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(2.3.19). Also shown is the variance calculated using the exact values of CH(x)

and G(x, y) given in (2.2.3) and (2.2.10) respectively. These are used to solve
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3.11 Variance of the concentration in two dimension, where columns (a) and (b) use

normally-perturbed and uniformly-random sink locations respectively. Figures

(i) and (ii) show the sample variance (taken from Figures 3.1(f) and 3.2(c))
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and uniformly-random sink locations respectively. Figure (a)(iii) shows both the
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4.2 Difference between the sample mean [E{G,E}[C(x1;ω)]] and the homogenized so-
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column (b) depicts the solute covariance in terms of the correction KE
Ĉ1
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4.7 Difference between Da and Daeff as the parameters PeL, Da, σ and ` change, as
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Solute transport often takes place in spatially complex domains with inherently heterogeneous
structures, such as in biological tissue and geophysical flows. Due to the complexity of transport
networks a variety of mathematical problems exist across a range of lengthscales. We seek to
characterise the effect of disordered multiscale spatial structures on solute uptake in the presence
of advection and diffusion.

We first examine a one-dimensional advection-diffusion-uptake model for solute transport past
an array of point sinks with first-order kinetics. When an advection-diffusion balance exists on
the microscale we quantify the impact of disordered sink locations on the solute concentration
by finding corrections to a deterministic homogenized solution using a Green’s function method.
This non-standard approach to homogenization characterises uncertainty in the solute concen-
tration due to disordered sink locations and captures influences from multiple lengthscales.
When advection dominates on the microscale, a staircase structure is exhibited by individual
concentration profiles due to boundary layers forming upstream of sink locations. This causes
concentration profiles to be non-Gaussian, resulting in moments being poor predictors of dis-
order in solute concentration. Therefore, we calculate the median and credible intervals for
the concentration using the inverse of the cumulative distribution function for sink locations.
Credible intervals preserve the staircase structure exhibited by individual concentration profiles
and capture their non-Gaussian behaviour.

Next, we consider a more direct approach that quantifies the impact of a disordered sink func-
tion on solute concentration in one, two and three spatial dimensions. The sink function is
represented by an ensemble of discrete sink locations with each sink having finite width. We
develop a ‘moments-based’ approach, which gives a direct mapping between the first two mo-
ments of the sink distributions and the first two moments of the solute concentration. Non-local
corrections to a deterministic homogenized solution are found by successively inverting linear
operators using an appropriate Green’s function, with a region of influence being given by
inverting this Green’s function. For asymptotically small sink widths we find that periodic
corrections scale with the sink width according to corresponding singularities in the Green’s
function. By normally perturbing sinks from a periodic arrangement we find that disorder
smooths out singularities when taking averages. By prescribing sink locations using a uniform
distribution we find that the dominant correction varies smoothly in space but is amplified by
asymptotically small sink widths in two- and three-dimensional domains.

Finally, we consider using a continuous sink function described by a Gaussian process with
both Gaussian and exponential covariance functions in one, two and three dimensions. For
asymptotically large correlation lengths, non-local corrections in the moments-based approach
are readily evaluated and provide an upper bound on the variance of solute distributions. For
asymptotically small correlation lengths the (co)variance of corrections is simplified using a
δ-function approximation, allowing an effective uptake parameter to be used to predict the
expected concentration. As the covariance function for uniformly-random sink locations is
Gaussian in two and three spatial dimensions we calculate an effective uptake parameter. Its
use is illustrated for two applications: solute transport within maternal blood through the
intervillous space of the placenta and oxygen uptake by mitochondria within placental tissue.
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Chapter 1

Introduction

Solute transport in the natural world often takes place in spatially complex and heterogeneous

systems with inherently random structures. This transport is an essential part of life and is often

seen in both physiological and geophysical systems. Due to occurring over multiple lengthscales

the transport often becomes complex, posing difficulties in capturing the impact of fine-scale

effects on the effective macroscopic description. To further complicate matters, disorder within

systems can require corrections to (and fluctuations about) the mean to characterise solute

transport. This is a topic of broad interest, with applications to geophysical flows, biological

tissue (e.g. placentas, lungs, tumours and plant roots), industry (e.g. filtration, biofilms and

lithium-ion batteries) and composite materials to name a few. This thesis will seek to charac-

terise the effects of disordered multiscale spatial structures on the solute concentration within

these complex transport networks, focusing in particular on the role of spatially non-uniform

solute uptake.

1.1 Relevant examples of solute transport within disor-

dered domains

Consider the example of solute transport within a human placenta. Here, blood gases and

nutrients are exchanged between fetal and maternal circulatory systems via complex, three-

dimensional disordered vascular networks. On the fetal side, blood exits the fetus via two

umbilical arteries, which separate into multiple branches and form complex tree-like structures

19
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(a) (b)

Figure 1.1: (a) Anatomy of fetal and maternal circulation in the human placenta (Serov et al.,

2015). (b) Anatomy of pulmonary vessels and airways in the human lung (Gray, 1918).

known as villous trees, see Figure 1.1(a). These trees protrude out of the fetal plate and

invade the intervillous space (IVS), which contains a pool of maternal blood. This allows solute

exchange between the fetal and maternal circulatory systems to occur at terminal villi, which

are located at the peripheral branches of villous trees. Due to the complexity of transport

networks a variety of mathematical problems exist across a range of lengthscales, as shown in

Erian et al. (1977), Aifantis (1978) and Jensen and Chernyavsky (2019).

The respiratory system is another well-documented biological example, where air is inhaled

into the lung through a network of complicated bifurcating airways. Air travels through the

branching network until it reaches terminal alveoli, which provide a large surface area and

contain pulmonary capillaries for gas exchange to occur, see Figure 1.1(b). The alveoli exchange

oxygen for waste carbon dioxide with pulmonary capillaries via diffusion, from where oxygen is

then transported through a branching network of pulmonary veins into the systemic circulatory

system. Numerous mathematical models of gas exchange in the human lung exist, with many

focusing on the complexity of transport due to the airway and vascular structure, see Zhang

and Kleinstreuer (2001), Freitas and Schröder (2008) and Kleinstreuer and Zhang (2010) for

example.

Biofilms consist of syntrophic microorganisms (often including bacteria) which live in colonies.

Hall-Stoodley et al. (2004) found that the complex structure of these colonies aid a biofilm’s

ability to survive in hostile environments. Biofilms are of great interdisciplinary interest due to

being found in two-thirds of bacterial infections (Del Pozo et al., 2008), being responsible for the
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biocorrosion of metals (Beech and Sunner, 2004) and being used to adsorb and metabolise pol-

lutants during sewage treatment (Flemming, 1993). The transport of chemical species through

biofilms is a complex process due to it occurring over multiple lengthscales in a disordered

domain (Costerton, 1999; Dalwadi et al., 2018).

Filters can be found throughout industry, where they are used for removing impurities when

treating surface water (Zularisam et al., 2006), processing and preserving food without chemical

treatment (Rektor and Vatai, 2004) and removing excess waste and water from blood during

kidney dialysis (Lakshmi et al., 2014). Here, non-periodic structures can be seen to improve

filtration of solute by reducing the likelihood of blockage whilst maintaining the rate of solute

removal (Datta and Redner, 1998; Dalwadi et al., 2015). Similarly for lithium-ion batteries, the

electrode’s complex porous structure has been shown to impact the efficiency, reliability and

life expectancy of modern batteries (Garcia and Chiang, 2007).

For the examples above, transport occurs over multiple lengthscales in domains that often have

an inherently random structure. This causes difficulty when modelling transport mathemat-

ically or computationally as the complex structure of the domain requires fine grid spacing

and the disorder can require multiple realisations to be produced. We will now outline some

well-documented mathematical techniques for modelling transport, along with the benefits and

drawbacks of each approach. Following this, we outline how homogenization and spatial av-

eraging can be used to find macroscopic solutions which include effects from the microscopic

structure. The techniques of volume averaging and homogenization will be considered, both of

which prevent the need for solving the mathematical problem in full.

1.2 Mathematical approaches for modelling solute trans-

port

Existing mathematical models of solute transport will be divided into two broad categories:

continuum- and individual-based. Continuum models are commonly used due to being less

computationally expensive and allowing existing methods of analysis to be applied, although

do neglect effects due to individual interactions and properties (Panasenko and Volpert, 2016).

Therefore consideration is required before modelling systems using either approach, with some

studies opting to couple individual- and continuum-based models (Smith and Yates, 2018).
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1.2.1 Continuum-based models

Most continuum-based models consist of a system of ordinary differential equations (ODEs) or

partial differential equations (PDEs), which are used to govern the system’s behaviour, such

as the flow of a fluid or the transport of a solute. Many continuum-based models study the

quantity of interest using the continuity equation, which takes the general three-dimensional

form

∂ρ

∂t
+∇ · j = σ, (1.2.1)

where ρ, j, t and σ represent the quantity per unit volume, the flux per unit area, time and

the generation or removal of the quantity per unit volume respectively. When considering the

transport of a solute, ρ, j, t and σ commonly have the dimensions mol×m−3, mol×m−2×s−1,

s and mol×m−3×s−1 respectively. When σ > 0 (i.e. quantity is generated) the final term in

(1.2.1) is referred to as a source and when σ < 0 (i.e. quantity is removed) it is referred to

as a sink. Advective and diffusive fluxes are often considered for solute transport, which will

be represented by jA and jD respectively. Advective flux represents the transport of solute by

bulk motion and is given by jA = uρ, where u is the flow velocity vector field. The diffusive

flux represents the net movement of particles from a higher to a lower concentration due to

random motion. It is often given by Fick’s law, which states that the flux of a solute (relative

to the bulk motion) in the system is proportional to the local concentration gradient (Fick,

1855). Fick’s law gives the diffusive flux term as jD = −D∇ρ, which assumes that particles

diffuse according to a Markovian process. Here, D represents a diffusion tensor for anisotropic

media but is simplified to a constant coefficient D for isotropic media. Although this form is

used widely when modelling transport processes, it should be noted that non-Fickian diffusion

can be observed within solids (Shewmon, 1963), porous media (Berkowitz et al., 2006; De Anna

et al., 2013; Alim et al., 2017) and other structures, therefore an alternative approach may be

required.

When modelling solute transport through porous media, advective and diffusive fluxes are often

used, i.e. j = jA + jD. By assuming Fickian diffusion occurs, (1.2.1) takes the well-known form

of the advection-diffusion-reaction equation. Let ρ from (1.2.1) represent the concentration of

solute per unit volume, notated by C(x, t). Also, let solute uptake σ(x, C) be dependent on

the concentration at a given x location, then (1.2.1) reduces to

∂C

∂t
+∇ · (−D∇C + uC) = σ(x, C), (1.2.2)

which is dependent upon the flow velocity u (m×s−1), the diffusion tensor D (m2×s−1) and the
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sink term σ(x, C) (mol×m−2×s−1). Equation (1.2.2) says that the rate at which concentration

changes inside a volume is given by the flow and diffusion into and out of the volume, along with

the creation and consumption of concentration inside the volume. The velocity u may be known,

or may depend on other differential equations which are coupled with (1.2.2). The advection-

diffusion-reaction equation given in (1.2.2) has a variety of applications, such as modelling car

traffic flow (Lighthill and Whitham, 1955), population dynamics (Sibert et al., 1999; Adam and

Sibert, 2002; Petrovskii and Li, 2003) and chemotaxis observed in bacteria (Dillon et al., 1995;

Ford and Harvey, 2007) to mention a few.

When modelling flow through natural disordered media, u, D and σ are often functions of

the environment. If they involve multiple lengthscales or spatial disorder, these variables can

become highly complex. This results in computational methods becoming inefficient and (1.2.2)

being potentially hard to solve, both analytically and numerically. Therefore upscaling or

averaging techniques are commonly used to find a simple effective description. When upscaling

the advection-diffusion-reaction equation, one aim is to find effective macroscopic parameters,

for which a large number of methods exist (Cushman et al., 2002). One example is the Taylor

dispersion effect, where shear flow with transverse diffusion can increase a solute’s effective axial

diffusivity (Taylor, 1953). The shear smears out solute concentration in the direction of the

flow, causing the rate at which solute spreads in the flow direction to increase. This principle

has been generalised to flows through periodic porous media (Brenner, 1980; Edwards et al.,

1991; Salles et al., 1993; Auriault and Adler, 1995). Another example is given in Pavliotis and

Stuart (2008), who upscale the advection-diffusion equation for a spatially oscillating velocity

field.

Some studies consider the convergence of the upscaled descriptions, where it is found that suffi-

ciently strong spatial disorder leads to macroscopic descriptions becoming insufficient, meaning

a stochastic system of equations is instead required (Bal, 2011). It is therefore beneficial to

study models with both spatial disorder and lengthscale separation to quantify fluctuations

caused when discrete-to-continuous homogenization is used. Work on this has begun, for exam-

ple, solute transport past a one-dimensional array of spatially disordered point sinks has been

investigated (Chernyavsky et al., 2011, 2012; Russell et al., 2016; Russell and Jensen, 2020).

1.2.2 Individual-based models

For individual-based models, the primary concern is the quantity of an individual entity, which

could represent a particle, molecule, animal, etc. Some models adopt a deterministic approach
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whilst others allow the behaviour of an individual to be probabilistic by using a stochastic

approach. By considering spatial hopping on a lattice, models often describe the time evolution

of probability in terms of a master equation, which ensures that probability is conserved. This

is done by assuming the probability of being in a state n depends on the transition rate of

individuals from a different state to the state n and from the state n to a different state. These

states can represent the number of particles in a spatial location, the quantity of a species in

an ecosystem, etc. The master equation is commonly given by (Van Kampen, 1992)

dPn(t)

dt
=
∑
m 6=n

[
Wm→n(t)Pm(t)−Wn→m(t)Pn(t)

]
, (1.2.3)

where Pn(t) represents the probability of being in a state n at a time t and Wi→j(t) the

transition rate (probability per unit time) from a state i to a state j at a time t. When all

Wi→j are independent of time the transition rates are treated as a memoryless property, which

represents a kinetic scheme with Markovian dynamics. Thus, at any given time, the future

state only depends on the current state with the past state being neglected. A classic example

of a Markovian process is Fickian diffusion, which describes the movement of a solute from a

region of high to low concentration at a rate proportional to the concentration gradient and

independent of previous states.

When transition rates are dependent on time and so have a memory of the system’s previous

states the process is known as non-Markovian. If diffusion has non-Markovian dynamics we

find that anomalous (non-Fickian) diffusion takes place. This can often be described using a

power law, showing how the mean squared displacement (σr
2) relates to the diffusion coefficient

(D). For σr
2 ∼ Dtα, when α = 1 this represents typical (Fickian) diffusion, when α < 1 this

represents sub-diffusion and when α > 1 this represents super-diffusion. Anomalous diffusion

has recently received attention in literature for crowded systems, which has applications to

porous media (Berkowitz et al., 2006; Fomin et al., 2011; De Anna et al., 2013). The crowded

systems see regions of slow and rapid flow due to fluid being ‘trapped’ in sections of the domain

(Havlin and Ben-Avraham, 2002), which results in intermittent transport due to a non-uniform

flow field. This is of particular interest when modelling geophysical flows (Scher and Montroll,

1975; Havlin and Ben-Avraham, 2002; Cushman et al., 2002; Berkowitz et al., 2006) and is often

described using a continuous-time random walk (CTRW) model (Montroll and Weiss, 1965).

Here, processes have arbitrary waiting times and varying jump lengths between states, with a

generalised master equation being used to account for the system’s history.

One method commonly used for simulating transport using (1.2.3) is the Gillespie algorithm, as

developed in Gillespie (1976, 1977), although other stochastic simulation algorithms exist, see
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Gillespie (2007) for a review. However, these approaches become computationally expensive

when a system becomes large, such as for transport over multiple lengthscales. Although

this can be mitigated by deriving asymptotic descriptions in terms of differential equations, see

Van Kampen (1992) and Gardiner (2009), these approaches remain considerably more expensive

to compute and harder to analyse when compared to adopting a continuum approach.

Hybrid models which combine the two approaches exist, which allow an individual-based model

to be used for regions of the spatial domain which require high-resolution, with a continuum-

based model being used elsewhere. These approaches offer a fine-grained computationally ex-

pensive description when required, with a coarse-grained computationally cheaper description

elsewhere (Flekkøy et al., 2000; Delgado-Buscalioni and Coveney, 2003; Alpkvist et al., 2006).

Hybrid models have gained popularity in recent years due to offering good agreement when com-

pared to using a full individual-based model, but have a significant reduction in computational

cost (Smith and Yates, 2018).

For illustrative purposes, let us now consider an individual-based model for the evolution of

solute particles at a single site in a one-dimensional disordered domain. This will then be

generalised to a continuum-based model, which describes the evolution of particles throughout

the domain. This example will be used to outline how continuum descriptions are derived and

assumptions that are required for their validity.

1.2.3 Example: A one-dimensional individual- to continuum-based

model for solute transport through a disordered domain

Consider modelling solute transport through a porous medium using an individual-based model

in one dimension, as done in Russell et al. (2016). Let there be M discrete sites on a lattice

of length L, where sites are periodically located and set a distance d apart, see Figure 1.2.

Consider one species of particles moving through the domain and let ni represent the number

of particles at the site i at a time t, where i = 1, 2, . . . ,M . Let each particle hop one space to

the right at a constant rate p+ and one space to the left at a constant rate p− with there being

no particle-particle interactions. Assume that particles flow into the system at a rate q and are

allowed to leave the system at the left and right boundaries respectively. The total hopping

rate travelling right from a site i is p+ni and travelling left from a site i is p−ni, see Figure 1.2.

It will be assumed that particles at a site i can only travel to the sites i− 1 and i+ 1.

Let particles be removed from the system at N randomly located sites, known as point sinks,



CHAPTER 1. INTRODUCTION 26

 

L

d

q

p+n1

p−n2

p+n2

p−n3

p+n3

p−n4

p+nM-1

p−nM

p+nM

S1n1 S2n3 SNnM

Figure 1.2: Illustration depicting the stochastic hopping of particles using M sites which are a

distance d apart, where site i contains ni particles. Particles can move to neighbouring sites

and move to the right at a rate p+ and to the left at a rate p−. Located at N sites are sinks,

which demonstrate a removal process through the domain, where the jth sink has a strength Sj .

For illustrative purposes, k = 1 and ∆N = M − 1 are used for the first and final sink locations

respectively, although sink locations can be distributed randomly throughout the domain.

using first-order uptake kinetics (i.e. uptake will depend linearly on the number of particles at

each sink location). Sinks will be located at sites k + ∆j , where the kth site contains the first

sink and the random variable ∆j represents the number of sites away from k the jth sink lies,

with j = 1, 2, . . . , N and k + ∆N ≤M . Let sink j have a strength Sj , so particles are removed

by the jth sink at a rate Sjnk+∆j . Then the rate at which particles vary at a site i is given by

dni
dt

= p+(ni−1 − ni) + p−(ni+1 − ni)−
N∑
j=1

δ(i− k −∆j)Sjni, (1.2.4)

where δ represents the Dirac delta function (δ-function). This takes the form of the master

equation given in (1.2.3), using Pn(t) = ni and the transition rates as

Wα→β(t) =


p− if α− β = 1

p+ if α− β = −1

0 otherwise

, (1.2.5)

modified by an additional sink term that is introduced to remove particles when located at a

site i = k + ∆j for j = 1, . . . , N .

The model (1.2.4) describes the evolution of particles at each site i. This can be generalised

to a continuum-based model which instead describes the evolution of particles throughout the
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domain. Let ni represent the concentration of a solute at a point x for a given time t, i.e.

ni−1 = C(x−d, t), ni = C(x, t) and ni+1 = C(x+d, t). Also let x = ξj represent sink locations

for j = 1, . . . , N . Then by assuming M is asymptotically large we can generalise the individual-

based model given in (1.2.4) to a continuum-based model. By using (1.2.4), Taylor expanding

both C(x + d, t) and C(x − d, t) about x and allowing d to be asymptotically small compared

to the average inter-sink distance we obtain

∂

∂t
C(x, t) =p+(C(x− d, t)− C(x, t)) + p−(C(x+ d, t)− C(x, t))

− C(x, t)

N∑
j=1

δ(x− ξj)Sj

=p+

(
−dCx(x, t) +

1

2
d2Cxx(x, t) + . . .

)
+ p−

(
Cx(x, t) +

1

2
d2Cxx(x, t) + . . .

)
− C(x, t)

N∑
j=1

δ(x− ξj)Sj .

Then by letting

U = (p+ − p−)d and D =
1

2
(p+ + p−)d2 (1.2.6)

be the mean advective velocity and the diffusion coefficient respectively gives

Ct = −UCx +DCxx − C
N∑
j=1

δ(x− ξj)Sj , (1.2.7)

where O(d3) terms have been neglected. Note that (1.2.7) recovers a one-dimensional version

of the advection-diffusion-reaction equation given in (1.2.2) with a uniform advective velocity

U .

Many methods exist for solving advection-diffusion-reaction equations, although due to the

complexity of disordered media, u, D and σ in (1.2.2) are often complex functions. This makes

it unlikely for an exact solution to exist, with computational methods often becoming inefficient.

It is therefore beneficial to use spatial averaging and homogenization techniques to approximate

a system’s leading-order behaviour without fully evaluating C(x, t) given in (1.2.2).

1.2.4 Spatial averaging and homogenization techniques

Spatial averaging and homogenization have proven to be useful tools for modelling solute trans-

port due to capturing the system’s leading-order behaviour without the need to solve the system

of equations in full. This is often advantageous for problems with multiple lengthscales, as av-

eraging vastly reduces the computational cost but allows effects from the fine-scale structure
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to impact the macroscale solution. The two most common methods are volume averaging (Ru-

binstein and Torquato, 1988; Quintard and Whitaker, 1988) and homogenization via multiscale

asymptotics (Papanicolau et al., 1978). Both methods are outlined in the review by Davit et al.

(2013) and can be used for systems described by ordinary differential equations (ODEs), partial

differential equations (PDEs) and stochastic differential equations (SDEs) among others. Note

that a variety of other methods exist, such as mixture theory (Hassanizadeh and Gray, 1979,

1980), moment methods (Brenner, 1980, 2013) and central limit methods (Bhattacharya, 1982)

to name a few. For a broad review of spatial averaging and homogenization techniques, see

Cushman et al. (2002) and Pavliotis and Stuart (2008).

Let us now summarise the methodology behind volume averaging and homogenization. At the

core of volume averaging lies the decomposition of the problem into two components, both

defining macroscale variables via spatial averaging and later including contributions from per-

turbations. To find the spatial average, a common approach is to use the moving volume

average. Denote ν(x) as the averaging set at a point x and V its volume (i.e. V =
∫
ν(x)

dV ).

Then for any ψ, the moving volume average is given by

〈ψ(x, t)〉 =
1

V

∫
ξ∈ν(x)

ψ(ξ, t) dV. (1.2.8)

Using this notation, we can decompose some concentration C(x, t) into

C(x, t) = 〈C〉(x, t) + C̃(x, t), (1.2.9)

where 〈C〉 is the moving volume average and C̃ is a perturbation correction to be found. So

here we need to find a representative volume element (RVE) for 〈C〉, which gives a portion

of the domain over which parameter fields are spatially quasi-stationary. This is followed by

solving over unit-cells to find the correction C̃. Note that the RVE and unit-cells can differ,

where a unit-cell does not have to be a subset of the domain and can be found using images of

porous media (Davit et al., 2013).

Although volume averaging gives effective transport equations and coefficients without assuming

periodicity of the medium, it requires closure assumptions using heuristic estimates for terms

in the governing equation. These closure assumptions normally assume the perturbations given

by C̃ in (1.2.9) is small in comparison to the average 〈C〉 (Whitaker, 1999), an assumption

which can become problematic when large spatial heterogeneity exists. One drawback to the

volume averaging approach is that corrections of higher order than 〈C〉 are neglected, which

may be of importance when multiple lengthscales exist (Pavliotis and Stuart, 2008).
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For the multiscale asymptotic approach, the underpinning methodology is to let l and L char-

acterise the microscale and macroscale respectively. We assume a periodic micro-structure and

then consider the limit ε → 0, where ε = l/L. To begin, the concentration C(x, t) is assumed

to have two-scale dependence on a short lengthscale x and a long lengthscale X = εx, i.e.

C(x, t) = Ĉ(x,X, t). This has been shown to construct uniformly valid approximations of func-

tions (Johnson et al., 2011) and is often referred to as the method of multiple scales. A formal

two-scale expansion of C(x, t), given by

C(x, t) = Ĉ(x,X, t) = C(0)(x,X, t) + εC(1)(x,X, t) + ε2C(2)(x,X, t) + . . . , (1.2.10)

is then assumed, treating x and X as independent variables, where C(n)(x,X, t) = O(1) for

n = 0, 1, 2, . . . as ε → 0. So by assuming the two lengthscales are independent, along with

breaking the domain into multiple unit-cells of width ε and assuming periodicity over each

unit-cell, the problem can be separated into a sequence of sub-problems for different orders of

ε and solved independently. Throughout this thesis, this approach will be referred to as the

classical approach to homogenization.

One drawback of using the classical approach is that it requires the assumption of two-scale

dependence. When more than two lengthscales exist, such as when boundary layers are present,

this approach may fail to capture influences at the appropriate order. The assumption of unit-

cell periodicity can also be a cause for concern, with some studies modifying the classical

approach by relaxing this assumption, thereby allowing the cell size to vary on the macroscopic

scale (Van Noorden and Muntean, 2011; Chapman and McBurnie, 2011). However, when

modelling transport through strongly disordered porous media there may be no such unit-cell

structure present, resulting in an alternate approach being required. A summary of the two

spatial averaging approaches can be found in Table 1.1.

volume averaging Multiscale asymptotics

Expansion C(x, t) = 〈C〉(x, t) + C̃(x, t) C(x, t) =
∑
i ε
iC(i)(x,X, t)

Scalings Appropriate for all scalings Appropriate for one scaling

Set up One problem Successive problems

Averaging volumes A representative volume element Unit-cells

followed by unit-cells

Drawbacks Neglects higher order terms Assumes two-scale dependence

Table 1.1: Table summarising the differences between volume averaging and multiscale asymp-

totics, which closely follows Table 1 in Davit et al. (2013).

One disadvantage for both approaches is how disordered domains cannot be accounted for

without considering complicated extensions. Consider perturbing the velocity and concentration
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away from their means by some random variable for the multiscale asymptotic approach, i.e.

u = 〈u〉+ û and C = 〈C〉+ Ĉ. Then the mean of uC is given by

〈uC〉 = 〈(〈u〉+ û)(〈C〉+ Ĉ)〉 = 〈〈u〉〈C〉〉+ 〈〈u〉Ĉ〉+ 〈û〈C〉〉+ 〈ûĈ〉 = 〈u〉〈C〉+ 〈ûĈ〉,

where the mean of each perturbation û and Ĉ is zero by definition. So when considering the

advection term in (1.2.2), we obtain

∇ · (uC) = ∇ · (〈u〉〈C〉) +∇ · (〈ûĈ〉). (1.2.11)

This shows that large perturbations of u and C may have a large impact on the concentration

field. So when the perturbations û and Ĉ become large due to spatial disorder on the microscale,

non-standard approaches to homogenization are required. One alternate approach to classical

homogenization is a weak disorder expansion (Dagan, 1984; Russell and Jensen, 2020), which

includes the influence of disorder using an integral approach to homogenization. For a more

complete review of alternative homogenization and spatial averaging methods, see Pavliotis and

Stuart (2008).

We will now discuss some mathematical methods for modelling flow and transport within porous

media and other disordered domains. Due to the domain’s structure, the multiple lengthscales

present and the spatial disorder, modelling flow and transport in porous media has given rise

to a variety of problems with a vast range of applications.

1.3 Mathematical modelling of flow and transport within

porous media and other disordered domains

Flow and transport through porous media are of particular interest due to their diverse applica-

tions. A porous medium consists of a matrix, an often complex structure, and pores, which are

voids typically filled with fluid. It is commonly characterised by its porosity, permeability and

stiffness among other features. Porous media have a variety of applications, including modelling

geophysical flows (such as aquifers, groundwater flow and oil reservoirs (Bear, 2013)), blood flow

in the human placenta (Erian et al., 1977; Aifantis, 1978; Chernyavsky et al., 2010), airflow in

the human lung (Lande and Mitzner, 2006; Kuwahara et al., 2009; Miguel, 2012) and solute

removal in filters (Datta and Redner, 1998; Dalwadi et al., 2015). Models are often concerned

with the flow of a fluid, transport of a solute or the transfer of heat through the medium (Vafai,

2015).

From Figure 1.3 we see the porous structure, multiple lengthscales and spatial heterogeneity
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(a) (b)

Figure 1.3: (a) Cross section of the villous trees in a human placenta (Chernyavsky et al., 2011).

(b) Cross section of the parenchyma in a human lung (Lande and Mitzner, 2006).

of both the human placenta and lung. In the human placenta solute is transported within

maternal blood through the intervillous space via advection and diffusion, with solute exchange

occurring at the site of terminal villi where the vasculosyncytial membrane is thinnest (Wang,

2010). Figure 1.3(a) shows a cross section of the intervillous space, demonstrating the complex

structure of villous networks. This structure is often treated as a porous medium due to its

multiscale nature, where pores represent the intervillous space (IVS) and the matrix represents

villous trees. Similarly, in the human lung air is transported through airways, which branch

approximately 20 times (Kleinstreuer and Zhang, 2010) before reaching peripheral alveoli. The

alveoli are the site for gas exchange between the lung and circulatory system, where the lungs of

an adult are thought to have over 100 million alveoli (Ochs et al., 2004) with the alveolar walls

being less than 10µm thick (Tsunoda et al., 1974). Figure 1.3(b) shows a cross section of the

human lung parenchyma and demonstrates its porous structure and the multiple lengthscales

over which transport occurs.

1.3.1 Modelling flow through disordered domains

When concerned with the flow of a fluid through a porous medium, models commonly adopt

Darcy’s law. This was originally developed experimentally for the flow of water through sand

by Darcy (1856) and states that an incompressible fluid flowing through pores has a linear

relation between the volume-averaged velocity and pressure gradient. This can be expressed

mathematically as the mass conservation incompressibility condition

∇ · u = 0,
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and the momentum conservation equation (Darcy, 1856)

u = −K
µ
∇P,

where u, µ, P and K represent the volume-averaged flow velocity, viscosity of the fluid, pressure

of the fluid and the average hydraulic permeability of the medium respectively. Darcy’s law can

be derived directly from the Navier-Stokes equations using various techniques, including volume

averaging (Whitaker, 1986; Rubinstein and Torquato, 1988) and homogenization via a two-

scale expansion (Keller, 1977; Burridge and Keller, 1981). However, derivations often involve

identifying a representative, periodic unit-cell or volume element to perform spatial averaging

and use the assumption of periodicity at the microscale. Although Darcy-like models have been

used for disordered porous media (Rubinstein and Torquato, 1989; Beliaev and Kozlov, 1996;

Du and Ostoja-Starzewski, 2006), studies usually perform ensemble averaging (as opposed to

spatial averaging) over a representative volume element and assume that disorder impacts the

microscale and not the macroscale.

Adaptations of Darcy’s law for modelling flow through porous media do exist. Two examples

are proposed in Forchheimer (1901) and Brinkman (1949), which again assume the fluid is

incompressible but give the relations(
1 +

ρ

µ
β|u|n−1

)
u = −K

µ
∇P (1.3.1)

and

u = −K
µ

(
∇P − µb∇2u

)
(1.3.2)

respectively, where ρ, β, n and µb are the density of the fluid, Forchheimer drag coefficient,

Forchheimer velocity exponent and Brinkman effective viscosity respectively. Here, both β and

µb are given as functions of the average hydraulic permeability K and the volume fraction φ of

the medium. Forchheimer’s equation given in (1.3.1) is commonly used for weak inertia flows,

whereas Brinkman’s equation given in (1.3.2) offers a coupling of Darcy with Stokes flow and

is commonly used near the boundaries of porous media. When poroelasticity is of importance,

one common method is presented in Biot (1941), which couples Darcy’s law for the fluid with

the linear elasticity of the medium. This is normally done for an isotropic and homogeneous

porous medium with an incompressible fluid. Biot (1941) found that, for small deformations

of the medium, the leading-order problem for the fluid becomes independent of the elasticity

problem. We should note that, as for the Darcy approach, models presented in Forchheimer

(1901) and Biot (1941) have been obtained via homogenization techniques which again require

the assumption of periodicity on the microscale (Mei and Auriault, 1991; Balhoff et al., 2010;
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Auriault and Sanchez-Palencia, 1977; Burridge and Keller, 1981). However, the model presented

in Brinkman (1949) is derived phenomenologically, with Nield et al. (2006) claiming the model

is only appropriate when the volume fraction of the medium is suitably small.

Some models focus on calculating estimates of an effective viscous drag term when considering

flow past an array of impenetrable spheres and cylinders. This has been done using a Green’s

function approach with Stokes equation (Hasimoto, 1959) and using lubrication theory (Keller,

1964) among other methods. In contrast, a vast amount of studies have been concerned with

the effect of spatially varying porosity on the flow rate through porous media (Du Plessis

and Masliyah, 1991; Sahimi, 1993; Keller, 2001). This is of particular interest in geophysical

flows, where complex networks are formed between pores which create regions of slow and

rapid transport. Russell (2017) considered the macroscopic flow quantities in porous media

using a collection of impenetrable cylinders in a two-dimensional domain. When introducing

weak disorder to cylinder locations they found changing a cylinder’s size had a longer-range

impact than changing its location or shape. For strong disorder, they found rapid-flow channels

appeared within the domain. These results demonstrate how microscopic flow properties can

influence the far-field behaviour of velocity fields, meaning caution is required when assuming

two-scale dependence and Darcy’s flow in disordered media. For a more detailed overview of

flow in porous media, see Sahimi (2011).

1.3.2 Modelling solute transport through disordered domains

Solute transport within porous media often occurs over a variety of lengthscales. As a result,

mathematical models commonly use spatial averaging to find macroscopic solutions when a

fine microscopic structure exists, as discussed in Section 1.2.4. One popular method is to

use homogenization theory, where classic results were originally developed for porous media

with a periodic microstructure (Bakhvalov, 1975; Berdichevsky, 1975; Papanicolau et al., 1978;

Sánchez-Palencia, 1980), but were then generalised to spatially homogeneous random media

(Keller, 1977; Kozlov, 1979; Papanicolaou, 1979). However, these methods are usually based

on a two-scale expansion and assume unit-cell periodicity, which can cause drawbacks when

transport occurs over multiple lengthscales through disordered media.

Solute transport through porous media with spatially varying porosity is an area of active

research, where a filter having porosity that decreases with depth is thought to be more efficient

at removing solute from a fluid than one with a strictly periodic structure (Dalwadi et al., 2015,

2016). The optimal design for a filtration membrane is unknown, but Pereira et al. (2021)
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predicted it to depend on the angle, position, thickness and permeability of the membrane.

Using a combination of numerical and asymptotic approaches, they found the optimal membrane

has pores either centred and diagonal across, or angled and in the corner of, the domain. Iliev

et al. (2020) found that a classical approach to homogenization for a reactive flow through

a catalytic membrane in the limit of strong reaction fails. Therefore an alternative approach

to homogenization involving an auxiliary eigenvalue problem was developed. These studies

considered solute transport through porous media when multiple lengthscales are involved.

However, they did not consider the impact of a disordered microstructure on the macroscopic

transport, where corrections to (and fluctuations about) the mean need to be considered.

When modelling nutrient uptake by bacteria, Dalwadi et al. (2018) considered a chemical species

diffusing through a colony of locally periodic bacteria with a spherical structure and finite size.

Bacteria were treated as sinks with the effective uptake described by first-order kinetics and

scaling with the bacteria’s size. Via a homogenization approach with a relaxed periodicity

assumption, it was found how the effective uptake scaled. When the sink volume is of the same

order as the inter-sink distance the effective uptake scales with the sink volume for weak uptake

and with the surface area for strong uptake. However, when the sink volume is asymptotically

small in comparison to the inter-sink distance the effective uptake is bounded above as the

uptake rate grows without bound. This approach was extended in Dalwadi and King (2020),

where uptake within colonies of bacteria were prescribed by a non-linear function of the solute

concentration, with a general partition coefficient being used across the bacterial membrane.

It was catalogued how different behaviour on the microscale impact the effective uptake, with

different properties sometimes resulting in the same observed uptake. When homogenizing,

both studies relax the assumption of a periodic microstructure and consider the influence of

spatially varying uptake from sinks. However, neither study considers the impact of disordered

bacteria locations or when the two-scale assumption becomes invalid.

The mechanisms of water transport in plant roots sees water being exchanged between earth

and roots using a complex three-dimensional root system. This allows for a greater yield of

water and nutrients to be transferred between roots and soil (Craine, 2006) and again gives rise

to a diverse set of mathematical models that often use multiscale analysis (Marciniak-Czochra

and Ptashnyk, 2008; Roose and Schnepf, 2008; Piatnitski and Ptashnyk, 2017; King et al.,

2021). Many other notable applications which motivate mathematical models using multiscale

analysis for porous media exist. Three examples are the thermal modelling of a porous electrode

in a lithium-ion battery (Garcia and Chiang, 2007; Hunt et al., 2020), the nutrient and drug
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transport in vascular tumours (Shipley and Chapman, 2010; Jones and Chapman, 2012; Penta

and Ambrosi, 2015) and the physics of composite materials (Bakhvalov, 1975; Bensoussan et al.,

1978; Zhikov et al., 1979; Chapman and McBurnie, 2011; Anantharaman and Le Bris, 2011).

We will now consider the genesis of this thesis and how disordered structures can influence the

transport of a solute, which may be of relevance to the examples we have already considered.

1.4 The genesis of this thesis

In the human placenta solute is advected through the IVS within maternal blood and is lost

to fetal blood at the site of terminal villi (or vice versa). A variety of complex mathematical

problems exist due to the inherent disorder and structure of villous networks (Jensen and

Chernyavsky, 2019), where terminal villi have irregular locations with variable uptake strengths

and the Péclet number (which gives the ratio of advection to diffusion) is commonly high for a

variety of solutes in maternal blood. Models which capture these effects allow the influence of

spatial disorder on both the flow and transport of a solute to be quantified.

Chernyavsky et al. (2010) modelled maternal blood flow through the IVS using Darcy’s equa-

tion, where solute transport is modelled via a homogenized advection-uptake equation with

a uniform uptake coefficient. However, oxygen transport in the placenta is sensitive to the

geometry of villous trees (Lin et al., 2016). Therefore, in an attempt to quantify the im-

pact of disordered terminal villi locations, Chernyavsky et al. (2011, 2012) reduced villous

branches to an array of randomly located point sinks which were distributed along a line, with

an advection-diffusion equation describing the solute transport between sinks. Here, each point

sink represents the location of a single terminal villus and was prescribed with zeroth-order up-

take kinetics (i.e. the solute uptake at sinks was independent of the solute concentration). The

studies highlighted errors due to spatial disorder across the porous medium, where fluctuations

about the mean showed long-range spatial correlation. Chernyavsky et al. (2012) also showed

how error margins depended on the model parameters and statistical properties of the sink

distribution, such that if stochastic sink-to-sink variation on the microscale began to dominate

the macroscale solution then the homogenization approximation was shown to fail.

Russell et al. (2016) extended the work done in Chernyavsky et al. (2011, 2012) by allowing

sinks to have variable strengths (but periodic locations) and first-order kinetics (i.e. uptake de-

pends linearly on the solute concentration). For weak disorder, it was found that individual sink

contributions can be evaluated independently using a Green’s function, followed by assembling
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all contributions using the central limit theorem to demonstrate the overall impact of disor-

dered sink strengths on the solute concentration. The use of a Green’s function accommodated

variation on both the short and long lengthscales. It was shown that a classical homogenization

approach can be a biased estimator of the true mean solute concentration. Following this, Rus-

sell and Jensen (2020) used an alternate Green’s function approach to find explicit fluctuation

predictions to the concentration profiles caused due to both weak and strong disorder of sink

locations (but identical sink strengths), making predictions that were valid across large regions

of parameter space. This paper again highlighted errors in the mean concentration profile when

using the classical approach to homogenization. Chapter 2 of this thesis will aim to further this

study by considering when an advection-diffusion balance exists on the microscale (a regime

not addressed in Russell and Jensen (2020)), which causes wavy concentration profiles and

complicates the evaluation of integrals. The chapter also considers a more extreme limit when

advection dominates on the microscale, which leads to concentration boundary-layers forming

upstream of each sink, making statistical moments poor descriptors of the solute field.

1.5 Objectives and structure of the thesis

In Chapter 2, a one-dimensional advection-diffusion-uptake model for solute transport will be

considered. Uptake of the solute will occur at disordered point sink locations with first-order

kinetics, where the strength of each sink is uniformly fixed. The Green’s function approach

proposed in Russell and Jensen (2020) is used to find corrections to a homogenized solution that

account for random sink locations. The model is extended by considering when an advection-

diffusion balance exists on the microscale, causing the Green’s function to become non-smooth

due to an internal boundary layer. Therefore integrals must be solved directly (as opposed to

using Riemann sums), a regime which wasn’t considered in Russell and Jensen (2020). This

non-standard approach proves helpful in characterising the uncertainty in net solute transfer

associated with the inherent spatial disorder within porous media by calculating moments of

the random concentration fields.

We also consider when advection dominates diffusion on the microscale in Chapter 2, which

causes a staircase structure to form within concentration profiles due to boundary layers forming

upstream of sink locations. As a result, concentration profiles become non-Gaussian, resulting

in moments being poor descriptors of the impact disordered sink locations have on the solute

field. An alternative approach is instead developed, which involves calculating the median and

credible intervals of the concentration using the cumulative distribution function (cdf) of sink
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distributions. This is found to better capture the impact of disordered sink locations on the

solute concentration.

A more direct ‘moments-based’ approach for quantifying the impact of disordered sink locations

on the solute concentration is presented for one, two and three dimensions in Chapter 3. This

moments-based approach offers a direct mapping between the first two moments of the sink

distribution and the first two moments of the solute distribution, where both continuous and

discrete sink distributions can be considered. Due to singularities appearing in the Green’s

function in two and three dimensions, we allow discrete sinks to have a finite width ς. Non-

local corrections to a deterministic homogenized solution are sought by successively inverting

linear operators using an appropriate Green’s function, where a region of influence at a location

can be found by inverting this Green’s function. For uniformly-random sink locations the mean

correction is seen to vary only in the advective direction, with the impact of individual sink

locations being smeared out.

In Chapter 4 the moments-based approach is used for a continuous sink distribution represented

by a Gaussian process. When the correlation length of the sink function isn’t small the cor-

rections to the mean concentration are non-local, meaning a similar approach to Chapter 3 is

adopted. However, when the correlation length is small and the mean corrections are more local

in character we find replacing the uptake function with an effective uptake parameter becomes

sufficient. This is also seen to be sufficient for suitably many discrete, uniformly-random sink

locations in two- and three-dimensions.

To finish the thesis, given in Chapter 5 is a summary of the material presented in previous

chapters. This includes how each chapter relates to (and differs from) existing literature and

concludes with a discussion as to how the work presented in this thesis can be extended for

further studies.



Chapter 2

Characterising uncertainty for

one-dimensional solute transport

in a spatially disordered domain

This chapter will consider a one-dimensional model of solute transport through a disordered

medium, as stated in Section 2.1. First, a similar method to that presented in Russell and

Jensen (2020) will be developed in Section 2.2.2, which allows corrections to a deterministic

homogenized solution to be calculated. The corrections presented are non-distribution specific

and will be used to account for both periodic and disordered point sink locations in Section

2.3.2. When sinks have periodic locations a correction to the homogenized solution is explicitly

calculated, whereas for random sink locations we examine the moments of the correction to

characterise the impact of disorder. This approach, first developed in Russell and Jensen (2020),

will be used in a parameter regime that causes concentration profiles to become non-smooth, a

regime not previously explored. This leads to boundary-layers appearing in a relevant Green’s

function which results in non-smooth moments of the concentration.

Following this, in Section 2.2.3 an alternate approach to quantify disorder when transport is

advection-dominated is developed. In this regime we see sharp boundary-layers appearing in

concentration profiles, which result in statistical moments failing to capture disorder in the

concentration adequately. This failure is due to concentration profiles being distributed in a

38
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non-Gaussian manner about the mean. To deal with this, the alternative approach uses a recon-

structed staircase to allow credible intervals to be calculated using the cumulative distribution

function (cdf) of sink locations. As a result, the cdf credible intervals are shown to better cap-

ture the non-Gaussian behaviour of concentration profiles in Section 2.3.3, with the additional

benefit of preserving the microscale structures present in individual concentration profiles.

2.1 Model

Consider a one-dimensional model of solute transport in a steady flow past a linear array of N

randomly located point sinks. Sinks have prescribed first-order uptake kinetics, with a fixed

strength per unit concentration S0. The sink locations ξ∗j are ordered 0 ≤ ξ∗1 ≤ . . . ≤ ξ∗N ≤ L,

where j = 1, . . . , N and L is the domain length. The average inter-sink distance is denoted by

l, with the inlet and outlet positions being assigned at ξ∗0 = 0 and ξ∗N+1 = L respectively. Let

the upstream boundary condition be a prescribed flux q̂ and the downstream be zero diffusive

flux, where the downstream condition differs from that used in Russell and Jensen (2020)

to minimise its influence on solute concentration, thereby allowing the impact of disorder to

be better illustrated. By letting D and U be the diffusion coefficient and advection velocity

respectively, the concentration C∗(x∗) can be described using the homogeneous, linear, second-

order differential equation

UC∗x∗ = DC∗x∗x∗ − S0C
∗
N∑
j=1

δ(x∗ − ξ∗j ), (2.1.1a)

with boundary conditions given by

(U −D∂x∗)C∗|x∗=0 = q̂ and C∗x∗ |x∗=L = 0, (2.1.1b)

where 0 ≤ x∗ ≤ L and δ represents the Dirac delta function (δ-function). Now define the

following non-dimensional parameters: ε = l/L = 1/(N + 1) is the inter-sink density, Pel =

Ul/D the Péclet number (which represents the strength of advection to diffusion) and S = S0/U

represents the strength of uptake to advection. By introducing the dimensionless variables

x = x∗/l, ξj = ξj/l and C(x) = C∗(x∗)/C∗0 , where C∗0 = q̂/U is a concentration scale, the

non-dimensional form of (2.1.1) is given by

Cx = Pe−1
l Cxx − SC

N∑
j=1

δ(x− ξj), (2.1.2a)

(C − Pe−1
l Cx)|x=0 = 1, (2.1.2b)

Cx|x=ε−1 = 0, (2.1.2c)

where 0 ≤ x ≤ ε−1. Throughout, we will consider the following sink distributions:
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1. Periodic configuration, where ξj = j for j = 1, . . . , N .

2. Independently normally perturbed from a periodic configuration, where each ξj is an

ordered value from the normal distribution N (j, σ2) for j = 1, . . . , N . Here, the variance

σ2 will remain suitably small to ensure the probability of sinks leaving the domain or

trading positions is negligible.

3. Order statistics drawn from a uniform distribution, where each ξj is an order statistic

from U(0, ε−1) for j = 1, . . . , N . Note here that sink locations are spatially correlated due

to ordering, which is unlike independently-drawn uniform variates.

We will now evaluate (2.1.2) using Monte Carlo simulations (Section 2.2.1), the approach to

homogenization presented in Russell and Jensen (2020) (Section 2.2.2) and a reconstructed

staircase method (Section 2.2.3). Careful consideration will be paid to the multiple spatial

scales in the problem, which consist of the inter-sink length l, the domain length L, the variance

σ2 and a boundary-layer width 1/Pel. It is now instructive to assemble the possible behaviours

of the model in various regions of (Pel,S)-parameter space.

2.1.1 Asymptotic regimes in (Pel, S)-parameter space

Let us find distinct asymptotic regimes in (Pel,S)-parameter space which highlight the dom-

inant effects governing concentration profiles. These regimes will be exposed by balancing

terms in (2.1.2) over different lengthscales. Consider a homogenized problem where we replace∑N
j=1 δ(x−ξj) with 1, which is the approximate spatial average for large N due the there being

N sinks distributed in a domain of length N + 1. This essentially smears out the impact of in-

dividual point sinks and instead represents a continuous removal process occurring throughout

the domain. By letting x be of any lengthscale, we see an advection-diffusion balance exists

when x ∼ 1/Pel, an uptake-diffusion balance exists when x ∼ 1/
√

Pel S, an advection-uptake

balance exists when x ∼ 1/S and an advection-uptake-diffusion balance exists when Pel ∼ S.

Table 2.1 summarises this, along with when x varies over the macroscale and microscale, which

can be seen by considering x varying over the domain length (x ∼ ε−1) and over the inter-sink

distance (x ∼ 1) respectively.

A depiction of the asymptotic regions in (Pel,S)-parameter space is shown in Figure 2.1(a).

Three distinguished limits (1), (2) and (3) are marked, representing when asymptotic bound-

aries meet, along with two additional markers showing when an advection-uptake balance exists
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lengthscale Microscale (x ∼ 1) Macroscale (x ∼ ε−1)

A-D balance x ∼ 1/Pel Pel ∼ 1 Pel ∼ ε
U-D balance x ∼ 1/

√
Pel S Pel S ∼ 1 Pel S ∼ ε2

A-U balance x ∼ 1/S S ∼ 1 S ∼ ε
A-U-D balance Pel ∼ S (Pel,S) ∼ (1, 1) (Pel,S) ∼ (ε, ε)

Table 2.1: Table containing the required balances of parameters for different effects to dominate,

where A, U and D represent advection, diffusion and uptake respectively.

(a) (b)

Figure 2.1: (a) Depiction of asymptotic regions in (Pel,S)-parameter space, where ε � 1. D,

A, U and UA represent regions where diffusion, advection, uptake and both advection and

uptake dominate over the domain length respectively, with diffusion dominating on the inter-

sink length. Alternatively, AI , UI and UAI represent regions where advection, uptake and

both advection and uptake dominate on the domain and inter-sink length respectively. The

blue region shows the area of parameter space considered in Russell and Jensen (2020). The

green region shows the area of parameter space considered in this chapter. The red region

shows when the homogenized solution found in Section 2.2.2 is seen to fail (Chernyavsky et al.,

2011). (b) Different concentration profiles for varying values of Pel and S, which correspond

to markers (1) - (5) in figure (a). Each profile is scaled using the concentration at the inlet

(C(0)) and is calculated using the numerical method outlined in Appendix A.1 with N = 19

periodically located point sinks (i.e. ε = 0.05).

on the macroscale, but advection dominates on the microscale (Markers (4) and (5)). Concen-

tration profiles corresponding to each of these markers can be seen in Figure 2.1(b). If (Pel,S)

∼ (ε, ε) (Marker (1)), diffusion dominates on the microscale with an advection-diffusion-uptake

balance on the macroscale. This regime was studied extensively in Russell and Jensen (2020)

and has smoothly varying concentration profiles throughout the domain, as can be seen in

Figure 2.1(b).

A distinguished limit exists when (Pel,S) ∼ (1, ε) (Marker (2)), where an advection-uptake

balance exists on the macroscale with an advection-diffusion balance on the microscale, see

Table 2.1. When (Pel,S) ∼ (1, 1) (Marker (3)) all effects balance on the microscale, but as
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uptake is dominant on the macroscale the concentration falls rapidly from the inlet. In both of

these regimes the advection-diffusion balanced on the microscale causes concentration profiles

to become non-smooth with a wavy sink-to-sink structure appearing, as shown in Figure 2.1(b).

Two alternate examples are marked in Figure 2.1(a), which are (Pel,S) ∼ (ε−1, ε1/2) (Marker

(4)) and (Pel,S) ∼ (ε−2, ε3/4) (Marker (5)). Both examples have advection dominating diffusion

on the microscale, which causes boundary-layers to form upstream of each sink and results in

a sink-to-sink ‘staircase’ structure appearing, as shown in Figure 2.1(b). At (4) the boundary-

layers have finite width due to the impact of diffusion, whereas at (5) there is a jump in

concentration at each sink location demonstrating that the impact of diffusion is negligible.

One feature of note which is highlighted in Figure 2.1(b) is the multiscale nature of the problem

over the (Pel,S)-parameter space.

2.2 Methods

Here, an outline of methods used to produce the results in Section 2.3 will be shown. First,

a numerical approach to evaluating (2.1.2) will be presented, which can be used to calculate

multiple realisations with statistical properties being extracted from resulting data sets. Fol-

lowing this, the non-standard homogenization approach in Russell and Jensen (2020) will be

extended by considering the distinguished limit where (Pel,S) ∼ (1, ε). This approach finds

corrections to a homogenized solution using a Green’s function, which in turn captures the

system’s inherent disorder through evaluating the moments of corrections. One advantage to

using this homogenization approach over a classical one is the ability to capture boundary-layers

that appear in concentration profiles. This is because assumptions of two-scale dependence or

unit-cell periodicity are not required. Section 2.3 will later compare results with Monte Carlo

simulations (see Appendix A.1) and a classical approach to homogenization (see Appendix A.2)

to assess their validity.

We then investigate the region of parameter space where advection dominates diffusion on the

microscale. This causes a staircase structure to be exhibited in concentration profiles, meaning

moments of the concentration become poor descriptors of disorder due to the non-Gaussian

distribution of concentration profiles about the mean. Therefore a reconstructed staircase

approach is used, which calculates credible intervals using the cumulative distribution function

of sink locations. Throughout Section 2.3 we will compare results with sample moments from

Monte Carlo realisations to assess the validity of approximations.



CHAPTER 2. ONE-DIMENSIONAL SOLUTE TRANSPORT 43

2.2.1 Monte Carlo realisations

To produce concentration profiles numerically, we reduce the governing equations in (2.1.2)

to a system of linear algebraic equations. These are solved for a given sink distribution to

generate multiple realisations for concentration profiles. Note that (2.1.2a) can be re-written

as an advection-diffusion equation when in-between sinks, along with a jump condition at sink

locations to account for uptake. So by using the methodology outlined in Appendix A.1, we

find the concentration is given by

C(x) = Aje
Pel (x−ξj) +Bj , (2.2.1)

where Aj and Bj are constants to be found via solving the linear system given in (A.1.6). One

method of solving (A.1.6) is via LU factorisation, as described in Higham (2002), which allows

many realisations of concentration profiles to be calculated. Statistical properties extracted from

these realisations will be used throughout Chapter 2 to allow for comparison and validation of

the analytic approach.

2.2.2 Constructing an expansion

We will now outline an approach for predicting the moments of the concentration when in the

critical limit (Pel,S) ∼ (1, ε). A similar method to Russell and Jensen (2020) will be adopted,

where a homogenized solution CH(x) will first be calculated to describe the leading-order be-

haviour of the concentration field but will neglect the impact of point sinks. Accordingly, a

Green’s function G(x, y) will be sought, which describes the impact of introducing a sink to

the system at a location x = y. This Green’s function will allow contributions from multi-

ple lengthscales to be included, which is shown to be of great importance when in the limit

(Pel,S) ∼ (1, ε). Corrections to the homogenized solution are then sought to account for both

the system’s microscale structure and stochastic variation, which are found by rationally ap-

proximating integrals with the appropriate Green’s function.

An alternative method of approaching this problem is via a classical homogenization approach,

which is given in Appendix A.2 and outlined in Davit et al. (2013). This can be used to

calculate the leading-order behaviour of the concentration field in a periodic medium. However,

drawbacks exist when using this method due to the assumptions of two-scale dependence and

unit-cell periodicity. When a system has multiple lengthscales, such as when boundary-layers

are present, it is difficult to reconcile Neumann boundary conditions (Dumontet, 1986) which

can result in the classical approach becoming insufficient. Another drawback is the inability to
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account for the system’s inherent disorder. The stochastic nature of this system can cause large

variation in concentration profiles, as shown in Figure 2.5 below, which motivates the need for

an alternate approach.

Homogenized solution

Let CH(x) satisfy a homogenized analogue of (2.1.2). Define linear and boundary operators

L = Pe−1
l ∂xx − ∂x − S and B = {(1 − Pe−1

l ∂x)(·)|x=0, ∂x(·)|x=ε−1} respectively. Then the

homogenized problem can be stated as

LCH = 0 and BCH = {1, 0}, (2.2.2)

where 0 ≤ x ≤ ε−1. The exact solution of (2.2.2) is given by

CH(x) =
Pel

W (ε−1)
e

1
2 Pel x

(
(2φ− Pel)e

φ(x−ε−1) + (2φ+ Pel)e
−φ(x−ε−1)

)
, (2.2.3)

where φ =
√

Pe2
l /4 + Pel S and W (x) is given by

W (x) = (2 Pel φ+ Pe2
l +2 Pel S)eφx + (2 Pel φ− Pe2

l −2 Pel S)e−φx. (2.2.4)

Consider when there exists an advection-diffusion balance on the microscale and an advection-

uptake balance on the macroscale, i.e. when (Pel,S) ∼ (1, ε). Within this limit, we will aim to

capture the leading-order behaviour of the homogenized solution as ε becomes asymptotically

small. Insight is sought into how the solution varies as x and ε vary, along with preventing any

round-off errors appearing within the system due to exponentially large terms.

A composite asymptotic expansion of the homogenized solution is given in Appendix A.3, which

uses the scaling x = O(ε−1), Pel = O(1) and S = O(ε). This proves to be a non-trivial process

as careful analysis is required to ensure effects from all lengthscales are considered, which is

essential to ensure a boundary-layer at the outlet is accommodated. The results in Appendix

A.3 approximates the homogenized solution to be

CH(x) ≈
(

1 +
S

Pel

(
Sx− 1 + f2

(
x− ε−1

)))
f1(−x), (2.2.5)

where O(ε2) terms are neglected and

f1(x) = exp (Sx) and f2(x) = exp ((Pel +2S)x) , (2.2.6)

with strict asymptotic limits not being distinguished from approximations within this chapter.

This expression is uniformly valid throughout the domain, including at the outlet where a

diffusive boundary-layer of thickness 1/Pel exists. This can be seen by considering x→ ε−1 in
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Figure 2.2: Comparison between the numerical solution of (2.1.2) [C(x), solid black], the asymp-

totic approximation of the homogenized solution [CH(x), given in (2.2.5), dot-dashed blue], the

use of a correction term which accounts for a periodic sink distribution [CH(x) + Ĉa(x), given

in (2.2.5) and (2.3.1), dashed yellow], the leading-order solution using a classical approach to

homogenization [C(0)(x), given in (A.2.6), dot-dashed purple], the second-order solution using a

classical approach to homogenization [C(0)(x)+εC(1)(x), given in (A.2.6) and (A.2.13), dashed

green] and the homogenized solution calculated by replacing
∑N
j=1 δ(x−ξj) with the exact spa-

tial average N/(N + 1) [ČH , calculated by replacing S with (N/(N + 1))S in 2.2.5, dot-dashed

red]. Here, N = 19 periodic point sinks are used (i.e. ε = 0.05) and (Pel,S) = (1, ε). Depicted

in the inset is the relative error between each approximation and the numerical solution using

(2.2.7), where N ∈ {1, . . . , 300}.

the f2(x− ε−1) term, which results from the downstream boundary condition. It is here worth

noting that fi(a)fi(b) = fi(a + b) for i = 1, 2, a property which is exploited throughout when

performing simplifications.

A comparison of the homogenized solution given in (2.2.5) to a numerical approximation of the

concentration found using (A.1.5) for N = 19 periodic sink locations can be seen in Figure 2.2,

where (Pel,S) = (1, ε) is used. In this regime we see concentration boundary-layers forming

upstream of each sink, which causes a wavy sink-to-sink structure to form. However, this is

not captured in the homogenized solution as an averaged sink strength is used. Despite this,

the peripheral boundary-layer at x = ε−1 is captured, which is present due to the zero diffusive

flux boundary condition at the outlet. This is in contrast to the leading-order solution found

when using a classical approach to homogenization (C(0)(x), given in (A.2.6)), which does not

capture the boundary-layer at the outlet.

To numerically validate each approximation of the solute concentration, consider the point-wise
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relative error r when comparing two vectors a and b, with r being given by

r(a,b) =
|a− b|
|a|

. (2.2.7)

The inset of Figure 2.2 shows the relative errors of each approximation to the numerical solution

of (2.1.2), which are calculated using the vector positions of each approximation with N ∈

{1, . . . , 300} sink locations. All errors are shown to decrease on a logarithmic scale as N

increases (i.e. ε decreases), demonstrating each approach converging to the numerical solution.

When using the leading-order approximations CH(x) (given in (2.2.5)) and C(0)(x) (given in

(A.2.6)) this convergence is seen to be linear on the logarithmic scale. Although both solutions

converge to the numerical solution at the same rate, the classical approach is seen to have a

smaller relative error, despite not capturing the boundary-layer seen at the outlet (which can be

seen in Figure 2.2). This is due to the homogenized solution over-predicting the uptake strength

when replacing the sink function
∑N
j=1 δ(x−ξj) with an approximate spatial average of 1. When

replacing the sink function with the exact spatial average N/(N + 1), as represented by ČH ,

the error for the homogenized solution is seen to be smaller than that of the classical approach.

Here, ČH is calculated by replacing S with (N/(N + 1))S in (2.2.5). Using ČH as opposed

to C(0) has a greater difference for small N , which is due to the downstream boundary-layer

having a greater impact when the domain size ε−1 = N+1 is smaller. Despite the homogenized

solution given in (2.2.5) using an approximate spatial average, the effects caused by the sink

function are still captured in the approximation Ĉa, which is calculated later. This is seen by

the relative error r(C,CH + Ĉa), which is smaller in comparison to the second-order classical

solution given by r(C,C(0) + εC(1)) and is discussed further in Section 2.3.2.

We will now seek to find a Green’s function G(x, y) which will describe the impact of introducing

a single point sink to the system at a location x = y. The resulting function will later be used

to invert linear operators and allow corrections to the homogenized solution to be found, which

will account for both periodic and disordered sink locations.

Green’s function

Let G(x, y) be a Green’s function associated with the linear operator L under homogeneous

boundary conditions such that

LG = δ(x− y) and BG = {0, 0}, (2.2.8)

where δ is the Dirac-delta function. The Green’s function is piecewise smooth, continuous and

satisfies the jump condition [Gx]y
+

y− = 1/Pel, which accounts for a point sink being located at
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x = y. This jump condition can be seen by integrating (2.2.8) inside a vanishing region about

x = y and using the fact that G(x, y) is continuous. Define G−(x, y) and G+(x, y) such that

G(x, y) =

G
−(x, y) if 0 ≤ x ≤ y ≤ ε−1,

G+(x, y) if 0 ≤ y ≤ x ≤ ε−1.

(2.2.9)

Then by solving (2.2.8), we see that the two pieces of the Green’s function are given by

G−(x, y) = − Pel
4φW (ε−1)

e
1
2 Pel(x−y)

(
(2φ+ Pel)

2eφ(x−y+ε−1) + (2φ− Pel)
2e−φ(x−y+ε−1)

+4 Pel S
(
eφ(x+y−ε−1) + e−φ(x+y−ε−1)

))
,

(2.2.10a)

G+(x, y) = − Pel
4φW (ε−1)

e
1
2 Pel(x−y)

(
(2φ+ Pel)

2eφ(y−x+ε−1) + (2φ− Pel)
2e−φ(y−x+ε−1)

+4 Pel S
(
eφ(x+y−ε−1) + e−φ(x+y−ε−1)

))
,

(2.2.10b)

where the function W is given in (2.2.4). In a similar fashion to the homogenized solution, a

leading-order asymptotic approximation to the Green’s function in the limit where Pel = O(1)

and S = O(ε) can be found. This is done in Appendix A.3, which gives a uniformly valid

composite asymptotic expansion of the Green’s function using the scaling x = O(ε−1), y =

O(ε−1), Pel = O(1) and S = O(ε). Careful consideration is again used to ensure contributions

from all lengthscales are included, giving the two pieces of the Green’s function as

G−(x, y) ≈
(
−1 +

S

Pel

(
2 + S(x− y)− f2(−x)− f2(y − ε−1)

))
f1(y − x)f2(x− y), (2.2.11a)

G+(x, y) ≈
(
−1 +

S

Pel

(
2 + S(y − x)− f2(−x)− f2

(
x− ε−1

)))
f1(y − x), (2.2.11b)

where O(ε2) terms have been neglected and the functions f1 and f2 are given in (2.2.6). It

can be seen that (2.2.11) preserves the symmetry from the exact Green’s function by remaining

invariant under reflection in the line x+ y = ε−1.

Figure 2.3 depicts a contour plot of the piecewise Green’s function using (2.2.11). This demon-

strates the two peripheral boundary-layers located at x = ε−1 and y = 0, as well as an internal

boundary-layer located at x = y, which are given in (2.2.11) by the terms f2

(
x− ε−1

)
, f2(y)

and f2(x−y) respectively. It can be seen that the introduction of a point sink at x = y has little

effect upstream of the internal boundary-layer, but the influence of the boundary-layer is swept

downstream to the outlet. The inherent non-uniformity of the problem is demonstrated here,
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Figure 2.3: A contour plot of the Green’s function [G(x, y)] using the leading-order approxima-

tion given in (2.2.11), where (Pel,S) = (1, ε) and ε = 0.05 are used.

as there exists a discontinuity at x = y which causes the function to be non-smooth, as well

as internal and peripheral boundary-layers appearing within the domain. The leading-order

expressions of G−(x, y) and G+(x, y) can now be used to find a perturbation correction to the

homogenized solution, which will account for both periodic and disordered sink locations.

Corrections to the homogenized solution

We pose an expansion of the concentration by writing

C(x) = CH(x) + Ĉ(x), (2.2.12)

where CH(x) is the homogenized solution and Ĉ(x) contains a series of correction terms. This

correction term can account for both periodic and disordered sink locations by being expressed

as

LĈ(x) = S

(
CH(x)

 N∑
j=1

δ(x− j)− 1

+ CH(x)

N∑
j=1

(δ(x− ξj)− δ(x− j))

+Ĉ(x)

 N∑
j=1

δ(x− j)− 1

+ Ĉ(x)

N∑
j=1

(δ(x− ξj)− δ(x− j))

) (2.2.13)

(Russell and Jensen, 2020), where L is the linear operator given earlier. As (2.2.13) is linear we

can consider the solution of each sub-problem associated with the right-hand side of (2.2.13)
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independently. Let the first sub-problem be given by

LĈa(x) = SCH(x)

 N∑
j=1

δ(x− j)− 1

, BĈa = {0, 0}, (2.2.14)

where B is the boundary operator given earlier. This transport problem models the difference

between a periodic sink arrangement and a smooth sink distribution, with strengths modulated

by CH(x). By use of the Green’s function the solution can be written as

Ĉa(x) = S

∫ ε−1

0

G(x, y)CH(y)

 N∑
j=1

δ(y − j)− 1

 dy, (2.2.15)

which gives the leading-order dominant correction of the homogenized solution due to discrete

periodic sink effects.

Consider now the sub-problem given by

LĈb(x) = SCH(x)

N∑
j=1

(δ(x− ξj)− δ(x− j)), BĈb = {0, 0}. (2.2.16)

This represents the effect of displacing sinks from periodic locations to a disordered arrange-

ment, with strengths again given by CH(x). By exploiting the Green’s function, the solution

can be written as

Ĉb(x) = S

∫ ε−1

0

G(x, y)CH(y)

N∑
j=1

(δ(y − ξj)− δ(y − j)) dy. (2.2.17)

Then using
∫ c
a
f(x, y)δ(y − b) dy = f(x, b), which holds for some continuous function f(x, y)

where a ≤ b ≤ c, we obtain

Ĉb(x) = S

N∑
j=1

(G(x, ξj)CH(ξj)−G(x, j)CH(j)) . (2.2.18)

This gives the leading-order dominant correction of the homogenized solution due to discrete

disordered sink effects.

We will now recursively carry out this argument to obtain

C(x) = CH(x) + (Ĉa + Ĉb) + (Ĉaa + Ĉab + Ĉba + Ĉbb) + . . . , (2.2.19)

where the second-order corrections to the homogenized solution are given by the sub problems

LĈaa(x) = SĈa(x)

 N∑
j=1

δ(x− j)− 1

 , LĈab(x) = SĈa(x)

N∑
j=1

(δ(x− ξj)− δ(x− j)),

LĈba(x) = SĈb(x)

 N∑
j=1

δ(x− j)− 1

 , LĈbb(x) = SĈb(x)

N∑
j=1

(δ(x− ξj)− δ(x− j)),
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with BĈα,β = {0, 0} for α, β ∈ {a, b}. Results illustrating the use of the correction Ĉa for

periodically located point sinks will be shown in Section 2.3.2. Following this, the correction Ĉb

will be calculated for two examples of sink distributions; normally perturbed from a periodic

configuration and order statistics from a uniform distribution.

2.2.3 Advection-dominated solute transport

Consider when the Péclet number becomes asymptotically large, causing advection to dominate

diffusion on the microscale. This occurs when Pel � 1 (see Figure 2.1(a)) and leads to a stair-

case structure appearing in concentration profiles due to the boundary-layer thickness 1/Pel

becoming asymptotically small (see Figure 2.1(b)). Prescribe the concentration upstream and

downstream of the sink ξj to be Cj−1 and Cj respectively, as depicted in Figure 2.4. Note that,

when away from sink locations (i.e. x 6= ξj), (2.1.2a) gives Cxx − Pel Cx = 0. Therefore the

concentration in the region of a sink ξj is given by

C(x) =

Aj−1 +Bj−1e
Pel(x−ξj) for x ≤ ξj ,

Aj +Bje
Pel(x−ξj) for x ≥ ξj ,

(2.2.20)

where j = 1, . . . , N and Ai and Bi are constants from integration for i = 0, . . . , N . We will

now consider the governing equations in (2.1.2) to obtain a jump condition for each sink ξj .

Integrating (2.1.2a) inside a vanishing region about ξj and using the prescribed concentration

obtains the jump condition as [[Cx]]x=ξj = Pel SC(ξj). Note that C → Cj−1 and C → Cj for

x � ξj and x � ξj respectively, which gives Aj−1 = Cj−1, Aj = Cj and Bj = 0. Then as the

concentration is continuous at x = ξj we obtain Bj−1 = Cj − Cj−1. Therefore, by using the

jump condition [[Cx]]x=ξj = Pel SC(ξj), we obtain the height of each jump from Cj−1 to Cj to

be of the size Cj − Cj−1 = −SCj . This gives the relationship Cj = (1 + S)−1Cj−1, which can

be applied recursively to give Cj = (1 + S)−jC0. So using (2.2.20) we obtain the concentration

in the region of a sink ξj as

C(x) =

C0(1 + S)−j
(
1 + S− SePel(x−ξj)

)
for x ≤ ξj ,

C0(1 + S)−j for x ≥ ξj ,

where the boundary-layer is contained in the exponential term and can be seen to have a

thickness 1/Pel. This can be used to express the concentration globally as

C(x) =C0

N∑
j=1

(1 + S)−j
(

1 + S− SePel(x−ξj)
)

(H(x− ξj−1)−H(x− ξj))

+ C0(1 + S)−NH(x− ξN ),
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Cj−1

x = ξj

Cj

Figure 2.4: Depiction of a concentration profile in the vicinity of one point sink x = ξj , where

the concentration upstream and downstream of the sink are given by Cj−1 and Cj respectively.

The solid line represents when diffusion is still present, whereas the dashed line represents when

diffusion is negligible, causing the boundary-layer thickness to become infinitesimally small.

where H(x − ξj) represents the Heaviside function such that H(x − ξj) = 0 for x < ξj and

H(x−ξj) = 1 for x ≥ ξj . By gathering terms of H(x−ξj) which do not contain the exponential

term, this can be rearranged to give

C(x) = C0 − C0S

N∑
j=1

(1 + S)−j
(
H(x− ξj) + ePel(x−ξj)(H(x− ξj−1)−H(x− ξj))

)
. (2.2.21)

When there is zero diffusion the boundary-layer thickness becomes infinitesimally small due to

the Péclet number becoming infinitely large. This limit is represented by the dotted line in

Figure 2.4, with (2.2.21) giving the global concentration as

C(x) = C0 − C0S

N∑
j=1

(1 + S)−jH(x− ξj). (2.2.22)

This shows a jump in concentration at each sink location, represented as a Heaviside function.

We will now consider two ways to quantify the effects of sink disorder on the solute concentra-

tion (2.2.22); a standard mean and variance (moments-based) approach for when there is zero

diffusion and an alternative cdf credible-interval approach.

Calculating moments in the absence of diffusion

The mean and variance of the concentration when there is zero diffusion can be calculated by

considering the probability of being at a particular discrete concentration Cj = (1 + S)−jC0.

For a sink distribution with a cumulative distribution function (cdf) Fξj (x) = P(ξj ≤ x), the
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probability of being at a given concentration for some given x is

P(C0;x) = P(ξ1 > x) = 1− Fξ1(x),

P(C1;x) = P(ξ1 < x < ξ2) = Fξ1(x)− Fξ2(x),

...

P(CN−1;x) = P(ξN−1 < x < ξN ) = FξN−1
(x)− FξN (x),

P(CN ;x) = P(ξN < x) = FξN (x).

Therefore the expectation can be calculated using E[C(x)] = C0P(C0;x) + · · ·+CNP(CN ;x) to

give

E[C(x)] = C0(1− Fξ1(x)) +

N−1∑
j=1

Cj(Fξj (x)− Fξj−1(x)) + CNFξN (x),

which can be rearranged to obtain

E[C(x)] = C0 +

N∑
j=1

(Cj − Cj−1)Fξj (x). (2.2.23)

We can calculate the variance in a similar fashion by using Var[C(x)] = (C0)2P(C0;x) + · · ·+

(CN )2P(CN ;x)− (C0P(C0;x) + · · ·+ CNP(CN ;x))2, which gives

Var[C(x)] = (C0)2 +

N∑
j=1

((Cj)
2 − (Cj−1)2)Fξj (x)− (C0 +

N∑
j=1

(Cj − Cj−1)Fξj (x))2,

which can be simplified to give

Var[C(x)] =

N∑
j=1

(
Cj + Cj−1 − 2C0 −

N∑
i=1

(Ci − Ci−1)Fξi(x)

)
(Cj − Cj−1)Fξj (x). (2.2.24)

These will later be evaluated in Section 2.3.3 for the two previously described examples; when

sinks are normally perturbed from a periodic configuration and when their locations represent

order statistics taken from a uniform distribution. However, it is later shown that moments

offer a poor prediction of disorder when solute concentrations are distributed in a non-Gaussian

manner about the mean. We will therefore next consider calculating credible intervals based

on the cdf of the concentration when there is zero diffusion.

Calculating credible intervals in the absence of diffusion

The cdf credible intervals for the concentration give a region where a fixed percentage of con-

centration profiles lie. This can be advantageous over a direct approach of calculating Gaussian-

based credible intervals (involving the mean and standard deviation) as it captures non-Gaussian

behaviour within concentration profiles. To calculate cdf credible intervals when there is zero
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diffusion, we must first calculate the cdf of a concentration Cj , which is given by

FCj
(C) = P(Cj ≤ C(x);x) = P(ξj > x) = 1− Fξj (x) (2.2.25)

for j = 1, . . . , N . Let the cdf of Cj take a value FCj
(C) = r, then (2.2.25) can be inverted to

give the corresponding sink locations as

ξ̆j = F−1
ξj

(1− r), (2.2.26)

where F−1
ξj

denotes the inverse of the cdf. We can therefore use the concentration expression

given in (2.2.22) to find the cdf credible intervals as

CI(x; r) = C0 − C0S

N∑
j=1

(1 + S)−jH
(
x− F−1

ξj
(1− r)

)
. (2.2.27)

To produce a credible interval which ensures 95% of concentration profiles are contained between

the two bounds, we can consider when r = 0.025 and r = 0.975 in (2.2.27), where using r = 0.5

in (2.2.27) will produce the median concentration. Both the median and cdf credible intervals

can now be evaluated for any distribution of point sinks. For comparison, Section 2.3.3 will

compare using moments given in (2.2.23) and (2.2.24) with using cdf credible intervals given

in (2.2.27). This will be done for the two previously described examples of sink distributions

(normally perturbed from a periodic configuration and order statistics taken from a uniform

distribution).

We will next outline an approach that finds cdf confidence intervals in the presence of diffusion.

This will be done by replacing the jumps in concentration at sink locations with boundary-layers

of finite width.

Calculating credible intervals with non-zero diffusion

Consider now calculating cdf credible intervals for advection-dominated solute transport in the

presence of diffusion. Here, a boundary-layer exists upstream from each sink location and the

concentration is given globally by (2.2.21). To calculate the intervals we will consider the local

concentration when ξj−1 ≤ x ≤ ξj , which is given by (2.2.20) as

C(x) = Cj−1 + (Cj − Cj−1)ePel(x−ξj) (2.2.28)

for j = 1, . . . , N . This can be rearranged to give

x = ξj +
1

Pel
ln

∣∣∣∣C(x)− Cj−1

Cj − Cj−1

∣∣∣∣ . (2.2.29)
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So for some x = x̂ and corresponding concentration C(x̂) = Ĉ we obtain

FĈ(C) = P(x ≤ x̂) = P

(
x ≤ ξj +

1

Pel
ln

∣∣∣∣∣ Ĉ − Cj−1

Cj − Cj−1

∣∣∣∣∣
)

= 1− Fξj

(
x− 1

Pel
ln

∣∣∣∣∣ Ĉ − Cj−1

Cj − Cj−1

∣∣∣∣∣
)
.

As before, let us consider some value of FĈ(C) given by r. Then the sink location which obtains

the confidence interval corresponding to r is given by

ξ̆j = F−1
ξj

(1− r) +
1

Pel
ln

∣∣∣∣∣ Ĉ − Cj−1

Cj − Cj−1

∣∣∣∣∣ . (2.2.30)

These sink locations can then be used with the expression for the concentration given in (2.2.21).

This gives the cdf credible intervals corresponding to each r value as

CI(x; r) = C0 − C0S

N∑
j=1

(1 + S)−j
(
H(x− ξ̆j) + ePel(x−ξ̆j)(H(x− ξ̆j−1)−H(x− ξ̆j))

)
.

(2.2.31)

As for the zero diffusion example, both the median and cdf 95% credible intervals can be

found using (2.2.31) with r = 0.5 and r = 0.5 ± 0.475 respectively. These are later calculated

for two examples of sink distributions; normally perturbed from a periodic configuration and

order statistics from a uniform distribution. Comparison between the cdf credible intervals and

sample Gaussian-based credible intervals are made using the sample mean and variance from

Monte Carlo simulations.

We now use all methodology outlined in Section 2.2 to produce results, which aim to quantify the

effect of disorder on the solute concentration. This will be separated into three sections: using

Monte Carlo simulations, using the correction to a homogenized solution when (Pel,S) = (1, ε)

and considering when advection dominates diffusion on both the microscale and macroscale.

2.3 Results

We begin with results from 104 Monte Carlo simulations of multiple concentration profiles.

These are illustrated using a cloud plot, where the sample mean, sample median, sample

Gaussian-based 95% credible intervals and sample 95% credible-intervals of the concentration

are also shown.

Following this, the use of a correction to the homogenized solution in the critical limit (Pel,S) ∼

(1, ε) will be considered. Asymptotic expressions of corrections will be found, allowing the
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impact of different sink distributions to be quantified via the evaluation of the concentration’s

moments. Three ways in which sinks can be distributed will be considered; periodic, normally

perturbed from a periodic configuration and order statistics from a uniform distribution.

Finally, a reconstructed staircase approach will be used when solute transport is advection

dominated, where disorder in the concentration will be quantified using both moments and

credible intervals, with results from Gaussian-based and cdf credible intervals being compared.

Two different examples of advection-dominated solute transport will be considered; when there

is zero diffusion and when advection dominates diffusion on both the microscale and macroscale.

Results will be verified throughout the section by comparing with sample statistics taken from

Monte Carlo realisations.

2.3.1 Monte Carlo realisations

Realisations of the concentration for different sink distributions are calculated using the nu-

merical method outlined in Section 2.2.1. Figure 2.5 shows 104 concentration profiles for both

a normally-perturbed and uniformly-random sink distribution, with the sample mean, sample

median, sample Gaussian-based 95% credible intervals and sample 95% credible intervals being

denoted by µ̂, µ̂0.5, µ̂ ± 1.96σ̂, and µ̂0.5±0.475 respectively. Also shown in Figure 2.5 are the

resulting sample covariances for each sink distribution, given by K̂[x, y], which quantifies the

impact of disordered sinks locations on the resulting concentration. All plots use N = 19 point

sinks with (Pel,S) = (1, ε), which admits an advection-uptake balance over the domain length

with an advection-diffusion balance on inter-sink lengthscale. This scenario leads to a ‘wavy’

sink-to-sink structure appearing across the domain.

Figures 2.5(a) and 2.5(b) shows when sinks are normally perturbed from a periodic configura-

tion such that ξj ∼ N (j, σ2) with σ = 0.194. Here, σ is chosen for illustrative purposes and

ensures a 99% confidence level that each sink ξj will remain within the unit-cell (j−1/2, j+1/2),

therefore avoiding sinks trading places or exiting the domain. Figure 2.5(a) shows good agree-

ment between the sample Gaussian-based 95% credible intervals and the sample 95% credible

intervals, with the distribution of profiles about the mean being predominantly Gaussian. Fig-

ure 2.5(b) shows how the sample covariance is zero except where spikes are exhibited, which

are periodically located on the diagonal and decrease in size through the domain. These spikes

represent how fluctuations due to point sinks have a strong local influence on concentration

profiles, but negligible long-range impact.
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(a) (b)

(c) (d)

Figure 2.5: (a) & (c) Multiple realisations of concentration profiles [grey] with the sample mean

[µ̂, dashed red], sample Gaussian-based 95% credible intervals [µ̂ ± 1.96σ̂ (where σ̂ represents

the sample standard deviation), solid blue], sample median [µ̂0.5, dashed green], the sample

95% credible intervals [µ̂0.5±0.475, solid cyan] and a single realisation [solid magenta]. (b) & (d)

Depiction of the sample covariances [K̂[x, y]]. Figures (a) and (b) use a normally-perturbed

sink distribution with ξj ∼ N (j, σ2), where σ = 0.194. Figures (c) and (d) use order statistics

from a uniform distribution U(0, ε−1) as the sink locations. All figures use 104 Monte Carlo

simulation for N = 19 point sinks (i.e. ε = 0.05), where (Pel,S) = (1, ε).

Alternatively, Figures 2.5(c) and 2.5(d) have sink locations prescribed using order statistics

from a uniform distribution U(0, ε−1). Here, despite each profile independently exhibiting

a wavy sink-to-sink structure with inherently non-smooth properties, the mean concentration

and covariance are represented by smooth functions. This shows that small perturbations which

occur on the inter-sink lengthscale become lost when only considering the macroscale problem

and neglecting the microscale structure. In Figure 2.5(d) we see the covariance for uniformly-

random sink locations is considerably larger when away from the diagonal when compared to

using normally-perturbed sink locations, showing how fluctuations cause a strong long-range

impact on the concentration. Figure 2.5(c) largely shows good agreement between the sample
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Gaussian-based 95% credible intervals and sample 95% credible intervals, with the distribution

of profiles about the mean again being predominantly Gaussian. However, differences between

the two can be seen due to the non-smooth properties of the concentration profiles, which

individually exhibit a wavy sink-to-sink structure.

Producing Figure 2.5 is computationally expensive due to requiring many realisations. It also

offers little explanation for the uncertainty caused to the concentration due to disordered sink

locations, with no insight as to how the parameters Pel, S and ε influence disorder. Therefore

we seek an alternate approach using the expansion given in Section 2.2.2, where corrections to

a homogenized solution are found. These corrections aid in quantifying the uncertainty due to

a disordered domain and can be validated a posteriori through comparison to the Monte Carlo

simulations.

2.3.2 Corrections to the homogenized solution

We now consider calculating corrections to the homogenized solution for either periodic or disor-

dered sink locations, which is done using the expansion in (2.2.12). When sinks are periodically

located we will calculate a correction Ĉa(x) using (2.2.15), which will give the leading-order

correction to the homogenized solution which accounts for sink locations. Alternatively, when

sinks are disordered we will calculate the moments of the correction Ĉb(x) given in (2.2.18) to

quantify the impact of disorder.

Correction for periodic sink locations

Let us consider sub-problem (2.2.15) in the distinguished limit where (Pel,S) ∼ (1, ε). Solving

for the correction Ĉa requires an alternative approach to that taken in Russell and Jensen

(2020) as the Green’s function is non-smooth with a boundary-layer present, meaning the

integral cannot be converted into a Riemann sum. Instead, let us decompose the integral so

that

Ĉa(x) = S(I1(x)− I2(x)), (2.3.1)

where I1 and I2 are given by

I1(x) =

∫ ε−1

0

(GCH)|x,y
N∑
j=1

δ(y − j) dy and I2(x) =

∫ ε−1

0

(GCH)|x,y dy (2.3.2)
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Figure 2.6: Depiction of the Y -domain separation, where A, B, C, D, E and F represent the

domains [0, 1
2 ], [ 1

2 , k −
1
2 ], [k − 1

2 , x], [x, k + 1
2 ], [k + 1

2 , ε
−1 − 1

2 ] and [ε−1 − 1
2 , ε
−1] respectively.

respectively. We will now evaluate each integral independently. First, consider the composite

term (GCH)|x,y, which by Appendix A.3 has the piecewise leading-order expression

(G−CH)|x,y =

(
−1 +

S

Pel

(
3 + S (x− 2y)− f2(−x)− 2f2(y − ε−1)

))
f1(−x)f2(x− y),

(G+CH)|x,y =

(
−1 +

S

Pel

(
3− Sx− f2(−y)− f2

(
x− ε−1

)
− f2(y − ε−1)

))
f1(−x),

(2.3.3)

with O(ε2) terms neglected. In order to evaluate I2 we can used the explicit integral values of

these expressions given in (A.3.7) to give∫ y

0

(G−CH)|x,y dy =
1

Pel

(
1− 2 S yf2(y − ε−1)

)
f1(−x)f2(x− y),∫ y

0

(G+CH)|x,y dy =

(
−1 +

S

Pel

(
3− Sx− f2

(
x− ε−1

)))
yf1(−x),

(2.3.4)

where O(ε2) terms are neglected. We can use these approximations with (2.3.4) to obtain

I2(x) =

∫ ε−1

x

(G−CH)|x,y dy +

∫ x

0

(G+CH)|x,y dy

≈−
(
x+

1

Pel

(
1− 3Sx+ S2 x2 − (1 + S(x− 2ε−1))f2

(
x− ε−1

)))
f1(−x). (2.3.5)

To evaluate I1(x), let the y-domain be split into N unit-cells (j − 1
2 , j + 1

2 ) for j = 1, . . . , N ,

with two half cells (0, 1/2) and (ε−1 − 1
2 , ε
−1) at either end. Now let x ∈ (k − 1

2 , k + 1
2 ) for

some k ∈ Z, i.e. k = bx+ 1
2c, then the y-domain [0, ε−1] can be separated into sections A, B,

C, D, E and F , as shown in Figure 2.6. Here, the kth unit-cell is separated into [k − 1
2 , x] and

[x, k+ 1
2 ] to allow for careful handling of any discontinuities at y = x. We can now consider the

contributions from each section of the domain independently to obtain

I1(x) =
∑
j<k

(G+CH)|x,j +H(x− k)(G+CH)|x,k +H(k − x)(G−CH)|x,k +
∑
j>k

(G−CH)|x,j .

(2.3.6)

In Russell and Jensen (2020), I1(x) was evaluated by converting the summations into a Riemann

integral, therefore creating a smooth function. However, this cannot be done in the distinguished
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limit (Pel,S) ∼ (1, ε) due to the internal and peripheral boundary-layers within (GCH)|x,y.

Instead, the summations are evaluated directly using (2.3.3) to obtain an expression for I1(x),

which in turn gives the correction due to periodic sink locations given by (2.3.1).

Figure 2.2 shows the correction being used with the homogenized solution for N = 19 periodic

sink locations. Both the classical approach to homogenization and the correction Ĉa are shown

to capture the microscale perturbations on the inter-sink scale for periodic sink locations, which

is demonstrated by the wavy sink-to-sink structure. However, one drawback for the classical

approach stems from being based on an ad-hoc assumption of two-scale dependence, which pre-

vents the multiscale structure associated with the downstream diffusive boundary-layer from

being included in the approximation. This is in contrast to the integral approach, where the

homogenized solution and the sequential correction can include effects from multiple length-

scales. As a result, when comparing each approach to a numerical solution there is a smaller

relative error when using the integral approach, which is shown to be true for N ∈ {1, . . . 300},

despite the convergence to the numeric solution as N increases (ε decreases) being irregular.

Arguably the greatest advantage to using the integral approach is the ability for corrections to

quantify the impact of disordered sink locations, which cannot be done when using the classical

approach. This will now be demonstrated by calculating the correction Ĉb for two different sink

distributions; normally perturbed from a periodic configuration and order statistics taken from

a uniform distribution.

Moments of a correction for normally-perturbed sink locations

Consider when sinks are weakly perturbed from a periodic sink arrangement by a normally-

perturbed random variable. Let the sink locations be given by ξj = j + σξ̂j , where σ � 1,

ξ̂j ∼ N (0, 1) and j = 1, . . . , N . When the standard deviation is significantly smaller than the

boundary-layer, i.e. σ � 1/Pel, we can Taylor expand about the periodic sink arrangement

ξj = j and use (2.2.18) to give

Ĉb(x) = S

∑
j 6=k

(
σξ̂j(GCH)y|x,j +

1

2
σ2ξ̂ 2

j (GCH)yy|x,j + . . .

)
+
[
(GCH)|x,y

]k+σξ̂k

y=k

 , (2.3.7)

where the kth cell is again treated separately to avoid expanding non-smooth functions, with

k = bx+ 1
2c. So for a sufficiently small standard deviation we obtain, to leading-order,

Ĉb(x) = S

∑
j 6=k

σξ̂j(GCH)y|x,j +
[
(GCH)|x,y

]k+σξ̂k

y=k

+O(σ2). (2.3.8)
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Let us now calculate the covariance of the correction. When the variance is sufficiently small

we can assume sink locations are independently and identically distributed (i.i.d) as sinks do

not trade places. Therefore Appendix A.4 can be used to give the covariance of the corrections

Ĉb(x1) and Ĉb(x2) as

K[Ĉb(x1), Ĉb(x2)] =



S2

(
σ2

∑
j /∈{k1,k2}

(GCH)y|x1,j(GCH)y|x2,j

+σ(GCH)y|x1,k2E
[
ξ̂k2 [(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
+σ(GCH)y|x2,k1E

[
ξ̂k1 [(GCH)|x1,y]

k1+σξ̂k1

y=k1

])
if k1 6= k2,

S2

(
σ2
∑
j 6=k

(GCH)y|x1,j(GCH)y|x2,j

+E
[
[(GCH)|x1,y]k+σξ̂k

y=k [(GCH)|x2,y]k+σξ̂k
y=k

]
−E

[
[(GCH)|x1,y]k+σξ̂k

y=k

]
E
[
[(GCH)|x2,y]k+σξ̂k

y=k

])
if k ≡ k1 = k2.

(2.3.9)

This gives the variance of the correction Ĉb(x) as

Var[Ĉb(x)] = S2

(
σ2
∑
j 6=k

((GCH)y|x,j)2
+ E

[(
[(GCH)|x,y]k+σξ̂k

y=k

)2
]

−
(
E
[
[(GCH)|x,y]k+σξ̂k

y=k

])2
)
,

(2.3.10)

where we have used the relation Var(Ĉb(x)) = K[Ĉb(x), Ĉb(x)]. So for a sufficiently small σ, a

Taylor expansion about k + σξ̂k = k gives

Var[Ĉb(x)] = S2

(
σ2
∑
j 6=k

((GCH)y|x,j)2
+ E

[(
σξ̂k(GCH)y|x,k + (σξ̂k)2(GCH)yy|x,k

)2
]

−
(
E
[
σξ̂k(GCH)y|x,k + (σξ̂k)2(GCH)yy|x,k

])2
)

= S2

(
σ2
∑
j 6=k

((GCH)y|x,j)2
+ σ2 ((GCH)y|x,j)2 E

[
ξ̂ 2
k

]

− σ2 ((GCH)y|x,j)2 E
[
ξ̂k

]2)
,

where O(σ3) terms are neglected throughout. So using E[ξ̂k] = 0 and E[ξ̂ 2
k ] = 1 we obtain

Var[Ĉb(x)] = S2σ2
∑
j

((GCH)y|x,j)2
+O(σ3). (2.3.11)

We now evaluate (2.3.11) directly using the composite asymptotic expansions of CH(x) and

G(x, y) given in (2.2.5) and (2.2.11). First, note that the differential of (GCH)|x,y is given in
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Appendix A.3 as

(G−CH)y|x,y = (Pel−S (1 + S(x− 2y)− f2(−x))) f1(−x)f2(x− y),

(G+CH)y|x,y = S
(
f2(−Y )− f2(y − ε−1)

)
f1(−x),

(2.3.12)

where O(ε2) terms are neglected. This can be used to evaluate (2.3.11), which in turn gives

the variance of the correction Ĉb(x).

Figure 2.7(a) compares the sample variance found when performing 105 Monte Carlo simulations

with the variance of Ĉb(x) given in (2.3.11). It demonstrates the sharp, spiky structure of the

variance, where the sharpness of each spike is dependent upon the sink variance σ. By (2.3.11)

we can see the height of each spike is of order O(Pe2
l S2σ2), with the width of each spike

being dependent on the boundary-layer width 1/Pel. This spiky structure can also be seen

by examining the diagonal of the covariance matrix in Figure 2.5(b). The sample variance for

(Pel,S) = (1, ε) was calculated in Russell and Jensen (2020), but when comparing to analytic

results for the variance of Ĉb there was poor agreement. This is due to the non-smooth properties

of the Green’s function being disregarded, which arise when advection is dominant on the

macroscale. However, the analysis performed here captures the spiky structure of the variance.

We will next consider when strong disorder exists in the system, with sink locations being given

by order statistics from a uniform distribution. Russell and Jensen (2020) previously evaluated

the sample variance in the distinguished limit (Pel,S) = (1, ε), but the structure for when

advection is dominant on the macroscale was again not considered.

Moments of a correction for uniformly-random sink locations

Let (U1, U2, . . . , UN ) be N random variables taken from a uniform distribution U ∼ U(0, ε−1)

with a given pdf πU (x) = ε for x ∈ [0, ε−1] and zero otherwise. The random variables Uj

will have corresponding order statistics Uj:N when arranged into ascending order, such that

U1:N ≤ U2:N ≤ · · · ≤ UN :N . Let each sink location be given by an order statistic such that

ξj = Uj:N . By properties of order statistics (Arnold et al., 1992) each sink location will follow a

Beta distribution such that εξj ∼ β(j,N − j+ 1), where j = 1, . . . , N . A plot of the probability

density functions for each ξj can be seen in Figure 2.8(a).

We now note the following properties of order statistics, which will be used to calculate the

covariance of the correction Ĉb. Firstly, summing over the N order statistics Uj:N is equivalent

to summing over the N underlying random variables Uj . Secondly, by Chunsheng (1992) and
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Figure 2.7: Comparison between the sample variance for 105 Monte Carlo simulations [σ̂2,

solid blue] and the expression for the variance of the correction [Var[Ĉb(x)], dashed red]. Here,

N = 19 point sinks (i.e. ε = 0.05) and (Pel,S) = (1, ε). (a) Variance of solute concentration

when sinks are normally perturbed from a periodic arrangement with σ = 0.01, where the

variance of Ĉb(x) is given in (2.3.11). (b) Variance of solute concentration when sinks are given

by order statistics from a uniform distribution, where the variance of Ĉb(x) is given in (2.3.19).

Also shown is the variance calculated using the exact values of CH(x) and G(x, y) given in

(2.2.3) and (2.2.10) respectively. These are used to solve for K[Ĉb(x), Ĉb(x)] given in (2.3.14)

[Varexact[Ĉb(x)], dot-dashed green], where the integral solver given in Shampine (2008) is used.

The convergence of both Var[Ĉb(x)] and Varexact[Ĉb(x)] to the sample variance can be seen in

the inset for N ∈ {0, . . . , 50}.
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Figure 2.8: (a) Depiction of the probability density functions πξj (x) when sink locations are

prescribed as order statistics taken from a uniform distribution. Here, j = 1, . . . , N and N = 9

(i.e. ε = 0.1) are used. (b) Shown are the functions εI2(x)2 [blue], I3(x, x) [red] and I3(x, x)−
εI2(x)2 [yellow], where I2 and I3 are defined in (2.3.5) and (2.3.15) respectively. Solid lines

are calculated using the integral solver given in Shampine (2008) with the exact values of the

homogenized solution and Green’s function given in (2.2.3) and (2.2.10) respectively. Dashed

lines use the approximations of I3(x, x) and I2(x)2 given in (2.3.17) and (2.3.18) respectively.

Here, N = 19 (ε = 0.05) and (Pel,S) = (1, ε) are used.
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David and Nagaraja (2004), for any random variable X with a corresponding N order statistics

Xj:N , we know that

N∑
j=1

N∑
k=1

j 6=k

K[g(Xj:N ), h(Xk:N )] =

N∑
j=1

(〈g(Xj:N )〉〈h(Xj:N )〉 − 〈g(X)〉〈h(X)〉) (2.3.13)

where K is the covariance function, 〈 · 〉 the mean and g, h are real valued functions such that

Var(g(X)) < ∞ and Var(h(X)) < ∞. These can be used with (2.2.18) to give the covariance

of the correction Ĉb(x) as

K[Ĉb(x1), Ĉb(x2)] = S2
N∑
j=1

N∑
k=1

K[(GCH)|x1,ξj , (GCH)|x2,ξk ]

= S2
N∑
j=1

N∑
k=1

j 6=k

K[(GCH)|x1,ξj , (GCH)|x2,ξk ] +

N∑
j=1

K[(GCH)|x1,ξj , (GCH)|x2,ξj ]

= NS2 (〈(GCH)|x1,U (GCH)|x2,U 〉 − 〈(GCH)|x1,U 〉〈(GCH)|x2,U 〉) .

Here, we used (2.3.13) to transform averages over the order statistics into averages over the

uniform variable in a similar fashion to Russell and Jensen (2020). Therefore the covariance of

the corrections Ĉb(x1) and Ĉb(x2) is given by

K[Ĉb(x1), Ĉb(x2)] = S2 (1− ε) (I3(x1, x2)− εI2(x1)I2(x2)) , (2.3.14)

where

I3(x1, x2) =

∫ ε−1

0

(GCH)|x1,y(GCH)|x2,y dy (2.3.15)

and I2(x) is given in (2.3.5). First, note that (A.3.10) gives∫ y

0

(G−CH)2|x,y dy = − 1

2 Pel
f1(−2x)f2(2(x− y)),∫ y

0

(G+CH)2|x,y dy =

(
1− 2S

Pel

(
3− Sx− f2

(
x− ε−1

)))
yf1(−2x),

(2.3.16)

where O(ε) corrections have been neglected. So when calculating the variance of the correction

Ĉb(x), which is given by Var[Ĉb(x)] = K[Ĉb(x), Ĉb(x)], we can use this with (2.3.5) to give

I3(x, x) =

(
x+

1

2 Pel

(
1− 12Sx+ 4S2x2 + 4Sxf2

(
x− ε−1

)
− f2

(
2
(
x− ε−1

))))
f1(−2x)

(2.3.17)

I2(x)2 =

(
x2 +

2

Pel
x
(
1− 3Sx+ S2x2 −

(
1 + S(x− 2ε−1)

)
f2

(
x− ε−1

)))
f1(−2x) (2.3.18)

where I3(x, x) and I2(x)2 neglect O(ε) and O(1) terms respectively. Each of these expressions

along with their sum are shown in Figure 2.8(b). There is seen to be good agreement between the
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expansions given in (2.3.17) and (2.3.18) when comparing to using an integral solver (Shampine,

2008) with the exact values of the homogenized solution and Green’s function given in (2.2.3)

and (2.2.10) respectively. These two expressions can then be combined using (2.3.14) to obtain

the variance of Ĉb(x) to second-order as

Var[Ĉb(x)] = εS2

(
− (1− ε)x

(
x− ε−1

)
+

1

2 Pel

(
ε−1 − 4x+ 12Sx

(
x− ε−1

)
− 4S2x2

(
x− ε−1

)
− f2

(
2
(
x− ε−1

))
+ 4x(1 + S

(
x− ε−1

)
)f2

(
x− ε−1

)))
f1(−2x).

(2.3.19)

Note we can calculate the value of x (xmax) which corresponds to the maximum value of the

variance (Varmax) by setting the differential of (2.3.19) to zero, which gives

xmax =
S + ε−

√
S2 + ε2

2εS
and Varmax =

1

2

(√
S2 + ε2 − ε

)
f1(−2xmax) (2.3.20)

to leading-order. Therefore in the critical limit (Pel,S) = (1, ε), where ε� 1, the magnitude of

the variance is of order O(ε). This is larger in comparison to the magnitude of the variance for

normally-perturbed sink locations, which is given in Section 2.3.2 as O(Pe2
l S2σ2) = O(ε2σ2),

where σ � ε� 1.

Figure 2.7(b) compares the sample variance (σ̂2) for 105 Monte Carlo simulations against

(2.3.19). When comparing Figures 2.7(a) and 2.7(b) we notice that moving from normally-

perturbed to uniformly-random sink locations causes the variance to become smooth. This

is due to the effect from each point sink being smeared out when considering the macroscale

problem due to strong disorder. It should be noted that the variance given in (2.3.19) is only

calculated to second-order, which results in a discrepancy when comparing to the sample vari-

ance in Figure 2.7(b). Calculating the variance of the correction using the exact expressions for

the homogenized solution and Green’s function produces a better approximation of the sample

variance for N = 19 point sinks, given by Varexact[Ĉb(x)] in Figure 2.7(b). The inset of Figure

2.7(b) shows the relative errors r(σ̂2,Var[Ĉb(x)]) and r(σ̂2,Varexact[Ĉb(x)]) calculated using

(2.2.7). It is here seen that both Var[Ĉb(x)] and Varexact[Ĉb(x)] converge quadratically on a

logarithmic scale to the sample variance as N increases (ε decreases), with the latter having a

smaller relative error than the former.

Next, we will consider when the Péclet number becomes asymptotically large, which causes ad-

vection to dominate diffusion on all lengthscales. This causes the boundary-layer width (1/Pel)

to become asymptotically small, leading to a staircase structure forming, as demonstrated in
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regimes (4) and (5) from Figure 2.1(b). Therefore we use a reconstructed staircase approach,

as previously outlined in Section 2.2.3. Two regimes for when solute transport is advection

dominated are considered: when there is zero diffusion, causing the boundary-layer width to

be infinitesimally small, meaning a jump in concentration occurs at each sink location; and

when the boundary-layer width 1/Pel is small but finite, leading to a boundary-layer forming

upstream of each sink.

2.3.3 Advection-dominated solute transport

We will now consider when advection dominates diffusion on both the microscale and macroscale.

To calculate both moments and cdf credible-intervals of the concentration, we will first calculate

the cumulative distribution function (cdf) of the sink function. This will be done for the usual

two examples of sink distributions; normally perturbed from a periodic configuration and order

statistics from a uniform distribution.

Following this we will consider when the Péclet number becomes infinitely large, i.e. the trans-

port problem given in (2.1.2) has zero diffusion. This causes a jump in concentration at each

sink location, as is shown by the Heaviside function in (2.2.22). Here, examples are broken into

two sections based on the sink distributions, where the effect of disordered sink locations on

the solute concentration will be considered using two methods, a direct evaluation of the mean

and variance and a cdf credible-interval approach, both of which are outlined in Section 2.2.3.

Finally, cdf credible intervals for the concentration will be calculated in the presence of diffusion,

but where advection still dominates on both the microscale and macroscale. This causes the

jump in concentration at sink locations to be replaced with boundary-layers of finite width

forming upstream of each sink. Results will here be compared to using sample Gaussian-based

credible intervals, which are calculated using the sample mean and variance.

Cumulative distribution function for sink locations

First, let us consider when sink locations are normally perturbed from a periodic array. Allow

each sink location to be given by ξj = j + σξ̂j , where ξ̂j ∼ N (0, 1) for j = 1, . . . , N and σ is

suitably small such that sinks cannot trade positions. Let x be contained inside the unit-cell

(k− 1/2, k+ 1/2) for some k = 1, . . . , N . Then each sink location has a cdf within the unit-cell
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(a) (b)

Figure 2.9: Cumulative distribution functions forN = 19 sink locations. (a) normally-perturbed

sink locations with a standard deviation σ = 0.194, with the cdf given in (2.3.21). (b) uniformly-

random sink locations, with the cdf given in (2.3.22).

given by

Fξj (x) =


0 for j < k

Φξk(x) =
1

2

(
1 + erf

(
x− k√

2σ

))
for j = k,

1 for j > k,

(2.3.21)

where erf(x) = (2/
√
π)
∫ x

0
e−t

2

dt represents the error function and the notation Φξk(x) is

introduced to conform with previous literature on the cdf of a normal distribution. This is

plotted for j = 1, . . . , 19 in Figure 2.9(a).

Secondly, let the sink locations ξj be given by the N order statistics Uj:N taken from a uniform

distribution U ∼ U(0, ε−1), where the pdf of the underlying uniform variables are given by

πU (x) = ε for 0 ≤ x ≤ ε−1 and zero otherwise. We know from Arnold et al. (1992) that each

sink location will follow a Beta distribution such that εξj ∼ β(j,N−j+1), where j = 1, . . . , N .

As the beta distribution is defined such that β(x, y) = tx−1(1 − t)y−1/B(x, y), where B(x, y)

= Γ(x)Γ(y)/Γ(x + y) is the beta function, the cdf is given by the regularised incomplete beta

function

Fξj (x) = Iεx(j,N − j + 1) =

∫ εx
0
tj−1(1− t)N−jdt

B(j,N − j + 1)
, (2.3.22)

which is shown in Figure 2.9(b) for different values of j = 1, . . . , 19.

The cdf for both sink functions, given in (2.3.21) and (2.3.22), will now be used to calculate

both moments and cdf credible-intervals of the concentration. First, the example where there

is zero diffusive transport will be considered, which results in concentration profiles becoming
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discontinuous.

Moments and cdf credible-intervals of the concentration for normally-perturbed

sink locations with zero diffusion

Let us begin by using the cdf of normally-perturbed sink locations given in (2.3.21), which can

be used with (2.2.24) to give the variance as

Var[C(x)] =
∑
j<k

(
(Cj)

2 − (Cj−1)2 − 2C0(Cj − Cj−1)
)

+ ((Ck)2 − (Ck−1)2 − 2C0(Ck − Ck−1))Φξj (x)

−
∑
i<k

∑
j<k

(Ci − Ci−1)(Cj − Cj−1)− 2(Ck − Ck−1)Φξk(x)
∑
j<k

(Cj − Cj−1)

− (Ck − Ck−1)2Φξk(x)2.

So by expanding out each summation using∑
j<k

(Cj − Cj−1) = Ck−1 − C0 and
∑
j<k

((Cj)
2 − (Cj−1)2) = (Ck−1)2 − (C0)2,

we obtain

Var[C(x)] = (Ck − Ck−1)2(1− Φξk(x))Φξk(x) for x ∈ (k − 1/2, k + 1/2).

Therefore the global variance can be obtained by summing over all N unit-cells to give

Var[C(x)] =

N∑
k=1

(Ck − Ck−1)2(1− Φξk(x))Φξk(x). (2.3.23)

So by using (2.2.22) with (2.2.23) and (2.3.23) we obtain the expectation and variance as

E[C(x)] = 1− S

2

N∑
j=1

(1 + S)
−j
(

1 + erf

(
x− j√

2σ

))
(2.3.24)

and

Var[C(x)] =
S2

4

N∑
j=1

(1 + S)
−2j

(
1− erf 2

(
x− j√

2σ

))
(2.3.25)

respectively. Figure 2.10(a) compares the sample mean and variance of 105 Monte Carlo sim-

ulations using (2.2.22) with the expectation and variance given in (2.3.24) and (2.3.25) respec-

tively. Note here that, as we no longer require σ � 1/Pel, the standard deviation is chosen to

be σ = 0.194 (larger than that used in Figure 2.7(a)). This gives a 99% probability that the

location of a sink ξk will remain inside the unit-cell (k − 1/2, k + 1/2) for k = 1, . . . , N . By

examining (2.3.25) we see that the width and height of each spike are proportional to σ and
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Figure 2.10: Comparison between the sample variance [σ̂2, solid blue] and the expression for

the variance found using (2.2.24) [Var[C(x)], dashed red]. Insets show a comparison between

the sample mean [µ̂, solid blue] and the expectation found using (2.2.23) [E[C(x)], dashed red].

Here, 105 Monte Carlo simulations with (2.2.22) are used, where N = 19 (i.e. ε = 0.05) and S =

ε in the limit of infinite Pel. (a) normally-perturbed sink locations with σ = 0.194, where the

expectation and variance are given in (2.3.24) and (2.3.25) respectively. (b) uniformly-random

sink locations with the expectation and variance given in (2.3.29) and (2.3.30) respectively.

Also plotted is the variance given in (2.3.19) in the limit where Pel → ∞ [VarPel→∞[C(x)],

dot-dashed green].

S2 respectively. When comparing this with (2.3.11) it is evident that the removal of diffusion

causes the width and height of each spike to lose their dependence on the boundary-layer width

and sink variance respectively. The smoothness of each spike is still dependent solely on σ,

where choosing a larger σ for Figure 2.10(a) causes each spike to exhibit a smoother tip.

Let us now calculate the cdf credible interval using (2.2.27) to compare the two methods of

quantifying disorder in the solute concentration. By (2.2.25) we have the cdf of a concentration

Cj and its inverse are given by

FCj
(C) = (1 + erf((x− j)/(

√
2σ)))/2 and F−1

Cj
(C) = j +

√
2σ erf−1(2x− 1) (2.3.26)

respectively. So by using these with (2.2.26) we obtain

ξ̆j = j +
√

2σ erf−1(1− 2r), (2.3.27)

for j = 1, . . . , N . Therefore using (2.2.27) gives the cdf credible intervals for a given r value as

CI(x; r) = C0 − SC0

N∑
j=1

(1 + S)−jH(x− j −
√

2σ erf−1(1− 2r)). (2.3.28)

This shows that the height of each jump is still dependent on S, but the width of the confidence

interval is now dependent only on σ and r. Figure 2.11(a) shows the expectation, median
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(a) (b)

Figure 2.11: Depiction of 104 concentration profiles [grey] using (2.2.22), the expectation

[E[C(x)], dashed red], Gaussian-based 95% credible intervals [E[C(x)]± 1.96
√

Var[C(x)], solid

blue], median [CI(x; 0.5), dashed green], cdf 95% credible intervals [CI(x; 0.5 ± 0.475), solid

cyan] and a single realisation [solid magenta]. Here, there are N = 19 point sinks (i.e. ε = 0.05)

and S = ε in the limit of infinite Pel. (a) Sink locations are normally-perturbed with a standard

deviation σ = 0.194, where (2.3.24) and (2.3.25) give the expectation and variance respectively

and (2.3.28) gives the median and cdf 95% credible interval. The inset shows a magnification

of one unit-cell. (b) Sink locations are uniformly random, where (2.3.29) and (2.3.30) give

the expectation and variance respectively and (2.3.33) gives the median and cdf 95% credible

interval.

(CI(x; 0.5)), Gaussian-based 95% credible intervals (calculated using 1.96 standard deviations

on either side of the mean) and cdf 95% credible intervals (CI(x; 0.5± 0.475)), which are found

using (2.3.24), (2.3.25) and (2.3.28). It is seen that both the expectation and Gaussian-based

95% credible intervals are represented by smooth functions, whereas the median and cdf 95%

credible intervals are represented by discontinuous functions. These discontinuities are due to

Heaviside function being present in (2.3.28), which result in the median and cdf 95% credible

intervals preserving the jumps seen in concentration profiles, a structure which is lost when

using moments. Figure 2.11(a) also shows large portions of concentration profiles lying outside

(and empty spaces existing inside) the Gaussian-based 95% credible intervals, which is due to

concentration profiles being distributed in a non-Gaussian manner about the mean. In contrast,

we see the cdf 95% credible intervals preserving this non-Gaussian behaviour, thereby offering

a better description of the system’s disorder.

Let us now consider when sink locations are given by order statistics from a uniform distribution

in the absence of diffusion. As for normally-perturbed sink locations, we calculate and compare

the moments and cdf credible-intervals of the solute concentration.
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Moments and cdf credible-intervals of the concentration for uniformly-random sink

locations with zero diffusion

We will now consider the example where sink locations are prescribed as order statistics from

a uniform distribution. In this example, by using the cdf given in (2.3.22) with (2.2.23) and

(2.2.24), we obtain the expectation and variance as

E[C(x)] = 1− S

N∑
j=1

(1 + S)
−j
Iεx(j,N − j + 1) (2.3.29)

and

Var[C(x)] = S

N∑
j=1

(
2− (2 + S)(1 + S)−j − S

N∑
i=1

(1 + S)−iIεx(i,N − i+ 1)

)

×(1 + S)−jIεx(j,N − j + 1)

(2.3.30)

respectively. Figure 2.10(b) compares the sample mean and variance from 105 Monte Carlo

simulations using (2.2.22), with the expectation and variance given in (2.3.29) and (2.3.30)

respectively. The figure demonstrates a close match between moments of the concentration

calculated using Monte Carlo simulations and ones calculated using the analytic expressions

derived from (2.2.22). Also shown is the leading-order expression for the variance obtained by

taking the limit Pel →∞ in (2.3.19), which again shows a close fit to the sample variance. This

demonstrates that the variance obtains the same maximum to leading-order as when diffusion is

present, with Varmax given in (2.3.20). When comparing the impact of diffusion on disorder, as

can be seen by comparing Figures 2.7(b) and 2.10(b), both resulting variances exhibit a similar

quadratic structure. However, differences can be seen when comparing the variance’s structure

near the outlet, as well as a difference in the variance’s magnitude due to the use of different

parameters.

Consider now using (2.2.26) to calculate credible-intervals of the concentration. By (2.2.25) we

find the cdf of a concentration Cj and its inverse are

FCj
(C) = 1− Iεx(j,N − j + 1) and F−1

Cj
(C) = ε−1I−1

1−x(j,N − j + 1) (2.3.31)

respectively. So by using (2.2.26), we see the sink location for some cdf value r is given by

ξ̆j = ε−1I−1
r (j,N − j + 1) (2.3.32)

where j = 1, . . . , N . So by using (2.2.27) the credible intervals for a given r value are given by

CI(x; r) = C0 − SC0

N∑
j=1

(1 + S)−jH(x− ε−1I−1
r (j,N − j + 1)). (2.3.33)



CHAPTER 2. ONE-DIMENSIONAL SOLUTE TRANSPORT 71

As for normally-perturbed sink locations we again find that the height of each jump is depen-

dent only on S, but the width of each interval is now dependent on r and ε (which in turn

shows a dependency on the number of sinks N). Figure 2.11(b) shows the expectation, median

(CI(x; 0.5)), Gaussian-based 95% credible intervals (calculated using 1.96 standard deviations

on either side of the mean) and cdf 95% credible intervals (CI(x; 0.5± 0.475), which are found

using (2.3.29), (2.3.30) and (2.3.33). As for normally-perturbed sink locations we find both the

expectation and Gaussian-based 95% credible intervals are given by smooth functions, whereas

the median and cdf 95% credible intervals are given by discontinuous functions due to the

Heaviside function in (2.3.28). As a result, both the median and cdf 95% credible intervals

preserve jumps seen at sink locations in the concentration profiles. Also shown is how the

Gaussian-based 95% credible intervals have empty spaces above (below) the maximum (mini-

mum) concentrations near the inlet (outlet), showing that concentration profiles are distributed

in a non-Gaussian manner about the mean. As the cdf 95% credible intervals are capable of

preserving this non-Gaussian behaviour, we see a better description of the system’s disorder

when using (2.3.33).

Let us now consider using the cdf credible intervals for the solute concentration when diffusion is

present in advection-dominated solute transport. This leads to concentration boundary-layers

forming upstream of each sink, which replace the jumps in concentration seen when diffusion

is zero.

Credible intervals for advection-dominated solute transport with non-zero diffusion

Consider now calculating cdf credible intervals when solute transport is advection dominated

with a non-zero diffusive term. For this example we see a concentration boundary-layer form

upstream of each sink location, with the concentration being given globally by (2.2.21). Let

us use the cdf of sink locations given in (2.3.21) and (2.3.22) with the cdf confidence intervals

given in (2.2.31). Firstly, when (2.2.30) uses normally-perturbed sink locations the confidence

interval corresponding to r is given by

ξ̆j = j +
√

2σ erf−1(1− 2r) +
1

Pel
ln

∣∣∣∣∣ Ĉ − Cj−1

Cj − Cj−1

∣∣∣∣∣ . (2.3.34)

Similarly, when sinks are given by order statistics from a uniform distribution then (2.2.30)

gives the sink locations which obtain confidence intervals as

ξ̆j = I−1
1−r(j,N − j + 1) +

1

Pel
ln

∣∣∣∣∣ Ĉ − Cj−1

Cj − Cj−1

∣∣∣∣∣ . (2.3.35)
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(a) (b)

Figure 2.12: Depiction of 104 concentration profiles [grey] using (2.2.21), the sample mean [µ̂,

dashed red], sample Gaussian-based 95% credible intervals [µ̂± 1.96σ̂ (where σ̂ represents the

sample standard deviation), solid blue], median [CI(x; 0.5), dashed green], cdf 95% credible

intervals [CI(x; 0.5±0.475), solid cyan] and a single realisation [solid magenta]. Here, there are

N = 19 point sinks (i.e. ε = 0.05) with Pel = ε−1 and S = ε. (a) Sink locations are normally-

perturbed with a variance σ = 0.194, where the median and cdf 95% credible interval are

calculated using (2.3.28). The inset shows a magnification of one unit-cell. (b) Sink locations

are uniformly random, with the median and cdf 95% credible interval are calculated using

(2.3.33).

Both (2.3.34) and (2.3.35) can then be used with (2.2.31) to calculate the cdf credible-intervals of

the concentration. Figures 2.12(a) and 2.12(b) shows the sample mean and median (CI(x; 0.5))

for normally-perturbed and uniformly-random sink locations respectively. Both figures show

the median preserving the staircase structure of concentration profiles, which is lost when

considering the sample mean. Also shown are the sample Gaussian-based 95% credible intervals

and the cdf 95% credible intervals (CI(x; 0.5 ± 0.475)) calculated using (2.2.31). It is again

shown that cdf credible intervals allow for the concentration profiles’ staircase structure to be

preserved as well as the non-Gaussian distribution of profiles about the mean to be captured,

whereas Gaussian-based credible intervals do not.

2.4 Discussion

A one-dimensional advection-diffusion-uptake equation is used to model solute transport past

a disordered array of point sinks with first-order uptake kinetics. Three different sink distribu-

tions are considered; periodic, normally perturbed from periodic locations and order statistics

from a uniform distribution. To quantify the impact of sink locations on the solute concen-

tration we use Monte Carlo simulations, a non-standard approach to homogenizing transport

through a disordered system and the calculation of credible intervals. The homogenization

approach, originally presented in Russell and Jensen (2020), initially calculates a deterministic
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homogenized solution to the problem. Corrections which account for the impact of individual

sink locations are subsequently calculated using an appropriate Green’s function.

When there exists an advection-uptake balance on the macroscale with an advection-diffusion

balance on the microscale a peripheral boundary-layer appears within concentration profiles at

the outlet, see Figure 2.1(b). Consequently an alternative approach to classical homogenization

is required due to using an ad-hoc assumption of two-scale dependence, where instead multiple

lengthscales are present, an issue previously noted in Pavliotis and Stuart (2008). An integral

approach is adopted to find a non-smooth correction Ĉa(x) to the homogenized solution. This

correction accounts for the periodic sink locations and the peripheral boundary-layer at the

outlet, as shown in Figure 2.2. The integral approach is shown to converge to the numerical

solution as the number of sinks (N) increases, with this approach having a smaller relative error

than the classical approach given in Appendix A.2 for N = 1, . . . , 300, as shown by the inset of

Figure 2.2.

Disordered sink locations are then considered by normally-perturbing sinks away from a periodic

configuration. The sink locations are given by ξj = j + σξ̂j for some standard deviation σ,

where ξ̂j ∼ N (0, 1) and j = 1, . . . , N . Weak disorder is assumed by using σ � 1, which

makes the probability of sinks trading places asymptotically small, therefore sink locations are

independent of each other. To quantify how disordered sink locations influence the resulting

solute concentration we again use the integral approach to find a correction to the homogenized

solution, given by Ĉb(x). The variance of this correction is seen to provide a close fit to the

variance found when performing Monte Carlo simulations, which has a structure exhibiting

sharp spikes in concentration at each sink location, see Figure 2.7(a). The structure of each

spike is found to be dependent on various lengthscales, with the sharpness, magnitude and

width of each spike being dependent on σ, Pe2
l S2σ2 and 1/Pel respectively, see Section 2.3.2.

The sample covariance is given in Figure 2.5(b) and shows sinks having a strong local influence

but weak far-field impact on the concentration.

Following this sink locations ξj are prescribed according to order statistics Uj:N taken from the

uniform distribution U(0, ε−1), where U1:N ≤ U2:N ≤ · · · ≤ UN :N . Due to properties of order

statistics each sink location depends on a Beta distribution such that εξj ∼ Beta(j,N − j + 1)

(Arnold et al., 1992), where the pdf for each ξj can be seen in Figure 2.8(a). Moments of the

correction to the homogenized solution, given by Ĉb(x), are calculated. In Figure 2.7(b) the

concentration’s variance is shown to be smooth, despite each concentration profile independently
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exhibiting a ‘wavy’ sink-to-sink structure, with the magnitude being of order O(S2/ε). This is

due to stronger disorder within the system causing microscale effects from individual point sinks

to be smeared out. When away from the diagonal the sample covariance in Figure 2.5(d) is

considerably larger when compared to using normally-perturbed sink locations, demonstrating

how fluctuations in the sink locations can cause a strong long-range impact on the concentration.

A summary of the conditions for validity can be seen in Table 2.2, which are calculated us-

ing
√

Var[C(x)] � E[C(x)]. This requirement results in the correction due to disorder being

asymptotically smaller than the mean. Both the mean and standard deviation have an order

of magnitude in the limit (Pel,S) ∼ (1, ε) given by O
(
CH(x)

)
and O

(√
Var[C(x)]

)
respec-

tively, where the variance for normally-perturbed and uniformly-random sink locations are

given in (2.3.11) and (2.3.19) respectively. When considering solute transport being advection

dominated with normally-perturbed and uniformly-random sink locations the mean is given

in (2.3.24) and (2.3.29) and the variance is given in (2.3.25) and (2.3.30) respectively. The

requirements show that uptake strength relative to advection must be suitably small to prevent

disorder of sink locations causing too much variation from the mean concentration.

Regime O
(
E[C(x)]

)
O
(√

Var[C(x)]
)

Condition for validity

NP (Pel,S) ∼ (1, ε), 1 Pel Sσ Pel Sσ � 1

σ � 1

UR (Pel,S) ∼ (1, ε) 1
√√

S2 + ε2 − ε max(S, ε)� 1

NP Pel � 1, S ∼ ε, 1 S S� 1

σ � 1

UR Pel � 1, S ∼ ε 1
√√

S2 + ε2 − ε max(S, ε)� 1

Table 2.2: Table showing the conditions of validity for different regimes when sinks are normally

perturbed from a periodic configuration (NP) and order statistics from a uniform distribution

(UR).

We then consider when the Péclet number becomes asymptotically large, which causes a stair-

case structure to be exhibited in concentration profiles due to the boundary-layer width be-

coming asymptotically small. First, the mean and variance of the concentration is calculated

when there is zero diffusion in the transport problem. Due to jumps in the solute concentration

at each sink location results are found by considering the probability of being at a particular

concentration. Despite jumps being present in each concentration profile at each sink location,

the mean and variance are smooth functions depending on the cumulative distribution function

(cdf) of sink locations, as shown in Figure 2.10. When sinks have normally-perturbed locations

the magnitude of the variance is seen to lose dependency on the standard deviation as the

impact of diffusion becomes negligible, where the magnitude instead only depends on the size



CHAPTER 2. ONE-DIMENSIONAL SOLUTE TRANSPORT 75

of each jump. Conversely, uniformly-random sink locations have no difference in the magnitude

of the variance to leading-order, irrespective of the presence of diffusion. The conditions of

validity for this example, which ensure disorder remains an order of magnitude smaller than

the sample mean, are again given in Table 2.2.

An alternate method that preserved the staircase structure is then considered, which uses the

inverse of the fixed concentration’s cdf to calculate the expected location of each jump in

concentration. This method allows comparison between Gaussian-based (which are given by

1.96 standard deviations either side of the mean) and cdf credible intervals. In Figure 2.11 we

see the cdf credible intervals (CI(x; r)) are advantageous due to capturing the non-Gaussian

distribution of concentration profiles about the sample mean, as well as preserving the jumps in

concentration. For normally-perturbed sink locations the distance of each cdf credible interval

from the median in the x-direction is seen to depend on σ and r, whereas for uniformly-random

sink locations this dependency was on r and ε. One could consider tracking the cdf of the

concentration, as done for an advection-uptake equation with a generic sink covariance function

in Appendix A.5. However, solving the full partial differential equation derived (which is given

in (A.5.16)) is beyond the scope of this research and so is not considered further.

The example where diffusion is present in the transport problem but advection dominates on

both the microscale and macroscale is then considered. This results in the jumps in concentra-

tion at sink locations being replaced by boundary-layers forming upstream of each sink. The

cdf credible intervals are calculated using (2.2.31) and are again found to preserve the structure

of concentration profiles and capture the non-Gaussian distribution of concentration profiles

about the mean, which is not found for the Gaussian-based approach.

Although the alternate approach to homogenization considered in this chapter demonstrates

the importance of quantifying errors due to disordered sink locations, many other challenges

still exist when considering its practical applications. Issues could arise due to variable sink

strengths being introduced, a concept previously discussed in Russell et al. (2016). When

considering the example of solute transport through the placenta, uptake strengths are likely

to vary due to the complexity of uptake sites (Erlich et al., 2019a). Other extensions could

consider having non-linear uptake kinetics (where zeroth-order kinetics have previously been

studied (Chernyavsky et al., 2011)), using an unsteady or stochastic flow field (which have been

observed in disordered media (Jin et al., 2016; Alim et al., 2017)) or describing uptake using a

Gaussian process (which is later considered in Chapter 4).



CHAPTER 2. ONE-DIMENSIONAL SOLUTE TRANSPORT 76

Using a Green’s function when homogenizing has proved a useful tool for this one-dimensional

problem throughout parameter space (Russell and Jensen, 2020). As a result, an appropriate

Green’s function will be used in Chapter 3 for developing a generalised moments-based approach

to homogenization that quantifies the impact of a disordered uptake function on solute concen-

tration. This approach is applied in one, two and three spatial dimensions, where sink locations

are regularised to prevent point sinks from introducing singularities in the solute concentration

in higher dimensions. The present approach should aid the investigation of transport occurring

over multiple lengthscales through disordered media.



Chapter 3

A moments-based approach to

characterise uncertainty for

solute transport past a discrete

sink distribution

In this chapter, a more direct approach for quantifying the effect of a disordered sink distribution

on the concentration of a solute will be considered. A direct mapping between the first two

moments of the sink distributions and the first two moments of the solute concentration will be

found, which allows discrete sink distributions, as were used in Chapter 2, as well as continuous

sink distributions, which will be considered in Chapter 4 for Gaussian processes, to be used.

This ‘moments-based approach’ is found to recover the one-dimensional corrections used in both

Chapter 2 and Russell and Jensen (2020) and offer an extension into higher dimensions.

A three-dimensional solute transport model where advection is assumed to be unidirectional is

presented in Section 3.1. Uptake occurs according to a distributed sink function ĝ, which con-

tains isolated sinks with locally Gaussian structures of finite width ς. To approximate the solute

concentration we seek non-local corrections to a deterministic homogenized solution that quan-

tify the impact of a disordered uptake function in Section 3.2. These corrections are found by

77
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successively inverting linear operators using an appropriate Green’s function, as done in Chap-

ter 2. To calculate moments of corrections to the homogenized solution we first find moments

of the sink function ĝ in Section 3.3. This is followed by calculating an appropriate free-space

Green’s function applying when advection and uptake dominate diffusion on the microscale in

Section 3.4. By inverting the free-space Green’s function we find a region of influence, wherein

any sinks can influence the concentration at some given point. Throughout, analogous one-

and two-dimensional results are also calculated, which allow any three-dimensional results to

be generalised into n dimensions.

In one dimension, Panasenko and Volpert (2016) showed both the existence and convergence of

the homogenized solution for an infinitesimally small sink width, a result which was implicitly

used in Chapter 2 for point sink locations. However, Mahiout et al. (2020) found that, in

three- (two-) dimensions having small volumes (areas) of sinks, the homogenized solution may

become insufficient. These findings are reflected by the properties of the n-dimensional free-

space Green’s function Gn(x − x′) (see Section 3.4), which at x = x′ has no singularity, a

singularity of logarithmic scale (log |x − x′|) and a singularity of reciprocal scale (1/|x − x′|)

in one, two and three dimensions respectively. A key question addressed in this chapter is how

well the homogenization approximations of disordered point sinks perform as the sink width ς

tends to zero.

Deterministic corrections to the homogenized solution are found for periodic sink locations in

Section 3.5.1. We find that, in the limit of an asymptotically small sink width, the correc-

tion scales with the logarithm and reciprocal of the sink width in two and three dimensions

respectively. Following this, we use a direct mapping between moments of the sink function

and moments of corrections to quantify the impact of a disordered uptake field on the solute

concentration. In Section 3.5.2 we consider perturbing sinks from periodic locations using a

normal distribution with mean zero and variance σ2. In the limit ς, σ � 1 we find that the

leading-order mean correction in two and three dimensions scales with the logarithm and re-

ciprocal of
√
ς2 + σ2 respectively. In Section 3.5.3 sink locations are prescribed according to a

uniform distribution, where due to the expected sink location being constant in space we find

the leading-order mean correction is zero. Therefore we calculate the second-order mean cor-

rection, which is found to become dependent only on the advective direction when sufficiently

far from lateral boundaries. By again taking the limit of an asymptotically small sink width we

find the second-order correction scales with the logarithm and reciprocal of the sink width in

two and three dimensions respectively. For disordered sink locations in Sections 3.5.2 and 3.5.3
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we will find an upper bound for the variance of the leading-order correction, which is calculated

by approximating the regularised sink function for an asymptotically small sink width with a

δ-function.

3.1 Model

We will here present a three-dimensional model, but analogous one- and two-dimensional models

will later be adopted when required. Let D3 be a three-dimensional domain with position vector

x∗ = (x∗1, x
∗
2, x
∗
3) ∈ D3 such that x∗1 ∈ [0, L] and x∗2, x

∗
3 ∈ R for some domain length L. Allow

C∗(x∗;ω), U,D and S1 to represent the solute concentration field, constant advective velocity in

the x∗1 direction, constant diffusion coefficient and constant uptake rate respectively. Note that

S1 has dimensions 1/time, as opposed to S0 in Chapter 2 which had dimensions length/time

(i.e. S1 = lS0 where l is the inter-sink distance used in Chapter 2). We represent uptake

using a distributed sink function ĝ∗(x∗;ω), which describes discrete, isolated sink locations of

finite width and satisfies 1 + ĝ∗(x∗;ω) ≥ 0. Here, ω denotes that ĝ∗(x∗;ω) is a realisation

drawn from a prescribed distribution, which in turn makes C∗(x∗;ω) a random variable. Note

that ĝ∗(x∗;ω) could also be used to describe a continuous random field with non-uniform sink

strengths, which is later considered in Chapter 4 for the example of a Gaussian process.

We prescribe a flux q on the plane x1 = 0, zero diffusive flux on x1 = 1 and allow the diffusive

flux to approach zero as x2, x3 → ±∞. By assuming that the sink function has zero impact on

the flow field, the solute concentration C∗(x∗;ω) can be described using a three-dimensional

advection-diffusion-uptake equation given by

D∇∗23DC
∗ − UC∗x∗1 − S1C

∗(1 + ĝ∗(x∗;ω)) = 0, (3.1.1)

with boundary conditions

(U −D∂x∗1 )C∗|x∗1=0 = q, C∗x∗1 |x∗1=L = 0, Cx∗2 |x∗2→±∞ → 0, and Cx∗3 |x∗3→±∞ → 0,

where ∇∗23D = ∂x∗21 + ∂x∗22 + ∂x∗23 . The boundary conditions are chosen to minimise their

influence on the solute concentration, allowing the influence of the sink function ĝ∗ to be

illustrated. We introduce the following non-dimensional parameters: PeL = UL/D is the

Péclet number (which represents the strength of advection to diffusion), Da = S1L
2/D is the

Damköhler number (which relates the rate of uptake to diffusion), x = x∗/L, ĝ(x;ω) = ĝ∗(x∗;ω)

and C(x;ω) = C∗(x∗;ω)/C0 where C0 = q/U is a concentration scale. Variables are non-

dimensionalized using the domain length L as opposed to the inter-sink distance l used in

Chapter 2, where the variables in each chapter can be related by PeL = εPeL and Da = εPeL S
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for ε = l/L (as in Chapter 2). These non-dimensional parameters give the non-dimensional

form of (3.1.1) as

∇2
3DC − PeL Cx1 −DaC(1 + ĝ(x;ω)) = 0, (3.1.2a)

with boundary conditions

(1− Pe−1
L ∂x1

)C|x1=0 = 1, Cx1
|x1=1 = 0, Cx2

|x2→±∞ → 0 and Cx3
|x3→±∞ → 0,

(3.1.2b)

where x1 ∈ [0, 1], x2, x3 ∈ R and ∇2
3D = ∂x2

1
+ ∂x2

2
+ ∂x2

3
.

Consider a discrete sink function with regularised sink locations of finite size occupying a cuboid

Ds3, where for all x ∈ Ds3 then x1 ∈ [0, 1] and x2, x3 ∈ [−Ls, Ls]. Allow λ = 1/N to be the

average inter-sink distance in the x1-, x2- and x3-directions and set Ls = (2k − 1)λ/2 for any

k ∈ Z+, where N ∈ Z+ represents the number of sinks per unit length. Let the midpoint

of sink locations be represented by ξi3 = (ξi, ξj , ξk), where i3 ∈ {i, j, k}, i = 1, . . . , N and

j, k = −M, . . . ,M with M = bLsNc ∈ Z. This causes there to be (2M + 1)2/λ sinks in the

domain Ds3 with an average density per unit volume given by λ−3. We will now define the sink

function ĝ(x;ω) to be

ĝ(x;ω) = λ3
∑
i3

F 3
ς (x− ξi3)− 1, (3.1.3)

where
∑

i3
≡
∑N
i=1

∑M
j=−M

∑M
k=−M and F 3

ς (x − ξi3) is a regularised uptake function with

width ς � 1 such that ∫
Ds

3

F 3
ς (x− ξi3) dξi3 = 1. (3.1.4)

Here, the choice of F 3
ς ensures ĝ(x;ω) has a spatially averaged sink density of zero within

the domain Ds3. Throughout, three different sink distributions will be considered, with sink

locations being prescribed according to the following distributions:

1. Periodic, where ξi3 = ei3 = λ((2i − 1)/2, j, k) for i3 ∈ {i, j, k}, i = 1, . . . , N and j, k =

−M, . . . ,M .

2. Normally-perturbed from a periodic configuration, where ξi3 ∼ N (ei3 , σ
2I) for i3 ∈

{i, j, k}, i = 1, . . . , N and j, k = −M, . . . ,M . Here, I represents the identity matrix

and ei3 = λ((2i − 1)/2, j, k) are the mean sink locations. It will be assumed that σ re-

mains sufficiently small, thereby ensuring sinks remain within the domain and do not trade

positions, resulting in the sink locations being independent and identically distributed.
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3. Multivariate uniform distribution, where ξi3 = (ξi, ξj , ξk) for i3 ∈ {i, j, k}, i = 1, . . . , N

and j, k = −M, . . . ,M such that ξi ∼ U [0, 1] and ξj , ξk ∼ U [−Ls, Ls].

Similar definitions of the sink function can be made for a one- [two-] dimensional domain D1

[D2], where F 3
ς is replaced by F 1

ς [F 2
ς ], volumes (λ3) are replaced by distances (λ) [areas (λ2)]

and triple-sums over i3 ∈ {i, j, k} are replaced by single- [double-] sums over i1 = i [i2 ∈ {i, j}].

When taking the limit ς → 0 in n dimensions we see the function Fnς converges to an n-

dimensional δ-function with the correct weight.

When the sink function has a Gaussian structure we define the n-dimensional sink function Fnς

as

Fnς (x− xin) =
1

(2πς2)n/2
exp

(
− 1

2ς2
|x− xin |2

)
, (3.1.5)

where ς must remain suitably small to satisfy (3.1.4) and prevent sinks influencing the concen-

tration outside the domain Dsn.

Figures 3.1(a), 3.1(b) and 3.1(c) show realisations of the solute concentration in two dimensions

for 25 periodic, normally-perturbed and uniformly-random sink locations respectively. Sinks

are contained inside the domain Ds2 = [0, 1]× [−0.5, 0.5] and have an average inter-sink distance

λ = 0.2. Each realisation is calculated numerically using the finite-difference solver outlined in

Appendix B.2. Sample moments of the solute concentration are calculated by averaging over

104 Monte Carlo realisations and are shown in Figure 3.1 (d)-(g). Each realisation produced

uses a step-size h = 0.004 with sample moments requiring approximately 1 day of 8-core parallel

computation. The convergence of each solution has been verified.

Figures 3.1(d) and 3.1(e) show the sample expectation of the concentration when sinks take

normally-perturbed and uniformly-random locations respectively. When sinks are normally-

perturbed the expectation is shown to preserve the row structure which is exhibited in each

realisation, with an ellipsoidal shape forming about the mean sink locations. However, when

sink locations are given by a uniform distribution the mean sink location becomes uniform

across Ds2. As a result, any behaviour exhibited by individual sink locations is smeared out

when averaging over many realisations.

Figures 3.1(f) and 3.1(g) show the sample variance of the concentration. Figure 3.1(f) uses

normally-perturbed sink locations with a standard deviation σ = 0.02. This causes the variance

from each row of sinks to become small when reaching the boundary of a neighbouring row,
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.1: Two-dimensional solute concentration, where (a)-(c) show realisations with sinks

appearing as spots, (d)-(e) show sample expectations and (f)-(g) show sample variances. Panel

(a), panels (b), (d), (f) and panels (c), (e), (g) represent periodic, normally-perturbed according

to a standard deviation σ = 0.02 and uniformly-random sink locations respectively. Realisa-

tions are found using (3.1.2) with Appendix B.2 and sample moments are calculated using 104

realisations. All figures use Ds2 = [0, 1]× [−0.5, 0.5], λ = 0.2, (PeL,Da) = (20, 10) and ς = 0.01.
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demonstrating the influence of sink locations being independent and identically distributed.

Therefore individual sinks have a strong short-range impact but a weak long-range impact.

This is in contrast with Figure 3.1(g) which uses uniformly-random sink locations. As the

probability of a sink being at a given x location is uniform within Ds2, we see the variance

is a smooth, x2-independent function with a single peak when suitably far from boundaries.

This reflects how the impact from individual sinks is smeared out when averaging over many

realisations.

To further illustrate the two-dimensional uniformly-random case, consider when Ls becomes

asymptotically large compared to the average inter-sink distance λ. Figures 3.2(a), 3.2(b) and

3.2(c) use Ls = 2.5 and λ = 0.2 in two dimensions to show one realisation, the sample expec-

tation and the sample variance respectively, where sample statistics are calculated using 104

Monte Carlo realisations. We again use Appendix B.2 with a step-size h = 0.004 and verify

convergence, with sample moments requiring approximately 2 days of 8-core parallel compu-

tation. Figures 3.2(b) and 3.2(c) show the expectation and variance becoming independent of

x2 when suitably far from the boundaries of Ds2 respectively. This is again due to smearing

the impact of individual sinks, as well as the influences from x2-boundaries being negligible for

large portions of the domain Ds2 due to Ls being suitably large. We will seek to approximate

these smooth one-dimensional functions in terms of the sink density λ and width ς.

A moments-based approach will now be developed, which is used to approximate the moments

of the concentration found in Figures 3.1 and 3.2. The approach finds iterative corrections to

a homogenized solution by exploiting an appropriate Green’s function when inverting linear

operators. This will allow the impact of a disordered sink function on the solute concentration

field to be quantified, which is done using a direct mapping between the first two moments of

the sink function and the first two moments of the concentration field.

3.2 Developing a moments-based approach for character-

ising uncertainty

Define a three-dimensional linear and boundary operator as

L3 = ∇2
3D − PeL ∂x1 −Da and

B3 = {(1− (1/PeL)∂x1
) (·)|x1=0, ∂x1

(·)|x1=1, ∂x2
(·)|x2→−∞, ∂x2

(·)|x2→∞,

∂x3
(·)|x3→−∞, ∂x3

(·)|x3→∞}
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(a) (b) (c)

Figure 3.2: Two-dimensional solute concentration for uniformly-random sinks located in a do-

main Ds2 = [0, 1] × [−2.5, 2.5]. Here, (a) shows a single realisation, (b) shows the sample

expectation and (c) shows the sample variance. Realisations are found using (3.1.2) with Ap-

pendix B.2 and sample moments are calculated using 104 realisations. All figures use λ = 0.2,

(PeL,Da) = (20, 10) and ς = 0.01.

respectively. Then a homogenized solution CH(x) associated with (3.1.2) can be found by

solving

L3CH(x) = 0, B3CH(x) = {1, 0, 0, 0, 0, 0}. (3.2.1)

Using separation of variables we see that CH(x) depends only on x1, therefore (3.2.1) can be

solved using an identical approach to that used in Chapter 2 to give

CH(x) = CH(x1) =
PeL
ψ(1)

(
(2φ− PeL)eφ(x1−1) + (2φ+ PeL)eφ(1−x1)

)
e(PeL /2)x1 , (3.2.2)

where φ =
√

Pe 2
L /4 + Da and ψ(x1) = (2 PeL φ+Pe 2

L +2 Da)eφx1 +(2 PeL φ−Pe 2
L−2 Da)e−φx1 .

As done in Russell and Jensen (2020) and Chapter 2, we will now pose that the concentration

can be written

C(x;ω) = CH(x1) + Ĉ(x;ω), (3.2.3)

where Ĉ(x;ω) is some correction accounting for the disordered sink function. To calculate this

correction an integral approach which exploits the associated Green’s function will be used,
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similar to that presented in Dagan (1984). This approach is a modification of that given in

Russell and Jensen (2020) and Chapter 2, where it is later shown to recover the approach for

a discrete sink function. Let the correction to the homogenized solution be given by

Ĉ(x;ω) = Da Ĉ1(x;ω) + Da2 Ĉ2(x;ω) + . . . (3.2.4)

where we assume Da Ĉ1(x;ω)� Da2 Ĉ2(x;ω)� . . . , then (3.1.2) gives

L3

(
Ĉ1(x;ω) + Da Ĉ2(x;ω) + . . .

)
= ĝ(x;ω)

(
CH(x1) + Da Ĉ1(x;ω) + Da2 Ĉ2(x;ω) + . . .

)
.

So a solution, which is validated a posteriori, can be constructed using the ansatz

L3Ĉ1(x;ω) = ĝ(x;ω)CH(x1), B3Ĉ1(x;ω) = {0, . . . , 0}, (3.2.5a)

L3Ĉ2(x;ω) = ĝ(x;ω)Ĉ1(x;ω), B3Ĉ2(x;ω) = {0, . . . , 0}, (3.2.5b)

...

As in Chapter 2 we will take a constructive approach, without seeking to prove formal conver-

gence of the series given in (3.2.4). To invert the linear operators in (3.2.5), define G3(x,x′) to

be the associated three-dimensional Green’s function such that

L3G3(x,x′) = δ(x− x′), where B3G3(x,x′) = {0, . . . , 0}. (3.2.6)

Note that applying homogeneous boundary conditions in the x2- and x3-directions is appropriate

as the source term is compact. The Green’s function can then be used to give the corrections

Ĉ1(x;ω), Ĉ2(x;ω), . . . as

Ĉ1(x;ω) =

∫
D3

G3(x,x′)CH(x′1)ĝ(x′;ω) dx′, (3.2.7)

Ĉ2(x;ω) =

∫
D3

∫
D3

G3(x,x′)G3(x′,x′′)CH(x′′1)ĝ(x′;ω)ĝ(x′′;ω) dx′ dx′′, (3.2.8)

...

We will now characterise the corrections in terms of their moments evaluated over realisations,

specifically

E
[
Ĉ1(x;ω)

]
=

∫
D3

G3(x,x′)CH(x′1)E[ĝ(x′;ω)] dx′, (3.2.9)

KĈ1
[x,y] =

∫
D3

∫
D3

G3(x,x′)CH(x′1)Kĝ[x′,y′]G3(y,y′)CH(y′1) dx′ dy′ (3.2.10)

and

E
[
Ĉ2(x;ω)

]
=

∫
D3

∫
D3

G3(x,x′)G3(x′,x′′)CH(x′′1)E [ĝ(x′;ω)ĝ(x′′;ω)] dx′ dx′′, (3.2.11)
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where Kf [x,y] ≡ K[f(x;ω), f(y;ω)] and K represents the covariance function. This approach

can be extended into n dimensions using identical calculations and replacing D3 and G3(x,x′)

with Dn and Gn(x,x′) respectively. When ĝ represents point sink locations in one dimension,

the corrections recover those found in Russell and Jensen (2020) and Chapter 2. This is done

by comparing the sum of Ĉa and Ĉb (found in (2.2.15) and (2.2.17) respectively) with using

ĝ(x1) =
∑N
j=1 δ(x1 − ξj) − 1 in (3.2.7), with S being replaced by Da due a change in non-

dimensional parameters.

From (3.2.9)-(3.2.11) we see that when finding corrections to the homogenized solution, we first

must characterise sink distributions in terms of their first two statistical moments. This will

be done in Section 3.3 for normally-perturbed and uniformly-random sink locations, where the

sink function with Gaussian structure given in (3.1.5) is used. For both examples, the moments

are calculated for three spatial dimensions, with analogous n-dimensional results being stated.

3.3 Moments of the sink function

3.3.1 Normally-perturbed sink locations

Let sink locations be normally-perturbed from a periodic configuration such that

ξi3 = ei3 + σξ̂i3 , where ξ̂i3 ∼ N (0, I) (3.3.1)

with I representing the identity matrix and ei3 some mean sink location. Thus, each sink

location ξi3 has a normally distributed probability density function (pdf)

πξi3
(x) =

1

(2πσ2)(3/2)
exp

(
− 1

2σ2
|x− ei3 |2

)
.

When σ is sufficiently small, the sink locations ξi3 are independently distributed, therefore the

joint pdf of sink locations becomes

πξ1,ξ2,...(x1,x2, . . . ) =
∏
i3

πξi3
(xi3). (3.3.2)

This gives the expectation of the sink function ĝ(x;ω) as

E [ĝ(x;ω)] =

∫
D3

∫
D3

. . .

(
λ3
∑
i3

F 3
ς (x− xi3)− 1

)∏
j3

πξj3
(xj3) dx1dx2 . . .

= λ3
∑
i3

E[F 3
ς (x− xi3)]− 1. (3.3.3)



CHAPTER 3. MOMENTS-BASED APPROACH 87

In a similar fashion we can calculate E[ĝ(x;ω)ĝ(y;ω)] to be

E [ĝ(x;ω)ĝ(y;ω)] = λ6
∑
i3

∑
j3

i3 6=j3

E[F 3
ς (x− xi3)]E[F 3

ς (y − xj3)] + λ6
∑
i3

E[F 3
ς (x− xi3)F 3

ς (y − xi3)]

−λ3
∑
i3

E[F 3
ς (x− xi3)]− λ3

∑
j3

E[F 3
ς (y − xj3)] + 1,

(3.3.4)

which can be used with (3.3.3) to give the covariance of the correction ĝ as

Kĝ[x,y] = λ6
∑
i3

(
E[F 3

ς (x− xi3)F 3
ς (y − xi3)]− E[F 3

ς (x− xi3)]E[F 3
ς (y − xi3)]

)
= λ6

∑
i3

KF 3
ς
[x− xi3 ,y − xi3 ], (3.3.5)

where for some function f we let Kf represent the covariance function of f , notation previously

used in Section 3.1. The moments of ĝ(x;ω) can then be used with (3.2.9)-(3.2.11) to find the

moments of the corrections Ĉ1(x;ω), Ĉ2(x;ω), . . . , which quantify the effect of disordered sink

locations on the solute concentration.

We will now consider when the function F 3
ς has a Gaussian structure given in (3.1.5), which

gives πξj3
(xj3) = F 3

σ (x− ej3). For this example we have

E[F 3
ς (x− xi3)] = I2(x1, e1; ς, σ)I2(x2, e2; ς, σ)I2(x3, e3; ς, σ) (3.3.6)

and

E[F 3
ς (x− xi3)F 3

ς (y − xi3)] = I3(x1, y1, e1; ς, ς, σ)I3(x2, y2, e2; ς, ς, σ)I3(x3, y3, e3; ς, ς, σ),

(3.3.7)

where

I2(x, y;σx, σy) ≡ 1

2πσxσy

∫ ∞
−∞

exp

(
− 1

2σ2
x

(x̂− x)2 − 1

2σ2
y

(x̂− y)2

)
dx̂ (3.3.8)

and

I3(x, y, z;σx, σy, σz) ≡
1

(2π)3/2σxσyσz

∫ ∞
−∞

exp

(
− 1

2σ2
x

(x̂− x)2 − 1

2σ2
y

(x̂− y)2 − 1

2σ2
z

(x̂− z)2

)
dx̂.

(3.3.9)

By the definition of a Gaussian integral we have∫ ∞
−∞

e−a(x+b)2 dx1 =

√
π

a
,

which gives

E[F 3
ς (x− xi3)] =

1

(2π(ς2 + σ2))3/2
exp

(
− 1

2(ς2 + σ2)
|x− ei3 |2

)
= F 3√

ς2+σ2(x− ei3) (3.3.10)
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and

E[F 3
ς (x− xi3)F 3

ς (y − xi3)]

=

(
1

(2πς)3(ς2 + 2σ2)3/2

)
exp

(
− 1

2(ς2 + 2σ2)

(
σ2

ς2
|x− y|2 + |x− ei3 |2 + |y − ei3 |2

))

= F 3√
2ς

√ 2σ2

2σ2 + ς2
(x− y)

√F 3√
σ2+ς2/2

(x− ei3)F 3√
σ2+ς2/2

(y − ei3). (3.3.11)

Therefore (3.3.10) and (3.3.11) can be used in (3.3.3)-(3.3.5) to give the moments of ĝ(x;ω).

These results can be extended to n dimensions via similar calculations to obtain the moments

of Fnς as

E[Fnς (x− xin)] = Fn√
ς2+σ2(x− ein) (3.3.12)

and

E[Fnς (x− xin)Fnς (y − xin)]

= Fn√
2ς

√ 2σ2

2σ2 + ς2
(x− y)

√Fn√
σ2+ς2/2

(x− ein)Fn√
σ2+ς2/2

(y − ein).
(3.3.13)

So when normally perturbing sink locations for a Gaussian-shaped sink function we find the

width ς is replaced by an effective width
√
ς2 + σ2. These expectations allows the moments

of the sink function to be calculated using (3.3.3)-(3.3.5), which in turn allows moments of

corrections to be calculated using (3.2.9)-(3.2.11). Figure 3.3(a) shows the covariance of the

sink function in one space dimension. This is zero, positive and negative when away, on and

near to the diagonal, which represents sinks being independently distributed, correlated and

anti-correlated respectively.

3.3.2 Uniformly-random sink locations

Let sink locations be prescribed by a multivariate uniform distribution, with position vectors

given by ξi3 = (ξi, ξj , ξk) such that ξi ∼ U [0, 1] and ξj , ξk ∼ U [−Ls, Ls] for i = 1, . . . , N and

j, k = −M, . . . ,M . Therefore each continuous uniformly-random variable ξi3 is independently

and identically distributed with a pdf given by

πξi3
(xi3) =


1

(2Ls)2
=

1

λ2(2M + 1)2
for xi3 ∈ Ds3,

0 otherwise.

(3.3.14)
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(a) (b)

Figure 3.3: Covariance Kĝ[x1, y1] of the one-dimensional sink function ĝ. (a) normally-

perturbed sink locations calculated using (3.3.12) and (3.3.13) with (3.3.5). (b) uniformly-

random sink locations calculated using (3.3.20). Both figures use (PeL,Da) = (20, 10), λ = 0.2

and ς = 0.01, with (b) using ei = (2i− 1)/2N as the mean sink locations for i = 1, . . . , N .

So using the definition of the sink function given in (3.1.3) we find the expectation of ĝ(x;ω) is

given by

E [ĝ(x;ω)] =

∫
D3

∫
D3

. . .

(
λ3
∑
i3

F 3
ς (x− xi3)− 1

)
πξ1,ξ2,...(x1,x2, . . . ) dx1dx2 . . .

= λ3
∑
i3

∫
D3

F 3
ς (x− xi3)πξi3

(xi3) dxi3 − 1 = 0. (3.3.15)

The expectation of ĝ(x;ω) being zero results in the expectation of the leading-order correction

Ĉ1(x, ω) being zero. This is a direct result of the mean sink location being uniform throughout

Ds3 and reflects how strong disorder smears out the impact of individual sink locations. This

is in contrast to using periodic and normally-perturbed sink locations, where the mean sink

location is not constant and the leading-order mean correction to the homogenized solution is

non-zero.

To calculate the covariance Kĝ(x,y) = E[ĝ(x;ω)ĝ(y;ω)] we can again use the pdf given in

(3.3.14) to obtain

Kĝ(x,y) =λ6
∑
i3

∑
j3

i3 6=j3

∫
D3

∫
D3

F 3
ς (x− xi3)F 3

ς (y − xj3)πξi3
,ξj3

(xi3 ,xj3) dxi3 dxj3

+ λ6
∑
i3

∫
D3

F 3
ς (x− xi3)F 3

ς (y − xi3)πξi3
(xi3) dxi3

− λ3
∑
i3

∫
D3

F 3
ς (x− xi3)πξi3

(xi3) dxi3 − λ3
∑
j3

∫
D3

F 3
ς (y − xj3)πξj3

(xj3) dxj3 + 1
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which gives

Kĝ(x,y) = λ3

∫
D3

F 3
ς (x− xi3)F 3

ς (y − xi3) dxi3 −
λ

(2M + 1)2
.

Define the function F 3
ς to measure the overlap of the two functions F 3

ς (x− x̂) and F 3
ς (y − x̂),

i.e.

F 3
ς (x,y) =

∫
D3

F 3
ς (x− x̂)F 3

ς (y − x̂) dx̂. (3.3.16)

Therefore F 3
ς is a monotonic function with width ς and is zero when x is sufficiently far from

y. This gives the covariance of ĝ as

Kĝ(x,y) = λ3F 3
ς (x,y)− λ

(2M + 1)2
. (3.3.17)

The moments of ĝ(x;ω) given in (3.3.15) and (3.3.17) can then be used with (3.2.9)-(3.2.11)

to find the moments of the corrections to the homogenized solution, which approximates the

impact of disordered sink locations on the solute concentration.

Consider now when F 3
ς has a Gaussian structure and is given in (3.1.5). We can again use the

definition of a Gaussian integral to give

F 3
ς (x,y) = I2(x1, y1; ς, ς)I2(x2, y2; ς, ς)I2(x3, y3; ς, ς) = F 3√

2ς
(x− y),

where I2 is defined in (3.3.8). This in turn gives the covariance of ĝ as

Kĝ[x,y] = λ3F 3√
2ς

(x− y)− λ

(2M + 1)2
. (3.3.18)

Via similar calculations we can once again extend these results into n dimensions by replacing

λ3 with λn and noting that the number of sinks (2M+1)2/λ becomes (2M+1)n−1/λ, therefore

E[ĝ(x;ω)] = 0 (3.3.19)

and

Kĝ[x,y] = λnFn√
2ς

(x− y)− λ

(2M + 1)n−1
. (3.3.20)

We see from (3.3.20) that the covariance has a non-local component in one spatial dimension,

but when M � N we find the non-local contribution is negligible in two and three dimensions.

Figure 3.3(b) shows the covariance of the sink function in one spatial dimension, which is seen

to be everywhere non-local due to remaining non-zero throughout the domain. This is due to

the second term in (3.3.20) causing the covariance to be negative away from the diagonal.
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Before calculating the moments of corrections given in (3.2.9)-(3.2.11), we first need to calculate

an approximation to the Green’s function in n dimensions. This approximation will be a free-

space Green’s function, which remains valid when suitably far from exterior boundaries. The

validity of this approximation across (PeL,Da)-parameter space will be tested and regions of

influence on the concentration at a given location will be found by inverting the Green’s function

in one, two and three dimensions.

3.4 Calculating a free-space Green’s function

The n-dimensional free-space Green’s function Gn associated with the n-dimensional form of

(3.1.2) will satisfy any singularity contained at x = x′ and the linear operator Ln such that

LnGn = δ(x−x′), but will ignore the impact from boundary conditions. Therefore the function

will approximate the exact Green’s function Gn and remain valid when sufficiently far from all

boundaries of Dn. As the free-space Green’s function Gn is stationary it can be expressed as

Gn = Gn(x− x′). So by assuming Gn(x,x′) = Gn(x− x′) and seeking a solution of the form

Gn(x) = eαx1f(r) where r = |x|, (3.4.1)

we can use (3.1.2) to obtain(
frr + (n− 1 + (2α− PeL)x1)

fr
r

+ (α2 − PeL α−Da)f

)
eαx1 = δ(x) (3.4.2)

in n dimensions. By considering α = PeL /2 we can find a single solution of (3.4.2) by solving(
frr + (n− 1)

fr
r
− φ2f

)
exp

(
PeL

2
x1

)
= δ(x), (3.4.3)

where φ =
√

Pe 2
L /4 + Da. By multiplying both sides of (3.4.3) by exp(−(PeL /2)x1) and noting

that exp(−(PeL /2)x1)δ(x) = δ(x) in the sense of distributions, we obtain

(
∇2
nD,r − φ2

)
f(r) = δ(x) (3.4.4)

where ∇2
nD,r = ∂rr + ((n− 1)/r)∂r in n dimensions. The left-hand side of (3.4.4) has a known

free-space solution, which is given (for example) in Tikhonov and Samarskĭı (2013) as

f(r) = −(2π)n/2
(
φ

r

)n/2−1

Kn/2−1(φr) (3.4.5)

where Kν represents the modified Bessel function of the second kind. Therefore the free-space

Green’s function in n dimensions is given by

Gn(x− x′) = −(2π)−n/2
(

φ

|x− x′|

)n/2−1

Kn/2−1(φ|x− x′|) exp

(
PeL

2
(x1 − x′1)

)
. (3.4.6)



CHAPTER 3. MOMENTS-BASED APPROACH 92

Note that (3.4.6) shows that there is no singularity in the free-space Green’s function in one

dimension, but in two and three dimensions there exists a singularity at x = x′ of order

log(φ|x − x′|) and 1/|x − x′| respectively, as will be discussed later on. Integrating the two-

and three-dimensional governing equation for the free-space Green’s function gives the relation∫ ∞
−∞

∫ ∞
−∞
G3(x) dx2 dx3 =

∫ ∞
−∞
G2(x) dx2 = G1(x1), (3.4.7)

a property which will later be used. We now consider the range of validity of the free-space

Green’s function in one, two and three dimensions.

3.4.1 One-dimensional free-space Green’s function

By using Abramowitz and Stegun (1964) we see the modified Bessel function of the second kind

K−1/2(z) takes the form

K−1/2(z) = K1/2(z) =

√
π

2z
exp(−z). (3.4.8)

So (3.4.6) give the free-space Green’s function in one dimension to be

G1(x1 − x′1) = − 1

2φ
exp

(
PeL

2
(x1 − x′1)− φ|x1 − x′1|

)
. (3.4.9)

A plot of this free-space Green’s function can be seen in Figure 3.4(a) for (PeL,Da) = (20, 10).

To better understand the structure of the Green’s function, consider the decay lengthscales of

G1. By (3.4.9) these are given by

LG−x1
=

(
φ+

PeL
2

)−1

and LG+
x1

=

(
φ− PeL

2

)−1

(3.4.10)

for x1 < x′1 and x1 > x′1 respectively. When Pe 2
L � Da we have

φ =

√
Pe 2

L

4
−Da =

PeL
2

(
1 +

4 Da

Pe 2
L

)1/2

≈ PeL
2

+
Da

PeL
+ . . . ,

where we will not be distinguishing between strict asymptotic limits and approximations within

this chapter. This gives the decay lengthscales of G1 as

LG−x1
≈ 1

PeL
and LG+

x1
≈ PeL

Da
(3.4.11)

for x1 < x′1 and x1 > x′1 respectively. So for PeL � max(1,
√

Da) we have LG−x1
� 1, meaning

the decay lengthscale LG−x1
is much shorter than the domain length in the x1-direction. As a

result, the free-space Green’s function offers a good approximation to the exact solutions except

when x′1 is within a distance 1/PeL from the inlet.

Consider now the range of validity of the free-space Green’s function downstream of x1 =

x′1. The order of magnitude of the decay lengthscale LG+
x1

can become similar to that of the
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Figure 3.4: (a) Contour plot of the free-space Green’s function G1(x1 − x′1) in one dimension.

(b) Contour plot showing the difference between the exact and free-space Green’s function

(G(x1, x
′
1)− G1(x1 − x′1)). Here, the free-space and exact Green’s function are given in (3.4.9)

and (B.1.2) respectively, with both figures using (PeL,Da) = (20, 10). Note the similarities in

structure when compared to Figure 2.3 from Chapter 2, which uses an exact Green’s function

with different parameter values.

domain length in the x1-direction. However, the zero diffusive flux boundary condition gives

an external boundary layer of width 1/PeL in the exact Green’s function, see Appendix B.1.

A physical interpretation of this is that advection causes any effect from boundary layers to be

swept downstream, meaning the impact of any boundary layer is felt more downstream than

upstream of its location. As a result of this boundary layer, we again see the free-space Green’s

function is a good approximation over distances greater than O(1/PeL) from the downstream

boundary. Therefore the free-space Green’s function will remain valid almost everywhere so

long as PeL � max(1,
√

Da). However, when this condition doesn’t hold then boundary effects

influence large regions of the Green’s function, resulting in an exact Green’s function being

required.

A plot comparing the free-space Green’s function given in (3.4.9) to the exact solution given in

(B.1.2) from Appendix B.1 is shown in Figure 3.4(b). This error is seen to be asymptotically

small when a distance of at least O(1/PeL) from the downstream x1-boundary due to the outlet

boundary condition. There is also an error of width O(1/PeL) from the x1 = 0 boundary, but

this is only notable when a distance O(1/PeL) from x1 = x′1 due to the decay lengthscale LG−x1
.

From the symmetry in the Green’s function (invariance under reflection in the line x1 +x′1 = 1)

we also see the same effects on the x′1 boundaries in the reverse order.
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Figure 3.5: (a) Contour plot of the free-space Green’s function G2(x−x′) in two dimensions. (b)

Plot of the free-space Green’s function G2(x − x′) along x2 = 0. Both figures use (PeL,Da) =

(20, 10) and x′ = (0.5, 0).

The one-dimensional free-space Green’s function given in (3.4.11) shows how a sink located at

x1 = x′1 influences the solute concentration a distance LG−x1
and LG+

x1
upstream and downstream

of x′1 respectively. Therefore when considering some point x1 = x0 we see the concentration at

x0 can be influenced by a sink LG+
x1

or LG−x1
upstream or downstream of the location respectively.

Therefore the parameters LG−x1
and LG+

x1
define the lengthscales of a region of influence about

x0, where any sinks lying within this region will influence the solute concentration at x0.

3.4.2 Two-dimensional free-space Green’s function

In two dimensions, (2.2.10) gives the free-space Green’s function as

G2(x− x′) = − 1

2π
K0(φ|x− x′|) exp

(
PeL

2
(x1 − x′1)

)
. (3.4.12)

A contour plot of the two-dimensional free-space Green’s function given in (3.4.12) can be seen

in Figure 3.5, where x′ = (0.5, 0.5) and (PeL,Da) = (20, 10) are used.

Although the modified Bessel function of the second kind does not here have a simplified

expression, Abramowitz and Stegun (1964) state that for z → 0 and z →∞ then

K0(z) ≈ − log(z) and K0(z) ≈
√

π

2z
(1 +O(1/|z|)) exp(−z) (3.4.13)

respectively. Therefore near the sink location x = x′ we can use (3.4.13) with exp((PeL /2)(x1−
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x′1)) ≈ 1 +O(x1 − x′1) to give the free-space Green’s function to leading-order as

G2(x− x′) ≈ 1

2π
log(φ|x− x′|). (3.4.14)

This allows us to approximate the flux from the source to be

F = 2πr
∂G2(x− x′)

∂r
≈ 1, (3.4.15)

where r is defined to be r = |x− x′|.

Far-field behaviour

Let us now consider the behaviour of the free-space Green’s function when far field of the sink

location x = x′. This is done by using φ|x − x′| � 1, meaning (3.4.13) gives the free-space

Green’s function to leading-order by

G2(x− x′) ≈ −1

2

√
1

2πφ|x− x′|
exp

(
PeL

2
(x1 − x′1)− φ|x− x′|

)
. (3.4.16)

We can consider the behaviour in the x1-direction by considering x2 = x′2 (where x = (x1, x2)

and x′1 = (x′1, x
′
2)). This gives |x − x′| = |x1 − x′1|, so by considering x1 < x′1 and x1 > x′1

separately we obtain the decay lengthscales downstream and upstream of the sink as

LG−x1
=

(
φ+

PeL
2

)−1

for x1 < x′1 and LG+
x1

=

(
φ− PeL

2

)−1

for x1 > x′1 (3.4.17)

respectively. These are the same lengthscales as found in one spatial dimension in (3.4.10).

Along x1 = x′1 the lengthscale over which G2 decays in the x2-direction is

LGx2
= φ−1.

These lengthscales can be approximated in the limit PeL � max(1,
√

Da) to be

LG−x1
≈ 1

PeL
, LG+

x1
≈ Da

PeL
and LGx2

≈ 1

PeL
,

which are depicted in Figure 3.6(a).

Let us now consider the asymptotic shape of the wake in the far field. The lengthscales when

downstream of x = x′ are given by LG+
x1

= PeL /Da and LGx2
= 1/PeL in the limit where

PeL � max(1,
√

Da). So by rescaling using x1 − x′1 = (PeL /Da)X1 and x2 − x′2 = (1/PeL)X2

for X1, X2 = O(1) we obtain

φ =
PeL

2

(
1 +

4 Da

Pe 2
L

)1/2

≈ PeL
2

(
1 +

2 Da

Pe 2
L

− 2 Da2

Pe4
L

+ . . .

)
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Figure 3.6: (a) Depiction of the lengthscales involved in the Green’s function for a sink located at

x = x′ [red dot] and the asymptotic shape of the wake [solid blue], where PeL � max(1,
√

Da).

(b) The region of influence [dashed green] about the point x = y [black dot]. Sinks located

outside of this region will have weak influence on the concentration at x = y. Here, red dots

represent sink locations x = x′ and blue ellipses represent the asymptotic shapes of the wake

about each sink.

and

|x− x′| = PeL
Da

X1

(
1 +

Da2

Pe4
L

(
X2

2

X2
1

))1/2

≈ PeL
Da

X1

(
1 +

Da2

2 Pe4
L

(
X2

2

X2
1

)
+ . . .

)
.

Therefore

φ|x− x′| ≈ Pe 2
L

2 Da
X1

(
1 +

2 Da

Pe 2
L

+
Da2

Pe4
L

(
X2

2

2X2
1

− 2

)
+ . . .

)
and

1√
φ|x− x′|

≈ 1

PeL

√
2 Da

X1

(
1− Da

Pe 2
L

+
Da2

Pe4
L

(
4− X2

2

4X2
1

)
+ . . .

)
,

which can be used with (3.4.16) to give

G2(x− x′) ≈ − 1

2 PeL

√
Da

πX1
exp

(
−
(

1 +
Da

2 Pe 2
L

(
X2

2

2X2
1

− 2

))
X1

)
.
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To consider one contour of the free-space Green’s function set G2 to be constant, which gives

− log(−2 PeL
√
π/DaG2) = X0 ≥ 0 where X0 ∈ R+. Therefore

X0 ≈
logX1

2
+X1 +

Da

2 Pe 2
L

(
X2

2

2X2
1

− 2

)
X1,

so noting that 1 - Da /Pe 2
L ≈ 1 in the limit PeL � max(1,

√
Da) gives(

X1 −
X0

2

)2

+
X1 logX1

2
+

Da

4 Pe 2
L

X2
2 ≈

(
X0

2

)2

. (3.4.18)

By setting X0 = (2 Da /PeL)x0 and converting back to the original variables using X1 =

(Da /PeL)(x1 − x′1) and X2 = PeL(x2 − x′2) gives

(x1 − x′1 − x0)
2

+
PeL
2 Da

(x1 − x′1) log

(
Da

PeL
(x1 − x′1)

)
+

Pe 2
L

4 Da
(x2 − x′2)2 ≈ x2

0.

We can consider the asymptotic shape of the wake far downstream from the location x1−x′1 for

x1−x′1 ≈ PeL /Da, which causes the log term to be asymptotically small, resulting in contours

taking the shape of an ellipse with centre (x′1 + x0, x
′
2), length 2x0 and width (2

√
Da/PeL)x0.

So for x1 = O(PeL /Da) we have x0 ∼ PeL /2 Da which gives the width to be O(1/
√

Da), which

is given in Figure 3.6(a).

Figure 3.6(b) shows the region of influence about a point x = y, such that any sinks located

inside this region can be seen to impact the concentration at x = y. This is found by inverting

the ellipse seen in the Green’s function, causing the lengthscales to also be inverted. The

lengthscales for the region of influence will later be used to show the long-range impact of each

sink location for discrete sinks.

3.4.3 Three-dimensional free-space Green’s function

In three dimensions we can again use (3.4.8) to give the free-space Green’s function as

G3(x− x′) = − 1

4π|x− x′|
exp

(
PeL

2
(x1 − x′1)− φ|x− x′|

)
. (3.4.19)

This gives decay lengthscales in the x1-direction as

LG−x1
=

(
φ+

PeL
2

)−1

for x1 < x′1 and LG+
x1

=

(
φ− PeL

2

)−1

for x1 > x′1

and in the x2- and x3-direction as

LGx2
= φ−1 and LGx3

= φ−1

respectively. The decay lengthscales in the x1-direction are again the same as for one and two

dimensions, which are given in (3.4.10) and (3.4.17) respectively. To calculate the leading-order
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behaviour of the free-space Green’s function near x = x′, by setting r = |x − x′| and noting

that exp((PeL /2)(x1 − x′1)− φr) ≈ 1 + . . . we obtain

G3(x− x′) ≈ − 1

4πr
. (3.4.20)

Therefore the flux from the source is given by

F = 4πr2 ∂G

∂r
≈ 1, (3.4.21)

which is the same as the two-dimensional flux given in (3.4.15).

Far-field behaviour

Let us again consider the far-field behaviour of the free-space Green’s function by calculating

the asymptotic shape of the wake. The lengthscales when downstream of x = x′ are given

by LG+
x1

= PeL /Da and LGx2
= 1/PeL in the limit where PeL � max(1,

√
Da). So by

rescaling using x1 − x′1 = (PeL /Da)X1, x2 − x′2 = (1/PeL)X2 and x3 − x′3 = (1/PeL)X3 for

X1, X2, X3 = O(1) we obtain

φ =
PeL

2

(
1 +

4 Da

Pe 2
L

)1/2

≈ PeL
2

(
1 +

2 Da

Pe 2
L

− 2 Da2

Pe4
L

+ . . .

)
and

|x− x′| = PeL
Da

X1

(
1 +

Da2

Pe4
L

(
X2

2 +X2
3

X2
1

))1/2

≈ PeL
Da

X1

(
1 +

Da2

2 Pe4
L

(
X2

2 +X2
3

X2
1

)
+ . . .

)
.

Therefore

φ|x− x′| ≈ Pe 2
L

2 Da
X1

(
1 +

2 Da

Pe 2
L

+
Da2

Pe4
L

(
X2

2 +X2
3

2X2
1

− 2

)
+ . . .

)
which can be used with (3.4.19) to give

G3(x− x′) ≈ − Da

4πPeLX1
exp

(
−
(

1 +
Da

2 Pe 2
L

(
X2

2 +X2
3

2X2
1

− 2

))
X1

)
.

So by setting G3 to be constant, which gives− log(−2 PeL
√
π/DaG3) = X0 ≥ 0 whereX0 ∈ R+,

we obtain the contours of the Green’s function to be

X0 ≈
logX1

2
+X1 +

Da

2 Pe 2
L

(
X2

2 +X2
3

2X2
1

− 2

)
X1.

By noting that 1 - Da /Pe 2
L ≈ 1 in the limit PeL � max(1,

√
Da) we obtain(

X1 −
X0

2

)2

+
X1 logX1

2
+

Da

4 Pe 2
L

X2
2 +

Da

4 Pe 2
L

X2
3 ≈

(
X0

2

)2

. (3.4.22)

By setting X0 = (2 Da /PeL)x0 and converting back to the original variables we see the asymp-

totic shape of the wake is given by

(x1 − x′1 − x0)
2

+
PeL
2 Da

(x1 − x′1) log

(
Da

PeL
(x1 − x′1)

)
+

Pe 2
L

4 Da
(x2 − x′2)2 +

Pe 2
L

4 Da
(x3 − x′3)2 ≈ x2

0.
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We can consider the asymptotic shape of the wake far downstream from the location x1 − x′1
when x1 − x′1 ≈ PeL /Da, which causes the log term to be asymptotically small, meaning the

contours take the shape of an ellipsoid with centre (x′1 + x0, x
′
2, x
′
3), x1-direction length as 2x0

and x2-direction width and x3-direction height as (2
√

Da/PeL)x0. So for x1 = O(PeL /Da)

we have x0 ∼ PeL /2 Da, which gives the width and height to be O(1/
√

Da). We can again

find the region of influence by the inverse of the asymptotic shape of the wake. As a result,

Figures 3.6(a) and 3.6(b) remains valid and can be extended into three dimensions by making

the dependence in the x3-direction identical to that in the x2-direction.

The free-space Green’s functions given in (3.4.9), (3.4.12) and (3.4.19) will now be used with

the moments of sink functions found in Section 3.3 to find the moments of corrections to the

homogenized solution. This is done using (3.2.9) - (3.2.11) for periodic, normally-perturbed

from a periodic configuration and uniformly-random sink locations. Approximations of results

will be obtained using the regions of influence of the Green’s function and its near- and far-field

forms.

3.5 Characterising uncertainty using corrections to the

homogenized solution

In this section corrections to the homogenized solution will be found, which are used to ap-

proximate the solute concentration for both periodic and disordered sink locations. When sinks

are periodically located, the corrections given in (3.2.7) and (3.2.8) will be evaluated and com-

pared to solving (3.1.2) using a finite-difference solver. In contrast, when sinks are disordered

the moments of the corrections given in (3.2.9)-(3.2.11) will be evaluated and compared with

sample moments taken from Monte Carlo simulations in one- and two- dimensions. For both

periodic and disordered sink locations the corrections will be considered in the limit where the

sink width becomes asymptotically small (i.e. ς → 0). Throughout, the corrections are calcu-

lated using the moments of the sink function given in Section 3.3 with n-dimensional free-space

Green’s functions found in Section 3.4.

3.5.1 Corrections accounting for periodic sink locations

Let sinks be periodically located with their positions given by ξi = ei = λ(2i − 1)/2, ξi2 =

ei2 = λ((2i − 1)/2, j) and ξi3 = ei3 = λ((2i − 1)/2, j, k) in one, two and three dimensions

respectively, where i = 1, . . . , N and j, k = −M, . . . ,M . As this results in the sink function ĝ
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being deterministic we in turn find the corrections Ĉ1(x), Ĉ2(x), . . . are deterministic, where

the ω notation is now dropped. Therefore the leading- and second-order corrections to the

homogenized solution in n dimensions are given by (3.2.7) and (3.2.8) as

Ĉ1(x) = λn
∑
in

∫
Dn

Gn(x− x′)CH(x′1)Fnς (x′ − ein) dx′ −
∫
D1

G1(x1 − x′1)CH(x′1) dx′1. (3.5.1)

and

Ĉ2(x) =λ2n
∑
in

∑
jn

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1)Fnς (x′ − ein)Fnς (x′′ − ejn) dx′ dx′′

− λn
∑
in

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1)
(
Fnς (x′ − ein) + Fnς (x′′ − ein)

)
dx′ dx′′

+

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1

(3.5.2)

respectively, where the integrals of Gn(x − x′) and Gn(x − x′)CH(x′1) have been reduced to

one-dimensional integrals using a change of variables with (3.4.7). Represented in (3.5.1) and

(3.5.2) is a classic homogenization problem, which is previously represented in both Russell and

Jensen (2020) and Chapter 2 for one-dimensional point sinks by the corrections Ĉa(x1) and

Ĉaa(x1) respectively. Both (3.5.1) and (3.5.2) use an n-dimensional free-space Green’s function

Gn, which causes the expressions to remain valid except when within a distance 1/PeL from

either x1-boundary. To evaluate (3.5.1) and (3.5.2) we can use results in Appendix B.5, where

the integrals of G1(x1 − x′1)CH(x′1) and G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) are calculated using

the homogenized solution and one-dimensional free-space Green’s function given in (3.2.2) and

(3.4.9) respectively. Any remaining integrals can then be solved in n dimensions using the

integral solver given in Appendix B.3.

Consider approximating the corrections Ĉ1(x) and Ĉ2(x) in the limit ς → 0. Because the sink

function Fnς recovers an n-dimensional δ-function in the distribution sense, we might consider

approximating the integrals in (3.5.1) and (3.5.2) by substituting an n-dimensional δ-function

for Fnς . By denoting these solutions Ĉδ1(x) and Ĉδ2(x) we obtain

Ĉδ1(x) ≈ λn
∑
in

Gn(x− ein)CH(ei)−
∫
D1

G1(x1 − x′1)CH(x′1) dx′1 (3.5.3)
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and

Ĉδ2(x) ≈λ2n
∑
in

∑
jn

Gn(x− ein)Gn(ein − ejn)CH(ej)

− λn
∑
in

∫
Dn

Gn(x− ein)Gn(ein − x′′)CH(x′′1) dx′′

− λn
∑
jn

∫
Dn

Gn(x− x′)Gn(x′ − ejn)CH(ej) dx′

+

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 .

(3.5.4)

However, a singularity exists in the two- and three-dimensional free-space Green’s function. So

in the limit ς → 0 we see Ĉδ1(x) only offers an appropriate approximation when x is suitably

far from ein , with Ĉδ2(x) being everywhere singular. In contrast, as the one dimensional free-

space Green’s function contains no singularities, both Ĉδ1(x1) and Ĉδ2(x1) offer appropriate

approximations of the corrections Ĉ1(x1) and Ĉ2(x1) respectively.

In one dimension we can calculate the magnitude of the leading-order correction Ĉ1(x1) by

calculating the order of integrals in (3.5.3). So using Appendix B.5 we find

Ĉδ1(x1) = O
(
Pe−1

L max(Pe−1
L , λ)

)
. (3.5.5)

Figure 3.7(a) shows a comparison between (3.1.2) solved with finite-differences (Appendix B.2)

and (3.5.1) and (3.5.2) solved with the quadrature (Appendix B.3) in one spatial dimension.

The leading-order correction is seen to account for the staircase structure caused by discrete

sink locations, with the second-order correction accounting for an over-prediction of uptake

strength by the homogenized solution. Also shown are the δ-function approximations of the

corrections given in (3.5.3) and (3.5.4). As the one-dimensional free-space Green’s function

contains no singularities, we see (3.5.3) and (3.5.4) offer close approximations of the corrections

Ĉ1(x1) and Ĉ2(x1) respectively. However, discrepancies are seen near sink locations in the

leading-order approximation, with an under-prediction of uptake being shown by the second-

order correction. The inset of Figure 3.7(a) shows the difference between each prediction and

the numerical solution to (3.1.2). This verifies how each correction to the homogenized solution

results in an improved prediction of the solute concentration, with solving (3.5.1) and (3.5.2)

with an integral solver being advantageous to using the δ-function approximations given in

(3.5.3) and (3.5.4) respectively.

In two and three dimensions, due to singularities in the free-space Green’s function, which are

of order log |x − x′| and 1/|x − x′| respectively, we in turn find singularities in the δ-function

approximation of the leading-order correction Ĉδ1(x) (given in (3.5.3)) at sink locations x = ein .
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(a) 1D periodic; concentration
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(b) 1D normally-perturbed; expectation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
-0.02

-0.01

0

0.01

0.02

Figure 3.7: Concentration in one dimension, where E[C(x1;ω)] represents the sample expecta-

tion from 106 Monte Carlo realisations. Insets show the difference between each approximation

and the sample expectation. Figure (a) uses periodic sink locations, whereas figure (b) uses

normally-perturbed sink locations according to a standard deviation σ = 0.02. All figures use

λ = 0.2, (PeL,Da) = (20, 10) and ς = 0.01.

Also, from (3.5.4) we find the second-order estimated correction Ĉδ2(x) is everywhere singular

due to the first term containing a Gn(0) term when in = jn. Therefore regularisation of sink

distributions is required in two and three dimensions (Mahiout et al., 2020), which will replace

singularities in concentration profiles with smooth minima.

Consider the leading-order correction given in (3.5.1) in the limit ς � 1 for both two and three

dimensions. When away from sink locations we can use the δ-function approximation given

in (3.5.3) due to no functions being evaluated at singularities. However, when in the vicinity

of sink locations the integral given in (3.5.1) must instead be carefully approximated, which

can be used to obtain the local minima of Ĉ1(x) which occur at x = ein . To approximate the

correction when x is in the neighbourhood of ein we must approximate the integral

Inς (x, ein) ≡
∫
Dn

Gn(x− x′)CH(x′1)Fnς (x′ − ein) dx′ (3.5.6)

from (3.5.1). In the limit where ς � 1 we see that Fnς (x′ − ein) becomes asymptotically small

for x′ sufficiently far from ein , so we will consider the integral near x = ein by setting

x = ein + ςu and x′ = ein + ςv

and defining Ru = |u| and Rv = |v|. By Figure 3.8 we see that

|x− ein | = ςRu, |x′ − ein | = ςRv and |x− x′| = ς
√
R2
u − 2RuRv cos θ +R2

v, (3.5.7)

where θ is the angle made by the vectors u and v. Consider the homogenized solution CH(x′1)

in the neighbourhood of a sink by setting x′1 = ei + ςv1, where ei is the first component of ein .
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ein

ςRu
x

x′

ςRv

θ

ςRv cos θ − ςRu

ςRv sin θ

Figure 3.8: Depiction of the relevant angles and lengths created by x,x′ and ein in two and

three dimensions.

By (3.2.2) we know that CH(x1) is a smooth function of order O(1), therefore the homogenized

solution can be approximated by

CH(x′1) ≈ CH(ei) +O(ς).

This will now be used to calculate an approximation of Ĉ1(x) in two and three dimensions,

which will remain valid within a distance of order O(ς) away from ei3 for ς � 1.

In two dimensions we will approximate the free-space Green’s function when x is in the vicinity

of x′ with the near-field free-space Green’s function given in (3.4.14). Therefore F 2
ς and G2 can

be approximated using (3.1.5) and (3.4.14) to be

F 2
ς (x′ − ei2) =

1

2πς2
e−

1
2R

2
v and G2(x− x′) ≈ 1

2π
log
(
φς
√
R2
u − 2RuRv cos θ +R2

v

)
respectively. This gives, using (3.5.6),

I2
ς (x, ei2) ≈ 1

4π2
CH(ei)

∫ 2π

0

∫ ∞
0

Rv log
(
φς
√
R2
u − 2RuRv cos θ +R2

v

)
e−

1
2R

2
v dRv dθ

for ς � 1. We can approximate the logarithmic term as log
(
φς
√
R2
u − 2RuRv cos θ +R2

v

)
≈

log(φς) for ς � 1 due to both Ru and Rv being of order O(1) and φς � 1. Therefore the

integral given in (B.4.3) can be approximated by

I2
ς (x, ei2) ≈ 1

2π
log(φς)CH(ei)

when x is within a distance of order O(ς) of ei2 as ς → 0. Using this with (3.5.1) we find the

leading-order correction Ĉ1(x) when x is in the vicinity of ei2 to be

Ĉ1(x) ≈ λ2

2π
log(φς)CH(ei) (3.5.8)
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in the limit ς → 0. This gives that the leading-order correction Ĉ1(x) scales as log(φς) when

x is in the vicinity of ei2 , which is a direct consequence of the logarithmic singularity in the

free-space Green’s function G2.

For three dimensions we will use the near-field form of the free-space Green’s function to obtain

F 3
ς (x′ − ei3) =

1

(2π)3/2ς3
e−

1
2R

2
v and G3(x− x′) ≈ −1

4πς
√
R2
u − 2RuRv cos θ +R2

v

,

which are calculated using (3.1.5) and (3.4.20) respectively. This gives

I3
ς (x, ei3) ≈ − 1

2(2π)3/2ς
CH(ei)

∫ π

0

∫ ∞
0

1√
R2
u − 2RuRv cos θ +R2

v

exp

(
−1

2
R2
v

)
R2
v sin θ dRv dθ

(3.5.9)

for ς � 1. To evaluate the θ integral the substitution h2 = R2
u − 2RuRv cos θ+R2

v can be used

to give

∫ π

0

1√
R2
u − 2RuRv cos θ +R2

v

sin θ dθ =

∫ Ru+Rv

|Ru−Rv|

1

RuRv
dh =

2/Ru for Ru > Rv

2/Rv for Ru < Rv

.

So by considering 0 ≤ Rv ≤ Ru and Ru ≤ Rv ≤ ∞ separately in (3.5.9) and using the integrals

evaluated in (B.4.3) and (B.4.5) in Appendix B.4 we obtain

I3
ς (x, ei3) ≈ − 1

4πςRu
erf

(
Ru√

2

)
CH(ei), (3.5.10)

which gives the asymptotic shape of the leading-order correction Ĉ1 when x is in the vicinity

of ei2 for ς � 1. By Taylor expanding the error function about Ru = 0 we find that

erf

(
Ru√

2

)
=

2√
π

∫ Ru/
√

2

0

exp
(
−t2

)
dt ≈ 2√

π

∫ Ru/
√

2

0

(
1− t2 + . . .

)
dt =

√
2

π

(
Ru −

R3
u

6
+ . . .

)
.

(3.5.11)

So by using (3.5.1), we see that the leading-order correction Ĉ1 when x is in the vicinity of ei3

is approximately

Ĉ1(x) ≈ − λ3

(2π)3/2ς
CH(ei) (3.5.12)

in the limit ς → 0. As for two dimensions, we find the magnitude of the singularity in the

free-space Green’s function governs the scaling of the leading-order correction Ĉ1(x), where

this scaling is given by 1/ς when x is in the vicinity of ei3 for ς � 1. We can therefore find

the order of magnitude for the leading-order correction Ĉ1 in the vicinity of x = ein , which is

given in one, two and three dimensions for PeL � max(1,
√

Da) as

O
(
Pe−1

L max
(
λ,Pe−1

L

))
, O

(
λ2 log (PeL ς)

)
and O

(
λ3

(
1

ς

))
(3.5.13)
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(a) 2D periodic; concentration
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(b) 2D normally-perturbed; expectation
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Figure 3.9: Concentration in two dimensions, where figures in column (a) use periodic sinks

locations and figures in column (b) use normally-perturbed sink locations with a standard

deviation σ = 0.02. For periodic and normally-perturbed sink locations row (i) shows the

numerical concentration C(x) and expected concentration E[C(x;ω)] (the central sink-row from

Figures 3.1(a) and 3.1(d) respectively), (ii) shows the homogenized solution for both cases, (iii)

shows the correction Ĉ1(x) and expected correction E[Ĉ1(x;ω)] and (iv) the combination of

the homogenized solution with the correction Ĉ1(x) and the expected correction E[Ĉ1(x;ω)]

respectively in one strip of the domain where x2 ∈ [−0.1, 0.1]. Row (v) shows the results from

(i), (ii), (iv), (3.5.3) and (3.5.19) with x2 = 0, where the inset shows the difference between

each approximation and the numerical or expected concentration. All sample expectations

are calculated using 104 realisations with Appendix B.2. All figures use λ = 0.2, ς = 0.01,

(PeL,Da) = (20, 10) and Ds2 = [0, 1]× [−0.5, 0.5].

respectively.

Figure 3.9(a) shows two-dimensional results by comparing solutions from a finite-difference

solver given in Appendix B.2 with (3.1.2) and the integral solver described in Appendix B.3

with (3.5.1) and (3.5.2). Figure 3.9(a)(i) shows the numerical concentration in the region
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D2
strip = [0, 1] × [−λ/2, λ/2] taken from Figure 3.1(a). This is compared to the homogenized

solution, the correction Ĉ1(x) and the combination of the two in Figures 3.9(a)(ii), 3.9(a)(iii)

and 3.9(a)(iv) respectively. By using the region of influence given in Figure 3.6 we see that the

concentration inD2
strip is heavily influenced by sinks within the domainD2

strip = [0, 1]×[−2λ, 2λ],

with little impact being felt from sinks outside this domain and from the x2-boundary in Ds2.

Therefore Ĉ1 in Figure 3.9(a)(iii) is constructed from sums over sinks from two rows above to

two rows below D2
strip.

Figure 3.9(a) shows how the leading-order correction accounts for a decrease (increase) in con-

centration when near to (away from) sink locations, with an ellipsoidal structure being exhibited

about each sink location. This again reflects a wavy structure within the concentration, as is

seen in the one-dimensional form of Ĉ1(x) in Figure 3.7(a). The second-order correction for

two spatial dimensions is not evaluated here but is thought to again account for an error in the

prediction of uptake strength by the homogenized solution, as found in one dimension. This

error is seen to be an over-prediction in the slice taken from the two-dimensional concentration

through x2 = 0 shown in Figure 3.9(a)(v). Also shown in Figure 3.9(a)(v) is how the δ-function

approximation in (3.5.3) offers a good prediction of the correction away from sink locations,

but how the singularities at sink locations results in discrepancies. Figures 3.7(b) and 3.9(b)

show the expected concentration when sink locations are normally-perturbed from a periodic

configuration and will be discussed in the following section.

3.5.2 Moments of corrections accounting for normally-perturbed sink

locations

Let sink locations be normally-perturbed from a periodic configuration, where the mean sink

locations are given by ein and position vectors are given in (3.3.1). Using (3.2.9)-(3.2.11) the

first two moments of Ĉ1(x;ω) and the first moment of Ĉ2(x;ω) in n dimensions are given by

E
[
Ĉ1(x;ω)

]
=

∫
Dn

Gn(x− x′)CH(x′1)

(
λn
∑
in

E[Fnς (x′ − xin)]− 1

)
dx′, (3.5.14)

KĈ1
[x,y] = λ2n

∑
in

∫
Dn

∫
Dn

Gn(x− x′)CH(x′1)

×KFn
ς

[x′ − xin ,y
′ − xin ]Gn(y − y′)CH(y′1) dx′ dy′

(3.5.15)
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and

E
[
Ĉ2(x;ω)

]
=

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1)

×

(
λ2n

∑
in

∑
jn

in 6=jn

E[Fnς (x′ − xin)]E[Fnς (x′′ − xjn)] + λ2n
∑
in

E[Fnς (x′ − xin)Fnς (x′′ − xin)]

− λn
∑
in

E[Fnς (x′ − xin)]− λn
∑
jn

E[Fnς (x′′ − xjn)] + 1

)
dx′ dx′′

(3.5.16)

where E[Fnς (x−xin)] and E[Fnς (x−xin)Fnς (y−xin)] are given in (3.3.12) and (3.3.13) respec-

tively. As noted in Section 3.1, when ĝ represents point sink locations in one dimension the

moments given in (3.5.14)-(3.5.16) relate to the corrections Ĉb(x1) and Ĉbb(x1) from Russell

and Jensen (2020) and Chapter 2.

The integrals given in (3.5.14)-(3.5.16) can be solved numerically using the integral solver given

in Appendix B.3, but this becomes more computationally expensive as the number of dimen-

sions, order of the correction or domain size increase. We therefore estimate the corrections

when the sink width is asymptotically small (i.e. ς → 0). As for periodic sink locations we can

replace the sink functions with n-dimensional δ-functions, which can be used in (3.3.12) and

(3.3.13) to give

Eς→0[Fnς (x− xin)] = Fnσ (x− ein) (3.5.17)

and

Eς→0[Fnς (x− xin)Fnς (y − xin)] = δ (x− y)
√
Fnσ (x− ein)Fnσ (y − ein) (3.5.18)

respectively, which in turn give the moments of the sink function. Using these in (3.5.14) -

(3.5.16) gives

Eς→0

[
Ĉ1(x;ω)

]
=

∫
Dn

Gn(x− x′)CH(x′1)

(
λn
∑
in

Fnσ (x′ − ein)− 1

)
dx′, (3.5.19)

Varς→0[Ĉ1(x;ω)] = λ2n
∑
in

(∫
Dn

(Gn(x− x′)CH(x′1))
2
Fnσ (x′ − ein) dx′

−
(∫
Dn

Gn(x− x′)CH(x′1)Fnσ (x′ − ein) dx′
)2
)
.

(3.5.20)
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and

Eς→0

[
Ĉ2(x;ω)

]
=

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1)

×

(
λ2n

∑
in

∑
jn

in 6=jn

Fnσ (x′ − ein)Fnσ (x′′ − ein) + λ2nδ (x′ − x′′)
∑
in

√
Fnσ (x′ − ein)Fnσ (x′′ − ein)

− λn
∑
in

Fnσ (x′ − ein)− λn
∑
jn

Fnσ (x′′ − ein) + 1

)
dx′ dx′′

(3.5.21)

respectively. Comparing the expectation given in (3.5.19) with the correction Ĉδ1(x) given in

(3.5.3) we see that perturbing sinks results in singularities being smoothed out when taking

the expectation. However, the δ-function present in (3.5.21) shows a singularity still exists in

the second-order correction when considering two and three dimensions. Note how taking the

limit ς → 0 reduces the two 2n-dimensional integrals in the variance down to two n-dimensional

integrals, thereby making it less computationally expensive to compute.

To find an approximation of the expectations given in (3.5.19) and (3.5.21), we can consider

the limit σ → 0 by replacing the regularised function Fnσ with an n-dimensional δ-function.

This removes disorder from (3.5.19) and (3.5.21) and introduces singularities at mean sink

locations in two and three dimensions. When away from x = x′ in the limit ς, σ → 0 we find

the expectation of Ĉ1(x;ω) and Ĉ2(x;ω) locally converge to the deterministic expressions of

Ĉδ1(x) and Ĉδ2(x) given in (3.5.3) and (3.5.4) respectively. So in one dimension we find that the

magnitude of the leading-order correction in the limit ς, σ → 0 is of the same size as for periodic

sink locations, which is given by (3.5.5). We can also find an approximation of the leading-order

correction for finite ς and σ in the limit ς, σ � 1 when x is in the vicinity of ein in two and

three dimensions. This is done by using the periodic results given in (3.5.8) and (3.5.12), where

the width ς is now replaced by an effective width
√
σ2 + ς2 due to the expectation of Fς from

(3.3.12). So for two and three dimensions the expectation of Ĉ1(x;ω) near x = ein in the limit

ς, σ � 1 is given by

E[Ĉ1(x;ω)] ≈ λ2

2π
log
(
φ
√
σ2 + ς2

)
CH(ei) (3.5.22)

and

E[Ĉ1(x;ω)] ≈ − λ3

(2π)3/2
√
σ2 + ς2

CH(ei) (3.5.23)

respectively. Therefore the magnitude of the leading-order correction for PeL � max(1,
√

Da)
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in the vicinity of x = ein in one, two and three dimensions is given by

O
(
Pe−1

L max(λ,Pe−1
L )

)
, O

(
λ2 log

(
PeL

√
ς2 + σ2

))
and O

(
λ3

(
1√

ς2 + σ2

))
(3.5.24)

respectively.

Figures 3.7(b) and 3.9(b) compare sample moments of the concentration calculated from Monte

Carlo realisations with moments of corrections found using the integral solver described in

Appendix B.3 with (3.5.14) and (3.5.16). Figure 3.7(b) shows the contribution from the ex-

pectation of Ĉ1(x1;ω) and Ĉ2(x1;ω) to the homogenized solution in one dimension. As for

periodic sink locations, the leading-order correction accounts for the staircase structure caused

by discrete sink locations, with the second-order correction accounting for an over-prediction

of uptake strength by the homogenized solution. One difference is how the wavy structure is

smoothed out when moving from periodic to normally-perturbed sink locations. This is due to

the sink function having a width ς for periodic sink locations, but when taking the expectation

this width becomes
√
ς2 + σ2 for normally-perturbed sink locations. This also results in the

δ-function approximations Ĉδ1(x1;ω) and Ĉδ2(x1;ω) being poorer estimators of the expectation

when compared to their use for periodic sink locations. The inset of Figure 3.7(b) shows the

difference between the sample expectation and each approximation, which demonstrates how

each correction improves the prediction of the numerical concentration.

Figure 3.9(b) shows the expected concentration in two dimensions within the region D2
strip =

[0, 1] × [−λ/2, λ/2] for normally-perturbed sink locations. It was previously shown that the

concentration in D2
strip is influenced by two rows of sinks above and below the domain, with

little impact being felt from the x2-boundary in Ds2. Therefore the expectation is found by

summing over five rows of sinks, which include the four rows sandwiching D2
strip. As for periodic

sink locations, we find the expectation of the leading-order correction accounts for an increase

in uptake near sink locations with a decrease elsewhere, leading to an ellipsoidal shape forming

about the mean sink locations. In the limit ς → 0 Figure 3.9(b)(v) shows good agreement

between using (3.5.19) and (3.5.14) when x2 = 0. This is partly due to (3.5.19) containing no

singularities due to taking expectations smoothing out variation at x = ei2 , which is reflected

by the σ dependence in (3.5.19). However, when also taking the limit σ → 0 we see the

deterministic correction Ĉδ1 offers a poor description of the expectation when x is in the vicinity

of ei2 due to singularities existing in (3.5.3). Figure 3.9(b) does not calculate the second-

order corrections for normally-perturbed sink locations in two spatial dimensions due to the

computational expense.
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(a) 1D normally-perturbed; variance
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(b) 1D uniformly-random; variance
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Figure 3.10: Variance of the concentration in one dimension, where (a) uses normally-perturbed

sink locations and (b) uses uniformly-random sink locations. Here, Var[C(x1;ω)] represents the

sample variance from 106 Monte Carlo realisations, Var[Ĉ(x1;ω)] is calculated using (3.3.10) and

(3.3.11) with (3.3.5) in (3.5.15) for (a) and (3.5.26) for (b) and Varς→0[Ĉ(x1;ω)] is calculated

using (3.5.20) for (a) and (3.5.38) for (b). All figures use λ = 0.2, (PeL,Da) = (20, 10) and

ς = 0.01, with figure (a) using σ = 0.02.

Figure 3.10(a) shows the variance of the concentration in one dimension. This is done by com-

paring 106 Monte Carlo realisations of (3.5.15) using the integral solver outlined in Appendix

B.3. Good agreement between the sample variance and the variance of the leading-order cor-

rection can be seen, with an increase in variation been found about sink locations causing a

wavy sink-to-sink structure. Also shown is the variance found when taking the limit ς → 0,

as given in (3.5.20). This can be seen to overestimate the variance in one dimension in Figure

3.10(a) when near sink locations, but otherwise has a similar structure to the exact form used

to calculate the variance of Ĉ1(x, ω).

Figure 3.11(a) shows the variance of the concentration in two dimensions for normally-perturbed

sink locations. Figure 3.11(a)(i) calculates the sample variance using 104 Monte Carlo realisa-

tions, whereas Figure 3.11(a)(ii) uses the variance of the leading-order correction in the limit

ς → 0, which is given in (3.5.20). Both figures show the variance decaying and becoming

asymptotically small when reaching the x2 boundaries, which is due to sink locations being

independently distributed. However, the crescent shapes shown in the sample variance are not

captured and this study cannot explain their appearance. Also, the magnitude of the variance

about each sink location has been over-predicted when using the δ-function approximation,

with it being approximately double the size at sink locations. This is shown by the sample

variance and approximation of the variance of Ĉ1 when ς → 0 for x2 = 0 in Figure 3.11(a)(iii).
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Figure 3.11: Variance of the concentration in two dimension, where columns (a) and (b) use

normally-perturbed and uniformly-random sink locations respectively. Figures (i) and (ii) show

the sample variance (taken from Figures 3.1(f) and 3.2(c)) [Var[C(x;ω)]] and the δ-function

approximation of the variance [Varς→0[C(x;ω)]] respectively in one strip of the domain where

x2 ∈ [−0.1, 0.1]. To calculate δ-function approximations we uses (3.5.20) and (3.5.38) for

normally-perturbed and uniformly-random sink locations respectively. Figure (a)(iii) shows

both the sample variance and δ-function approximation with x2 = 0, whereas figure (b)(iii)

shows a cloud plot of the sample variance for x2 = −2,−1.996, . . . , 2 from Figure 3.2(c), the

average of these variances over x2 [〈Var[C(x;ω)]〉x2 ] and the δ-function approximation of the

variance from (3.5.38) [Varς→0[Ĉ1(x1, 0;ω)]]. All figures use λ = 0.2, (PeL,Da) = (20, 10) and

ς = 0.01 and sample variances are calculated from 104 Monte Carlo realisations. Figure (a)

uses Ds2 = [0, 1]× [−0.5, 0.5] and σ = 0.02 whereas figure (b) uses Ds2 = [0, 1]× [−2.5, 2.5].

This demonstrates how smearing out the sinks’ location reduces the variation in solute concen-

tration. Although this over-prediction is seen in one dimension when taking the limit ς → 0,

see Figure 3.10(a), it is thought to be exaggerated in two dimensions due to the singularity in

the Green’s function.

Both the absence of crescent shapes and over-prediction of the variance could potentially be cor-

rected by using the full expression for the variance of Ĉ1 given in (3.5.15). However, difficulties

arise when solving (3.5.15) due to being computationally expensive in two and three dimensions.

Figures 3.10(b) and 3.11(b) show the variance of the concentration for uniformly-random sink

locations, as will be discussed in the following section.
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3.5.3 Moments of corrections accounting for uniformly-random sink

locations

Let sink locations be prescribed by a multivariate uniform distribution, with the position vector

given by ξi3 = (ξi, ξj , ξk) such that ξi ∼ U [0, 1] and ξj , ξk ∼ U [−Ls, Ls] for i = 1, . . . , N and

j, k = −M, . . . ,M . Then (3.2.9)-(3.2.11) can be used with (3.3.19) and (3.3.20) to give the

corrections to the homogenized solution in n dimensions as

E
[
Ĉ1(x;ω)

]
= 0, (3.5.25)

KĈ1
[x,y] =

∫
Dn

∫
Dn

Gn(x− x′)CH(x′1)Gn(y − y′)CH(y′1)

×
(
λnFn√

2ς
(x′ − y′)− λ

(2M + 1)n−1

)
dx′ dy′

(3.5.26)

and

E
[
Ĉ2(x;ω)

]
=

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1)

×
(
λnFn√

2ς
(x′ − x′′)− λ

(2M + 1)n−1

)
dx′ dx′′.

(3.5.27)

In two and three dimensions, consider when Ls becomes asymptotically large in comparison to

the average inter-sink distance λ. In this limit, the expectation and variance become indepen-

dent of x2 and x3 when suitably far from boundaries, as is seen in two dimensions in Figures

3.2(b) and 3.2(c) respectively. To calculate Ĉ2, which is the leading-order correction to the

expectation, we must evaluate the following two integrals

I4(x) =

∫
Dn

Gn(x− x′)

(∫
Dn

Gn(x′ − x′′)CH(x′′1)Fn√
2ς

(x′ − x′′) dx′′
)

dx′, (3.5.28a)

I5(x) =

∫
Dn

∫
Dn

Gn(x− x′)Gn(x′ − x′′)CH(x′′1) dx′ dx′′. (3.5.28b)

In n dimensions I5 can be simplified using a change of variables with (3.4.7) to reduce the two-

and three-dimensional problem to one dimension. For I4, consider when ς � 1, which results

in Fn√
2ς

(x′ − x′′) becoming asymptotically small when x′ is far from x′′. As a result, consider

the integral near x′ = x′′ by setting x′′ = x′ + ςu for some vector u. So as CH(x1) is a smooth

function of order O(1) we can approximate the homogenized solution as

CH(x′′1) ≈ CH(x′1) +O(ς).

This will now be used to approximate I4 in one, two and three dimensions.

In one dimension we can use (3.4.9) with x′′1 = x′1 + ςu to give

G1(x′1 − x′′1) = − 1

2φ
exp

(
−PeL

2
ςu− φς|u|

)
. (3.5.29)
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Therefore the x′′1 integral in I4 is given by∫
D1

G1(x′1 − x′′1)CH(x′′1)F 1√
2ς

(x′1 − x′′1) dx′′1 ≈
∫
D1

G1(−ςu)(CH(x′1) + . . . )F 1√
2ς

(−ςu)ς du,

≈ − 1

4
√
πφ

CH(x′1)

∫ ∞
−∞

exp

(
−u

2

4
− PeL

2
ςu− φς|u|

)
du.

To solve this integral we can consider when 0 ≤ u ≤ ∞ and −∞ ≤ u ≤ 0 separately and use

Appendix B.4 to obtain∫ ∞
−∞

exp

(
−u

2

4
− PeL

2
ςu− φς|u|

)
→ 2
√
π as ς → 0. (3.5.30)

Therefore as ς → 0 we obtain

I4(x1) ≈ − 1

2φ

∫
D1

G1(x1 − x′1)CH(x′1) dx′,

which gives

E
[
Ĉ2(x1;ω)

]
≈− λ

2φ

∫
D1

G1(x1 − x′1)CH(x′1) dx′1

− λ
∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 .

(3.5.31)

In two dimensions the approximation of the free-space Green’s function given in (3.4.14) can

be used with x′′ = x′ + ςu and r̂ = |u| to give

G2(x′ − x′′) = G2(−ςu) ≈ 1

2π
log(φςr̂)

when ς � 1/φ� 1. Therefore the x′′ integral in I4 is given by∫
D2

G2(x′ − x′′)CH(x′′1)F 2√
2ς

(x′ − x′′) dx′′ ≈
∫
D2

G2(−ςu)(CH(x′1) + . . . )F 2√
2ς

(−ςu) dx′′

≈ 1

4π
CH(x′′1)

∫ ∞
0

r̂ log(φςr̂) exp

(
− r̂

2

4

)
dr̂.

Here, the integral gives a constant which can be solved using results in Appendix B.4, resulting

in I4 being given by

I4(x) ≈ − 1

4π
(γ − 2 log(2φς))

∫
D2

G2(x− x′)CH(x′1) dx′,

where γ ≈ 0.577216 is the Euler-Mascheroni constant. This, combined with the reduction of I5

to a one-dimensional integral, gives the expectation of Ĉ2(x;ω) as

E
[
Ĉ2(x;ω)

]
≈− λ2

4π
(γ − 2 log(2φς))

∫
D1

G1(x1 − x′1)CH(x′1) dx′1

− λ

2M + 1

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 .

(3.5.32)
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In three dimensions we can use the approximation of the free-space Green’s function given in

(3.4.20) with x′′ = x′ + ςu and r̂ = |u| to give

G3(x′ − x′′) = G3(−ςu) ≈ − 1

4πςr̂

when ς � 1/φ� 1. Therefore the x′′ integral in I4 is given by∫
D3

G3(x′ − x′′)CH(x′′1)F 3√
2ς

(x′ − x′′) dx′′ ≈
∫
D3

G3(−ςu)(CH(x′1) + . . . )F 3√
2ς

(−ςu) dx′′

≈ − 1

(4π)3/2ς
CH(x′′1)

∫ ∞
0

r̂ exp

(
− r̂

2

4

)
dr̂.

As before we obtain a constant from integration, which can be obtained using Appendix B.4 to

give

I4(x) ≈ − 1

4π3/2ς

∫
D3

G3(x− x′)CH(x′1) dx′.

By yet again exploiting (3.4.7) we can reduce the three-dimensional integral into one dimension

to give the expectation of Ĉ2(x;ω) as

E
[
Ĉ2(x;ω)

]
≈− λ3

4π3/2ς

∫
D1

G1(x1 − x′1)CH(x′1) dx′1

− λ

(2M + 1)2

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 .

(3.5.33)

Therefore we can write the expectation of Ĉ2(x;ω) as ς → 0 in n dimensions in the compact

form

E
[
Ĉ2(x;ω)

]
≈− λnβn

∫
D1

G1(x1 − x′1)CH(x′1) dx′1

− λ

(2M + 1)n−1

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 ,

(3.5.34)

where

β1 =
1

2φ
, β2 =

1

4π
(γ − 2 log(2φς)) and β3 =

1

4π3/2ς
. (3.5.35)

We see here that the correction in one dimension becomes independent of the lengthscale ς as

ς → 0 for uniformly-random sink locations. However, in two and three dimensions the correction

instead contains a singularity as the sink width (ς) becomes asymptotically small, which scales

with log ς and 1/ς respectively. These results are due to the free-space Green’s function in one,

two and three dimensions at x = x′ having no singularity, a singularity of order log |x−x′| and

a singularity of order 1/|x− x′| respectively.

To calculate the approximate size of the corrections for M � λ (i.e. Ls is asymptotically large)

we see that the expectation of Ĉ2(x;ω) to leading-order is given by the first term of (3.5.34) in
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two and three dimensions. So using (B.5.4), which gives the order of each integral in the limit

PeL � max(1,
√

Da), we see the expectation of Ĉ2(x;ω) in the vicinity of x = ein in one, two

and three dimensions has an order depending on PeL, λ and ς given by

O
(

λ

Pe 2
L

)
, O

(
λ2

PeL
log(PeL ς)

)
and O

(
λ3

PeL ς

)
(3.5.36)

respectively.

Figure 3.12 uses (3.5.34) with the integrals given in Appendix B.5 to compare the approximate

expectation of Ĉ2(x;ω) to the sample mean in one and two dimensions and the homogenized

solution. Figure 3.12(a) shows the expected concentration when sinks take uniformly-random

locations in one, two and three dimensions. Although individual concentration profiles exhibit

local structures about sink locations, these structures are not present in sample expectations

due to a smearing effect when averaging over many realisations with strong disorder. This is

reflected in the expectation of the leading-order correction Ĉ1(x, ω), which is zero in one, two

and three dimensions.

The expectation of the second-order correction Ĉ2(x, ω) is non-zero, smooth and given by

(3.5.34). Note that the correction in two (three) dimensions is independent of x2 (x2 and

x3). This correction accounts for the homogenized solution over-predicting uptake, as found

for normally-perturbed sink locations. For uniformly-random sink locations the correction is

seen to scale in n dimensions by the factors βn from (3.5.35) as ς → 0. In two dimensions

this scaling goes like log(ς), whereas in three dimensions the correction is scaled according

to 1/ς. Summing the expectation of Ĉ2(x, ω) from (3.5.34) with the homogenized solution is

seen to closely predict the sample expectations in one and two dimensions, as is seen by the

errors in Figure 3.12(b). Here, sample moments of the concentration couldn’t be calculated

for three dimensions due to the computational expense, but the expectation of Ĉ2(x, ω) can

be calculated by simply solving the one- and two-dimensional integrals in (3.5.34). In two and

three dimensions when taking the limit M � λ (i.e. Ls is asymptotically large) the expectation

of Ĉ2(x;ω) can be simplified as the second integral becomes asymptotically small. Therefore

the computational expense of calculating the correction is further reduced to solving one simple

one-dimensional integral.

Let us now consider approximating the (co-)variance of Ĉ1 for Ls � λ in the limit ς → 0.

Because the sink function Fnς transforms into an n-dimensional δ-function as ς → 0, (3.3.20)
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Figure 3.12: Expected concentrations for uniformly-random sink locations, where circles,

squares and diamonds represent one-, two- and three-dimensional domains respectively. Fig-

ure (a) uses dashed and dot-dashed lines to represent the homogenized solution [CH(x1)] and

the approximation found using the expected correction E[Ĉ2(x;ω)]. The solid lines represent

the sample expectation, where in one dimension we use 106 realisations [E[Ĉ2(x1;ω)]] and

in two dimensions we use 104 realisations with Ds2 = [0, 1] × [−2.5, 2.5] and then take the

average over x2 = −2,−1.996, . . . , 2 [〈E[Ĉ2(x1, x2;ω)]〉x2 ]. Figure (b) shows the difference be-

tween sample expectations and each correction. Throughout we use λ = 0.2, ς = 0.01 and

(PeL,Da) = (20, 10), with the expectation of Ĉ2(x1, x2;ω) being approximated using (3.5.34).

gives

Kĝ[x,y]→ λnδ(x− y)− λ

(2M + 1)n−1
(3.5.37)

as ς → 0. By also noting that the second integral in (3.5.26) can be reduced to one dimension

using a change of variables with (3.4.7) we find the variance of the leading-order correction in
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the limit ς → 0 can be approximated by

Varς→0[Ĉ1(x, ω)] = λn
∫
Dn

(Gn(x− x′)CH(x′1))2 dx′

− λ

(2M + 1)n−1

(∫
D1

G1(x1 − x′1)CH(x′1) dx′1

)2

.

(3.5.38)

As for normally-perturbed sink locations, we see an advantage to taking the limit ς → 0 is

to reduce the order of the integral down, with a 2n-dimensional integral being reduced to an

n-dimensional integral.

Figure 3.10(b) shows the variance of the concentration in one dimension. A sample variance is

obtained using 106 Monte Carlo realisations with the variance of the leading-order correction

Ĉ1(x, ω) being calculated by solving (3.5.26) with the integral solver outlined in Appendix B.3.

Although the expectation of the correction offers a close approximation to sample variance with

the correct magnitude, the next order correction is thought to account for any differences seen.

Also shown is the variance of the correction in the limit ς → 0, as given in (3.5.38), which

appears to be a good description of the variance and is advantageous due to being cheaper to

solve computationally.

Figure 3.11(b)(iii) compares the sample variance from 104 Monte Carlo realisations (Figure

3.11(b)(i)) with the variance of the correction Ĉ1(x, ω) in the limit ς → 0 from (3.5.38)

(Figure 3.11(b)(ii)) in two dimensions. Here, the cloud plot shows the sample variance for

x2 = −2,−1.996, . . . , 2 from Figure 3.2(c) along with an average from the sample variances.

Averaging over the variances is done to reduce the sampling error, where the variance is ex-

pected to be independent of x2 from Figure 3.2(c). The variance of the correction in the limit

ς → 0 is seen to be an over-prediction of the sample variance, as seen in one dimension in Figure

3.10(b). As for normally-perturbed sink locations, this demonstrates the impact of smearing

out sink locations, which is seen to reduce the magnitude of variation in the concentration.

3.6 Discussion

A moments-based approach to homogenization is presented in this chapter for a one-, two-

and three-dimensional advection-diffusion-uptake equation, with uptake being prescribed via

first-order kinetics and governed by a discrete sink function ĝ(x, ω). Solute concentration is

characterised by a deterministic homogenized solution with sequential corrections which account

for sink locations. A direct mapping between the first two moments of the sink function and

the first two moments of corrections is derived in (3.2.9)-(3.2.11) using an appropriate Green’s
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function.

The sink function ĝ(x, ω) contains an ensemble of discrete sink locations with finite width ς, with

sinks being confined to an n-dimensional domain Dsn which represents a cuboid, rectangle or

line in three, two or one dimensions respectively. An average inter-sink distance in all directions

is prescribed to be λ, with Fnς (x − ξin) being a Gaussian-shaped uptake function with width

ς � 1 such that the sink function is ensured to have a spatial averaged sink density of zero

within the domain Dsn. The impact of ordered and disordered sink locations is then considered

using three different examples; periodic, normally-perturbed from a periodic configuration and

uniformly-random sink locations. Throughout, results from the moments-based approach are

verified by comparing to sample moments of the concentration, which are obtained using (3.1.2)

with the finite-difference solver given in Appendix B.2 to produce multiple realisations of the

solute concentration.

In Section 3.3 the first two moments of the sink function are calculated for disordered sink

locations. When sinks are normally-perturbed the covariance is non-local, where it is zero,

positive and negative when away, on and near to the diagonal, which represents sinks being

independently distributed, correlated and anti-correlated respectively. When sink locations

are prescribed by a uniform distribution in one dimension the covariance is everywhere non-

local. However, in two and three dimensions as the sink domain size increases the non-local

contribution to the covariance becomes negligible, making the covariance local to leading order.

An approximation of the n-dimensional Green’s function, which demonstrates the impact of

one individual sink location on the solute concentration, is calculated in Section 3.4. This

approximation is a free-space Green’s function, which captures singularities at sink locations

but neglects any impact due to boundary conditions. When a distance greater than 1/PeL from

either x1-boundary and in the limit PeL � max(1,
√

Da), the free-space Green’s function is a

good approximation of the exact Green’s function. In one, two and three dimensions at the sink

location there is no singularity, a singularity of logarithmic order and a singularity of reciprocal

order respectively. Calculating the asymptotic shape of the wake and lengthscales of the free-

space Green’s function produces a region of influence in one, two and three dimensions. Any

sink located within this region can influence the concentration at some given point x = y, see

Figure 3.6(b) for the two-dimensional case. In two and three dimensions the region is elliptical

and ellipsoidal in shape respectively, with advection smearing the impact of a sink on the solute

concentration downstream of the sink location.
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In Sections 3.5.1, 3.5.2 and 3.5.3 we find the impact of periodic, normally-perturbed and

uniformly-random sink locations on the solute concentration respectively. For periodic sinks,

as the sink function ĝ is non-zero the resulting leading-order correction Ĉ1 is also non-zero,

which is calculated in one and two dimensions using the integral solver in Appendix B.3 with

(3.5.1). The correction accounted for changes in the solute concentration centred about sink

locations, as seen in Figure 3.7(a) for one dimension and Figure 3.9(a) for two dimensions.

The one-dimensional second-order correction is also found, which is calculated using Appendix

B.3 with (3.5.2) and further improves the approximation by accounting for the homogenized

solution over-predicting solute uptake.

To calculate approximations of periodic corrections we consider taking the limit of an asymp-

totically small sink width ς. As ς → 0 the leading-order correction is approximated by replacing

sink functions in (3.5.1) with δ-function approximations. Although this is appropriate in one

dimension (see Figure 3.7(a)), due to singularities in the Green’s function it is not appropriate in

two (see Figure 3.9(a)(v)) and three dimensions when near sink locations, as found in Mahiout

et al. (2020). A more careful approach for approximating (3.5.1) in two and three dimensions

is taken by approximating integrals within the neighbourhood of sink locations, which prevents

evaluating the Green’s function at a singularity. The magnitude of this leading-order periodic

correction near sink locations is calculated for one, two and three dimensions, which can be seen

in Table 3.1. We find the correction in two and three dimensions to scale with the logarithm

and reciprocal of the sink width respectively, with these being the order of singularities for

point sink locations.

Periodic Normally-perturbed Uniformly-random

1D
Da

PeL
max

(
λ,Pe−1

L

) Da

PeL
max

(
λ,Pe−1

L

) Da2 λ

Pe 2
L

2D Daλ2 log(PeL ς) Daλ2 log
(
PeL
√
ς2 + σ2

) Da2 λ2

PeL
log(PeL ς)

3D Daλ3

(
1

ς

)
Daλ3

(
1√

ς2 + σ2

)
Da2 λ3

PeL

(
1

ς

)
Table 3.1: Table showing how the (expected) correction to the homogenized solution in the

vicinity of x = ein depends on λ, ς, σ,PeL and Da for PeL � max(1,
√

Da) in the limit ς →

0. These are given for periodic, normally-perturbed and uniformly-random sink locations in

(3.5.13), (3.5.24) and (3.5.36) respectively.
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In Section 3.5.2 we find that, as the expectation of the sink function is non-zero for normally-

perturbed sink locations, the expectation of the leading-order correction Ĉ1 is non-zero. This

correction is calculated in one and two dimensions using Appendix B.3 with (3.5.14), where

it again accounts for changes in the concentration centred about sink locations, see Figure 3.7

and Figure 3.9 respectively. The one-dimensional expected second-order correction is calculated

using (3.5.16), which, as for periodic sink locations, accounts for an over-prediction in uptake

by the homogenized solution.

When taking the limit of an asymptotically small sink width the disorder in sink locations is

seen to smooth out singularities in individual concentration profiles which are present in two

and three dimensions. As a result the expected leading-order correction remained non-singular,

see (3.5.21). Near sink locations in the limit where both the sink width (ς) and standard

deviation of sink locations (σ) are asymptotically small, the leading-order correction scales

with the logarithm and reciprocal of
√
ς2 + σ2 in two and three dimensions respectively, see

Table 3.1. Therefore both disorder and sink regularisation can prevent singularities occurring

in solute concentration profiles.

In Section 3.5.2 we also use the variance of the leading-order correction to estimate the variance

of solute concentration. In one dimension Figure 3.10(a) shows good agreement between the

sample variance and the variance of the leading-order correction, where an increase in variation

is seen near sink locations causing a wavy sink-to-sink structure. Despite an overestimation near

sink locations, close approximations of this variance can be obtained by replacing regularised

sink functions with δ-functions in the limit ς → 0, as seen in Figure 3.10(a). Figure 3.11(a) com-

pares the sample variance with the δ-function approximation of the leading-order correction’s

variance in two dimensions. The approximation fails to capture the correct crescent-shaped

structure of the variance, as well as over-predicting the magnitude. This demonstrates that

regularising sink locations reduces the amount of variation in the concentration. Although the

variance of the second-order correction is not calculated using (3.5.15) due to the computa-

tional expense, we would expect it to better capture the shape and magnitude of the numerical

variance than the approximation.

The expectation of the sink function for uniformly-random sink locations is zero, meaning in

Section 3.5.3 we find the expectation of the leading-order correction to be zero. So although

individual concentration profiles can exhibit local structures about sink locations, these struc-

tures are not present when taking expectations due to a smearing effect when averaging over
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many realisations. The expectation of the second-order correction becomes independent of the

x2- and x3-directions in two and three dimensions when suitably far from boundaries. A depen-

dency of the second-order correction on the n-dimensional βn scaling is then calculated, where

each βn is given in (3.5.35) to be

β1 =
1

2φ
, β2 =

1

4π
(γ − 2 log(2φς)) and β3 =

1

4π3/2ς

as ς → 0. So for a small sink width in higher dimensions, a correction to the homogenized solu-

tion is required, which scales with log(ς) and 1/ς in two and three dimensions respectively. By

using these scalings with (3.5.34) in one and two dimensions, Figure 3.12 shows good agreement

between the sample expectations and using the second-order correction to the homogenized so-

lution. Here, although the sample moments of the concentration couldn’t be calculated for

three dimensions due to being computationally expensive, the expectation of the second-order

correction can be calculated relatively cheaply by solving the integrals in (3.5.34). Table 3.1

summarises the magnitude of the second-order correction in one, two and three dimensions.

The variance of the leading-order correction when sink locations are uniformly-random in one

dimension is shown in Figure 3.10(b). Here, good agreement is seen between the sample variance

and that of the correction, with a slight discrepancy in the magnitude which is thought to be

accounted for by the next order correction. Also shown in Figure 3.10(b) is the variance of

the correction in the limit ς → 0, as given in (3.5.38). This is seen to offer a close prediction

of the variance and is advantageous due to being cheaper to solve computationally. The two-

dimensional variance is then considered in Figure 3.11(b), where the variance of the correction

in the limit ς → 0 again offers a close prediction of the variance. However, it is shown to

over-predict the variance which again demonstrates how smearing out sink locations reduces

the magnitude of variation in the concentration.

This chapter modifies a simple transport problem by introducing a disordered sink function to

the uptake term in one, two and three dimensions. The sink function represents an ensemble of

discrete sink locations with a finite sink width. Large corrections to the homogenized solution

are found for asymptotically small sink widths, with the magnitude of corrections increasing

with the dimension size due to singularities in the free-space Green’s function. Although this

alternate approach to homogenization quantifies errors due to disordered sink locations, other

challenges exist when considering its practical applications. For example, it could be beneficial

to quantify the impact of disordered sink strengths (as is considered in Russell et al. (2016) for

one-dimension), the impact of a non-linear relation between solute uptake and concentration

(as considered in Dalwadi and King (2020) using the classical approach to homogenization with
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a relaxed periodicity assumption) or the impact of an unsteady or stochastic flow field (which

can be of importance for solute transport through disordered media (Jin et al., 2016; Alim et al.,

2017)). One could also modify corrections to account for boundary conditions in the Green’s

function (Morse and Ingard, 1986). In Chapter 4 we consider applying this moments-based

approach for a continuous sink function represented by a Gaussian process in one, two and

three dimensions. Throughout, we find the moments-based approach allows the impact of a

disordered uptake field on the solute concentration to be quantified when transport occurs over

multiple lengthscales.



Chapter 4

Solute transport past sink

distributions represented by

Gaussian processes

Chapter 3 used a ‘moments-based’ approach, which offered a connection between the statistical

moments of a sink function and the statistical moments of the solute field. We considered a

discrete sink function with finite sink widths and two examples of disordered sink locations:

normally-perturbed from a periodic array and uniformly-random. For both examples we cal-

culated corrections to a homogenized solution, which were expressed as integrals due to the

non-local impact of the disordered uptake function on the solute concentration. This chapter

will consider a continuous sink distribution represented by a Gaussian process. The impact of

disorder on the solute concentration will be characterised using the moments-based approach

from Chapter 3. We also consider the limit when a local approximation is feasible, allowing

definitions of an effective uptake parameter Daeff , which replaces the Damköhler number in

the homogenized solution. This is illustrated for both Gaussian processes with asymptotically

small correlation lengths and discrete sink functions with uniformly-random sink locations in the

limit of asymptotically small sink widths, with the effective uptake parameter offering accurate

predictions of the impact of a disordered sink function on the solute concentration.

In Section 4.1 we outline the three-dimensional solute transport model which will be used, where

123
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advection is assumed to be unidirectional and uptake occurs via a continuous sink function

represented by a Gaussian process with a correlation length `. Throughout the chapter we

consider both a Gaussian and exponential sink covariance function, as defined (for example) in

Lord et al. (2014). For both an asymptotically small and large correlation length, we show that

the sink covariance functions can be approximated using a δ-function or constant approximation

respectively. This allows simplifications when calculating moments and effective parameters of

the solute concentration within these limits.

Section 4.2 outlines the two approaches used to characterise uncertainty in the solute concen-

tration. A recap of the moments-based approach used in Chapter 3 is first given. Here, we

find expected corrections are simplified for asymptotically large correlation lengths, with the

covariance of corrections being simplified for both asymptotically small and large correlation

lengths. Following this, we develop an alternative approach which finds local corrections to the

mean concentration field using an effective uptake parameter. This is found to be appropriate

for Gaussian processes with asymptotically small correlation lengths due to the correction to

the mean concentration being local.

One-dimensional results are given in Section 4.3, in which we calculate the first two moments

of corrections and an effective uptake parameter for a variety of correlation lengths. Good

agreement between each approach and sample moments are shown, where sample moments are

calculated using 107 Monte Carlo realisations. Following this we calculate expressions for the

two- and three-dimensional effective uptake parameters in Section 4.4, with the effective uptake

in n dimensions being summarised in Section 4.5. We finish by drawing relations between the

sink function’s covariance for discrete, uniformly-random sink locations and using a continuous

Gaussian process with a Gaussian covariance function in Section 4.6. Here, both in two and

three dimensions we find good agreement between using effective uptake parameters and calcu-

lating the expectation of corrections for sufficiently many uniformly-random sinks. Results are

illustrated for two practical applications: solute transport within maternal blood through the

intervillous space of the placenta and oxygen uptake by mitochondria within placental tissue.

4.1 Model

As in Chapter 3, solute transport will be described by a three-dimensional advection-diffusion-

reaction equation. This is done using the system of equations given in (3.1.2), namely

∇2
3C − PeL Cx1

−DaC(1 + ĝ(x;ω)) = 0, (4.1.1a)
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with boundary conditions

(1− Pe−1
L ∂x1)C|x1=0 = 1, Cx1 |x1=1 = 0, Cx2 |x2→±∞ → 0 and Cx3 |x3→±∞ → 0,

(4.1.1b)

where ∇2
3 = ∂x2

1
+ ∂x2

2
+ ∂x2

3
and x = (x1, x2, x3) ∈ D3 is such that x1 ∈ [0, 1] and x2, x3 ∈ R.

Here, non-dimensionalization occurred over the domain length and there is a prescribed flux

on the x1 = 0 boundary, zero diffusive flux on the x1 = 1 boundary and the diffusive flux

approaches zero as x2, x3 → ±∞. As before, ĝ(x;ω) represents a sink function and the non-

dimensional parameters PeL and Da represent the Péclet (ratio of advection to diffusion) and

Damköhler (ratio of uptake to diffusion) numbers respectively. Note that the ω notation has

been kept to denote ĝ(x;ω) being a realisation drawn from a prescribed distribution, which in

turn makes the solute concentration field C(x;ω) a random variable.

The situation when the uptake function ĝ(x;ω) from Chapter 3 represents a Gaussian process

with zero mean and covariance Kĝ(x,x′;σ, `) will be considered. Here, σ and ` represent a

variance and non-dimensional correlation length respectively, where ` is non-dimensionalized

using the domain length. The continuous sink function ĝ(x;ω) will occupy a domain Ds3, where

for all x ∈ Ds3 then x1 ∈ [0, 1] and x2, x3 ∈ [−Ls, Ls]. Both a Gaussian and exponential

covariance function will be considered, as defined (for example) in Lord et al. (2014) to be

KGĝ (x,y;σ, `) = σ2 exp

(
−|x− y|2

`2

)
(4.1.2)

and

KEĝ (x,y;σ, `) = σ2 exp

(
−|x− y|

`

)
(4.1.3)

respectively. As done previously, analogous definitions will be used to extend results to one and

two dimensions. Figure 4.1 illustrates using a Gaussian and exponential covariance function to

produce two-dimensional realisations of the sink function ĝ(x;ω). Here, functions are evaluated

using the eigenvalue decomposition described in Appendix B.6 and we use σ = 0.2 and ` =

[0.01, 0.1, 1]. We consider examples throughout using σ = 0.2, which is chosen to allow notable

fluctuations in the sink function whilst keeping the probability of solute being added to the

domain as negligible.

It is here beneficial to consider the behaviour of an n-dimensional covariance function for two

limiting cases: an asymptotically small (` → 0) and asymptotically large (` → ∞) correlation

length. In order to evaluate the covariance function for an asymptotically small correlation

length we first note that the δ-function δ(x − y) in n dimensions can be represented in the
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Figure 4.1: Two-dimensional realisations of the sink function ĝ(x;ω) using a Gaussian [(a),

(b), (c)] and exponential [(d), (e), (f)] covariance function from (4.1.2) and (4.1.3) respectively.

Here, (a) & (d), (b) & (e) and (c) & (f) use ` = 0.01, ` = 0.1 and ` = 1 respectively, with all

realisations using σ = 0.2 and eigenvalue decomposition from Appendix B.6.

distribution sense using(
πt2
)−n/2

exp

(
−|x− y|2

t2

)
or

(
πt2
)−n/2

exp

(
−|x− y|

t

)
as t→ 0. (4.1.4)

So the covariance function in n dimensions is given by

Kĝ(x,y)→ σ2
(
π`2
)n/2

δ(x− y) as `→ 0 (4.1.5)

in the sense of a distribution for both a Gaussian and exponential covariance function. Alterna-

tively, when the correlation length is asymptotically large we see from both (4.1.2) and (4.1.3)

that the covariance function becomes constant, giving

Kĝ(x,y)→ σ2 as `→∞ (4.1.6)
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for both a Gaussian and exponential covariance function. Both (4.1.5) and (4.1.6) will prove

useful in later sections of this chapter.

We will now outline three methods for characterising uncertainty in the uptake term. First,

we calculate sample moments of the concentration using eigenvalue decomposition to produce

realisations of the sink function. Following this, we revisit the moments-based approach devel-

oped in Chapter 3 and calculate an effective uptake term for the concentration in the limit of

an asymptotically small correlation length.

4.2 Methods

Sample moments of the solute concentration can be calculated by producing realisations of the

sink function using an eigenvalue decomposition, as described in Appendix B.6. This is followed

by solving (4.1.1) with the finite-difference solver given in Appendix B.2, which in turn pro-

duces multiple realisations of the concentration field. However, this process is computationally

expensive and so sample moments of the concentration are only found in one dimension, where

107 realisations take approximately 12 hours. As a result we outline two different methods

which quantify the effect of disorder on the solute concentration. The first method is using the

moments-based approach from Chapter 3 to quantify disorder in terms of the moments of cor-

rections to a homogenized solution. The second considers finding an effective uptake parameter

to replace the sink function in (4.1.1), which offers an improvement when compared to using a

homogenized solution.

For both approaches we first define L3 and B3 to be three-dimensional linear and boundary

operator respectively such that

L3 = ∇2
3D − PeL ∂x1 −Da and

B3 = {(1− (1/PeL)∂x1) (·)|x1=0, ∂x1(·)|x1=1, ∂x2(·)|x2→−∞, ∂x2(·)|x2→∞,

∂x3
(·)|x3→−∞, ∂x3

(·)|x3→∞}

We can then calculate a homogenized solution (CH(x)) associated with (4.1.1) by solving

L3CH(x) = 0, B3CH(x) = {1, 0, 0, 0, 0, 0}, (4.2.1)

which is seen to be the same as in (3.2.2) and given by

CH(x) = CH(x1) =
PeL
ψ(1)

(
(2φ− PeL)eφ(x1−1) + (2φ+ PeL)eφ(1−x1)

)
e(PeL /2)x1 , (4.2.2)
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where φ =
√

Pe2
L /4 + Da and ψ(x1) = (2 PeL φ+Pe2

L +2 Da)eφx1 +(2 PeL φ−Pe2
L−2 Da)e−φx1 .

The associated free-space Green’s function G3(x−x′) to (4.1.1) can also be calculated by solving

L3G3(x− x′) = δ(x− x′), (4.2.3)

where no influence from boundary conditions is considered. This is solved in n dimensions in

Chapter 3, where (3.4.6) gives

Gn(x− x′) = −(2π)−n/2
(

φ

|x− x′|

)n/2−1

Kn/2−1(φ|x− x′|) exp

(
PeL

2
(x1 − x′1)

)
, (4.2.4)

with a singularity existing at x = x′ of order log(φ|x − x′|) and 1/|x − x′| in two and three

dimensions respectively. By using the free-space Green’s function Gn we are assuming x and x′

are sufficiently far from boundaries and the decay lengthscales of the free-space Green’s function

(which will be denoted LGn from now on) are sufficiently small.

In Section 3.4 we found the free-space Green’s function to offer a close approximation of the

exact Green’s function in the limit PeL � max(1,
√

Da) for one, two and three spatial dimen-

sions. We also noted that integrating the two- and three-dimensional governing equation for

the free-space Green’s function gives the relation∫ ∞
−∞

∫ ∞
−∞
G3(x) dx2 dx3 =

∫ ∞
−∞
G2(x) dx2 = G1(x1), (4.2.5)

a property which will later be used. We will now consider two different approaches for quanti-

fying the impact of disorder in the sink function on the solute concentration.

4.2.1 The moments-based approach

As in Chapter 3, we consider using a correction Ĉ(x;ω) to the homogenized solution which

accounts for the disordered sink function, i.e.

C(x;ω) = CH(x1) + Ĉ(x;ω). (4.2.6)

So by writing the correction as the expansion

Ĉ(x;ω) = Da Ĉ1(x;ω) + Da2 Ĉ2(x;ω) + . . . , (4.2.7)

where we assume Da Ĉ1(x;ω) � Da2 Ĉ2(x;ω) � . . . , then (4.1.1) can be used to construct a

solution (to be validated a posteriori) using the ansatz

L3Ĉ1(x;ω) = ĝ(x;ω)CH(x1), B3Ĉ1(x;ω) = {0, . . . , 0}, (4.2.8a)

L3Ĉ2(x;ω) = ĝ(x;ω)Ĉ1(x;ω), B3Ĉ2(x;ω) = {0, . . . , 0}, (4.2.8b)

...
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By inverting the linear operators in (4.2.8) using the free-space Green’s function given in (4.2.4)

we obtain

Ĉ1(x;ω) =

∫
D3

G3(x− x′)CH(x′1)ĝ(x′;ω) dx′, (4.2.9)

Ĉ2(x;ω) =

∫
D3

∫
D3

G3(x− x′)G3(x′ − x′′)CH(x′′1)ĝ(x′;ω)ĝ(x′′;ω) dx′ dx′′, (4.2.10)

...

These corrections can then be characterised in terms of their moments, specifically

E
[
Ĉ1(x;ω)

]
=

∫
D3

G3(x− x′)CH(x′1)E[ĝ(x′;ω)] dx′, (4.2.11)

KĈ1
[x,y] =

∫
D3

∫
D3

G3(x− x′)CH(x′1)Kĝ[x′,y′]G3(y − y′)CH(y′1) dx′ dy′ (4.2.12)

and

E
[
Ĉ2(x;ω)

]
=

∫
D3

∫
D3

G3(x− x′)G3(x′ − x′′)CH(x′′1)E [ĝ(x′;ω)ĝ(x′′;ω)] dx′ dx′′, (4.2.13)

where Kf [x,y] ≡ K[f(x;ω), f(y;ω)] and K represents the covariance function. As the sink

function ĝ(x;ω) has zero mean, the expectations can be simplified to

E
[
Ĉ1(x;ω)

]
= 0 (4.2.14)

and

E
[
Ĉ2(x;ω)

]
=

∫
D3

∫
D3

G3(x− x′)G3(x′ − x′′)CH(x′′1)Kĝ[x′,x′′] dx′ dx′′ (4.2.15)

respectively. This gives a direct mapping between the first two moments of the sink function

and the first two moments of the solute concentration.

In the limit of an asymptotically large correlation length we can simplify (4.2.15) due to the

covariance of the sink function being uniform for a Gaussian and exponential covariance func-

tion, see (4.1.6). So using (4.2.15) with the relation given in (4.2.5) we obtain the expectation

of the second-order correction in the limit `→∞ to be

E`→∞
[
Ĉ2(x;ω)

]
→ σ2

∫
D1

∫
D1

G3(x1 − x′1)G3(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 . (4.2.16)

The double integral given in (4.2.16) is solved in Appendix B.4 and approximated for PeL �

max(1,
√

Da). which gives

E`→∞
[
Ĉ2(x;ω)

]
→ σ2 PeL

8φ4ψ̂(1)
e

PeL
2 x1

(
(2φ+ PeL) (1 + φx1)2eφ(1−x1)

+

(
−5 PeL

2
− φ(1 + PeL +2φ)

)
eφ(x1−1)

) (4.2.17)
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in the limit PeL � max(1,
√

Da) and ` → ∞. Therefore the expected second-order correction

for an asymptotically large correlation length in one, two and three dimensions is identical for

Gaussian and exponential covariance functions. Similarly we can approximate the covariance

using Kĝ[x,y]→ σ2 with (4.2.12) to give

K`→∞
Ĉ1

[x,y]→ σ2

∫
D1

G3(x1 − x′1)CH(x′1) dx′1

∫
D1

G3(y1 − y′1)CH(y′1) dy′1. (4.2.18)

So using the integrals in Appendix B.4 we obtain

K`→∞
Ĉ1

[x,y]→ σ2 Pe 2
L

16φ4ψ̂(1)2
e

PeL
2 (x1+y1)

(
4 Pe 2

L e
φ(x1+y1−2)

− 2 PeL (2φ+ PeL)
(

(1 + 2φx1) eφ(y1−x1) + (1 + 2φy1) eφ(x1−y1)
)

+ (2φ+ PeL)
2

(1 + 2φx1) (1 + 2φy1) eφ(2−x1−y1)

)
(4.2.19)

where ψ̂ is an approximation of ψ near x1 = 1, which is given by ψ̂(x1) = (2 PeL φ +

Pe2
L +2 Da)eφx1 . Therefore, as for the expectation of the second-order correction, the vari-

ance of the first-order correction for ` → ∞ in one, two and three dimensions is identical for

Gaussian and exponential covariance functions.

For the limit of an asymptotically small correlation length we can approximate the covariance

of Ĉ1(x;ω) by using the δ-function approximation of the covariance from (4.1.5) to give

K`→0
Ĉ1

[x,y]→ σ2
(
π`2
)3/2 ∫

D3

∫
D3

G3(x− x′)G3(y − x′)CH(x′1)2 dx′, (4.2.20)

for both a Gaussian and exponential covariance function. However, we cannot simply use the δ-

function approximation of the covariance when finding the expectation of Ĉ2(x;ω) with (4.2.15)

due to evaluating singularities in the Green’s function in two and three dimensions. Instead,

we will now consider calculating an effective uptake term to replace the sink function in the

governing equations to account for corrections in the mean concentration field.

4.2.2 Calculating an effective uptake term

Here, a method to calculate a constant effective uptake parameter Daeff for a sufficiently small

correlation length will be proposed, where Daeff will replace Da(1 + ĝ(x;ω)) in (4.1.1). Using

the effective uptake parameter will allow for a better approximation of the mean concentration

compared to the homogenized solution and be computationally less expensive than evaluating

the moments of corrections using the moments-based approach.
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Let us seek a constant Daeff such that the solution of

∇2
3DC − PeL Cx1 −Daeff C = 0, (4.2.21)

subject to B3C = {1, 0, 0, 0, 0, 0} approximates E[C(x;ω)] to a suitable degree of accuracy. The

exact solution of (4.2.21) is identical to the homogenized solution given in (4.2.2) but with Da

replaced with Daeff . By denoting this solution Ceff
H we obtain

Ceff
H (x) = Ceff

H (x1) =
PeL
Ψ(1)

(
(2Φ− PeL)eΦ(x1−1) + (2Φ + PeL)eΦ(1−x1)

)
e(PeL /2)x1 , (4.2.22)

where Φ and Ψ are given by Φ =
√

Pe2
L /4 + Daeff and Ψ(x1) = (2 PeL Φ+Pe2

L +2 Daeff)eΦx1 +

(2 PeL Φ− Pe2
L−2 Daeff)e−Φx1 respectively.

To calculate an effective uptake term we approximate the concentration using the homogenized

solution from (4.2.2) plus a correction Ĉ(x;ω), i.e.

C(x;ω) = CH(x1) + Ĉ(x;ω). (4.2.23)

Then (4.2.21) can be rearranged using (4.2.1) to be

L3Ĉ(x;ω) = (Daeff −Da)(CH(x1) + Ĉ(x;ω)). (4.2.24)

If we now assume the correction Ĉ(x;ω) is small compared to the homogenized solution then

the linear operator can be inverted to give

Ĉ(x) = (Daeff −Da)

∫
D3

G3(x− x′)CH(x′1) dx′ + . . . , (4.2.25)

where the ω notation is dropped as the leading-order correction is deterministic to leading-order,

which in turn gives the concentration given in (4.2.6) to be deterministic to leading-order.

To calculate Daeff given in (4.2.25), consider using the expected values of Ĉ1(x;ω) and Ĉ2(x;ω)

given in (4.2.14) and (4.2.15) respectively. As the expectation of Ĉ1(x;ω) is zero we obtain the

expectation of the correction to the homogenized solution using the moments-based approach

to be

E
[
Ĉ(x;ω)

]
= Da2

∫
D3

∫
D3

G3(x− x′)G3(x′ − x′′)Kĝ(x′,x′′)CH(x′′1) dx′ dx′′ + . . . (4.2.26)

Comparing this with (4.2.25) gives the relation

(Daeff −Da)

∫
D3

G3(x− x′)CH(x′1) dx′

≈ Da2

∫
D3

∫
D3

G3(x− x′)G3(x′ − x′′)Kĝ(x′,x′′)CH(x′′1) dx′ dx′′,

(4.2.27)
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where we will not distinguish between strict asymptotic limits and approximations within this

chapter. We can simplify (4.2.27) by assuming the covariance is stationary, so can be expressed

as Kĝ(x,x′) = K̂ĝ(x − x′) for some function K̂ĝ. This is appropriate for both a Gaussian and

exponential covariance function, as can be seen by (4.1.2) and (4.1.3) respectively. Therefore

(4.2.27) gives

(Daeff −Da)

∫
R3

G3(x− x′)CH(x′1) dx′ ≈ Da2

∫
R3

∫
R3

G3(x− x′)G3K̂ĝ(x′ − x′′)CH(x′′1) dx′ dx′′,

(4.2.28)

where G3K̂ĝ(x′−x′′) ≡ G3(x′−x′′)K̂ĝ(x′−x′′). For (4.2.28) we have expanded the domain D3

to R3, an assumption which can be made when sufficiently far from boundaries and the decay

lengthscale of G3K̂ĝ is sufficiently short, which holds for `� 1 and LG3 � 1.

We can rewrite (4.2.28) in terms of convolutions as

(Daeff −Da)G3 ∗ CH ≈ Da2 G3 ∗ (G3K̂ĝ) ∗ CH , (4.2.29)

where ∗ denotes the convolution of functions. If ` � LG3 , i.e. the decay lengthscale in K̂ĝ is

sufficiently shorter than the decay lengthscale in G3, then G3K̂ĝ resembles a δ-function with the

appropriate weight and is given by (Noetinger et al., 2018)

G3K̂ĝ(y) ≈ δ(y)

∫
R3

G3K̂ĝ(x) dx. (4.2.30)

So by using (4.2.29) we obtain the effective uptake for an asymptotically small correlation length

to be

Daeff ≈ Da

(
1 + Da

∫
R3

G3K̂ĝ(x) dx

)
. (4.2.31)

As the Green’s function and covariance function are always negative and positive respectively,

(4.2.31) gives that the effective uptake parameter remains smaller than the Damköhler number,

which reflects disordered sink functions reducing the uptake of a solute. As the correlation

length becomes larger we see a non-local response in the correction to the homogenized solu-

tion, meaning a constant effective uptake parameter becomes less appropriate. It is therefore

recommended to evaluate the expectation of Ĉ2 directly using (4.2.15). By generalising the

three-dimensional methods in Section 4.2.1 and 4.2.2 we will now quantify the effect of disorder

on the solute concentration in one, two and three dimensions.

4.3 One-dimensional results

Define a one-dimensional domain D1 = [0, 1], a position vector x1 ∈ D1 and a boundary

operator B1 = {(1 − Pe−1
L ∂x1) · |x1=0, ∂x1(·)|x1=1} where B1C = {1, 0}. This does not affect
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Figure 4.2: Difference between the sample mean [E{G,E}[C(x1;ω)]] and the homoge-

nized solution from (4.2.2) [CH(x1)], the expected second-order correction from (4.2.15)

[E{G,E}[Ĉ2(x1;ω)]] and using the approximation given in (4.2.17) [E`→∞[Ĉ2(x1;ω)]]. Here,

(PeL,Da) = (20, 40), ` = 10 and σ = 0.2 are used, the subscript G and E notation represents

using a Gaussian and exponential covariance function respectively and the sample means are

calculated using 107 realisations.

the homogenized solution given in (4.2.2), with the free-space Green’s function being given in

(4.2.4). For both a Gaussian and exponential covariance function, which are given in (4.1.2) and

(4.1.3) respectively, we will estimate the moments of the solute concentration using moments

of corrections and an effective uptake term from Section 4.2.

4.3.1 Expectation of corrections and using an effective uptake param-

eter

First, consider when the correlation length is asymptotically large. From (4.2.17) we know the

expectation of the correction Ĉ2(x1;ω) converges to the same approximation for both a Gaussian

and exponential covariance function due to the covariance function becoming constant. We can

test the approximation given in (4.2.17) against the sample mean and using the full expression

for the expectation of Ĉ2(x1;ω) given in (4.2.15) for ` = 10. This is done in Figure 4.2, where

good agreement between the sample mean and using both (4.2.15) and (4.2.15) are found.

Let us now consider finding an effective uptake parameter when using a Gaussian covariance

function. From (4.1.2) we see the one-dimensional covariance function is given by

K̂Gĝ (x1) = σ2 exp

(
−x

2
1

`2

)
.
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This can be used with the analogous one-dimensional version of (4.2.30) to obtain

G1K̂(0) = −σ
2

2φ

(∫ 0

−∞
exp

((
PeL

2
+ φ

)
x1 −

x2
1

`2

)
dx +

∫ ∞
0

exp

((
PeL

2
− φ

)
x1 −

x2
1

`2

)
dx

)
.

These integrals are solved in Appendix B.4 and give

G1K̂(0) = −σ
2`
√
π

4φ

(
exp

(
`2

4

(
PeL

2
+ φ

)2
)(

1 + erf

(
`

2

(
PeL

2
+ φ

)))

+ exp

(
`2

4

(
PeL

2
− φ

)2
)(

1− erf

(
`

2

(
PeL

2
− φ

))))
.

So by taking the limit `→ 0 we obtain G1K̂(0)→ −σ2`
√
π/2φ, which can be used with (4.2.31)

to give the effective uptake parameter for a Gaussian covariance function as

DaGeff → Da

(
1−
√
πDaσ2`

2φ

)
(4.3.1)

for ` � 1. As the effective uptake parameter is smaller than the Damköhler number we see

that disorder in the sink function reduces the effective uptake of solute.

When using DaGeff we will denote the solution Ceff
H (x1) given in (4.2.22) as CGH(x1). Figure 4.3

shows a comparison between using the homogenized solution from (4.2.2) and CGH(x1) when

` = 0.01. By replacing Da with Daeff we see an improvement in our approximation of the

mean concentration due to Daeff accounting for the disordered uptake function ĝ(x1;ω). For

comparison Figure 4.3 also shows the expectation of the second-order correction Ĉ2(x1;ω),

which has a similar response to using an effective uptake term but is computationally more

expensive to calculate.

When using the exponential covariance function given in (4.1.3) a similar method can be used

with the integrals given in Appendix B.4 to obtain

G1K̂(0) = −σ
2`

φ

(
1 + φ`

(1 + φ`)2 − `2 Pe2
L /4

)
.

So by taking the limit ` → 0 we find G1K̂(0) → −σ2`/φ, meaning (4.2.31) gives the effective

uptake parameter as

DaEeff → Da

(
1− Daσ2`

φ

)
(4.3.2)

for ` � 1. From (4.3.2) we again see that disorder reduces the effective uptake of solute, with

the term for an exponential covariance function being nearly identical to that for a Gaussian

covariance function; (4.3.1) and (4.3.2) differ by a single constant π which is replaced with
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Figure 4.3: Difference between the sample mean [E{G,E}[C(x1;ω)]] and the homogenized so-

lution CH(x1) from (4.2.2), using the expected correction Ĉ2(x1;ω) from (4.2.15) [CH(x1) +

Da2 E{G,E}[Ĉ2(x1;ω)]] and using the effective uptake parameters DaGeff and DaEeff from (4.3.1)

and (4.3.2) respectively in (4.2.21) [C
{G,E}
H (x1)]. Here, (PeL,Da) = (20, 40), ` = 0.01 and

σ = 0.2 are used throughout, the subscript (and superscript) G and E notation represents

using a Gaussian and exponential covariance function respectively and 107 realisations are used

to calculate sample expectations.

a 4. Denoting the solution of (4.2.22) for DaEeff as CEH(x1), Figure 4.3 shows that using the

effective uptake term again better approximates the mean concentration than the homogenized

solution given in (4.2.2). It also shows that, despite being computationally cheaper to calculate,

the effective uptake term offers a similar response to using the expectation of the second-order

correction Ĉ2(x1;ω).

4.3.2 Using the (co)variance of the leading-order concentration

We can approximate the concentration covariance using the covariance of the leading-order

correction given in (4.2.12), which gives

KC(x1, x2) ≈ Da2KĈ1
(x1, x2)

= Da2

∫
D1

∫
D1

G(x1, x
′
1)CH(x′1)Kĝ[x′1, x′2]G(x2, x

′
2)CH(x′2) dx′1 dx′2.

(4.3.3)

Equation (4.3.3) offers a direct mapping from the covariance of ĝ(x1;ω) to the covariance of

the concentration C(x1;ω) in one dimension. By numerically evaluating the integral using the

integral solver given in Appendix B.3, Figures 4.4 and 4.5 show the covariance of the sink func-

tion and concentration using the Gaussian and exponential covariance function given in (4.1.2)

and (4.1.3) respectively. This is done for the range of correlation lengths ` = [0.01, 0.1, 1, 10],
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where a comparison of the concentration’s variance (i.e. the diagonals from the covariances

given in Figures 4.4 and 4.5) is given in Figure 4.6. As ` increases the magnitude of the vari-

ance monotonically increases, meaning for an asymptotically large (small) correlation length

the variance approaches its maximum (minimum). This allows bounds on the variance to be

found by considering the asymptotes for small and large `.

To calculate these asymptotes, consider first when ` becomes asymptotically small. So using

(4.2.20) with x1 = x2 we obtain the asymptote of the variance for small ` to be

Var`→0[Ĉ1(x1;ω)] = σ2
√
π`

∫
D1

G(x1, x
′
1)2CH(x′1)2 dx′1 (4.3.4)

as `→ 0. Using the homogenized solution and free-space Green’s function given in (4.2.2) and

(4.2.4) respectively, Appendix B.5 evaluates this integral to obtain

Var`→0[Ĉ1(x1;ω)] =
√
π`

(
σPeL

2φ2ψ(1)

)2

φePeL x1

((
φ+

PeL
2

)2

(4φx1 + 1)e2φ(1−x1)

+
(
4φ2 − Pe2

L

) (
2− e−2φx1

)
+
(
φ(2φ− PeL)2(1− x1) + Pe2

L−2φPeL−4φ2
)
e2φ(x1−1)

)
.

(4.3.5)

This is shown in Figure 4.6 by the dashed red line with circles for ` = 0.01 and is seen to closely

match solving (4.3.3) numerically. In (4.3.5) we have a leading-order asymptote for the variance

when the correlation length is asymptotically small.

If we now consider when ` is asymptotically large using (4.2.19) with x1 = x2 we obtain the

asymptote for large ` as

Var`→∞[Ĉ1(x1;ω)] ≈
(

σPeL
2φ2ψ(1)

)2

ePeL x1

(
(2φ+ PeL) (2φx1 + 1) (φ(2φ− PeL)(1− x1)− PeL)

+ (φ(2φ− PeL)(1− x1)− PeL)
2
e2φ(x1−1) +

(
φ+

PeL
2

)2

(2φx1 + 1)2e2φ(1−x1)

)
.

(4.3.6)

The expression in (4.3.6) gives the leading-order asymptote, plotted in Figure 4.6 using a dashed

red line with squares. This is seen to closely match the variance obtained by solving (4.3.3)

with an integral solver for ` = 10 for both a Gaussian and exponential covariance function.

Next, we will consider finding an effective uptake parameter for solute transport in two dimen-

sions. Here, despite calculating the expected correction using (4.2.15) being too computationally

expensive, the expected correction can be found analytically for a small correlation length.
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(i)

` = 0.01

(ii)

` = 0.1

(iii)

` = 1

(iv)

` = 10

(a) Gaussian covariance function (b) Resulting concentration covariance

Figure 4.4: Column (a) depicts the sink covariance function KGĝ (x1, x2) from (4.1.2) whereas

column (b) depicts the solute covariance in terms of the correction KG
Ĉ1

[x1, x2] from (4.2.12).

Here, ` = 0.01, 0.1, 1, 10 is used in rows (i), (ii), (iii) and (iv) respectively. The correction

KG
Ĉ1

[x1, x2] is calculated using (4.2.12) with the integral solver described in Appendix B.3, with

(PeL,Da) = (20, 40), σ = 0.2 being used throughout.
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(i)

` = 0.01

(ii)

` = 0.1

(iii)

` = 1

(iv)

` = 10

(a) Exponential covariance function (b) Resulting concentration covariance

Figure 4.5: Column (a) depicts the sink covariance function KEĝ (x1, x2) from (4.1.3) whereas

column (b) depicts the solute covariance in terms of the correction KE
Ĉ1

[x1, x2] from (4.2.12).

Here, ` = 0.01, 0.1, 1, 10 is used in rows (i), (ii), (iii) and (iv) respectively. The correction

KE
Ĉ1

[x1, x2] is calculated using (4.2.12) with the integral solver described in Appendix B.3, with

(PeL,Da) = (20, 40), σ = 0.2 being used throughout.
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Figure 4.6: A plot showing the variances calculated using (4.3.6), (4.2.12) and (4.3.5) for `→∞,

` = [10, 1, 0.1, 0.01] and ` → 0 respectively. Here, solid and dotted lines are used to represent

a Gaussian and exponential covariance function respectively. The asymptotes for small and

large ` are represented by red dashed lines with squares and circles respectively, where the

asymptote for ` → 0 is calculated using ` = 0.01. This figures uses (PeL,Da) = (20, 40),

σ = 0.2. A second-order Simpson rule is used to evaluate (4.2.12).

4.4 Calculating an effective uptake parameter in two and

three dimensions

4.4.1 Two-dimensional effective uptake parameter

Define a two-dimensional domain D2 such that for all x = (x1, x2) ∈ D2 then x1 ∈ [0, 1] and

x2 ∈ R. We also define the boundary operator

B2 = {·|x1=0, ∂x1
(·)|x1=1, ∂x2

(·)|x2→−∞, ∂x2
(·)|x2→∞},

where B2C = {1, 0, 0, 0}. Then by using a separation of variables we again find the homogenized

solution is given in (4.2.2) and the free-space Green’s function is given by (4.2.4). Although

the modified Bessel function of the second kind does not have a simplified expression, we can

approximate the function for z → 0 and z →∞ to be (Abramowitz and Stegun, 1964)

K0(z) ≈ − log(z) and K0(z) ≈
√

π

2z
(1 +O(1/|z|)) exp(−z). (4.4.1)

Let us now calculate an effective uptake parameter Daeff using (4.2.31).

Consider using the Gaussian covariance function given in (4.1.2), which gives

K̂Gĝ (x) = σ2 exp

(
−|x|

2

`2

)
.
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Then (4.2.30) gives

G2K̂(0) ≈ −σ
2

2π

∫
R2

exp

(
PeL

2
x1 −

|x|2

`2

)
K0(φ|x|) dx.

By converting to polar coordinates where x1 = r cos θ and x2 = r sin θ we obtain

G2K̂(0) ≈ −σ
2

2π

∫ 2π

0

∫ ∞
0

exp

(
PeL

2
r cos θ − r2

`2

)
K0(φr)r dr dθ. (4.4.2)

We can first solve the θ integral by using

Iν(z) =
1

π

∫ π

0

exp
(
z cos θ̂

)
cos(νθ̂) dθ̂,

where Iν is a modified Bessel function of the first kind (Abramowitz and Stegun, 1964). So as

exp(z cos θ) is symmetric about θ = π we obtain∫ 2π

0

exp (z cos θ) dθ = 2

∫ π

0

exp (z cos θ) dθ = 2πI0(z), (4.4.3)

which can be used in (4.4.2) to give

G2K̂(0) ≈ −σ2

∫ ∞
0

exp

(
−r

2

`2

)
I0

(
PeL

2
r

)
K0(φr)r dr.

For small correlation lengths we have G2K̂(0) is only non-zero in the vicinity of r = 0 due to

the exponential term exp
(
−r2/`2

)
decaying rapidly. So by setting r = `R we can approximate

the modified Bessel functions using Abramowitz and Stegun (1964) to be

I0 ((PeL /2)`R) ≈ 1 +O(l2 Pe2
LR

2) and K0(φ`R) ≈ − log(φ`R) = − log(φ`)− log(R),

(4.4.4)

which gives

G2K̂(0) ≈ σ2`2
(

log(φ`)

∫ ∞
0

R exp
(
−R2

)
dR+

∫ ∞
0

R logR exp
(
−R2

)
dR

)
for suitably small `. Both of these integrals are solved in Appendix B.4 and give

G2K̂(0) ≈ −σ
2`2

4
(γ − 2 log(φ`)) , (4.4.5)

where γ ≈ 0.577216 is the Euler-Mascheroni constant. This can then be used with (4.2.31) to

obtain the effective uptake as

DaGeff ≈ Da

(
1− 1

4
Daσ2`2 (γ − 2 log (φ`))

)
(4.4.6)

for small `. Therefore we find the logarithmic singularity from the free-space Green’s func-

tion appearing in the effective uptake parameter. By (4.4.6) we see DaGeff is smaller than the

Damköhler number, meaning disorder in the uptake function reduces the effective uptake of

solute.
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Let us now consider an exponential covariance function given in (4.1.3). In a similar fashion to

using a Gaussian covariance function we can use (4.2.30) to give

G2K̂(0) ≈ σ2`2
(

log(φ`)

∫ ∞
0

R exp (−R) dr +

∫ ∞
0

R logR exp (−R) dR

)
where R = r/` and r = |x − x′|. The second integral can be solved and is given in Appendix

B.4. We can then use (4.2.31) to find the effective uptake for asymptotically small ` as

DaEeff ≈ Da

(
1− 1

4
Daσ2`2 (γ − 1− log (φ`))

)
, (4.4.7)

which again contains a logarithmic singularity and demonstrates a disordered sink distribution

reducing the effective uptake of solute. In Section 4.5 below we will summarise and compare the

different expressions of the effective uptake constant for different covariance functions across

one-, two- and three dimensions.

4.4.2 Three-dimensional effective uptake parameter

In three dimensions the homogenized solution and free-space Green’s function are as found

in (4.2.2) and (4.2.4) respectively. Consider using the Gaussian covariance function given in

(4.1.2). To calculate an effective uptake parameter DaGeff we can use (4.1.2) with (4.2.4), then

by converting into polar coordinates with x1 = r sin θ cosϕ, x2 = r sin θ sinϕ and x3 = r cos θ

we obtain

G3K̂(0) ≈ −σ
2

4π

∫ 2π

0

∫ π

0

∫ ∞
0

exp

(
PeL

2
r sin θ cosϕ− φr − r2

`2

)
r sin θ dr dθ dϕ.

As in two dimensions we can use the relation given in (4.4.3) to evaluate the ϕ integral and

obtain

G3K̂(0) ≈ −σ
2

2

∫ π

0

∫ ∞
0

exp

(
−φr − r2

`2

)
I0

(
PeL

2
r sin θ

)
r sin θ dr dθ.

As in two dimensions for small ` we see G3K̂(0) is only non-zero in the vicinity of r = 0 due

to the exponentially decaying term. So by using the approximations of the modified Bessel

functions given in (4.4.4) and evaluating the θ integral we obtain

G3K̂(0) ≈ −σ2

∫ ∞
0

r exp

(
−φr − r2

`2

)
dr = −σ2 exp

(
φ2`2

4

)∫ ∞
0

r exp

(
−`−2

(
r +

`2φ

2

)2
)

dr.

Let us use the substitution u = `−1(r + `2φ/2) to obtain

G3K̂(0) ≈ −σ
2`

2
exp

(
φ2`2

4

)(
2

∫ ∞
φ`/2

u exp
(
−u2

)
du− φ`

∫ ∞
φ`/2

exp
(
−u2

)
du

)
.

So by noting

d

du
exp

(
−u2

)
= −2u exp

(
−u2

)
and

∫ u

0

exp
(
−u2

)
du =

√
π

2
erf(u)
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we obtain

G3K̂(0) ≈ −σ
2`2

2

(
1−
√
πφ`

2
exp

(
φ2`2

4

)(
1− erf

(
φ`

2

)))
.

For small ` we know exp
(
φ2`2/4

)
≈ 1 +O(`2) and erf (φ`/2) = O(`), which gives

G3K̂(0) ≈ −σ
2`2

2

(
1−
√
πφ`

2

)
. (4.4.8)

So by taking the leading-order of (4.4.8) and using (4.2.31) we obtain the effective uptake term

to be

DaGeff ≈ Da

(
1− 1

2
Daσ2`2

)
(4.4.9)

in the limit of asymptotically small `. Once again we find disorder in the sink function causes

a reduction in overall uptake.

Consider using the exponential covariance function for ĝ given in (4.1.3). By using this with

(4.2.4) and converting into polar coordinates using x1 = r sin θ cosϕ, x2 = r sin θ sinϕ and

x3 = r cos θ, with the ϕ integral being evaluated as for a Gaussian covariance function, we

obtain

G3K̂(0) ≈ −σ
2

2

∫ π

0

∫ ∞
0

exp
(
−φr − r

`

)
I0

(
PeL

2
r sin θ

)
r sin θ dr dθ.

Note again how G3K̂(0) is only non-zero in the vicinity of r = 0 due to the exponentially

decaying term in the asymptotic limit ` → 0. So by again using the approximations given in

(4.4.4) and evaluating the θ and r integral we obtain

G3K̂(0) ≈ −σ2

∫ ∞
0

exp
(
−φr − r

`

)
r dr = − σ2`2

(1 + φ`)2
≈ σ2`2 (1− 2φ`)

in the limit of asymptotically small `. Therefore by taking the leading-order term and using

(4.2.31) the effective uptake is given by

DaEeff ≈ Da
(
1−Daσ2`2

)
(4.4.10)

in the limit `→ 0, where again we see disorder reducing the effective uptake parameter. These

expressions for DaGeff and DaEeff in three dimensions are compared in Section 4.5 for different

parameters and against the results obtained in one- and two dimensions.

4.5 Summary of effective uptake parameters in n dimen-

sions

We can now compare the different effective uptake parameters in one, two and three dimensions,

where the values of Daeff are given in Table 4.1 for the limit ` → 0. It can be seen that Daeff
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depends on four variables, PeL, Da, σ and `. For both a Gaussian and exponential covariance

function in one, two and three spatial dimensions we find the correction to the uptake term is of

order `, `2 and `3 modified by the factors 1, log ` and 1/` respectively, where these factors are a

result of the free-space Green’s function present in (4.2.31). As a result, the difference between

Da and Daeff decreases as the dimension size increases, as shown in Figures 4.7(a)-(d). It can

also be seen that in one and two dimensions the correction is of order O(1/φ) and O(log(φ))

respectively, where φ =
√

Pe2
L /4 + Da, whereas in three dimensions φ does not appears in the

correction. This demonstrates how the impact of advection on the effective uptake decreases

as the dimension size increases. For all cases we find disorder in the sink function reduces the

effective uptake of solute in the transport problem.

Daeff Gaussian Covariance Exponential Covariance

1D Da

(
1−
√
πDaσ2`

2φ

)
Da

(
1− Daσ2`

φ

)
2D Da

(
1− 1

4
Daσ2`2 (γ − 2 log (φ`))

)
Da

(
1− 1

4
Daσ2`2 (γ − 1− log (φ`))

)
3D Da

(
1− 1

2
Daσ2`2

)
Da
(
1−Daσ2`2

)
Table 4.1: Table showing the different values of Daeff in the limit `→ 0 when using a Gaussian

and exponential covariance function. Results are obtained by taking the limit `→ 0 for Gaus-

sian [exponential] covariance functions in one, two and three dimensions in (4.3.1) [(4.3.2)],

(4.4.6) [(4.4.7)] and (4.4.9) [(4.4.10)] respectively.

Figures 4.7(a)-(d) demonstrates how the effective uptake term depends on each variable PeL,

Da, σ and ` in one, two and three dimensions. Throughout, we find an exponential covariance

function requires a greater difference between the Damköhler number and the effective uptake

parameter when compared to using a Gaussian covariance function. As PeL decreases and

Da, σ and ` increase then there is a greater difference between Da and Daeff . So as advection

becomes stronger (PeL increases) the correction to Da required to account for disorder decreases

exponentially, whereas as uptake becomes stronger (Da increases) this correction increases

exponentially, as shown in Figures 4.7(a) and 4.7(b) respectively. It can also be seen that as

the variance and correlation length of the Gaussian process increases (σ and ` increase) the

correction increases exponentially and linearly respectively. This can be seen in Figures 4.7(c)

and 4.7(d). Note that the correlation length remains small compared to the lengthscales in the

Green’s function throughout to ensure (4.2.30) remains valid.
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(a) PeL-dependence
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(b) Da-dependence
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(c) σ-dependence
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(d) `-dependence
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Figure 4.7: Difference between Da and Daeff as the parameters PeL, Da, σ and ` change, as

shown by figures (a), (b), (c) and (d) respectively, with insets showing log-log plots. Here, the

difference is shown in one dimension (1D), two dimensions (2D) and three dimensions (3D) with

solid and dashed lines representing a Gaussian and Exponential covariance function respectively.

Figures (b), (c) and (d) use PeL = 20, Figures (a), (c) and (d) use Da = 20, Figures (a), (b)

and (d) use σ = 1 and Figures (a), (b) and (c) use ` = 0.01. Effective uptake parameters

for Gaussian [exponential] covariance functions are given in one, two and three dimensions in

(4.3.1) [(4.3.2)], (4.4.6) [(4.4.7)] and (4.4.9) [(4.4.10)] respectively.

We will now demonstrate using the effective uptake parameters for a discrete sink function with

uniformly-random sink locations. This is seen to be appropriate for asymptotically small sink

widths in suitably large domains as corrections to the solute concentration become local.

4.6 Calculating an effective uptake parameter for a dis-

crete uptake function with uniformly-random sink lo-

cations

Consider an n-dimensional discrete sink function with regularised sink locations of finite size

which occupy a domain Dsn, where for all x ∈ Ds3 then x1 ∈ [0, 1] and x2, x3 ∈ [−Ls, Ls] (with

analogous definitions in one and two dimensions). Allow λ = 1/N to be the average inter-sink

distance and Ls = (2k − 1)λ/2 for any k ∈ Z+, where N ∈ Z+ represents the number of sinks
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per unit length. Then the n-dimensional sink function can be given by (3.1.3) and (3.1.5) from

Chapter 3 as

ĝ(x;ω) = λn
∑
in

1

(2πς2)n/2
exp

(
− 1

2ς2
|x− ξin |2

)
− 1, (4.6.1)

where i3 ∈ {i, j, k}, i2 ∈ {i, j} and i1 = i for i = 1, . . . , N and j, k = −M, . . . ,M with

M = bLsNc ∈ Z. Let sink locations be prescribed by a multivariate uniform distribution, with

position vectors given by ξi3 = (ξi, ξj , ξk), ξi2 = (ξi, ξj) and ξi1 = ξi such that ξi ∼ U [0, 1] and

ξj , ξk ∼ U [−Ls, Ls] for i = 1, . . . , N and j, k = −M, . . . ,M . Then the covariance of the sink

function is given by (3.3.20) to be

Kĝ[x,y] =

(
λ

2
√
πς

)n
exp

(
− 1

4ς2
|x− y|2

)
− λ

(2M + 1)n−1
. (4.6.2)

In two and three dimensions by letting Ls → ∞ we find the covariance of the sink function

becomes local, with

Kĝ[x,y]→ KGĝ

(
x,y;σ =

(
λ

2
√
πς

)n/2
, ` = 2ς

)
. (4.6.3)

Therefore the effective uptake parameter DaUReff can be found in two and three dimensions using

(4.4.6) and (4.4.9) to give

DaUReff ≈ Da

(
1− λ2 Da

4π
(γ − 2 log (2φς))

)
(4.6.4)

and

DaUReff ≈ Da

(
1− λ3 Da

4π3/2ς

)
(4.6.5)

respectively. These parameters can be used to find the effective solute concentration for

uniformly-random sink locations by substituting each parameter into (4.2.22), where this so-

lution will be denoted CURH (x1). As for a Gaussian process, (4.6.4) and (4.6.5) show that a

disordered sink function reduces the effective uptake of a solute when considering the transport

problem given in (4.1.1), in a manner that depends on the linear sink density λ and the sink

width ς.

Let us compare using effective uptake parameters in (4.6.4) and (4.6.5) to finding the expectation

of the correction Ĉ2(x;ω), which is given in equation (3.5.34) from Chapter 3. The effective

uptake parameters give the two- and three-dimensional corrections for an asymptotically small

sink width to be dependent on the logarithm and reciprocal of ς respectively. This is consistent

with the results for the expectation of the second-order correction in Chapter 3. Figure 4.8

shows a comparison between using both approximations. In two dimensions, both approaches
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Figure 4.8: (a) Approximations of the expected concentration for uniformly-random sink lo-

cations in two and three dimensions, as given in Figure 3.12(a). Added are the two- and

three-dimensional effective uptake approximations in magenta and black respectively. (b) Dif-

ference between sample expectations and each correction in two dimensions. Throughout we use

λ = 0.2, ς = 0.01 and (PeL,Da) = (20, 10) with squares and diamonds representing two- and

three-dimensional domains respectively. Effective concentrations are calculated using (4.6.3)

with Table 4.1 and (4.2.22).

improve the approximation of solute concentration when compared to using the homogenized

solution from (4.2.2) (Figure 4.8(b)). In three dimensions (Figure 4.8(a)) we see close agreement

between both approaches, although sample expectations could not be calculated due to the

computational expense.
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4.7 Discussion

In this chapter we consider a continuous sink function represented by a Gaussian process with

the same transport problem presented in Chapter 3. We consider both a Gaussian and expo-

nential covariance function (Kĝ), which are defined in (4.1.2) and (4.1.3) and have a prescribed

mean, variance and correlation length as zero, σ2 and ` respectively. Both covariance functions

simplified in the limit of an asymptotically large and small correlation length to a constant

or δ-function approximation respectively, with both the Gaussian and exponential covariance

function converging to the same asymptotes. We use two approaches to characterise the impact

a continuous sink distribution has on the solute concentration: a moments-based approach and

an effective uptake parameter, both of which are summarised in Section 4.2.

As in Chapter 3, the moments-based approach involves finding a deterministic homogenized so-

lution with sequential non-local corrections. Here, corrections account for disorder by offering a

direct mapping between the first two moments of the sink function and the first two moments of

the corrections via a Green’s function. For an asymptotically large correlation length integrals

are simplified when calculating both expectations and (co)variances. For both a Gaussian and

exponential covariance function, the moments of the correction are seen to be identical and the

(co)variance of corrections become independent of the spatial dimension. For an asymptotically

small correlation length, only the (co)variance of corrections can be simplified, which again be-

come independent of the spatial dimension. The expectation of corrections can not be evaluated

by using a δ-function approximation of the sink covariance in two and three dimensions due

to singularities in the Green’s function. As corrections become local in this limit an effective

uptake parameter is instead considered.

In Section 4.2.2 the alternate approach of calculating constant effective uptake parameters to

replace the Damköhler number in the homogenized solution is considered. This is done for a

stationary sink covariance function and free-space Green’s function as they can be expressed as

K̂ĝ(x − x′) and G(x − x′) respectively, an assumption which may fail near boundaries. When

the decay lengthscale in K̂ĝ is sufficiently shorter than the decay lengthscale in G, i.e. the

correlation length is sufficiently short, we find the product GK̂ĝ resembles a δ-function with

the appropriate weight (Noetinger et al., 2018) and so the effective uptake parameter is given

by (4.2.31). This approach allows computationally cheap evaluation of the expected solute

concentration when compared to evaluating moments of corrections.
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In one dimension we compare results from both methods to sample moments of the concentra-

tion, which are obtained by producing realisations of the sink function using the eigenvalue de-

composition described in Appendix B.6. Following this, (4.1.1) is used with the finite-difference

solver given in Appendix B.2 to produce multiple realisations of the solute concentration. Note

that sample moments of the concentration are only calculated in one dimension due to finding

realisations of the sink function being too computationally expensive in higher dimensions.

In Sections 4.3 the first two moments of corrections and an effective uptake parameter are used

in one dimension for a range of correlation lengths. When considering an asymptotically large

correlation length, Figure 4.2 shows good agreement between the sample mean and asymptote

for the expectation of the correction. This asymptote can be found in (4.2.17) and is identical

for both Gaussian and exponential covariance functions due to the covariance functions becom-

ing constant. For an asymptotically small correlation length Figure 4.3 shows good agreement

between the sample mean, the expectation of the correction and using an effective uptake pa-

rameter. This is due to the mean correction having a local influence, where Ceff
H (x1) is seen to

improve the prediction of solute concentration when compared to using the homogenized solu-

tion CH(x1). Here, the effective uptake parameter varies between a Gaussian and exponential

covariance function by a constant factor, see Table 4.1.

When considering the one-dimensional concentration’s variance asymptotically small and large

correlation lengths cause the variance to converge to the same asymptote for both Gaussian

and exponential covariance functions. As Figure 4.6 shows, the magnitude of the variance

monotonically increases as ` increases. Therefore we find an asymptotically large (small) corre-

lation length causes the variance to approach its maximum (minimum) and so the two limiting

expressions for the variance act as bounds.

The effective uptake parameter which accounts for local corrections in two and three dimen-

sions is found in Section 4.4. Results for the effective parameters are summarised in Section

4.5, with Figure 4.7 showing the dependence of Daeff on PeL, Da, σ and ` in n dimensions. We

find the effective uptake parameter remains smaller than the Damköhler number throughout

parameter space, representing how a disordered sink function reduces the uptake of a solute.

Figure 4.7(a) shows that increased advection causes the required correction to the Damköhler

number to decreases exponentially, whereas for increased uptake Figure 4.7(b) shows this cor-

rection to increase exponentially. Alternatively, Figures 4.2.31(c) and 4.2.31(d) show that for

an increased variance and correlation length of the Gaussian process the correction required
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increases exponentially and linearly respectively.

The two- and three-dimensional effective uptake parameters are used in Section 4.6 for a discrete

sink function with uniformly-random sink locations. This is done by finding a relation between

the covariance of sink locations and the Gaussian covariance function, which holds for a suitably

large domain due to the covariance becoming local. Note that this approach was not used in one

dimension due to corrections to the solute concentration being non-local. Figure 4.8 shows a

comparison between using the expectation of corrections and effective uptake parameters in the

limit of an asymptotically small sink width ς. In two dimensions both approaches offer similar

predictions for the expected solute concentration, which better describes the sample expectation

when compared to using the homogenized solution. In three dimensions we find close agreement

between both approaches, which are seen to capture the over-prediction of solute uptake by the

homogenized solution. However, sample expectations could not be calculated for comparison

due to being too computationally expensive.

Let us consider the application of effective uptake parameters to some practical examples,

where we assume sinks have finite size and are distributed uniformly randomly. Define the

approximate sink volume, domain volume, volume fraction and dimensional average inter-sink

distance to be

U0 = (ς∗)3, V0 = Lx1
Lx2

Lx3
, φ =

NtotalU0

V0
and λ∗ =

ς∗

φ1/3
(4.7.1)

respectively, where ς∗ and Ntotal are the dimensional average sink width and total number of

sinks in the domain respectively and Lx1 , Lx2 and Lx3 are the approximate x1, x2 and x3

domain lengths respectively. One could consider solute transport through the intervillous space

(IVS), which is a disordered porous medium and shown in Figure 1.3(a). The magnitude of

parameters are given in Tun et al. (2021) to be φ ∼ 0.5, ς∗ ∼ 102 µm and Lx1
∼ 103 µm, which

are the IVS volume fraction, median villous diameter and x1 length respectively. So by non-

dimensionalizing (which is done using Lx1) we obtain the non-dimensional average inter-sink

distance as λ ∼ 0.1. Therefore the three-dimensional effective uptake parameter from (4.6.5)

gives

Daeff

Da
∼ 1− 10−2 Da . (4.7.2)

A range of Damköhler numbers can be expected within maternal circulation due to solutes

having different physico-chemical properties (Erlich et al., 2019b). For oxygen, the solute

consumption rate (S1) and diffusivity in blood plasma (D) have been estimated to be 1 min−1

(Chernyavsky et al., 2010) and 10−3 cm2/min (Banerjee et al., 2008) respectively. This would
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(a) (b)

Figure 4.9: (a) Images of fetal tissue obtained using electron microscopy, where the top left

image shows a single mitochondria. Images are courtesy of Michelle Desforges [unpublished].

(b) Distribution of mitochondria (grey) in the vasculosyncytial membrane, where the figure

includes epithelium and capillaries (magenta), cytotrophoblast (orange) and the nuclei of syn-

cytiotrophoblast (green). The outlining orange cuboid has dimensions 147µm×305µm×100µm

and the figure is courtesy of Tomass Vaivods [unpublished] using data from Michelle Desforges

[unpublished].

give a Damköhler number of approximately 10, meaning the effective uptake parameter is

approximately 90% of this value.

One could also consider oxygen transport through the vasculosyncytial membrane, which sep-

arates fetal and maternal blood (see Figure 4.9). Here, oxygen uptake occurs at random mito-

chondria locations within the syncytiotrophoblast layer. Although solute transport is governed

by diffusion with the absence of advection, therefore invalidating the free-space Green’s func-

tion used due to assuming a suitably large Péclet number, we can obtain an ad-hoc estimation

of the effective uptake parameter using (4.6.5). We use the approximate values ς∗ ∼ 1µm,

Lx1 ∼ 10µm and N ∼ 1 − 10, which represent the mitochondria width, cell thickness and the

average number of mitochondria per cell respectively and are obtained from imaging data cour-

tesy of Tomass Vaivods and Michelle Desforges [unpublished]. So by assuming the distribution

of sinks is uniform and isotropic, i.e. the average inter-sink distance is the same in all directions,

we obtain λ ≥ 0.1. Therefore the three-dimensional effective uptake parameter given in (4.6.5)

gives the relation

Daeff

Da
≤ 1− 10−2 Da . (4.7.3)

From both examples we see disordered sink locations result in a notable difference between the

naive and effective uptake parameter for sufficiently large Damköhler numbers, which empha-

sises the need to quantify the influence of a disordered uptake field on solute concentration.
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In this chapter we consider using the moments-based approach from Chapter 3 for a contin-

uous sink function described by a Gaussian process. When using Gaussian and exponential

covariance functions the moments of corrections are simplified for asymptotically small and

large correlation lengths. For an asymptotically small correlation length we use a δ-function

approximation for local corrections to calculate effective uptake parameters, which characterises

the impact of a disordered sink function on the mean concentration. These effective parameters

are illustrated for a discrete sink function with suitably many uniformly-random sink locations

in the limit of an asymptotically small sink width. One way to further this study would be

to test results for Gaussian processes in higher dimensions by calculating sample moments of

the concentration. This could not be done due to the computational expense of eigenvalue

decomposition when producing sink function realisations, but it may be possible to overcome

this by swapping to the stochastic Galerkin method, as described (for example) in Lord et al.

(2014). An alternate approach is to verify effective parameters by evaluating the moments of

corrections in higher dimensions using the full expressions given in (4.2.11)-(4.2.13) using an

integral solver.

Both approaches are seen to quantify the impact of a disordered sink function on the solute

concentration. One alternative is to consider the impact of a disordered flow field, which is

an active area of interest in porous media (Jin et al., 2016; Alim et al., 2017). This could be

done by randomly perturbing the velocity field and again using a moments-based approach to

find corrections to a homogenized solution. Another approach would be to use a log-normal

Gaussian process, as discussed for one dimension in Appendix B.7. Here, the distribution of

realisations is seen to be non-Gaussian about the mean, causing confidence intervals to offer

better descriptions of the impact disorder has on the solute field than calculating statistical

moments. Therefore a similar approach to that used in Section 2.3.3 is recommended, which

calculates confidence intervals using the cdf of sink locations.



Chapter 5

Conclusions

5.1 Summary

A variety of examples exist where solute transport occurs over multiple lengthscales through

inherently random structures. As a result, direct approaches to mathematical modelling are

often infeasible, meaning spatial averaging techniques are commonly employed. This thesis

has developed multiple methods to characterise the impact of a disordered uptake function on

solute transport occurring over multiple lengthscales.

We first considered one-dimensional solute transport past a disordered array of point sinks with

first-order uptake kinetics in Chapter 2. When an advection-diffusion balance existed on the

microscale, we used a similar approach to Russell and Jensen (2020) for finding corrections to a

deterministic homogenized solution by inverting linear operators using a Green’s function. The

leading-order correction for periodic point sink locations accounted for discrete-to-continuous

effects, where it captured a wavy sink-to-sink structure and an external boundary layer at

the outlet, see Figure 2.2. For comparison, we used the classical approach to homogenization,

which failed to capture the boundary layer due to being based on a two-scale dependence

assumption. We then considered the leading-order correction to the homogenized solution for

disordered sink locations by calculating the correction’s variance. When sinks were normally-

perturbed from periodic locations the variance of the correction exhibited sharp spikes about

sink locations, which demonstrated individual point sinks have strong local influence but weak

far-field impact, see Figure 2.7(a). When sink locations were uniformly random the variance

152
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of the concentration was represented by a smooth function, despite each concentration profile

independently exhibiting a wavy sink-to-sink structure, see Figure 2.7(a). This was due to

calculating moments in the presence of strong disorder smearing out the impact of individual

point sinks on the microscale.

We also considered when advection dominates diffusion on the microscale in Chapter 2, which

lead to a staircase structure appearing in concentration profiles due to boundary layers forming

upstream of sink locations. This caused moments to be poor predictors of disorder due to

concentration profiles being non-Gaussian. As a result we calculated the median and credible-

intervals of the solute concentration by inverting the cumulative distribution function (cdf) of

the concentration to find the expected location of each jump in concentration. By comparing

Gaussian-based (which were given by 1.96 standard deviations on either side of the mean) and

cdf credible intervals we found that the cdf credible intervals could capture the non-Gaussian

behaviour and preserve the staircase structure exhibited by individual concentration profiles.

In Chapter 3 we considered a more direct ‘moments-based’ approach for quantifying the impact

of disordered sink locations on the solute concentration in one, two and three spatial dimen-

sions. Sinks were again prescribed first-order uptake kinetics but now had a finite width ς.

The moments-based approach offered a direct mapping between the first two moments of the

sink distribution and the first two moments of the solute field. Therefore we calculated the

moments of the sink distribution, which were shown in two dimensions in Figure 3.3. The

sink function for normally-perturbed sink locations had a non-local covariance which was zero,

positive and negative when away, on and near to the diagonal, which represented sinks being

independently distributed, correlated and anti-correlated respectively. The sink function for

uniformly-random sink locations also had a non-local covariance but became more local in two

and three dimensions as the size of the sink domain increased. We then calculated a region

of influence by inverting an associated free-space Green’s function, wherein any sinks can in-

fluence the concentration at some given point. This was done for one, two and three spatial

dimensions, with Figure 3.6 showing a two-dimensional depiction. Non-local corrections to the

deterministic homogenized solution were then found by successively inverting linear operators

using the calculated free-space Green’s function. For periodic sink locations we found deter-

ministic corrections, wherein the limit of an asymptotically small sink width the leading-order

periodic correction scaled with the logarithm and reciprocal of the sink width ς in two and

three dimensions respectively. This reflected the order of singularities found when using point

sink locations in higher dimensions. For normally-perturbed sink locations, we found disorder
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smoothed out singularities when taking the expectation of the leading-order correction. In

the limit ς, σ � 1 (where σ is the standard deviation of the perturbing variable) we found

the leading-order mean correction in two and three dimensions scaled with the logarithm and

reciprocal of
√
ς2 + σ2 respectively. For uniformly-random sink locations we found the mean

correction varied only in the advective direction when sufficiently far from boundaries, with the

impact of individual sink locations being smeared out. By again taking the limit of an asymp-

totically small sink width we found the second-order correction scaled with the logarithm and

reciprocal of the sink width ς in two and three dimensions respectively. For both normally-

perturbed and uniformly-random sink locations, approximating the regularised sink function

with a δ-function for an asymptotically small sink width over-predicted the variance of solute

concentration. This allowed an upper bound for the variance to be calculated and reflects how

regularising sink locations reduces the variation in solute concentration.

In Chapter 4 we considered replacing the discrete sink function from Chapter 3 with a continuous

sink function represented by a Gaussian process. Two covariance functions were considered:

Gaussian and exponential; where the mean, variance and correlation length were given by zero,

σ2 and ` respectively. We found both covariance functions simplify for asymptotically large

and small correlation lengths to a constant and δ-function approximation respectively. For

asymptotically large correlation lengths we simplified integrals when calculating the first two

moments of corrections and found them to be identical for both Gaussian and exponential

covariance functions. The resulting (co)variance of corrections became independent of the

spatial dimension and is demonstrated in Figure 4.6 for the one-dimensional variance. For

an asymptotically small correlation length, the (co)variance of corrections simplified using a

δ-function approximation but did not become independent of the spatial dimension. This

simplification is used in Figure 4.6 for the one-dimensional variance. To approximate the

expectation of corrections for an asymptotically small sink width we could not simply replace the

sink covariance function with a δ-function approximation due to evaluating Green’s functions

at singularities in two and three dimensions. We instead calculated effective uptake parameters,

where despite the free-space Green’s function in (4.2.31) accounting for non-local contributions,

the resulting correction to the homogenized solution is local. These parameters were calculated

for both Gaussian and exponential covariance functions in one, two and three dimensions, which

were appropriate as corrections to the mean solute field became local. Results were used in

one dimension and compared to sample expectations in Figure 4.3, which showed the effective

uptake parameter being an improvement in comparison to the homogenized approximation.

By finding a relationship between the Gaussian covariance function and the covariance of a
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uniformly-random sink function, we illustrated results in two and three dimensions for a discrete

sink distribution with uniformly-random sink locations in the limit of asymptotically small sink

widths. As for Chapter 3 we found the effective uptake parameter scaled with the logarithm and

reciprocal of the sink width ς in two and three dimensions respectively, which again reflected the

singularities found when using point sink locations in higher dimensions. Results for uniformly-

random sink locations were used to illustrate effective uptake parameters for two practical

applications: solute transport within the intervillous space of the placenta and oxygen uptake

by mitochondria within placental tissue. Both examples illustrate the non-negligible impact of

the micro-statistics of the disordered uptake field on homogenized transport parameters.

5.2 Further work

We will here summarise possible extensions to the work undertaken in this thesis, most of which

have been discussed in the final section of each chapter.

Alternate approaches to homogenization are developed throughout, which account for the im-

pact of disordered sink functions on the solute field. When considering discrete sink locations

one could consider varying the sink strength (as opposed to the sink size and location or using a

continuous Gaussian process), which is a concept previously considered in Russell et al. (2016)

for one spatial dimension. One could also consider using non-linear uptake kinetics, as done

in Dalwadi and King (2020) and Chernyavsky et al. (2011, 2012), where the latter primarily

focused on zeroth-order uptake kinetics.

When considering a continuous sink function one could consider using an alternate distribution

to a Gaussian process, such as the log-normal Gaussian process discussed in Appendix B.7,

which finds the distribution of concentration realisations to be non-Gaussian for a sufficiently

large variance. Therefore credible intervals offer better descriptions of the impact disorder has

on the solute field when compared to calculating statistical moments, see Figure B.1. These

credible intervals could be found using a similar approach to that used in Chapter 2, which

found cdf credible intervals using the cdf of the solute concentration.

Other extensions can come from considering the influence of disordered domains on the flow

field, which is an active area of interest in porous media (Dagan, 1984; Jin et al., 2016; Alim

et al., 2017). The influence of impenetrable sink locations on two- and three-dimensional fluid

flow has been studied extensively for periodic structures, see Deo (2004) and Vasin and Filippov
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(2009) for example. Russell (2017) considered strong disorder of impenetrable sink locations in

two dimensions, which resulted in rapid-flow channels appearing within the domain. Accounting

for disorder in the flow field could be achieved by randomly perturbing the velocity field and

using a moments-based approach to find corrections to a homogenized solution. However,

difficulty in calculating an appropriate Green’s function, finding sample moments using Monte

Carlo realisations and coupling the disordered advection and uptake terms are anticipated.

The impact of transient effects is another natural extension to the work undertaken. When

considering linear uptake kinetics one could use Laplace transforms with respect to time, which

may allow a similar methodology to the moments-based approach developed in Chapter 3 to be

used, see the Lagrangian approach in Chapter 10 from Rubin (2003). An alternative approach

would be to measure the leading edge of the resulting concentration spread when turning on a

flux of solute at a time t = 0. By sampling the concentration at a fixed point downstream one

could model breakthrough curves, which track the quantity of solute over time, see Shackelford

and Redmond (1995) and Pedretti et al. (2013) for example. One anticipated problem is the

impact of anomalous transport, as found in Bolster and Dentz (2012) for the transport of a

chemical in the presence of weak disorder. This is often addressed by using an individual-based

model with a continuous-time random walk (CTRW), as discussed in Section 1.2.2 and used in

Berkowitz et al. (2006).

One may want to use the methods developed in this thesis for specific applications. The

example of solute transport in maternal blood through the intervillous space of the placenta

is considered by treating terminal villi locations as uptake sites in Chapter 4. The approach

could be modified to consider the complexity of terminal villi uptake sites, where a wide range

of parameter values can be observed for different solutes (Erlich et al., 2019a). Chapter 4 also

considered the inter-cellular transport of oxygen through the vasculosyncytial membrane into

fetal tissue. This could be furthered by considering Michaelis–Menten kinetics, which accounts

for the non-linearity of oxygen uptake by mitochondria, as done in Erlich et al. (2019a) among

others.

This thesis considered alternate approaches of homogenization that quantify the impact a dis-

ordered uptake function has on the concentration of a solute. These approaches predicted

moments of the solute concentration, which can be used to capture fluctuations about the

mean. In the limit where advection dominates diffusion, we found moments to be poor descrip-

tors of the influence disorder has on the solute field, so an alternate approach was developed
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to find non-Gaussian credible intervals. All approaches considered in this thesis should aid the

research of solute transport occurring over multiple lengthscales within disordered media.



Appendix A

Chapter 2 appendices

A.1 Numerical method for solving the governing equa-

tions

In this section we describe the methodology used to solve (2.1.2a) numerically, which can be

applied for different sink distributions. This will be done by replacing the uptake term in

(2.1.2a) with a jump condition at sink locations, allowing the resulting algebraic linear system

to be solved numerically.

First, note that when located in-between sinks (i.e. x 6= ξj) then (2.1.2a) gives

Pe−1 Cxx − Cx = 0, (A.1.1)

where 0 < x < ε−1. To find the jump condition to account for sink locations, integrate inside

a vanishing region about a sink j, along with using prescribed concentration. This gives the

jump condition at a sink j as [[Cx]]x=ξj = SC(ξj), where j = 1, . . . , N . By imposing that the

concentration is continuous across each sink, so [[C]]x=ξj = 0, and using the boundary conditions

158
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given in (2.1.2b) and (2.1.2c), then the governing equations are given by

Pe−1 Cxx − Cx = 0, where x 6= ξj for j = 1, . . . , N, (A.1.2a)

(C − Pe−1 Cx)|x=0 = 1, (A.1.2b)

[[Cx]]x=ξj = Pe SC(ξj), where j = 1, . . . , N, (A.1.2c)

[[C]]x=ξj = 0, where j = 1, . . . , N, (A.1.2d)

Cx|x=ε−1 = 0. (A.1.2e)

The general solution to (A.1.2a) is given by

C(x) = Aje
Pe (x−ξj) +Bj , (A.1.3)

where ξj ≤ x ≤ ξj+1 for j = 0, . . . , N and Aj , Bj are constants. By using (A.1.2b-A.1.2e), it

follows that

B0 = 1, (A.1.4a)

Aj−1e
Pe (ξj−ξj−1) −Aj +Bj−1 −Bj = 0, j = 1, . . . , N, (A.1.4b)

Aj−1e
Pe (ξj−ξj−1) + (S− 1)Aj + SBj = 0, j = 1, . . . , N, (A.1.4c)

AN = 0. (A.1.4d)

Now by eliminating Aj−1 from (A.1.4b) via (A.1.4c), the system is reduced to the following

sparse linear system of 2(N + 1) algebraic equations for the constants Aj and Bj ,

B0 = 1, (A.1.5a)

SAj −Bj−1 + (1 + S)Bj = 0, j = 1, . . . , N, (A.1.5b)

Aj−1e
Pe (ξj−ξj−1) + (S− 1)Aj + SBj = 0, j = 1, . . . , N, (A.1.5c)

AN = 0. (A.1.5d)

Let (A.1.5) be represented by a sparse matrix M , an unknown vector v and a know vector b,

such that

Mv = b, (A.1.6)

where

A =

 P Q

R T

 , v =



A0

...

AN

B0

...

BN


, b =


1

0
...

0

 , (A.1.7)
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with

P =


0

S

. . .

S

 , Q =


1

−1 (1 + S)

. . .
. . .

−1 (1 + S)

 ,

R =


ePe(ξ1−ξ0) (S− 1)

. . .
. . .

ePe(ξN−ξN−1) (S− 1)

1

 , T =


0 S

. . .
. . .

S

0


and blank spaces represent zero entries. Many methods exist for solving (A.1.6), lots of which

can exploit the system’s sparsity (Higham, 2002). This allows the coefficients Aj and Bj to be

found, so when used with (A.1.3) we obtain concentration profiles which are uniformly valid

throughout the domain. Chapter 2 will use LU factorisation to produce any figures which

involve using the numerics outlined in Appendix A.1.

A.2 Classical approach to homogenization

A classical homogenization approach can be used to investigate the periodic sink problem, which

is compared to using a correction to the homogenized solution in Figure 2.2. The approach pre-

sented will involve a two-scale separation of a short and long lengthscale, as seen in Bensoussan

et al. (1978) and Davit et al. (2013). Let us investigate the distinguished limit where Pel = p

and S = εq such that p, q = O(1) for ε → 0. Then using ξj = j in (2.1.2) gives the governing

equations as

Cx = (1/p)Cxx − εqf̂(x)C, (A.2.1a)

(1− (1/p)∂x)C|x=0 = 1 and Cx|x=ε−1 = 0, (A.2.1b)

where f̂(x) =
∑N
j=1 δ(x − j). Define a long lengthscale X = εx and allow the concentration

to have two scale dependence with the short and long lengthscale x and X respectively. By

treating x and X as independent variables, then derivatives transform by

d

dx
=

∂

∂x
+ ε

∂

∂X
and

d2

dx2
=

∂2

∂x2
+ 2ε

∂2

∂x∂X
+ ε2 ∂2

∂X2
.

Expand C in powers of ε, i.e.

C(x,X) = C(0)(x,X) + εC(1)(x,X) + ε2C(2)(x,X) + . . . ,

where C(n)(x,X) = O(1) for n = 0, 1, 2, . . . as ε→ 0 and allow

Lx = (1/p)∂x2 − ∂x and Bx = {(1− (1/p)∂x)(·)|X=0, ∂x(·)|X=1}
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to be a linear and boundary operator respectively, where the subscript here is to differentiate

the operators from those in the main text. Now by using (A.2.1) and gathering terms of the

same order, we obtain the following:

O(1) =⇒

LxC
(0) = 0

BxC(0) = {1, 0}
, (A.2.2a)

O(ε) =⇒

LxC
(1) = C

(0)
X − (2/p)C

(0)
xX + qf̂(x)C(0)

BxC(1) = {(1/p)C(0)
X |X=0,−C(0)

X |X=1}
, (A.2.2b)

O(ε2) =⇒

LxC
(2) = C

(1)
X − (2/p)C

(1)
xX + qf̂(x)C(1) − (1/p)C

(0)
XX

BxC(2) = {(1/p)C(1)
X |X=0,−C(1)

X |X=1}
, (A.2.2c)

...

Let us seek x-periodic solutions by considering a unit cell with the new coordinates x′ =

x− bx+ 1
2c, i.e. −1/2 < x′ < 1/2 in each unit cell. By this choice of coordinates, each sink is

located at x′ = 0 for each cell. Also allow Lx′ = ∂(x′)2 − p∂x′ to be a linear operator in the new

coordinates x′, then each sub-problem of (A.2.2) can be solved in turn.

At O(1) we obtain

Lx′C(0) = 0, (A.2.3a)

(C(0) − (1/p)C
(0)
x′ )|X=0 = 1, C

(0)
x′ |X=0 = 0, (A.2.3b)

[[C(0)]]x′=0 = 0, [[C
(0)
x′ ]]x′=0 = 0, (A.2.3c)

x′ − periodicity of C(0). (A.2.3d)

From this, we find the leading order solution becomes independent of the short lengthscale with

C(0) = C(0)(X), where the boundary condition C(0)(0) = 1 needs to be satisfied at the inlet.

At O(ε) we obtain

Lx′C(1) = C
(0)
X − (2/p)C

(0)
x′X , (A.2.4a)

(C(1) − (1/p)C
(1)
x′ )|X=0 = (1/p)C

(0)
X |X=0, C

(1)
x′ |X=0 = −C(0)

X |X=1, (A.2.4b)

[[C(1)]]x′=0 = 0, [[C
(1)
x′ ]]x′=0 = pqC(0)|x′=0, (A.2.4c)

x′ − periodicity of C(1), (A.2.4d)
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where terms involving f̂(x) are replace with a jump condition by integrating the differential

equation inside a vanishing region about x′ = 0 and imposing that C(1) is everywhere contin-

uous. Now by performing a spatial average over a unit cell and using the jump conditions and

periodicity assumption we obtain the macroscopic equation for the leading-order solution to be

C
(0)
X + qC(0) = 0. (A.2.5)

Solving this, along with the boundary condition C(0)(0) = 1, gives the leading-order expression

as

C(0)(X) = e−qX . (A.2.6)

Substituting (A.2.6) into (A.2.4a) and solving yields the general solution to the correction term

C(1) as

C(1)(x′, X) =

A1(X) +B1(X)epx
′
+ qx′C(0)(X) for − 1

2 ≤ x
′ ≤ 0

A2(X) +B2(X)epx
′
+ qx′C(0)(X) for 0 ≤ x′ ≤ 1

2

, (A.2.7)

for some functions A1, B1, A2 and B2. Let 〈C(1)〉 represent the slowly varying correction of

C(x), i.e. 〈C(1)〉 =
∫ 1/2

−1/2
C(1)(x′, X)dx′. Using this, along with both jump and periodicity

conditions, yields

C(1)(x′, X) = 〈C(1)〉+ q

(
1

p
+ υ(x′)

)
C(0), (A.2.8)

where υ(x′) is the inter-sink corrections on the small scale and is given by

υ(x′) =

x
′ + 1

2 −
1
2csch

(
p
2

)
ep(x

′+ 1
2 ) for − 1

2 ≤ x
′ ≤ 0

x′ − 1
2 −

1
2csch

(
p
2

)
ep(x

′− 1
2 ) for 0 ≤ x′ ≤ 1

2

, (A.2.9)

where csch(x) = 1/ sinh(x) is the hyperbolic cosecant. Note there that by using the C(1) inlet

condition we obtain that 〈C(1)〉 must satisfy

〈C(1)〉|X=0 = q

(
1

2
− 1

p

)
. (A.2.10)

At O(ε2) we obtain

Lx′C(2) = C
(1)
X − (2/p)C

(1)
x′,X − (1/p)C

(0)
XX , (A.2.11a)

(C(2) − (1/p)C
(2)
x′ )|X=0 = C

(1)
X |X=0, C

(2)
x′ |X=0 = −C(1)

X |X=1, (A.2.11b)

[C(2)]x′=0 = 0, [C
(2)
x′ ]x′=0 = pqC(1)|x′=0, (A.2.11c)

x′ − periodicity of C(2), (A.2.11d)
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where we have again replaced terms involving f̂(x) with a jump condition at x′ = 0. Now

by integration over a unit cell, whilst using the continuity, periodicity and jump conditions,

(A.2.11a) gives

〈C(1)〉X + q〈C(1)〉 =
q2

2
coth

(p
2

)
C(0). (A.2.12)

Solving this, along with the use of (A.2.10), gives the slowly varying correction 〈C(1)〉 as

〈C(1)〉 = q

[
1

2
− 1

p
+
q

2
coth

(p
2

)
X

]
C(0),

which in turn gives

C(1)(x′, X) = q

[
1

2
+
q

2
coth

(p
2

)
X + υ(x′)

]
C(0). (A.2.13)

Therefore the classical approach approximates the concentration C(x) for a periodic sink ar-

rangement to be

C(x) ≈
(

1 + S

(
1

2
+

S

2
coth

(
Pe

2

)
x+ υ(x′)

))
e−Sx (A.2.14)

where

υ(x′) =

x
′ + 1

2 −
1
2csch

(
Pe
2

)
ePe(x′+ 1

2 ) for − 1
2 ≤ x

′ ≤ 0

x′ − 1
2 −

1
2csch

(
Pe
2

)
ePe(x′− 1

2 ) for 0 ≤ x′ ≤ 1
2

and x′ = x−bx+ 1
2c. A plot of (A.2.14) can be seen in Figure 2.2, where the classic approach is

compared to the numerical solution given by solving (A.1.6), the homogenized solution given in

(2.2.5) and the combination of the homogenized solution and correction Ĉa(x) given in (2.2.14).

It is shown that the second-order correction for the classical approach includes the micro-scale

perturbations on the inter-sink scale as it exhibits the wavy sink-to-sink structure. However, the

approximation struggles to deal with the no diffusivity boundary condition at the downstream

end due to only using the inlet condition from (A.2.10). This problem arises due to the ad-

hoc assumption of two-scale dependence, as this prevents the multiscale structure within the

boundary-layer at x = ε−1 being accounted for.

A.3 Leading-order behaviour of the homogenized solution

and Green’s function

We will now establish expansions of the homogenized solution and Green’s function in the limit

where Pel = O(1) and S = O(ε). Define X = εx, Pel = p and S = εq, where X, p, q = O(1).

Note that φ can be Taylor expanded for ε� 1 to give

φ =
p

2

(
1 +

4εq

p

) 1
2

=
p

2
+ εq − ε2q2

p
+O(ε3). (A.3.1)
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So by setting α = p
2ε+q and using Taylor expansions the we obtain the leading-order expressions

eφx = e

(
α− εq2

p +O(ε2)
)
X

= eαX
(

1− εq2

p
X +O(ε2)

)
, (A.3.2a)

W (x) = 2p2eαX + 2εpq (2− qX) eαX +O(ε2), (A.3.2b)

where W (x) is approximated using (2.2.4). Note here that, in order to preserve any boundary-

layers which appear in the system, terms involving α are not expanded since they are O(1)

or larger in size. So using (2.2.3) and (2.2.10) we obtain the leading-order expansions of the

homogenized solution and Green’s function are

CH(x) ≈
(

1 +
εq

p

(
qX − 1 + e( p

ε +2q)(X−1)
))

e−qX , (A.3.3)

and

G−(x, y) ≈
(
−1 +

εq

p

(
2 + q(X − Y )− e−( p

ε +2q)X − e( p
ε +2q)(Y−1)

))
e( p

ε +q)(X−Y ),

G+(x, y) ≈
(
−1 +

εq

p

(
2 + q(Y −X)− e−( p

ε +2q)Y − e( p
ε +2q)(X−1)

))
eq(Y−X),

(A.3.4)

respectively, where O(ε2) terms are neglected. Due to the nature of which terms were expanded,

both expansions remain uniformly valid throughout the domain, including within boundary-

layers. These expansions are converted back into their original variables using X = εx, p = Pel

and q = ε S and given in (2.2.5) and (2.2.11) respectively.

A.3.1 Useful calculations involving the product of the homogenized

solution and Green’s function

Note here that we can obtain a leading-order expressions for the composite term (GCH)|x,y =

G(x, y)CH(y) as

(G−CH)|x,y ≈
(
−1 +

εq

p

(
3 + q(X − 2Y )− e−( p

ε +2q)X − 2e( p
ε +2q)(Y−1)

))
e( p

ε +q)(X−Y )−qY ,

(G+CH)|x,y ≈
(
−1 +

εq

p

(
3− qX − e−( p

ε +2q)Y − e( p
ε +2q)(X−1) − e( p

ε +2q)(Y−1)
))

e−qX ,

(A.3.5)

where O(ε2) terms are neglected and we have used (A.3.3) and (A.3.4). This expansion is

converted back into its original variables and stated in the main text in equation (2.3.3). Let

us now evaluate the differential and definite integral of (GCH)|x,y with respect to y. We can

calculate the differential as d
dy (GCH)|x,y = ε d

dY (GCH)|x,y, which gives

(G−CH)y|x,y ≈
(
p− εq

(
1 + q(X − 2Y )− e−( p

ε +2q)X
))

e( p
ε +q)(X−Y )−qY ,

(G+CH)y|x,y ≈ εq
(
e−( p

ε +2q)Y − e( p
ε +2q)(Y−1)

)
e−qX .

(A.3.6)
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By noting that
∫ y

0
(GCH)|x,ydy = ε−1

∫ Y
0

(GCH)|x,ydY we can integrate the expressions given

in (A.3.5) explicitly using integration by parts when required to obtain∫ y

0

(G−CH)|x,y dy =
1

p

(
1− 2qY e( p

ε +2q)(Y−1)
)
e( p

ε +q)(X−Y )−qY ,∫ y

0

(G+CH)|x,y dy =

(
−1 +

εq

p

(
3− qX − e( p

ε +2q)(X−1)
))(Y

ε

)
e−qX +O(ε2),

(A.3.7)

where the Taylor expansion (p
ε

+ 2q
)−1

=
ε

p
− 2ε2q

p2
+O(ε3) (A.3.8)

is used.

We can also obtain the leading-order expression for the square of (GCH)|x,y to be

(G−CH)2|x,y =

(
1− 2εq

p

(
3 + q(X − 2Y )− e−( p

ε +2q)X − 2e( p
ε +2q)(Y−1)

))
e2( p

ε +q)(X−Y )−2qY ,

(G+CH)2|x,y =

(
1− 2εq

p

(
3− qX − e−( p

ε +2q)Y − e( p
ε +2q)(X−1) − e( p

ε +q)(Y−1)
))

e−2qX ,

(A.3.9)

where O(ε2) terms are neglected. This can be integrated to give∫ y

0

(G−CH)2|x,y dy = − 1

2p
e2( p

ε +q)(X−Y )−2qY ,∫ y

0

(G+CH)2|x,y dy =

(
ε−1 − 2q

p

(
3− qX − e( p

ε +2q)(X−1)
))

Y e−2qX .

(A.3.10)

A.4 Calculation of the covariance for normally-perturbed

sink locations

We will now calculate an expression for the covariance K(Ĉb(x1), Ĉb(x2)). As σ is small, we

can assume sink locations are independently and identically distributed (i.i.d) as sinks do not

trade places. Therefore

E[ξ̂j ξ̂l] = E[ξ̂j ]E[ξ̂l], where j 6= l. (A.4.1)

This gives the covariance of ξ̂j and ξ̂l as

K(ξ̂j , ξ̂l) = E[ξ̂j ξ̂l]− E[ξ̂j ]E[ξ̂l] = δj,l. (A.4.2)

By (2.3.8), the expectation of Ĉb(x) and Ĉb(x1)Ĉb(x2) is given by

E[Ĉb(x)] ≈ S

σ∑
j 6=k

(GCH)|x,jE
[
ξ̂j

]
+ E

[
[(GCH)|x,y]k+σξ̂k

y=k

] = SE
[
[(GCH)|x,y]k+σξ̂k

y=k

]
(A.4.3)
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and

E[Ĉb(x1)Ĉb(x2)] ≈ E

[
S2

σ ∑
j 6=k1

(GCH)y|x1,j ξ̂j + [(GCH)|x1,y]
k1+σξ̂k1

y=k1

×
σ∑

l 6=k2

(GCH)y|x2,lξ̂l + [(GCH)|x2,y]
k2+σξ̂k2

y=k2

] (A.4.4)

respectively, where O(σ2) terms are neglected. By expanding terms in (A.4.4), it can be seen

that

E[Ĉb(x1)Ĉb(x2)] ≈ S2 (ϕ1(x1, x2) + ϕ2(x1, x2) + ϕ3(x1, x2) + ϕ4(x1, x2)) , (A.4.5)

where

ϕ1(x1, x2) =

{
σ2
∑
j 6=k1

∑
l 6=k2

(GCH)y|x1,j(GCH)y|x2,lE
[
ξ̂j ξ̂l

]
,

ϕ2(x1, x2) = σ
∑
j 6=k1

(GCH)y|x1,jE
[
ξ̂j [(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
,

ϕ3(x1, x2) = σ
∑
l 6=k2

(GCH)y|x2,lE
[
ξ̂l[(GCH)|x1,y]

k1+σξ̂k1

y=k1

]
,

ϕ4(x1, x2) = E
[
[(GCH)|x1,y]

k1+σξ̂k1

y=k1
[(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
.

We will now evaluate each ϕi separately. As E[ξ̂j ξ̂l] = E[ξ̂j ]E[ξ̂l] = 0 when j 6= l, then ϕ1(x1, x2)

becomes

ϕ1(x1, x2) = σ2
∑

j /∈{k1,k2}

(GCH)y|x1,j(GCH)y|x2,j .

Also by noting

E
[
ξ̂j [(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
= E

[
ξ̂j

]
E
[
[(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
= 0 if j 6= k2,

it can be seen that

ϕ2(x1, x2) =


σ(GCH)y|x1,k2E

[
ξ̂k2 [(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
if k1 6= k2

0 if k1 = k2

. (A.4.6)

Similarly,

ϕ3(x1, x2) =


σ(GCH)y|x2,k1E

[
ξ̂k1 [(GCH)|x1,y]

k1+σξ̂k1

y=k1

]
if k1 6= k2

0 if k1 = k2

. (A.4.7)
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We can also evaluate ϕ4(x1, x2) by considering different cases of k1 and k2 to obtain

ϕ4(x1, x2) =

E[Ĉb(x1)]E[Ĉb(x2)] if k1 6= k2

E
[
[(GCH)|x1,y]k+σξ̂k

y=k [(GCH)|x2,y]k+σξ̂k
y=k

]
if k ≡ k1 = k2

. (A.4.8)

All ϕi can then be combined to give the covariance as

K(Ĉb(x1), Ĉb(x2)) =



S2

{
σ2
∑
j /∈{k1,k2}(GCH)y|x1,j(GCH)y|x2,j

+σ(GCH)y|x1,k2E
[
ξ̂k2 [(GCH)|x2,y]

k2+σξ̂k2

y=k2

]
+σ(GCH)y|x2,k1E

[
ξ̂k1 [(GCH)|x1,y]

k1+σξ̂k1

y=k1

]}
if k1 6= k2

S2

{
σ2
∑
j 6=k(GCH)y|x1,j(GCH)y|x2,j

+E
[
[(GCH)|x1,y]k+σξ̂k

y=k [(GCH)|x2,y]k+σξ̂k
y=k

]
−E

[
[(GCH)|x1,y]k+σξ̂k

y=k

]
E
[
[(GCH)|x2,y]k+σξ̂k

y=k

]}
if k ≡ k1 = k2

.

A.5 Tracking the cumulative distribution function in the

limit of advection-dominated transport

Consider the advection-dominated case where the concentration C(x;ω) for x ∈ [0, 1] is given

by

Cx + S(1 + ĝ(x;ω))C = 0 (A.5.1)

and ĝ(x;ω) is a random function. Note the ω notation denotes that the function is a realisation

drawn from a prescribed distribution, which in turn makes the concentration a random variable.

For convenience, define

h(x) =

∫ x

0

ĝ(x;ω) dx. (A.5.2)

Then by using an integrating factor obtain the exact solution of (A.5.1) to be

C(x;ω) = exp [−S(x+ h(x))] . (A.5.3)

We will now consider tracking the cumulative distribution function (cdf) of the solute concen-

tration. Define πC(γ, x) as the probability distribution function (pdf) of the concentration,



APPENDIX A. 168

FC(γ, x) =
∫ γ

0
πC(C, x) dC as the cdf of the concentration and Π(C, γ;x) = H(C− γ) (where H

represents the Heaviside function). Then we can obtain the expectation of Π as

E[Π(C, γ;x)] =

∫ ∞
0

H(C − γ)πC(C, x) dC = 1− FC(γ, x). (A.5.4)

By using the boundary condition C(x = 0) = 1 we obtain the relation

E[Π(1, γ; 0)] = H(1− γ) = 1− FC(γ, 0)

which gives

FC(γ, 0) = H(γ − 1). (A.5.5)

Consider multiplying the transport equation (A.5.1) by Πγ , where subscript is used to notate

partial differentiation. This gives

∂Π

∂γ

∂C

∂x
= −S(1 + ĝ)C

∂Π

∂γ
. (A.5.6)

But we know Πx = ΠCCx = −ΠγCx and CΠγ = −Cδ(C − γ) = −γδ(C − γ) = γΠγ , therefore

∂Π

∂x
= S(1 + ĝ)γ

∂Π

∂γ
. (A.5.7)

The expression in (A.5.7) will only remain valid on a two-dimensional domain, where γ takes

any potential concentration (i.e. γ ∈ [0,∞]) and x remains within the domain (i.e. x ∈ [0, 1]).

Set Π(C, γ;x) = E[Π(C, γ;x)] + Π̂(C, γ;x), where E[Π̂(C, γ;x)] = 0, then using (A.5.4) with

(A.5.7) gives

∂Π̂

∂x
− S(1 + ĝ)γ

∂Π̂

∂γ
=
∂FC
∂x
− S(1 + ĝ)γ

∂FC
∂γ

. (A.5.8)

Taking the expectation of (A.5.8) gives

∂FC
∂x
− Sγ

∂FC
∂γ

= −SQ(x, γ) where Q(x, γ) = E

[
γĝ
∂Π̂

∂γ

]
, (A.5.9)

which can be substituted back into (A.5.8) to give

∂Π̂

∂x
− S(1 + ĝ)γ

∂Π̂

∂γ
= −Sγ

(
ĝ
∂FC
∂γ

+Q(x, γ)

)
. (A.5.10)

We will now use the substitution µ = log γ, meaning (A.5.9) and (A.5.10) give

∂FC
∂x
− S

∂FC
∂µ

= −SQ(x, µ), where Q(x, µ) = E

[
ĝ
∂Π̂

∂µ

]
(A.5.11a)

and

∂Π̂

∂x
− S(1 + ĝ)

∂Π̂

∂µ
= −S

(
ĝ
∂FC
∂µ

+Q(x, µ)

)
(A.5.11b)
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respectively. If we use the change of variables

x→ x+
η

S
and µ→ η

then (A.5.11) can be reformulated along (deterministic) characteristics to give

∂FC
∂x

= −SQ(x, η) where Q(x, η) = E

[
ĝ
∂Π̂

∂η

]
(A.5.12a)

and

∂Π̂

∂x
− Sĝ

∂Π̂

∂η
= −S

(
ĝ
∂FC
∂η

+Q(x, η)

)
. (A.5.12b)

As in Boso et al. (2014) let us discard the ĝΠ̂η term due to being quadratic in random quantities.

So noting that Π̂(0, η) = 0 then (A.5.12b) gives

Π̂(x, η) = −S

∫ x

0

ĝ(x′)
∂FC(x′, η)

∂η
+Q(x′, η) dx′. (A.5.13)

Applying ĝ(x)∂η to both sides and taking the expectation yields

Q(x, η) = −S

∫ x

0

Kĝ[x, x′]
∂2FC(x′, η)

∂η2
dx′, (A.5.14)

where Kĝ[x, x′] = K[ĝ(x;ω), ĝ(x′;ω)] is the covariance of the sink function ĝ(x;ω). Substituting

this into (A.5.12a) gives

∂FC
∂x

= S2

∫ x

0

Kĝ[x, x′]
∂2FC(x′, η)

∂η2
dx′. (A.5.15)

So by restoring the µ dependence using x→ x− µ/S, η → µ we obtain

∂FC
∂x
− S

∂FC
∂µ

= S2

∫ x

0

Kĝ[x, x′]
∂2FC(x′, µ)

∂µ2
dx′, (A.5.16)

where FC(x, µL) = 0, FC(x, µR) = 1 and FC(0, µ) = H(exp(µ) − 1) = H(µ). By solving the

partial differential equation (PDE) given in (A.5.16) we can find the cdf of the concentration

given by FC(γ, x).

In Boso et al. (2014) they consider the case where FC varies over a lengthscale longer than the

correlation length of the covariance function Kĝ. For this case we can write
∫ x

0
Kĝ[x, x′] dx′ ≈

a ∈ R and obtain

∂FC
∂x
− S

∂FC
∂µ
≈ S2 ∂

2FC(x, µ)

∂µ2

∫ x

0

Kĝ[x, x′] dx′ = S2a
∂2FC(x, µ)

∂µ2
. (A.5.17)

We can solve (A.5.17) exactly to give

FC(x, µ) =
1

2

(
1 + erf

(
Sx+ µ

2S
√
ax

))
. (A.5.18)

However, in general
∫ x

0
Kĝ[x, x′] dx′ is not constant and the correlation length of the covariance

function isn’t asymptotically small. Therefore we require solving the full PDE given in (A.5.16)

to track the concentration cdf for different values of x, though this is beyond the scope of this

thesis.
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Chapter 3 and 4 appendices

B.1 Exact Green’s function in one dimension

The exact Green’s function in one dimension can be calculated similar to in Chapter 2. Let

G(x1, x
′
1) be the exact Green’s function associated with the linear operator L = (∂x1)

2 −

PeL ∂x1
−Da under homogeneous boundary conditions such that

LG = δ(x1 − x′1) and B1G = {0, 0}, (B.1.1)

where δ is the Dirac-delta function and B1 = {(1− (1/PeL)∂x1
) (·)|x1=0, ∂x1

(·)|x1=1}. The

Green’s function is a piecewise smooth and continuous function which satisfies the jump con-

dition [Gx1 ]
x′+1
x′−1

= 1, which accounts for a point sink being located at x1 = x′1. This jump

condition can be seen by integrating (B.1.1) inside a vanishing region about x1 = x′1 and using

the fact that G(x1, x
′
1) is continuous. Define G−(x1, x

′
1) and G+(x1, x

′
1) such that

G(x1, x
′
1) =

G
−(x1, x

′
1) if 0 ≤ x1 ≤ x′1 ≤ 1

G+(x1, x
′
1) if 0 ≤ x′1 ≤ x1 ≤ 1

.
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Then by solving (B.1.1) we see that the two pieces of the Green’s function are given by

G−(x1, x
′
1) = −

(
1

4φψ(1)

)
e

PeL
2 (x1−x′1)

(
(2φ+ PeL)2eφ(x1−x′1+1)

+ (2φ− PeL)2e−φ(x1−x′1+1) + 4 Da
(
eφ(x1+x′1−1) + e−φ(x1+x′1−1)

))
,

G+(x1, x
′
1) = −

(
1

4φψ(1)

)
e

PeL
2 (x1−x′1)

(
(2φ+ PeL)2eφ(x′1−x1+1)

+ (2φ− PeL)2e−φ(x′1−x1+1) + 4 Da
(
eφ(x1+x′1−1) + e−φ(x1+x′1−1)

))
.

(B.1.2)

If we consider the limit where Pe2
L � Da and are careful when expanding exponential terms we

obtain

φ ≈ PeL
2

+
Da

PeL
− Da2

Pe3
L

exp (φx1) ≈
(

1− Da2

Pe3
L

x1

)
exp

((
PeL

2
+

Da

PeL

)
x1

)
,

exp (−φx1) ≈
(

1 +
Da2

Pe3
L

x1

)
exp

(
−
(

PeL
2

+
Da

PeL

)
x1

)
,

ψ(x1) ≈ 2 Pe2
L

(
1 +

Da

Pe2
L

(
2− Da

PeL
x1

))
exp

((
PeL

2
+

Da

PeL

)
x1

)
.

So in a similar fashion to Chapter 2 we obtain

G̃−(x1, x
′
1) ≈− 1

PeL
exp

((
PeL +

Da

PeL

)
(x1 − x′1)

)
+

Da

Pe3
L

((
2 +

Da

PeL
(x1 − x′1)

)
exp

((
PeL +

Da

PeL

)
(x1 − x′1)

)

− exp

(
PeL(x1 − 1) +

Da

PeL
(x1 + x′1 − 2)

)
− exp

(
−PeL x

′
1 −

Da

PeL
(x1 + x′1)

))
,

G̃+(x1, x
′
1) ≈− 1

PeL
exp

(
Da

PeL
(x′1 − x1)

)
+

Da

Pe3
L

((
2 +

Da

PeL
(x′1 − x1)

)
exp

(
Da

PeL
(x′1 − x1)

)

− exp

(
PeL(x1 − 1) +

Da

PeL
(x1 + x′1 − 2)

)
− exp

(
−PeL x

′
1 −

Da

PeL
(x1 + x′1)

))
.

(B.1.3)

From the first term in G− (G+) we see a boundary layer of width approximately 1/Pe (Da /Pe)

exists upstream (downstream) of x1 = x′1. The final two terms in G− and G+ account for the

boundary conditions, which gives a boundary layer of width approximately 1/Pe at the x1-

outlet and x′1-inlet.
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B.2 Finite-difference scheme

B.2.1 One dimension

In one dimension let x1, C(x1;ω) and ĝ(x1;ω) be represented by vectors of dimension K + 1,

where x1 = xi1, C(xi1;ω) = Ci and ĝ(xi1;ω) = ĝi for i = 1, . . . ,K + 1 and K ∈ Z. By setting

h = 1/K to be the interval width, a second order finite-different scheme can be used with (3.1.2)

to give

(2 PeL h+ 3)C1 − 4C2 + C3 = 2 PeL h, (B.2.1)

(1 + PeL h/2)Ci−1 − (2 + Dah2(1 + ĝi))Ci + (1− PeL h/2)Ci+1 = 0 and (B.2.2)

CK−1 − 4CK + 3CK+1 = 0, (B.2.3)

where i = 2, . . . ,K. Here, a mixture of second-order forward, central and backward difference

schemes are used to calculate differentials. Chapter 3 and 4 will use LU factorisation to produce

any figures which involve using this finite difference scheme.

B.2.2 Two dimensions

In two dimensions we consider a semi-infinite-domain D2 = [0, 1]×(−∞,∞). In order to apply a

finite-difference scheme, consider instead the reduced domain Dr2 = [0, 1]×(−Lr, Lr). Represent

x1, x2, C(x1, x2;ω) and ĝ(x1, x2;ω) by x1 = xi1, , xj2 C(xi1, x
j
2;ω) = Ci,j and ĝ(xi1, x

j
2;ω) = ĝi,j

for i = 1, . . . ,K1 + 1, j = 1, . . . ,K2 + 1 and K1,K2 ∈ Z. By setting h = 1/K1 = 2Lr/K2 as

the interval width a second order finite-different scheme can be used with (3.1.2) to give

(2 PeL h+ 3)C1,j − 4C2,j + C3,j = 2 PeL h, (B.2.4)

CK1−1,j − 4CK1,j + 3CK1+1,j = 0 (B.2.5)

−3Ci,1 + 4Ci,2 − Ci,3 = 0 (B.2.6)

Ci,K2−1 − 4Ci,K2 + 3Ci,K2+1 = 0 (B.2.7)

(2 + PeL h)Ci−1,j + 2Ci,j−1 − (8 + 2h2 Da(1 + ĝi,j))Ci,j + 2Ci,j+1 + (2− PeL h)Ci+1,j = 0

(B.2.8)

where (B.2.4) and (B.2.5) use j = 1, . . . ,K2 + 1, (B.2.6) and (B.2.7) use i = 2, . . . ,K1 and

(B.2.8) uses i = 2, . . . ,K1 and j = 2, . . . ,K2. As for the one-dimensional solver we have

used a mixture of second-order forward, central and backward difference schemes to calculate

differentials of x1 and x2. Chapter 3 and 4 will use LU factorisation to produce any figures

which involve using this finite difference scheme. Sparsity of matrices are exploited by storing

matrices using the MATLAB sparse function with vector triplets.
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B.3 Integral solver

When solving integrals in n dimensions, the integral solver given in Hosea (2021) is used.

This allows one-, two-, three-, four-, five- and six-dimensional functions to be integrated using

the INTEGRAL, INTEGRAL2 and INTEGRAL3 adaptive quadrature functions in MATLAB.

When integrating with infinite limits, these limits are instead replaced with suitably high values

which allow the integral to converge.

B.4 Evaluating useful integrals

Here, we will solve integrals analytically which are used throughout the chapter. Firstly, con-

sider solving ∫ x+

x−
exp

(
−ax2 − bx+ c

)
dx

where a, b, c, x−, x+ ∈ R. By completing the square of the quadratic in the exponential we

obtain ∫ x+

x−
exp

(
−ax2 − bx+ c

)
dx = exp

(
b2

4a
+ c

)∫ x+

x−
exp

(
−a
(
x+

b

2

)2
)

dx.

The error function (also known as the Gauss error function) is defined to be

erf(x) =
2√
π

∫ x

0

exp
(
−t2

)
dt,

so by using the substitution u =
√
a(x+ b/(2a)) we obtain∫ x+

x−
exp

(
−ax2 − bx+ c

)
dx =

1

2

√
π

a
exp

(
b2

4a
+ c

)(
erf

(√
ax+ +

b

2
√
a

)
− erf

(√
ax− +

b

2
√
a

))
.

(B.4.1)

In the limit b, c→ 0 the integral in (B.4.1) converges to∫ x+

x−
exp

(
−ax2 − bx+ c

)
dx→ 1

2

√
π

a

(
erf
(√
ax+

)
− erf

(√
ax−

))
. (B.4.2)

Next, we will consider the integral ∫ x+

x−
x exp

(
−ax2

)
dx

where a, x−, x+ ∈ R. To solve this integral, we should first note that d/dx(exp(−ax2)) =

−2ax exp(−ax2). Therefore the integral can be solved to give∫ x+

x−
x exp

(
−ax2

)
dx = − 1

2a

(
exp

(
−a(x+)2

)
− exp

(
−a(x−)2

))
. (B.4.3)
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For x− = 0 and x+ →∞ we obtain∫ ∞
0

x exp
(
−ax2

)
dx =

1

2a
. (B.4.4)

For the next integral we will combine the previous two integrals using integration by parts to

obtain ∫ x+

x−
x2 exp

(
−ax2

)
dx =

[
− 1

2a
x exp

(
−ax2

)]x+

x−
+

1

2a

∫ x+

x−
exp

(
−ax2

)
dx

=
1

4a

√
π

a

(
erf
(√
ax+

)
− erf

(√
ax−

))
− 1

2a

(
x+ exp

(
−a(x+)2

)
− x− exp

(
−a(x−)2

))
,

(B.4.5)

where a, x−, x+ ∈ R. Finally, let us consider solving∫ x+

x−
x log(bx) exp

(
−ax2

)
dx

where a, b, x−, x+ ∈ R. By using the substitution x̂ =
√
ax we obtain∫ x+

x−
x log(bx) exp

(
−ax2

)
dx =

1

a

∫ x̂+

x̂−
x̂ log(x̂) exp

(
−x̂2

)
dx̂+

1

a
log

(
b√
a

)∫ x̂+

x̂−
x̂ exp

(
−x̂2

)
dx̂.

where x̂− =
√
ax− and x̂+ =

√
ax+. The second integral in this expression can be solved using

(B.4.3). For the first integral, note that∫ x̂

0

x̂ log(x̂) exp
(
−x̂2

)
dx̂ =

∫ x̂+

x̂−
−1

2

d

dx̂

(
log(x̂) exp

(
−x̂2

))
+

1

2x̂
exp

(
−x̂2

)
dx̂

= −1

2
log(x̂) exp

(
−x̂2

)
+

1

4

∫ x̂+

x̂−

1

x̂2
exp

(
−x̂2

)
d(x̂2).

So by using the definition of an exponential integral Ei, where Ei(z) = −
∫∞
−z e

−t/t dt, we

obtain∫ x+

x−
x log(bx) exp

(
−ax2

)
dx =− 1

2a
log

(
b√
a
x̂+

)
exp

(
−(x̂+)2

)
+

1

4a
Ei
(
−(x̂+)2

)
+

1

2a
log

(
b√
a
x̂−
)

exp
(
−(x̂−)2

)
− 1

4a
Ei
(
−(x̂−)2

)
.

(B.4.6)

Consider when x− = 0 and x+ →∞, which gives∫ ∞
0

x log(bx) exp
(
−ax2

)
dx =− 1

2a
lim
x→∞

(
log

(
b√
a
x

)
exp

(
−x2

))
+

1

4a
lim
x̂→∞

(
Ei
(
−x2

))
+ lim
x→0

(
1

2a
log

(
b√
a
x

)
exp

(
−x2

)
− 1

4a

(
Ei
(
−x2

)))
.

The first limit can be solved using L’Hôpital’s rule to give

lim
x̂→∞

 log

(
b√
a
x

)
exp (x2)

 = lim
x̂→∞

(
1

2x2 exp (x2)

)
= 0.
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For the second limit, by the definition of Ei we see that Ei
(
−x2

)
→ 0 as x→∞. To calculate

the third limit we must consider the Puiseux series

log x exp
(
−x2

)
= log x+O(x2 log x) and Ei(−x2) = γ + log(x2) +O(x2),

where γ represents the Euler-Mascheroni constant and the second expansion can be found in

Van Heemert (1957). This gives

lim
x̂→0

(
1

2a
log

(
b√
a
x

)
exp

(
−x2

)
− 1

4a

(
Ei
(
−x2

)))
=

1

2a
log

(
b√
a

)
+

γ

4a

and so ∫ ∞
0

x log(bx) exp
(
−ax2

)
dx =

1

2a
log

(
b√
a

)
+

γ

4a
.

Gradshteyn and Ryzhik (2014) gives∫ ∞
0

tn log(t) exp (−µt) dt =
n!

µn+1

(
1 +

1

2
+ · · ·+ 1

n
− γ − log(µ)

)
,

which can be used with t = R, n = 1 and µ = 1 to give∫ ∞
0

R logR exp (−R) dr = 1− γ. (B.4.7)

B.5 Integrating the homogenized solution combined with

the one-dimensional free-space Green’s function

We can solve ∫
D1

G1(x1 − x′1)CH(x′1) dx′1,∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 and∫
D1

G1(x1 − x′1)2CH(x′1)2 dx′1

using the homogenized solution and one-dimensional free-space Green’s function given in (3.2.2)

and (3.4.9) respectively. For the first integral, by considering x1 ≤ x′1 and x1 ≥ x′1 separately

we obtain∫
D1

G1(x1 − x′1)CH(x′1) dx′1 = − PeL
2φ2ψ(1)

e
PeL
2 x1

(
(φ(2φ− PeL)(1− x1)− PeL) eφ(x1−1)

+

(
PeL

2
+ φ

)
(1 + 2φx1) eφ(1−x1) +

(
PeL

2
− φ

)
e−φ(x1+1)

)
,
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where ψ was previously defined for CH(x1) in (3.2.2). By considering x1 ≤ x′1 and x1 ≥ x′1

separately this can then be used to obtain the second integral, which is given by∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1

=
PeL

4φ4ψ(1)
e

PeL
2 x1

((
PeL +φ

(
φ− PeL

2

)
(x1 − 1)

)
φ(x1 − 1)eφ(x1−1)

+
1

4
(PeL(2φ+ 3)− 2φ(2φ+ 1)) e−φ(x1+1)

+
1

4
(2φ(PeL−2φ)(x1 − 1) + 2φ− 3 PeL) eφ(x1−1)

+

(
PeL

2
+ φ

)(
(1 + φx1)2eφ(1−x1) − (1 + φ)eφ(x1−1)

)
+

1

2

(
PeL

2
− φ

)(
(1 + 2φx1)e−φ(x1+1) − e−φ(3−x1)

))
.

For the third integral we can again use the same technique to obtain∫
D1

G(x1, x
′
1)2CH(x′1)2 dx′1

=

(
Pe2

L

4φ3ψ(1)2

)
ePeL x1

((
φ(2φ− PeL)2(1− x1) + Pe2

L−2φPeL−4φ2
)
e2φ(x1−1)

+

(
φ+

PeL
2

)2

(4φx1 + 1)e2φ(1−x1)

+
(
4φ2 − Pe2

L

) (
2− e−2φx1

)
+

(
φ− PeL

2

)2

e−2φ(x1+1)

)

To find a leading-order expression for these integrals, note that e−φ(x1+1), e−2φ(x1+1) and

e−φ(3−x1) remain exponentially small throughout the domain. As eφ(x1−1) is asymptotically

small for large φ except when x1 ≈ 1, we find (1−x1)eφ(x1−1) and (1−x1)e2φ(x1−1) also remain

asymptotically small throughout the domain. Therefore we can approximate theses integrals as∫
D1

G1(x1 − x′1)CH(x′1) dx′1 ≈
PeL

4φ2ψ̂(1)
e

PeL
2 x1

(
2 PeL e

φ(x1−1) − (2φ+ PeL) (1 + 2φx1) eφ(1−x1)

)
,

(B.5.1)

∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 ≈
PeL

8φ4ψ̂(1)
e

PeL
2 x1

(
(2φ+ PeL) (1 + φx1)2eφ(1−x1)

+

(
−5 PeL

2
− φ(1 + PeL +2φ)

)
eφ(x1−1)

)
.

(B.5.2)
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and∫
D1

G(x1, x
′
1)2CH(x′1)2 dx′1 ≈

(
Pe2

L

16φ3ψ̂(1)2

)
ePeL x1

(
(2φ+ PeL)

2
(4φx1 + 1)e2φ(1−x1)

+ 4
(
4φ2 − Pe2

L

) (
2− e−2φx1

)
− 4

(
4φ2 + 2φPeL−Pe2

L

)
e2φ(x1−1)

)
,

(B.5.3)

with ψ̂ being the approximation of ψ near x1 = 1, which is given by ψ̂(x1) = (2 PeL φ +

Pe2
L +2 Da)eφx1 . The order of each integral can be obtained for PeL � max(1,

√
Da) by neglect

the impact of boundary layers and use φ ≈ PeL /2, ψ̂(x1) ≈ 2 Pe2
L e

(PeL /2)x1 and x1 = O(1),

which gives ∫
D1

G1(x1 − x′1)CH(x′1) dx′1 = O (1/PeL) , (B.5.4a)∫
D1

∫
D1

G1(x1 − x′1)G1(x′1 − x′′1)CH(x′′1) dx′1 dx′′1 = O
(
1/Pe 2

L

)
, (B.5.4b)∫

D1

G(x1, x
′
1)2CH(x′1)2 dx′1 = O

(
1/Pe 3

L

)
. (B.5.4c)

B.6 Eigenvalue decomposition

Let the three-dimensional sink function ĝ(x;ω) have a mean, variance and correlation length of

zero, ` and σ2 respectively. Then we can calculate an eigenvalue decomposition by separating

the domain into N̂ subintervals of width hN̂ = 1/N̂ in the x1 direction and M̂ subintervals

of width hM̂ = 1/M̂ in the x2 and x3 directions. First, let the Gaussian and exponential

covariance functions from (4.1.2) and (4.1.3) be decomposed into (Lord et al., 2014)

ΣG(i3,j3) = σ2 exp

(
− (xi3 − yj3)2

`2

)
and ΣE(i3,j3) = σ2 exp

(
−|xi3 − yj3 |

`

)
(B.6.1)

respectively, where i3 = (i, j, k) and j3 = (i′, j′, k′) such that i, i′ = 1, . . . , N̂ and j, j′, k, k′ =

1, . . . , M̂ . Define U and Λ to be the eigenvectors and eigenvalues of Σ(i3,j3) respectively, where

Λ = [λ1, . . . , λN̂M̂M̂ ] and λ1 ≥ · · · ≥ λN̂M̂M̂ ≥ 0. Then the sink function can be decomposed

and given by

ĝi3 = ĝ(xi3) = (UΛ1/2ξ)i3 =

N̂∑
i′=1

M̂∑
j′=1

M̂∑
k′=1

λi3Ui3j3ξj3 , (B.6.2)

where ξj3 ∼ N (0, I). This approach can be used to produce realisations of the sink function,

which can in turn be used to give realisations of the solute concentration.

Analogous definitions can be used when finding eigenvalue decompositions in one and two

dimensions, which is done in one dimension to calculate sample moments and two dimensions
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to produce Figure 4.1. It is worth noting that the eigenvalue decomposition can become costly

in higher dimensions, meaning producing multiple realisations for finding sample moments

can become infeasible. Alternative approaches do exist which reduce the computational cost

for producing realisations, which include the stochastic Galerkin method among others (Lord

et al., 2014).

B.7 Considering a log-normal Gaussian process in one di-

mension

Consider when the sink function is given by a one-dimensional log-normal Gaussian process.

This will be represented by

ĝ(x1;ω) = exp
(
z(x1)− σ2/2

)
− 1 (B.7.1)

such that z(x1) is a Gaussian process with mean, variance and correlation length of zero, σ2 and

` respectively. By properties of log-normal distributions (Johnson et al., 1995) the expectation

of exp(z(x1)) is given by exp(σ2/2), meaning the expectation of the sink function remains zero.

This is demonstrated by the two realisations of 1 + ĝ(x1;ω) shown in Figure B.1(a) and B.1(c)

having a mean of one, which use a Gaussian and exponential covariance function respectively

for z(x1).

By using 104 realisations of the sink function we can use the finite difference scheme from Section

B.2 to produce realisations of the concentration profile. These are shown in Figures B.1(b) and

B.1(d), which use σ = 1 and ` = 0.1 for the variance and correlation length respectively. Due

to the form of (B.7.1) we know 1 + ĝ(x1;ω) remains positive for all x1, which allows for a

larger value of σ to be used in comparison to the Gaussian process used in Section 4.1. This,

coupled with the distribution being log-normal, causes any spikes in the sink function to be

more exaggerated and leads to large drops in concentration at certain points within the domain.

Figure B.1(b) and (d) both show a non-Gaussian distribution of concentration profiles about

the mean, which shows moments offering a poor prediction of disorder in solute concentration.

However, the sample credible-intervals (plotted in cyan) in Figures B.1(b) and (d) show an

improvement when capturing disorder caused due to the continuous sink distribution. These

credible-intervals could potentially be calculated using similar methodology to that presented

in Section 2.2.3, where cdf credible-intervals could be found using the tracking of the cdf from

Appendix A.5.
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(a) (b)

(c) (d)

Figure B.1: (a) & (c) Realisations of one plus the sink function on a log-scale [grey] with the

sample mean [dashed red] and a single realisation [solid magenta]. (b) & (d) Realisations of

concentration profiles [grey] with the sample mean [µ̂, dashed red], sample Gaussian-based 95%

credible-intervals [µ̂ ± 1.96σ̂ (where σ̂ represents the sample standard deviation), solid blue],

sample median [µ̂0.5, dashed green], sample 95% credible-intervals [µ̂0.5±0.475, solid cyan] and

one single realisation [solid magenta]. Figures (a)-(b) and (c)-(d) use a Gaussian and exponential

covariance function for z(x1) in (B.7.1) respectively. All figures use 104 Monte Carlo simulation

with (PeL,Da) = (10, 40), σ = 1 and ` = 0.1.
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