I were attributed to the MCD subtype. Mutations in 

EZH2, an epigenetic regulator implicated in loss of expression of MHC-I, were attributed to the 

EZB subtype [80]. These classifications reflect the unique mechanisms of somatic MHC-I loss 

among different types of DLBCL. However, it is not yet known how inherited HLA-I allele type 

is associated with DLBCL molecular subtype. 
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In some solid tumor patients treated with immune checkpoint blockade, HLA-I germline 

homozygosity is associated with worse overall survival [94]. Additionally, patients who are fully 

heterozygous at HLA-I whose alleles encode proteins that are more physiochemically dissimilar 

have a better overall survival compared to patients whose HLA-I alleles encode proteins that are 

more similar [29]. However, it is not yet known whether HLA-I zygosity may be associated with 

survival for tumors treated with other treatment modalities and/or tumors that are of hematological 

origin.  

 In this study, we determine whether zygosity of HLA class I alleles is associated with 

overall survival in a previously published [79-81] cohort of 519 DLBCL patients treated with R-

CHOP immunochemotherapy. We also quantify the physiochemical distance between the encoded 

HLA-I proteins and determine the effect of this similarity on overall survival. Finally, we 

determine whether HLA-I zygosity is associated with age at diagnosis of DLBCL in this cohort.  

2.2 Results 

Homozygosity of HLA-I is associated with worse overall survival in EZB-DLBCL 

 To determine whether germline HLA-I zygosity is associated with overall survival in 

DLBCL, we performed HLA-I allele typing from normal DNA of 119 DLBCL patients and 

computed survival curves stratifying by number of germline homozygous HLA-I alleles (Figure 

2.1). In the combined cohort of all molecular subtypes, we noticed a trend towards lower survival 

in patients with 2 or 3 germline homozygous HLA-I genes (p=0.098, log-rank test; Figure 2.1A). 

Next, we compared overall survival by molecular subtype, according to the LymphGen 

classifications assigned to these patients in the original study [80]. For patients of the EZB and 

A53 subtypes, we found that overall survival differed significantly when stratifying by HLA-I 

germline zygosity (p=0.00088 and p<0.0001, log-rank test, respectively; Figure 2.1B,C). In EZB 
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patients, overall survival was lower in patients with 2 or 3 homozygous HLA-I genes 

(HR=3.2e9[2.5e8-4.0e10], p<0.001 and HR=7.18 [1.18-43.56], p=0.032, respectively). In A53 

patients, overall survival was lower in patients with 2 homozygous HLA-I genes 

(HR=120.88[1.94-7531.59], p=0.023). There was no difference in survival in other subtypes 

(Figure 2.1D-E). These results indicate that HLA-I allele zygosity could be linked to overall 

survival in certain subtypes of DLBCL. 

 
Figure 2.1: Overall survival of DLBCL patients by number of homozygous HLA-I genes, 

normal sample cohort (n=119). Overall survival is plotted for patients by molecular subtype: 

A) All (n=119), B) EZB (n=15), C) A53 (n=16), D) BN2 (n=7), and E) MCD (n=10). PLR: p-

value, log-rank test. pKS: p-value, 2-sample Kolmogorov-Smirnov test. HR: Hazard ratio 

with chi-squared p-value.    
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Among the 119 patients with both tumor and normal samples available, we noted that that 

94% of patients had concordant HLA-I zygosity classification (homozygous in at least one HLA-I 

versus fully heterozygous) in tumor and normal and 96% of patients had <= 1 allele mismatch 

between tumor and normal among the six inferred HLA-I alleles. Thus, to increase the statistical 

power of our study and confirm the results seen in the normal panel cohort, we performed HLA 

allele typing on 400 additional DLBCL tumor samples that lacked a matched normal and repeated 

the survival analysis on the combined 519 patient cohort (Figure 2.2). In the combined cohort of 

all molecular subtypes, there was no significant difference in overall survival (Figure 2.2A). 

However, we found that the overall survival of EZB-DLBCL patients differed significantly by 

HLA-I zygosity, similar to the results of the normal panel cohort (p=0.00038, log-rank test; Figure 

2.2B). This result was consistent when analyzing data from each of the two source studies (Harvard 

and NCI) separately (Figure 2.S.1). There was no significant difference in survival in other 

subtypes, suggesting this association was unique to the EZB cases (Figure 2.2C-G). Interestingly, 

we noticed a trend towards better overall survival in patients homozygous in at least one HLA-I 

locus in the MCD, ST2, and N1 subtypes, though this did not reach statistical significance (p=0.08, 

p=0.56, and p=0.38, respectively, log-rank test; Figure 2.2E-G). We then computed the mean 

Grantham distance (or HLA-I evolutionary divergence, HED) between the HLA-I alleles of all 

patients to determine whether similarity between heterozygous HLA-I proteins could also 

contribute to overall survival. However, we found there was no difference in overall survival 

among patients with a HED score in the top quartile compared to patients with a lower HED score 

for the combined or cohort or for any subtype individually (Figure 2.S.2).  

To further investigate HLA-I zygosity in the EZB subtype, we plotted survival curves of 

EZB patients by zygosity of HLA-A, -B, and -C separately (Figure 2.3). HLA-A showed a trend 
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Figure 2.2: Overall survival of DLBCL patients by number of homozygous HLA-I genes, full 

sample cohort (n=519). Overall survival is plotted for patients by molecular subtype: A) All 

(n=519), B) EZB (n=83), C) A53 (n=48), D) BN2 (n=50), E) MCD (n=46), F) ST2 (n=26), and 

G) N1 (n=8). PLR: p-value, log-rank test. pKS: p-value, 2-sample Kolmogorov-Smirnov test. 

HR: Hazard ratio with chi-squared p-value.    
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for lower overall survival in homozygous cases, but this did not reach statistical significance 

(HR=1.94 (0.78-4.83), p=0.152; Figure 2.3A). We found that homozygosity in HLA-B or -C was 

associated with lower overall survival (HR=3.37 [1.39-8.19], p=0.007 and HR=6.78 [2.70-17.04], 

p<0.001; Figure 2.3B-C).  Thus, the lower overall survival in HLA-I homozygous EZB-DLBCL 

patients was driven mostly by HLA-B and -C. Notably, these cases completely lacked any reported 

truncating somatic mutations in B2M or HLA-B and -C, and lacked any copy number losses in 

HLA-B or -C, as reported in the original studies. In contrast, 48% (11/23) of HLA-I homozygous 

EZB cases contained nonsynonymous mutations in EZH2, one of the most frequently mutated 

genes of this subtype. The lack of B2M or HLA-I lesions suggest the survival association was 

linked to inherited HLA-I allele type rather than somatic lesions for cases where HLA-I allele 

typing was determined from tumor DNA. Notably, we found that patients in this DLBCL cohort 

with EZH2 mutations in the absence of MHC-I somatic mutations or deletions had a significantly 

lower expression of HLA-I genes (Figure 2.S.3), consistent with a previous report [75]. 

 
Figure 2.3: Overall survival of EZB-DLBCL patients (n=83) by zygosity of individual HLA-

I genes: A) HLA-A, B) HLA-B, C) HLA-C. PLR: p-value, log-rank test. pKS: p-value, 2-sample 

Kolmogorov-Smirnov test. HR: Hazard ratio with chi-squared p-value.    
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HLA-I zygosity is not associated with age at diagnosis of DLBCL 

In order to determine whether HLA-I homozygosity may predispose to the development of 

DLBCL at an earlier age, we compared age at diagnosis in patients that were homozygous in at 

least one HLA-I locus for each subtype and the cohort overall. We found there was no significant 

difference between age at diagnosis in patients that were fully heterozygous in HLA-I and patients 

that were homozygous in at least one HLA-I locus (q > 0.1, all comparisons; Figure 2.S.4). 

Similarly, there was no significant difference between age at diagnosis in patients that were fully 

heterozygous in HLA-I and patients that were homozygous in one, two, or three HLA-I genes 

individually (q > 0.1, all comparisons). Therefore, HLA-I allele homozygosity is not linked to 

earlier diagnosis of DLBCL in this cohort. 

HLA-I allele type is not associated with DLBCL molecular subtype 

Finally, we compared the frequency of specific alleles to determine whether individual 

HLA-I alleles were associated with increased risk of developing certain DLBCL subtypes. In total, 

we identified 43 unique HLA-A alleles, 68 unique HLA-B alleles, and 33 unique HLA-C alleles in 

this study cohort. There was no individual HLA-I allele that was more frequent in patients 

belonging to a specific category compared to the others (q > 0.1). We noticed a trend for a greater 

frequency of the HLA-A*01:01 allele in the ST2 subtype (58% [15/26] ST2 cases compared to 

28% [138/493] of non-ST2 cases, q=0.13). There was also a trend for a greater frequency of the 

HLA-C*16*01 allele in the BN2 subtype (10% [5/50] BN2 cases compared to 1% [7/469] of non-

BN2 cases, q=0.11). These trends indicate there may be differences in HLA-I allele types among 

DLBCL subtypes that could be made clearer in a larger cohort with a greater statistical power for 

detecting specific allele frequencies.  
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2.3 Discussion 

The results of our study indicate that HLA-I allele zygosity may be a contributing factor in  

overall survival in patients with DLBCL undergoing R-CHOP immunochemotherapy. A previous 

study found the HLA-B44 supertype is associated with worse prognosis in patients undergoing R-

CHOP therapy, suggesting inherited HLA-I type plays a role in tumor development and 

progression [102]. In a different study of 144 patients with DLBCL, there was no association 

between loss of MHC-I expression and response to R-CHOP therapy [103]. However, germline 

HLA-I status was not evaluated, and this study was conducted prior to the development of DLBCL 

molecular subtyping from DNA sequencing data, so trends within these molecular subtypes could 

not be determined.   

 The EZB subtype of DLBCL is characterized by mutations in the genes BCL2, EZH2, and 

CREBBP, among others. EZH2 has been previously implicated in loss of surface MHC-I due to 

epigenetic silencing. EZH2 encodes a protein subunit of the polycomb repressor complex 2 (PRC2) 

which downregulates expression of MHC-I by inhibiting NLRC5, a protein that normally activates 

MHC-I expression [75]. Treatment of EZH2-mutant human DLBCL cell lines with an EZH2 

inhibitor led to increased expression of MHC-I, suggesting EZH2 could be a potential therapeutic 

target [75]. 

Given the function of EZH2 in epigenetic regulation of MHC-I expression, we hypothesize 

that the lower overall survival in HLA-I EZB-DLBCL homozygous cases may be due to a two-

step process of MHC-I dysregulation. In the first step, inherited HLA-I homozygosity leads to a 

reduced immune repertoire so that fewer antigens can be presented by MHC-I on the cell surface. 

In the second step, somatic mutation in EZH2 leads to epigenetic downregulation of MHC-I, 

further reducing immune repertoire and facilitating immune evasion. This is supported by a 
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previous study that found EZH2 mutation was linked to decreased MHC-I expression in a murine 

lymphoma model [75]. Additional studies will be needed to determine whether epigenetic 

downregulation of MHC-I through EZH2 activation is linked to survival in DLBCL patients.  

2.4 Methods 

Study cohort 

The study cohort consisted of 519 DLBCL patients previously classified by molecular 

subtype using the LymphGen algorithm [80]. There were 294 males and 225 females and the ages 

ranged from 16-92. 259 patients were previously used for DLBCL molecular subtyping  by Chapuy 

et al [81] (“ arvard” cohort) and  60 patients were previously used for DLBCL molecular 

subtyping by Schmitz [79] et al (“NCI” cohort). All patients were treated with R-CHOP as reported 

in the original source study or in the sample clinical data on GDC (https://portal.gdc.cancer.gov/). 

HLA-I allele typing 

HLA-I allele typing was performed from the normal sample DNA for 119 patients using 

PolySolver [104]. For patients with no normal sample (n=400), we performed HLA-I allele typing 

from the tumor sample DNA. To reduce the possibility of overcalling HLA-I homozygosity due to 

somatic copy loss of HLA-I (particularly for patients who lacked normal samples), we repeated 

HLA-I calling for all patients using a second independent HLA-I allele typing algorithm (Optitype 

[105]) and categorized each patient as homozygous at a gene only if it was homozygous in that 

gene in both allele callers. The sensitivity and specificity for classifying cases as homozygous in 

at least one HLA-I locus versus fully heterozygous in HLA-I was 100% and 94%, respectively, for 

tumor DNA compared to normal DNA.  

Survival analysis  

Survival analysis was performed using the packages “Survival” and “Survminer” in R.  

https://portal.gdc.cancer.gov/
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 azard ratios were computed using the package “finalfit” in R using multivariable Cox regression 

with covariates age, sex, cohort, cell of origin classification, and molecular subtype (when 

applicable). The statistical significance of differences in overall survival between two groups was 

assessed using the Kolmogorov-Smirnov (KS) test using the “surv sample” package in R. The 

significance of differences in overall survival in three or more groups was assessed using the log-

rank test using the package “Survminer” in R. Patients assigned to multiple subtypes and 

unclassified patients were excluded from survival analysis. 

Somatic mutation and copy number analysis 

Somatic mutation and copy number data for MHC-I related genes was obtained from GDC 

(https://gdc.cancer.gov/about-data/publications/DLBCL-2018) (NCI cohort) and Chapuy et al [81] 

Supplementary Table 8 (Harvard cohort). Copy number loss at HLA-B or -C was defined as any 

reported copy loss at the gene level for HLA-B or -C (NCI cohort) or in the 6p21.33 cytoband 

(Harvard cohort).  

  

https://gdc.cancer.gov/about-data/publications/DLBCL-2018


28 

 

2.5 Supplementary Figures 

 
Figure 2.S.1: Overall survival of EZB-DLBCL by source study. A) Overall survival of EZB-

DLBCL from [79] (NCI cohort), n=53. B) Overall survival of EZB-DLBCL from [81] 

(Harvard cohort), n=30. PLR: p-value, log-rank test. pKS: p-value, 2-sample Kolmogorov-

Smirnov test. HR: Hazard ratio with chi-squared p-value.    
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Figure 2.S.2: Overall survival of DLBCL by mean HLA-I evolutionary divergence (HED) 

score. High mean HED refers to patients in the top quartile of HED scores, while low mean 

HED refers to patients below the top quartile of HED scores. Overall survival is plotted for 

patients by molecular subtype: A) All (n=519), B) EZB (n=83), C) A53 (n=48), D) BN2 (n=50), 

E) MCD (n=46), F) ST2 (n=26), and N1 (n=8).  PLR: p-value, log-rank test. pKS: p-value, 2-

sample Kolmogorov-Smirnov test. HR: Hazard ratio with chi-squared p-value.    
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Figure 2.S.3: Expression of HLA-I by EZH2 mutation status. Expression of HLA-A, -B, and 

-C in DLBCL cases with EZH2 mutation (n=15) and cases without EZH2 mutation (n=74) 

among DLBCL cases with no reported somatic mutations or copy losses in HLA-I or B2M 

and expression data available are shown. * p < 0.01, Mann-Whitney U test. 

 

 
Figure 2.S.4: Age at diagnosis versus HLA-I zygosity in DLBCL (n=519). Ages are plotted 

for patients by molecular subtype: A) All (n=519), B) EZB (n=83), C) A53 (n=48), D) BN2 

(n=50), E) MCD (n=46), F) ST2 (n=26), and N1 (n=8).    
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Chapter 3: EBV-positive and EBV-negative classical Hodgkin 

lymphomas are genetically distinct tumors2 

3.1 Introduction 

Classical Hodgkin lymphoma (cHL) is a common lymphoid malignancy that is 

characterized by the presence of multinucleated Hodgkin Reed-Sternberg (HRS) cells. 

Approximately 20% of cHL cases in North America and Europe are observed in the context of 

Epstein-Barr virus (EBV) infection [45], and these cases exhibit unique clinical and genetic 

characteristics. EBV-positive cHL is most strongly associated with the mixed cellularity (MC) 

subtype, which is characterized by HRS cells in a mixed inflammatory cell background without 

sclerosis [85]. Infected HRS cells usually exhibit an EBV latency II program characterized by the 

expression of viral proteins EBV nuclear antigen 1 (EBNA1) and latent membrane proteins 1 

(LMP1) and 2a (LMP2a) [106]. EBNA1 is integral to the replication of viral DNA. LMP1 and 

LMP2a promote tumorigenesis by mimicking an activated CD40 receptor and B cell receptor 

signaling, respectively, which lead to the downstream activation of the NF-κB and PI3K-AKT 

pathways [106]. In EBV-positive cHL cases, nearly all HRS cells (and no normal cells) are 

infected, suggesting EBV infection is an early event in lymphomagenesis [106] that is transmitted 

clonally. However, the differences between somatic changes that occur in cHL in the context of 

EBV infection remain poorly understood.  

 Previous genomic studies [93, 107] of cHL by whole-exome sequencing (WES) suggested 

a lower somatic mutation burden was associated with EBV infection. However, these analyses 

 
2
Material in this chapter is contained wholly or in part in a manuscript in preparation by Karen Gomez*, Gianluca 

Schiavoni*, Yoonhee Nam, Jean-Baptiste Reynier, Cole Khamnei, Michael Aitken, Giuseppe Palmieri, Antonio 

Cossu, Arnold Levine, Carel van Noesel, Brunangelo Falini, Laura Pasqualucci, Enrico Tiacci**, and Raul Rabadan** 

*Contributed equally. **Jointly supervised this work. 
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included only a limited number of EBV-positive samples (4-8 cases). These previous studies were 

also limited to exomes, which limits what can be discovered about genome-wide patterns of 

mutation, such as in noncoding regions.  

 Here, we characterize for the first time the genomic landscape of EBV-positive and EBV-

negative Hodgkin lymphoma by WGS of laser micro-dissected HRS cells from 32 patients, 

including 9 EBV-positive cases (Figure 3.1A). To identify recurrent driver lesions, we then extend 

the analysis to 25 additional cHL samples previously sequenced by WES by our group [93] and 

others [107] for a total of 57 patients (16 EBV-positive and 41 EBV-). Finally, we describe how 

somatic mutation load and germline zygosity at the HLA-I loci of cHL differ between EBV-

positive and EBV-negative cases. These results paint a more complete picture of the genomic 

processes underlying cHL lymphomagenesis in the EBV-negative and EBV-positive subtypes. 

3.2 Results 

EBV-positive cHL genomes harbor fewer somatic mutations and copy number alterations 

compared to EBV-negative cHL 

 We subjected tumor and normal cells microdissected from frozen lymph node biopsies of 

32 cHL cases to WGS at a median depth of 44X (IQR: 42-45X). Matched normal unamplified 

DNA from blood samples of 5 cHL cases was analyzed in parallel by WGS at a median depth of 

41X (IQR: 40-41). Following our previous observation of a significantly lower exome mutation 

burden in EBV-positive compared to EBV-negative cHL cases [93], we first compared the 

genome-wide mutation burden (point mutations and small insertions/deletions) in EBV-positive 

(n=9) versus EBV-negative (n=23) cases. We found a considerably lower number of clonal 

somatic mutations in EBV-positive cHL than in EBV-negative cHL (median of 112, range 30-

3,873, and 6,847, range 9-14,601, respectively; p= 3.2e-4, Figure 3.1B) despite similar coverage 
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Figure 3.1: EBV-negative cHL genomes harbor a greater number of somatic mutations and 

copy number aberrations compared to EBV-positive cHL. A) Experimental design of the 

study. The mutation load for each patient in the study cohort was calculated as B) the total 

number of clonal mutations (point mutations and short indels), C) the total number of clonal 

mutations in coding regions of the genome, and D) the total number of clonal, nonsilent 

mutations in coding regions of the genome. E) Proportion of clonal mutations that are 

insertions/deletions in each case. F) Count of copy gains in 32 cHL sequenced by WGS. G) 

Count of copy deletions in 32 cHL sequenced by WGS. In all panels, p-values were computed 

with the Mann-Whitney U test, and mixed cellularity cases are colored in red. 

 

depth between these two disease groups (both median of 44X, respectively, in the tumor samples 

[p=0.18], and 43X and 44X, respectively, in the normal sample [p=0.23]). The same pattern was 

found when restricting the analysis to coding mutations (median of 1, range 0-19, and 50, range 0-

100, respectively; p=1.2e-3, Figure 3.1C) or to nonsilent mutations in coding regions (median of 

1, range 0-16, and 33, range 0-82, respectively; p=9.6e-4, Figure 3.1D), consistent with previous 

results of mutation load by WES [93, 107]. In contrast, the relative fraction of short 

insertions/deletions was greater in the EBV-positive versus EBV-negative cases, suggesting 
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potentially different underlying mechanisms (median of 22% vs 13%, respectively; p=0.024, 

Figure 3.1E). These data cannot be explained by age-associated processes, as patients with EBV-

positive cHL presented with significantly older age compared to the latter group (median of 63 

and 33 years, respectively [p=0.029]) (Figure 3.S.1). 

As expected, most EBV-positive cases were of the mixed cellularity subtype (8/9), but 

EBV infection was still associated with a lower clonal mutation load when restricting the analysis 

to this histological subtype (p=0.01, Figure 3.1B). Although the number of mixed cellularity EBV-

negative cases sequenced by WGS was low (n=3), this result is consistent with previous 

observations in the coding genome of EBV-positive versus EBV-negative mixed cellularity cases 

[93].  

 To validate these findings, we used an extended cohort of 56 cHL cases (15 EBV-positive 

and 41 EBV-negative; including 25 cases distinct from the 32 described above), which were 

subjected to WES (median depth 146X in both the EBV-positive and EBV-negative groups) and 

comprised 38 cases from our group (34 previously published [93] and 4 newly generated; 8/38 

EBV-positive; 31/38 also subjected to WGS) plus 18 cases available for download from ref. [107] 

(7/18 EBV-positive). All of these 56 cases were homogenously subjected to the same 

bioinformatics pipelines (Methods). Compared to EBV-negative cHL, EBV-positive cHL was 

confirmed to have a lower exome-wide load of somatic mutations (with a similar trend when 

restricting the analysis to the 16 mixed cellularity cases, 10 EBV-positive and 6 EBV-negative; p-

value 0.11 for total clonal mutations) (Figure 3.S.2). 

 In addition to somatic mutations, we detected recurrent somatic copy number alterations 

with GISTIC2.0 (see Methods). The number of recurrent somatic copy gains as detected from 

WGS was also significantly lower in EBV-positive (median 3, range 0-4) compared to EBV-
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negative cases (median 4, range 1-5; p=0.032, Figure 3.1F). Copy number losses were also more 

frequent in EBV-negative (median 13, range 2-17) cases than EBV-positive (median 7, range 0-

15; p=0.015, Figure 3.1G).  

Nonsilent alterations in the JAK-STAT and NF-κB pathways are more frequent in EBV-

negative cHL than EBV-positive cHL  

 We compared the mutation frequency of key Hodgkin lymphoma genes in EBV-negative 

and EBV-positive cHL from WES of 56 cHL tumors (Figure 3.2A). Consistent with previous 

studies [108, 109], we found the JAK-STAT pathway members STAT6 and SOCS1 were the most 

frequently mutated genes, being affected in 24/56 cases (43%), the majority EBV-negative (22/24 

[92%]). In particular, STAT6 missense mutations of the DNA binding domain were observed in 

14/41 EBV-negative cases (34%) but in only 1/15 EBV-positive cases (7%; p=0.047, MWU test) 

(Figure 3.2B,C). Furthermore, gains or amplifications of 9p24.1/JAK2 were significantly enriched 

in EBV-negative cases (31/41 [76%], versus 6/15 [40%] EBV-positive cases; p=0.024). There 

were also mutations in the JAK-STAT gene CSF2RB in 4 cases, 3/4 of which were EBV-negative. 

Overall, at least one of these four JAK-STAT pathway genes was targeted by genetic lesions in 

35/41 EBV-negative tumors (85%) but only 7/15 EBV-positive tumors (47%; p=0.0057). Another 

frequently targeted pathway was NF-κB. Recurrent mutations and/or deletions of TNFAIP3 at 

6q23.3, mutations of NFKBIE, and/or gain/amplification of REL at 2p16.1 were observed in 42/56 

cases overall (75%) and more often in EBV-negative cases (35/41 [85%]) than EBV-positive cases 

(7/15 [47%]; p=0.0057). A third pathway more often mutated in EBV-negative tumors was PI3K-

AKT (14/41 [34%] EBV-negative cases versus 1/15 [7%] EBV-positive cases; p=0.047), including 

the pathway inhibitor genes GNA13 and ITPKB. In particular, at least one nonsilent mutation in 

GNA13 (missense or truncating events distributed throughout the coding sequence) or out-of-frame 
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tandem duplication event was detected in 10/41 EBV-negative cases (24%), while none of the 15 

EBV-positive cases had GNA13 alterations (p=0.048). The lack of GNA13 nonsilent mutations in 

EBV-positive cHL was further confirmed by targeted Sanger sequencing of an additional 18 EBV- 

positive cases (i.e., 33 in total) (p=0.0035) (Figure 3.2D,E). Finally, mutations in MHC-I genes  

(B2M and HLA class I [HLA-I]) were more frequent in EBV-negative (23/41 [56%]) compared to 

 

 

Figure 3.2: Genetic lesions in EBV-positive and EBV-negative cHL sequenced by WES. A) 

Genomic landscape of cHL (n=56). Clonal mutations in genes mutated in at least four 

patients and known to be implicated in cHL pathogenesis, as well as significant copy number 

peaks from GISTIC, are shown. Mutations in HLA-I genes were obtained from PolySolver, 

while other mutations were obtained from SAVI +/- Sanger sequencing. ̂ chromosomal copy 

number alteration; *arm-level copy number alteration. ASHM: at least one mutation in an 

aberrant somatic hypermutation target region. JAK-STAT: at least one mutation in STAT6, 

SOCS1, CSF2RB, and/or copy number alteration (CNA) in 9p24.1. PI3K-AKT: at least one 

mutation in GNA13 or ITPKB. NF-κB: at least one mutation in NFKBIE, TNFAIP3, and/or 

CNA in 6q23.3 or 2p16.1. P value: Fisher’s exact test. B) Counts of patients with STAT6 

nonsilent mutations in EBV-negative (n=41) and EBV-positive (n=15) cHL. P value: Fisher’s 

exact test. C) Nonsilent mutations in STAT6 observed in 56 cHL patients. D) Counts of 

patients with GNA13 nonsilent mutations in EBV-negative (n=41) and EBV-positive (n=33) 

cHL. P value: Fisher’s exact test. E) Nonsilent mutations in GNA13 observed in 56 cHL 

patients. F) Recurrent copy number gains in cHL, identified by GISTIC (n=56). G) 

Recurrent copy number losses in cHL, identified by GISTIC (n=56). 
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EBV-positive (3/15 [20%]) cases (p=0.032), and a similar trend was observed when also including 

deletion in the MHC region at 6p21.33 (32/41 [78%] EBV-negative cases versus 8/15 [53%] EBV-

positive cases; p=0.097). These results indicate that multiple loci known to be commonly mutated 

in cHL are mutated frequently in the EBV-negative subtype but rarely in the EBV-positive 

subtype. 

APOBEC signature contributes to a greater fraction of mutations in EBV-negative than 

EBV-positive cHL 

 Single base, double base, and indel mutation signatures were detected in the 32 cHL whole 

genomes using a supervised non-negative matrix factorization approach informed by de novo 

signature calling (see Methods). We detected 10 signatures through de novo signature calling 

(Figure 3.3A), and ran supervised analysis on the 10 most similar COSMIC v3 mutation signatures 

based on cosine similarity score (Figure 3.3B). When comparing the mutation counts in each 

sample (Figure 3.S.3), COSMIC mutation signatures SBS2 and SBS13, attributed to 

apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC), contributed to 

significantly more mutations in the EBV-negative compared to EBV-positive cases (q=0.011 and 

q=0.0088, respectively). The signature SBS9, associated with somatic hypermutation (SHM), was 

also the source of more mutations in the EBV-negative compared to EBV-positive (q=0.0069), 

along with SBS85, associated with indirect effects of AID hypermutation (q=0.0023). The 

signature SBS5, whose mutation load is linearly associated with patient age [110], was more 

frequent in EBV-negative than EBV-positive samples (q=4.9e-4). The double base signatures 

DBS1 and DBS7 were detected at a higher counts in the EBV-negative than EBV-positive (q=0.11 

and q=0.0023, respectively), though the overall counts of double base signatures were low (<=51 

DBS mutations/patient in 30/32 patients). Finally, both of the detected indel mutation signatures 
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(ID2 and ID8) contributed to a higher number of mutations in EBV-negative than EBV-positive 

cases (q=0.0023 and q=0.0023, respectively). These results indicate that the overall higher 

mutation load in EBV-negative cases compared to EBV-positive is due to the accumulation of 

more mutations from all signatures detected in this cohort and is not due to any one specific 

mutagenic process. 

In addition, the fraction of mutations attributed to each signature in each tumor varied based 

on EBV infection status (Figure 3.3). Specifically, the APOBEC mutation signature (SBS2) and 

the double-base signature associated with exposure to UV light (DBS1) contributed to a greater 

fraction of mutations in the EBV-negative compared to the EBV-positive samples (q=0.11 and 

0.21 respectively). The overall fraction of mutations attributed to indel signature ID2, reflecting 

slippage during DNA replication of the template DNA strand, was also higher in the EBV-negative 

compared to the EBV-positive samples (q=0.21). Conversely, ID8, which is hypothesized to be 

caused by repair of DNA double strand breaks by non-homologous DNA end-joining mechanisms, 

was higher in the EBV-positive compared to the EBV-negative samples (q=0.21). These results 

indicate that the relative activities of mutagenic processes in cHL differ depending on EBV 

infection status, with APOBEC contributing to a relatively larger proportion of mutations in the 

EBV-negative subtype.  

Aberrant somatic hypermutation associated hot spots are mutated more frequently in EBV-

negative than EBV-positive cHL 

 The process of somatic hypermutation has been shown to function aberrantly in 55% of 

cHLs [111].  To compare the role of aberrant somatic hypermutation (ASHM) between EBV-

negative and EBV-positive cHL, we compared the mutation load in ASHM-associated regions in 

whole-genome sequenced cases by subtype (Methods). We found EBV-negative cases had a 
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Figure 3.3: APOBEC signature contributes to a greater proportion of total mutations in 

EBV-negative than EBV-positive cHL. A) Mutation signatures identified in 32 cHL patients 

by de novo signature analysis with Palimpsest. Signatures are annotated with the most 

similar COSMIC v3 mutation signature based on cosine similarity score. B) Frequency and 

counts of mutation signatures in cHL patients determined by supervised mutation signature 

analysis with Palimpsest. C) Proportions of mutations attributed to each mutation signature 

in EBV-negative versus EBV-positive cHL (p values, Mann Whitney U test, BH corrected). 

                              

                         

                                

                    

                   

    
      

    
     

    
      

    
     

    
    
    
    
    

    

    

    

    

    

   

   

   

   

     

     

     

   

   

   

    

    

    

    

    

   

   

   

    

    

    

    

     
     
     
     
     

    

    

    

    

    

 
  
 
 
  
  
  
 
  
  
  

        

 
 
 
 
  

 
  
 
   

 
 

 

    

     

     

    

    

    

    

    

       

 
  
 
 
  
  
  
 
  
  
  
 
 

             
    

    
     

     
     

    
    

   
   

 

  
        

        

        
        



40 

 

greater number of mutations in ASHM-associated regions overall (Figure 3.4A). There were also 

a greater number of uniquely mutated ASHM-target genes (Figure 3.4B) and a greater number of 

mean mutations per ASHM region in the EBV-negative than the EBV-positive patients (Figure 

3.4C). These patterns reflect both the overall greater mutation load in these samples as well as the 

relatively larger proportion of mutations that are attributed to ASHM in EBV-negative cases. 

 In order to further elucidate mutational processes in the cHL genome, we identified hot 

spot regions of somatic mutation through application of Gamma-Poisson regression on genomic 

intervals using the R package Fishhook [112] (Methods). Eight somatic mutation hot spots (six 

SNV, two indel) were identified, all of which were in noncoding regions (Figure 3.4D-F). Two 

hot spots (one SNV, one indel) were within 2 kb of the transcription start site in IGLL5, a known 

target region of ASHM. Another hot spot was 196 kb downstream of BCL6, which is a gene usually 

targeted by physiologic SHM in normal GC B cells [113, 114] but also enriched in tumor-

associated events [115], though the hot spot did not lie within the previously reported 2-kb region 

downstream the transcription start site. Another recurrent mutation hotspot was in intron 1 of the 

gene AICDA, which encodes the activation-induced cytodine deaminase that generates mutations 

during the process of SHM in B cells. 27% of SNVs in these hot spots occurred at RGYW motifs, 

frequently targeted by SHM, compared to 10% of SNVs in other regions of the genome (p=6.6e-

12). Notably, all of these mutation hot spots were found overwhelmingly in the EBV-negative 

cases, and were virtually unmutated in EBV-positive cases (0-1 case each in all eight hotspots 

identified). These results further underline differences between mutagenic processes in these two 

groups of patients and indicate a potential role of ASHM in EBV-negative cHL specifically. 
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Figure 3.4: Aberrant somatic hypermutation-associated regions are mutated more 

frequently in EBV-negative than EBV-positive cHL.  A) The number of mutations within 2 

kb of the transcription start site of 128 ASHM genes per patient. B) The number of unique 

genes from (A) per patient. C) The mean number of mutations within 2 kb of the 

transcription start site of 128 ASHM genes per gene per patient. Red: MC subtype. D) Q-Q 

plot of SNV hot spots in cHL, annotated by gene for q < 0.25. E) Q-Q plot of indel hot spots 

in cHL, annotated by gene for q < 0.25. F) Significance of peaks of SNV hot spots from (D). 

G) Percentage of cHL cases mutated at SNV hot spots from (D). 

 

Germline homozygosity in HLA class I is more frequent in EBV-positive than EBV-negative 

cHL 

 The HLA-I loci have been implicated in the pathogenesis of cHL, and have also been 

associated with other EBV-associated tumors such as nasopharyngeal carcinoma [116]. Thus, we 

assessed the HLA-I status in our cohort of EBV-positive and EBV-negative cHL cases. The count 

of total mutations and nonsynonymous mutations in HLA-I per patient was greater in EBV-
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negative than EBV-positive cases (Figures 3.5A, 3.S.4), consistent with the trend for greater 

somatic mutation load in EBV-negative cases seen genome-wide (Figure 3.1). Missense or 

truncating mutations in one or more HLA-I loci were detected in 17/56 cases, including 8/56 in 

HLA-A, 11/56 in HLA-B, and 5/56 in HLA-C (Figure 3.3A). For all HLA-I loci, the majority of 

patients with missense or truncating mutations were EBV-negative: 8/8 for HLA-A (p=0.093), 

10/11 for HLA-B (p=0.25), and 6/6 for HLA-C (p=0.  , Fisher’s exact test), collectively reaching 

statistical significance despite the small number of cases (n=16/41 [39%] EBV-negative cases 

versus 1/15 [7%] EBV-positive cases; p=0.023). 2/56 cases (both EBV-negative) had biallelic 

nonsynonymous mutations in at least one HLA-I gene, and 1 case had biallelic truncating mutations 

in HLA-B. An additional 12/56 cases harbored missense or truncating mutations in B2M (detected 

through WES and/or Sanger sequencing [93]), and 3/56 cases (3/3 EBV-negative) harbored a 

missense or truncating mutation in both B2M and at least one HLA-I gene. In total, 26/56 (46%) 

cases were mutated in HLA-I or B2M, the majority of which (23/26, 88%) were EBV-negative 

(p=0.032; Figure 3.3A). Similarly, somatic loss of heterozygosity caused by allele deletion tended 

to occur more often in EBV-negative than EBV-positive cases (11/11 [100%] versus 5/7 [71%] 

evaluable cases, p=0.14, MWU test) (Figure 3.5B). Overall, EBV-negative cHL more frequently 

carried somatic lesions potentially disturbing MHC-I presentation of tumor neoantigens, which in 

turn are likely more numerous in this group than in EBV-positive cHL, due to higher somatic 

mutation burden (analogous to carcinogen induced-tumors such as lung carcinoma and melanoma)  

[107]. 

 We performed germline allele typing of the same samples using the PolySolver [104] 

algorithm, as emerging evidence points to frequent homozygosity in patients with B-cell 

lymphomas [33, 65] as a possible means to escape immune evasion. We found the HLA-A*02*01 
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Figure 3.5: Class I HLA in 56 cHL sequenced by WES. A) Count of nonsynonymous 

mutations in HLA-I genes in EBV-negative versus EBV-positive cHL (p value, Mann-

Whitney U test). B) Percent of patients with loss of heterozygosity of HLA-I by EBV status 

(n=18) (p value, Mann-Whitney U test). C) Percent of patients with HLA-A*02*01 allele by 

EBV status. D) Percent of EBV-positive and EBV-negative patients with 0, 1, 2, or 3 sets of 

homozygous HLA-I alleles (p value, Fisher’s exact test). E-G) Percent of EBV-positive and 

EBV-negative patients with homozygosity in HLA-A, -B, and -C (p values, Fisher’s exact 

test). 

 

allele was more frequent in the EBV-negative than EBV-positive cases (p=0.012), which is 

consistent with previously described differences in HLA-A allele types between these two disease 

subgroups [46] (Figure 3.5C). Interestingly, when we compared rates of homozygosity at one or 

more HLA-I genes in the germline (Figure 3.5D), EBV-positive patients were significantly more 

likely to be homozygous in at least one of the three HLA-I loci compared to EBV-negative 

(p=0.020). Specifically, EBV-positive patients were significantly more likely to be homozygous 

in HLA-C than EBV-negative patients (p=0.0039), and a similar trend was observed in the rate of 

homozygosity in HLA-B (Figure 3.5E-G). These results support previous work which has 
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identified increased rates of germline homozygosity in cHL compared to other cancers [33].  

3.3 Discussion 

The first finding of our study is that EBV-positive classical Hodgkin lymphoma is affected 

by fewer somatic lesions genome-wide compared to cases without EBV infection. This pattern 

was observed consistently for somatic SNVs, short indels, and copy number aberrations, and points 

to the unique role of the Epstein-Bar viral machinery in the tumorigenesis of EBV-positive cHL. 

This finding supports the hypothesis that viral proteins drive oncogenesis without the need for the 

kinds of somatic alterations observed in the EBV-negative subtype. This is achieved through the 

expression of the latent membrane proteins LMP1 and LMP2a in EBV-infected HRS cells. LMP1 

mimics CD40 and activates the NF-κB pathway, while LMP2a mimics B cell receptor signaling 

and can activate the PI3K-AKT pathway [117].  

Our study confirms earlier WES analysis of cHL showing frequent mutations in the JAK-

STAT gene STAT6 and the PI3K inhibitor [118] gene GNA13 [93] and provides robust evidence 

for the association of these mutations with EBV-negative, but not EBV-positive cHL. The absence 

of somatic lesions in GNA13 in EBV-positive cases may be explained by the function of the latent 

membrane protein LMP2a produced in infected cells. LMP2a activates the PI3K-AKT pathway, 

which may eliminate the selective pressure for PI3K-AKT-activating mutations in the tumor cells.  

Previous studies [107, 119] of mutation signatures in cHL have identified a mixed signature 

of spontaneous deamination at CpGs attributed to aging. We identified a mixed signature 

characterized by 1) C>T mutations at NCG trinucleotides, similar to the previously described aging 

signature and COSMIC1, as well as 2) frequent T>C mutations. This signature was most similar 

to SBS5 from COSMIC-v3, which has been associated with cellular turnover and aging. This 

signature was not correlated with patient age in our data set, consistent with the previous report, 
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strengthening the hypothesis that CpG deamination is driven by an early increase in the division 

rate of HRS cells [107].   

We also identified signatures of the apolipoprotein B mRNA-editing enzyme, catalytic 

polypeptide (APOBEC) family of cytidine deaminases in our cohort, previously described in cHL 

[107, 119]. The signature activity of APOBEC (SBS2) was more active in EBV-negative than 

EBV-positive samples, indicating this mutagenic process plays a larger role in the tumorigenesis 

of EBV-negative than EBV-positive cHL. In addition to signatures of APOBEC, we identified 

signatures associated with the process of somatic hypermutation (SBS9, SBS85). A previous study 

of mutations in four regions targeted by ASHM determined by direct DNA sequencing found that 

55% of cHLs were mutated in one or more ASHM target genes, and 30% harbored mutations in 

two or more genes [111]. Here, we found a recurrent mutation hotspot for both SNVs and indels 

occurred in a region of IGLL5 targeted by ASHM, and was mutated in EBV-negative cases nearly 

exclusively. Mutation hotspots located in AICDA and downstream of the gene BCL6 were also 

identified overwhelmingly in the EBV-negative cases. Our findings indicate ASHM may 

contribute to the mutational processes in EBV-negative more often than EBV-positive cHL.  

30% of samples in this cohort contained at least one missense or truncating mutation in an 

HLA-I gene. This follows reports by our [93] and other groups [107] of recurrent mutations that 

impair function of the MHC-I complex in cHL, including HLA-B and related loci such as B2M. 

Almost all cases with a missense or truncating mutation in HLA-I were EBV-negative, which is 

consistent with the observation that loss of MHC-I expression is more common in EBV-negative 

than EBV-positive cHL. An interesting new finding from our analysis is the association between 

homozygosity in one or more HLA-I loci and positive EBV infection status. cHL has been shown 

to have higher rates of germline homozygosity in HLA-I compared to other cancers [33]. This may 
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reflect how similarity of HLA-I alleles in the germline predisposes to viral infection, which in turn 

leads to increased risk of tumorigenesis.  

This comparative analysis of the genomic landscape of cHL in the presence and absence 

of EBV infection reveals that EBV-negative cHL is characterized by distinct genetic features, 

including greater activity of APOBEC signature, recurrent mutations in STAT6 and GNA13, and 

copy number gains at the 9p24.1 locus, typically not observed in the EBV-positive subtype. Our 

results support a role for EBV viral machinery in promoting tumorigenesis in the absence of the 

large-scale somatic lesions observed in EBV-negative cHL. These findings indicate the need to 

take into account EBV infection status when considering targeted therapies for the treatment of 

cHL, as many of the most common and targetable genetic lesions (including those in the JAK-

STAT pathway) are seen nearly exclusively in the EBV-negative subtype and not the EBV-

positive. Finally, the observation that germline homozygosity in HLA-I is enriched in EBV-

positive cHL highlights a new risk factor for this disease. Future work should determine how 

germline HLA-I zygosity can predispose to the development of EBV-positive cHL and whether 

this may be a risk factor for other virus-associated cancers.  

3.4 Methods 

EBV infection status calling 

 EBV infection status of newly sequenced cHL patients was determined by standard EBER 

in-situ hybridization on fixed tissue sections and confirmed by presence of reads aligned to the 

EBV reference assessed by samtools idxstats. 

Sample preparation and sequencing 

Whole-genome sequencing (WGS) was performed on tumor and normal samples from a 

cohort of  27 cHL cases previously subjected to whole-exome sequencing (WES) [93], as well as 
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from 5 newly microdissected EBV-positive cHL cases. For each patient, we laser-microdissected 

HRS cells (n=1200-1800 per case) along with a similar number of adjacent non-neoplastic cells 

from frozen lymph node sections and subjected the samples to whole genome amplification 

(WGA) in duplicate [93]. Here, whole genome sequencing (WGS) was performed separately for 

each tumor duplicate at a median depth of 44X, as well as for the pooled normal duplicates to a 

median depth of 44X. For 5 cases subjected to WES, we additionally sequenced unamplified DNA 

from peripheral blood at a median depth of 41X. Preparation of libraries for WGS was done using 

Illumina TruSeq DNA PCR-Free library kit and Illumina TruSeq Nano DNA library kit for 31/32 

cases and 1/32 case respectively, followed by paired-end sequencing for 2x125 cycles on Illumina 

HiSeq 2500 and for 2x150 cycles on Illumina NovaSeq instruments for 20/32 cases and 12/32 

cases, respectively.  

Single nucleotide and indel variant calling pipeline 

 Whole genome sequencing samples were aligned to GRCh37 using the Burrows-Wheeler 

aligner. Samples were pre-processed by indel realignment, duplicate removal, and base 

recalibration with GATK [120] following the GATK best practices workflow [121]. SAVI-v2 

[122], an in-house variant caller, was used to call somatic variants. As there were two 

microdissected tumor and one normal sample for each case sequenced by WGS, we adapted the 

WES pipeline for one normal microdissected sample rather than two [93], and defined somatic 

variants present in a major tumor clone as those having a VAF >= 20% in both tumor replicates, 

<3% in the pooled normal microdissected sample, and <1% in the unamplified blood sample (when 

available) at any genome bases that were covered by at least 6 reads in all tumor, normal and blood 

samples of each case (representing a median of 89% of all genome bases, IQR 87-90%). The 

threshold of 6 reads was selected because, in a comparison to deeper WES data from the same 
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cases (n=31 with at least 1 mutation called on both WES and WGS) taken as benchmark (median 

coverage 148X), this threshold provided absolute specificity (99.999%) while preventing the loss 

of sensitivity at minimum depths higher than 6 (Figure 3.S.6). All other filters, including those to 

remove SNPs, strand bias, and homopolymeric indels, were applied as previously described. [93] 

To further account for errors in the whole genome sequencing data, we removed variants within 

ENCODE or Duke consensus blacklist regions (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeMapability), as those are suspected artifacts. Finally, we 

used normal samples from all 32 WGS cases to construct a cohort supernormal and removed any 

putative somatic variants in these cases that was called also in the supernormal.  

WES data were analyzed for 38 cHL cases (34 already published [93] plus 4 newly 

microdissected and processed as in ref. [93], except for using the updated Agilent SureSelectXT 

V6+Cosmic probes and kit), following a bioinformatics pipeline previously described [93] that 

was also applied to the WES data of 18 cHL cases available for download from ref. [107]. The 

latter data were generated after flow cytometry sorting of tumor and normal cells from 

cryopreserved tissue cell suspensions, without subsequent WGA, and comprised one tumor and 

one normal sample per case. These 56 WES samples were subjected to the same bioinformatics 

pipelines for mutation calling (described in ref. [93]) and for copy number aberration calling and 

HLA-I analyses (described further below).  

Mutation signature analysis 

Mutation signatures were called from clonal somatic variants using Palimpsest [123], an 

NMF-based mutation signature caller. Unsupervised mutation signature analysis was first run for 

combined single base substitution (SBS), double base substitution (DBS), and insertion-deletion 

(ID) signature calling. To improve detection of potential AID-associated signatures expected in 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
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this data set due to the germinal center B cell of origin of this tumor, de novo signatures were also 

separately called for clustered variants, i.e. variants grouped by  nearest mutation distance (NMD) 

below a threshold defined according to approach of ref. [81], i.e. NMD < 316 bases for WGS based 

on visual inspection of the histogram of NMD (Figure 3.S.5). All de novo signatures found in cHL 

cases were compared to published whole genome amplification signatures [124] to rule out 

sequencing artifacts from the amplification procedure. Supervised mutation signature analysis was 

then run on using COSMIC v3 mutation signatures that were the highest ranking match for the 

inferred signature from the de novo analysis, based on cosine similarity score.  

Mutation hot spots 

 Mutation hot spots in cHL genomes were identified using Fishhook [112], an R package 

that uses Gamma-Poisson regression to determine genomic intervals enriched or depleted for 

somatic mutations. The hg19 genome was binned into 10,000 base pair windows. Regions of low 

mappability, low complexity, and sites of unusually high numbers of aberrant SNP calls from 

1,000 Genomes Project were masked using the “universal mask” for whole genome sequencing 

variant calling [125] as described by Imielinski et al. [112] GC-fraction was included as a 

covariate. Hot spots were called separately for single nucleotide variants and indel variants. 

Aberrant somatic hypermutation (ASHM) analysis 

 ASHM-associated regions were identified as regions within 2 kb of the transcription start 

site of 126 previously identified targets of ASHM [75, 126, 127], as previously described [33]. 

Mutations were included in the analysis if they passed the single nucleotide and indel variant 

calling pipeline described above. “AS  mutations” were defined as somatic point mutations 

occurring within ASHM-associated regions. “ utated AS   genes” were counted as the number 

of unique Ensembl gene IDs containing at least one ASH mutation.   



50 

 

Copy number segmentation and variant calling 

Copy number segmentation of cHL samples was conducted using Control-FREEC [128] 

for each pair(s) of tumor and normal samples sequenced by whole genome sequencing available 

for each case. For patients with more than one tumor and/or normal sample, only aberrations 

occurring in overlapping regions of gain or loss present in both tumor replicates were counted as 

non-normal copy number. Copy number alterations (CNAs) were defined based on the following 

absolute CN cut off values: CN > 2.3 gain, CN > 3.6 amplification, CN < 1.7 heterozygous loss, 

and CN < 0.8 homozygous loss. The CN of overlapping regions of CNA was calculated as the 

mean of the constituent copy numbers. When compared to fluorescence in situ hybridization data 

already available for JAK2 and TNFAIP3 deletion in 33/34 and 32/34 previously published cases, 

sensitivity and specificity of this analysis for focal JAK2 gain and TNFAIP3 loss on WGS cases 

were 38% and 94% for JAK2 copy number gain, and 29% and 81% for TNFAIP3 deletion. 

Structural variants of Hodgkin WGS caes were called using manta [129] and high-confidence 

variants were selected through manual review. 

In order to define significant regions of recurrent CNAs in Hodgkin lymphoma, GISTIC 

2.0 [130] was applied to the copy number segmentation of 56 cases of cHL sequenced by WES 

with a q < 0.2, a maximum segmentation threshold of 10,000, and all other parameters default via 

the GenePattern server (https://www.genepattern.org/). To denoise the list of putative recurrent 

CNAs in the WES cases, GISTIC 2.0 was applied to the cohort of 32 cases of cHL sequenced by 

WGS, with a q < 0.5, a maximum segmentation threshold of 10,000, and all other parameters 

default via the GenePattern server. The list of putative CNA regions defined by WES was filtered 

to include only those peaks occurring on the same cytoband as a peak called in the WGS cohort, 

and/or in a region previously described as a known site of recurrent copy number aberration in B 
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cell lymphomas by manual curation. Significant peaks were defined as those having a q* < 1e-04, 

where q* = sqrt(qWES * qWGS), where qWES is the q value of the peak in the cytoband called by 

GISTIC in the WES cohort and qWGS is the q value of the peak in the cytoband called by GISTIC 

in the WGS cohort. GISTIC peaks of gain or amplification were counted as present in a patient if 

the maximum inferred tumor copy number within the wide peak limit region was > 2.3 (gain) or 

> 3.6 (amplification). GISTIC peaks of deletion were counted as present in a patient if the 

minimum inferred tumor copy number within the wide peak limit region was < 1.7 (heterozygous 

loss) or < 0.8 (homozygous loss). Arm and whole-chromosome level CNAs were defined as lesions 

of the same type (i.e. gain or loss) that covered >75% of the chromosome arm or chromosome, 

respectively. 

Class I HLA allele typing and mutation calling 

 Class I HLA allele typing was performed using PolySolver [104] with default parameters. 

When available, alleles were called from sequenced unamplified blood samples. Otherwise, cases 

were called as homozygous only if they were called as homozygous by PolySolver in all tumor 

and normal samples. “ omozygous” refers to cases where both inferred alleles of an HLA-I gene 

are the same to the two-field resolution (allele group and specific HLA protein). HLA mutation 

calling was performed using PolySolver. HLA loss of heterozygosity in non-whole genome 

amplified cases was assessed with LOHHLA with a minimum coverage threshold of 5 reads using 

purity and ploidy inferred by Sequenza [131] with default parameters. Cases were called as having 

HLA loss of heterozygosity if the p value for loss of the allele was < 0.01 and the inferred copy 

number of the allele was < 0.5 (in both tumor samples, when applicable), following thresholds 

used in McGranahan et al [132]. HLA loss of heterozygosity was evaluated only for patients that 
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did not undergo whole genome amplification (n=18) because allele dropout from the amplification 

procedure prevented accurate HLA-I loci allelic copy number calling in those samples.  

Statistical Analyses 

Analyses of significance of mutation counts and frequencies were performed using the 

Mann-Whitney U test and Fisher’s exact test, respectively. Significance of mutation signature 

activities were assessed using Student’s t test.  ultiple hypothesis correction was applied using 

the Benjamini-Hochberg Procedure. 

 

3.5 Supplementary Figures 

 
Figure 3.S.1. Age at diagnosis of 32 cHL sequenced by WGS. The age of the EBV-positive 

individuals was significantly higher than the EBV-negative (p=0.029, MWU test). Mixed 

cellularity cases are colored in red. 
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Figure 3.S.2. EBV-negative cHL exomes harbor a greater number of somatic mutations 

compared to EBV-positive cHL. The mutation load for each sample sequenced by WES was 

calculated as A) the total number of clonal mutations (point mutations and short indels), B) 

the total number of clonal mutations in coding regions, and C) the total number of clonal, 

nonsilent mutations in coding regions. D) Proportion of clonal mutations that are 

insertions/deletions in each case. In all panels, p-values were computed with the Mann-

Whitney U test, and mixed cellularity cases are colored in red. 
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Figure 3.S.3. Counts of mutations attributed to each mutation signature identified from 

WGS of 32 cHL. q values from Student’s t test, BH corrected. 
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Figure 3.S.4. Somatic mutations in HLA-I. A) Count of total somatic mutations in HLA-I. B) 

Count of truncating somatic mutations in HLA-I. p values: MWU test. Mixed cellularity 

cases are colored in red. 

 

 

 

 
Figure 3.S.5. Histogram of mutation count by nearest mutation distance (NMD) in 32 cHL.  

Approximate point between two peaks of NMD (red, dashed line) was used to determine cut-

off for cHL de novo mutation signature analysis. 
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Figure 3.S.6. Accuracy of WGS mutation calls assessed with paired WES samples from the 

same patient. A cut-off value of a minimum of 6 total reads in all samples was chosen for 

somatic mutation calling in WGS samples as this maximized accuracy (A) while minimizing 

loss of sensitivity (B). Specificity also shown (C). 
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Chapter 4: Genomic landscape of virus-associated cancers3 

4.1 Introduction 

  An estimated 15-20% of cancers are attributable to infections [42, 43], and 8-10% are 

caused by viruses [44, 133]. To date, seven viruses are known to be associated with the 

development of cancers in humans (oncoviruses): human gammaherpesvirus 4 (HHV-4, also 

known as Epstein-Barr virus [EBV]), human herpesvirus 8 (HHV-8), human papillomavirus 

(HPV), human T-cell lymphotrophic virus type 1 (HTLV-1), hepatitis B virus (HBV), hepatitis C 

virus (HCV), and Merkel cell polyomavirus (MCPyV) [134]. The first human oncovirus to be 

described was EBV, following the discovery of viral particles in cultured lymphoblasts from 

Burkitt lymphoma (BL) in 1964 [135]. Since then, EBV has been linked to a wide array of both 

hematological and solid tumors, including Hodgkin lymphoma (HL) (20-50% of cases [45]), other 

B and T cell lymphomas (such as plasmablastic lymphoma [PBL], extranodal NK T-cell 

lymphomas [NKTCL], and primary central nervous system lymphoma [PCNSL] in immune-

suppressed patients, each in 70-100% of cases [56-58]), gastric cancer (GC) (8.7% of cases [59]), 

and nasopharyngeal carcinoma (NPC) (100% of cases [60]), summing to approximately 1% of all 

cancers [44]. It has also been suggested that EBV may be associated to B-cell lymphomagenesis 

more widely than currently acknowledged, possibly via a “hit and run” mechanism [136]. By the 

1980s, HPV, HBV, HCV, and HTLV-1 had been identified as additional oncoviruses. High-risk 

HPV types such as HPV16 and HPV18 contribute to the pathogenesis of cervical cancer (CC) 

(95% of cases [51]), head and neck squamous cell carcinoma (HNSCC) (30% [52]), and anogenital 

 
3 Material in this chapter is contained wholly or in part in a manuscript in preparation by Karen Gomez*, Gianluca 

Schiavoni*, Yoonhee Nam, Jean-Baptiste Reynier, Cole Khamnei, Michael Aitken, Giuseppe Palmieri, Antonio 

Cossu, Arnold Levine, Carel van Noesel, Brunangelo Falini, Laura Pasqualucci, Enrico Tiacci**, and Raul Rabadan** 

*Contributed equally. **Jointly supervised this work. 
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cancers (70-90% [137]), representing 5% of all cancers [137]. HBV and HCV have been associated 

with up to 56% and 20% of hepatocellular carcinomas (HCC) [53] and 2% and 1% of total cancers 

[44], respectively. HTLV-1, the only oncogenic retrovirus yet described, is necessary for the 

development of adult T-cell leukemia/lymphoma [62]. Since the discovery of HHV-8 in AIDS 

patients with Kaposi sarcoma (KS) in 1994 [61], HHV-8 has been implicated in the pathogenesis 

of Kaposi sarcoma (100% of cases), primary effusion lymphoma (100% [138]), and Castleman’s 

disease (20-40% [139]). In 2008, MCPyV was linked to Merkel cell carcinoma (MCC) [140], and 

has since been identified as an etiological agent in 80% of MCC tumors [63]. Recently, HPV42, 

previously classified as a “low-risk”  PV type, has been found in a majority of digital papillary 

adenocarcinomas [141]. It is suspected that viruses may play a causative role in the pathogenesis 

of other cancer types [142, 143], and there may be more oncoviruses that have yet to be discovered.   

 While the mechanisms of malignant transformation caused by oncoviruses differ, there are 

some general patterns that are observed [144]. First, oncoviruses cause a persistent, long-term 

infection, and tumors develop years after the initial infection. For example, most individuals are 

infected with EBV by early childhood (in developing countries) or adolescence (in developed 

countries) [145], but an EBV-associated cancer may not develop until old age. Hepatocellular 

carcinoma develops 10-30 years after infection with HBV or HCV [146], and cervical cancer 

develops 25-30 years following infection with HPV [147]. Second, oncoviruses encode proteins 

that directly contribute to malignant transformation. In HPV infected cells, the E6 and E7 

oncoproteins inhibit the tumor suppressors p53 and Rb, respectively [148]. The vGPCR protein 

encoded by HHV8 induces angiogenesis and promotes cell transformation [149]. EBV expresses 

different genes depending on the viral latency program. In Burkitt lymphoma, EBV expresses a 

type 1 latency program including the protein EBNA-1, which is necessary for the replication of 
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viral DNA and may inhibit apoptosis [150]. In Hodgkin lymphoma, gastric carcinoma, and 

nasopharyngeal carcinoma, EBV expresses a type II latency program, including EBNA-1 as well 

as the proteins LMP1 and LMP2, which activate the NF-κB and PI K-AKT pathways [150]. Third, 

viral infection is necessary, but not sufficient for malignant transformation. Many oncoviruses are 

highly prevalent in the general population: 90-95% of people worldwide are infected with EBV 

[145], 80% of individuals will acquire an HPV infection by age 45 [151], and MCPyV is detected 

in 80% of individuals in the general population by age 50 [152]. However, only a small fraction 

of those infected with oncoviruses will develop cancer, suggesting additional genetic and/or 

environmental factors are required.  

The factors that contribute to the malignant transformation of virus-infected cells remain 

incompletely understood, but are known to include a combination of environmental, immune, 

inherited, and somatic components. While many of these components have been described for 

individual cancer types, relatively little has been reported about the clinical and genetic factors 

that are common across virus-associated cancers. In this study, we investigate virus-associated 

oncogenesis through an integrative analysis of nine cancers for which a subset of cases are 

associated with five oncoviruses through data from both published and newly collected data sets. 

We identify patterns of common phenotypic characteristics, somatic drivers, germline risk factors, 

and therapeutic responses among these malignancies. This study provides a comprehensive 

analysis of human cancers that develop in the context of viral infection and key factors related to 

their pathogenesis.  

4.2 Results 

Virus-associated cancer show unique epidemiological trends  

 Virus-associated cancers are known to follow unique epidemiological patterns compared 
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to non-virus-associated cancers. For example, the age of incidence of HL follows a bimodal 

distribution which reflects two distinct histological subtypes with different etiologies: 1) nodular 

sclerosis, usually EBV-negative, in young adults, and 2) mixed cellularity, often EBV-positive, in 

older adults [153, 154]. In order to illustrate other common demographic characteristics of virus-

associated malignancies, we analyzed data from the Global Cancer Observatory (GLOBOCAN 

2020) [155] and published incidence rates in 82 studies of 11 cancer types linked to 7 viruses and 

13 non-virus-associated cancers [56, 156-236]. First, we compared the incidence rates of viral 

cancers in males versus females (M/F) reported in select published studies [56, 156-236] (Figure 

4.1A). We found that the M/F ratio reported was greater overall in virus-associated cancers 

compared to nonviral cancers (p=0.03, Mann Whitney U [MWU] test). Among studies that 

reported rates of male and female incidence for virus-positive and virus-negative tumors 

specifically, virus-positive cases tended to have a greater M/F ratio than virus-negative cases 

(p=2.4e-10). This trend was also consistent when separately comparing virus-positive and virus-

negative tumors of gastric cancer (p=1.04e-10) and Hodgkin lymphoma (p=0.015). One exception 

to this trend is MCPyV-positive MCC, which has a lower M/F ratio compared to virus-negative 

MCC. Interestingly, digital papillary adenocarcinoma, which has been recently associated to 

HPV42, is more frequent in males compared to females at a ratio of 4 to 1 [237]. 

 To examine how the incidence of virus-associated cancers differs by geographic location, 

we compared the age-standardized incidence rates (ASR) of 4 cancers in 185 countries reported in 

GLOBOCAN 2020. To identify countries with high ASR of virus-positive tumors for different 

virus-associated cancers, we estimated the number of cases attributable to viral infection by 

country from GLOBOCAN 2020 total incidence counts and the attributable fraction per region 

estimated by de Martel et al [44]. In HL, EBV-positive cases occur most frequently in North 
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Africa, the Middle East, and South America, with the lowest incidence occurring in East Asia 

   

 
 

Figure 4.1: Epidemiological trends of virus-associated cancers. A) Incidence rates of virus-

associated and non-virus-associated cancers (left) and virus-positive and virus-negative 

tumors in virus-associated cancers (right) in males compared to females (M/F) reported in 

selected published studies. Each point corresponds to an incidence ratio reported in a 

published study. Virus-associated cancers: ANKL, aggressive NK-cell leukemia (n=1); GC, 

gastric cancer (n=2); HCC, hepatocellular carcinoma (n=6), HL, Hodgkin lymphoma (n=2); 

HNSCC, head and neck squamous cell carcinoma (n=4), MCC, Merkel cell carcinoma (n=3); 

NKTCL, Natural killer/T-cell lymphoma (n=2); NPC, nasopharyngeal carcinoma (n=6); 

PBL, plasmablastic lymphoma (n=1); PCNSL, primary central nervous system lymphoma 

(n=1). Non-virus-associated cancers (n=1 each): ALL, acute lymphoblastic leukemia; BCC, 

basal cell carcinoma; CLL, chronic lymphocytic leukemia. Virus-positive tumors: BL, 

Burkitt lymphoma (n=4); GC (n=33); HCC (n=3); HL (n=6); HNSCC (n=1); KS, Kaposi 

sarcoma (n=15); MCC (n=2). Virus-negative tumors: BL (n=3); GC (n=31); HL (n=6); MCC 

(n=2). B) Estimated incidence rates of EBV-positive HL (left) and EBV-negative HL (right) 

by country. C) Estimated incidence rates of EBV-positive NPC (left) and EBV-negative NPC 

(right) by country. 
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(Figure 4.1B). In contrast, most cases of EBV-positive NPC occur in China and southeast Asia 

(Figure 4.1C). Similarly, Kaposi sarcoma and cervical cancer (nearly all of which are virus-

positive) show disparities in incidence by geographic location (Figure 4.S.1). These results 

illustrate that the locations of global hot spots of virus-positive tumor incidence vary by virus and 

even among cancers associated with the same virus. These disparities reflect differences in risk 

factors for virus-positive tumors among human populations, both genetic (e.g. inherited 

susceptibility polymorphisms [238, 239]) and environmental (e.g. oncovirus prevalence [240], and 

lifestyle factors such as smoking or diet, which affect overall cancer risk [241]). 

Virus-positive tumors have fewer somatic mutations than virus-negative tumors 

In order to quantify the somatic mutation burden of virus-associated cancers, we 

aggregated somatic mutation data from 1,658 tumors reported in published studies of nine cancers 

sequenced by whole exome sequencing (classical HL [cHL] [93, 107] [n=56], PBL [101] [n=15], 

GC [242] [n=440], HCC [243] [n=196], CC [244] [n=178], and HNSCC [245] [n=487]), targeted 

DNA sequencing (PBL [101, 246] [n=36], PCNSL [247] [n=58], MCC [248] [n=71], and BL [249] 

[n=29]), and/or whole genome sequencing (BL [249] [n=91] and newly sequenced cHL [n=32] 

[see Methods]). In general, virus-negative tumors had a higher count of nonsynonymous mutations 

compared to virus-positive tumors (Figure 4.2A). The count of nonsynonymous mutations was 

significantly lower in virus-positive compared to virus-negative cHL sequenced by WES (median 

4.5 compared to 56, respectively, p=0.0016, MWU test), PCNSL (median 1 and 6, p=1.2e-7), and 

HNSCC (median 94.5 and 168, p=1.6e-5), and trended towards significance in PBL (median 1 and 

4, p=0.080), GC (median 131.5 and 169, p=0.088), and to a lesser extent in CC (median 105 and 

399, p=0.20), and MCC (median 10 and 28, p=0.17) (Figure 4.2B). While the mutation load in 

BL was higher in virus-positive tumors (median 53 and 42, p=0.00018), the count of 
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nonsynonymous mutations in genes previously described as BL drivers [249] trended towards 

lower in the virus-negative (median 8 and 6, p=0.074) (Figure 4.S.2). Furthermore, when 

restricting the analysis to driver genes, the higher mutation count in virus-negative versus virus-

positive cases became statistically significant in  MCC (median 5 and 1, p=0.029) (Figure 4.S.2). 

Overall, the total mutation count and/or driver mutation count was lower in virus-positive 

compared to virus-negative tumors in 8/9 cancers studied (Figure 2C). The exception to this trend 

was HCC, which had a higher total nonsynonymous mutation count (median 129 vs 118, p=0.12) 

and driver mutation count (median 2 vs 1, p=0.0017) in virus-positive versus negative cases.  

 

 
 

Figure 4.2: Mutation burden of virus-positive and virus-negative tumors in nine cancers. A) 

Ratio of average number of somatic nonsynonymous mutations in virus-negative tumors 

compared to virus-positive tumors. MCC (n=71), HNSCC (n=487), CC (n=172), cHL (n=54), 

GC (n=436), BL (n=91), PBL (n=51), HCC (n=190), and PCNSL (n=58). B) Counts of somatic 

nonsynonymous mutations in virus-positive and virus-negative tumors in the same cancers. 

C) Summary of trends in mutation load in virus-positive versus virus-negative tumors by 

cancer type. Results highlighted in orange and dark blue reach significance past a threshold 

p <0.05, while results highlighted in light blue indicate a trend that does not reach 

significance p<0.05 (MWU test). 
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Virus-associated cancers display unique mutation signatures 

 To detect and quantify the relative contribution of COSMIC mutation signatures [250] 

within the nine virus-associated cancers, we next applied a supervised non-negative matrix 

factorization approach informed by de novo signature calling. Virus-positive tumors exhibited 

different activities of mutation signatures compared to virus-negative tumors of the same cancer 

type (Figure 4.3, Figure 4.S.3). In cHL, the detected mutation signatures included SBS5/age, 

SBS9/somatic hypermutation (SHM), SBS85/activation-induced cytidine deaminase (AID), 

SBS2/13/apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) (Figure 

4.3A, left). The absolute count of mutations ascribed to each of these signatures was significantly 

lower in EBV-positive versus EBV-negative cases (Figure 4.S.3A). For SBS2/APOBEC, the 

relative signature activity (i.e., the proportion of signature mutations among all mutations observed 

in each case) was lower in EBV-positive compared to EBV-negative tumors (mean proportion 

0.0079 and 0.047, respectively, q=0.11 ) (Figure 4.3A, right). APOBEC enzymes belong to a 

family of cytidine deaminases that includes AID, and a previous study focused on a few selected 

genomic regions showed that the AID-mediated process of SHM functions aberrantly in cHL 

[111]. Our unbiased analysis revealed that the inferred SHM signatures SBS9 and SBS85 had 

higher absolute activity in EBV-negative versus EBV-positive cases genome-wide (Figure 

4.S.3A). Additionally, we found that mutations occurring in regions within 2 kb of the transcription 

start site of 126 genes known to be targeted by aberrant SHM (ASHM) in diffuse large B-cell 

lymphomas (DLBCL) [75, 126, 127] were enriched in EBV-negative compared to EBV-positive 

cHL (median 1 and 0, p=0.045, MWU test; Figure 4.3A, right). Collectively, these data suggest 

there is a greater selective pressure for somatic mutations induced by APOBEC and AID activities 

in EBV-negative cHL, that in EBV-positive cHL might be substituted by oncogenic activities of 
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viral proteins. 

UV light is known to be the major etiological agent of MCC tumors in the absence of viral 

infection [248]. Accordingly, the absolute count of mutations attributed to SBS7a/7b/UV light was 

lower in MCPyV-positive compared to MCPyV-negative (Figure 4.S.3B). MCPyV-positive MCC 

cases also displayed a lower proportion of mutations associated with each UV light signature 

(SBS7a/b) compared to MCPyV-negative cases (mean 0.044 and 0.13, q=0.023 and mean 0.11 

and 0.28, q=0.0019, respectively) (Figure 4.3B).  

In GC, among mutation signatures differentially active by virus status (Figure 4.3C and 

Figure 4.S.3C), of potential interest is the greater relative and/or absolute activity of SBS20, 

SBS15, and SBS21 mismatch repair deficiency signatures in EBV-negative versus EBV-positive 

cases. For example, mean relative activity of SBS15 is greater in EBV-negative than EBV-positive 

cases (mean 0.15 and 0.076, respectively; q=0.00026). These findings suggest a greater role for 

microsatellite instability (MSI) in the pathogenesis of EBV-negative GC. MSI as assessed by 

standard methods is a defining characteristic of a GC subtype that is exclusively EBV-negative 

and comprised 73/406 (18%) of EBV-negative patients in the TCGA cohort. Accordingly, the 

relative activities of SBS20, SBS15, and SBS21 were greater in the conventionally defined MSI 

subtype compared to the other EBV-negative cases (mean 0.11 and 0.010, p<2.2e-16; mean 0.30 

and 0.12, p<2.2e-16; and mean 0.071 and 0.0071, p=4.86e-9, respectively). The relative activity 

of SBS15 was also greater in non-MSI EBV-negative compared to EBV-positive tumors (mean 

0.12 and 0.076, p=0.021), suggesting that MSI may be more widespread in EBV-negative GC than 

currently appreciated with standard methods.  

There was no significant difference in the absolute counts or proportions of signatures in  

HPV-positive versus -negative CC, likely due to the limited number (n=7) of HPV-negative cases 
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reported in TCGA (Figure 4.3D). However, in HNSCC, HPV-negative cases had a greater number 

of ID3 and DBS2 mutations related to smoking (Figure 4.S.3D), a known risk factor for HNSCC 

that may be less relevant for HPV-driven carcinogenesis [251]. In contrast, HPV-positive HNSCC 

had higher absolute and relative activity of SBS2/APOBEC (Figure 4.S.3D and Figure 4.3E), a 

finding consistent with the hypothesis that HPV oncoproteins may increase APOBEC3A and 

APOBEC3B expression and mutagenic activity [251, 252].    

In HCC, there was no difference in absolute count of mutations attributed to mutation 

signatures, consistent with the similar mutation burden in virus-positive and -negative HCC 

overall. However, HCC tumors positive for HBV and/or HCV had a greater proportion of 

mutations due to SBS24/aflatoxin, an environmental carcinogen known to predispose to 

HBV/HCV-mediated cirrhosis [253, 254] (mean 0.16 and 0.085 q=0.021) (Figure 4.3F).  

In BL, we found there was a greater count of mutations in exonic regions attributed to 

SBS17b/unknown etiology in EBV-positive compared to EBV-negative cases (Figure 4.S.3E), 

consistent with a previous study of genome-wide mutation signatures in this cohort [249]. 

Similarly, EBV-positive BL had a greater proportion of mutations due to SBS17b/unknown 

etiology compared to EBV-negative BL (mean 0.031 and 0.0030, q=0.0015) (Figure 4.3G). We 

additionally found that signatures SBS6/MMR and SBS5/age contributed to a greater count of 

mutations in exonic regions in EBV-positive compared to EBV-negative BL (Figure 4.S.3E). 

Overall, these results illustrate that the signatures of somatic mutation processes vary depending 

on infection status for each cancer, highlighting differing selective pressures on the cancer 

genomes in the presence or absence of viral oncoproteins. 

Virus-associated tumors harbor frequent mutations in RNA helicases DDX3X and EIF4A1 

 In order to identify genomic loci that are preferentially mutated in virus-positive tumors, 
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Figure 4.3: Mutations signatures in eight virus-associated cancers. A) cHL (n=32), B) MCC 

(n=71), C) GC (n=436), D) CC (n=172), E) HHC (n=190), F) HNSCC (n=487), G) BL (n=91), 

H) PBL (n=23). Activities of signatures in virus-positive compared to virus-negative cases 
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are shown for signatures with a significant difference in activity (q<0.05) and/or biologically 

relevant trend (right). Schematic representation of the effect of the absence of processes 

behind key mutation signatures in virus-associated cases is shown in A) cHL (EBV-positive) 

and B) MCC (MCPyV-positive). 

 

we compared the rate of nonsynonymous mutations in the pooled cohort of 537 virus-positive 

tumors and 1,121 virus-negative tumors from 9 cancer types. We found that four genes had an 

elevated odds of mutation in virus-positive tumors compared to virus-negative tumors: EIF4A1 

(OR 69.43, 95% CI 4.15-1160.26, q=2.37e-5, MWU test, BH corrected), DDX3X (OR 7.07, 95% 

CI 4.06-12.31, q=2.25e-11),  ARID1A (OR 2.49, 95% CI 1.72-3.58, q=7.1e-4), and MYC (OR 3.92, 

95% CI 2.57-6.01, q=8.67e-8), although the latter was driven by GC exclusively (OR 6.13, 95% 

CI 0.54-70.01, q=0.38) (Figure 4.4A). When looking at individual cancer types, EIF4A1 had a 

significant odds of mutation in EBV-positive GC compared to EBV-negative GC (OR 63.09, 95% 

CI 2.94-1352.57, q=4.21e-6) and showed a similar trend in BL (OR 7.92, 95% CI 0.45-140.54, 

q=0.12) (Figure 4.S.4). DDX3X, an RNA helicase in the same family as EIF4A1, had a nominally 

elevated OR of mutation in EBV-positive cHL (OR 8.78, 95% CI 0.34-228.59, q=0.34), HNSCC 

(OR 3.73, 95% CI 0.61-22.85, q=0.34), BL (OR 1.86, 95% CI 0.76-4.53, q=0.34), and GC (OR 

1.64, 95% CI 0.083-32.72, q=0.74), though no cancer reached significance individually. ARID1A 

was significantly mutated in EBV-positive GC (OR 15.11, 95% CI 6.16-37.05, q=3.30e-12) but 

also trended towards an elevated OR in virus-positive HCC (OR 2.86, 95% CI 0.99-8.28, q=0.087), 

BL (OR 1.70, 95% CI 0.67-4.30, q=0.35), and cHL (OR 1.42, 95% CI 0.12-17.03, q=0.81). 

Conversely, TP53 had an elevated odds of mutation in virus-negative tumors compared to virus-

positive tumors (OR 8.58, 95% CI 6.40-11.50, q=5.8e-51) (Figure 4.4A), which was significant 

for most cancer types individually (Figure 4.S.4). Analysis of recurrent copy number aberrations 

also revealed recurrent loss of 9p21.3 (CDKN2A, CDKN1A) in virus-negative tumors (Figure 

4.S.5). 
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 EIF4A1 and DDX3X encode RNA helicases of the DEAD (Asp-Glu-Ala-Asp) box protein 

family which are known to play a role in splicing, RNA export, and cap-dependent translation 

initiation [255]. In order to further explore the role of these genes in virus-associated cancers, we 

expanded the analysis of EIF4A1 and DDX3X mutations to include 316 tumors from cancers that 

are virus-associated in almost 100% of cases: KS (10 newly sequenced cases), aggressive NK cell 

lymphoma (ANKL) [256] (n=14), ATL [257] (n=81), NKTCL [258] (n=100), and NPC [259] 

(n=111), for a total of 1,974 cases. In all, we identified 135 DDX3X nonsynonymous mutations 

(100 in virus-positive; 35 in virus-negative cases) and 27 EIF4A1 nonsynonymous mutations (22 

in virus-positive; 5 in virus-negative cases). 

Among virus-positive tumor samples, somatic mutations in DDX3X were detected in 53% 

(50/93) BL, 29% (4/14) ANKL, 19% (19/100) NKTCL, 7% (1/14) cHL, 5% (4/81) ATL, 3% (1/30) 

PBL, 3% (2/60) HNSCC, and 2% (3/144) of CC. Mutations in DDX3X tended to occur in the 

helicase domain residues more frequently than expected by chance (p=4.0e-4, binomial test) 

suggesting selective pressure for a functional role (Figure 4.4B). This was similar for virus-

positive cases only (p=0.0020) as well as virus-negative only (p=0.15). Furthermore, the 

proportion of mutated residues in the helicase domain was significantly greater than that of the 

DEAD domain (p=0.005 , Fisher’s exact test) and the region of the protein preceding the DEAD 

domain from amino acids 1- 0  (p=0.000 , Fisher’s exact test). The DDX3X gene is located on 

the X chromosome and was previously reported to escape X inactivation in females [260]. Both 

truncating events and at least some missense mutations in DDX3X have been previously described 

as causing functional loss of protein activity [261]. Notably, while only 60% of patients were male 

(910/1529 with available data), DDX3X mutations that were truncating occurred almost 

exclusively in males (19/20, 95%) (Figure 4.4C), consistent with a previous study [262]. This was 
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similarly evident in virus-positive (10/10, 100%) and virus-negative (9/10, 90%) cases separately.  

As 50% of patients with nonsynonymous DDX3X mutations were from the BL cohort (61/123 

cases), we focused on this disease to evaluate the relationship between mutation status and DDX3X 

expression, using previously published RNA-sequencing data [249]. We found that male patients 

lacking somatic DDX3X mutations had a significantly lower expression of DDX3X compared to 

DDX3X unmutated female patients (median 13.79 and 14.50, p=2.4e-6, MWU test), consistent 

with escape from X inactivation [260]. Cases with missense mutations in DDX3X had an elevated 

expression of DDX3X irrespective of sex compared to cases with no mutations in DDX3X (median 

15.04 and 14.24, p=1.2e-9), potentially suggesting that overexpression of missense mutants may 

favor their ability to decrease DDX3X function, while cases with truncating mutations (9 EBV-

positive; 4 EBV-) had a lower expression (median 12.23 and 14.24, p=1.79e-5) (Figure 4.4D), 

consistent with them being loss-of-function events. Similarly, in the TCGA study of HNSCC, 

expression of DDX3X was lower in unmutated male cases compared to unmutated female cases 

(median 12.58 and 12.99, p<2.2e-16), and was also lower in cases (3 HPV+; 2 HPV-) with 

truncating mutations compared to unmutated cases (median 10.37 and 12.71, p=1.5e-4) (Figure 

4.S.6). Together, these results suggest that mutations in DDX3X and EIF4A1 may play a role in 

virus-positive tumors in various types of cancer (Figure 4.4E). 

HLA-I homozygosity is a germline risk factor for EBV-positive Hodgkin lymphoma 

 In light of the essential role of the major histocompatibility complex class I (MHC-I) in the 

adaptive immune response to viral infection and oncogenesis, we investigated the role of germline 

allele type of the three HLA-I genes (HLA-A, HLA-B, and HLA-C) encoding the heavy chain 

subunit of the MHC-I. Germline HLA-I typing of 1,255 patients representing 8 types of cancer 

revealed EBV-positive cHL had the highest rate of germline homozygosity in at least one HLA-I 
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Figure 4.4: Somatic mutations in EIF4A1 and DDX3X are recurrent genetic lesions 

associated with virus-positive status. A) Combined odds ratio of mutation in genes associated 

with virus-positive (top) and virus-negative (bottom) status (q<0.05) from pooled data of 

1,658 tumors from 9 virus-associated cancers. *q < 0.05, Fisher’s exact test, BH corrected. 

B) Mutations in DDX3X and EIF4A1 in 1,974 tumors. * p < 0.05, binomial test. C) Fraction 

of patients that are male by DDX3X mutation status. D) DDX3X expression by DDX3X 

mutation status and sex in Burkitt lymphoma (n=117). * p < 0.05, MWU test. E) Frequencies 

of mutation of DDX3X and EIF4A1 in virus-positive tumors overall and summary of key 

biological functions.     

 

gene (8/15, 53%), which was significantly higher than expected based on the rate in the general 

population (21%) estimated from a subset of the GTeX database [263] (Figure 4.5A). Similar 

findings were seen in the UK BioBank [67], where 28% (156/562) of cHL cases (virus-positive 

and negative combined) were homozygous in at least one HLA-I locus, significantly higher than 

the normal U.K. population (23%) (Figure 4.S.6). These findings suggest germline HLA-I 

homozygosity may be an inherited risk factor for the development of EBV-positive cHL.  

The cHL patients with germline homozygosity in HLA-I display unique phenotypic 

characteristics compared to those that are germline heterozygous. Germline homozygous patients 

in the DNA sequencing cohort were mostly male (9/16, 56%), and older than patients who were  
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heterozygous at HLA-I (median age 52.5 in homozygous, 28.5 in heterozygous; p=0.074, MWU 

test). Within the UK BioBank, cHL patients who were fully heterozygous exhibited a bimodal 

diagnosis age curve with a larger peak from age 20-30 and a smaller peak at age 60. In contrast, 

cHL patients who were male and fully homozygous in all three HLA-I loci exhibited a diagnosis 

age curve with the greatest peak at ages 50-60, following a different age distribution compared to 

heterozygotes (p=0.072, Kolmogorov-Smirnov [KS] test) (Figure 4.5B). These phenotypic 

characteristics are consistent with what has been observed clinically for EBV-associated cases and 

may reflect an enrichment of germline HLA-homozygous cases within the EBV-positive subtype. 

 
Figure 4.5: Germline HLA-I zygosity in virus-associated malignancies. A) Percent of 

germline homozygous individuals in HLA-I in eight virus-associated tumors by virus-

infection status (positive versus negative). B) Distribution of age of cHL diagnosis in UK 

BioBank cHL patients that were germline heterozygous in HLA-I (n=406) versus germline 

homozygous in all three HLA-I genes (n=20).  
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Virus-associated cancers exhibit better responses to immunotherapy 

PD-L1 overexpression has been linked to better overall survival in patients treated with 

immune checkpoint inhibitors (ICI) in several tumor types, including gastric cancer [264], head 

and neck cancers [265], and Merkel cell carcinomas [266]. PD-L1 expression has been associated 

with infection by oncoviruses including EBV [267], HPV [268], HBV [269], and MCPyV [266]. 

To determine whether virus positivity might be a useful marker for response to ICI therapy, we 

evaluated the correlation of viral status with response to ICI therapy with anti-PD(L)1 in 39 studies 

reported on ClinicalTrials.gov that had available therapy response and virus infection status data, 

representing four virus-linked cancers.  

Virus positivity was significantly associated with ICI therapy response in GC (OR 2.27, 

95% CI 1.17-4. 9, p=0.0  , Fisher’s exact test) and  NSCC (OR  .89, 95% CI  . 7-2.82, 

p=0.0012), but not MCC (OR 1.09, 95% CI 0.49-2.45, p=0.85) or HCC (OR 1.27, 95% CI 0.94-

1.73, p=0.12) (Figure 4.6A). The same tumors displayed significant association between PD-L1 

expression and ICI therapy response, including GC (OR 3.85, 95% CI 2.29-6.72, p<1.0e-5), HCC 

(OR 1.52, 95% CI 1.08-2.13, p=0.012), and HNSCC (OR 1.89, 95% CI 1.01-3.80, p=0.045), 

whereas a trend was observed in MCC (OR 2.25, 95% CI 0.76-7.63, p=0.15). As expected, higher 

tumor mutational burden (TMB) was associated with ICI therapy response in both GC (OR 3.55, 

95% CI 2.09-6.08, p=7.74e-7) and HNSCC (OR 4.31, 95% CI 3.25-5.71, p<2.2e-16), the two 

cancer types with such data available. 

In order to determine whether virus positivity is an independent marker of ICI therapy 

response, we compared the expression of PD-L1 [CD274] in TCGA’s studies of GC [242], HCC 

[243], and HNSCC [245]. PD-L1 expression was higher in EBV-positive GC compared to EBV- 

negative GC (median 103.03 and 34.81, p=1.3e-7), but not HCC or HNSCC (Figure 4.6B). These 
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results suggest that EBV-positive status could be a positive prognostic marker for patients 

undergoing ICI therapy for gastric and head and neck cancers associated with EBV infection, 

which may be correlated with PD-L1 expression in GC but may represent an independent marker 

in HNSCC. 

 
Figure 4.6: Meta-analysis of immunotherapy trials in virus-associated cancers. A) Odds ratio 

of positive response to treatment with ICIs with virus-positive status, PD-L1 positive status, 

and/or high tumor mutation burden (TMB) in 37 studies representing four type of cancer. 

B) Expression of PD-L1 (CD274) versus viral status of tumors in TCGA’s studies of GC 

(TCGA-STAD), HCC (TCGA-LIHC), and HNSCC (TCGA-HNSC). 

 

4.3 Discussion 

This study provides insights into the epidemiological, inherited, somatic, and immune 

components commonly implicated in the pathogenesis of cancers associated with oncoviruses. 

Through analysis of cancer incidence rates reported in a selection of published studies, we noted 

virus-associated cancers display greater incidence in males compared to females relative to non-

virus-associated cancers. The greater incidence of virus-associated cancers in males may be caused 
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in part by immunologic predisposition towards viral infection compared to females. For example, 

males infected with HBV are more likely to become viral carriers, whereas females infected with 

HBV are more likely to develop antibodies indicative of recovery and immunity to the virus [270]. 

In general, females have a more robust immune response to infection than males, which has been 

attributed to X-chromosome inactivation and regulation of the immune response by genetic, 

hormonal, and environmental mediators [271, 272]. 

Through a large-scale analysis of DNA sequencing data from 1,658 tumors collected from 

different studies, we found that virus-positive tumors generally display a lower mutation load 

compared to virus-negative tumors. It has been hypothesized that the oncogenic activity of virus-

encoded proteins removes selective pressure for somatic mutations. For example, in cHL, the rarity 

of mutations in the PI3K-AKT signaling inhibitor GNA13 in EBV-positive cases may be explained 

by the activity of LMP2a, which has been shown to activate the PI3K-AKT pathway [106]. 

However, unlike the other virus-associated cancers, virus-positive hepatocellular carcinomas and 

Burkitt lymphomas (i.e. those confirmed EBV-positive, comprised mostly but not exclusively of 

endemic BL) have a greater mutation load compared to virus-negative cases. In HCC, this may 

reflect increased genomic instability of virus-positive HCC tumors resulting from integration of 

HBV into the host cell genome [273, 274], and/or the activity of HCV oncoproteins that inhibit 

DNA repair and induce double-stranded breaks in the DNA [275]. The greater genome-wide 

mutation load in EBV-associated BL has been attributed, at least in part, to the presence of 

mismatch repair and AICDA-mediated ASHM signatures in these cases, though the mechanism of 

mutagenesis by EBV in BL is yet to be elucidated [249]. Yet, EBV-positive BL had a lower driver 

mutation load compared to EBV-negative BL, which may be attributed to the activity of viral 

proteins such as EBNA1 that reduce selective pressure for drivers genetic lesion seen commonly 
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in virus-negative Burkitt lymphomas [249]. Interestingly, we found evidence for decreased ASHM 

in EBV-positive cHL compared to EBV-negative cHL, showing the opposite trend from that seen 

in BL. This finding highlights how mutation processes may differ even in cancers associated with 

the same virus, potentially related to the translation of distinct viral oncoproteins from different 

viral latency programs. 

We found that somatic mutation of the RNA helicase gene DDX3X was more frequent in 

virus-positive tumors compared to virus-negative tumors overall and for a variety of individual 

cancer types. DDX3X is a member of the DEAD (Asp-Glu-Ala-Asp) box protein family involved 

in multiple functions related to RNA metabolism, including transcription regulation, splicing, 

RNA export, and translation initiation [260]. DDX3X additionally functions as a component of the 

innate immune signaling pathway, and is known to inhibit replication of viruses such as HBV by 

activating production of IFN-beta [260, 276]. Some RNA viruses, including HCV and HIV, exploit 

functions of DDX3X to aid in viral replication [260, 276]. In cancer, DDX3X has been described 

as both a tumor suppressor and an oncogene in different cancer types and even among different 

tumors of the same cancer type [277]. DDX3X is expressed in many tissues of the body and escapes 

X-chromosome inactivation [260, 277]. The relatively high frequency of mutations in DDX3X in 

virus-positive tumors and the near-exclusive male bias for truncating mutations suggests loss of 

function of DDX3X may contribute to the pathogenesis of some virus-associated cancers, 

particularly Burkitt lymphoma, which had the highest frequency of DDX3X mutations in this study 

and for which similar findings were recently reported in another study [262].  

The greater frequency of TP53 mutations in virus-negative compared to virus-positive 

tumors found in this analysis may reflect how viral oncoproteins inhibit the activity of tumor 

suppressors. EBV-encoded oncoproteins have been shown to inhibit tumor suppressive functions 
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of p53 and other proteins in the p53 family [278]. Similar functions have been observed in other 

herpesviruses, including HHV8 (associated with KS) [278]. The E6 and E7 proteins encoded by 

HPV inhibit p53 and Rb, respectively [148]. In these and other cancers, the lower frequency of 

TP53 mutations may reflect the lack of selective pressure for TP53 mutations due to the disruption 

of p53 functions by viral oncoproteins.  

The results of our study indicate the immune response plays a critical role in the risk, 

development, and/or response to therapy of virus-positive tumors. Alterations in MHC-I were 

found to follow a trend in cHL specifically, where somatic inactivating events were more frequent 

in virus-negative compared to virus-positive tumors, possibly to limit the presentation of neo-

epitopes generated by the higher mutation burden in EBV-negative cHL, whereas germline 

homozygosity of HLA-I was more frequent in EBV-positive cHL, possibly to limit the presentation 

of viral antigens. Consistent with this finding, cHL had an elevated rate of germline HLA-I 

homozygosity compared to normal individuals in the UK BioBank, and cHL patients homozygous 

in all three HLA-I loci tended to be older patients, a group known to be enriched for EBV-positivity 

compared to young adult cHL. More frequent germline HLA-I homozygosity in EBV-positive cHL 

as a means to reduce viral antigen presentation, and more frequent somatic HLA-I inactivation in 

EBV-negative cHL as a means to reduce tumor antigen presentation, may contribute to explain the 

observations that normal HLA-I surface expression by cHL tumor cells is largely preserved in 

EBV-positive cases and largely lost in EBV-negative cases [88], respectively. It remains to be 

explained why germline HLA-I homozygosity was not increased in other EBV-associated cancers 

such as EBV-positive BL [33], and why germline homozygosity represents a common feature of 

DLBCL, a largely non-virus-associated B-cell lymphoma [64]. One explanation may be that BL 

has a more restricted viral latency antigen expression compared to cHL [150]. In DLBCL, the high 
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rate of germline HLA-I homozygosity (26%, compared to 28% in HL and 23% in normal) was 

thought to contribute to limit neoantigen repertoire presentation, given the substantial non-

synonymous mutation burden typical of this disease, including ASHM [33]. Although the 

mutational burden of EBV-negative cHL may appear higher than DLBCL overall [249], the 

phenotypic and molecular heterogeneity of the latter warrants further analyses focused on 

individual subtypes in larger number of cases. Future work should verify how germline HLA-I 

zygosity can predispose to the development of EBV-positive cHL. 

Analysis of ICI clinical trials reveals that virus-positive status could represent a positive 

biomarker for ICI therapy response in GC and HNSCC. The improved response to immunotherapy 

of EBV-positive GC patients compared to EBV-negative GC patients is hypothesized to be due to 

increased expression of PD-L1, potentially through activation of the NF-κB pathway by viral 

protein LMP2A [279]. This is consistent with the association between PD-L1 expression and EBV-

positive status in TCGA’s study of GC, as well as other studies that reported similar results in GC 

tumors [267]. The association between HPV infection and PD-L1 expression is less clear: some 

studies report a link between HPV status and PD-L1 expression [280, 281], while others find no 

association [282, 283], the latter of which is consistent with the results from the TCGA HNSCC 

dataset. It has been hypothesized that the improved response of HPV-positive HNSCC tumors to 

ICI therapies may be due to increased abundance of tumor infiltrating lymphocytes and CD8+ T 

cells in the microenvironment of virus-positive tumors [284].    

Our integrative analysis of the epidemiological and genetic factors related to virus-

associated cancers highlights two approaches to oncogenesis, in the presence and absence of viral 

infection. In the absence of viral infection, a normal cell acquires somatic drivers towards 

malignant transformation through random mutations with age, defective DNA repair, exogenous 
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carcinogens, and interactions with the microbiome, together with selection. Following the 

acquisition of an average of 5-7 driver mutations [285], the normal cell transforms into a cancer 

cell (Figure 4.7A). In virus-positive cancers, a normal cell is first infected with a virus, potentially 

as a result of inherited or environmental risk factors. The infected cell acquires somatic mutations 

over time, though fewer are generally required compared to the non-viral scenario due to the 

activities of viral oncoproteins. Finally, after acquiring the requisite number of drivers, the infected 

 
Figure 4.7. Example of oncogenesis in the presence and absence of viral infection. A) 

Schematic representation of oncogenesis in the absence of viral infection. A normal cell 

accumulates driver mutations as a result of age, defective DNA repair, exogenous 

carcinogens, or microbiome interactions, leading to initiation, promotion, and progression 

that ends in the malignant transformation of the cell. B) Schematic representation of 

oncogenesis in the presence of viral infection. Infection of normal cell is established as a result 

of inadequate host immune response, potentially associated with germline MHC dysfunction 

or other inherited risk factors. The infected normal cell acquires somatic mutations in 

specific genes, such as chromatin modifiers like ARID1A or RNA helicases DDX3X and 

EIF4A1, leading to initiation, promotion, and progression that ends in the malignant 

transformation of the infected cell.  
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cell transforms into a cancer cell, and continues to follow a trajectory of progression distinct from 

the non-viral scenario (Figure 4.7B). Further studies will be needed in order to understand how 

differences in the development and progression of tumors due to viral infection following this 

model may be incorporated into the development of targeted therapies. 

4.4 Methods 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Overview 

Clinical and genomic data of 1,974 cancer patients was obtained from 14 published studies 

[101, 107, 109, 242, 244-249, 256-259] (1,963 patients) and newly collected DNA sequencing 

data of Hodgkin lymphoma (32 patients) and Kaposi sarcoma (10 patients). The combined cohort 

consists of 612 females, 903 males, and 356 individuals of unknown or unreported sex. The ages 

range from 1 year to 90 years. 

METHOD DETAILS 

Epidemiological Analysis 

Sex ratio in incidence rates of virus-associated and non-virus associated cancers, as well as 

virus-positive and virus-negative cases of virus-associated cancers, were obtained from 86 

published studies [56, 156-236]. Global age-standardized incidence rates of cancers by country in 

2020 were obtained from GLOBOCAN 2020 Cancer Today online portal 

(https://gco.iarc.fr/today/home). Attributable fraction of cancer cases for each region were 

obtained from de Martel et al [44].  

Virus infection status calling 

 EBV infection status of cHL patients was determined by standard EBER in-situ 

hybridization on fixed tissue sections and confirmed by presence of reads aligned to the EBV 

https://gco.iarc.fr/today/home
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reference assessed by samtools idxstats. Virus-infection status of patients in other cohorts were 

reported in the original studies [93, 101, 107, 243, 246-249, 256-259] or obtained via cBioportal 

(https://www.cbioportal.org/) for TCGA cervical [244], gastric [242], and head and neck 

squamous cell carcinoma [245] data sets. 

Single nucleotide and indel variant calling pipeline 

Hodgkin lymphoma 

Variant calling of cHL samples was performed as described in Chapter 2. Two cases 

(patient IDs c_cHL_4 and c_cHL_24) were excluded from mutation load comparison due to 

previously described microsatellite instability [107]. 

Kaposi sarcoma  

Whole genome sequencing samples were aligned to GRCh37 using the Burrows-Wheeler 

aligner. Samples were pre-processed by indel realignment, duplicate removal, and base 

recalibration with GATK [120] following the GATK best practices workflow [121]. SAVI-v2 

[122], an in-house variant caller, was used to call somatic variants. The variant list was filtered for 

variants with a minimum total depth 10 and maximum total depth 700 in both tumor and normal, 

strand bias p value > 0.001 in tumor and normal, and called as significant somatic variants by 

SAVI (p-value <0.05, and confidence interval for the significance of the tumor/normal comparison 

>0). Variants were excluded if they were found in an in-house supernormal created from 186 

normal samples from the TCGA, if they were in the cohort supernormal constructed from variants 

in the ten normal samples, or if they were common SNPs found at a frequency >= 5% in the 1000 

Genomes Project. 

Mutation signature analysis 

Mutation signatures were called from somatic variants separately for each cancer type 

https://www.cbioportal.org/
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using Palimpsest [123], an NMF-based mutation signature caller. Signatures were obtained from 

somatic variants called from whole genome sequencing data when available (cHL) or whole exome 

sequencing data (other cancers). First, unsupervised mutation signature analysis was run for single 

base substitution (SBS), double base substitution (DBS), and insertion-deletion (ID) signature 

calling (when applicable) for all variants in all patients of a given tumor type. The similarity 

between de novo inferred signatures and published mutation signatures from COSMIC v3 was 

assessed by cosine similarity function in Palimpsest. Supervised mutation signature analysis was 

then run separately for each cancer type with mutation signatures that were the highest ranking 

match for the inferred signature from the unsupervised analysis. Mutation signature calling in cHL 

samples followed the methods described in Chapter 2. 

Copy number segmentation and variant calling  

Copy number segmentation of Kaposi sarcoma samples was conducted using Sequenza 

[131] for each pair of tumor of normal samples sequenced by whole exome sequencing for each 

case. Copy number segmentation of plasmablastic lymphoma samples was performed with 

Oncoscan, as previously described [101]. Copy number segmentation data of other cancers was 

obtained from the original published studies (Burkitt [249], NKTCL [258]) or cBioportal (TCGA 

samples [242-245]). 

GISTIC Analysis 

In order to define significant regions of recurrent CNAs across virus-associated cancers, 

GISTIC 2.0 [130] was applied to pooled copy number segmentation data of 1,557 tumors, using a 

significance threshold of q = 0.1, a maximum segmentation threshold of 10,000, and all other 

parameters default via the GenePattern server (https://www.genepattern.org/). GISTIC peaks of 

gain or amplification were counted as present in a patient if the maximum inferred tumor copy 
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number within the wide peak limit region was > 2.3 (gain) or > 3.6 (amplification). GISTIC peaks 

of deletion were counted as present in a patient if the minimum inferred tumor copy number within 

the wide peak limit region was < 1.7 (heterozygous loss) or < 0.8 (homozygous loss). Arm and 

whole-chromosome level CNAs were defined as lesions of the same type (i.e. gain or loss) that 

covered >75% of the chromosome arm or chromosome, respectively. 

Analysis of Recurrently Mutated Genes in Virus-associated Cancers 

 Nonsynonymous mutations in protein-coding genes were counted in 1,658 patients with 

DNA sequencing data. For patients with both WES and WGS available, WES was used due to 

greater depth of sequencing. Hodgkin lymphoma cases were filtered to include only clonal 

mutations (Tfreq >=20 in both tumor samples) to reduce noise from the whole genome 

amplification procedure. Cases of MCC and PCNSL were only counted in the statistics for genes 

which were included in those targeted panels. To eliminate noise from hypermutated samples, for 

all cancers, only cases with <300 mutations were included. Significant genes were defined as those 

with an OR > 1 and BH corrected p value < 0.05 and recurrently mutated in at least two cases in 

at least two unique cancer types. 

HLA-I Analysis 

Molecular Data Sets 

Class I HLA allele typing of DNA sequencing samples (56/56 cHL [109], 10 newly 

sequenced Kaposi sarcoma, 93 BL [249]) was performed using PolySolver with default 

parameters. Class I HLA allele typing of 4 additional previously published Kaposi sarcoma 

samples [286] and all NKTCL samples [258] from RNA sequencing was performed using 

arcasHLA [287] with default parameters. Class I HLA typing of TCGA data sets from RNA-seq 

was obtained from a previous study [288]. We counted as “homozygous” those cases where both 
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inferred alleles of an HLA-I gene are the same to the two-field resolution (allele group and specific 

HLA protein). 

UK BioBank  

 Imputed HLA-I genotypes of 488,265 patients from the UK BioBank reported by 

HLA*IMP:02 were obtained as described in ref. [33]. UK BioBank individuals were categorized 

into different cancer groups by organ location/pathology according to hospital and cancer registry 

records using ICD10 codes. The rate of homozygosity in the general population was estimated 

from RNA-seq of 95 samples representing 5 tissue types in the GTEx data base, as previously 

described [33]. 

Analysis of Immunotherapy Trials 

 The comparative analysis of response to immunotherapy was performed using data from 

ClinicalTrials.gov. Eleven checkpoint inhibitors targeting either PD-1, PD-L1, or CTLA-4 were 

included: Ipilimumab, Nivolumab, Pembrolizumab, Cemiplimab, Atezolizumab, Avelumab, 

Durvalumab, Camrelizumab, Sintilimab, Toripalimab, Tremelimumab. On September 22nd 2022, 

trials were collected using the following query: “((NOT NOTEXT) [CITATIONS]) AND (<ICI 

drug name  > OR <ICI drug name  > OR … )”, where ICI drug names correspond to the ones 

listed above as well as any known synonyms (e.g. Ipilimumab: BMS-734016, MDX-010, MDX-

101, Yervoy). Only single-arm, interventional studies where the objective response rate was 

available specifically for immune checkpoint therapy (with no other combination therapies) were 

included. Whenever possible, response stratified by virus status, PD-L1 expression and tumor 

mutational burden was collected. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Analyses of significance of mutation counts and frequencies were performed using a 
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Mann-Whitney U test and two-sided Fisher’s exact test, respectively. Significance of mutation 

signature activities were assessed using Student’s t test. Odds ratios of mutation by virus status 

were computed with Haldane-Anscombe correction when applicable. The 95% confidence interval 

of odds ratios is reported as the normal approximation (Wald). The distribution of HLA-I germline 

homozygosity in HL patients in the UK BioBank was compared using a Kolmogorov-Smirnov 

test. Multiple hypothesis corrections were applied using the Benjamini-Hochberg Procedure and 

reported as q-values.  
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4.5 Supplementary Figures 

 

Figure 4.S.1. Geographic distributions of Kaposi sarcoma and cervical cancer by country 

reported by GLOBOCAN 2020. A) Estimated age-standardized incidence rate (ASR) of 

Kaposi sarcoma by country. B) Estimated ASR of cervical cancer by country. 

 

 

Figure 4.S.2. Count of mutations in driver genes in virus-positive versus virus-negative 

tumors in nine cancers. Driver genes are defined as those genes listed as recurrently mutated 

and/or known drivers associated with the specific cancer in the original study.  
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Figure 4.S.3. Counts of mutations attributed to each mutation signature in virus-positive and 

virus-negative cases of five cancers. A) cHL (n=32); B) MCC (n=71); C) GC (n=436); D) 
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HNSCC (n=487); E) BL (n=91). Comparisons with a q < 0.2 are shown. q values from 

Student’s t test, BH corrected. 

 

 

 

Figure 4.S.4. Odds ratio of mutation in virus-positive versus virus-negative tumors by 

cancer type. Genes with a significant OR of mutation in virus-positive tumors from the 

combined cohort are shown. * q < 0.05, chi-square test, BH corrected. 
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Figure 4.S.5. Recurrent copy number alterations (CNAs) in virus-associated cancers. A) 

Odds ratio of CNA in virus-positive versus virus-negative tumors in the combined cohort. B) 

Odds ratio of CNA in virus-positive versus virus-negative tumors by cancer type in regions 

with a significant OR of CNA in virus-positive tumors from the combined cohort and the top 

ranking region with a significant OR of CNA in virus-negative tumors from the combined 

cohort. * q < 0.0001, chi-square test, BH corrected. 
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Figure 4.S.6. Expression of DDX3X and DDX3X mutation status in TCGA-HNSC (n=487). 

* p < 0.05, MWU test. 

 

 

 

 
Figure 4.S.7. Frequency of homozygosity in HLA-I in virus-associated cancers in the UK 

BioBank. cHL: classical Hodgkin lymphoma; PTCL: peripheral T-cell lymphoma. * p < 

0.05, binomial test. 
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Conclusions 

In this thesis, we have analyzed the role of dysregulation of MHC-I in B-cell lymphomas, 

with a focus on DLBCL and cHL. The MHC-I complex is a key part of the adaptive immune 

response, and disruption of MHC-I functions through either inherited or somatic means is one way 

that tumor cells evade the immune system. We find that DLBCL and cHL are characterized by 

frequent somatic alterations of MHC-I as well as germline homozygosity of HLA-I genes. 

 In Chapter 2, we studied the relationship between HLA-I zygosity and overall survival in 

DLBCL within molecular subtypes. We performed HLA-I allele typing and survival analysis on 

519 DLBCL patients previously classified by genetic subtype on the basis of their somatic lesions. 

Patients whose tumors belonged to the EZB subtype and who were homozygous in at least one 

HLA-I gene had a significantly worse overall survival compared to EZB patients that were fully 

heterozygous. These patients were characterized by frequent somatic mutation in the EZH2 gene, 

which has been linked with downregulation of MHC-I expression through epigenetic silencing. 

This analysis indicates a potential role for HLA-I allele type and zygosity in overall survival trends 

in DLBCL patients that differs by molecular subtype. 

 In Chapter 3, we analyzed the genetics of cHL tumors that are linked to infection with EBV 

in comparison to EBV-negative tumors. We found that EBV-positive cHL is genetically distinct 

from EBV-negative cHL and is characterized by low somatic mutation burden and unique patterns 

of mutation. Through HLA allele typing from normal DNA of these patients, we found that the rate 

of germline HLA-I homozygosity was greater in EBV-associated cHL compared to non-EBV-

associated cHL. Somatic lesions in MHC-I, including mutations in B2M, HLA-I, and loss of 

heterozygosity of HLA-I were more frequent in EBV-negative cHL compared to EBV-positive 

cHL. These findings suggest germline HLA-I zygosity may contribute to the risk of development 
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of EBV-positive cHL and that somatic alterations of MHC-I in cHL differ based on viral infection 

status. 

 In Chapter 4, we characterized the genomic landscape of nine cancers associated with five 

different viruses. We noted that virus-associated cancers are characterized by distinct 

epidemiological trends, including a greater incidence in males and geographical disparities in 

incidence. An analysis of sequencing data from 1,658 tumors in nine types of cancer revealed 

virus-positive tumors generally have a lower somatic mutation load, different mutation signature 

activities, and recurrent mutations in RNA helicases DDX3X and EIF4A1 compared to virus-

negative tumors of the same tissue type. Through HLA-I allele typing of 1,255 patients, we found 

that EBV-positive cHL had an elevated rate of germline homozygosity in HLA-I alleles compared 

to not only EBV-negative cHL but also the other common virus-associated cancers. These results 

indicate that HLA-I homozygosity is a risk factor for EBV-positive cHL specifically and is unique 

among other virus-associated malignancies. 

Further work will be needed to describe the mechanisms by which HLA-I germline status 

contributes to the risk of development of DLBCL and cHL. The effect of germline HLA-I status 

on response to treatment with immune checkpoint inhibitors in DLBCL and cHL also requires 

further study. Finally, more investigations will be needed to better understand the role of MHC-I 

germline status and/or somatic dysregulation in rare lymphomas where there is emerging evidence 

of MHC-I involvement, such as plasmablastic lymphoma (see Appendix A).  
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Appendix A 

Genomic Characterization of HIV-Associated Plasmablastic Lymphoma Identifies 

Pervasive Mutations in the JAK–STAT Pathway4 

Blood Cancer Discov 2020;1:112–25 

A.1 Introduction 

Plasmablastic lymphoma (PBL) is a highly aggressive lymphoma of preterminally 

differentiated B cells, which predominantly occurs in patients with human immunodeficiency virus 

(HIV)-related or iatrogenic immunodeficiency [289]. As an AIDS-defining illness with a dismal 

prognosis, PBL is a particularly compelling problem in the Sub-Saharan African region, which 

accounts for approximately 54% of the estimated 37.9 million people living with HIV. 

Despite the national rollout offering combination anti-retroviral therapy (cART) in South 

Africa since 2004, the prevalence of HIV-associated mature B-cell lymphomas increases yearly 

[290]. The burden of HIV-associated lymphomas on the country's encumbered health are further 

compounded by the younger presentation age of HIV-infected patients, the challenging 

classification of these lymphomas, and an exceptionally aggressive clinical disease course that, 

although curable in a significant fraction of patients [291], often results in fatalities [292]. 

Previously being classified as diffuse large B-cell lymphoma (DLBCL), PBL was later 

recognized as a distinct entity [293] with well-defined histopathologic features including large 

plasmablastic or immunoblastic cell morphology, loss of B-cell lineage markers (CD20, PAX5), 

expression of plasmacytic differentiation markers (CD38, CD138, IRF4/MUM1, BLIMP1), a high 

 
4 Material in this chapter is published wholly in [101] by Zhaoqi Liu, Ioan Filip, Karen Gomez, 

Dewaldt Engelbrecht, Shabnum Meer, Pooja N. Lalloo, Pareen Patel, Yvonne Perner, Junfei 

Zhao, Jiguang Wang, Laura Pasqualucci, Raul Rabadan, and Pascale Willem. 
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proliferation index, and frequent infection by the Epstein-Barr virus (EBV; ref. [56]). While EBV 

infection and activating MYC translocations have been reported as the major features of these 

tumors in a number of studies [294], the molecular pathology of PBL remains elusive in both HIV-

positive and -negative individuals. Numerous case studies and some cohorts have been well 

described and reviewed [56, 294-296]. Only two studies have partially explored genetic 

aberrations in this disease: a comparative genomic hybridization study showed a pattern of 

segmental gains in PBL that more closely resembled DLBCL than plasma cell myeloma [297]. 

The second study compared the transcriptional profiles of 15 PBL cases to DLBCL and 

extraosseous plasmacytoma [298], and showed that B-cell receptor signaling genes including 

CD79A/B, BLK, LYN, and SWAP70 among others, were significantly downregulated in PBL 

compared with DLBCL; in contrast, targets of MYB and the oncogene MYC, as well as genes 

reflecting the known plasmacytic immunophenotype of PBL, were overexpressed. More recently, 

MYC and PRDM1 were investigated for mutations, structural rearrangements, and copy number 

gains in 36 PBL cases [299]. PRDM1 mutations were found in 8 of 16 cases, frequently in 

association with MYC overexpression, suggesting a coordinate role in the pathogenesis of the 

disease. While these studies have shed light on this rare disorder, a systematic characterization of 

protein-changing alterations in PBL has not been performed. 

The elucidation of genes and pathways that drive the initiation and maintenance of PBL is 

essential to better understand the biology of this cancer and, critically, to implement improved 

biomarkers and more effective treatment options. Here, we combined whole-exome and 

transcriptome sequencing followed by targeted resequencing of 110 HIV-associated PBL cases to 

elucidate the mutational, transcriptional, and copy number landscape of this disease. We show that 

mutations in various components of the JAK–STAT and MAPK–ERK pathway pervade this 
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lymphoma, revealing this signaling cascade as a central oncogenic driver of the disease and a 

candidate for targeted therapy. 

A.2 Results 

The Landscape of Somatic Mutations in PBL 

To determine the mutational landscape of PBL, we performed whole-exome sequencing 

(WES) in a discovery panel of paired tumor and normal DNA collected from 15 HIV-positive 

patients, followed by deep targeted sequencing of the top 34 candidate genes in 95 additional cases 

(Supplementary Table S1 and S2; Methods). Somatic mutations were identified from WES data 

using SAVI2 [122], an empirical Bayesian method. Overall, 2,149 nonsynonymous somatic 

variants were found in the 15 discovery cases, with a median of 45 per case and a total of 1,528 

affected genes, of which 1,461 were mutated in the tumor-dominant clone (>15% cancer-specific 

allele frequency; Supplementary Table S3). Among the 15 WES cases, one was hypermutated 

(case PJ030), showing 845 sequence variants that were confirmed by RNA-sequencing (RNA-seq; 

9 % with a read depth ≥  0; Supplementary Fig. S A–S1C). Candidate genes were then selected 

for an extension screen based on the following criteria: (i) mutated in at least 2 discovery cases, 

(ii) expressed in normal and/or malignant B cells, (iii) known as a cancer driver gene, and/or (iv) 

with an established role in B-cell differentiation (Supplementary Tables S4 and S5; Methods). The 

34 selected genes were all annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC) 

database. The mean depth of coverage for WES was 54.0x. The mean depth of coverage for the 

targeted DNA sequencing was 121.7x and, on average, 99.7% of the target sequences were covered 

by at least 50 reads. 

We found genes in the JAK–STAT, MAPK–ERK, and Notch signaling pathways were 

commonly mutated in our PBL cohort (Fig.1A–E). The most frequent genetic lesions affected the 
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JAK–STAT signaling pathway with, in total, 62% of cases (68/110) harboring a mutation in at 

least one of five genes (STAT3, JAK1, SOCS1, JAK2, and PIM1, a direct transcriptional target of 

STAT3/5 that functions as part of a negative feedback loop; Fig.1A). Among these, STAT3 was 

the predominant target of mutations, with 46 of 110 cases (42%) harboring clonal events 

(Supplementary Fig. S2A and S2B). With three exceptions, the identified variants were 

heterozygous missense mutations clustering in exons 19 to 22, encoding part of the SH2 domain 

that is required for STAT3 molecular activation via receptor association and tyrosine 

phosphodimer formation [300]. In particular, the majority of the mutations resulted in the amino 

acid changes Y640F (n = 11), D661V (n = 9), S614R (n = 5), and E616G/K (n = 4;Fig. 4;Fig.1B), 

which have been categorized as gain-of-function or likely gain-of-function mutations based on 

experimental validation (https://oncokb.org/gene/STAT3), and overlap with the STAT3 mutation 

pattern described in other aggressive B-cell lymphomas and T-cell and natural killer (NK) cell 

malignancies [301, 302]. Three additional cases showed a >75% variant allele frequency in the 

absence of copy number changes, consistent with a copy neutral loss of heterozygosis. Sanger-

based resequencing of the involved STAT3 exons, performed in 23 cases, validated all 

computationally identified mutations on these samples (Fig.1F Supplementary Table S6). 

In addition to STAT3, 15/110 PBL cases harbored heterozygous missense mutations of 

JAK1, encoding for a tyrosine kinase that phosphorylates STAT proteins. These events did not 

involve the canonical hotspot seen in many other cancers (loss-of-function K860Nfs), but occurred 

at a highly conserved amino acid position in the JH1 kinase domain, G1097D/V (Fig.1C). 

Mutations at the JAK1 G1097 codon were previously reported in intestinal T-cell lymphomas 

[303] and anaplastic large cell lymphoma [301], and the G1097D substitution has been 

documented as a gain-of-function event that triggers aberrant phosphorylation of STAT3, leading 
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Figure 1: The landscape of putative driver gene mutations in PBL. A, Sample 

information, MYC translocation, and somatic mutation information are shown for 110 cases 

of PBL samples. The heatmap represents individual mutations in each sample, color-coded 

by type of mutation. B–E, Individual gene mutation maps for frequently mutated genes, 

showing mutation subtype, position, and evidence of mutational hotspots, based on COSMIC 

database information. Y-axis counts at the bottom of the maps reflect the number of 

identified mutations in the COSMIC database. F, Sanger validation of single nucleotide 

variants (SNV) in STAT3 mutants. 

 



123 

 

to constitutive activation of the JAK–STAT signaling pathway [301]. Of note, missense mutations 

in STAT3 and JAK1 were found to be mutually exclusive (P = 0.04, Fisher exact test), suggesting 

a convergent role in activating this cascade. In contrast to STAT3 and JAK1, mutations in SOCS1 

(n = 11/110 cases) were more widely distributed, consistent with its previously established role as 

a target of AID-mediated aberrant somatic hypermutation (Fig.1D). Although the consequences of 

most SOCS1 amino acid changes will require functional validation, the presence of a start-loss 

mutation in one case and a nonsense mutation in a second sample is expected to result in loss-of-

function and inactivation of this negative JAK-STAT regulator, consistent with a tumor suppressor 

role. 

The second most commonly mutated program was the MAPK–ERK signaling pathway, 

affected in 28% of cases by mutations in the RAS gene family members NRAS (14%) and KRAS 

(9%), as well as in BRAF (5.5%) and MAP2K1 (3%). Nearly all (92.5%) RAS mutations were 

found at known functional hotspots that have been shown to affect the intrinsic RAS GTPase 

activity, namely G12, G13, and Q61 (ref. [304]; Fig.1E). BRAF, an integral component of the 

MAPK signaling cascade, was found mutated in 6 cases, including 3 harboring mutations at or 

around the well-characterized V600 residue (namely: V600E, K601N, and T599TT) and 3 

showing mutations at other common hotspots within the protein kinase domain (G464E, V471F, 

and M689V). The Valine at position 600 normally stabilizes the interaction between the BRAF 

glycine-rich loop and the activation segments, and its glutamine substitution confers an over 500-

fold increase in activity, leading to constitutive activation of the MEK/ERK signaling cascade in 

the absence of extracellular stimuli. In line with their predicted gain of function, the mutant alleles 

in both RAS family members and BRAF were observed in heterozygosis (Supplementary Tables 

S3 and S5) and were actively expressed (median RPKM value of KRAS: 13.253, NRAS: 35.601,  
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and BRAF: 9.906). 

In addition, 24% of PBL cases carried mutations in genes implicated in the Notch signaling 

pathway, including those encoding for NOTCH1, its negative regulator SPEN, and the Notch 

pathway corepressor NCOR2. In particular, one sample displayed a frameshift variant in the 

NOTCH1 gene that is predicted to generate a truncated protein lacking the C-terminal PEST 

domain, and thus endowed with increased protein half-life, while 6 additional cases showed amino 

acid changes within the EGF repeats, the juxtamembrane heterodimerization domain (N-terminal 

portion), and the C-terminal PEST domain. SPEN mutations include monoallelic missense 

substitutions that were distributed along the protein coding exons with no particular clustering, 

and their functional effect remains to be determined. 

Missense mutations, frequently multiple within the same allele, were also found in the 

MYC gene (10/110, 9%), with 4 additional cases displaying silent mutations that possibly reflect 

the aberrant activity of the physiologic somatic hypermutation mechanism [305] as well as the 

recruitment of the AID mutator enzyme by the juxtaposed immunoglobulin enhancer in cases 

harboring chromosomal MYC translocations. MYC rearrangements with the immunoglobulin 

genes are the most common cytogenetic feature in PBL, present in about half of reported cases 

[294, 299, 306], and were identified in 36% (31/76) of our samples using FISH (Fig.1A). The 

functional consequences of MYC mutations will have to be experimentally tested; however, 

transcriptomic analysis revealed significantly higher expression of the MYC RNA in cases positive 

for the MYC translocation, consistent with MYC oncogenic activation (Supplementary Fig. S3A 

and S3B). The high proportion of cases showing evidence of MYC dysregulation reinforces the 

notion that MYC is a critical contributor to this aggressive cancer. 

Aside from the genes mentioned above, we observed recurrent mutations, including 
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truncating loss-of-function events, in TET2 (10/110, 9%), TP53 (10/110, 9%), and NPHP4 (6/110, 

5%). Finally, genes encoding epigenetic modifiers, transcription factors implicated in B-cell 

activation (FOXP1), positioning (KLF2), and terminal differentiation (PRDM1), and receptor 

molecules involved in tumor immune surveillance (e.g., B2M, TNFRSF14) were mutated to a 

lesser extent (range: 1%–5%; Fig.11A). 

Although the relatively small number of cases prevents robust statistical analyses, we did 

not find any significant difference in the rate of mutated genes between samples collected from the 

oral cavity and from other locations (Pearson correlation coefficient = 0.822, Supplementary Fig. 

S2B), suggesting a genetic homogeneity of the disease regardless of the tissue of origin. 

Collectively, the data presented above uncover a pervasive role for mutations affecting the 

JAK–STAT and MAPK–ERK pathways in the genetic landscape of PBL, which may contribute 

to the pathogenesis of this lymphoma by enforcing constitutive signaling activation, in concert 

with dysregulated MYC activity. 

Somatic Copy Number Changes 

To identify recurrent copy number alterations (CNA) associated with PBL, we applied the 

SNP-FASST2 algorithm to WES data from the 15 discovery cases (Supplementary Fig. S4A), 

followed by validation in an independent cohort of 31 additional PBL samples that had been 

processed with Affymetrix OncoScan microarrays (ref. [307]; Supplementary Table S7). 

Comparison of CNA calls obtained in parallel from the WES and OncoScan approach in a subset 

of 9 samples confirmed the data were highly consistent with each other (Supplementary Fig. S4B), 

supporting the robustness of the analysis. 

Frequent copy number gains involved large chromosomal regions (>10 Mb) including 

chromosome 1q (20/46 cases, 43%) and the whole or most of chromosome 7 (13/46 cases, 28%). 
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When applying the GISTIC 2.0 algorithm to the combined cohort of 46 cases, we uncovered 

regions of highly recurrent amplification including 6p22.2 (the most significant), 6p22.1 and 

1q21.3, all of which encompass histone gene clusters (Fig.2A). In particular, the chromosome 6p 

gain covered 36 genes that encode canonical histones and has been previously reported as a 

common alteration in a variety of cancers, where histone gains have been linked to genetic 

instability [308]. The significant region on chromosome 1q21.3 also included the IL6R gene and 

the antiapoptotic MCL1 gene, which showed increased gene expression (Fig.2C) analogous to 

what has been described in 26% of activated B-cell like (ABC) DLBCLs [309]. Although further 

studies will be needed to determine the functional impact of these alterations in PBL, chromosome 

1q gains have been associated with unfavorable prognosis in multiple myeloma, suggesting a role 

in the pathobiology of the disease. 

The second most significant focal CNA was a chromosome 11p13 regional gain targeting 

genes CD44 and PDHX, present in 17 of 46 cases (37%; Fig.2A–C). CD44 is a nonkinase 

transmembrane glycoprotein that is induced in B cells upon antigen-mediated activation and is 

critically involved in multiple lymphocyte functions, including migration, homing, and the 

transmission of signals that regulate apoptosis. This CD44 protein is also thought to increase 

cancer cells' adaptive plasticity in response to the microenvironment, thus giving them a survival 

and growth advantage [310]. Analysis of 20 samples with available RNA-seq data revealed that 

CD44 was consistently and highly expressed in cases harboring copy number gains (n = 2), 

whereas PDHX levels were undetectable, indicating that CD44 is the specific target of the 11p13 

amplicon. However, all samples displayed high CD44 mRNA expression, independent of the 

presence of genetic aberrations (Fig.2C); consistently, IHC analysis with a specific CD44 antibody 

showed very strong membranous staining in all cases tested (Fig.2D) and confirmed this finding 



127 

 

 

Figure 2: Recurrent copy number changes in PBL. A, GISTIC 2.0 results showing recurrent 

copy number changes in PBL samples. The green line indicates q-value = 1.0 × 10−6. B, A 

zoomed-in view of 11p13 on 17 cases of PBL, which shows consistent focal copy number gains 

of CD44. The figure was generated by the IGV browser using CNV segment files from SNP-

FASST2 algorithm. C, Scatter plot representations of genes located in regions with recurrent 

copy number gains in PBL (q-value <1.0 × 10−6, GISTIC 2.0). The horizontal axis indicates 

the −log10(q-value) from the GISTIC report, and the vertical axis is the median gene 

expression level (normalized RPKM value) from PBL RNA-seq data (n = 20). D, IHC 

showing strong CD44 protein expression on tumor cells membrane in a representative 

sample (A10), which has a focal CD44 copy number gain. 
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in an independent panel of 38 cases. Of note, although CD44 expression can be detected in normal 

plasma cells at both RNA and protein levels, the signal was markedly lower than in plasmablastic 

lymphoma cells, suggesting that elevated expression of CD44 does not simply reflect the cellular 

ontogeny of these tumors, and that alternative regulatory mechanisms may lead to CD44 

upregulation in cases lacking CNAs (Supplementary Fig. S5A–S5C; Supplementary Table S8). 

Plasmablastic Lymphoma Displays a Distinct Genetic and Transcriptional Program 

To explore the genomic features of PBL in relation to other lymphoid neoplasms arising 

from the mature B-cell lineage, we performed unsupervised clustering analysis based on mutation 

frequency of the top mutated genes from three cancer types obtained from public repositories (Fig.

3A). The analysis included chronic lymphocytic leukemia (CLL; ref. [311]), diffuse large B-cell 

lymphoma (DLBCL) transcriptionally defined as ABC and germinal center B-cell-like (GCB) 

subtypes [79], and multiple myeloma [312]. As expected on the basis of their presumed derivation 

from B cells committed to plasma cell differentiation, the mutational landscape of PBL was overall 

closer to multiple myeloma than to other mature B-cell malignancies, with mutations in RAS 

family members being detected in as many as 20% of cases in both diseases, while rare in DLBCL 

(Fig.3A). Conversely, the mutational landscape of PBL was highly distinct from that of both GCB- 

and ABC-DLBCL (Fig.3A). In particular, mutations affecting the methyltransferase KMT2D and 

acetyltransferase CREBBP, two among the most commonly mutated genes in DLBCL [313], were 

absent in plasmablastic lymphoma. ABC-DLBCL–specific mutations such as CD79A/B and 

MYD88 were also lacking in PBL. Of note, STAT3 was the top mutated gene in our cohort at 

significantly different frequencies compared with other B-cell malignancies, making it a hallmark 

of PBL (Fig.3A). The differential genetic landscape of PBL is consistent with its status as a distinct 

entity among mature B-cell neoplasms. 
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Figure 3: Comparative analysis of PBL and other B-cell malignancies. A, Unsupervised 

clustering based on frequencies of the most recurrently mutated genes from PBL, multiple 

myeloma, CLL, and two main subtypes of DLBCL (Methods). B, Hierarchical clustering of 

mRNA expression profiles across plasmablastic lymphoma, multiple myeloma, CLL, 

DLBCL and normal B cells, including centroblast (CB), naïve B (NB), and memory B cells 

(MB). Note that the JAK–STAT signaling pathway does not appear in this figure because 

only the top 1,000 most aberrantly expressed genes were selected for this analysis. Functional 

enrichment analysis was performed using g:profiler. 
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To define the transcriptional profile of HIV-positive PBL and to identify unique signatures 

that may distinguish it from other lymphoma types, we performed RNA-seq analysis of 20 PBL 

samples (including 12 of the 15 discovery cases), and compared their transcriptome to that of 

normal B-cell subsets and other B-cell lymphoma types previously characterized in our 

laboratories and/or obtained from public repositories, including germinal center centroblasts (CB), 

naïve B cells (NB), and memory B cells (MB; ref. [314]), as well as CLL [315], DLBCL [79], and 

multiple myeloma cell lines [316]. As expected, hierarchical clustering of the top 1,000 most 

aberrantly expressed genes revealed that PBL and multiple myeloma were closer to each other 

compared with other B-cell malignancies and to normal B cells, reflecting their presumed cell of 

origin (Fig.3B). Consistently, plasmablastic lymphoma and multiple myeloma lacked expression 

of common B-cell markers (CD19, CD20, CD40, and PAX5) and transcription factors involved in 

the germinal center reaction (BCL6, BCL7A, BCL11A, and SPIB), whereas expression of the 

master regulator of plasma cell differentiation PRDM1 and other plasma cell markers (CD138, 

XBP1, and IRF4) were increased (Supplementary Fig. S6). MYC expression was also higher in 

PBL and multiple myeloma. Other notable differences included the upregulation of IL6R, a known 

STAT3 target, and the downregulation of SWAP70, previously suggested as a potential biomarker 

of PBL (Supplementary Fig. S6; ref. [298]). Finally, recent studies have suggested that EBV 

positive PBLs evade immune recognition by expressing the programmed cell death protein 1 (PD-

1) and its PD-L1 ligand [317]. We confirmed high expression of PD-L1 in our PBL cohort, 

although PD-1 did not follow this pattern (Supplementary Fig. S6). 

We then performed functional enrichment analysis (g:profiler) to identify biological 

pathways that are preferentially enriched in PBL as compared with other B-cell malignancies. 

Whereas DLBCL and CLL were enriched for B-cell related biological programs (e.g., B-cell 
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activation and proliferation, lymphocyte activation and differentiation, and adaptive immune 

response), multiple myeloma was enriched for mitotic cell-cycle processes, with highly expressed 

genes including MCM10, BIRC5, CENPE, BUB1, and AURKA (Fig.3B). The most significantly 

enriched pathways in PBL were related to chromatin/nucleosome assembly (Fig.3B); particularly, 

histone genes encoding basic nuclear proteins were highly expressed in PBL, possibly related to 

the recurrent copy number gains/amplification encompassing this gene cluster on chromosomes 

6p22.2 and 1q21.3 (Supplementary Fig. S7A–S7D). However, the biological significance of this 

observation in relation to tumorigenesis remains unknown. 

Activation of the JAK–STAT Pathway in Plasmablastic Lymphoma 

Given the elevated frequency of mutations targeting the JAK–STAT pathway, we used 

computational and IHC approaches to assess the extent of activation of this signaling cascade in 

PBL (Methods). To this end, we first interrogated the genome-wide transcriptional profile of PBL 

for enrichment in the JAK–STAT signaling pathway using previously identified signatures 

available in the MSigDB database. This analysis revealed a significant positive enrichment for 

genes implicated in this pathway, consistent with constitutive activation (Fig.4A). This signature 

was expressed at higher levels in PBL when compared with multiple myeloma and CLL (Fig.4B), 

with the most significant difference being observed between PBL and multiple myeloma (t test, P 

= 4.7 ×  0−  ), which is congruent with the fact that the latter had few mutations in this pathway 

(Fig.3A). We then performed IHC staining with anti-STAT3 and anti-phospho-STAT3 antibodies 

to assess the STAT3 subcellular localization and phosphorylation, used as a read-out for signaling 

activation. We observed strong positive nuclear signal in 61% of tested cases (19/31), which also 

stained positive for the phospho-STAT3 antibody. Of note, evidence of constitutively active 

STAT3 was detected even in the absence of genetic alterations affecting this pathway, suggesting 
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alternative (epigenetic) mechanisms of activation and indicating a prominent role for this cascade 

in the pathogenesis of the disease (Fig.4C and D; Supplementary Fig. S8; Supplementary Table 

S9). 

 

 
 

Figure 4: Activation of JAK–STAT pathway in PBL. A, Preranked gene set enrichment 

analysis indicating the significant positive enrichment of KEGG JAK–STAT signaling 

pathway in PBL. The preranked gene list was generated on the basis of the median 

expression level on PBL samples. B, Enrichment comparisons of JAK–STAT pathway 

between PBL and other B-cell malignancies by performing single-sample GSEA (ssGSEA). 

Pairwise P values were derived from t test. C and D, IHC plots showing pSTAT3 protein 

expression in >75% of tumor cells, confirming STAT3 activation in STAT3 mutated cases. 

Results using anti-pSTAT3 antibody are photographed at ×100 and ×400 magnification. 
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Virus Detection in Plasmablastic Lymphoma 

To analyze the viral and bacterial make-up of PBL tumors, we used the Pandora pipeline, 

which extracts and aligns nonhost genetic material from tumor RNA-seq data (Methods). 

Potentially pathogenic species were then identified by applying the BLAST algorithm against the 

NCBI database of viruses and bacteria reference genomes. In our PBL cohort, 12 of 20 samples 

contained HIV-1 transcripts, with only three samples exceeding 100 mapped reads (Supplementary 

Fig. S9). In addition, EBV transcripts were detected in 18 of 20 samples, HCMV (human 

cytomegalovirus, or human betaherpesvirus 5) in 3 of 20 samples, and KSHV (Kaposi sarcoma-

associated herpes virus, human herpes virus 8) in one sample (Supplementary Fig. S9). These three 

herpes viruses have a broad tropism, naturally infect B cells, and are known to be associated with 

many tumor types. 

EBV reactivation is considered a major driver of PBL, predominantly with a latency I 

infection program although low levels of LMP1 gene expression can be detected [318]. We thus 

performed a detailed RNA profiling of the EBV genome. Recapitulating previous reports, all PBL 

cases tested by in situ hybridization were positive for EBV-encoded RNA (EBER), while only 4 

of 13 samples showed expression of the LMP1 protein on IHC (Supplementary Table S1). When 

using the levels of BLLF1 and EBNA2, two genes that are invariably not expressed in PBL, as 

threshold for positive calls, we noted that nearly the entire viral genome was transcribed at 

background levels in the majority of samples (Fig.5). This is analogous to what has been observed 

in nonreplicating infected B cells, where a background of transcripts can be detected in the absence 

of protein expression, due to regulation at the ribosomal level [319]. However, several genes in 

the BamHI-A region of the virus were abundantly transcribed in at least 50% of cases across the 

cohort, including those encoding for components of the viral replication machinery (namely, the 
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DNA polymerase catalytic subunit BALF5, the single-stranded DNA-binding protein BALF2, and 

the lytic origin of DNA replication oriLyt), the BART encoded protein RPMS1, the viral envelope 

glycoprotein BALF4, and the G-protein–coupled receptor BILF1, which is expressed 

predominantly during the immediate early phases of infection in vitro [320, 321]. LF1, LF2, and 

LF3 were also highly expressed in PBL, but their functional roles are less understood. Expression 

of the LMP-1 mRNA was detected in 17 of 20 samples, but at much lower levels (Fig.5), consistent 

with the known EBV latency programs of PBL [318]. 

 

Figure 5: EBV transcription programs in PBL. Heatmap illustrating the full genome 

expression of EBV in the RNA-seq data of PBL samples (virus gene counts are normalized 

per million host reads). 16/17 EBV-positive samples show significantly higher expression of 

lytic genes such as BALF4 (encoding the envelope glycoprotein B) and BALF5 (encoding the 

DNA polymerase catalytic subunit) compared with the expression of canonical latency 

programs. 

 

A.3 Discussion 

Our study provides a comprehensive snapshot of the genetic landscape of HIV-associated 

PBL and reveals highly recurrent somatic mutations affecting the JAK–STAT3 and RAS–MAPK 

signaling pathway as a genetic hallmark of this disease, with STAT3 representing the most 

prominent target. These findings underscore a central role for this transcription factor in the  



135 

 

pathogenesis of PBL and have implications for the diagnosis and treatment of these diseases. 

The STAT3 protein is an important player in multiple immune cells where it modulates a 

variety of physiological processes. Within the B-cell lineage, a selective role has been recognized 

for this factor in the differentiation of B cells into plasma cells upon antigen stimulation, as 

documented by both in vitro and in vivo studies [300]. Briefly, in response to CD40L- and IL21-

mediated signaling by T follicular heper cells, STAT3 is phosphorylated by activated JAK kinases, 

translocates into the nucleus as homo- or hetero-dimers, and activates the transcription of multiple 

targets, including the plasma cell master regulator BLIMP1. In turn, BLIMP1 downregulates 

BCL6 expression, an absolute prerequisite to GC exit and plasma cell differentiation [300]. The 

STAT3 amino acid changes identified in our study include experimentally documented gain-of-

function events that are predicted to have oncogenic effects by enhancing its phosphorylation and 

transactivation potential [322]. In addition, other well-documented genetic mechanisms were 

found that can activate the JAK–STAT signaling pathway, including mutually exclusive upstream 

mutations of JAK1 or JAK2 (18/110 cases) and the loss of the STAT3 negative regulator SOCS1 

(mutated in 11/110 cases). Notably, a targeted sequencing study published while this manuscript 

was under revision identified recurrent STAT3 mutations in 5 of 42 cases, all of which were EBV 

positive [323]. Thus, STAT3 dysregulation may contribute to the pathogenesis of PBL by 

rendering these cells signaling-independent while providing proliferation and survival signals. 

Constitutive activation of the JAK–STAT signaling pathway has been reported in a number 

of solid and hematologic malignancies and plays a central role in two lymphomas that are 

immunophenotypically closely related to plasmablastic lymphoma: primary effusion lymphoma 

(PEL) and ALK-positive large B-cell lymphoma (LBCL). PEL is a rare and aggressive AIDS-

defining disease, which is associated with infection by HHV8 and is clinically distinguishable from 
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PBL by the presence of lymphomatous effusion in body cavities. In these cells, constitutive STAT3 

activity is achieved via expression of the HHV8 viral protein IL6, which contributes to the disease 

in an autocrine fashion by promoting proliferation and survival [324]. In ALK-positive LBCL, 

STAT3 activation is sustained by the ALK kinase mediated by chromosomal translocations with 

the CLTCL gene or the NPM1 gene [325, 326]. However, direct genetic alterations of STAT3 are 

rare in mature B-cell lymphomas. In particular, while multiple genomic hits leading to potentiation 

of the JAK–STAT oncogenic pathway have been detected in 87% of Hodgkin lymphomas as well 

as in primary mediastinal B-cell lymphomas, the most commonly affected STAT member in these 

tumors is STAT6 [93, 327-329]. The high incidence of STAT3 mutational activation in HIV-

associated PBL points to STAT or JAK inhibitors as promising treatment options in this lymphoma 

type. While anti-STAT3 therapeutic attempts are still in development, JAK inhibitor therapy, 

currently used in the clinical setting, was shown to be an effective antagonist to STAT3 activation, 

inducing apoptosis in both anaplastic large T-cell lymphomas and ovarian cancer [330]. 

The second important finding of this study is the identification of frequent hotspot 

mutations in RAS–MAPK family members. Functional RAS activation is a common molecular 

feature of multiple myeloma, particularly in the relapsed/refractory setting, while it is rarely 

observed in de novo DLBCL, suggesting a specific role in the pathogenesis of plasma cell 

dyscrasias. Interestingly, and different from multiple myeloma, NRAS, and KRAS mutations in 

PBL were never concurrently observed in the same case and were often well represented in the 

dominant tumor clone, consistent with early events. These data have direct implications for the 

clinical exploration of treatments inhibiting this pathway. 

Our study also showed overexpression of the transmembrane glycoprotein CD44, 

frequently associated with copy number gains/amplifications at this locus. CD44 is an adhesion 



137 

 

molecule that mediates cellular interaction with the microenvironment and participates in the 

trafficking of neoplastic cells in multiple myeloma, CLL, and ALL [331]; moreover, CD44 was 

shown to increase cell resistance to apoptosis and to enhance cancer cell invasiveness. Whereas 

the role of CD44 in PBL requires functional dissection, its high expression is likely to compound 

the aggressiveness of the disease, as previously described in DLBCL of the ABC subtype [332]. 

In light of this, successful anti-CD44–targeted therapy in a mice xenograft model of human 

multiple myeloma may in future represent an attractive therapeutic option for PBL [333]. 

The finding of increased histones mRNA abundance in PBL, together with recurrent copy 

number gains encompassing this gene cluster on chromosome 6, is of interest because it emerged 

as a distinctive feature of this disease compared with other lymphoid malignancies. Histones 

represent a basic component of the chromatin structure and their involvement may suggest a 

selective role for nucleosomal plasticity in the pathogenesis of PBL, which warrants further 

investigations. 

Due to the small number of EBV-negative cases in our cohort (n = 2) and the overall rarity 

of this subset, we could not assess whether EBV status is associated with differing genetic features, 

as recently reported for Burkitt lymphoma [249] and suggested by the evidence of distinct 

transcriptomic profiles between EBV-positive and –negative PBL [317]. Moreover, it remains to 

be determined whether regional differences exist with PBL occurring outside the context of HIV 

immunodeficiency, or within HIV-associated PBL, given the high homogeneity of our cohort from 

the Gauteng region in South Africa. Thus, additional work will be required to specifically address 

these questions. 

We found that most of the EBV genome was transcribed at very low levels in the majority 

of PBL cases, while prominent expression was detected for several genes in the BamHI-A region 
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of the virus, including some early lytic genes. However, transcription of the key early lytic gene 

BZLF1 was noticeably absent, suggesting an incomplete lytic program. Supporting this notion, a 

recent study showed that increased STAT3 expression, as observed in the majority of PBL cases, 

decreases the susceptibility of latently infected cells to EBV lytic activation signals via an RNA-

binding protein PCBP2 [334]. Thus, further protein expression studies, in particular for BRLF1 

and for the BLLF1-encoded viral envelope glycoprotein gp350, are required to assess whether the 

observed transcriptome program translates in lytic infection. Indeed, recent translation ribosome 

profiling studies have clearly demonstrated a marked heterogeneity of lytic genes translation and 

complex levels of intracellular translation repression mechanisms at work in infected B cells [319]. 

In conclusion, the results of our study characterize HIV-associated PBL as a distinct subset 

of aggressive B-cell lymphoma and significantly contribute to our knowledge about the molecular 

pathogenesis of this disease through the identification of recurrently mutated genes, uncovering a 

major role for the dysregulation of JAK–STAT3 and RAS–MAPK signaling pathways. These 

results reveal new points of potential therapeutic intervention in these patients. 

A.4 Methods 

For complete experimental details and computational analyses, see also Supplementary Methods. 

Patient Cohorts 

Prospective samples (n = 15 with paired tumor-normal tissue; discovery cohort) were 

collected from patients with suspected PBL, upon informed written consent in line with the 

Declaration of Helsinki, and diagnosis was further confirmed by two independent pathologists. 

Matched normal DNA for these 15 patients was extracted from peripheral blood samples that were 

documented to be tumor-free. For targeted sequencing (n = 95 samples; extension cohort), 

formalin-fixed paraffin-embedded (FFPE) material was retrieved from the archives of the 
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Department of Oral Pathology and Anatomical Pathology, National Health Laboratory Service and 

the University of the Witwatersrand. This panel included 36 nonoral PBL samples that were part 

of a published cohort [335]. The study protocol was approved by the local Human Research Ethics 

Committee (IRB Reference M150390). A summary of demographics and phenotypic markers of 

the discovery cohort are displayed in Supplementary Table S1, whereas demographic information 

for the extension cohort is included in Supplementary Table S3. For downstream nucleic acid 

extraction, the tumor area (>70% tumor cells) was ringed for microdissection in all samples. A 

third cohort of 31 well-characterized PBL samples obtained as archived FFPE material (local 

Human Research Ethics Committee IRB reference M101171 and 96/2011; Supplementary Table 

S7) was used to validate and refine copy number aberration results observed in the WES data by 

using Microarray OncoScan [307]. 

WES and RNA-Seq 

Both exome and RNA-seq library preparations and sequencing were outsourced to 

Centrillion Genomics Services and BGI (AmericasCorporation). Whole-exome libraries were 

prepared using the Agilent SureSelect Human All Exon V6 Kit (Agilent Technologies) and 

sequenced on HiSeq 2500 using TruSeq SBS v2 Reagent Kit (Illumina) at 2 × 100 bp paired-end 

reads with on-target coverage of 100X per sample. RNA-seq libraries were prepared using the 

Illumina TruSeq Stranded Total RNA Sample Prep Kit (Illumina). Flow cells with multiplexed 

samples were run on the HiSeq 2500 using an Illumina TruSeq SBS v2 Reagent Kit at 2 × 100 bp 

paired-end reads and a coverage of 50M reads per sample. 

Mutation Calling 

Fastq files were aligned to the human genome assembly (hg19) using the Burrows–

Wheeler Aligner (version 0.6.2). Before further analysis, the initially aligned BAM files were 
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subjected to preprocessing that sorted, indexed, and marked duplicated reads using SAMtools 

(version 1.7) and Picard (version 1). To identify somatic mutations from WES data for tumor 

samples with matched blood control, we applied the variant-calling software SAVI2, based on an 

empirical Bayesian method as published [122]. Somatic mutations were identified on the basis of 

the final report of SAVI2, and following five additional criteria: (i) not annotated as a synonymous 

variant, intragenic variant, or intron variant; (ii) not annotated as a common SNP (dbSnp138); (iii) 

a variant allele frequency of >5% in the tumor sample; (iv) a variant allele read depth of <2 in the 

matched normal control; and (v) variant associated reads with overall mismatch rate ≤ 0.0  as 

estimated by bam-readcount (version 0.8.0, https://github.com/genome/bam-readcount). All 

mutations described throughout this manuscript refer to nonsynonymous mutations, unless 

otherwise specified. 

Design of Targeted Sequencing Panel 

The full coding exons of 34 genes found recurrently mutated in the discovery cohort and/or 

previously implicated in lymphoma were analyzed in an extension panel of 95 cases 

(Supplementary Table S3) by targeted capture and next generation sequencing. Genes were 

selected according to the following criteria: (i) allele frequency > 15%; (ii) mutated in at least 2 of 

15 cases; (iii) expressed in normal or transformed B cells; and (iv) functionally annotated. In 

addition, we included 16 genes that were only mutated in one sample but have known roles in the 

pathogenesis of lymphoma and 4 genes that were not found mutated in the discovery cohort but 

have been previously implicated in PBL. Genes lacking clear functional annotation and/or known 

to represent common nonspecific mutational targets in sequencing studies (e.g., TTN, PCLO) were 

excluded. The complete gene list is reported in Supplementary Table S4. 
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Targeted Next-Generation Sequencing 

The entire coding region of the 34 selected genes was isolated using the IDT xGen 

Predesigned Gene Capture Custom Target Enrichment Technology (Integrated DNA 

Technologies) and subjected to library preparation and next-generation sequencing on the Illumina 

HiSeq platform with 2 × 150 bp configuration. Targeted sequencing was performed at GENEWIZ. 

Read alignments and conventional preprocessing were conducted as described for the WES 

analysis. For samples lacking matched normal control, variants were filtered out if found in dbSNP 

database (dbSNP138) as well as in any normal sample of the WES cohort. 

Copy Number Analysis 

For copy number analysis from WES data (n = 15), the Biodiscovery Multiscale BAM 

Reference Builder [336] was used to construct a multiscale reference (MSR) file from 14 paired 

normal samples alignments (BAM). The MSR file was used as reference for copy-number 

variation (CNV) calling of all tumor alignments with the SNP-FASST2 algorithm [337], using 

Nexus Copy Number, v10.0 (BioDiscovery, Inc.; ref. [337]). Gains and losses were defined as at 

least +0.3 and -0.3 log2 ratio changes, respectively, in the tumor alignment. 

To validate CNV calling from WES data, 31 additional samples were processed on 

Oncoscan FFPE Express Arrays (Affymetrix, Thermo Fisher Scientific) (Supplementary Table S7) 

according to the manufacturer's instructions, followed by scanning on a GeneChip Scanner 3000 

7G, with the Affymetrix GeneChip Command Console (AGCC). Paired A+T and G+C CEL files 

were combined and analyzed with Chromosome Analysis Suite v3.3.0.139 (ChAS, Applied 

Biosystems, Thermo Fisher Scientific), using the OncoScan CNV workflow for FFPE, without 

manual recentering. We confirmed that copy number calls from OncoScan and WES data were 

consistent with each other by performing OncoScan on 7 cases that had been sequenced by WES 
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and comparing the calls obtained from the two methods. Probe genomic coordinates were aligned 

to hg19 and the resulting OSCHP files were analyzed by Nexus Copy Number v10.0 using the 

SNP-FASST2 algorithm [337] with default parameters. 

To detect recurrent copy number aberrations, we applied the GISTIC 2.0 algorithm using 

GenePattern (https://www.genepattern.org/) to the copy number segmentations of the combined 

cohort of 46 patients (15 cases analyzed by WES, 31 cases analyzed by OncoScan). Recurrent 

regions of copy number aberrations with q-value <  .0 ×  0−6 were considered significant. 

Furthermore, we assessed the expression level of each gene within the significant GISTIC peaks 

using the median value of quantile normalized RPKM from RNA-seq data (n = 20). 

Pandora: A High-Performing Pipeline for Quantifying the Bacterial and Viral 

Microenvironment of Bulk RNA-Seq Samples 

Pandora is an open-source pipeline (https://github.com/RabadanLab/Pandora) that takes as 

input the total RNA sequence reads from a single sample and outputs the spectrum of detected 

microbial transcripts, focusing on bacteria and viruses. The Pandora workflow is divided into the 

following four main modules: (i) mapping to the human host genome using STAR and Bowtie2 to 

filter out the host reads from downstream analysis; (ii) de novo assembly of host-subtracted short 

reads using Trinity [338] to create contiguous full-length transcripts (contigs), which help increase 

the accuracy of alignment to the correct species of origin in the next step; (iii) identification of the 

most likely species of origin for each assembled contig with BLAST; and (iv) filtering and parsing 

of the BLAST results into a final report on the detected microbial abundances. We also performed 

gene expression profiling of all the reads that mapped to the EBV genome [339] using 

FeatureCounts [340] to fully characterize lytic and latent EBV programs. 
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Data Availability 

The data that support the findings of this study are available upon request. The sequencing 

data have been deposited in NCBI Sequence Read Archive (SRA) under accession number 

PRJNA598849. 
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