Facile synthesis of solar active charcoal passivated Ag₃PO₄ and their two-channel mechanisms for H₂O₂ formation in aerated water

- Owolabi M. Bankole^{1*}, Olayinka S. Adanlawo¹, Kehinde I. Ojubola¹, Faith O. Adeyemi¹,
- 4 Ojodomo J. Achadu^{2,3}, Joseph A. Ogunniyi¹, Segun E. Olaseni ¹, Adeniyi S. Ogunlaja⁴
- ¹Hydrochemistry Research Laboratory, Adekunle Ajasin University, Akungba, Nigeria.
- ²Chemistry Department, University of Warwick, Coventry, CV4 7AL, United Kingdom.
- ³Institutue of Advanced Study, University of Warwick, Coventry, CV4 7AL, United Kingdom.
- 8 ⁴Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.

10 Abstract

9

1

- 11 This work presents the use of activated charcoal passivated-Ag₃PO₄ (CAgP) and bare
- 12 Ag₃PO₄(AgP) nanoparticles (NPs) as effective photocatalysts for the generation of hydrogen
- peroxide (H₂O₂) in air-saturated water containing either formic acid (FA) or silver nitrate
- 14 (AgNO₃). The synthesized CAgP and pristine AgP were characterized using various state-of-the-
- art optical and electron microscopy techniques. The CAgP composites showed remarkable
- photocatalyzed H₂O₂ formation compared to bare AgP NPs. The CAgP photocatalyzed-assisted
- 17 H₂O₂ formation from O₂-saturated water under sunlight was achieved via two-channel
- mechanisms. First, in the presence of FA as a hole scavenger, enhanced H₂O₂ formation was
- 19 facilitated by decomposition of FA to produce proton (H⁺), followed by a spontaneous reduction
- of dissolved molecular oxygen by the photo-excited electrons. The second photocatalytic pathway
- 21 involves the formation of H_2O_2 in the absence of electrons (using AgNO₃ as an electron scavenger)
- 22 which occurred via oxidation of H₂O by photo-induced holes to generate hydroxyl radicals (•HO)
- and the combination of photogenerated •HO to produce H₂O₂. The most notable feature of CAgP
- composite as a photocatalyst is the ease of H_2O_2 formation in O_2/H_2O and $O_2/H_2O/FA$ system, as
- 25 well as the ability to reuse the recovered CAgP catalyst for a few reaction cycles without losing
- 26 substantial catalytic activity or mass.
- 27 **Keywords:** Ag₃PO₄ nanoparticles; hydrogen peroxide formation; hole scavengers; photocatalysis;
- electron scavengers; charcoal passivated Ag₃PO₄.
- *Corresponding author. Tel: + 2348034018955; E-mail: bankolemutolib@yahoo.com.

Introduction

30

Hydrogen peroxide (H₂O₂) is a colourless liquid that easily mixes with water or other organic 31 solvents to produce non-toxic reagents [1]. Because of its nontoxicity and greener nature, H_2O_2 is 32 a superior energy transporter or storage system than H₂ and may be safely moved from one location 33 to another [2,3]. For many decades after its discovery and isolation in 1818 by Louis Jacques 34 Thenard [4], H₂O₂ has consistently played a central role as a versatile oxidant in a variety of 35 36 applications, including deodoriser for wastewater purification, disinfectant or antiseptic for wounds dressing and mouthwash, organic chemical synthesis and transformation, and as a 37 bleaching agent in the textile and paper industries [5]. H₂O₂ spontaneously decomposes into water 38 and oxygen $(2H_2O_2 \rightarrow 2H_2O + O_2)$ as the two major products when exposed to ultraviolet (UV) 39 or visible light, thus adding to the safety of its use in industry and at home [2,3]. To increase small-40 41 scale synthesis and satisfy expanding demand, researchers are exploring other cost-effective and sustainable methods of producing H₂O₂ utilizing low-cost catalytic materials [2]. 42 The current large-scale industrial production of H₂O₂ relies on a BASF-developed anthraquinone 43 auto-oxidation (AO) technology, in which alkylanthraquinone (AAQ) sequentially undergo series 44 of hydrogenation reactions in the presence of palladium catalysts to form dihydroanthraquinone 45 (DAQ) (AAQ + $H_2 \Rightarrow$ DAQ), followed by oxygenation of the resultant DAQ to yield H_2O_2 and 46 AAQ (DAQ + $O_2 \rightarrow H_2O_2 + AAQ$) [2,5]. The AO technique requires large energy consumption for 47 the hydrogenation and oxidation stepwise reactions and therefore not cost-effective or practicable 48 49 for small-scale H₂O₂ synthesis [2]. The direct mixing of H₂ and O₂ gases on the other hands, which has been proposed as an alternative approach to anthraquinone oxidation method for H₂O₂ 50 production over noble metal catalysts, is also regarded to be environmentally unsafe due to the 51 possibility of explosions from the mixing of H₂ and O₂ gases [6,7]. As a result of the evaluations 52 of the available technologies, the advanced oxidation process (AOP) driven by UV or visible light 53 54 radiation in the presence of a suitable photocatalyst is a sustainable and cost-effective option for producing H₂O₂ using water and atmospheric oxygen as the only primary ingredients [8]. 55 Photocatalytic advanced oxidation processes utilizing visible-light-driven catalytic materials, 56 including TiO₂, g-C₃N₄, Ag₂O₃, AgX (X, Cl, Br, I), and other silver-based photocatalysts, have 57 been reported by different research groups to produce significant amounts of H₂O₂ from aerated 58 water in the presence of hole and electron scavengers [2,9-11]. Silver-based photocatalysts, in 59

particular, have demonstrated outstanding photocatalytic performance to thermodynamically drive 60 the formation of H₂O₂ due to their conduction band edges being more negative(61 $< 0.6 \ eV \ vs. \ NHE, pH \ 7)$ than the redox potential of O_2/H_2O_2 at $0.68 \ eVvs. \ NHE$, and their 62 valence band edges being lower (more positive) than the redox potentials of $OH^-/^{\bullet}OH$ and O_2/H_2 63 O at + 1.99 and + 1.23 eV (vs. NHE, pH 7), respectively [10,11]. The remarkable photocatalytic 64 performances of silver-based photocatalysts are however tainted by their uncontrollable 65 decomposition and photo-corrosion caused by the interaction of surface plasmon resonance of Ag⁺ 66 with photo-excited electrons, which transforms Ag⁺ into black metallic Ag⁰ particles when exposed 67 to UV or visible photons for long periods of time [12,13]. Yang and coworkers [14] reported that 68 using graphene (GR) and graphene oxides (GO) as stable coverage of Ag₃PO₄ effectively shielded 69 the Ag₃PO₄ from photo-decomposition and restrained the recombination of photo-induced electron 70 71 with holes during photocatalysis, resulting in improved photostability and performance of Ag₃PO₄graphene composites over bare Ag₃PO₄. The bare Ag₃PO₄ catalyst which is proposed in the current 72 work has high tendency to decompose into Ago and PO $_4^{-}$ (Ag₃PO₄ + $3e^- \rightarrow 3$ Ago + PO $_4^{-}$) when 73 irradiated in the absence of photo-thermally stable solid supports such as carbon-based 74 nanostructures [14]. Thus, activated charcoal is proposed here as a solid support to passivate 75 Ag₃PO₄ in order to fabricate activated carbon-Ag₃PO₄ (CAgP) composite with overall improved 76 77 stability, catalytic activity, and performance for photocatalyzed H₂O₂ production. Herein, raw coconut hardwood charcoal was first acidified in 0.1 M HCl to remove alkaline and 78 alkaline-earth metals from its surface and endow it with various oxygen functional groups that 79 provided active sorption sites for Ag + (aq. AgNO₃) via electrostatically driven interaction, 80 followed by the precipitation of Ag₃PO₄ using disodium hydrogen phosphate (Na₂HPO₄). Pal et 81 al. [11] fabricated magnetically recyclable photocatalysts for H₂O₂ formation using starch 82 functionalized Fe₃O₄@Ag@Ag₂O nanocomposites. They demonstrated that the best photocatalyst 83 (C1), with VB and CB edges at 2.63 and 0.4 eV, respectively, thermodynamically facilitated water 84 oxidation and $2e^-$ reduction of molecular oxygen to produce H₂O₂ [11]. Interestingly, the photo-85 induced holes in AgP/CAgP have a better thermodynamic driving force than C1 to generate •OH 86 87 radicals and water oxidation to produce H₂O₂, because the potentials of the top of VB of AgP/CAgP are more positive at 2.79-2.84 eV than the VB edge of C1. Similarly, the edges of CB 88 of AgP/CAgP are more negative than 0.68 eV, indicating that photocatalytic formation of H₂O₂ in 89 O_2 -saturated water is a high possibility. Thus, through $2e^-$ reduction of O_2 and water oxidation, 90

both AgP and CAgP satisfy two-channel pathways for H₂O₂ formation. When the reaction is 91 carried out in the presence of hole scavengers such as organic acids and alcohols, photo-excited 92 electrons at the CB constitute the main driving factor for the production of H₂O₂ [11,15]. Photo-93 induced holes also drive the formation of H₂O₂ at the VB when an electron scavenger such as silver 94 nitrate is added to the O₂-water system [10,15]. Premised on the above, the photocatalytic 95 performances of bare AgP and CAgP for the generation of H₂O₂ in the presence of hole and 96 electron scavengers were tested. Also, the two-channel plausible mechanisms for the formation of 97 H₂O₂ in water at VB and CB were elucidated. 98

2.0. MATERIALS AND METHODS

2.1 Material

99

100

- 101 Silver nitrate (AgNO₃, > 99.7%), Potassium titanium oxalate dihydrate (PTO,
- $K_2[TiO(C_2O_4)_2].2H_2O$, formic acid (FA, 85%), benzoquinone (BQ), isopropyl alcohol (*i*PA) and
- sodium phosphate dibasic dodecahydrate (Na₂HPO₄.12H₂O) were purchased from Sigma Aldrich.
- Methanol, ethyl alcohol ethanol (%), Commercial H₂O₂(30% v/v) sodium hydroxide (NaOH),
- 105 hydrochloric acid (HCl) and deionized water was purchased from Pascal Scientific Limited,
- Nigeria, and were used as received without purification.

107 2.2 Materials syntheses

2.2.1 Preparation of raw charcoal

- The raw coconut hardwood charcoal (200 g) was graciously donated to our laboratory by Prime
- 110 Coal Plant, Lagos, Nigeria, and the product description as provided by the supplier are listed in
- 111 Table 1. The charcoal was washed three times with deionized water to remove sands and debris,
- and then dried in an oven at 60°C for 12 h. Thereafter, it was ground with a mortar and pestle, then
- pulverized into fine particle sizes using an electric blender (Model: HFB-3489, (China). The
- pulverized charcoal was then sieved for uniform particle size distribution using a 0.25nm sieve
- and stored for further use.

116

117

108

Table 1: Supplier description of coconut hardwood charcoal

Coconut hardwood charcoal (Wt)	Specifications (%)
Fixed carbon content	86
Ash content	3 (Max. on Dry Basis)
Moisture	5
Volatile matter	3
Burning time	3.5 h
Shape	Irregular lengths (3-28cm)

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

2.2.2 Preparation of charcoal-supported silver phosphate composite (CAgP)

The powdered particles of the hardwood charcoal were acidified with HCl to remove the oxides of alkaline and alkaline-earth metals present in the charcoal and to enhance its surficial and textural properties prior to immobilization of AgP. Briefly, 1 g of charcoal powder was stirred in 100 mL of HCl (0.1 M) solution at 60°C for 1 h. The treated charcoal was recovered by centrifugation, washed with DI water and dried at 80°C for 24 h. Silver phosphate NPs was adsorbed to the surface of the treated charcoal by precipitation method to prepare charcoal-supported AgP (C/AgP) composites. Typically, 0.1 g of acidified charcoal was sonicated in deionized water (100 mL) for 3 h to give charcoal aqueous dispersions. Then 0.5 g of AgNO₃ in deionized water (50 mL) was added drop wise to the charcoal dispersions and the mixture was further sonicated for 3 h to ensure optimal charcoal-Ag⁺ adsorption-desorption equilibrium. Under constant stirring, aqueous solution of Na₂HPO₄.12H₂O (1 M, 50 mL) was slowly added into the charcoal-Ag⁺ solution at the rate of 5 mL/min for 10 min. The resulting black-yellow precipitate of C/AgP composite was magnetically refluxed for another 5 h at 80 °C. The product (C/AgP) was washed by centrifuge using deionized water and with absolute EtOH, and dried at 60°C for 12 h. For comparison, pristine silver phosphate (AgP) NPs were prepared by the same method reported for CAgP composite but without treated charcoal. The synthesized CAgP and AgP were kept in a dark container and stored.

136

137

2.3. Materials characterization

The solid reflectance spectra of charcoal, AgP and CAgP were recorded on a Shimadzu UV-VIS-NIR Spectrophotometer UV-3100 with a MPCF-3100 sample compartment with samples mounted between two quartz discs which fit into a sample holder coated with barium sulfate. The spectra were recorded over the wavelength range of 800-300 nm, and the scans were conducted at a medium speed using a 20 nm slit width. Fourier transform infra-red (FTIR) spectra were recorded on a Thermo Fisher Scientific FTIR spectrophotometer, using pressed KBr pellets. Transmission electron microscope (TEM) images of the samples were recorded using a JEOL JEM-2010 electron microscope operating at 200 KV. Surface morphologies of AgP and CAgP were analysed using a scanning electron microscope (SEM) equipped with energy dispersive analysis of X-ray equipment (EDAX) (XL 30 FEG ESEM). Raman spectroscopy Raman spectra for the samples were collected using A WITec alpha 300 RAS+ confocal micro-Raman spectrometer (Ulm, Germany) with 532 nm laser wavelength and a spectral acquisition time of 120 s was used to characterize the sample. To minimize the heating effects of the sample, a power of 3.41 mW was applied to the samples. X-ray photoelectron spectroscopy (XPS) analysis of the AFe was performed on a Kratos Axis Ultra X-ray Photoelectron Spectrometer equipped with a monochromatic Al K_a source (1486.6 eV). The hydrodynamic size distributions of AFe NPs, AFeAMX composite and AMX were measured using Malven Dynamic Light Scattering (DLS), Malven, UK. The XRD spectra of the samples were obtained with Bruker D8 ADVANCE diffractometer (Germany) using Cu Ka (1.5406 Å) radiation.

2.4 Photocatalytic formation of hydrogen peroxide (H₂O₂)

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Photocatalytic hydrogen peroxide formation over pristine AgP and CAgP photocatalysts were investigated using O₂-saturated deionized water system under natural solar illumination. In a typical representative photocatalytic experiment, 20 mg of AgP or CAgP were dispersed into 50 mL of DI in 250 mL round bottom flask, and the suspension was sonicated for 1 h under dark to ensure complete dispersion of the catalyst in solution and establish adsorption-desorption equilibrium of the reacting mixture. Prior to solar illumination, the reaction mixture was bubbled with O₂ through a syringe needle, and the reaction vessel mounted on a retort stand at a 60° angle and directly irradiated for 5 h by natural sunlight of an average intensity of 615.42 W/m². Samples from the reacting mixture were regularly withdrawn at 1 h of solar irradiation, and filtered with syringe filter to separate the catalysts from the filtrates. The concentrations of hydrogen peroxide

in the filtrates were determined by colorimetrically using potassium titanium oxalate-sulfuric acid

169 (PTO) reagents [16, 17].

168

170

188

2.4.1. Colorimetric analysis of H₂O₂

171 The amount of H₂O₂ generated was determined colorimetrically using potassium titanium oxalate method [17]. A stock solution of titanium oxalate reagent containing mixture of 172 173 $K_2[TiO(C_2O_4)_2].2H_2O$ (0.02 M), and conc. H_2SO_4 (0.5 M) was prepared in 250 mL volumetric flask and used for further studies. The yield of H₂O₂ in the recovered filtrate was determined as 174 follows: 2.5 mL each of the recovered filtrate and the titanium oxalate reagent was pipette into 10-175 mL flask and make up to the mark with deionized water. Blank solution of titanium reagent (2.5 176 mL) diluted to 10 mL mark was also prepared without the addition of the filtrate (peroxide). The 177 absorbance of both blank and test samples were measured on the UV-Vis spectrophotometer at 178 wavelength of ca. 400 nm, corresponding to the λ_{max} of titanium (1V)-peroxide complex, **Scheme** 179 1. The molar concentration of H₂O₂ (in mol/L) was determined by subtracting the absorbance of 180 the blank solution (A_b) from the absorbance of peroxide-containing filtrate (A_p) at wavelength of 181 400 nm using **Eqn. 1**: 182

$$[H_2O_2] = \frac{A_p - A_b}{xl\varepsilon_{400}} * V_T$$

where ε_{400} is the molar absorptivity of titanium (IV)-peroxide complex (9351/mol⁻¹cm⁻¹); A_b and A_p are respectively the absorbance of the blank and peroxide solutions; x is the volume of the peroxide solution (2.5 mL or 25 cm); l is the path length (in cm) of the spectrophotometer cell, and V_T is the total volume of the blank or peroxide solution (10 mL or 100 cm).

2.4.1.1. Standard calibration curve for hydrogen peroxide (H₂O₂) solution

A stock solution of the hydrogen peroxide (H_2O_2) solution was prepared by diluting 1 mL of commercial H_2O_2 (30% v/v) to 2000 mL using double distilled water. Further dilutions were made by adding 5 mL of acidified PTO reagents (0.02 M PTO and 0.05 M H_2SO_4) separately to 0.2, 0.4, 0.6, 0.8 and 1 mL from the standard H_2O_2 solution and diluted them to 10 mL separately in five different labelled conical flasks. The standard calibration curve was plotted between known concentrations (0.2 to 1 mL) of H_2O_2 solutions against their respective absorbance at a wavelength

of 400 nm (λ_{max} of PTO-H₂O₂ complex) on UV-Vis spectrophotometer. H₂O₂ concentration formed over the photocatalysts was extrapolated from the plotted standard calibration curve [18].

KO TI OK
$$H_2O_2$$
 KO Yellow $OK + H_2O$

Scheme 1: Reaction between acidified potassium titanium oxide oxalate, PTO, and hydrogen peroxide to give titanium (1V)-peroxide complex.

Blank experiments were also carried out to determine the importance of solar irradiation, photocatalyst(s), and electron donor for hydrogen peroxide formation. The blank experiments were either conducted with only photocatalysts dispersed in O₂-saturated DI water but no electron donor (formic acid), or with formic acid (5%) in solution but no photocatalysts. Experiments in the presence of both photocatalysts and formic acid under dark reaction conditions were also conducted to demonstrate the importance of solar irradiation for the formation of hydrogen peroxide.

2.4.2 *In situ* active species capture experiment

Photocatalytic trapping experiments to investigate the role of active specie and their mechanistic pathways during the formation of hydrogen peroxide over as-synthesized photocatalysts were carried out using silver nitrate (AgNO₃), benzoquinone (BQ), and isopropyl alcohol (*i*PA) as radical scavengers to mask the *in-situ* formation of electron, •O $\frac{1}{2}$, and hydroxyl radical (•OH), respectively. The procedures for the experiments were similar to the method reported for the photocatalytic formation of hydrogen peroxide in the presence of AgP and CAgP, except that 1 mM of scavengers were separately added to the solution and the mixtures were irradiated for 6 h under sunlight.

3. Results and discussions

3.1. Phase structure analysis

Figure 1 displays the phase structures of treated charcoal, pristine AgP and CAgP composite as elucidated using XRD technique. The characteristic X-ray diffraction patterns of treated charcoal

at 2θ = 24°, and 26.78° are typical of graphite-type reflections and consistent with the peaks of carbon-based biomass[19, 20], while the distinct diffraction patterns of pristine AgP at 2θ = 20.8°, (110), 29.6°, (200), 33.2°, (210), 36.5°, (211), 42.8°, (220), 47.6°, (310), 52.6°, (222), 54.8°, (320), 57.1°, (321) conform well with the standard diffraction planes of body centred cubic and crystalline Ag₃PO₄ with JCPDS card No. 71-1836, Figure 1. All the diffraction patterns in pure AgP are conspicuously visible in the diffractogram of the CAgP composites. The crystallinity and intensity of diffraction patterns of AgP in CAgP are however lower than the pure AgP, due to the change in the environment of AgP after composition with charcoal. The absence of diffraction peaks of charcoal in the XRD patterns of CAgP is due to the low weight percentage (wt%) of charcoal used for the preparation of the composite.

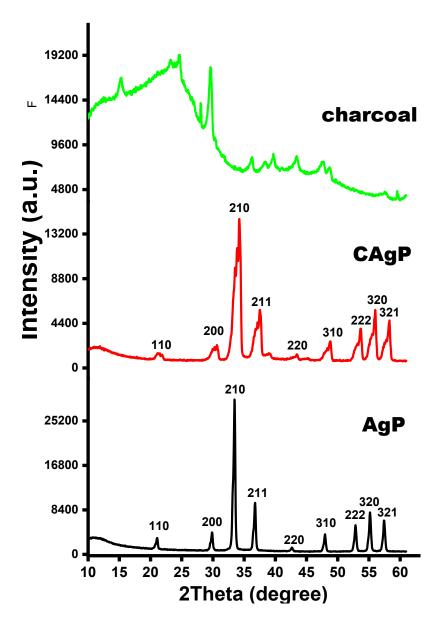


Figure 1: XRD patterns of charcoal, bare AgP and CAgP composites.

Fourier-transform infrared spectroscopy (FTIR) was used to validate the successful formation of the samples and also to confirm the presence of functional groups on their surfaces, Figure 2. The presence of vibrational peaks at 3000, 1654, and 1701 cm⁻¹, attributed to OH stretching, OH bending, and C=O stretching vibrations, respectively, confirm the presence of oxygen functionalities on the surface of treated charcoal, Figure 1a. In the FTIR spectrum of pure AgP,

characteristic peaks at 563, 1025 and 1412 cm⁻¹ are respectively attributed to the bending vibration of O=P-O, and stretching vibrations of P=O (in PO³₄) and P-O-P (HPO²₄ ions) [21-23], suggesting successful AgP formation. The presence of adsorbed water molecules on the surface of AgP is confirmed by the stretching and bending vibrations of OH groups at 2771-3681 cm⁻¹ and 1592 cm⁻¹, respectively, The bending and stretching vibration bands of the phosphate and OH groups in the FTIR spectrum of pure AgP are also present in the spectrum of CAgP, with the exception that due to the presence of charcoal, these peaks are slightly shifted to either lower or higher wavenumbers, confirming physical interaction between AgP and the treated charcoal to form CAgP. Similar observations have been reported when Ag₃PO₄ nanocrystals were immobilized on carbon nanostructures [21-23]. Due to the low content of charcoal used in the preparation of the composite, the vibrational bands of charcoal were masked by the strong and intense vibrational bands of AgP in the FTIR spectrum of CAgP.

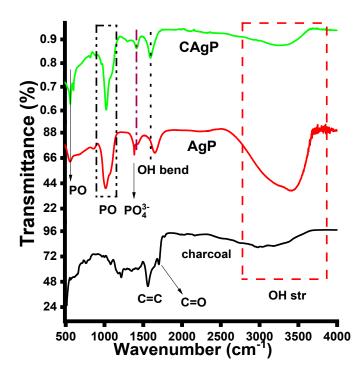
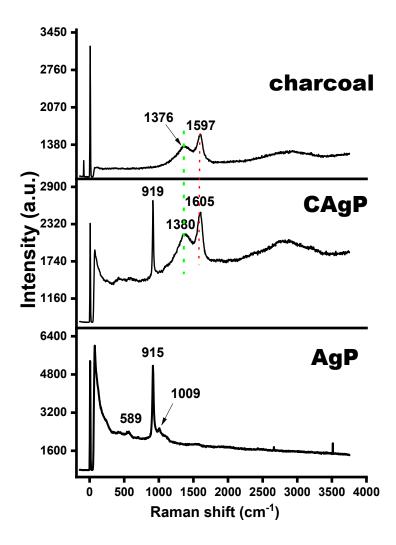
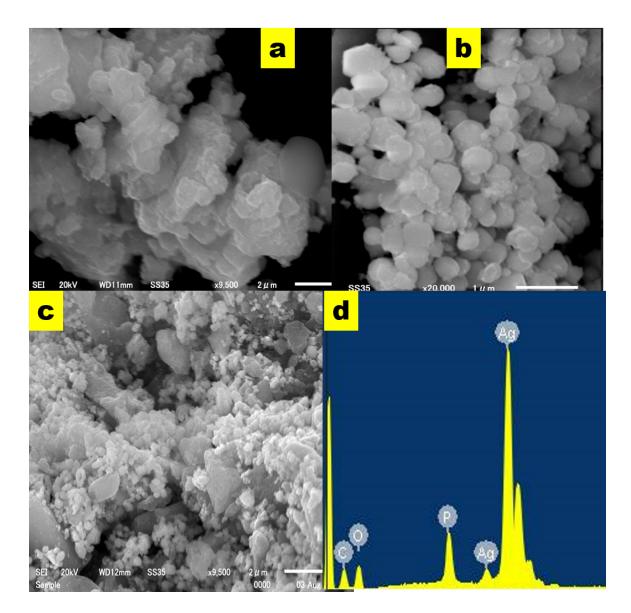



Figure 2. FTIR spectra of charcoal, bare AgP and CAgP composites.


Raman spectroscopy is a sensitive technique for determining the presence of functional groups and the degree of structural amorphization in carbon and carbon-based materials [24, 25]. The vibrational peaks at 589, 915, and 1009 cm⁻¹ in the Raman spectrum of pure AgP correspond to the P–O–P symmetric stretching band, symmetric vibration, and asymmetric stretching vibration

of PO $_{4}^{3}$ ions, respectively, Figure 3 [26]. The D band at 1380 cm⁻¹ and the G band at 1597 cm⁻¹ in the Raman spectrum of treated charcoal are attributed to the chaos of crystalline structures and defection structures that are typical of carbonaceous materials [27, 28]. The presence of two prominent D and G vibrational bands associated with the charcoal at 1376 and 1605 cm⁻¹, respectively, as well as the intense symmetric vibrational band due to PO $_{4}^{3}$ ions at 912 cm⁻¹, substantially confirm the coexistence of AgP and charcoal in the CAgP composite. The ratio of intensity of D band to G band, (I_{D}/I_{G}) , was used to determine the degree of structural amorphization of the charcoal before and after composition. The calculated I_{D}/I_{G} values of treated charcoal and CAgP are \approx 0.86, indicating that in the presence of AgP, the graphitic crystallite layers of the charcoal remained relatively intact and undistorted. The I_{D}/I_{G} ratio of \sim 0.86 reported for charcoal and CAgP in this work are consistent with literature reports ranging from 0.86-1.20 [29]

Figure 3: Raman spectra of charcoal, bare AgP and CAgP composite

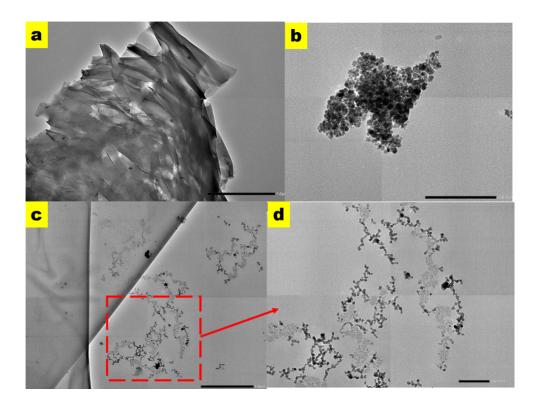
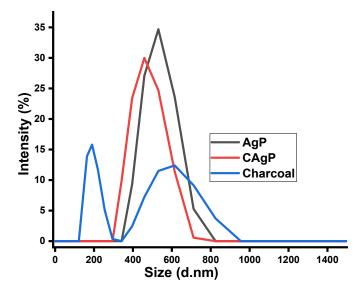

The surface features of the prepared samples were revealed using a scanning electron microscope (SEM) in Figure 4. Figure 4a shows that the cascading layers (layers upon layers) of the graphitic structures of treated raw charcoal as viewed under SEM has rough surfaces and distorted shapes or sizes. The pristine AgP sample without charcoal had nanospherical morphologies with irregular sizes ranging from $0.4 - 0.5\mu m$, as revealed by the SEM image in Figure 4b. Because of the intraparticle interactions caused by their high surface energies in the nanoscale, the bare particles (of AgP NPs) appeared to aggregate and grow in size, Figure 4b. The AgP particles adhered to the surface of treated charcoal in the SEM image of CAgP composite, which is consistent with the graphitic layers of raw charcoal not being distorted during composition, Figure 4c. After being tethered to the surface of the charcoal to form CAgP, the shape of AgP particles remained fairly similar but the average sizes of the grains slightly reduced to $\approx 0.25 - 0.4\mu m$. Figure 4d shows that the major elemental compositions in CAgP composite are C, Ag, O, and P, and no other unwanted elements are detected, validating that CAgP was successfully formed and recovered in its pure form. The quantitative analysis from the EDX spectrum showed that the weigh% of C K, O K, P K, Ag L are 5.31, 18.85, 5.42 and 70.42%, respectively.

Figure 4: Scanning electron microscopeimages of (a) activated charcoal, (b) bare AgP (c) activated charcoal passivated AgP (CAgP), and (d) Energy-dispersive X-ray spectroscope (EDX or EDS) analysis of CAgP.


The transmission electron microscope (TEM) was also used to investigate the nanostructures and morphologies of the prepared samples after sonication in abs. ethanol. TEM micrograph of treated raw charcoal appeared as roughened layers of thin-sheets stacked on top of one another, Figure 5a. Figure 5b shows that the uncoated particles of AgP clearly interacted with other neighbouring particles in solution, resulting in highly aggregated particles [30]. By contrast, surface of the charcoal became coarse after grains of AgP was tethered to it, indicating that the CAgP composite

was successfully formed, Figure 5c. The addition of charcoal as a solid substrate reduced the grain particle sizes of AgP, as well as reducing aggregation and improving the overall stability of the composite compared to pure AgP. The performance of the composite under light illumination will be improved due to the increased stability and reduced nanoparticle agglomeration.

Figure 5: Transmission electron microscope (TEM) micrographs of (a) activated charcoal, (b) bare AgP, (c) CAgP and (d) enlarged image of CAgP under investigation from Figure 5c.

To elucidate the size distribution (hydrodynamic) of the synthesized samples, dynamic light scattering (DLS) measurements were performed at 50 μ g/mL for each sample in a mixture of methanol:water (1:10 v/v) [31]. According to the DLS data, raw charcoal has a size distribution ranging from 120 – 960 nm. At a maximum intensity of \approx 35 percent, the size distribution of pure AgP peaked at 530 nm, while the particle size of the CAgP composite shifted slightly to 459 nm, with maximum intensity peaking at 30%, Figure 6.

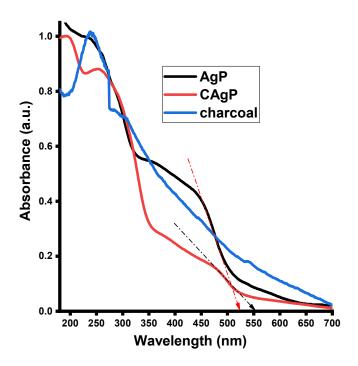


Figure 6: Dynamic light scattering (DLS) measurements of activated charcoal, bare AgP and CAgP composite.

The UV-Vis diffuse reflectance spectra of the photocatalysts (bare AgP and CAgP composite) and treated raw charcoal were used to investigate their energy band gap structures and light (UV or visible) absorption potentials, Figure 7. The UV absorption spectrum of treated charcoal shows intense absorption peak within the UV region at 260 nm which is due to the π - π * electronic transition of sp² graphitic carbon [32, 33], and no obvious absorption peak was observed in the visible region. Both AgP and CAgP show wide and strong absorption bands covering the entire UV and visible regions. In the UV-Vis absorption spectra of bare AgP and CAgP composite, the onset (wavelength) absorption band edges are 525 and 551 nm, respectively. The energy band gap of AgP at onset wavelength of 525 nm is 2.36 eV, while the energy band gap of CAgP extrapolated at absorption edge of 551 nm is 2.25 eV, Using Eq. 2.

$$E_{g}(eV) = 1240/\lambda$$

Where E_g is energy band gap (eV); and λ is onset (wavelength) absorption measured in nm.

324

325

326

327

328

329

330

331

332

333

334

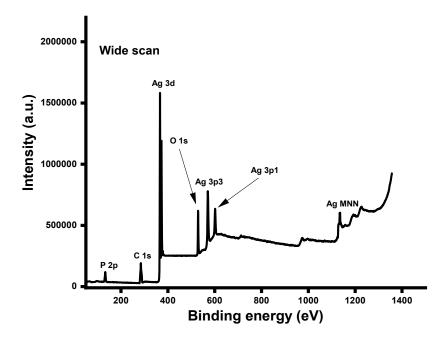
335

336

337

338

339


340

341

Figure 7: UV-Vis diffuse reflectance spectra of activated charcoal, bare AgP and CAgP composite.

The chemical constituents of CAgP composite and their atomic valence states was examined using X-ray photoelectron spectroscopy (XPS). From Figure 8, the overview of XPS analysis of CAgP composite shows that the wide survey has signals of P2p, C1s, Ag3d, O1s, Ag3p3, and Ag3p1 at binding energy of 133.4, 284.3, 367.1-373.4, 527, 573.4, and 604.1 eV, respectively. The signals and the respective binding energy positions are consistent and in good agreements with literature reports on XPS analysis of Ag₃PO₄, Figure 8 [34, 35]. The C1s signal in the XPS spectrum of CAgP was attributed to the raw charcoal used as a substrate for the immobilization of Ag₃PO₄, indicating that both charcoal and Ag₃PO₄ co-existed in the CAgP composite, Figure 9. The XPS spectrum of C1s signal was deconvoluted into three different peaks positioned at 284.5, 285.5, 287.1 eV, which are attributed to carbon atoms in sp³ hybridized C-C, epoxy groups of C-O and carbonyl groups of C=O bonding states, respectively, Figure 9 [36,37]. The high resolution XPS spectrum of O 1s shows an intense peak and a smaller peak with binding energy peaks at 531.1 and 529.2 eV, respectively. The former peak at higher binding energy is associated with the oxygen in P-O-Ag bond, while the later peak at a lower binding energy was assigned to non-bridging oxygen atoms of P=O bond in Ag₃PO₄ [38]. The high resolution XPS spectrum of P 2p was resolved into a single binding energy peak at ≈ 133.5 eV, which corresponds to the +5 oxidation

state of phosphorus (P^{5+}) in PO_4^{3-} ion [39]. The core level Ag3d signal, which was resolved into two binding energy peaks at 367 eV and 373 eV are assigned to $3d_{5/2}$ and Ag $3d_{3/2}$, respectively. The two resolved binding energy peaks have spin-orbit separation of ≈ 6.0 eV, confirming that the valence state of Ag in CAgP is +1 [40].

Figure 8: Representative XPS wide-scan survey spectrum taken from the surface of activated charcoal-AgP composite

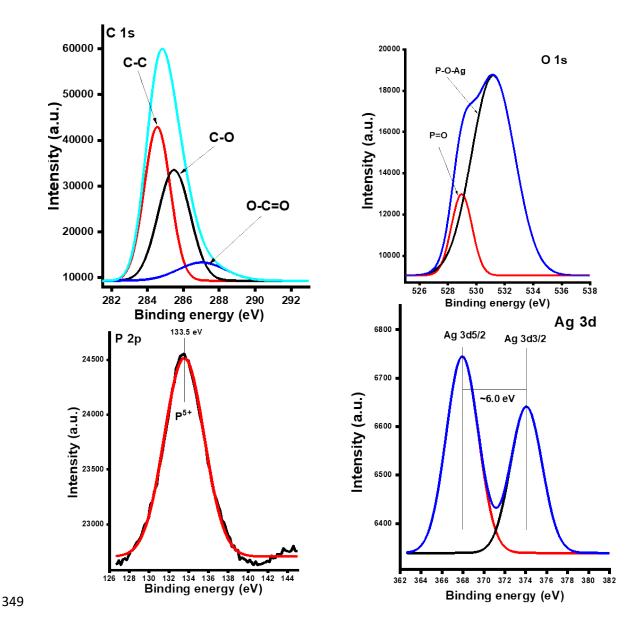


Figure 9: Deconvoluted XPS peaks of C 1s, O 1s, P 2p and Ag 3d for CAgP composite.

Photocatalytic generation of H₂O₂ over synthesized photocatalysts

The photocatalytic performances of AgP and CAgP were investigated for the formation of H_2O_2 in an O_2 -saturated DI water under visible light illumination. Figure 10a shows the amount of H_2O_2 produced over AgP and CAgP composite as a function of time, ranging from 0-60 min in the dark to 1 to 6 h under visible light irradiations. To further rationalize the importance of the catalysts for the formation of peroxide, some control experiments were also carried out in the absence of the photocatalysts: by direct irradiation of the reaction mixture with 1 mM hole scavenger (FA) or

without addition of FA. The formation of peroxide was negligible under these control conditions, i.e., in the absence of photocatalysts, indicating that both FA and/or solar irradiation had no activity to produce hydrogen peroxide in the absence of catalysts, Figure 10a. Furthermore, catalytic control experiments conducted in the dark and in the presence of catalysts revealed negligible peroxide formation, which is an indication that the synthesized catalysts required the use of light illumination to generate charge carriers to produce peroxide in the solution. When O₂-saturated water was irradiated in the presence of AgP and CAgP catalysts, the yields of hydrogen peroxide increased nearly linearly over time up to 5 h, then plateaued at a constant level until 6 h. As a result, after 6 h of light irradiation, the formation of hydrogen peroxide over the catalysts peaked, indicating that a steady-state has been achieved in which the rate of H₂O₂ formation equals the rate of its decomposition, Figure 10a [41]. The yields of peroxide when AgP and CAgP were added to O₂/H₂O/FA system were higher than the amounts of peroxide formed in O₂/H₂O system, Figure 10b. In Table 1, concentrations of AgP and CAgP in O₂/water solution without FA are 154 and 185µM, respectively. These values are significantly higher than the values reported for peroxide produced over bare CdS (27 μ M) and CdS-G2 (128 μ M) after 12 h of solar irradiation [15]. The results clearly show that in the absence of scavengers or special chemical compounds, significant amounts of hydrogen peroxide were produced over AgP and CAgP, demonstrating that both catalysts have the required thermodynamic feasibility to drive the formation of H₂O₂ and are thus suitable for the purpose of producing H₂O₂. In contrast, when O₂/water-containing FA solution was irradiated in the presence of AgP and CAgP, H₂O₂ concentrations of 222 and 371µM were formed, suggesting that the photocatalytic performances of catalysts/H₂O/FA system significantly differs from catalysts/H₂O system, with CAgP/H₂O/FA system showing the highest photocatalytic activity for H₂O₂ generation. This supports that the use of hole scavenger or electron donor is very crucial for generation of H₂O₂ via photocatalysis [2, 10]. After 6 hours of light irradiation, the yields of peroxide produced in the CAgP/H₂O/FA system are up to 1.67, 2.00and 2.06 times higher than the yields of peroxide produced in the AgP/H₂O/FA, AgP/H₂O and CAgP/H₂O systems, respectively, Table 1.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

385 HCOOH +
$$h^+$$
 $\stackrel{CAgP/hv}{\rightarrow}$ CO₂ + 2H $^+$ + e_{cb}^- 3

$$386 \quad O_2 + e^{-\frac{CAgP/hv}{\rightarrow}} \circ O_2^{-}$$

387
$${}^{\bullet}O_2^- + H^+ \stackrel{CAgP/hv}{\rightarrow} {}^{\bullet}HO_2$$
 5

388
$${}^{\bullet}\mathrm{HO}_2 + e^{-\frac{CAgP/hv}{\rightarrow} \mathrm{HO}_2^-}$$

389
$$HO_2^- + H^+ \xrightarrow{CAgP/hv} H_2O_2$$
 7

390
$$O_2 + 2H^+ (HCOOH) + 2e^{-CAgP/hv} \rightarrow H_2O_2$$
 8

391
$$O_2 + 2H^+(H_2O) + 2e^{-\frac{CAgP/hv}{2}} \rightarrow H_2O_2$$
 9

393

394

395

396

397

398

399

400

401

402

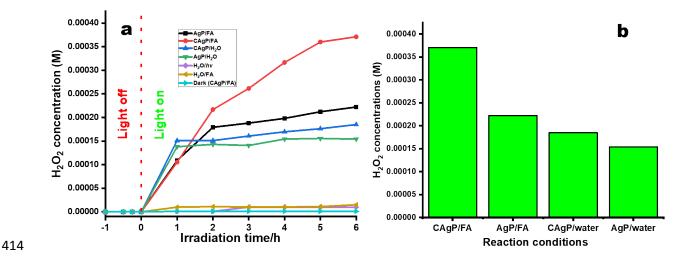
403

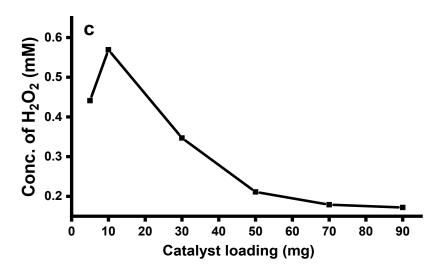
404

405

406

407


408


409

410

411

The use of FA prevented the formation of holes in the VB of CAgP and simultaneously improved the ejection and transition of electrons from the VB to the CB of CAgP to facilitate the photocatalyzed H₂O₂ formation via two-electron reduction of dissolved molecular oxygen, Eqns. 3-7 [2, 15, 42-44]. In the first step, FA is decomposed by the visible light to form CO₂ and proton (H⁺). The photo-excited electrons reacted with dissolved O₂ on the CAgP surface to form superoxide radicals (${}^{\bullet}O_2^{-}$), Eqn. 4. The photogenerated protons (H⁺) from FA decomposition reacted with O2 to form hydroperoxyl radical (*HO2), Eqn. 5, which was further reduced spontaneously by the electrons to form hydroperoxylanions (HO₂), Eqn. 6.In the final product, hydrogen peroxide was generated through reaction between hydroperoxyl anion and photogenerated proton H⁺, Eqn. 7. Thus, the overall formation of H₂O₂ in CAgP/O₂/H₂O/FA which was attributed to the decomposition of FA in solution and reduction of O₂ by photoexcited electrons, is represented in Eqn. 8. In contrast, plausible mechanism for CAgP photocatalyzed H₂O₂ formation in the absence of FA (CAgP/O₂/H₂O), which was attributed to water oxidation and reduction of O₂ by electrons, is represented in Eqn. 9[15]. Generally, the increased photocatalytic activity of CAgP over AgP can also be attributed to the strong interaction between AgP and the hydrophilic carbon used as a solid substrate. Even though the hydrophilic charcoal provides a good support for AgP (as in CAgP), it also serves as electron mediator by absorbing excess electrons from the conduction band via oxygen functionalities on its surface [12].In solution, bare AgP has an aggregation tendency, which reduces its light sensitivity, and resulting in less photocatalytic activity to generate H₂O₂in situ. Based on the high photocatalytic activity of CAgP/FA system for H₂O₂ formation, further studies in terms of photocatalyst and hole scavenger dosages were conducted to optimize its catalytic activity.

Figure 10: (a) Photocatalytic formation of H_2O_2 over bare AgP and CAgP under different experimental conditions, (b) formation of H_2O_2 over AgP and CAgP photocatalysts after 6 h light irradiation using either O_2/H_2O or $O_2/H_2O/FA$ systems, and (c) formation of H_2O_2 over CAgP composite as a function of catalyst loading in $O_2/H_2O/FA$ system.

Table 2: Concentration of H_2O_2 (in mM) over AgP and CAgP photocatalysts after 6 h light irradiation using either O_2/H_2O or $O_2/H_2O/FA$ systems.

Time	AgP/FA	CAgP/FA	CAgP/FA AgP/H ₂ O	
(h)	(mM)	(mM)	(mM)	(mM)
0	0	0	0	0
1	0.108	0. 105	0.151	0.138
2	0.179	0.217	0.151	0.143
3	0.188	0.261	0.161	0.141
4	0. 198	0.317	0. 170	0.154
5	0. 212	0.360	0.176	0.156
6	0.222	0.371	0.185	0.154

To determine the effect of catalyst dosage, the photocatalytic formation of H_2O_2 was demonstrated with various doses of CAgP in the presence of 0.5 mM formic acid (FA). Figure 11 depicts the catalyst-dependent profile of H_2O_2 formation under solar irradiation when CAgP dosage was varied from 5 to 90 mg. The catalytic efficiency of CAgP for H_2O_2 formation increased from 0.441 mM at 5mg and reach its optimal value at 0.569 mM with 10 mg catalyst dosage, implying that increasing catalyst dosage also leads to an increase in catalytic active and adsorption sites on CAgP, providing more sites for e^-/h^+ pair separation and facilitating transfer of photo-excited electrons from CB to oxygen molecules or protons to produce H_2O_2 [2]. As the catalyst dose was increased beyond the optimal 10 mg, the concentration of peroxide steadily decreased, reaching 0.179 mM at 70 mg, then remained fairly constant to 0.172 mM at 90 mg. The solution becomes increasingly turbid as the catalyst loadings in the reaction mixture increase, and more powders (CAgP) in solution coalesce into larger particles to induce aggregation, which reduces the amount of solar light penetrating into the reaction mixture, resulting in lower photocatalytic activity at higher catalytic doses.

Next we investigate the effect of formic acid (FA) on the catalytic formation of H₂O₂ in an O₂-saturated water system and in the presence of CAgP catalyst. Formic acid (FA) is an electron-

donating compound and also has high hydrogen content of about 4.4 wt.% which are often released in solution upon its decomposition under solar irradiation [45]. The evolved hydrogen molecules from HCOOH decomposition can react with *O2 to form H₂O₂,Eqn. 8, hence it is proposed here as a source of H₂ to improve the overall formation of H₂O₂. The concentrations of FA were varied from 0.5 to 2.5 mM and the solutions were irradiated with sunlight for 6 h. From Table 2 and Figure 12, it was found that the amount of H₂O₂ formed increases steadily as the irradiation time increases from 1 to 6 h for each FA concentration. However, after 6 h irradiation time, the amount of H₂O₂ formed slightly decreased from 0.352 to 0.341 mM, corresponding to an increase in FA concentration from 0.5 to 1.5 mM, followed by a sharp decline in the peroxide formation to 0.279 mM at 2.5 mM of FA. The results indicate that at FA concentrations below 1.5 mM, hydrogen (H₂) produced (during FA decomposition) reacted with O₂ to produce a significant amount of hydrogen peroxide, up to 0.352 mM, Eqn. 8. The excess FA in the solution at concentration above 1.5 mM may compete with the catalyst for visible light absorption, lowering light absorption efficiency of CAgP, and reducing the rate of hydrogen evolution [46]. Thus, photocatalytic formation of H₂O₂ is inhibited at higher FA concentrations [46]. It's worth noting that the equivalent amount of H₂O₂ produced after 6 h of solar irradiation with 2.5 mM FA was achieved in 3 h when 0.5 mM FA was used. As a result, FA concentration of 0.5 mM was selected as the optimal value for hydrogen evolution, and to facilitate photo-induced hole trapping in order to improve the photocatalytic performance of CAgP for hydrogen peroxide formation.

443

444

445

446

447

448

449

450

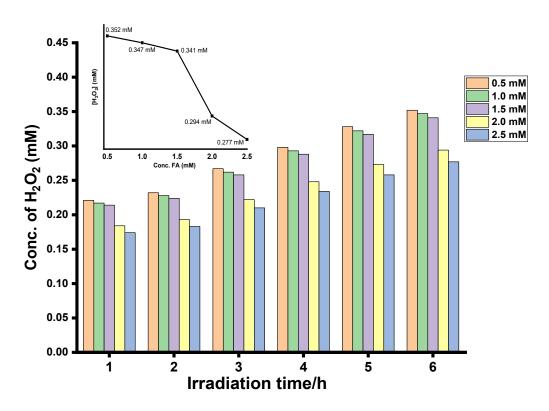
451

452

453

454

455


456

457

458

459

460

Figure 12: Photocatalytic formation of H_2O_2 over CAgP composite as a function of formic acid (FA) after 6 h of light irradiation in $O_2/H_2O/FA$ system. [Conditions: catalyst dosage 30 mg, contact time 6 h, FA concentration: 0.5 to 2.5 mM, and temperature: 25 \pm 2 °C].

Table 3: Amount of H_2O_2 produced over CAgP composite as a function of FA ranging from 0.5 to 2.5 mM for 6 h of light irradiation in $O_2/H_2O/FA$ system.

Time (h)	0.5 (mM)	1.0 (mM)	1.5 (mM)	2.0 (mM)	2.5 (mM)
1	0.221	0.217	0.214	0.184	0.174
2	0.232	0.228	0.224	0.193	0.183
3	0.267	0.262	0.258	0.222	0.210
4	0.298	0.293	0.288	0.248	0.234
5	0.328	0.322	0.317	0.273	0.258
6	0.352	0.347	0.341	0.294	0.277

Trapping experiments and reaction mechanism

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

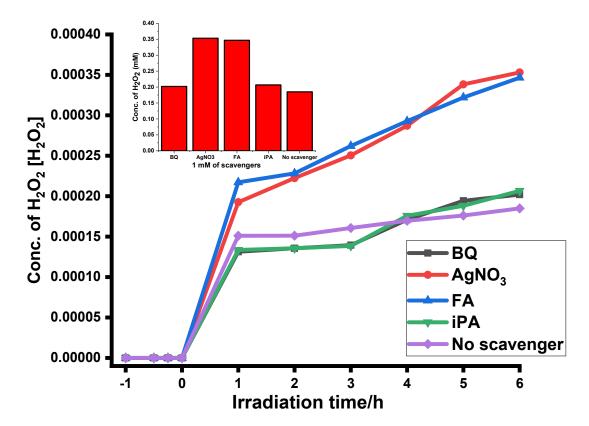
Having validated that CAgP or AgP catalysed formation of H₂O₂ are both possible in an airsaturated aqueous solution, we carried out further controlled trapping experiments to determine the effects of benzoquinone (BQ), AgNO₃, and isopropyl alcohol (iPA) which were used as superoxide, electron and hydroxyl radical scavengers, respectively, for the formation of H₂O₂. For the purpose of uniformity and clarity, previous experiments with CAgP/H₂O/FA were repeated and the results were compared to CAgP/H₂O/BQ,CAgP/H₂O/AgNO₃ and CAgP/H₂O/iPA systems. Figure 13 shows that the amount of H₂O₂ produced by CAgP/H₂O/AgNO₃ system was slightly higher than the amount reported for the CAgP/H₂O/FA system. The finding is intriguing and suggests that H₂O₂ can be formed not only by the e - reduction of O₂ to form H₂O₂, but also by holes in the VB of the catalyst [47]. Thus, the formation of H₂O₂ in the absence of electrons can be hypothesized to occur via the oxidation of H₂O by holes to generate hydroxyl radicals (•OH), Eqns. 10&11, which is then followed by the combination of two •HO to produce H₂O₂, Eqn. 12[10,47]. When the ${}^{\bullet}O_2^{-}$ and ${}^{\bullet}HO$ radicals were trapped with 1 mM BQ and iPA, the amount of H₂O₂ formed in the solution was significantly suppressed and reduced to nearly 50% equivalent of the amount formed in the presence of FA and AgNO₃ at the same concentrations and volume. This suggests that the primary active species responsible for the generation of H₂O₂ are • 0₂ and •H0, which were formed via electrons and holes in the CAgP catalyst, respectively.

487
$$H_2O \xrightarrow{h_{vb}^+} H^+ + OH^-$$

488
$$OH^{-} \xrightarrow{h_{vb}^{+}} + \bullet OH$$

489
$$2^{\bullet}OH \rightarrow H_2O_2$$
 12

The mechanisms of the photocatalytic reactions is proposed and validated based on the positions of conduction band (CBE) and valence band edges (VBE) of CAgP under visible light irradiation.


The potentials of CBE and VBE were determined using empirical Mulliken electronegativity

493 equations, **Eqns. 13** and **14** [48]:

494
$$VBE = \chi - E^e + 0.5 E_g$$

 $CBE = VBE - E_a$

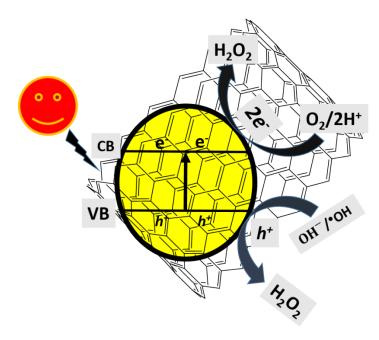

where χ , is the absolute electronegativity of semiconductor, Ag₃PO₄ (χ value of Ag₃PO₄is6.16 eV vs. NHE [49]), E^e is the energy of free electrons and about ~ 4.5 eV vs. NHE, E_g is the energy band gap of semiconductors (AgP = 2.36 eV and CAgP = 2.25 eV CAgP, as calculated from**Eqn. 2**). The *VBE* and *CBE* of AgP, and CAgP are 2.84/0.48 eV and 2.79/0.54 eV, respectively, Figure 14. For the photocatalytic reactions to be thermodynamically feasible, the redox potential of donors must be less positive than the potentials of VBE, and the redox potential of the acceptor must be less negative than the magnitude of potential edge of CB [50]. Water oxidation by photo-induced holes is thermodynamically feasible, as the redox potential of OH⁻/ $^{\bullet}$ OH at + 1.99 V vs. NHE is less positive than the potential of VBE of CAgP at + 2.79 eV vs. NHE, Figure 15 [50]. Similarly, the photo-excited electrons could drive the reduction of O₂ to form H₂O₂ because the CBE of CAgP at (+ 0.54 eVvs. NHE) is more negative than the potential of O₂/H₂O₂ at 0.68 vs. NHE, Figure 15. As a result, the reactions in **Eqns. 8** and **12** are valid for the formation of H₂O₂.

Figure 13: Effects of different scavengers on the photocatalytic formation of H_2O_2 over asprepared CAgP composite. Inset: Amount of H_2O_2 produced over CAgP in the presence and absence of scavengers after 6 h of irradiation.

Figure 14: Energy band structures of charcoal, bare AgP, and CAgP composite.

Figure 15: Schematic mechanism of H₂O₂ formation over as-synthesized CAgP (as representative) through photocatalytic reaction in aerated water.

Recovery and stability runs

Recovery, stability, and reusability are key features required in photoredox applications to ensure that the photocatalysts maintain their activities after prolonged exposure to light. Photostability performances of bare AgP and CAgP photocatalyzed H_2O_2 formation were evaluated by performing five recycle experiments under the same experimental conditions reported for O_2 -saturated DI water, Figure 16. The photocatalytic performance of bare AgP was seen to gradually decrease in mass and activity from 100% to \sim 33% after the fifth recycle test, due to a number of factors, including uncontrollable aggregation of particles in solution, increased photo-corrosion and photo-decomposition of Ag_3PO_4 to Ag^0 and PO_4^{3-} , Eqn. 15 [12]. Similar reports on the photoexcited electron induced deactivation/dissolution of silver-based photocatalysts have been reported in the literature [12]. The stability of the CAgP composite, on the other hand, remained relatively stable until the fourth cycle test, when its catalytic activity dropped slightly below 90%, implying that the passivation of CAgP surface with activated charcoal reduced the rate of Ag_3PO_4 decomposition under solar illumination. Thus, CAgP has improved and remarkable photostability.

$$Ag_3PO_4 + 3e^- \rightarrow 3Ag^0 + PO_4^{3-}$$

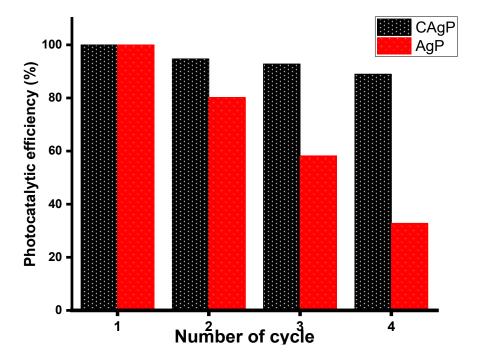


Figure 16: Plot of photocatalytic H₂O₂ formation efficiency (%) against number of cycles for photocatalytic stability evaluation of AgP and CAgP composite.

535

536

533

534

Conclusion

A cost-effective approach has been reported for the preparation of bare AgP and CAgP and their 537 photocatalytic performances for hydrogen peroxide (H₂O₂) formation in O₂-saturated water was 538 elucidated under natural solar illumination. The bare AgP was prepared by chemical precipitation 539 method using disodium hydrogen phosphate (Na₂HPO₄) as a precipitating agent. CAgP was 540 prepared in the same way as bare AgP, except that raw charcoal was first acidified in an aq. HCl 541 solution and electrostatically interacted with Ag⁺ before it was precipitated as Ag₃PO₄ on the 542 surface of activated charcoal using Na₂HPO₄. The as-synthesized bare AgP and CAgP cmposite 543 were characterized using techniques such as XRD, FT-IR, Raman, TEM, SEM, EDX, and XPS. 544 The CAgP composite demonstrated remarkable photocatalyzed H₂O₂ production compared to bare 545 546 AgP nanoparticles, due to the presence of activated charcoal, which serves as a solid support for Ag₃PO₄ and reduces the chance of photodecomposition of Ag₃PO₄under solar irradiation. 547 548 Additionally, the activated carbon improved electron mobility and charge carrier separation via oxygen groups on its surface. In the presence of FA (O₂/H₂O/FA system) as a hole scavenger, H₂O₂ 549 formation over CAgP was thermodynamically facilitated by 2e - reduction of dissolved molecular 550 oxygen; while the second pathway involved water oxidation by photo-induced holes and 551 combination of the two photogenerated •HO to formH₂O₂in the presence of AgNO₃(O₂/H₂O/ 552 AgNO₃ system) as an electron scavenger. Thus, through $2e^-$ reduction of dissolved O₂ and water 553 oxidation, CAgP satisfy two-channel pathways for H₂O₂ formation. 554

Author contributions

- 556 Conceptualization, resources; review and editing: Owolabi M. Bankole, Adeniyi S. Ogunlaja,
- 557 Ojodomo A. Achadu, and Segun E. Olaseni.
- Data curation, formal analysis, methodology: Kehinde I. Ojubola, Olayinka S. Adanlawo, Faith O.
- Adeyemi, Joseph B. Ogunniyi and Segun E. Olaseni.
- original draft writing: Owolabi M. Bankole
- Supervision; validation, visualization: Owolabi M. Bankole, and Segun E. Olaseni.

563

564

565

566

REFERENCES

- 1. S. Siahrostami, S. J. Villegas, A. H. B. Mostaghimi, S. Back, A. B. Farimani, H. Wang, K.
- A. Persson, J. H. Montoya, Review on Challenges and Successes in Atomic-Scale Design
- of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide, ACS Catal. 2020, 10,
- 570 14, 7495–7511A.
- 2. H. Hou, X. Zeng, X. Zhang, Production of Hydrogen Peroxide by Photocatalytic Processes,
- Angewandte Chemie 59 (40) (2020) 17356-17376.
- 3. S.A.M. Shaegh, N.T. Nguyen, S.M.M. Ehteshami, S.H. Chan, Energy Environ. Sci. 5
- 574 (2012) 8225–8228.
- 4. J. M. Campos-Martin, G. Blanco-Brieva, J. L. Fierro, Angew. Chem., Int. Ed. 2006, 45,
- 576 6962-6984.
- 5. R. Guan, X. Yuan, Z. Wu, L. Jiang, Y, Li, G. Zeng, Principle and application of hydrogen
- peroxide based advanced oxidation processes in activated sludge treatment: A
- reviewChemical Engineering Journal 339 (2018) 519-530.
- 6. S. Yamazaki, Z. Siroma, H. Senoh, T. Ioroi, N. Fujiwara and K. Yasuda, J. Power Sources,
- 581 2008, 178, 20–25.
- 7. X. Jia, F. Sun, Y. Fei, M. Jin, F. Zhang, W. Xu, N. Shi, Z. Lv, Explosion characteristics of
- 583 mixtures containing hydrogen peroxide and working solution in the anthraquinone route to
- hydrogen peroxide, Process Safety and Environmental Protection 119 (2018) 218–222.
- 8. M. Kurian, Advanced oxidation processes and nanomaterials-a review, Cleaner
- Engineering and Technology 2 (2021) 100090.
- 9. D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai,
- Photocatalytic H2O2 production from ethanol/O2 System using TiO2Loaded with Au–Ag
- bimetallic alloy nanoparticles, ACS Catal. 2 (4) (2012) 599–603.
- 590 10. Y. Wang, S. Hu, Q. Li, G. Gu, Y. Zhao, H. Liang, W. Li, One step synthesis of high-
- efficiency AgBr–Br–gC3N4 composite catalysts for photocatalytic H2O2 production via
- two channel pathway, RSC Adv., 2018, 8, 36903–36909.

- 11. S. Pal, S. Kumar, A. Verma, A. Kumar, T. Ludwig, M. Frank, S. Mathur, R. Prakash, I.
- Sinha, Development of magnetically recyclable visible light photocatalysts for hydrogen
- 595 peroxide production, Materials Science in Semiconductor Processing 112 (2020) 105024.
- 596 12. B. Weng, M.-Y. Qi, C. Han, Z.-R. Tang, Y.-J. Xu, Photocorrosion inhibition of
- semiconductor-based photocatalysts: Basic principle, current development, and future
- 598 perspective, ACS Catal. 9 (2019) 4642–4687.
- 13. O. M. Bankole, K. I. Ojubola, O.S. Adanlawo, K.A. Oluwafemi, A.O. Adedapo, M.A.
- Adeyemo, S.E. Olaseni, N.A. Oladoja, E.J. Olivier, E.E. Ferg, A.S. Ogunlaja, Atmospheric
- 601 CO2 mediated formation of Ag2O-Ag2CO3/g-C3N4 (p-n/n-n dual heterojunctions) with
- enhanced photoreduction of hexavalent chromium and nitrophenols, Journal of
- Photochemistry and Photobiology A: Chemistry 427 (2022) 113800.
- 14. X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang ACS Catal., 3 (3) (2013) 363-369.
- 15. S. Thakur, T. Kshetri, N. H. Kim, J. H. Lee, Sunlight-driven sustainable production of
- 606 hydrogen peroxide using aCdS–graphene hybrid photocatalyst, Journal of Catalysis 345
- 607 (2017) 78–86.
- 16. J. K. Lee, K. L. Walker, H. S. Han, J. Kang, F. B. Prinz, R. M. Waymouth, H. G. Nam, R.
- N. Zare, Spontaneous generation of hydrogen peroxide from aqueous microdroplets, PNAS
- 610 116 (39) (2019) 19294–19298.
- 17. R. M. Sellers, Spectrophotometric determination of hydrogen peroxide using potassium
- 612 titanium (IV) oxalate, Analyst 105 (1990) 950-954.
- 613 18. R. Dhawle, Z. Frontistis, D. Mantzavinos, P, Lianos, Production of hydrogen peroxide with
- a photocatalytic fuel cell and its application to UV/H2O2 degradation of dyes, Chem. Eng.
- 615 J. Adv. 6 (2021) 100109.
- 19. G. Xiao, R. Xiao, B. Jin, W. Zuo, J. Liu, J. R. Grace, Study on Electrical Resistivity of
- Rice Straw Charcoal, Journal of Biobased Materials and Bioenergy, 4, 426–429, 2010.
- 20. T. Wang, Y. Wang, Y. Wu, L. Zhou, Y. Jin, W. Liu, J. Huang, X. Fang, X. Tang,
- 619 LiFePO4/C Composite Prepared by Coal Based Carbon Sources, Int. J. Electrochem. Sci.,
- 620 12 (2017) 975 984.
- 21. K.H. Kim, J.M. Jeong, S.J. Lee, B.G. Choi, K.G. Lee, Protein-directed assembly of cobalt
- phosphate hybrid nanoflowers. J. Colloid Interface Sci. 2016, 484, 44–50.

- 623 22. L. Zhou, O.G. Alvarez, C.S. Mazon, L. Chen, H. Deng, M. Sui, The roles of conjugations
- of graphene and Ag in Ag₃PO₄-based photocatalysts for degradation of sulfamethoxazole.
- 625 Cataly Sci Technol 6 (2016)5972–5981.
- 626 23. N. Nourieh, R. Nabizadeh, M. A. Faramarzi, S. Nasseri, K. Yaghmaeian, B. Mahmoudi,
- M. Alimohammadi, M. Khoobi, Photocatalytic degradation of ketoconazole by Z-scheme
- Ag3PO4/graphene oxide: response surface modeling and optimization, Environ Sci Pollut
- Res. 27, pages250–263 (2020).
- 24. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 2005, 43, 1731–
- 631 1742.
- 25. X. Xu, W. Song, D.G. Huang, B.Y. Gao, Y.Y. Sun, Q.Y. Yue, K.F. Fu, Colloids Surf. A
- 633 Physicochem. Eng. Asp. 2015, 476, 68–75.
- 634 26. A. Reheman, Y. Tursun, T. Dilinuer, M. Halidan, K. Kadeer, A. Abulizi, Nanoscale Res.
- 635 Lett. 13, 70 (2018).
- 636 27. R.J. Nemanich, S.A. Solin, Phys. Rev. B. 1979, 20, 392–401.
- 637 28. X.X. Zhou, X. Qu, R. Zhang, J.C. Bi, Fuel Process. Technol. 2015, 135, 195–202.
- 29. N. Zhao, J. Wang, C. Shi, E. Liu, J. Li, C. He, Chemical vapor deposition synthesis of
- carbon nanospheres over Fe-based glassy alloy particles, J. Alloy Compd. (2014) 816-822.
- 30. H.H. Liu, S. Surawanvijit, R. Rallo, G. Orkoulas, Y. Cohen, Analysis of nanoparticle
- agglomeration in aqueous suspensions via constant-number Monte Carlo simulation,
- Environ. Sci. Technol. 45 (2011) 9284–9292.
- 31. S. Bhattacharjee, DLS and zeta potential What they are and what they are not? Journal
- of Controlled Release 235 (2016) 337–351.
- 32. M. Sharif Sh, F. Golestani Fard, E. Khatibi, H. Sarpoolaky, Dispersion and stability of
- carbon black nanoparticles, studied by ultraviolet-visible spectroscopy, J. Taiwan Instit.
- 647 Chem. Eng. 40 (5) (2009) 524–527.
- 33. L. Jena, D. Soren, P. K. Deheri, P. Pattojoshi, Preparation, characterization and optical
- properties evaluations of bamboo charcoal, Current Research in Green and Sustainable
- 650 Chemistry 4 (2021) 100077.
- 34. Q. S. Yan, M. M. Xu, C. P. Lin, J. F. Hu, Y. G. Liu, R. Q. Zhang, Efficient photocatalytic
- degradation of tetracycline hydrochloride by Ag3PO4 under visible-light irradiation,
- Environ Sci Pollut Res. Int. 2016 23(14):14422-14430.

- 35. W. Zhang, L. Zhou, J. Shi, H. Deng, Synthesis of Ag3PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation, Catalysts (2018) 8, 45-60.
- 36. M. I. Shinger, A. M. Idris, D. D. Qin, H. Baballa, D. Shan, X. Lu, Simulated sunlight induced the degradation of rhodamine B over graphene oxide-based Ag3PO4@AgCl, Int.
- 659 J. Mater. Sci. Appl. 2015; 4(4): 246-255.
- 37. L. Zhang, L. Tu, Y. Liang, Q. Chen, Z. Li, C. Li, Z. Wanga, W. Li, Coconut-based activated
 carbon fibers for efficient adsorption of various organic dyes, RSC Adv., 2018, 8, 42280–
 42291.
- 38. P. Dong, G. Hou, C. Liu, X. Zhang, H. Tian, F. Xu, X. Xi, R. Shao, Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination, Materials, 2016, 9, 1– 17.
- 39. M. Ge, N. Zhu, Y.P. Zhao, J. Li, L. Liu, Sunlight-assisted degradation of dye Pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res, 2012, 51, 5167-5173.
- 40. Y. Bu, Z. Chen, Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light, ACS Appl. Mater. Interfaces, 2014, 6, 17589–17598.
- 41. M. Teranishi, S. Naya, H. Tada, In situ liquid phase synthesis of hydrogen peroxide from
 molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst, J.
 Am. Chem. Soc., 2010, 132, 7850–7851.
- 42. Y. Ji, Y. Luo, Structure-dependent photocatalytic decomposition of formic acid on the anatase TiO₂ (101) surface and strategies to increase its reaction rate. J. Power Sources 306 (2016) 208–212.
- 43. S. Civiš, M. Ferus, M. Zukalová, P. Kubát, L. Kavan, Photochemistry and gas-phase FTIR
 spectroscopy of formic acid interaction with anatase Ti¹⁸O₂ nanoparticles. J. Phys. Chem.
 C 116 (2012) 11200–11205.
- 44. M. Navlani-García, D. Salinas-Torres, K. Moria, Y. Kuwahara, H. Yamashita,
 Photocatalytic approaches for the hydrogen production via formic acid decomposition,
 Topics in Current Chemistry, Top Curr Chem (Z) 377 (2019) 27.
- 45. V. V. Chesnokov, P. P. Dik, A. S. Chichkan, Formic acid as a hydrogen donor for catalytic
 transformations of tar, Energies 13(17) (2020) 4515.

- 685 46. W. Wang, B. Li, H.-J. Yang, Y. Liu, L. Gurusamy, L. Karuppasamy, J. J. Wu,
 686 Photocatalytic hydrogen evolution from water splitting using core-shell structured
 687 Cu/ZnS/COF composites, Nanomaterials 11 (2021) 3380.
- 47. L. P. Yang, G. H. Dong, D. L. Jacobs, Y. H. Wang, L. Zang, C. Y. Wang, Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides, J. Catal., 2017, 352, 274–281.
- 48. J. Jiang, X. Zhang, P. Sun, L. Zhang, ZnO/BiOI Heterostructures: Photoinduced charge transfer property and enhanced visible-light photocatalytic activity, J. Phys. Chem. C, 115
 (2011) 20555-20564.
- 49. Z. Chen, W. Wang, Z. Zhang, X. Fang, High-efficiency visible-light-driven Ag3PO4/AgI
 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic
 activity. J Phys Chem C 117 (2013) 19346–19352.
- 50. T. Liu, L. Wang, X. Lu, J. Fan, X. Cai, B. Gao, R. Miao, J. Wang, Y. Lv, Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways, RSC Adv. 7 (2017) 12292–12300.