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Abstract 

Hybrid renewable energy source (HRES) plants, a combination of renewable generation 

and storage technologies with a common grid connection point, have been seen as a 

promising option for obtaining controllable RES production, and thus, contributing to 

system stability maintenance. Assessing the impact of HRES plants on system dynamic 

behaviour requires their adequate dynamic representation in system stability studies. 

Dynamic equivalent models (DEMs) of HRES plants as a part of the overall system 

dynamic model can provide a fast reliable system stability estimation without modelling 

individual HRES plant components. The main contribution of the research described in 

this thesis is in the area of dynamic equivalent modelling of HRES plants. The thesis also 

looks into the concept of geographically distributed HRES plant at transmission network 

(TN) level from the system stability perspective, as this concept is an expected extension 

of the existing concept of aggregators at distribution network level.  

The thesis starts by discussing the techniques for dynamic equivalent modelling of plants 

and networks. It then provides a computationally efficient procedure for assessing the 

typical annual impact of HRES plant on power system stability. The outputs of this 

procedure are the basis for developing preliminary equivalents of HRES plant for small-

disturbance, transient, frequency and long-term voltage stability studies. Two, data-

driven and deep learning-based, methodologies for developing DEMs of HRES plant for 

transient stability studies using system-identification methods are developed. The first, 

data-driven, methodology is designed from the perspective of the overall transient 

stability assessment as the accuracy of the global transient stability status is what is of a 

critical importance when performing large transient stability studies. On the other hand, 

the deep learning-based methodology develops DEM in a conventional way, i.e., 

focusing on the shape of time domain HRES plant power responses. Both methodologies 

do not require the detailed dynamic data about physical devices in the HRES plant, 

provide a small set of DEMs capable of covering the most probable HRES plant dynamic 

behaviour in annual transient stability studies, and include a practical procedure (separate 

procedures were developed for each methodology) for selecting the adequate equivalent 

from the set of previously developed DEMs at any time of the year knowing HRES plant 

operating scenario only. Finally, the thesis presents an exploratory study on the potential 

challenges in the preservation of transient stability of the TN due to the integration of a 

geographically distributed HRES plant that has more than one TN connection point. 

The main findings of the research confirm the ability of DEMs of HRES plant, that were 

not derived based on the shape of time domain HRES plant power responses, to provide 

reliable overall transient stability assessment, and the importance of taking into account 

TN dynamic performance when deciding on the deployment of individual RESs within 

the spatially distributed HRES plant.  
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1 Introduction 

 

 

 

 

1.1 Background 

Over the past few decades, electric power systems around the world have experienced a 

significant increase in the installation capacity of renewable energy sources (RESs). By 

the end of 2021, RESs represented 38% of the total generation capacity in the world 

reaching around 3,064 GW [1]. During the last 2021 year, 257 GW of RESs was added 

to the system globally, with 133 GW (around a half of new RES capacity in 2021) and 

93 GW coming from solar and wind energy, respectively [1]. It is expected that RES 

capacity will increase by more than 1,800 GW by 2026 [2]. 

Future grids will be dominated by RESs, which will then have the main responsibility in 

securing energy supply and maintaining the overall power system stability. This, in turn, 

implies that the typical mode of RES power plant operation based on producing as much 

electricity as possible and receiving the remuneration for it according to the fixed feed-

in tariff or power purchase agreements will have to be modified [3]. A number of 

countries has already introduced feed-in premium schemes and balancing responsibilities 

(identical to the ones for conventional synchronous generators (SGs)) for RESs [4]. 

Under feed-in premium schemes, RES producers receive a payment that is a sum of 

electricity market price and a premium representing an incentive for RES integration [5]. 

In this way, RES producers are encouraged to adapt their production profiles to market 

conditions. However, these marked-based schemes provide limited opportunities for 
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RESs relying on weather conditions for producing electricity due to their intermittent and 

uncontrollable power production [3]. 

A full use of market-based schemes, and, eventually, becoming a regular player on 

markets, requires dispatchable power production from a RES power plant. In order to 

address the issue of stochastic production, and thus, “ensure profitability at an individual 

asset level” [3], the concept of grid-connected hybrid renewable energy source (HRES) 

plant has been proposed. HRES plant represents an aggregation of several technologies 

(non-dispatchable and dispatchable RES and storage systems) having the same point of 

connection to the grid (the same point of common coupling (PCC)), and operated and 

seen in a system as a single entity [3, 6]. (Note: The definition of hybrid power plant 

including non-renewable generation technologies as well, can be found in the literature 

[3]. In this thesis the focus is only on the mix of renewable generation and storage 

technologies.) The HRES plant concept is illustrated in Figure 1.1. The treatment of 

HRES plants as a single resource is what distinguishes them from co-located RES power 

plants (individual plants within a co-located power plant have the same PCC but 

independent operation/control) [6]. The HRES plant operation is based on 

complementary properties of different technologies, i.e., their ability to compensate each 

other’s deficiencies (in terms of power production) to a certain extent, which in turn 

should reduce the stohasticity in power production at the PCC [7].  

 

Figure 1.1 The illustration of the HRES plant concept (adapted from [8]) 

Combining technologies with different performance characteristics into a single plant 

provides various benefits compared to single technology-based RES power plants [3, 6, 

9]: 

  Reduction in the variability of power production during the year; 
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  Ability to participate in energy and ancillary service markets in a manner similar 

to traditional SGs; 

  Flexibility in plant configuration; 

 Reduction in the investment, operation and maintenance cost due to equipment 

sharing; 

 Reduction in the cost associated with interconnection request due to a single grid 

connection point; 

  Reduction in infrastructure costs for roads, maintenance buildings, etc. 

Individual units within the HRES plant can be “ac-coupled” or “dc-coupled”, with the 

former being more common approach [6, 9]. The “ac-coupled” topology requires all 

individual plants to be connected to the low-voltage side of the transformer used for 

connecting the whole HRES plant to the grid. On the other hand, in case of the “dc-

coupled” design individual units of different technologies share the same converter. The 

converter sharing can increase its efficiency as converters usually perform better at 

higher loading, but may deteriorate the performance of individual units as they have to 

be located in close proximity to each other (e.g., shading of photovoltaic (PV) panels by 

wind turbine blades and tower in the case of “dc-coupled” PV and wind turbine units). 

Regardless of the way of coupling of individual resources, all plants in the HRES plant 

share the same substation and grid connection point. 

HRES plants have an ability to easily modify their configuration by increasing the 

installation capacity of the already integrated technologies or adding new technologies 

in the existing HRES plant, while keeping the maximum HRES plant output below the 

approved grid-connection capacity (the HRES plant would have to repeat the grid code 

compliance process otherwise) [6]. This flexibility is of a particular importance to 

investors as it indicates that HRES plants can quickly adapt to changes in market 

requirements. Given that HRES plants could potentially even outperform conventional 

sources due to their flexible nature, the question of whether the existing market standards 

are capable of monetizing the HRES plant flexibility in an adequate manner has been 

raised [6]. Current pricing and payment schemes are based on operational constraints of 

conventional generators (start-up cost and time, no-load costs, minimum run time, 
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minimum downtime), and paying conventional generators for the aforementioned 

limitations could be seen as “an implicit subsidy for inflexibility” [6] in case of a high 

share of HRES plants in electricity markets. 

The integration of HRES plants into power systems is at its early stages, but a constant 

increase in the number of installed HRES plants over the following years is expected [3, 

9-18]. Vestas and General Electric have already made HRES plants a part of their 

business strategies [3]. Typical technology mix in HRES plants in operation and under 

development includes wind and solar energy, and storage systems, with hydro energy 

becoming attractive as well [10]. Vestas installed the first utility-scale HRES plant 

consisting of a wind farm (WF), PV plant and battery energy storage system (BESS), 

Kennedy Energy Park, in Australia in 2018, and the plant was put into operation in 2021 

[17]. The plant contains a 43 MW WF, a 15 MW PV plant and a 2 MW BESS [9]. 

Another operational, large HRES plant in Australia is the Bulgana Green Power Hub (a 

204 MW WF and a 20 MW BESS) [11]. The first utility-scale WF/PV/storage plant 

developed by Vattenfall is Haringvliet energy park in the Netherlands, which comprises 

a 22 MW WF, 38 MW PV plant and 12 MW storage system, while Vattenfal’s first HRES 

plant integrating a WF and PV plant was installed in the UK by adding PV panels (with 

a total capacity of 4.95 MW) to an existing 3.6 MW WF [9]. Siemens Gamesa is also 

committed to HRES plant projects, with its first commercial HRES plant installed in 

India in 2018 – a combination of 29 MW solar plant and 50 MW WF [9]. When it comes 

to the USA, at the end of 2020, 34% (159 GW) of solar and 6% (13 GW) of wind plants 

in interconnection queues were registered as parts of hybrid systems (HRES plants and 

co-located RES power plants) [10]. 

1.2 Motivation 

Combining various renewable generation and storage technologies into a single plant 

enables more stable and controllable power production at the grid connection point. 

However, dynamic characteristics of individual HRES plant components can be 

considerably dissimilar due to differences in their technology type and/or controller 

structure. Different dynamic responses of individual technologies together with their 

individual stochastic behaviour makes the prediction of the overall HRES plant dynamic 

performance at the PCC throughout the year much more complex than in the case of 

single technology-based RES power plants. In order to assess the dynamic response of 
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the whole HRES plant, and consequently, to what extent the HRES plant can contribute 

to the overall power system stability behaviour, numerous system-level stability studies, 

with the adequate HRES plant dynamic representation, have to be performed. 

Given that system operators are progressively relying on RESs to provide services 

traditionally obtained from conventional generators, the control systems of RES power 

plants are becoming more complex. The complexity of controllers together with a large 

number of individual units within the plant results in detailed dynamic models of RES 

power plants, and in particular the models of HRES plants comprising several 

technologies, being high-order structures. In the presence of substantial number of RES 

and HRES plants in the system (which is the expected situation in the future), detailed 

dynamic representation of these plants would be impractical as it would result in 

considerable computational time required for carrying out large system-level analyses 

[19, 20]. On the other hand, there is a growing need for collaboration between all system 

actors in the operation and planning of future power systems, while data protection laws 

might not allow the exchange of full-scale dynamic models between different system 

operators [21].  

In order to address the aforementioned issues with the detailed dynamic modelling of 

RESs, dynamic equivalent models (DEMs) have been recommended [22-27]. A DEM 

represents a simplified representation of the detailed dynamic model of the investigated 

plant that does not compromise the accuracy of system stability analyses. Smaller 

mathematical order of DEM compared to the full-scale model provides reduction in 

computational burden when conducting large system stability studies. More efficient 

system stability assessment provides system operator with more time to carry out 

additional studies in case a problem has been identified and/or perform actions to resolve 

the issue. Given that DEMs do not include detailed dynamic data, they can overcome 

confidentiality issues, and contribute to information sharing and cooperation between 

different system operators. 

Due to technology mix present in the plant, developing the structure of an equivalent 

HRES plant model that will provide a reliable plant representation in system stability 

studies is more challenging compared to the equivalencing of RES power plants with a 

single type of generation technology. A lot of research has already been done in the area 
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of dynamic equivalent modelling of single technology-based RES plants (a detailed 

overview is given in the following sections), whereas the HRES plant concept is 

relatively new and lacks extensive analysis on plant design, dynamic modelling and 

control [3]. 

1.3 Review of the Past Work  

1.3.1 The Concept of Hybrid Renewable Energy Source Plant 

The research on HRES plants has been mainly devoted to the selection of the optimal 

technology mix, sizing of individual components and optimization algorithms for 

economic operation. The exact combination of technologies in the particular HRES plant 

is determined by RES potential at the given location, the complementarity of the sources 

(assessed on the basis of historical production data or a joint probability distribution of 

production of individual sources), expected plant functionalities and local market 

conditions [3, 9]. When it comes to the sizing of the individual plants within the HRES 

plant, optimal individual capacities are usually obtained as the outputs of the 

optimization procedure that maximizes the overall plant profit [7]. The total plant profit 

is commonly defined as a difference between the plant revenue due to selling the 

electricity to the grid, and the total plant cost including the investment, operational and 

maintenance costs for all individual components, and the cost of the electricity purchased 

from the grid. The total plant revenues and costs are calculated for the expected lifetime 

of the HRES plant, and net present value is then used as the objective function in the 

optimization problem [3, 28, 29]. In [28] potential equipment replacement during and 

equipment sale at the end of the plant lifetime were included in the calculation of the 

total plant profit as well. In order to avoid the dependence of the optimization results on 

electricity market price that can change drastically over a course of the study period, in 

[30] energy imported from and exported to the grid during the year were considered.  

Optimization of the physical layout of individual components in the HRES plant has not 

been in the focus of the research work [3, 31]. This task inherits all difficulties of the 

physical layout determination for single technology-based RES power plants and 

incorporates additional ones due to the interactions between different technologies. In 

[31] the determination of the optimal rated capacities of individual components and the 

optimal locations of wind turbines and PV panels within a WF/PV/BESS hybrid plant 
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was carried out on the basis of maximizing the total annual HRES plant profit. The wind 

turbines were placed within a rectangular grid in the pre-defined HRES plant area, and 

their locations were defined by optimizing the row and column spacing in the grid, and 

the position of the grid within the whole HRES plant area. The locations of PV panels 

were defined as a function of wind turbine locations, PV plant capacity and the minimum 

allowed spacing between wind turbines and PV panels. When it comes to the BESS, it 

was assumed that the BESS size was not large, and thus the BESS could be installed 

anywhere within the HRES plant area boundaries. In [32] the optimization of the number 

and locations of PV panels added to an existing WF was based on the potential wind 

turbine towers’ shadow on PV panels. For each wind turbine, the length and direction of 

tower’s shadow were computed using the hourly data of azimuth and zenith of the sun, 

which provided a “heat map” of areas affected by the tower’s shadow. 

Given that the idea of HRES plant concept is to enable the integration of RESs in markets, 

the focus of the research on optimal operation of HRES plant is on the optimal bidding 

of HRES plants on markets from the perspective of plant revenue. The procedure for 

specifying the optimal economic HRES plant dispatch can include the total plant profit 

(the difference between the plant revenue obtained by participating in markets and total 

plant costs) only [33, 34] or the risk management can be taken into account as well [35-

37]. The uncertainties in market prices and production of non-dispatchable individual 

HRES plant components can increase the risk of low plant revenues, and in order to avoid 

them, the risk is included using conditional value-at-risk (CVaR). CVaR is defined as a 

conditional expectation of economic loss above amount α, where α represents the 

minimum value among all loss values whose cumulative distribution function (CDF) 

value is equal to the chosen probability level [38]. The main inputs for the procedure are 

market price data, and generation forecast of individual HRES plant components, while 

various operational limits of individual HRES plants, power offer and imbalance 

limitations represent the procedure constraints. In [35] the ability to reduce plant power 

imbalances was stated as the main reason for the HRES plant (a WF and a reversible 

hydro power plant (HPP)) outperforming the co-located WF and HPP, as well as the 

separate WF and HPP, in terms of the revenue on the day-ahead market. The results 

obtained with the test systems in [33, 34] showed that relying on the participation on 
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energy market only can result in considerable reduction in the plant revenues compared 

to the provision of both energy and ancillary service products. 

The analysis of the influence of HRES plant on power system dynamic performance has 

not received significant attention. In [39] the impact of an HRES plant comprising a PV 

plant, WF and small HPP on transient stability of the small test system was investigated. 

The critical clearing time was chosen for assessing transient stability performance for 

several operating scenarios and locations of three-phase short circuit-faults. The dynamic 

performance of a HRES plant consisting of a PV plant, WF and BESS in frequency 

stability studies was investigated in [40]. The focus was on fast frequency response 

provision. A frequency controller for the whole HRES plant with the deviation of 

frequency from the nominal value and the rate of change of frequency (RoCoF) value as 

input signals was proposed. In [41] a BESS provided synthetic inertia, and the WF output 

was reduced by 20% at normal operating conditions, so that it can provide frequency 

support in case of frequency drop. The test HRES plant had negligible effect on 

frequency nadir and RoCoF value as its size was considerably smaller compared to the 

total capacity of SGs in the system. 

1.3.2 Dynamic Equivalent Models of Large Power Systems with Conventional 

Generators  

Equivalent modelling of power systems with SGs as the only generation technology 

represents a mature research area as the first approaches appeared in the 1970’s [42]. The 

strategies for DEM development can be divided into four main groups: 

 Modal analysis-based; 

 Coherency-based; 

 Modal-coherency-based; 

 System identification-based. 

1.3.2.1 Modal Analysis-based Dynamic Equivalent Models 

Modal analysis-based modelling requires the identification of the detailed state-space 

system model and elimination of the irrelevant/non-dominant modes from the detailed 

system in order to reduce the state-space model order. In [43] modes with high damping, 

not significantly excited by the inputs and not having a considerable effect on the 
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linearized state-space model outputs were neglected. However, the approach showed to 

be impractical for real power systems and the use of linearized state-space model without 

model order reduction was recommended in [44]. The application of the full-scale 

linearized state-space model was justified by significant reduction in computational time 

due to “computationally efficient structure of the dynamic equations” [44]. In [45] the 

moment-matching method was used for state-space model reduction, but the size of the 

reduced system has to be defined a priori and the methodology for selecting the optimal 

system model order was not provided. Equivalent modelling based on the non-linear 

detailed state-space model was proposed in [46]. Empirical controllability and 

observability covariance matrices capable of reflecting non-linear system behaviour were 

used for computing Hankel singular values, and then states corresponding to small 

Hankel singular values were removed from the model. 

In [47] the expression for deviations of real and reactive power at the boundary buses 

(i.e., the buses connecting the study area represented in detail and the external area being 

equivalenced) from their pre-disturbance values due to small step changes in voltage 

angles of boundary buses were defined using the linearized state-space model of the 

external area. Modes producing modal components of small amplitude in the power 

deviations at all boundary buses were neglected. Unlike other modal analysis-based 

methods deriving the equivalent in the mathematical form, for each of the retained 

modes, a second-order non-linear generator (so-called, modal generator) was used for 

representing the whole external area. The parameters of the modal generator were 

estimated in such a way that the linearized power responses at the boundary buses for the 

particular mode of oscillations were preserved. 

1.3.2.2 Coherency-based Dynamic Equivalent Models 

Coherency-based modelling approaches rely on the identification of the coherent groups 

of SGs (i.e., SGs having similar dynamic behaviour) and development of an equivalent, 

aggregate SG for the whole group. The equivalent SG has to preserve the total 

mechanical and electrical power of individual generators from the coherent group. In the 

case of hydro and steam generators being in the same group, separate equivalents are 

designed for each of them [48]. The same approach is usually followed if coherent SGs 

are equipped with different types of controllers [49]. Coherent SGs in the external area 
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were defined in [48, 50-52] as generators with similar swing curves. In [50, 51] SG swing 

curves were obtained by simulating a short-circuit fault in the study area in a dedicated 

software package for system stability studies, whereas the numerical integration of 

linearized system dynamic equations was performed in [48, 52]. 

1.3.2.3 Modal-Coherency-based Dynamic Equivalent Models 

In order to use the best characteristics of the modal analysis-based method (mathematical 

foundation, ability to preserve various modes of oscillation, independence of the 

selection of the disturbance used for model development) and coherency-based approach 

(model is in the form of a standard system model, which eliminates the need for software 

modifications), a modal-coherency approach was proposed. In this method, the 

identification of coherent generators is carried out using modal methods [42]. Slow 

coherency method was used for dividing SGs into coherent groups in [49]. The method 

assumes that coherent groups swing against each other with respect to slower 

frequencies, whereas generators within the same coherent group swing against each other 

with respect to higher frequency modes [53]. Weak-link coherency approach was 

presented in [54]. The state matrix of the linearized state-space model is transformed in 

such a way that the system is decomposed into subsystems that are weakly coherent, 

while generators within the same subsystem are strongly coherent. In [55] SGs were 

organized into a hierarchical tree structure according to their involvement in 

electromechanical modes defined for the whole system incorporating both the study and 

external area. Only modes involving any of the SGs from the study area were retained, 

which defined tree cut points for system division (i.e., grouping of SGs into coherent 

groups). Similarly, in [56] the rms coherency measure was computed for each pair of 

SGs in the external area using the linearized state-space model. The coherency measure 

of two SGs is based on the differences in their rotor angle responses to a set of random 

disturbances in mechanical power outputs of the SGs in the external area. The obtained 

values were sorted from the smallest to largest, and SGs were iteratively grouped starting 

from a pair of SGs with the lowest coherency measure. In [57] two SGs were considered 

coherent if the differences between their rotor angles in frequency domain (obtained from 

the linearized state-space system model) for a set of disturbances in the study area were 

below the pre-specified threshold value for the whole frequency spectrum of interest.  
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1.3.2.4 System Identification-based Dynamic Equivalent Models 

System identification-based techniques use measured or simulated dynamic responses of 

the system in order to develop DEMs, i.e., DEM parameters are estimated by minimizing 

the difference between DEM and measured/simulated responses. Depending on the 

amount of the information about the system, they can be divided into black-box, grey-

box and white-box methods, where black-box and white-box models require the smallest 

and largest amount of information about the system, respectively. White-box models are 

in fact full-scale system models comprising detailed representation of all system 

components, and thus characterized by high model order. Grey-box models are usually 

in the form of a combination of physical models of the most important system 

components. Unlike grey-box models that require certain amount of knowledge about 

the significant physical devices in the analysed system, black-box models are only 

focused on matching responses of the detailed model and DEM without taking into 

account system structure. Black-box model design can thus correspond to a linear or non-

linear mathematical model, or an artificial intelligence structure. Given that white-box 

models do not correspond to a simplified system representation, only grey-box and black-

box methods were used for equivalent modelling. 

In [58] the parameters of the second-order equivalent SG were obtained through the least 

squares optimization process focused on minimizing the difference between the model 

response and recorded response for a single short-circuit fault. DEM parameters were 

obtained from measurements of voltage magnitude and angle, real and reactive power at 

the boundary buses in [59]. The DEM is in the form of an equivalent SG (stator transients 

and damper windings were neglected in the SG model) and an equivalent composite load 

in parallel. Parameter estimation was carried out for a single fault disturbance using the 

Levenberg-Marquardt algorithm. The DEM was tested for different fault locations, but 

the operating point corresponded to the one used in model development. In [60] two 

artificial neural networks (ANNs) were proposed for modelling a part of a power system. 

A feed-forward ANN was used for estimating system states, whereas a recurrent ANN 

was used for predicting real and reactive power at the boundary bus on the basis of the 

estimated state variables. The equivalent is robust to fault duration and variations in 

operating point. A combination of an ANN and a coherency-based equivalent was 
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proposed in [61]. The ANN-part of the DEM was introduced to increase the accuracy in 

voltage responses at the boundary buses compared to the case with the coherency-based 

equivalent only by injecting additional real and reactive power at the boundary buses. 

The coherency-based equivalent comprise the second-order equivalent SGs representing 

coherent groups defined using the weak-link coherency method.  

1.3.3 Dynamic Equivalent Models of Renewable Energy Source Plants  

The research on equivalent modelling of RES power plants has been devoted to plants 

consisting of a large number of same-technology units [62]. The focus of DEM 

development has been on deriving equivalents capable of producing dynamic plant 

responses with the highest possible accuracy. Equivalent modelling of a RES plant is 

commonly carried out by representing all units in the plant by a single- or multi-machine 

equivalent, which has the same structure as the model of individual units [63]. Single-

machine equivalent is characterized by simple derivation, but its dynamic response might 

not be able to reflect different dynamic behaviour of individual generators with high 

accuracy. On the other hand, in the case of the multi-machine method, the main difficulty 

is a choice of adequate criteria for identifying coherent units that can be allocated to a 

single group and represented by a common DEM.  

The parameters of DEM of a group of coherent units are usually obtained using the 

capacity equal weighted method [64]. The method assumes that all units in the group are 

characterized by the same model structure. The DEM is obtained by scaling-up the model 

of individual unit according to the number of units in the group. However, dynamic 

model data of individual units might not be available, and/or individual units may be 

characterized by different model structures/parameters [64]. In order to overcome the 

aforementioned issues, the measurement/simulation-based approach can be used for 

determining DEM parameters. The measurement/simulation-based method estimates 

DEM parameters through an optimization procedure that minimizes the deviation of 

DEM responses from the measured responses or the responses produced by the detailed 

model of the investigated group of individual units [64]. Regarding the equivalent 

modelling of the collector system in RES power plants, the impedance of a 

collector/cable connecting DEM to the PCC is commonly defined by preserving the total 

losses in or the weighted average voltage drop (the weights are power outputs of coherent 

units) across cables connecting coherent units to the PCC [63, 65-67]. 
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The work in the area of equivalent modelling of RES plants has been mainly focused on 

developing equivalents for large WFs. The majority of papers use multi-machine 

representation of WFs as most wind turbines in large WFs operate at different wind 

speeds due to the wake effect and time lag in their wind profiles [63, 64]. In order to 

increase the accuracy of the single-machine WF equivalent, in [68] the mechanical torque 

of the equivalent generator was multiplied by a factor computed using the average wind 

speed of all wind turbines in the WF and the standard deviation of the wind speed values. 

However, introducing this factor resulted only in the improved model performance in 

terms of being able to follow wind speed variations, whereas there was no increase in the 

accuracy of model dynamic responses to grid disturbances compared to the standard 

single-machine DEM. In [69] the mechanical torques of individual wind turbines in the 

WF were used as inputs to the single-equivalent generator, but the approach is not 

suitable for commercially available software packages as it modifies the standard wind 

generator model [63].  

When it comes to the multi-machine equivalents of WFs, the most common criteria for 

identifying coherent units are wind speed and real power output of individual units, and 

clustering algorithms, such as the k-means, fuzzy c-means, support vector machine, etc. 

are then used for grouping wind turbines according to the selected coherency criteria [63-

65, 70]. However, coherent generators are typically defined for a single WF operating 

point [71]. In order to take into consideration constant changes in WF operation, 

probabilistic equivalents of WFs were developed in [65, 72] and [71]. For a range of the 

values of speed and direction of wind entering the WF, wind turbines were grouped using 

Support Vector Clustering applied to their input wind speeds (defined taking into account 

the wake effect) in [65, 72]. The probability of the occurrence of each clustering result 

was identified, and the DEM for the most probable clustering result was proposed as an 

adequate representation of the WF throughout the whole year. In [71] three equivalent 

wind turbines with parameters depending on WF operating condition were used for 

representing the WF during the year. The allocation of a wind turbine to one of the three 

coherent groups (each represented by an equivalent wind turbine) was determined by the 

value of its wind speed and impedance to the PCC. 
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The equivalent modelling of PV plants has received significantly less attention in 

comparison to WF equivalents [62]. As in the case of WF equivalent modelling, most of 

the reported PV plant equivalents are multi-machine equivalents [73]. Typical coherency 

criteria used for identifying PV systems with similar dynamic behaviour can be divided 

into four groups [73]:  

 feature quantities (e.g., PV array type, inverter control mode, protection circuit 

switching actions); 

 operating conditions (e.g., voltage and current at the DC and AC side of inverter, 

real and reactive power inverter output); 

 controller parameters; 

 dynamic responses (e.g., PV system current, real and reactive power responses 

following a disturbance). 

In order to group PV units with similar dynamic characteristics, in [74] PV systems were 

clustered according to the Euclidean distance between their weighted inverter parameters 

(filter inductance, and proportional gain and constant of real power control loop). A 

weight corresponded to the sensitivity of the power output of a PV system to changes in 

a parameter value, and was computed for characteristic levels of PV system production. 

The approach requires the clustering to be performed whenever operating condition 

changes using the weights associated with the characteristic PV system production that 

is the most similar to the investigated PV system power output. Equivalent modelling of 

a PV plant with equivalent synchronous characteristics was presented in [75]. PV 

systems having converters with similar R/X ratio of equivalent impedance, and similar 

real and reactive power responses for step changes in the plant real power and voltage 

reference, were represented by a common model. The DEM has the same structure as the 

model of individual PV systems - a two-diode PV model and an inverter with a 

synchronous power controller. In [76] the DEM of a group of PV units was developed in 

the form of a deep ANN with irradiance intensity, voltage at the PCC, and reactive power 

reference for inverters as inputs, and the total real and reactive power output of the group 

as outputs. Coherent groups were defined using the clustering index based on the 

parameters of the inverter current controller, the angle of the phase locked loop and PV 

power production. 
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1.3.4 Dynamic Equivalent Models of Active Distribution Networks and 

Microgrids 

Two main approaches for developing DEMs of active distribution networks (ADNs) and 

microgrids (MGs) are modal analysis- and system identification-based methods (grey-

box and black-box models). Unlike in the case of equivalent modelling of large power 

systems with SGs as the only type of generation technology, system identification-based 

equivalents account for the largest number of proposed DEMs of ADNs and MGs.  

1.3.4.1 Modal Analysis-based Dynamic Equivalent Models 

As in the case of equivalent modelling of large power systems with conventional 

generators only, modal analysis-based models represent simplified detailed state-space 

system models. The DEM development requires the eigenvalue analysis of the full state-

space system model linearized around an operating point, and the state-space model order 

reduction is achieved by selecting and preserving only the most dominant modes [77]. 

In [78] Hankel norm approximation was used for the model order reduction. The state-

space model was simplified on the basis of the Hankel singular values that define the 

maximum amplitude of the difference between the transfer functions (TFs) of the original 

and equivalent system model. As voltage and current at the PCC are model input and 

output, respectively, the model can be integrated into software packages for system 

stability simulations in the form of a voltage controlled current source connected to the 

PCC. Modal truncation technique was applied in [79]. The simplification of a full state-

space MG model was achieved by preserving the two slowest oscillatory modes and real 

modes smaller than 1% of the real part of the most damped mode. Singular perturbation 

approach that divides system states into fast and slow was used in [77]. The order of the 

detailed MG model was reduced by eliminating fast state variables. All techniques used 

for identifying the dominant modes in [77-79] require the specification of the threshold 

that determines which modes should be considered as the dominant ones, and the papers 

lack the methodology for defining this threshold value. The domain of validity of modal 

analysis-based equivalents is restricted to small deviations around the investigated 

operating point, meaning DEM has to be derived whenever operating condition changes 

[42].  



38 | Introduction 

1.3.4.2 System Identification-based Dynamic Equivalent Models 

1.3.4.2.1 Grey-box Dynamic Equivalent Models 

A grey-box model consisting of an inverter interfaced SG (the third-order model) in 

parallel with a composite load model (ZIP load model and an induction motor 

representing the static and dynamic load part, respectively) was proposed in [19, 20, 42] 

to model an ADN. Similarly, the DEM of ADN in [80] consists of a parallel combination 

of a SG, induction motor, converter and static constant power load. In order to estimate 

DEM parameters by minimizing the difference between detailed model and DEM 

responses, the equations for individual DEM components were organized into a non-

linear state-space model with real and reactive power at the PCC as outputs. Voltage and 

frequency at the PCC represented state-space model inputs in [19, 20, 42], whereas only 

voltage at the PCC was used as an input signal in [80]. In [19, 20, 42] parameters were 

defined for several ADN compositions with the same total power production and load, 

and representative DEM parameter values were recommended for characteristic groups 

of analysed cases (identified by clustering of power responses according to similarity). 

On the other hand, cases with different directions of power flow at the PCC were 

considered in [80], but the model has to be redeveloped for every new operating point. 

An iterative procedure for developing a grey-box equivalent for radial networks 

comprising several voltage levels was presented in [81, 82]. At each voltage level, RES 

plants characterized by the same technology and grid code requirements were aggregated 

and represented by a DEM corresponding to a scaled-up model of individual plants, 

whereas all loads were modelled by a single scaled-up model of individual loads. The 

model was tested for various voltage dips at the connection point to the transmission 

network (TN), but the operating point was the same as in the model development. 

The use of grey-box models for dynamic equivalencing of MGs was reported in [83-86]. 

The detailed model of voltage source inverter, and a grey-box model of micro turbines 

and fuel cells was suggested as an equivalent MG model in [83, 84]. The grey-box model 

was derived assuming that the dynamic behaviour of micro turbines and fuel cells 

equipped with PQ inverters could be simulated by the model with the structure 

corresponding to a governor in a diesel generator. Model validation was carried out using 

several MG operating points and load following transients. In [86] the equivalent 

comprising a seventh-order SG model with governor and automatic voltage regulator 
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(AVR), and a voltage source converter was proposed as a DEM of SGs and converter-

connected generators in a MG. The parallel combination of the equivalent SG and 

converter was connected to the PCC through a series impedance representing network 

losses. DEM parameters (including the resistance and reactance of the series impedance) 

were estimated using the responses of the detailed MG model to step changes in the 

reference values of real and reactive power output of generation sources. DEM 

demonstrated satisfactory accuracy for several combinations of operating points and step 

disturbances, as well as when tested on a three-phase short-circuit fault in the TN, but 

this testing was carried out for the operating condition used in DEM development. The 

parameter estimation procedure described in [86] was used for defining the parameters 

of a small-disturbance DEM of a MG containing SGs as only generation technology in 

[85]. The proposed model is a linearized third-order SG model with a governor and an 

AVR, and SG parameters have to be calculated for every new operating condition. 

In [21] DEM of an ADN with converter-connected generators as the only sources was 

developed for large-disturbance stability simulations. DEM structure corresponds to the 

dynamic model of individual generators adjusted to take into consideration potential 

tripping of individual units. DEM parameters were estimated to match the average of 

ADN power responses produced by Monte Carlo (MC) procedure that takes into account 

uncertainty in the values of parameters of the individual generators’ detailed models. The 

methodology was extended in [87] to include different operating points. The proposed 

approach requires producing dynamic MC responses using the detailed dynamic ADN 

model whenever operating scenario changes as well as assessing whether any of the 

already developed DEMs is sufficiently accurate for the new operating scenario (if this 

is not the case, new set of DEM parameters has to be estimated). Further improvement 

of the accuracy of the modelling procedure was proposed in [88]. The installation of a 

BESS at the PCC that would compensate for the differences between DEM power 

responses (obtained in simulations) and measurements at the PCC in case of large 

disturbances in the TN was recommended, which is supposed to reduce the frequency of 

DEM parameter updates (due to changes in ADN operating conditions). 
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1.3.4.2.2 Black-box Dynamic Equivalent Models 

In [89] and [90] the measured real and reactive power responses to small disturbances in 

voltage at the PCC (within ±0.1 p.u. variations) were used for deriving ADN equivalent 

in the form of a combination of linear functions and TFs. In [89] the main assumption 

was that the responses associated with similar pre-disturbance, steady state voltage and 

power at the PCC could be described by the same set of TF poles. In order to enable 

quick estimation of DEM parameters in online applications, an ANN, capable of 

predicting model parameters based on pre-disturbance conditions at the PCC and 

generation and load mix in the network, was designed for each group of responses 

associated with a common TF poles. Unlike in [89], in [90] the decoupling of DEM 

performance from the initial, pre-disturbance ADN operating point was achieved by 

using the deviation of voltage and real/reactive power at the PCC from their pre-

disturbance values as DEM input and output, respectively. Similarity in the dynamic 

performance of different ADN operating points was assessed by comparing their 

responses to the same disturbance. For that purpose, for each operating point, a TF was 

developed using the deviation of measured voltage and real/reactive power at the PCC 

from their pre-disturbance values as input and output, respectively, and clusters of the 

outputs of TFs excited by the same input signal defined groups of operating conditions 

represented by a common model.  

Black-box DEM for ADN in the form of the linear state-space model was proposed in 

[91]. Voltage and frequency at the PCC were the model inputs, while real and reactive 

power at the PCC were used as the outputs. The state-space model order was determined 

by plotting the Hankel singular values against model order, and selecting the model order 

corresponding to the significant drop in the singular value diagram. However, model 

parameters were estimated on the basis of a single ADN response, and model 

performance is highly affected by the type and location of a disturbance used for 

parameter estimation. 

The approaches involving identification of dominant modes in network responses and 

developing model in the form of a sum of damped sinusoids were described in [42, 92-

94]. Black-box models for small-disturbance stability studies were derived based on the 

combination of Prony analysis and non-linear least squares optimization for model 

parameter estimation. In [42, 94] it was assumed that ADN responses to small 
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disturbances can be represented by the sum of an initial step and a damped sinusoid 

response. On the other hand, in [92, 93] initial model order was chosen using the 

numerical algorithm for subspace state space system identification (N4SID) and singular 

value decomposition, respectively, while the final order was defined by further trial-and-

error in order to minimize the mismatch between the measured/simulated responses and 

the responses generated by the equivalent. In order to increase the robustness of Prony 

terms to changes in pre-disturbance operating point and disturbance amplitude, linear 

correction factors for the amplitudes of Prony terms were introduced in [92]. 

In [83, 95-97] and [98] a feed forward ANN with tapped time delays and feedback from 

outputs, and a recurrent ANN (an ANN with a feedback from hidden units), respectively, 

were proposed as network equivalents. For all ANNs, real and imaginary parts of current 

at the boundary buses were ANN outputs. When it comes to input signals, different 

combinations of real and imaginary part of voltage and frequency at the boundary buses 

at the current time step as well as several (four or five) previous time steps represented 

ANN inputs. In addition, all ANN inputs and outputs were normalized with respect to 

their pre-disturbance steady state values to increase model robustness to changes in 

operating condition. Long Short Term Memory (LSTM) network, an ANN with LSTM 

cells and regular neurons in hidden layers, was used for equivalent ADN modelling in 

[99] (more information on LSTM structure is provided in Section 2.4.1.3). Separate 

ANNs, with voltage at the boundary bus at the current time step and four previous time 

steps as inputs, were developed for real and reactive power responses. Only converter-

connected technologies were considered as generation sources in the test systems in [83, 

95, 96, 98], whereas only SGs were present in the test network in [99]. Furthermore, all 

ANNs were trained and tested using a few network responses.  

A feed forward ANN with tapped time delays and feedback from outputs was proposed 

in [100] for dynamic equivalent modelling of BESSs spatially distributed across an ADN. 

In addition to frequency and voltage at the PCC, the ANN used the information about 

the total production of PV systems (the only generation sources in the test ADN) and the 

reference BESS power output specified by the central entity (all BESSs in the system 

were characterized by the same operating point) as input signals. The ANN training and 

testing was performed on seven and two responses, respectively. 
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A random forest-based model was suggested in [80] for the equivalent ADN modelling 

in an attempt to avoid the overfitting issue common in ANN applications. Still, as in the 

case of the previously described ANN-based equivalents, the proposed modelling 

approach was trained and tested using a small number of network responses, and the 

model was not evaluated for different operating points or compared with an ANN-based 

equivalent (the ANN overfitting issue was the main reason for adopting the random 

forest-based approach). 

Equivalent model (EM) for long-term voltage stability studies in the form of 

Hammerstein-Wiener model, which represents nonlinear system dynamics using 

nonlinear static functions and a linear TF, was described in [101]. Model input and output 

are voltage and real/reactive power at the PCC, respectively. EM validation was carried 

out on only three case studies (CSs). In addition, model performance is highly influenced 

by the chosen types of training disturbances, and model parameters are valid only for the 

operating point for which they were derived. 

1.3.5 Summary of Past Work  

So far, the focus of the research on HRES plants has been on optimal HRES plant sizing 

and operation with respect to economic costs, while the HRES plant dynamic 

performance has been commonly neglected. When it comes to the dynamic equivalent 

modelling of power plants and networks, even though a lot of work has been done in this 

area, it is still very challenging to derive equivalents that are suitable for various 

combinations of generation and storage technologies, and can reflect constant changes in 

system operation. Modal analysis-based models are adequate for small variations around 

the operating point used for model development, and thus require model redevelopment 

whenever there is a change in system operating condition. On the other hand, coherency-

based modelling techniques can be used for power plants/networks containing only SGs 

as generation sources, which makes them unsuitable for plants/networks with RESs. 

Furthermore, modelling approaches developed for RES power plants are focused on 

plants with a single type of generation technology, and thus cannot be used for equivalent 

modelling of HRES plants.  

System identification-based methods relying on measured/simulated system responses 

have demonstrated promising capabilities for deriving robust EMs of plants/networks 

with renewable generation and storage technologies for both small and large disturbance 
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stability studies. ANNs with feedback from the outputs or hidden units represent a 

popular technique for addressing the issue of equivalent modelling of ADNs and MGs, 

and they have shown a potential to be robust to changes in operating conditions.  

The reported equivalent modelling methodologies (in particular those for large 

disturbance stability analysis) lack a thorough assessment of EM performance. The EMs 

described in the literature were developed and evaluated using a single or limited number 

of system operating points and disturbances, which limits the confidence in their 

adequacy for practical application, i.e., their ability to reliably represent the 

plant/network in system stability studies throughout the whole year. Few methodologies 

([19-21, 42, 80, 87, 88, 90]) recognized that DEM parameter values could be different 

for different operating scenarios, but they did not provide the procedure/guidelines for 

selecting DEM parameters for an arbitrary system operating condition or require DEM 

parameter estimation/redevelopment whenever operating point changes. In addition, 

developing of DEMs for large disturbance stability studies was mainly based on system 

responses to three-phase short-circuit faults with zero fault impedance ([19, 20, 42, 80, 

95, 96, 98, 100]). However, this type of short-circuit fault has the lowest probability of 

occurrence in real power systems. As a result, the derived models are adequate for the 

extreme, worst-case scenario in the system, and thus not capable to represent the typical, 

most probable system dynamic behaviour during the year. 

The accuracy of all reported DEMs was assessed by comparing DEM power responses 

in time domain with the responses produced by the detailed system model or measured 

system responses, i.e., the shape of time domain responses was adopted as a criterion for 

evaluating model performance. However, when conducting large system stability 

studies, the accuracy of the overall system stability status/results is what is ultimately of 

importance. Due to complex interactions between system elements, power responses of 

the plant/network being equivalenced that have different shape in time domain might be 

associated with similar global system stability performance, which then lessens the 

significance of obtaining highly accurate DEM power responses. The equivalent 

modelling approach based on the provision of reliable overall system stability results 

could potentially provide smaller mathematical order and/or number of models required 



44 | Introduction 

for representing the plant/network in annual system stability simulations compared to the 

procedure focusing on the shape of time domain power responses. 

As can be seen from the review of the previous work, the concept of HRES plant has 

been concerned about the combination of different technologies having the same grid 

connection point. In light of the appearance of virtual power plants (VPPs), i.e., the 

aggregators at distribution network (DN) level, one would assume that similar concept 

of aggregators could be brought up to TN level (more information on the VPP concept 

is given in Chapter 6 of the thesis). In this case, an aggregator at TN level could own 

various RES power plants located in different areas of the TN, which can be seen as a 

concept of geographically/spatially distributed HRES plant connected to the TN at more 

than one bus. As in the case of HRES plant with a single PCC, geographically distributed 

HRES plant should be able to provide stable and controllable power production, and thus 

enable the aggregator to choose the plant dispatch that would provide the highest revenue 

on markets. However, given that geographically distributed HRES plant is connected to 

different buses in the TN, its impact on the overall system dynamic performance is 

complex, and deciding on the plant dispatch without taking into account system stability 

limits might have a detrimental effect on system stability. The contribution of optimal 

economic dispatch of geographically distributed HRES plant to system stability has 

basically not been addressed at all, as the research on the concept of aggregators was 

mainly devoted to VPPs at DN level, and even then the most emphasis was on VPP 

operation that provides financial benefits to the aggregator/owner while the influence of 

VPPs on system stability was not particularly, if at all, considered. 

1.4 Aims and Objectives of the Research 

This thesis focuses on overcoming the identified shortcomings of the past work presented 

in the previous section. There are three aims of the research presented in the thesis. The 

first one is the development of the methodology for dynamic equivalent modelling of 

HRES plant from the perspective of the accuracy of the overall system stability results, 

while the second one involves the procedure for developing DEM of HRES plant that 

focuses on the shape of HRES plant power responses in time domain. Both 

methodologies are focused on transient stability studies and should result in models 

capable of representing HRES plant behaviour in transient stability simulations during 

the whole year. Finally, the third aim of the research is an exploratory study of the 
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contribution of geographically widely distributed HRES plant to the transient stability 

performance of the TN. 

In order to fulfil the aims of the research, the following objectives have been defined: 

 To propose the procedure for identifying typical annual HRES plant operating 

conditions in order to eliminate the requirement for investigating all possible 

plant operating points; 

 To propose the computationally efficient procedure for identifying the most 

probable HRES plant performance in annual power system stability studies; 

  To develop the methodology for equivalent modelling of HRES plants for 

transient stability studies from the perspective of the accuracy of the overall 

transient stability assessment. A system identification-based approach should be 

used for that purpose; 

 To develop the methodology for equivalent modelling of HRES plants for 

transient stability studies from the perspective of the accuracy of the shape of 

HRES plant power responses in time domain. A system identification-based 

approach should be used for that purpose; 

 To develop for both previously mentioned methodologies a practical procedure 

for identifying the adequate equivalent HRES plant representation at any time of 

the year that does not require model redevelopment whenever operating condition 

changes and uses the information available to system operators;  

 To integrate the developed DEMs into DIgSILENT/PowerFactory, a 

commercially available software package for power system studies; 

 To validate both methodologies on a wide range of system operating points and 

disturbances in DIgSILENT/PowerFactory environment; 

 To compare the performance of DEMs developed using the two methodologies 

in terms of the accuracy in the shape of HRES plant power responses in time 

domain and the global system stability results. The purpose of this analysis is to 

investigate whether focusing on the shape of plant power responses in equivalent 
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modelling procedure is needed for the reliable overall transient stability 

assessment in practice; 

 To perform the exploratory, probabilistic analysis on the impact of spatially 

widely distributed HRES plant on the transient stability of the TN for different 

RES penetration levels in the system. 

1.5 Main Contributions of the Research 

The major contributions of the work presented in the thesis are in the area of dynamic 

equivalent modelling of HRES plants for transient stability studies of the system. The 

following points summarise the main contributions of the research, with the references 

given in brackets indicating the author’s research publications where the contributions 

were initially made (the full list of author’s publications is given in Appendix E and F):  

 The development of the computationally efficient procedure for determining the 

most probable HRES plant behaviour in power system stability studies 

throughout the year. The procedure is based on characteristic annual HRES plant 

operating scenarios defined by applying the unsupervised data mining method to 

historical HRES plant production dataset, which in turn eliminates the need for 

investigating all possible HRES plant operating conditions during the year. (E1, 

E4) 

 The development of preliminary EMs of HRES plant for small-disturbance, 

transient, frequency, and long-term voltage stability studies. All modelling 

procedures aim to derive EMs capable of representing typical annual HRES plant 

behaviour in the relevant system stability study. EM development is based on the 

results of the procedure for determining the most probable annual HRES plant 

performance in the relevant system stability study. (E5, E8, E9) 

 The development of the data-driven methodology for dynamic equivalent 

modelling of HRES plants for transient stability studies from the perspective of 

the overall system transient stability performance. This represents a departure 

from the previous work on DEMs of power plants and networks focusing on 

highly accurate modelling of power responses in time domain. In this research, 

HRES plant power responses resulting in similar transient stability status are 

simulated by a common DEM, regardless of dissimilarity in their shape in time 
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domain. The methodology results in a few low-order TF-based models capable 

of providing reliable global transient stability assessment of the system during 

the whole year. As a part of this methodology, the procedure for selecting the 

adequate model (from the previously developed set of models) at any time of the 

year knowing HRES plant operating scenario only is provided. (E1, E10) 

 The development of the deep learning-based methodology for dynamic 

equivalent modelling of HRES plants for annual system transient stability studies 

that focuses on the shape of HRES plant power responses in time domain. Similar 

typical time domain HRES plant power responses in annual transient stability 

simulations are clustered and a DEM in the form of a deep ANN (LSTM network) 

is developed for each group of responses. Unlike in the past work on ANN-based 

dynamic equivalents, the deep learning-based modelling procedure includes an 

efficient way of training the LSTM-based DEM structure on large datasets. The 

methodology also includes the procedure for selecting the most suitable DEM 

(from the set of previously developed models) at any time of the year based on 

the information about power outputs of individual plants within the HRES plant, 

which ensures the use of a small set of models for simulating HRES plant power 

responses in annual transient stability studies. (E3, E6, E7)  

 Indication of potential challenges that geographically distributed HRES plant can 

pose to transient stability of the TN. The results of this exploratory, probabilistic 

study pave the way to more comprehensive assessment of the influence of the 

dispatch of spatially widely distributed HRES plant on the overall TN transient 

stability performance. (E11) 

1.6 Thesis overview 

The thesis consist of seven chapters. The overview of all chapters following this 

introductory chapter (Chapter 1) is provided below. 
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Chapter 2 Techniques for Dynamic Equivalent Modelling of Power Plants and 

Networks 

The chapter presents an overview of three groups of methods for equivalent modelling 

of power plants and networks (modal analysis-, coherency- and system identification-

based methods), indicating their main advantages and disadvantages. Given that 

developing EMs adequate for a wide range of system operating scenarios requires the 

analysis of large datasets, a comprehensive review of the unsupervised data mining 

methods, clustering algorithms, is provided as well. The major characteristics of the 

representatives of five categories of clustering methods are presented. Furthermore, the 

key stages in the clustering procedure and typical difficulties associated with the 

application of clustering algorithms are described. 

Chapter 3 Probabilistic Analysis and Modelling of HRES Plant for System Stability 

Studies 

This chapter presents the methodology for identifying the typical annual HRES plant 

performance in power system stability studies. The procedure relies on the identification 

of characteristic annual HRES plant operating scenarios using historical HRES plant 

production data and unsupervised clustering algorithm, and on a probabilistic MC 

approach for addressing the uncertainties in the power output and location of individual 

plants in the HRES plant. In addition, the preliminary structures of EMs of HRES plant 

for small-disturbance, transient, frequency and long-term voltage system stability studies 

(designed using the results of the aforementioned procedure) are proposed. A CS using 

the HRES plant comprising six renewable generation and storage technologies illustrates 

the application of the procedure and EM development for all four system stability studies. 

Chapter 4 Data-driven Equivalent Modelling of HRES Plant for Power System 

Transient Stability Studies 

The fourth chapter of the thesis introduces the methodology for development of DEM of 

HRES plants for transient stability studies from the perspective of the overall transient 

stability assessment. All stages in the proposed methodology, from the generation of the 

most probable annual HRES plant power responses to the identification of responses 

associated with similar transient stability status of the system and model development in 

the form of a low-order TF, are presented in detail. The selection of the adequate model 
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at any time of the year is described as well. The methodology is validated on two HRES 

plant configurations connected to the same IEEE 9-bus network model for a wide range 

of system operating conditions. The accuracy of the developed models is compared with 

the performance of a common representation of RESs in system stability simulations – a 

negative constant power load model (NCPLM). Furthermore, the sensitivity of the model 

performance to the historical production dataset features (the size, sampling rate and 

missing data for individual technology(ies)) is investigated. An approach for generating 

artificial historical production data in the case of data unavailability is proposed. 

Chapter 5 Deep Learning-based Equivalent Modelling of HRES Plant for Power 

System Transient Stability Studies 

The chapter describes the methodology for developing DEM of HRES plants for transient 

stability studies from the perspective of the similarity between HRES plant power 

responses at the PCC in time domain produced by DEM and the detailed model. The 

equivalent modelling procedure relies on the identification of the groups of similar most 

probable annual HRES plant power responses. The procedure for computationally 

efficient design of the deep ANN-based DEM structure using a large dataset, and a 

practical approach for selecting the adequate DEM at any time of the year knowing only 

HRES plant operating conditions (the power output of individual RESs) are presented. 

The methodology is evaluated on the test HRES plant with three renewable generation 

technologies integrated into the IEEE 9-bus network model. The performance of the deep 

learning-based DEMs is compared with the data-driven models developed in Chapter 4 

(for the same test system) to investigate whether focusing on the shape of power 

responses in equivalent modelling is required for obtaining reliable overall transient 

stability assessment of the system. 

Chapter 6 Limitations of the Reliance on Assessment of the Contribution of Spatially 

Distributed HRES Plant to Real System Operation 

The focus of this chapter is on geographically distributed HRES plant, i.e., the plant with 

multiple connection buses to the TN. Typical principles of operation of VPPs at DN level, 

which can be applied to spatially distributed HRES plants at TN level, are discussed. The 

exploratory study on the potentially negative influence of optimal economic dispatch of 
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HRES plant on the transient stability of the TN is presented. The CS uses a simplified 

representation of the interconnected system of four real European TNs with an HRES 

plant containing PV plants and WFs spread across the whole test system.  

Chapter 7 Conclusions and Further Work 

The final chapter of the thesis presents the main conclusions of the research, and 

discusses suggestions for further improvement of the presented methodologies and 

exploratory studies. 
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2 Techniques for Dynamic Equivalent 

Modelling of Power Plants and Networks 

 

 

 

 

2.1 Introduction 

Following the growth in the installation capacity of RESs, electric power systems have 

increased in size and complexity. Representing whole plants/networks in detail in system 

stability studies is becoming highly impractical and in some cases even impossible due 

to the unavailability of necessary data and/or data protection policy that prohibits the 

exchange of full-scale models between different network operators. EMs of 

plants/networks have been seen as a promising solution to the above-mentioned issues. 

The basic principle of equivalent modelling is to simplify the detailed model of a 

plant/network in such a way that the desired level of accuracy in its behaviour at 

boundary buses (when compared to the detailed model responses) is preserved. EM 

development from the perspective of boundary buses is justified when only the responses 

of the plant/network at boundary buses are considered relevant for performing system 

studies. The chapter provides an overview of the techniques for equivalent modelling of 

power plants and networks. Methods for EM development can be divided into three 

major groups: modal analysis-, coherency- and system identification-based methods, 

with the first two dominantly used for equivalent modelling of plants and networks 

containing only SGs as generation sources. 
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A number of equivalent modelling approaches of RES power plants and networks 

containing RESs that were reported in the literature (a review of the work has been 

presented in Section 1.3.3 and 1.3.4) requires large datasets of measured or simulated 

responses of the considered system to develop EMs suitable for a large number of system 

conditions. In order to improve the efficiency of modelling and analysis of power 

systems, adequate data pre-processing should be carried out. Over the years, various data 

mining methods have been proposed in order to address the challenges of large database 

analysis. Clustering methods, as unsupervised data mining techniques, have gained 

popularity due to their ability to identify patterns/homogenous groups in datasets, and 

thus minimize the amount of data that have to be considered in a given analysis. This 

chapter revises the most widely used clustering algorithms, with a focus on the clustering 

methods suitable for analysing the responses of dynamic systems (i.e., time series data). 

In addition, the main stages in clustering process as well as common issues related to the 

practical application of data clustering methods are discussed. 

2.2 Modal Analysis-based Equivalent Modelling Methods 

The objective of most equivalent modelling techniques based on modal analysis is to 

reduce the order of linearized state-space model of the analysed system [42, 102] (Note: 

The modal-analysis based techniques described in this chapter assume that all system 

eigenvalues are distinct.): 

 

∆�̇�(𝑡) = 𝐴∆𝑥(𝑡) + 𝐵∆𝑢(𝑡)
∆𝑦(𝑡) = 𝐶∆𝑥(𝑡) + 𝐷∆𝑢(𝑡)

𝑥(0) = 𝑥0, 𝑢(0) = 𝑢0, 𝑦(0) = 𝑦0

, (2.1) 

where u(t) and y(t) are the inputs and outputs of the system, respectively, x(t) is the vector 

of state variables, ∆ stands for a small deviation, x0 are the initial conditions for state 

variables, 𝑢0 and 𝑦0 are the input and output of the system corresponding to x0, A is the 

state matrix, B is the input matrix, C is the output matrix, D is the feedforward matrix. 

The modes that are less damped, that is, those that persist longer, are the ones that 

determine the overall system performance. Therefore, the reduction of the order of the 

linearized full-scale model is achieved by neglecting modes that do not have a significant 

influence on system response. Different procedures for identifying non-dominant modes 

have resulted in different modal analysis-based techniques.  
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2.2.1 Modal Truncation 

Modal truncation technique relies on the calculation of all eigenvalues of the system and 

elimination of the non-dominant modes by converting the system from (2.1) into the 

system with diagonal state matrix [43, 79]. The first step in reducing the order of the 

system given by (2.1) is the transformation of state variables x into modal variables z 

using the matrix P whose columns are the right eigenvectors of the state matrix A: 

 ∆𝑥(𝑡) = 𝑃∆𝑧(𝑡). (2.2) 

Using the previous transformation, the system from (2.1) transforms to: 

 
∆�̇�(𝑡) = 𝛬∆𝑧(𝑡) + 𝐵′∆𝑢(𝑡)

∆𝑦(𝑡) = 𝐶𝑃∆𝑧(𝑡) + 𝐷∆𝑢(𝑡)
, (2.3) 

where 𝛬 = 𝑃−1𝐴𝑃 and 𝐵′ = 𝑃−1𝐵. The elements of the diagonal matrix Λ are the 

eigenvalues of the original state matrix of the system, A.  

Given that the matrix Λ is a diagonal matrix, there is no coupling between modal 

variables (as it is the case with the original states) and the expression for modal variables 

from (2.3) becomes: 

 ∆𝑧(𝑡) = (𝐼 − 𝑒𝛬𝑡)𝛬−1𝐵′∆𝑢(𝑡). (2.4) 

The state-space model reduction is achieved by neglecting non-dominant modal 

variables, that is, modal variables assumed to reach steady state almost instantaneously 

and modal variables that can be assumed to be zero. After identifying the non-dominant 

modes, the set of differential equations from (2.3) can be rearranged as follows: 

 [

∆�̇�𝑟(𝑡)

∆�̇�𝑛𝑟1(𝑡)

∆�̇�𝑛𝑟2(𝑡)

] = [

𝜙𝑟 0 0
0 𝜙𝑛𝑟1 0
0 0 𝜙𝑛𝑟2

] [

∆𝑧𝑟(𝑡)
∆𝑧𝑛𝑟1(𝑡)
∆𝑧𝑛𝑟2(𝑡)

] + [

𝐵𝑟
′

𝐵𝑛𝑟1
′

𝐵𝑛𝑟2
′

] ∆𝑢(𝑡), (2.5) 

where 𝑧𝑟(𝑡) are modal variables that are retained in the simplified system model, 𝑧𝑛𝑟1(𝑡) 

are modal variables assumed to reach steady state instantaneously, 𝑧𝑛𝑟2(𝑡) are modal 

variables assumed to be zero, 𝜙𝑟, 𝜙𝑛𝑟1 and 𝜙𝑛𝑟2 are the submatrices of the diagonal 

matrix Λ, 𝐵𝑟
′, 𝐵𝑛𝑟1

′  and 𝐵𝑛𝑟2
′  are the submatrices of the matrix 𝐵′. 
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Therefore, the reduced order of the set of differential equations from (2.3) has the 

following form: 

 ∆�̇�𝑟(𝑡) = 𝜙𝑟∆𝑧𝑟(𝑡) + 𝐵𝑟
′∆𝑢(𝑡). (2.6) 

In order to derive the expression for the reduced order system output equation, the 

transformation from (2.2) can be written as follows: 

 [

∆𝑥𝑟(𝑡)

∆𝑥𝑛𝑟1(𝑡)
∆𝑥𝑛𝑟2(𝑡)

] = [

𝛼𝑟 𝛼𝑛𝑟1 𝛼𝑛𝑟2

𝛽𝑟 𝛽𝑛𝑟1 𝛽𝑛𝑟2

𝛾𝑟 𝛾𝑛𝑟1 𝛾𝑛𝑟2

] [

∆𝑧𝑟(𝑡)

∆𝑧𝑛𝑟1(𝑡)
∆𝑧𝑛𝑟2(𝑡)

], (2.7) 

where 𝑥𝑟(𝑡) are original state variables that are retained in the simplified system model, 

𝑥𝑛𝑟1(𝑡) and 𝑥𝑛𝑟2(𝑡) are original state variables that are neglected in the simplified system 

model, and 𝛼𝑟, 𝛼𝑛𝑟1, 𝛼𝑛𝑟2, 𝛽𝑟, 𝛽𝑛𝑟1, 𝛽𝑛𝑟2, 𝛾𝑟, 𝛾𝑛𝑟1, 𝛾𝑛𝑟2 are the submatrices of the 

transformation matrix P. 

Taking into account 𝑧𝑛𝑟2(𝑡) = 0, and combining the expression for 𝑥𝑟(𝑡) from (2.7) and 

the expression for ∆𝑧𝑛𝑟1(𝑡) obtained from (2.5) by adopting �̇�𝑛𝑟1(𝑡) = 0 for a step input, 

the system output equation in the reduced order system model becomes: 

 ∆𝑦(𝑡) = 𝐶∆𝑥𝑟(𝑡) + 𝐷∆𝑢(𝑡), (2.8) 

 ∆𝑦(𝑡) = 𝐶[𝛼𝑟∆𝑧𝑟(𝑡) − 𝛼𝑛𝑟1𝜙𝑛𝑟1
−1 𝐵𝑛𝑟1

′ ∆𝑢(𝑡)] + 𝐷∆𝑢(𝑡), (2.9) 

 ∆𝑦(𝑡) = 𝐶′∆𝑧𝑟(𝑡) + 𝐷′∆𝑢(𝑡), (2.10) 

where 𝐶′ = 𝐶𝛼𝑟 and 𝐷′ = 𝐷 − 𝐶𝛼𝑛𝑟1𝜙𝑛𝑟1
−1 𝐵𝑛𝑟1

′ . 

Therefore, the reduced order model of the system is given by (2.6) and (2.10). 

2.2.2 Balanced Realization 

Balanced realization technique uses controllability and observability properties of the 

system to perform the state-space model reduction. The controllability of the system 

represents the ability of the system to change the system state from the initial one to any 

other by exciting the system by certain input signals [78].  In other words, it indicates the 

strength of coupling between input signals and state variables. The controllability 

gramian of the system determines the minimum input energy required for changing the 
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system state. On the other hand, the observability of the system is a measure of the state-

to-output connection [78]. The observability gramian of the system defines the output 

energy produced by the state variables only (input signals are assumed to be zero). The 

expressions for the controllability and observability gramian are the solutions of the 

Lyapunov equations [42]: 

 
𝐴𝑊𝐶 + 𝑊𝐶𝐴𝑇 + 𝐵𝐵𝑇 = 0

𝐴𝑇𝑊𝑂 + 𝑊𝑂𝐴 + 𝐶𝑇𝐶 = 0
 (2.11) 

where 𝑊𝐶 and 𝑊𝑂 are the controllability and observability gramian of the system, 

respectively. 

Applying linear coordinate transformation to system matrices and state variables (similar 

to the balanced truncation approach), while preserving inputs and outputs of the system, 

the state-space model can be converted into the model with equal observability and 

controllability gramians (so-called a balanced state representation) [78]: 

 𝑊�̃� = 𝑊�̃� = 𝛴 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑛), (2.12) 

 𝜎𝑖 = √𝜆𝑖(𝑊𝐶𝑊𝑂), (2.13) 

where 𝑊�̃� and 𝑊�̃� are the controllability and observability gramian calculated for the 

transformed state-space model, 𝜎𝑖 is the i-th Hankel singular value, 𝜆𝑖(𝑊𝐶𝑊𝑂) is the i-

th eigenvalue of the product of two gramians 𝑊𝐶 and 𝑊𝑂, and n is the number of the 

system states. 

The computation of Hankel singular values provides the information about the 

controllability and observability of the states. Small Hankel singular values correspond 

to weakly controllable and observable state variables, and neglecting these states results 

in the reduced-order system model.  

2.2.3 Optimal Hankel Norm 

Similar to the balanced realization method, the optimal Hankel norm technique is based 

on the calculation of Hankel singular values [42, 78, 83]. The order of the reduced model 

is chosen using the key property of Hankel values. Namely, the maximum amplitude of 
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the difference between the transfer function of the detailed model and the k-th order 

reduced model, for all frequencies, is determined by the k+1-th Hankel singular value: 

 ‖𝐻(𝑠) − 𝐻𝑘(𝑠)‖ ≤ 𝜎𝑘+1, (2.14) 

where 𝐻(𝑠) and 𝐻𝑘(𝑠) is the transfer function of the detailed model and the k-th order 

reduced model, respectively. Hence, the suitable model order can be selected on the basis 

of the known worst-case error. 

2.2.4 Singular Perturbation Theory 

The singular perturbation theory is based on the division of states into slow and fast state 

variables and their calculation in different time domains [103]. The main assumptions of 

the approach are:  

 slow state variables are constant during fast transients; 

 fast states have reached their quasi-steady state values by the time the change of 

slow states becomes significant.  

The model with separated fast and slow state variables can be expressed in the following 

form [103]: 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑧, 𝑡), 𝑥(𝑡0) = 𝑥0

𝑑𝑧

𝑑𝑡
= 𝐺(𝑥, 𝑧, 𝑡), 𝑧(𝑡0) = 𝑧0

, (2.15) 

where x, z, x0 and z0 are slow states, fast states, and the initial values of slow and fast 

states, respectively.  

The singular perturbation theory relies on two time scales: one time scale (t) is used for 

slow states, and the second one (τ) for fast state variables. The connection between two 

time scales is established through a small positive parameter ε: 

 𝜏 =
𝑡−𝑡′

, (2.16) 

where 𝑡′ in t-time scale corresponds to τ=0. 

Smaller parameter ε results in longer time period τ for the same interval (𝑡 − 𝑡′), i.e., it 

provides fast states with more time to reach their quasi-steady state values, while the 
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assumption that the time interval (𝑡 − 𝑡′) is short enough to consider slow states constant 

remains valid. The transformation of (2.15) into the system suitable for two-time scale 

approach is carried out by assuming that the dynamics of fast states is 1/ε times faster 

than the dynamics of slow states. Consequently, the derivatives of fast states are 1/ε times 

larger than derivatives of slow states. Therefore, the model (2.15) can be transformed 

into the following form: 

 𝑔 = 휀𝐺, (2.17) 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑧, 𝑡), 𝑥(𝑡0) = 𝑥0

휀
𝑑𝑧

𝑑𝑡
= 𝑔(𝑥, 𝑧, 𝑡), 𝑧(𝑡0) = 𝑧0

, (2.18) 

where g and f are the functions of the same order of magnitude.  

Assuming that ε→0, the model in t-time scale, that is, the quasi-steady state model, has 

the following form: 

 

𝑑𝑥𝑠

𝑑𝑡
= 𝑓(𝑥𝑠, 𝑧𝑠, 𝑡), 𝑥𝑠(𝑡0) = 𝑥0

0 = 𝑔(𝑥𝑠, 𝑧𝑠, 𝑡)
, (2.19) 

where xs and zs are quasi-steady states of x and z variables, respectively.  

The parts of state variables in τ-time domain can be obtained using the following model: 

 

𝑑𝑥

𝑑𝜏
= 휀𝑓(𝑥, 𝑧, 𝑡′ + 휀𝜏)

𝑑𝑧

𝑑𝜏
= 𝑔(𝑥, 𝑧, 𝑡′ + 휀𝜏)

. (2.20) 

In the case of ε→0, states x are constant in τ-time domain. Adopting 𝑡′ = 𝑡0, the 

following equation for fast states in τ-time domain can be obtained: 

 
𝑑𝑧𝑓

𝑑𝜏
= 𝑔(𝑥0, 𝑧𝑠(𝑡0) + 𝑧𝑓(𝜏), 𝑡0), 𝑧𝑓(0) = 𝑧(𝑡0) − 𝑧𝑠(𝑡0), (2.21) 

where 𝑧𝑓 is the part of z-variables in τ-domain. 

Finally, the expressions for slow and fast state variables are as follows: 



58 | Techniques for Dynamic Equivalent Modelling of Power Plants and Networks 

 
𝑥(𝑡) ≅ 𝑥𝑠(𝑡)

𝑧(𝑡) ≅ 𝑧𝑠(𝑡) + 𝑧𝑓(
𝑡−𝑡0)

. (2.22) 

2.2.5 Discussion 

Modal analysis-based methods have a strong mathematical background and can provide 

the information about all types of oscillations in the system [91]. However, these 

techniques use linearized detailed model of the system, which makes them unsuitable for 

large disturbance system studies as well as for complex power systems with a number of 

renewable generation and storage technologies due to the problem of data availability 

and high computational burden associated with the development of the unreduced system 

model [91]. Furthermore, all four modal analysis-based methods require previous 

experience/knowledge about the dynamics of system variables (differentiation between 

dominant and non-dominant modes in the case of modal truncation, differentiation 

between small and large Hankel singular values in the case of balanced realization and 

optimal Hankel norm, decomposition of states into fast and slow in the case of singular 

perturbation theory), and are thus very application dependant [83, 91]. 

2.3 Coherency-based Equivalent Modelling Methods 

Coherency-based methods represent a typical approach for equivalent modelling of a 

group of SGs. Unlike the modal analysis-based techniques, coherency-based EM is based 

on nonlinear, physical, machine model [42, 83, 104]. The application of coherency-based 

methods consists of three major steps [42, 83]: 

1. Identification of coherent SGs 

2. Development of an EM for a group of coherent SGs 

3. Aggregation of generator buses. 

2.3.1 Identification of Coherent Synchronous Generators 

In order to simplify coherency analysis, the linearized system model, classical SG model 

and the decoupling between real and reactive power in network equations are commonly 

adopted [52]. The simplifications are justified by assuming that coherency between SGs 

is not affected by the size of the disturbance or SG model order (increasing the order of 

SG model does not have a significant impact on the natural frequency and mode shapes 
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of the swing curves), and that there is a high ratio of reactance/resistance of the lines of 

transmission systems [52].  

For a particular disturbance, terminal buses of two generators are considered to be 

electrically coherent if the ratio of their complex bus voltages is constant [105]: 

𝑉𝑖(𝑡)

𝑉𝑗(𝑡)
=

𝑉𝑖(𝑡)

𝑉𝑗(𝑡)
𝑒𝑗(𝜃𝑖(𝑡)−𝜃𝑗(𝑡)) =

𝑉𝑖(𝑡0)

𝑉𝑗(𝑡0)
𝑒𝑗(𝜃𝑖(𝑡0)−𝜃𝑗(𝑡0)) = 𝜗𝑖 = 𝑐𝑜𝑛𝑠𝑡, for all 𝑡 ≥ 𝑡0, (2.23) 

where 𝑉𝑖(𝑡) and 𝑉𝑗(𝑡) are complex voltages at the terminal buses of the i-th and j-th SG, 

respectively, 𝑉𝑖(𝑡) and 𝑉𝑗(𝑡) are the magnitudes of voltages at the terminal buses of the 

i-th and j-th SG, respectively, 𝜃𝑖(𝑡) and 𝜃𝑗(𝑡) are the phase angles of voltages at the 

terminal buses of the i-th and j-th SG, respectively, 𝑡0 is the time of the occurrence of the 

disturbance. 

Given that the classical SG model (a constant generator electromotive force behind 

generator reactance) is used for representing SGs, coherency criterion (2.23) simplifies 

to (2.24) for the internal buses of two SGs [105]: 

 𝛿𝑖(𝑡) − 𝛿𝑗(𝑡) = 𝛿𝑖(𝑡0) − 𝛿𝑗(𝑡0) = 𝑐, for all 𝑡 ≥ 𝑡0, (2.24) 

where 𝛿𝑖(𝑡) and 𝛿𝑗(𝑡) are the rotor angles of the i-th and j-th SG, and c is a constant. 

Expression (2.24) is known as the electromechanical coherency. The electromechanical 

coherency condition can also be given by (2.25): 

 ∆𝛿𝑖(𝑡) = ∆𝛿𝑗(𝑡), for all 𝑡 ≥ 𝑡0, (2.25) 

where ∆𝛿𝑖(𝑡) = 𝛿𝑖(𝑡) − 𝛿𝑖(𝑡0) and ∆𝛿𝑗(𝑡) = 𝛿𝑗(𝑡) − 𝛿𝑗(𝑡0). 

In practice, (2.25) can never be satisfied, so a tolerance parameter has to be introduced 

[105]: 

 |∆𝛿𝑖(𝑡) − ∆𝛿𝑗(𝑡)| ≤ 휀, for all 𝑡 ≥ 𝑡0, (2.26) 
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where 휀 is the tolerance parameter corresponding to a small positive number (typical 

values are (5-10)° [106]). Thus, two SGs are electromechanically coherent if their rotor 

angle curves are similar in shape. 

The three main techniques for assessing the coherency between SGs are [42, 83]: 

 Time domain approach; 

 Weak-link coherency identification; 

 Slow coherency method. 

Time domain approach creates the groups of coherent SGs by identifying similarity in 

time domain responses of their rotor angles or speeds after a given disturbance [52, 83]. 

The responses can be obtained in simulation environment or can correspond to real power 

system measurements [52, 83, 104, 107]. The other two methods, weak-link and slow 

coherency, are analytical methods, and can establish the groups of coherent SGs 

independently of the disturbance [83]. 

Weak-link coherency identification is based on reordering the linearized system state 

matrix in the following way [54]: 

 
𝑑

𝑑𝑡
[
𝑋1

𝑋2
] = [

𝐴11 휀𝐴12

휀𝐴21 𝐴22
] [

𝑋1

𝑋2
] + [

𝐵1 0
0 𝐵2

] [
𝑈1

𝑈2
], (2.27) 

where 𝑋1 and 𝑋2 are vectors of state variables of the machines in subsystem 1 and 

subsystem 2, respectively, and ε is a small positive parameter (휀 ≈ 0). For ε=0, the 

system is divided into two completely decoupled subsystems.  

The aim of the method is to decompose the system in such a way that the obtained 

subsystems are as weakly electromechanically connected as possible, while each 

subsystem consists of strongly coherent machines. The measure of the strength of 

electromechanical connection between subsystems is assessed using the coupling factor, 

which is calculated as the ratio of the sum of the norms of submatrices in the off-diagonal 

area and the sum of the norms of submatrices in the diagonal area of the state matrix. The 

smaller the coupling factor is, the smaller electromechanical connection between the 

subsystems is. The coupling factor is calculated for all possible system decompositions 

into two subsystems, and the minimum coupling factor is defined for each structure of 

system decomposition (only one SG in subsystem 1 and the remaining machines in 
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subsystem 2; two SGs in subsystem 1 and the remaining machines in subsystem 2, etc.). 

The system decomposition resulting in the minimum factor for the current analysed 

structure of system decomposition represents a basis for identifying the best 

decomposition for the following structure, i.e., the difference between the group of 

machines in subsystem 1 for the following and current structure is in only one SG. The 

method produces the coupling graph by plotting the minimum coupling factor for each 

investigated structure of system decomposition against the number of the machine added 

to the first subsystem in that particular system decomposition. The local minima of the 

graph divide the system into weakly coupled subsystems. 

The main assumption of the third coherency-based method, slow coherency 

identification, is that groups of coherent SGs are swinging against each other with respect 

to slower oscillatory modes, while generators within the same group are oscillating 

against each other with respect to higher frequency modes [53, 108]. The method 

computes eigenvalues of the linearized state-space system model with SGs represented 

using the classical model. A matrix of right eigenvectors for the r smallest eigenvalues 

in terms of magnitude is determined (the choice of r defines the number of coherent 

groups), and then it is reduced to the components of the right eigenvectors associated 

with SG rotor angles. The r most linearly independent rows in the matrix define reference 

SGs for r coherent groups. Given that SGs in the same coherent group have similar mode 

shapes with respect to slow modes, the remaining (non-reference) SGs are allocated to 

coherent groups according to the similarity between their mode shapes for the relevant r 

slow modes and the corresponding mode shapes of the referent machines. 

2.3.2 Development of an Equivalent Model for a Group of Coherent 

Synchronous Generators 

Following the identification of groups of coherent SGs, each group is represented by a 

single equivalent machine developed using a classical or a detailed aggregation approach. 

The former relies on the classical SG model for modelling the equivalent generator [105]. 

The mechanical and electrical power of the equivalent machine are equal to the sum of 

mechanical and electrical power of all SGs in the group, respectively, and all coherent 

SGs are characterized by the same rotor speed (as if they are on the same shaft). The 

swing equation of the equivalent SG is given by (2.28) and (2.29): 
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 𝑀𝑒𝑞
𝑑𝑤

𝑑𝑡
= 𝑃𝑚,𝑒𝑞 − 𝑃𝑒,𝑒𝑞 − 𝐷𝑒𝑞(𝑤 − 1), (2.28) 

𝑀𝑒𝑞 = (∑ 𝑀𝑖
𝑛
𝑖=1 ), 𝑃𝑚,𝑒𝑞 = (∑ 𝑃𝑚,𝑖

𝑛
𝑖=1 ), 𝑃𝑒,𝑒𝑞 = (∑ 𝑃𝑒,𝑖

𝑛
𝑖=1 ), 𝐷𝑒𝑞 = (∑ 𝐷𝑖

𝑛
𝑖=1 ), (2.29) 

where 𝑤 is the rotor speed of the equivalent SG, 𝑀𝑒𝑞, 𝑃𝑚,𝑒𝑞, 𝑃𝑒,𝑒𝑞 and 𝐷𝑒𝑞 are the inertia 

coefficient constant, mechanical power, electrical power and damping coefficient of the 

equivalent SG, respectively, 𝑀𝑖, 𝑃𝑚,𝑖, 𝑃𝑒,𝑖 and 𝐷𝑖 are the inertia coefficient constant, 

mechanical power, electrical power and damping coefficient of the i-th SG, respectively, 

and n is the number of coherent generators in the group.  

The transient reactance of the equivalent generator (𝑋′𝑑,𝑒𝑞) is calculated as a parallel 

connection of reactances of individual SGs [83]: 

 𝑋′𝑑,𝑒𝑞 =
1

∑
1

𝑋𝑑,𝑖
′

𝑛
𝑖=1

, (2.30) 

where 𝑋′𝑑,𝑖is the transient reactance of the i-th generator in the group. 

The detailed aggregation approach takes into consideration control systems of generators 

(turbine governors, excitation systems, power system stabilisers). If coherent generators 

are equipped with different types of control systems, the aggregate controller can be 

derived for each type separately or a simplified structure of a control device suitable for 

all types can be used [49, 109]. When it comes to the determination of the parameters of 

the equivalent controllers, iterative non-linear optimization techniques as well as ANNs 

are most commonly applied [83]. The estimated parameters should provide a satisfactory 

match between the responses (in time or frequency domain) produced by the reduced and 

detailed model of the coherent group of SGs. 

2.3.3 Aggregation of Generator Buses 

The final stage in the application of coherency–based equivalencing methods is the 

aggregation of generator buses, which is performed using Zhukov’s method [105]. 

Zhukov’s method eliminates the terminal buses of individual coherent generators and 

replaces them with a single equivalent bus (the illustration of the method is presented in 

Figure 2.1). The process of network reduction relies on two requirements [105]:  

 the currents and voltages at the retained buses in the network have to remain the 

same as in the detailed network model, and  
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 the power injection at the equivalent bus has to be equal to the sum of individual 

power injections at the aggregated (eliminated) buses.  

  
(a) (b) 

Figure 2.1 Network reduction using Zhukov’s method: (a) the original detailed network ({A} and {R} 

refer to the aggregated/eliminated and retained buses, respectively); (b) the reduced network (adopted 

from [105]) 

The change in network structure can be described as follows: 

 [
𝐼𝑅
𝐼𝐴

] = [
𝑌𝑅𝑅 𝑌𝑅𝐴

𝑌𝐴𝑅 𝑌𝐴𝐴
] [

𝑉𝑅

𝑉𝐴
], (2.31) 

 [
𝐼𝑅
𝐼𝑎

] = [
𝑌𝑅𝑅 𝑌𝑅𝑎

𝑌𝑎𝑅 𝑌𝑎𝑎
] [

𝑉𝑅

𝑉𝑎
] = [

𝑌𝑅𝑅 𝑌𝑅𝐴𝜗

𝜗∗𝑇𝑌𝐴𝑅 𝜗∗𝑇𝑌𝐴𝐴𝜗
] [

𝑉𝑅

𝑉𝑎
], (2.32) 

where: 𝐼𝑅 and 𝑉𝑅 is the current injection and voltage at the retained buses, respectively;  

𝐼𝐴 and 𝑉𝐴 is the current injection and voltage at the eliminated buses, respectively; 

𝐼𝑎 and 𝑉𝑎 is the current injection and voltage at the equivalent bus, respectively; 

𝑌𝑅𝑅 is the self-admittance matrix of the retained system calculated using the detailed 

network model; 

𝑌𝑅𝐴 is the mutual-admittance matrix of the retained system calculated using the detailed 

network model; 

𝑌𝐴𝐴 is the self-admittance matrix of the eliminated system calculated using the detailed 

network model; 

𝑌𝐴𝑅 is the mutual-admittance matrix of the eliminated system calculated using the 

detailed network model; 
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𝑌𝑅𝑎 is the mutual-admittance matrix of the retained system calculated using the reduced 

network model (a column matrix); 

𝑌𝑎𝑅 is the mutual-admittance matrix of the equivalent bus calculated using the reduced 

network model (a row matrix); 

𝑌𝑎𝑎 is the self-admittance of the equivalent bus calculated using the reduced network 

model; 

𝜗 is the vector of voltage transformation ratios between the eliminated buses and 

equivalent bus, 𝜗 = 𝑉𝑎
−1𝑉𝐴. 

The expressions for the submatrices in the reduced network model can be obtained on 

the basis of the mathematical formulation of the two requirements for the network 

reduction process: 

 𝑌𝑅𝑅𝑉𝑅 + 𝑌𝑅𝐴𝑉𝐴 = 𝑌𝑅𝑅𝑉𝑅 + 𝑌𝑅𝑎𝑉𝑎, (2.33) 

 𝑉𝑎𝐼𝑎
∗ = 𝑉𝐴

𝑇𝐼𝐴
∗ . (2.34) 

The vector 𝜗 is determined by the voltage angle at the equivalent bus, which can be 

calculated as follows [105]: 

 𝜃𝑎 =
∑ 𝑆𝑖𝜃𝑖𝑖∈{𝐴}

∑ 𝑆𝑖𝑖∈{𝐴}
, (2.35) 

where 𝜃𝑎 is the voltage angle at the equivalent bus, 𝑆𝑖 is the apparent power injection at 

the i-th bus, 𝜃𝑖 is the voltage angle at the i-th bus, and {A} is a set of buses eliminated in 

the process (terminal buses of individual generators).  

Given that the admittances of the reduced network model depend on the transformation 

ratio 𝜗, and thus on network operating condition, the reduced network model is valid for 

another operating point if the transformation ratios are the same for both conditions 

[105].  

2.3.4 Discussion 

Above-described coherency-based techniques rely on the swing curves of generators, and 

thus cannot be applied to converter-connected renewable generation and storage 
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technologies. Over the years, various coherency-based approaches adapted to converter-

connected units have been used for equivalent modelling of RES power plants consisting 

of a single generation technology type [63]. Namely, as coherency cannot be established 

on the basis of rotor angle trajectories, similarity between generators in RES plants is 

assessed according to their real power production, the parameters of primary energy 

source (e.g., wind speed in the case of wind generators, solar irradiance in the case of PV 

systems), structure and parameters of control systems, etc. So far, there has been no 

agreement on the most suitable coherency criteria for each of the types of converter-

connected technologies. Following the identification of coherent units, groups of 

coherent generators are replaced by a single EM, as in the case of conventional 

coherency-based methods. EM parameters can be determined by scaling-up the model of 

individual units (in this case it is assumed that individual units are represented by the 

same model) or estimated in an optimization procedure that minimizes the difference 

between the responses produced by the detailed model and EM of the plant. 

2.4 System Identification-based Equivalent Modelling Methods 

System identification-based approach develops EMs of power plants and networks using 

measured or simulated responses at their boundary buses. These methods are not limited 

to a particular generation technology (unlike the coherency-based techniques) and 

require less information about the analysed system compared to modal analysis-based 

approaches, which makes them suitable for modern systems containing a large number 

of converter-interfaced units. The equivalent modelling procedure consists of three 

stages: 

1. Selection of EM structure 

2. Estimation of EM parameters 

3. Validation of EM. 

2.4.1 Selection of Equivalent Model Structure 

Depending on the amount of knowledge about the analysed system, EM representation 

can be in the form of [42, 83, 91, 110]: 
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  a white-box model, 

  a grey-box model, or 

 a black-box model. 

The white-box model is in fact a detailed mathematical model of the system that includes 

the models of and relationships between all system components, and thus can be 

developed only when all data about the system are available. As in the case of the white-

box modelling, the grey-box method requires a physical insight into the investigated 

system, but the amount of data needed is much smaller compared to the white-box 

approach. In the case of power system modelling, the main network/plant characteristics 

in terms of topology and major devices usually have to be known and the structure of the 

grey-box model then corresponds to the combination of physical models of the most 

important devices in the system. Given that grey-box models are physically intuitive, this 

type of equivalents is often considered to be practical for the implementation in standard 

power system software packages [26].  

In the case of black-box approach, model structure has no resemblance to physical 

properties of the system. The focus is only on obtaining high match between the 

responses of the detailed and equivalent model at the boundary buses, without taking into 

account the physical structure of the system. Given that measured/simulated responses 

at the boundary buses of the system are the only prerequisite for the application of the 

method, this type of equivalent modelling can be used when there is a lack of data about 

the system. The detailed model of the system is replaced by an adequate mathematical 

model (e.g., autoregressive-moving-average model with exogenous input, autoregressive 

model with exogenous inputs, transfer function, state-space model) with suitably chosen 

input and output signals [91, 110]. In case the analysed system cannot be represented by 

any mathematical form, ANNs, as a proven powerful tool for time series forecasting, are 

usually used to model the system. ANNs can learn from experience and thus are capable 

of predicting system outputs for the unknown input signals. Power plants are dynamic 

systems, and their response at the current time step is influenced by the current input 

signals as well as the past behaviour of the plant [98]. Therefore, classical feed-forward 

ANNs are not adequate for modelling dynamic systems as their outputs are determined 

by the input signals at the current time step only. On the other hand, recurrent ANNs with 

feedback from hidden units or output signals can use the information from the past to 
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predict the current system output. Still, ANNs are prone to overfitting, there is no formal 

methodology for defining their architecture and they require large amount of the training 

data [111]. The following sections discuss typical ANNs used for dynamic equivalent 

modelling of power plants and networks. 

2.4.1.1 Nonlinear Autoregressive with Exogenous Inputs Neural Network 

A nonlinear autoregressive with exogenous inputs (NARX) network is one of the 

simplest ANNs for development of EMs of dynamic systems. The operation of the 

NARX network corresponds to the discrete-time nonlinear NARX model [100, 112]:  

 𝑦𝑡 = 𝐺 (
𝑥𝑡, 𝑥𝑡−1, … , 𝑥𝑡−𝑛𝑥

𝑦𝑡−1, … , 𝑦𝑡−𝑛𝑦
), (2.36) 

where 𝑥𝑡 and 𝑦𝑡 are the network input and output at time step t, respectively, 𝑛𝑥 and 𝑛𝑦 

are the input and output time delays, respectively, and G is the nonlinear ANN mapping 

function.  

The NARX network architecture is based on several hidden layers of neurons (a feed-

forward ANN) and a feedback loop from the output. The first hidden layer is fed by the 

exogenous input (signals originating outside the network) at the current time step, and 

two time-delay-line (TDL) memories containing past values of network input and output 

signals (see Figure 2.2 (a)). Two TDL memories store the information about the past 

behaviour of the system, and thus make NARX networks suitable for modelling dynamic 

systems. In case the feedback from the output is removed, the obtained ANN topology 

(having only the current and past exogenous inputs as inputs to the multilayer structure) 

is known as a time-delay ANN. 

A neuron in a hidden layer is connected to all neurons in the next layer, with weights 

indicating the “strength” of the connection between two neurons. The neuron calculates 

the weighted sum of its input signals, assigns a bias to the sum, and then forwards the 

modified sum to the nonlinear activation function [113]: 

 𝑣𝑗,𝑡 = ∑ 𝑤𝑗,𝑘𝑥𝑘,𝑡
𝑚
𝑘=1 + 𝑏𝑗, (2.37) 

 𝑦𝑗,𝑡 = 𝜑𝑗(𝑣𝑗,𝑡), (2.38) 
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where m is the number of inputs of the j-th neuron, 𝑥𝑘,𝑡, 𝑣𝑗,𝑡 and 𝑦𝑗,𝑡 are the k-th input, 

induced local field, and output of the j-the neuron at time step t, respectively, 𝑤𝑗,𝑘 is the 

weight of the connection between the j-th and k-th neuron, 𝑏𝑗 is bias of the j-th neuron, 

𝜑𝑗 is the nonlinear activation function of the j-th neuron (the most common functions are 

sigmoid and hyperbolic tangent function). The operation of the neuron is illustrated in 

Figure 2.2 (b).  

The main disadvantage of NARX networks is their low efficiency as both the number of 

network parameters and computational burden grow by the same factor – the number of 

time delays [114]. Furthermore, it can be difficult to train these networks for long-term 

dependencies, i.e., when the current network output depends on the input and output 

values from the distant past [112, 115] (more details on the network learning algorithm 

are provided in Section 2.4.2). 

 
 

(a) (b) 

Figure 2.2 (a): The NARX network architecture (adapted from [100]); (b): The illustration of neuron 

operation (adapted from [113]) 

2.4.1.2 Recurrent Artificial Neural Network 

The architecture of the recurrent neural network (RNN) is similar to the standard, static, 

feed-forward ANN, except its hidden units/neurons are characterized by recurrent 

connections (see Figure 2.3) [116]. The recurrent connections provide RNN with a 

memory of previous inputs (so-called hidden state), and consequently enable the input 

presented at an earlier time to influence the current network output [117-119]. At each 

time step, the hidden state is determined by the current input vector and hidden state from 

the previous time step. RNN with a single hidden layer of recurrent neurons operates as 

follows [118, 120]: 

 ℎ𝑡 = 𝜎ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ), (2.39) 

 𝑦𝑡 = 𝜎𝑦(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦), (2.40) 
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where 𝑥𝑡 and 𝑦𝑡 is the input and output vector of the network, respectively, ℎ𝑡 is the 

hidden state of the hidden layer, all at time step t; 𝑊𝑥ℎ is the correlation weight matrix 

between the input x and hidden layer, 𝑊ℎℎ is the matrix of recurrent weights between the 

two consecutive hidden states, 𝑊𝑦ℎ is the correlation weight matrix between the hidden 

state and output y, 𝑏ℎ and 𝑏𝑦 is the bias matrix of the hidden and output layer, 

respectively, 𝜎ℎ and 𝜎𝑦 is the activation function of the hidden (sigmoid or hyperbolic 

tangent function) and output layer, respectively. 

One of the main issues associated with the application of RNNs is the occurrence of the 

vanishing or exploding gradient during the network training (they are even more prone 

to this issue than NARX networks [115]). Namely, the partial derivatives of the cost 

function with respect to weights/biases may experience a large exponential decrease or 

increase if network outputs depend on network inputs from temporally distant time 

intervals [113, 117, 119] (more detailed description of the network learning algorithm is 

given in Section 2.4.2). As a result, RNNs are not adequate for modelling dynamic 

systems characterized by long-term dependencies (delays of more than 10 time steps 

make the training of RNNs almost impossible [117]). 

 

Figure 2.3 The architecture of the RNN (adopted from [121]) 

2.4.1.3 Long Short-Term Memory Artificial Neural Network 

In order to solve the issue with the vanishing gradient problem, long short-term memory 

(LSTM) networks were proposed [122]. The name of this type of ANNs stems from their 

property to store the information about previous inputs (short-term memory, as opposed 

to long-term memory in the network that refers to slowly changing weights of 

connections between network elements) through feedback connections for long time 

periods [122]. Unlike RNNs that have ordinary neurons in hidden layers, LSTM 
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networks contain LSTM blocks in hidden layers. Each LSTM block consists of at least 

one recurrently connected LSTM memory cell with four multiplicative gates (the input, 

input modulation, forget and output gate) [117, 122]. The gates control the information 

stored in and exported from the LSTM cell. It was shown in [122] that this minimizes 

the possibility of the occurrence of the vanishing gradient problem. The structure of a 

single LSTM cell is illustrated in Figure 2.4, while the operation of LSTM cell can be 

mathematically described as follows [120]: 

 𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓), (2.41) 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖), (2.42) 

 𝑔𝑡 = 𝜙(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐), (2.43) 

 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑔𝑡, (2.44) 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜), (2.45) 

 ℎ𝑡 = 𝑜𝑡 ∘ 𝜙(𝑐𝑡), (2.46) 

where 𝑥𝑡 and ℎ𝑡 are the inputs and outputs (hidden state) of the LSTM cell, respectively, 

𝑓𝑡, 𝑖𝑡, 𝑔𝑡, and 𝑜𝑡 are the forget, input, input modulation and output gate, respectively, 𝑐𝑡 

is the internal memory cell state, all at time step t, 𝑊𝑥𝑓, 𝑊𝑥𝑖, 𝑊𝑥𝑐 and 𝑊𝑥𝑜 are the weight 

matrices between the input x and the forget, input, input modulation and output gate, 

respectively, 𝑊ℎ𝑓, 𝑊ℎ𝑖, 𝑊ℎ𝑐 and 𝑊ℎ𝑜 are the weight matrices between the last time step 

of the hidden state h and the forget, input, input modulation and output gate, respectively, 

𝑏𝑓, 𝑏𝑖, 𝑏𝑐 and 𝑏𝑜 are the biases of the forget, input, input modulation and output gate, 

respectively, 𝜎() is sigmoid activation function, 𝜙() is hyperbolic tangent activation 

function, and ∘ stands for the element-wise multiplication. The elements of the weight 

matrices and bias vectors are estimated as a part of the ANN training procedure. The 

combination of sigmoid and hyperbolic tangent activation functions is used in LSTM 

network structure in this research, as it was adopted in many previous studies [99, 112, 

123-128]. 

The input gate controls the information that is transferred to the memory cell and 

consequently protects the content of the LSTM cell from irrelevant inputs, whereas the 

input modulation gate modifies the information that is going to be stored in the cell by 
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adding non-linearity to the information [118, 122]. The input and the input modulation 

gate differ in the type of the activation function – the input gate uses the sigmoid function, 

whereas the input modulation gate relies on the hyperbolic tangent function. One of the 

principle differences between the two is that the output of the sigmoid activation function 

is within the range (0, 1), while the output of the hyperbolic tangent function lies between 

-1 and 1. The output gate decides on the LSTM cell output, and thus prevents the 

perturbation of other network elements by currently irrelevant information stored in the 

cell [122]. The forget gate provides LSTM network with the ability to reset the cell state 

by controlling the value of the self-loop weight of the memory cell. In this way, the 

information that is no longer needed can be selected and removed from the content of the 

memory cell [120]. Otherwise, continuous flow of input data could result in the 

unbounded growth of the cell state [129].  

 

Figure 2.4 The architecture of an LSTM block with a single LSTM cell (adopted from [120]) 

2.4.2 Estimation of Equivalent Model Parameters 

Once EM structure has been selected, model parameters have to be estimated. 

Optimization procedures used for parameter tuning minimize the difference between the 

responses produced by the EM and the measured/simulated responses of the system [42]: 

 min
𝜃

∑ 휀2 = ∑ ‖𝑦(𝑡) − 𝑦𝑀(𝜃, 𝑡)‖2𝑁
𝑡=1

𝑁
𝑡=1 , (2.47) 

where N is the number of time steps in the responses, θ is a set of EM parameters, ε is 

EM error, y(t) and 𝑦𝑀(𝜃, 𝑡) is the measured/simulated output of the actual system and 

EM output, respectively. The Quasi-Newton and Levenberg-Marquardt method as well 

as heuristic optimization algorithms represent the most commonly used optimization 
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techniques [91]. The EM parameter estimation stage is shown in Figure 2.5 (the signal rs 

in Figure 2.5 denotes possible noise in the measured system responses). 

In the case of black-box EMs in the form of ANNs, EM parameter estimation process 

includes the application of the network learning algorithm in combination with the 

selected optimization technique [117]. The values of network trainable parameters 

(weights and biases) are iteratively updated in the network training process starting from 

the initial, randomly chosen values, with the aim of identifying those that result in the 

best ANN cost function value.  

 

Figure 2.5 The estimation of system identification-based model parameters (adopted from [42]) 

In the case of NARX and time-delay ANNs, the static backpropagation can be used for 

the network learning process [112]. In order to perform the static backpropagation, 

NARX network has to be transformed into the open-loop architecture (i.e., traditional 

feed-forward ANN) first (see Figure 2.6). Given that the target output values from the 

training dataset are known, the feedback from the output can be eliminated and delayed 

target outputs can be used as inputs to the multilayer structure together with the current 

and past exogenous inputs. Following the network training, the feedback from the output 

is re-introduced and the network performs time series prediction in the closed-loop 

architecture (i.e., the original NARX topology).  

The backpropagation includes two phases: the forward and backward pass. The forward 

pass represents the computation of the outputs of all neurons in the network starting from 

the input layer, while the backward pass involves the calculation of the partial derivatives 

of the ANN cost function with respect to weights and biases. For each time step in the 

trained time series, the whole backpropagation process is carried out. The partial 

derivative of the ANN cost function with respect to a weight is defined by (2.48) [113]: 
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𝜕𝑂

𝜕𝑤𝑗,𝑖
= ∑

𝜕𝑂𝑡

𝜕𝑤𝑗,𝑖

𝑇
𝑡=1 = ∑

𝜕𝑂𝑡

𝜕𝑦𝑗,𝑡

𝜕𝑦𝑗,𝑡

𝜕𝑣𝑗,𝑡

𝜕𝑣𝑗,𝑡

𝜕𝑤𝑗,𝑖

𝑇
𝑡=1 , (2.48) 

where T is the total number of time steps in the input data, O is the ANN cost function, 

which can be split into T time steps, 𝑂 = ∑ 𝑂𝑡
𝑇
𝑡=1 , and 𝑤𝑗𝑖 is the weight between the j-th 

and i-th neuron. The partial derivative of the cost function with respect to a bias can be 

derived in a similar manner. 

In case the j-th neuron is in the output layer, the calculation of 
𝜕𝑂𝑡

𝜕𝑦𝑗,𝑡
 is straightforward as 

the ANN cost function is defined on the basis of the difference between the target and 

actual response of the output neurons. However, in case the j-th neuron is located in a 

hidden layer, the following recursive formula has to be used: 

 
𝜕𝑂𝑡

𝜕𝑦𝑗,𝑡
= ∑

𝜕𝑂𝑡

𝜕𝑦𝑘,𝑡
𝑘∈𝐾

𝜕𝑦𝑘,𝑡

𝜕𝑣𝑘,𝑡

𝜕𝑣𝑘,𝑡

𝜕𝑦𝑗,𝑡
, (2.49) 

where K is a set of neurons in the next layer that are connected to the j-th neuron. 

 

Figure 2.6 The illustration of the open-loop architecture for NARX network training, with 𝑦𝑡
∗ 

representing the target outputs (adapted from [100]) 

On the other hand, the backpropagation through time (BPPT) is a typical choice for the 

learning algorithm of RNNs and LSTM networks [118, 124]. The BPPT algorithm 

represents an extension of the static backpropagation [113]. The principle of the BPPT 

algorithm lies in unfolding/unrolling RNN into a multi-layered feed-forward network, 

with each layer corresponding to a single time step. An example of an unrolled RNN is 

shown in Figure 2.7. Each layer in the RNN unfolded in time is a copy of the whole RNN 

structure, meaning weights and biases are the same in each layer. As in the case of the 

static backpropagation, the BPPT consists of two stages: the forward and backward pass. 

The former represents a forward calculation applied to the input data from the first until 

the last time step (the set of equations describing ANN operation given in Section 2.4.1.2 

and Section 2.4.1.3). The goal of the second stage of the BPPT is the computation of the 
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partial derivatives of ANN cost function with respect to network parameters (weights 

and biases) using the unrolled RNN structure. The calculation of the partial derivatives 

relies on the following equation [113]: 

 𝑑𝑣𝑗,𝑡 =
𝜕𝑂

𝜕𝑣𝑗,𝑡
= {

𝜑𝑗
′(𝑣𝑗,𝑡) [

𝜕𝑂

𝜕𝑦𝑗,𝑡
+ ∑ 𝑤𝑗,𝑘𝑑𝑣𝑘,𝑡+1𝑘∈𝑆 ] , 𝑡 < 𝑇

𝜑𝑗
′(𝑣𝑗,𝑡)

𝜕𝑂

𝜕𝑦𝑗,𝑡
, 𝑡 = 𝑇

, (2.50) 

where 𝑤𝑗,𝑘 is the weight of the connection between the j-th and k-th neuron, and S is the 

set of indices of neurons for which the target response is defined. 

In the case of the RNNs, the backward error propagation involves the computation of 
𝜕ℎ𝑡

𝜕ℎ𝑘
 

across many time steps [116]: 

 
𝜕ℎ𝑡

𝜕ℎ𝑘
= ∏

𝜕ℎ𝑖

𝜕ℎ𝑖−1
= ∏ 𝑊ℎℎ𝑑𝑖𝑎𝑔(𝜎′ℎ(𝑊𝑥ℎ𝑥𝑖 + 𝑊ℎℎℎ𝑖−1 + 𝑏ℎ))𝑘<𝑖≤𝑡𝑘<𝑖≤𝑡 . (2.51) 

As seen in (2.51), the error backpropagation relies on the multiplications of the recurrent 

weight matrix, which can, depending on the values of the weights and the number of time 

steps considered in the backward pass, cause a large increase or decrease of the gradient 

[116]. When it comes to LSTM networks, the partial derivative of 𝑐𝑡 with respect to 𝑐𝑡−1 

does not necessarily reduce to zero as the number of time steps increases, as LSTM 

networks can control the forget gate and reduce the rate of the gradient decay [130]: 

 
𝜕𝑐𝑡

𝜕𝑐𝑡−1
=

𝜕𝑐𝑡

𝜕𝑓𝑡

𝜕𝑓𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
+

𝜕𝑐𝑡

𝜕𝑐𝑡−1
+

𝜕𝑐𝑡

𝜕𝑖𝑡

𝜕𝑖𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
+

𝜕𝑐𝑡

𝜕𝑔𝑡

𝜕𝑔𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕𝑐𝑡−1
, (2.52) 

𝜕𝑐𝑡

𝜕𝑐𝑡−1
= 𝑑𝑖𝑎𝑔(𝑓′

𝑡
)𝑊ℎ𝑓𝑑𝑖𝑎𝑔(𝑜𝑡−1 ∘ 𝜙′(𝑐𝑡−1)) ∘ (𝑐𝑡−1𝛪) + 

(2.53) 
 +𝑑𝑖𝑎𝑔(𝑓𝑡) + 

 +𝑑𝑖𝑎𝑔(𝑖′𝑡)𝑊ℎ𝑖𝑑𝑖𝑎𝑔(𝑜𝑡−1 ∘ 𝜙′(𝑐𝑡−1)) ∘ (𝑔𝑡𝐼) + 

 +𝑑𝑖𝑎𝑔(𝑔′𝑡)𝑊ℎ𝑐𝑑𝑖𝑎𝑔(𝑜𝑡−1 ∘ 𝜙′(𝑐𝑡−1)) ∘ (𝑖𝑡𝐼) 

where I is the identity matrix.  
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Figure 2.7 The graph of the RNN unrolled in time (adapted from [116]) 

Following the computation of the required partial derivatives of the cost function with 

respect to network parameters, the weights and biases are adjusted according to the 

chosen optimization technique (e.g., steepest descent, gradient descent with momentum, 

Levenberg-Marquardt, Adam optimizer, Adagrad optimizer, RMSProp optimizer, 

evolutionary algorithms) [113, 117]. The backpropagation and adjustment of network 

parameters are repeated until the best/optimal ANN cost function value is identified. 

2.4.3 Validation of Equivalent Model 

Assessing the suitability of the developed EM for representing the given system is the 

final step in system identification-based equivalent modelling. The EM accuracy is 

usually analysed using the objective function from EM parameter estimation process. If 

the parameters of EM structure have a physical meaning, the estimated values of 

parameters should be compared “with what is reasonable from prior knowledge” as well 

[42]. 

2.5 Unsupervised Data Mining Methods – Clustering Algorithms 

Clustering process represents unsupervised grouping of unlabeled data according to their 

similarity [131, 132]. The objective is to achieve high similarity between objects within 

the same group/cluster and high dissimilarity between objects from different clusters. 

Clustering results can provide a useful insight into the natural patterns in the analysed 

dataset and serve as a pre-processing step in more complex data mining tasks [133]. 

Most of the work in this area has been focused on the clustering of static data (i.e., data 

whose features remain unchanged or change negligibly over time), meaning the majority 
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of the existing clustering algorithms was originally developed for static data [133, 134]. 

However, due to the increasing capacity for data storage, data from various areas ranging 

from sales data and stock prices to biomedical and electrical power system measurements 

can be recorded and stored as time series data for a long period. A need to analyse/process 

these datasets efficiently has resulted in an increasing interest in time series clustering. 

Even though the characteristics of time series data are considerably different from the 

ones of static data, clustering of both data types is usually carried out using the same 

clustering methods [134]. As times series are characterized by high dimensionality in 

space, clustering algorithms designed for static data are usually slightly modified in order 

to be used for time series clustering. So far, three techniques have been used for 

addressing the issue [134]: raw data-, feature- and model-based approach. Raw data-

based method combines traditional clustering algorithms with distance measures more 

suitable for finding similarity in temporal sequences. On the other hand, the other two 

approaches attempt to reduce the dimensionality of clustering data by representing time 

series by a set of its most important features (feature-based clustering) or assuming that 

it is produced by a certain model (model-based clustering). Standard clustering methods 

with distance measures suitable for static data are then applied to transformed time series. 

However, the selection of relevant features is highly application dependent, while the 

model-based approach requires setting up model structure and/or parameters and is not 

efficient for large datasets [133].  

Typical stages in clustering analysis of both static and time series data include the 

selection of distance metric, selection and application of clustering algorithm, and 

validation of clustering results [133]. These steps are described in the following sections. 

2.5.1 Distance Measures 

Distance measure has a high influence on clustering results as it determines how the 

similarity between clustering objects is calculated. There is no universal distance metric 

suitable for all datasets, meaning distance measure should be chosen according to data 

type and specific properties of the considered clustering dataset [134]. In the case of time 

series clustering, it also has to be taken into account whether the similarity in time, shape 

or structural similarity is analysed [133]. Two time series are similar in time if they are 

characterized by similar patterns occurring at the same time, whereas time misalignment 

between patterns is allowed in the clustering on the basis of similarity in shape. Structural 
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similarity is assessed according to the parameters of models representing the analysed 

time series (model-based clustering). 

The most widely used distance measure is the traditional Euclidean distance [131]: 

 𝑑𝐸 = √∑ (𝑥𝑘 − 𝑦𝑘)2𝑑
𝑘=1 , (2.54) 

where x and y are the clustering objects, and d is the dimensionality of the objects.  

Another commonly utilised distance measure is the Mahalanobis distance, which takes 

into consideration the correlation between the clustering objects as it is calculated on the 

basis of variance-covariance matrix, C [131]: 

 𝑑𝑀 = √(𝑥 − 𝑦)𝐶−1(𝑥 − 𝑦)𝑇. (2.55) 

Both the Euclidean and Mahalanobis distance are suitable for static data as well as time 

series of equal length [134].  

When it comes to the clustering of time series based on the similarity in shape, Dynamic 

Time Warping (DTW) and Longest Common Subsequence (LCSS) distance measures 

can be used as well [134-136]. Both measures are capable of assessing similarity between 

the sequences of different lengths.  

The calculation of similarity between two time series using the DTW is based on a cost 

matrix that contains distances (usually Euclidean distances) between each pair of data 

points from the considered two time series [135]. The aim is to find a sequence of matrix 

elements (so-called a warping path) that corresponds to the minimum distance between 

the time series. The elements of the warping path have to satisfy three conditions:  

 The warping path has to start with a pair of the first data points of the time series 

and ends with a pair of the last data points;  

 The elements of the warping path have to be adjacent matrix elements; 

 The indices of paired elements have to be non-monotonically decreasing. 
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Given that the main disadvantage of the DTW is its high computational burden (O(nm), 

where n and m are the lengths of the analysed time series), several techniques that limit 

the part of the cost matrix being investigated have been proposed [135]. The most popular 

approaches are the Sakoe-Chiba Band and the Itakura Parallelogram (see Figure 2.8) 

[137]. 

  
(a) (b) 

Figure 2.8 The Sakoe-Chiba Band (a) and the Itakura Parallelogram (b) constraints (grey areas are 

considered in the DTW calculation) (adopted from [138]) 

The LCSS measure determines similarity between two time series by identifying the 

longest common subsequence [136]. The spatial and temporal distances between the data 

points that can be matched into a common subsequence have to be below user-defined 

thresholds. Unlike the other three described distance measures, the LCSS allows for a 

certain number of data points in time series to be unmatched. Consequently, the measure 

is robust to noise, as it does not “consider the most dissimilar part of the objects” [136]. 

The computational complexity is O(δ(n+m)), where δ is the maximum allowed number 

of time steps between the instances of the data points being matched [136]. 

2.5.2 Clustering Algorithms 

Clustering algorithms can be divided into five main categories: partitioning, hierarchical, 

model-based, density-based and grid-based, with the last two types rarely used for time 

series clustering [134]. Even though various clustering algorithms have emerged due to 

a growing need for solving different clustering tasks, the basic clustering algorithms, 

partitioning and hierarchical algorithms, have been most commonly utilized [134]. The 

simplicity and availability in software packages are the major reasons for their 

widespread application [131, 139]. The following sections provide the description of the 

main representatives of each type of clustering algorithms. 
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2.5.2.1 Partitioning Algorithms 

Partitioning clustering algorithms preform division of a dataset into a predefined number 

of clusters through an iterative process [140]. At each step of the clustering procedure, 

clustering objects are reassigned from one cluster to another in order to optimize the 

clustering objective. The number of clusters has to be set in advance, which is their major 

drawback. Optimal number of clusters is typically defined using internal clustering 

evaluation indices calculated for a range of the number of clusters [140] (detailed 

explanation is provided in Section 2.5.3). The algorithms are suitable for both static and 

time series data [133, 134].  

The basic partitioning clustering algorithm is the k-means algorithm [131, 140]. It has 

been extensively used in the clustering of large databases due to its favourable 

computational complexity of approximately O(N), where N is the number of clustering 

objects. The algorithm represents a cluster by a centroid, which is determined as an 

average of the elements in the cluster. The clustering objective function is the sum of 

squared distances between clustering objects and their corresponding centroids [131, 

140]: 

 𝐸 = ∑ ∑ ‖𝑥𝑖
𝑗
− 𝑐𝑗‖

2𝑁𝑗

𝑖=1
𝑘
𝑗=1 , (2.56) 

where 𝑥𝑖
𝑗
 is the i-th clustering object in the j-th cluster, 𝑐𝑗 is the centroid of the j-th cluster, 

𝑁𝑗 is the number of elements in the j-th cluster, k is the total number of clusters and ||·|| 

is the distance measure. 

In the first iteration, cluster centroids are chosen randomly from the analysed dataset and 

the rest of the data are allocated to the closest centroid according to the selected distance 

measure (the Euclidian distance is usually used). Following this, centroids of newly 

formed clusters are calculated and the whole process is repeated. The clustering 

procedure continues until the convergence criterion is reached (the objective function 

stops decreasing or the same centroids are calculated in the successive stages of the 

clustering procedure) [131, 140].  
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The clustering result of the k-means is highly affected by the choice of the initial 

centroids and the algorithm does not necessarily converge to the global optimum [131, 

140]. Thus, the k-means algorithm is usually repeated several times with different initial 

representative objects (for the same total number of clusters) and clustering result that 

corresponds to the best value of the objective function represents the final output of the 

algorithm. In addition, the algorithm is sensitive to outliers and noise as these elements 

can significantly influence the calculation of cluster centres, and cannot identify non-

spherical clusters [131, 140]. 

In [141] the k-means++ clustering algorithm was suggested in order to address the 

problem of the selection of initial centroids. The greater distribution of initial centroids 

across the dataset is achieved by choosing the first initial centroid randomly from the 

entire dataset, and then selecting the remaining initial centroids through a two-stage 

procedure. The two-stage process involves the identification of the closest current 

centroid for each non-representative clustering object, and the selection of the new 

centroid according to the weighted probability distribution with weights proportional to 

the previously computed distances. In order to increase the robustness of the k-means 

algorithm to outliers, the k-medoids approach was developed [140]. Instead of 

representing clusters by centroids, the k-medoids uses actual clustering objects that are 

the closest to clusters’ centroids as cluster representatives (so-called cluster medoids). 

The Partitioning Around Medoids (PAM) algorithm is the most popular representative 

of the k-medoids approach. However, lower sensitivity to outliers is accompanied with 

higher computational burden (O(k(N-k)2) for a single iteration) compared to the classical 

k-means [140, 142]. The PAM variants, such as the Clustering Large Application 

(CLARA) and Clustering Large Applications based upon RANdomized Search 

(CLARANS) algorithm, were proposed to reduce computational complexity [140, 142]. 

The CLARA applies the PAM clustering to a random sample extracted from the analysed 

dataset, while the CLARANS relies on the randomized search for updating a certain 

number of current medoids at each iteration. Still, the CLARA algorithm cannot produce 

good clustering results if the random sample does not contain all the best medoids from 

the entire dataset, and the CLARANS requires the number of medoid substitutions to be 

defined in advance. 

All the above-mentioned partitioning algorithms perform “hard” or “crisp” clustering, 

meaning each clustering object is allocated to a single cluster [133, 140]. As opposed to 
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this clustering approach, the fuzzy c-means algorithm assigns all clustering objects to all 

clusters with a certain membership degree [132, 143]. The membership degrees of all 

clustering objects with respect to all clusters are grouped into a membership matrix and 

the element of the matrix is calculated using the following expression [143]: 

 𝑢𝑖𝑗 =
1

∑ (
𝑑2(𝑥𝑖,𝑐𝑗)

𝑑2(𝑥𝑖,𝑐𝑙)
)

1
(𝑚−1)⁄

𝑘
𝑙=1

, (2.57) 

where 𝑢𝑖𝑗 is the membership degree of the i-th clustering object with respect to the j-th 

cluster, 𝑥𝑖 is the i-th clustering object, 𝑐𝑗 is the centroid of the j-th cluster, 𝑑(𝑥𝑖, 𝑐𝑗) is the 

Euclidean distance between the i-th clustering object and the j-th fuzzy centroid, k is the 

number of clusters, and m is the fuzziness level (m∈(1,∞), m is usually 2). 

The fuzzy centroid is defined as follows [143]: 

 𝑐𝑗 =
∑ (𝑢𝑖𝑗)

𝑚
𝑥𝑖

𝑁𝑗
𝑖=1

∑ (𝑢𝑖𝑗)
𝑚𝑁𝑗

𝑖=1

, (2.58) 

where 𝑁𝑗 is the number of objects in the j-th cluster. 

Similar to the k-means clustering, the objective function of the fuzzy c-means algorithm 

is the sum of distances between fuzzy centroids and cluster elements [143]: 

 𝐽 = ∑ ∑ (𝑢𝑖𝑗)
𝑚𝑁𝑗

𝑖=1
𝑘
𝑗=1 ‖𝑐𝑗 − 𝑥𝑖‖

2
. (2.59) 

The fuzzy c-means method is also characterized with linear computational complexity, 

which makes it suitable for large datasets [132]. 

2.5.2.2 Hierarchical Algorithms 

Hierarchical clustering (HC) algorithms perform clustering by organizing objects into a 

“hierarchical” structure [131, 140]. Depending on the way the hierarchical structure is 

obtained, they can be divided into agglomerative (bottom-up approach) and divisive (top-

down approach). The former considers all clustering objects as individual clusters at the 

beginning of the clustering process, and then iteratively merges them into a single large 

cluster. On the other hand, the divisive algorithm starts with one cluster containing all 



82 | Techniques for Dynamic Equivalent Modelling of Power Plants and Networks 

clustering objects and divides this cluster into smaller ones during the process. Divisive 

algorithms have been significantly less utilised than agglomerative ones due to a large 

number of ways in which a set of objects can be partitioned into two subsets (2N-1-1 

possible divisions in case of N clustering objects) [132, 140]. The decision on merging 

or splitting of clusters is made on the basis of the similarity between clusters, which is 

calculated using distance and linkage measure [131, 140]. Linkage measures specify how 

similarity between clusters is assessed and the most commonly used are: single, 

complete, average (weighted and unweighted) and Ward’s [140]. Single and complete 

linkage measure requires the computation of the distance between the two closest and 

farthest members of the clusters, respectively, while average linkage is based on the 

average distance between all pairs of objects in two clusters. Unweighted average linkage 

takes into account the number of elements in clusters as well. Ward’s linkage measure 

merges the pair of clusters that provides the minimum increase in the sum of squared 

inter-cluster distances. 

A dendrogram is usually used for the graphical representation of the clustering results. It 

shows which clusters are grouped (in the case of bottom-up) or divided (in the case of 

top-down) at each step of the clustering process [140]. An example of the dendrogram is 

given in Figure 2.9. Clusters are represented by nodes, whereas the vertical axis of the 

dendrogram shows the similarity measure between clusters.  

 

Figure 2.9 Graphical representation of the dendrogram (adopted from [144]) 

As opposed to the partitioning algorithms, the HC does not require the number of clusters 

to be defined in advance. However, the problem of selecting the optimal number of 

clusters still remains. The best number of clusters can be estimated using internal 

clustering evaluation indices [145] (as in the case of the partitioning algorithms) or by 
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inspecting the dendrogram structure (e.g., a large change in the similarity measure 

indicates that considerably dissimilar clusters are merged at that stage of the clustering 

process [144]). 

One of the drawbacks of the HC algorithms is that the merging or division of clusters 

cannot be corrected once it has been carried out [140]. Additionally, the HC methods are 

characterized by high computational complexity (at least O(N2)), are sensitive to outliers 

and have difficulty in identifying non-spherical-shaped clusters [140]. Several 

algorithms on the basis of the classical HC were proposed to address some of these issues, 

such as the balanced iterative reducing and clustering using hierarchies (BIRCH) and the 

clustering using representatives (CURE) [133, 134]. The BIRCH algorithm uses a set of 

features to describe the cluster and organizes these sets into a clustering feature tree that 

represents cluster hierarchy [140]. The tree structure is responsible for high 

computational efficiency (O(N)), however, the algorithm fails to identify non-spherical 

clusters as it is based on radius criterion, and relies on the limited amount of information 

about clustering objects [140]. On the other hand, the CURE represents a cluster by a set 

of “well scattered points”, which enables the algorithm to identify arbitrary shaped 

clusters [146]. The first cluster representative is chosen as the farthest one from the 

cluster centroid (average of elements within the cluster), while each next representative 

point is selected as the farthest one from the previously chosen points. These 

representatives are then “moved towards” the cluster centroid proportionally to a 

predefined parameter value in order to reduce the impact of outliers on the clustering 

result. The distance between two clusters is defined as the minimum distance between 

any two representative points from the clusters. Unlike the traditional HC, the CURE 

requires the number of clusters to be chosen in advance. Given that the worst-case time 

complexity is O(N2log(N)), the CURE uses a random data sample in the case of large 

datasets.  

2.5.2.3 Model-based Algorithms 

The key assumption in the model-based clustering of time series is that the analysed data 

can be produced by a stochastic or an ANN-based model [133]. The main disadvantages 

of these clustering methods are the requirement for specifying model structure in advance 

(mainly relying on user experience) and slow processing time of large datasets [133].  
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The most popular stochastic models used for data representation are Hidden Markov 

Models (HMMs) and different variants of Autoregressive Integrating Moving Average 

(ARIMA) models [134, 135]. HMMs are described by [132, 147]: 

 a discrete set of unobserved states;  

 a discrete set of observations;  

 an initial state probability distribution; 

 a transition matrix (defines the probability of moving from one state to another);  

 an emission matrix (defines the probability of generating a certain output value 

from a certain system state). 

The current model output is defined by the current state and emission distribution, while 

the model state at the current time step depends on the state at the previous time step and 

transition distribution function [132]. HMM parameters for the given set of observations 

are usually estimated using the Baum-Welch algorithm, which maximizes the likelihood 

of the observations being produced by the HMM [147, 148]. The number of states has to 

be set in advance, which is one of the major disadvantages of these models [148]. 

ARIMA model for non-stationary time series (i.e., time series with mean or variance 

varying with time) is given by [149, 150]: 

 (1 − ∑ 𝛷𝑗𝐵
𝑗𝑝

𝑗=1 )(1 − 𝐵)𝑑𝑋𝑡 = 𝜃0 + (1 − ∑ 𝜃𝑗𝐵
𝑗𝑞

𝑗=1 )𝑒𝑡, (2.60) 

where Xt is the value of time series X at time step t, p is the autoregressive order, q is the 

moving average order, d is the order of differencing, (Φ1,…,Φp) is a set of autoregressive 

coefficients that model the correlation between Xt and its preceding values, (θ1,…, θq) is 

a set of moving average coefficients, 𝜃0 is the deterministic trend term (often neglected), 

e(t) is the Gaussian white noise, and B is an operator with the following characteristic: 

BpXt=Xt-p. 

In the case of the stationary time series, the order of the differencing is equal to zero, and 

the following variant of the ARIMA model, autoregressive moving average (ARMA) 

model is used [150]: 

 (1 − ∑ 𝛷𝑗𝐵
𝑗𝑝

𝑗=1 )𝑋𝑡 = 𝜃0 + (1 − ∑ 𝜃𝑗𝐵
𝑗𝑞

𝑗=1 )𝑒𝑡, (2.61) 
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where 𝜃0 is related to the mean of the time series, 𝜇, i.e., 𝜃0 = 𝜇(1 − ∑ 𝛷𝑗
𝑝
𝑗=1 ). 

Another two special cases of the ARIMA model are autoregressive (AR) model [150]:  

 (1 − ∑ 𝛷𝑗𝐵
𝑗𝑝

𝑗=1 )𝑋𝑡 = 𝜃0 + 𝑒𝑡, (2.62) 

and moving average (MA) model [150]: 

 𝑋𝑡 = 𝜇 + (1 − ∑ 𝜃𝑗𝐵
𝑗𝑞

𝑗=1 )𝑒𝑡, (2.63) 

where 𝜃0 = 𝜇(1 − ∑ 𝛷𝑗
𝑝
𝑗=1 ). 

The maximum likelihood method has been typically used in the parameter estimation 

process of ARIMA models [150]. 

Data clustering using HMMs and ARIMA models usually involves [147, 149]:  

 fitting of models to all individual clustering objects in the dataset or initial 

clusters,  

 calculation of similarity between models (e.g., based on the similarity in values 

of model parameters [149, 151], probability of a clustering object being generated 

by models initially derived for other objects [147, 152], etc.), and  

 application of other clustering algorithm to the previously computed similarity 

measures in order to obtain final clusters. 

The most widely used ANN-based clustering model is the Kohonen self-organizing map 

(SOM) that transforms clustering data from high-dimensional space into a two-

dimensional network structure [133, 153]. Each neuron/unit in the map is represented by 

a d-dimensional vector (a prototype vector), where d is the dimension of the clustering 

objects. At the beginning of the clustering process, initial values are assigned to 

prototypes and then each clustering object (i.e., input vector) is presented to the SOM to 

identify its best matching unit (BMU). The BMU corresponds to the prototype that is the 

closest to the input vector according to the Euclidean distance. After identifying the BMU 

for the given input vector, the BMU as well as a certain number of units in its 

neighbourhood are updated. The number of neighbourhood units being updated reduces 
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during the training procedure; in the beginning, almost the whole map represents the 

neighbourhood of the BMU, whereas only the BMU is updated at the final step. 

Therefore, the SOM relies on the “topology preserving” approach, meaning that 

clustering objects that are close to each other in the original data space are mapped into 

topologically closed SOM units [153]. The major drawback of SOM application is a large 

number of user-defined parameters (the number and spatial layout of SOM neurons, the 

mechanism of BMU update) as well as potential misrepresentation of the original space 

density [132]. 

2.5.2.4 Density-based Algorithms 

Density-based clustering algorithms define clusters “as dense regions in the data space, 

separated by sparse regions”, which allows them to identify arbitrary shaped clusters 

[140]. One of the basic density-based algorithms is Density Based Spatial Clustering of 

Applications with Noise (DBSCAN), which identifies dense regions on the basis of the 

minimum number of objects (MinPts) in the ε neighbourhood of cluster objects [154]. 

Objects that are left unassigned to any cluster/dense region at the end of the clustering 

procedure correspond to outliers (noise data). However, the proper identification of 

clusters is highly dependent on these two input parameters, ε and MinPts [146]. Given 

that the DBSCAN is not suitable for datasets characterized by different local densities in 

different regions of the data space, the Ordering points to identify the clustering structure 

(OPTICS) algorithm was developed [155]. The algorithm does not produce a single 

clustering result but a “density-based cluster ordering” that does not require a single 

global parameter setting [155]. The ordering contains the information about “intrinsic 

cluster structure” of the analysed dataset, and can be obtained by running the DBSCAN 

for a large number of combinations of input parameters [155].  

Another popular clustering method is the Density-based clustering (DENCLUE) 

algorithm that organizes the clustering dataset into a map consisting of d-dimensional 

hypercubes, where d is the dimension of clustering objects [156]. Only data from highly 

populated hypercubes and their neighbourhood hypercubes are actually used in the 

clustering, which in turn provides the computational complexity of O(Nlog(N)) [132]. 

The identification of clusters relies on the kernel density estimation approach [156]. 

Namely, the local maxima of the overall density function of the relevant data (the density 

function is estimated using the Gaussian kernel) correspond to cluster representatives, 
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and the closest local maximum is determined for each clustering object using the hill-

climbing technique. Clustering objects associated with the same local maximum are 

allocated to the same cluster. However, the estimation of optimal parameters of the 

density function can be mathematically challenging and time-consuming in the case of 

high dimensional clustering data [157]. 

2.5.2.5 Grid-based Algorithms 

Grid-based algorithms operate by dividing the data space into a certain number of cells 

and conducting the clustering process using statistics about clustering objects within the 

cells (e.g., the number of elements within the cell, the average, minimum, and maximum 

of the attributes of clustering objects in the cell) [140]. They have been widely used for 

spatial data clustering. The computational time usually depends on the number of cells, 

not on the size of the analysed dataset.  

2.5.3 Clustering Evaluation Measures 

The evaluation of clustering quality can be carried out using external or internal indices 

[133]. External indices determine the similarity between the results of the clustering 

algorithm and the known partitions (the ground truth) that have to be defined by human 

experts using prior information about the clustering data. Some of the commonly used 

external indices are [133, 134, 158]: 

  Cluster purity: For each cluster produced by the clustering procedure and each 

known partition/class, the number of common clustering objects is computed and 

the dominant class is determined for each cluster: 

 𝐶𝑃 =
1

𝑁
∑ 𝑚𝑎𝑥

1≤𝑗≤𝑘
|𝐺𝑗 ∩ 𝐶𝑖|

𝑘
𝑖=1 , (2.64) 

where C is a set of clusters obtained using the clustering algorithm, G is a set of 

the clusters known a priori, k is the number of clusters, |·| is the number of 

elements in the set, and N is the total number of clustering objects. 

 Cluster similarity measure: 

 𝑆𝑖𝑚(𝐺, 𝐶) =
1

𝑘
∑ 𝑚𝑎𝑥

1≤𝑗≤𝑘
(𝑆𝑖𝑚(𝐺𝑗 , 𝐶𝑖))

𝑘
𝑖=1 , (2.65) 
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 𝑆𝑖𝑚(𝐺𝑗 , 𝐶𝑖) =
2|𝐺𝑗∩𝐶𝑖|

|𝐺𝑗|+|𝐶𝑖|
, (2.66) 

 Rand index: 

 𝑅𝑎𝑛𝑑 =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
, (2.67) 

where a is the number of pairs of objects assigned to the same cluster in both sets, 

G and C, b is the number of pairs of objects assigned to the same cluster in G, but 

to different clusters in C, c is the number of pairs of objects assigned to the same 

cluster in C, but to different clusters in G, and d is the number of pairs of objects 

that do not belong to the same cluster neither in G nor C. 

 Jaccard score: 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑎

𝑎+𝑏+𝑐
. (2.68) 

In case the ground truth is not available (which is a common situation in practical 

clustering tasks), internal measures, based on the assessment of intra-cluster and inter-

cluster similarity, are used for the evaluation of clustering results [133]. The most popular 

internal measures are [140, 144, 159, 160]: 

 Mean squared error (MSE): The MSE index calculates the average distance 

between a clustering object and its corresponding cluster representative: 

 𝑀𝑆𝐸 =
1

𝑁
∑ 𝑑2 (𝑥𝑖, 𝑤𝑗:𝑥𝑖∈𝛺𝑗

)𝑁
𝑖=1 , (2.69) 

where 𝑥𝑖 is the i-th clustering object, 𝑤𝑗 is a representative of the j-th cluster, 𝛺𝑗 

is a set of objects in the j-th cluster, N is the total number of objects, d(·) is the 

distance measure. 

 Clustering dispersion index (CDI): The CDI is defined as a ratio of the average 

distance between the objects within the same cluster and the average distance 

between the representatives of clusters: 

 𝐶𝐷𝐼 =
√1

𝑘
∑ 𝑑

2
(𝛺𝑗)

𝑘
𝑗=1

𝑑(𝑊)
, (2.70) 

 𝑑
2
(𝛺𝑗) =

1

2𝑁𝑗
∑ 𝑑2(𝑥𝑖,𝑥𝑖∈𝛺𝑗

𝛺𝑗), (2.71) 
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 𝑑2(𝑥𝑖 , 𝛺𝑗) =
1

𝑁𝑗
∑ 𝑑2(𝑥𝑖 , 𝑦)𝑦∈𝛺𝑗

, (2.72) 

where k is the number of clusters, W is a set of cluster representatives, y is an 

element of the j-th cluster, 𝑁𝑗 is the number of objects in the j-th cluster. 

 Mean index adequacy (MIA): The MIA index, similar to the MSE index, is 

calculated on the basis of the average distances between clustering objects and 

their cluster representatives: 

 𝑀𝐼𝐴 = (
1

𝑘
∑ 𝑑2(𝑤𝑗 , Ω𝑗)

𝑘
𝑗=1 )

1/2

, (2.73) 

  Within cluster sum of squares to between cluster variation ratio (WCBCR): The 

WCBCR is computed using the distances between each clustering object and its 

corresponding cluster representative, and the distances between cluster 

representatives: 

 𝑊𝐶𝐵𝐶𝑅 =
∑ ∑ 𝑑2(𝑥𝑖,𝑤𝑗)𝑥𝑖∈𝛺𝑗

𝑘
𝑗=1

∑ 𝑑2(𝑤𝑝,𝑤𝑞)𝑘
1≤𝑞<𝑝

, (2.74) 

 Silhouette index (SI):  

 𝑆𝐼(𝑥𝑖
𝑗
) =

𝑏(𝑥𝑖
𝑗
)−𝑎(𝑥𝑖

𝑗
)

𝑚𝑎𝑥 {𝑎(𝑥
𝑖
𝑗
),𝑏(𝑥

𝑖
𝑗
)}

, (2.75) 

 𝑏(𝑥𝑖
𝑗
) = min

1≤𝑙≤𝑘,𝑙≠𝑗
{

∑ 𝑑(𝑥𝑖
𝑗
,𝑦)𝑦∈Ω𝑙

|Ω𝑙|
}, (2.76) 

 𝑆𝐼 =
1

𝑁
∑ 𝑆𝐼(𝑥𝑖

𝑗
)𝑁

𝑖=1 , (2.77) 

where 𝑆𝐼(𝑥𝑖
𝑗
) is the SI index for the i-th clustering object in the j-th cluster, a(𝑥𝑖

𝑗
) 

is the average distance between the i-th object and all other objects in its cluster, 

b(𝑥𝑖
𝑗
) is the smallest average distance between the i-th object and the remaining 

clusters, |Ω𝑙| is the number of objects in the l-th cluster, and SI is the global index 

used for assessing the overall quality of the clustering result. The value of 𝑆𝐼(𝑥𝑖
𝑗
) 

is within the range [-1, 1], with values close to 1 indicating high compactness of 



90 | Techniques for Dynamic Equivalent Modelling of Power Plants and Networks 

the cluster containing the i-th clustering object and separation of the i-th 

clustering object from other clusters. 

Lower values of all afore-mentioned internal indices, with the exception of the SI, imply 

better clustering results in terms of separation and compactness of clusters. These indices 

have been commonly used to address the problem of selecting the optimal number of 

clusters for a given dataset. The most common approach is to perform the clustering 

procedure for a range of the number of clusters, calculate the chosen clustering evaluation 

index for each clustering result and select the best number of clusters according to the 

optimal value of the evaluation index [140, 145, 160]. In the case of the MSE, CDI, MIA 

and WCBCR, the optimal index value is determined using the elbow method: the values 

of the clustering index are plotted against the number of clusters and the optimal index 

value (and the corresponding optimal number of clusters) is located at the knee of the 

curve. On the other hand, in the case of the SI, the maximum of all values computed for 

each clustering procedure indicates the best number of clusters. 

2.6 Summary 

This chapter presented the state-of-the-art of the methods for dynamic equivalent 

modelling of power plants and networks. System identification-based techniques were 

identified as more adequate for equivalent modelling of electrical networks with 

converter-interfaced sources compared to conventional approaches (i.e., the modal 

analysis and coherency-based methods). Furthermore, a comprehensive review of the 

most commonly used unsupervised data mining techniques, clustering algorithms, was 

given. The choice of the optimal number of clusters is one of the main issues, while high 

dimensionality and adequate distance metric represent additional concerns in time series 

clustering. The chapter also discussed the typical approaches for overcoming the afore-

mentioned issues.   
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3.1 Introduction 

Traditional representation of RESs as negative constant power loads in power system 

stability simulations is not acceptable anymore due to their considerable installation 

capacity, and consequently non-negligible contribution to power system stability 

performance [20]. On the other hand, the use of detailed dynamic models of RES power 

plants in system level studies can result in high computational time, and full-scale models 

often cannot be exchanged between different system operators due to confidentiality 

issues [19-21]. In order to obtain system stability results within reasonable computational 

time without compromising their accuracy, equivalent modelling of RES power plants 

can be adopted [20]. This chapter performs exploratory studies on equivalent modelling 

of HRES plant for four types of system stability problems (small-disturbance, transient, 

frequency and long-term voltage stability). The methodology for identifying the most 

probable impact of HRES plant on the above-mentioned categories of power system 

stability is described. The typical contribution of the HRES plant to the relevant power 

system stability behaviour represents the main input for the development of the 

preliminary EMs of HRES plant for small-disturbance, transient, frequency and long-

term voltage stability studies. The aim of the chapter is to provide a foundation for further 

investigation of the most probable annual contribution of HRES plant to power system 
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stability and the design of robust EMs capable of representing the whole HRES plant in 

annual system stability simulations.  

3.2 Methodology 

Methodology for assessing the influence of HRES plant on four types of system stability 

(small-disturbance, transient, frequency and voltage) of the system and development of 

preliminary EMs of HRES plant for the considered system stability analyses is illustrated 

in Figure 3.1. Dashed rectangles in Figure 3.1 mark inputs and outputs of different stages 

within the procedure. The presented procedure is applicable to any technology mix in the 

HRES plant. 

 

Figure 3.1 The methodology for analysing the impact of HRES plant on system stability and developing 

preliminary EMs of HRES plant for system stability studies 

The assessment of the impact of the HRES plant on system stability is performed on the 

basis of characteristic annual HRES plant operating scenarios (so-called plant 

compositions), which in turn eliminates the need for investigating all possible HRES 

plant operating scenarios. These plant compositions are defined by applying an 

unsupervised data mining technique to the historical production profile of the considered 

HRES plant. A probabilistic Monte Carlo (MC) approach is used for taking into 

consideration uncertainties in production and location of individual technologies in the 

HRES plant. The behaviour of the HRES plant in small-disturbance, transient, frequency 

and long-term voltage stability of the system is analysed on the basis of the least damped 
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electromechanical mode, shape of real power response of the HRES plant in time 

domain, frequency nadir and the maximum rate of change of frequency (RoCoF), and 

critical point of real power-voltage (P-V) curve (load margin and critical bus voltage), 

respectively. HRES plant compositions resulting in similar system stability results are 

represented by a common EM. In this way, a set of EMs suitable for modelling the 

investigated HRES plant operating conditions in system stability simulations is obtained.  

The stages of the methodology are described in detail in the following sections. 

3.2.1 Identification of Characteristic Hybrid Renewable Energy Source Plant 

Compositions 

The patterns in HRES plant production profiles are determined by applying a clustering 

method to a historical dataset of real power outputs of individual technologies in the 

HRES plant (block {2} in Figure 3.1). Production levels of individual plants are grouped 

into a vector at each time step in the considered historical time period and the vectors are 

used as inputs to the clustering process. The fuzzy c-means clustering algorithm is used 

for data clustering. It was selected due to its low computational complexity (O(N), where 

N is the number of clustering objects) as the historical dataset is large, its property to 

perform “soft” clustering, which is especially useful in case of clusters not being well 

separated [132], and its proven efficiency in application in similar clustering tasks in the 

past [70, 161, 162]. The fuzzy c-means algorithm represents each cluster by its centroid 

that corresponds to characteristic HRES plant composition.  

As the number of clusters has to be defined in advance, internal clustering evaluation 

indices, based on assessing inter-cluster and intra-cluster similarity, have been 

commonly used for estimating the optimal number of clusters [160]. In this study, a 

combination of three widely applied clustering indicators, MSE, CDI, and MIA, is used 

[160]. The clustering process is repeated for a range of the number of clusters, the chosen 

index is calculated for each clustering result and then plotted against the number of 

clusters. The optimal number of clusters (according to the considered clustering 

indicator) is located at the knee of the curve. If the knee is not noticeable, it can be 

estimated using the two-tangent method described in [160] (the method is illustrated in 

Figure 3.2). The two-tangent method is based on visual inspection of the knee location 
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and drawing tangents to the parts of the curve on either side of the estimated knee 

location. The knee of the curve is then located at the intersection of the tangents. The 

final number of clusters, that is, the number of characteristic HRES plant compositions, 

is determined as the median value of the number of clusters identified by the MSE, CDI 

and MIA clustering indices. 

 

Figure 3.2 The illustration of the two-tangent method for estimating the knee of the curve (adapted from 

[160]) 

3.2.2 Development of System Stability Case Studies 

In order to identify the most probable influence of the HRES plant on power system 

stability and propose the preliminary structures of EMs capable of representing HRES 

plant behaviour in system stability studies throughout the whole year, system stability 

case studies (CSs) are generated on the basis of characteristic annual HRES plant 

compositions (block {4} in Figure 3.1). Uncertainties in production of individual plants 

and their location within the HRES plant (in terms of the distance from the PCC) are 

modelled using the probabilistic MC approach. In each MC CS, real power outputs of 

individual plants are sampled uniformly from the pre-specified ranges defined on the 

basis of typical annual plant compositions. Similarly, the uniform probability distribution 

is used for random sampling of the lengths of lines connecting individual plants to the 

PCC from the pre-defined range of values. 

3.2.3 Simulation of Case Studies in DIgSILENT/PowerFactory 

MC CSs designed in the previous step of the methodology are simulated in 

DIgSILENT/PowerFactory software package using the detailed HRES plant model and 

the model representing the rest of the power system (block {6} in Figure 3.1). For each 

MC CS, four types of system stability simulations are carried out as follows: 

 Small-disturbance stability analysis involves the modal analysis of the whole 

system, which determines all system eigenvalues using the classical QR 

transformation method [102].  
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 Transient and frequency stability studies are carried out by performing 

electromechanical simulations for the chosen disturbances. Three-phase self-

clearing fault is selected as an external system disturbance in transient stability 

studies. The fault location and duration are the same in all CSs. On the other hand, 

an increase in the total system load is chosen as a disturbance in frequency 

stability analysis. (Note: A single disturbance was simulated in transient and 

frequency stability simulations due to the small size of the test system (presented 

in Section 3.3). Chapter 4 will provide a procedure for generating a set of the 

most probable disturbances during the year.) Real power response of the HRES 

plant at the PCC and system frequency response are recorded in each transient 

and frequency stability simulation, respectively.  

 Long-term voltage stability analysis is performed by computing P-V curves at the 

system buses. The P-V curve method represents one of the most reliable long-

term voltage stability indices and can be simulated in DIgSILENT/PowerFactory 

environment with little computational burden [163]. Long-term voltage stability 

limit is determined by increasing the system load gradually until the load flow 

calculation stops converging. The increase in the system load in the first iteration 

is 0.5% of its initial value, while the change of the system demand in the 

following iterations varies between 0.01% and 2% (recommended values in 

DIgSILENT/PowerFactory [164]). Step size reduces as the system approaches 

the long-term voltage stability limit. Real power outputs of individual plants in 

the HRES plant remain constant in long-term voltage stability study, while the 

external system covers the mismatch between the analysed demand and HRES 

plant power production.  

3.2.4 Computation and Grouping of the Values of System Stability Indices 

Following system stability simulations of MC CSs in DIgSILENT/PowerFactory, the 

contribution of a MC HRES plant composition to each of the investigated categories of 

power system stability is assessed in the following way: 

 Small-disturbance stability: The impact of different HRES plant compositions on 

small-disturbance stability of the system is assessed on the basis of the parameters 
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of electromechanical oscillation modes. Only electromechanical modes are taken 

into consideration in the analysis as these modes are the ones that persist longest 

and thus determine the overall system dynamic behaviour [102]. Small-

disturbance stability problems in power systems are commonly caused by 

insufficient damping torque, which implies that a reliable assessment of the least 

damped mode is needed for controlling power system operation [165]. Therefore, 

for each MC CS, the damping and frequency of the least damped (the critical) 

electromechanical mode are determined, and these parameters are used for 

comparing HRES plant compositions from the perspective of their influence on 

small-disturbance stability of the system.  

 Transient stability: The shape of real power response of the HRES plant at the 

PCC is a criterion for differentiating HRES plant compositions in terms of their 

contribution to transient stability of the system. (Note: Given that the SGs in the 

small test system used in this preliminary study are located within the investigated 

HRES plant and that some of the considered HRES plant operating points do not 

contain any of SG-based power plants in service, transient stability indices such 

as transient stability index (TSI) and critical clearing time could not be computed. 

Thus, real power time-domain responses of the HRES plant were chosen for 

analysing the transient stability performance of the test system.) Reactive power 

responses of the HRES plant are not considered in this exploratory study. 

 Frequency stability: Frequency nadir and the maximum RoCoF represent typical 

parameters used for frequency stability assessment [163], and thus are determined 

for each frequency response from the simulated MC CSs. Frequency nadir 

corresponds to the lowest frequency value following a disturbance, whereas the 

RoCoF is a time derivative of the system frequency [163]. The maximum RoCoF 

is calculated as the maximum of average RoCoF values over a moving window 

[166]: 

 𝑅𝑜𝐶𝑜𝐹𝑀𝑎𝑥 = max
𝑖

𝑅𝑜𝐶𝑜𝐹𝑖 = max
𝑖

(
1

𝑛
∑

∆𝑓𝑘

𝑇𝑠

𝑛
𝑘=1 ), (3.1) 

where 𝑅𝑜𝐶𝑜𝐹𝑖 is the average RoCoF for the i-th measurement window, 𝑇𝑠 is the 

sampling time, ∆𝑓𝑘 is the variation in frequency within the k-th sampling period, 

n is the number of sampling periods in the measurement window. As 
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recommended in [167], the sampling period of 100 ms and window size of 500 ms 

are adopted in this study.  

 Long-term voltage stability: The load margin (i.e., the difference between the load 

level at which voltage collapse occurs and the initial load level) and the voltage 

of the bus that collapses first are used to analyse the impact of the HRES plant on 

long-term voltage stability of the system. 

For each type of system stability, the obtained system stability results are grouped 

according to their similarity, which in turn provides the information about MC CSs 

resulting in similar system stability performance. The groups/clusters of system stability 

results represent a basis for EM development and their number determines the number 

of EMs required for representing the considered HRES plant operating scenarios in 

system stability simulations. 

3.2.5 Development of Preliminary Equivalent Models 

An EM is developed for each cluster of system stability results, and the following 

sections describe EM structure and parameter estimation process for the considered 

categories of power system stability. 

3.2.5.1 Small-disturbance Stability Study 

In [168] the reduction of the model order was achieved by clustering all modes produced 

by the modal analysis according to similarity in damping and frequency, whereas EM 

development in this study takes into consideration only electromechanical modes as 

small-disturbance stability is associated with the rotor angle oscillations [169]. Each 

cluster of critical electromechanical modes is represented by a mode (so-called a 

representative critical electromechanical mode) whose damping and frequency 

correspond to the mean values of damping and frequency of all modes in the cluster. 

Furthermore, a representative HRES plant composition for each cluster is defined as one 

of the simulated plant compositions resulting in the critical electromechanical mode that 

corresponds to a cluster medoid (the cluster medoid is one of the simulated 

electromechanical modes in the cluster being the most similar to the representative 

critical mode).  
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EM structure is derived from time domain electromechanical simulations carried out for 

each representative HRES plant composition. The electromechanical simulations are 

carried out in DIgSILENT/PowerFactory software using the full-scale dynamic model of 

the HRES plant. A small increase in the total TN load of 1% is chosen as a system 

disturbance. The lengths of all connecting lines are set at the average of line lengths 

simulated in the MC procedure. Voltage and real power responses at the PCC are 

recorded in the simulations and these responses represent a basis for EM parameter 

estimation. 

The EM is developed in the form of a TF with the input and output signal corresponding 

to the deviation of voltage and real power at the PCC from their pre-disturbance values, 

respectively. The full EM structure is as follows: 

 𝑃𝐸𝑀(𝑡) = {
𝑃𝑠𝑠 , 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡

𝑃𝑠𝑠 + ʆ−1(𝑇𝐹(𝑠))(𝑢𝑃𝐶𝐶(𝑡) − 𝑢𝑃𝐶𝐶,𝑠𝑠), 𝑡 ≥ 𝑡𝑠𝑡𝑎𝑟𝑡
, (3.2) 

where PEM(t) is the real power output of the EM in MW, Pss is the total HRES plant 

production at pre-disturbance state in MW, ʆ-1 stands for the inverse Laplace transform, 

TF(s) is the TF in s-domain, uPCC(t) is voltage at the PCC in p.u., uPCC,ss is the pre-

disturbance voltage at the PCC in p.u., and tstart is the time of occurrence of the system 

disturbance. 

TF denominator has two complex poles corresponding to the representative critical 

electromechanical mode for a given cluster. When it comes to TF numerator, its 

parameters are estimated through an iterative optimization process using System 

Identification Toolbox in Matlab [170]. In this process, voltage and real power responses 

at the PCC obtained in previously simulated time domain electromechanical simulations 

are used as TF input and output, respectively. The order of TF numerator is gradually 

increased starting from the structure with a single zero. For each TF numerator order, TF 

parameters were estimated using the Levenberg-Marquardt algorithm, which is a line-

search algorithm that can be seen as an intermediate between the gradient-descent and 

Gauss-Newton method [20, 170]. The objective of the optimization procedure is to 

minimize the difference between TF output and the simulated real power response of the 

detailed HRES plant model: 

 min
𝜃

𝑅𝑀𝑆𝐸 = min
𝜃

√
1

𝑛
∑ (𝑃𝑂𝑅𝐺,𝑖 − 𝑃𝐸𝑀,𝑖)2𝑛

𝑖=1 , (3.3) 
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where RMSE is root mean squared error, θ is a set of unknown TF parameters, n is the 

number of simulated time steps, PORG,i is the real power response obtained in the 

electromechanical simulation at the i-th time step, and PEM,i is EM output at the i-th time 

step (obtained using (3.2)). The optimization terminates when there is no considerable 

improvement in RMSE value between two consecutive iterations. Following parameter 

estimation, the Best Fit Value (BFV) is calculated using (3.4) [20]: 

 𝐵𝐹𝑉(%) = 100 ∙ (1 − |
∑ (𝑃𝑂𝑅𝐺,𝑖−𝑃𝐸𝑀,𝑖)

𝑛
𝑖=1

∑ (𝑃𝑂𝑅𝐺,𝑖−𝑃𝑂𝑅𝐺)𝑛
𝑖=1

|), (3.4) 

where 𝑃𝑂𝑅𝐺 is the average of real power response of the detailed HRES plant model to 

the small system disturbance. The optimal TF parameters correspond to the lowest TF 

numerator order with the BFV above a pre-defined threshold (80% is adopted in the study 

[20]). 

3.2.5.2 Transient and Frequency Stability Study 

The structure of a grey-box EM for transient and frequency stability studies is the same: 

the model is in the form of an equivalent SG or WF depending on the analysed HRES 

plant composition. The equivalent is connected directly to the PCC. The WF model is 

used for representing the cluster of system stability results produced by HRES plant 

compositions consisting of converter-connected technologies only. (Note: In the case of 

the test system and data used in this study (described in Section 3.3 and Section 3.4), the 

WF within the HRES plant had the largest share in the total HRES plant production most 

of the time during the year compared to the other converter-connected technologies in 

the test HRES plant, and thus, was chosen for modelling plant compositions without SGs 

in service.) 

The equivalent SG is represented by the classical, second-order, machine model [102]:  

 
𝑑𝑤

𝑑𝑡
=

1

2𝐻
(𝑇𝑚 − 𝑇𝑒 − 𝐾𝐷(𝑤 − 1)), (3.5) 

 
𝑑𝛿

𝑑𝑡
= 𝑤0(𝑤 − 1), (3.6) 
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where 𝑤 is rotor speed in p.u., H is inertia constant in seconds, 𝑇𝑚 and 𝑇𝑒 are mechanical 

and electrical torque, respectively, in p.u., 𝐾𝐷 is damping coefficient in p.u., 𝛿 is rotor 

angle in electrical radians, and 𝑤0 = 2𝜋𝑓 is the referent rotor speed in rad/s. 

The parameters of the SG model include the SG rated capacity, inertia constant and 

damping coefficient. The SG rated capacity is defined on the basis of the analysed HRES 

plant production and the SG rated power factor (the value of 0.85 is adopted in this 

study), while the remaining two equivalent SG parameters are obtained through a 

parameter estimation procedure.  

The equivalent WF consists of a number of identical doubly-fed induction generators 

(DFIGs) connected in parallel. The number of individual DFIGs in service is defined by 

the total WF production (i.e., the analysed HRES plant power output) and the rated power 

of individual units as it is assumed that units in operation generate the rated power output. 

A detailed description of the WF control system is given in Section 3.3. All parameters 

of the equivalent WF control system model correspond to the default/recommended 

values in [164], except the proportional gain and integral time constant of PI controllers 

responsible for maintaining WF real and reactive power output at the reference values 

that are estimated in the parameter optimization procedure. 

In order to estimate the unknown parameters of EM for transient stability simulations, a 

representative real power response of a cluster is defined as an average of all responses 

in the cluster. Similarly, representative frequency nadir and maximum RoCoF of a cluster 

correspond to an average of the frequency nadir and maximum RoCoF values assigned 

to the particular cluster, respectively. (Note: Even though cluster medoid is a more 

common representative of a cluster of time series data compared to cluster average [133], 

the average of cluster responses is chosen in transient stability study due to the 

uniformity. The cluster average is used for defining representative of clusters of system 

stability results in other three preliminary system stability studies (the average of 

damping and frequency of the electromechanical modes in cluster for small-disturbance 

stability, the average of the RoCoF and frequency nadir in cluster for frequency stability, 

and the average of load margin and critical bus voltage in cluster for long-term voltage 

stability).) In addition, for both types of system stability studies, representative HRES 

plant production of a cluster is determined as an average of the power outputs of MC CSs 

allocated to the given cluster. 
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The unknown EM parameters (the inertia constant and damping coefficient in the case 

of the SG equivalent, and the gain and time constant of the PI controllers in the case of 

the WF equivalent) are estimated through the iterative procedure. At each iteration of the 

procedure, EM parameters are sampled from the pre-defined ranges, a 

transient/frequency system stability simulation is performed for a given combination of 

parameter values, and EM accuracy is assessed. In this procedure, the real power output 

of the equivalent SG/WF corresponds to the representative HRES plant production for 

the particular cluster. In the case of transient stability study, EM performance is evaluated 

by comparing the time domain real power response produced by the EM with the 

representative real power response of the relevant cluster as follows: 

 𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠(%) = 100 ∙

1

𝑇
∙ ∑ |

𝑃𝑡
𝐸𝑀,𝑖−𝑃𝑡

𝑅𝐸𝑃,𝑖

𝑃𝑡
𝑅𝐸𝑃,𝑖 |𝑇

𝑡=1 , (3.7) 

where T is the total number of simulated time steps, 𝑃𝑡
𝐸𝑀,𝑖

 is the output of the EM for the 

i-th cluster at time step t, and 𝑃𝑡
𝑅𝐸𝑃,𝑖

 is the value of the representative response for the 

i-th cluster at time step t. 

When it comes to frequency stability studies, the suitability of EM for representing HRES 

plant compositions from a particular cluster of frequency stability results is assessed as 

follows: 

 𝐸𝑀𝐸𝑟𝑟
𝐹𝑟𝑒𝑞(%) = 100 ∙ √∆𝐹𝑛𝑎𝑑𝑖𝑟

2 + ∆𝑅𝑜𝐶𝑜𝐹
2
, (3.8) 

 ∆𝐹𝑛𝑎𝑑𝑖𝑟=
𝐹𝑛𝑎𝑑𝑖𝑟

𝐸𝑀,𝑖 −𝐹𝑛𝑎𝑑𝑖𝑟
𝑅𝐸𝑃,𝑖

𝐹𝑛𝑎𝑑𝑖𝑟
𝑅𝐸𝑃,𝑖 , (3.9) 

 ∆𝑅𝑜𝐶𝑜𝐹=
𝑅𝑜𝐶𝑜𝐹𝐸𝑀,𝑖−𝑅𝑜𝐶𝑜𝐹𝑅𝐸𝑃,𝑖

𝑅𝑜𝐶𝑜𝐹𝑅𝐸𝑃,𝑖 , (3.10) 

where ∆𝐹𝑛𝑎𝑑𝑖𝑟 and ∆𝑅𝑜𝐶𝑜𝐹 is the EM error in the frequency nadir and maximum RoCoF, 

respectively, 𝐹𝑛𝑎𝑑𝑖𝑟
𝐸𝑀,𝑖

 and 𝑅𝑜𝐶𝑜𝐹𝐸𝑀,𝑖 are the frequency nadir and maximum RoCoF 

obtained using the EM for the i-th cluster, respectively, and 𝐹𝑛𝑎𝑑𝑖𝑟
𝑅𝐸𝑃,𝑖

 and 𝑅𝑜𝐶𝑜𝐹𝑅𝐸𝑃,𝑖 are 

the representative frequency nadir and maximum RoCoF of the i-th cluster, respectively.  
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The combination of EM parameters resulting in the minimum value of the 

𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠/𝐸𝑀𝐸𝑟𝑟

𝐹𝑟𝑒𝑞
 index is the best combination of the parameter values for the EM for 

transient/frequency stability studies. 

3.2.5.3 Long-term Voltage Stability 

Each cluster of critical points of P-V curves is described by a representative critical point, 

which is determined as a mean of the values of load margin and critical bus voltage 

allocated to the cluster. As in the case of transient and frequency stability study, 

representative HRES plant production of a cluster is computed as a mean value of the 

power outputs of MC CSs assigned to the cluster. The EM structure for long-term voltage 

stability studies is illustrated in Figure 3.3. EM is in the form of a parallel combination 

of a SG (PV type) (Equivalent SG in Figure 3.3) and a shunt inductor/capacitance (Shunt 

in Figure 3.3), which is connected to the low voltage side of the transformer connecting 

the whole HRES plant to the PCC (THRES in Figure 3.3) through a step-up transformer 

(TEM in Figure 3.3) and a line (LEM in Figure 3.3).  

 

Figure 3.3 Illustration of the EM structure for long-term voltage stability study in 

DIgSILENT/PowerFactory 

The EM structure relies on the work presented in [171]. In [171] a capability curve of a 

VPP, i.e., a plant comprising a number of RESs and responsive loads spatially distributed 

across the network, with a single point of connection to the TN was developed to enable 

participating the VPP in system balancing services. For each possible real power output 

of the VPP, the minimum and maximum reactive power limits were identified using the 

optimal power flow (OPF)-based approach. However, different technology mixes in the 

VPP with the same total real power output can be characterized by considerably different 

reactive power capabilities. The method in [171] does not provide the guidelines on how 

to select the reactive power limits for a specific VPP composition. Equivalent modelling 

of HRES plant presented in this thesis extends the work from [171] by not requiring the 
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reactive power limits to be determined for all possible plant compositions and defining a 

single (representative) maximum reactive power limit for a number of HRES plant 

operating scenarios. 

The set of EM parameters includes: the shunt size, the maximum reactive power 

production of the SG for the analysed SG real power output (Qmax), the rated capacity of 

the SG and step-up transformer, the short-circuit ratio of the step-up transformer (uk) and 

the length of the connecting line. The rated capacities of the SG and step-up transformer 

are the same, and calculated based on the SG real power output (i.e., the total production 

of the analysed HRES plant composition) and the Qmax value. It is assumed that the step-

up transformer has no copper loses and the length of the connecting line is equal to the 

average of the line lengths simulated in the MC procedure.  

The shunt size, and the parameters Qmax and uk are estimated through the iterative process 

that is the same as the one used for defining the unknown parameters of EMs for transient 

and frequency stability studies. In this stage of the methodology, the real power output 

of the equivalent SG is equal to the representative HRES plant output for the considered 

cluster. For each combination of EM parameters, EM accuracy, i.e., the difference 

between the critical point of the P-V curve produced by the EM and the representative 

critical point of the relevant cluster, is calculated as follows: 

 𝐸𝑀𝐸𝑟𝑟
𝑉𝑜𝑙𝑡(%) = 100 ∙ √(∆𝐿𝑀)2 + (∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠)2, (3.11) 

 ∆𝐿𝑀=
𝑃𝑐𝑟𝑖𝑡

𝐸𝑀,𝑖−𝑃𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖

𝑃𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖 , (3.12) 

 ∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠=
𝑢𝑐𝑟𝑖𝑡

𝐸𝑀,𝑖−𝑢𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖

𝑢𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖 , (3.13) 

where ∆𝐿𝑀 and ∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠 is the EM error in terms of the value of load margin and critical 

bus voltage, respectively, 𝑃𝑐𝑟𝑖𝑡
𝐸𝑀,𝑖

 and 𝑢𝑐𝑟𝑖𝑡
𝐸𝑀,𝑖

 are the load margin and critical bus voltage 

produced by the EM for the i-th cluster, respectively, and 𝑃𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖

 and 𝑢𝑐𝑟𝑖𝑡
𝑅𝐸𝑃,𝑖

 are the 

representative load margin and critical bus voltage of the i-th cluster, respectively. The 

combination of Qmax, uk, and shunt size resulting in the minimum value of the 𝐸𝑀𝐸𝑟𝑟
𝑉𝑜𝑙𝑡 

index represents the optimal combination of parameter values. 
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3.2.6 Integration of Equivalent Models into DIgSILENT/PowerFactory 

DIgSILENT/PowerFactory software provides a feature to automatically select the EM 

from the set of models stored in the software library. Given that EMs of the HRES plant 

for transient, frequency and long-term voltage stability studies are in the form of a SG or 

WF, corresponding built-in models available in DIgSILENT/PowerFactory software are 

used for creating a set of these EMs in the software library. 

When it comes to the EMs of the HRES plant for small-disturbance stability studies 

(which are in the form of a TF), these models are implemented in 

DIgSILENT/PowerFactory environment using built-in DIgSILENT Simulation 

Language (DSL) [164]. Due to DSL requirements, TF (3.2) has to be transformed into 

the control canonical state-space model. The TF parameters obtained in the previous step 

of the equivalent modelling procedure are used for calculating the parameters of the 

corresponding state-space matrices as follows: 

 𝑧𝑇𝐹,𝑃 (𝑠) =
𝑏0𝑠𝑛+𝑏1𝑠𝑛−1+⋯+𝑏𝑛−1𝑠+𝑏𝑛

𝑠𝑛+𝑎1𝑠𝑛−1+⋯+𝑎𝑛−1𝑠+𝑎𝑛
, (3.14) 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝐵(𝑢𝑃𝐶𝐶(𝑡) − 𝑢𝑃𝐶𝐶,𝑠𝑠)

𝑧𝑇𝐹,𝑃 (𝑡) = 𝐶𝑥(𝑡) + 𝐷(𝑢𝑃𝐶𝐶(𝑡) − 𝑢𝑃𝐶𝐶,𝑠𝑠)

𝑃𝐸𝑀(𝑡) = 𝑃𝑠𝑠 + 𝑧𝑇𝐹,𝑃 (𝑡)

, (3.15) 

 𝐴 =

[
 
 
 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1]
 
 
 
 

, 𝐵 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

, 𝐷 = 𝑏0 , (3.16) 

 𝐶 = [(𝑏𝑛 − 𝑎𝑛𝑏0) (𝑏𝑛−1 − 𝑎𝑛−1𝑏0) … (𝑏2 − 𝑎2𝑏0) (𝑏1 − 𝑎1𝑏0)], (3.17) 

where 𝑧𝑇𝐹,𝑃 (𝑠) is the TF in s-domain (obtained when estimating EM parameters), 

𝑧𝑇𝐹,𝑃 (𝑡) is the output of the state-space model, and A, B, C and D are state-space 

matrices. 

The implementation of state-space EM in DIgSILENT/PowerFactory network model 

requires an interface in the form of a controllable, constant power load (see Figure 3.4). 

The load is connected at the PCC and its dynamic behaviour is controlled by the 

developed EM. Thus, dynamic model designed in DSL environment receives the 
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information about the pre-disturbance voltage at the PCC and voltage at the PCC at the 

current time step (uPCC,ss and uPCC(t) in Figure 3.4, respectively) from the network 

simulation model, and computes the output signal (reference real power of the load 

marked by PEM(t) in Figure 3.4) at the current time step according to (3.14)-(3.17). Real 

power at the PCC (PPCC(t) in Figure 3.4) corresponds to the EM output (PEM(t) in Figure 

3.4). The reactive power output of the EM is set at the value of the reactive power output 

of the whole HRES plant at the pre-disturbance state for the considered HRES plant 

operating point. Modal analysis applied to the system with the EM of the HRES plant 

instead of the detailed HRES plant dynamic model identifies critical electromechanical 

mode for the given HRES plant composition on the basis of real power response of the 

EM, i.e., the structure of the TF-based EM.  

 

Figure 3.4 Illustration of the concept of EMs for small-disturbance stability studies in 

DIgSILENT/PowerFactory 

3.2.7 Validation of Equivalent Models 

For each type of system stability studies, EM validation is performed by simulating all 

previously defined MC CSs (i.e., cases used for EM development) using EM of the 

HRES plant instead of the detailed plant model (block {10} in Figure 3.1). For each MC 

CS and system stability analysis, EM performance is assessed by comparing system 

stability results obtained using the detailed and EM of the HRES plant. The following 

index is computed for each small-disturbance stability simulation: 

 𝐸𝑀𝐸𝑟𝑟
𝑆𝑚𝑎𝑙𝑙(%) = 100 ∙ √∆𝜎,𝑖

2 + ∆𝐹𝑟𝑒𝑞,𝑖
2
, (3.18) 

 ∆𝜎,𝑖=
𝜎𝐸𝑀−𝜎𝑖

𝜎𝑖 , (3.19) 
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 ∆𝐹𝑟𝑒𝑞,𝑖=
𝐹𝑟𝑒𝑞𝐸𝑀−𝐹𝑟𝑒𝑞𝑖

𝐹𝑟𝑒𝑞𝑖 , (3.20) 

where ∆𝜎,𝑖 and ∆𝐹𝑟𝑒𝑞,𝑖 are EM error in terms of the damping and frequency of the critical 

electromechanical mode of the i-th CS, respectively, 𝜎𝑖 and 𝐹𝑟𝑒𝑞𝑖 are the damping and 

frequency of the critical electromechanical mode for the i-th CS simulated using the 

detailed plant model, respectively, 𝜎𝐸𝑀 and 𝐹𝑟𝑒𝑞𝐸𝑀 are the damping and frequency of 

the critical electromechanical mode for the i-th CS simulated using the EM, respectively. 

The accuracy of the developed models for transient, frequency and long-term voltage 

stability studies is assessed using the indices described by (3.7), (3.8), and (3.11), 

respectively, with the representative cluster values in these expressions being replaced 

by the corresponding values obtained by simulating the relevant CS using the full-scale 

HRES plant dynamic model. 

3.3 Test System 

The test HRES plant, together with the test TN, is shown in Figure 3.5. The whole system 

is modelled in DIgSILENT/PowerFactory software package 2020 [164]. The HRES plant 

contains six renewable generation and storage technologies: a WF, PV plant, run-of-river 

HPP, biomass plant, biogas plant and BESS. The HRES plant configuration corresponds 

to an optimal techno-economic solution for the southern part of Greece defined in [172]. 

Individual plants in the HRES plant are connected to a common 110 kV bus (Bus 16 in 

Figure 3.5), which is further connected to a 230 kV external TN through a transformer 

(the grid connection point of the transformer is the PCC of the HRES plant – Bus 17 in 

Figure 3.5) and four lines (one line is in parallel with two lines connected in series). The 

external TN (External Grid in Figure 3.5) is modelled as an infinite bus (i.e., as a voltage 

source with constant voltage amplitude and frequency [102]). System load (connected to 

Bus 17 in Figure 3.5) is represented by static exponential load model without frequency 

dependent components. Line and transformer parameters are adopted from [105, 173, 

174]. 

Installation capacities and dynamic model order of individual plants in the test HRES 

plant are given in Table 3.1. Models of individual plants include the dynamic model of a 

generation/storage technology and its corresponding control system. The rated power 

factor of 0.85 is adopted for all SGs, while the capability curves of SGs correspond to 
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the one given in [175]. The PV plant, WF and BESS operate with a unity power factor, 

and their capability curves are adopted from [176-178]. The library of 

DIgSILENT/PowerFactory software package contains the dynamic models of all 

individual technologies represented in the test HRES plant.  

 

Figure 3.5 The schematic diagram of the test system 

Table 3.1 Installation capacities and the order of models of individual plants in the test HRES plant  

 
Aggregate 

model of WF 

Aggregate model 

of PV plant 
HPP 

Biomass 

plant 

Biogas 

plant 
BESS 

Rated capacity 

(MVA) 
170 265 295 76.5 76.5 125 

Model order 17 14 13 14 11 9 

Overall model 

order 
78 

The standard fifth-order SG model is used for modelling the hydro generator in the HRES 

plant, while the standard sixth-order model is used for the biomass and biogas SGs [102]. 

SG dynamic parameters are adopted from [173].Governors of type IEEEG3, IEEEG1 

and GAST are used in the hydro, biomass and biogas generator control system, 

respectively [102]. The excitation systems of all SGs are modelled by IEEE DC1A 

exciter [102]. The parameters of the governor and excitation systems correspond to 

typical values given in [179, 180]. Both the PV plant and the WF consist of a number of 
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identical individual units connected in parallel and are represented in DIgSILENT 

software by corresponding aggregate models (AMs) obtained by scaling up the model of 

individual units [164]. AM parameters depend on the number of individual units in 

service, which is determined according to the total production of the RES plant and the 

rated power of individual units (2 MW for both types of plants), as it is assumed that 

units in operation generate the rated power output.  

The WF consists of DFIGs represented by a generic type 3 wind generator model suitable 

for large scale stability studies. The model has a structure similar to the one proposed by 

Western Electricity Coordinating Council (WECC) [22] and International 

Electrotechnical Commission (IEC) [181] and is available in DIgSILENT/PowerFactory 

[164]. The control system (illustrated in Figure 3.6) contains pitch control (which 

includes a PI controller, servo motor represented by a first-order control system, and the 

minimum and maximum limits of the change and the rate of change of pitch angle), wind 

turbine and drive train dynamics, which provide the mechanical power of a wind 

generator. The rotor-side converter controller, which regulates the rotor voltage, is also 

included in the control system [182]. The rotor-side converter control system relies on 

two PI-control loops connected in series: a slow (outer) power control loop that provides 

referent rotor currents based on the deviation of WF real and reactive power from the 

reference values, and a fast (inner) rotor current control loop that generates referent rotor 

voltage based on the difference between the measured and referent rotor currents. The 

proportional gain and integral time constants of the PI controllers in the outer control 

loop (kP, kQ and TP, TQ, respectively), and of the PI controllers in the inner loop (kd, kq 

and Td, Tq, respectively) represent the unknown parameters of the equivalent WF model 

for transient and frequency stability studies. The WF control system also contains the 

fault-ride-through capability, the reactive power injection for supporting the terminal 

voltage, the reactive current injection priority during a fault, the limitation in terms of the 

rate of real current recovery after a fault, and the total current limitation. Furthermore, 

under-/over-voltage, under-/over-speed, and rotor overcurrent (crowbar) protection are 

included in the WF control system. 
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Figure 3.6 The schematic diagram of the WF control system (adopted from [182]) 

A type 4 wind generator model is used to represent PV units. Both wind generators and 

PV units can be represented by a type 4 model in stability studies since the converter 

decouples the dynamics of the source on the DC part from the rest of the power system 

[182]. This is also suggested by the WECC Renewable Energy Modeling Task Force 

[23], which develops a PV model by slightly modifying the type 4 wind generator model. 

The Full Converter Connected (FCC) model used in the study has a similar structure to 

[22, 181] and is also available in DIgSILENT/PowerFactory [164]. The generator system 

is represented by a static voltage source (a built-in static generator model in 

DIgSILENT/PowerFactory), which is typically used for modelling non-rotating 

generators [183]. The control system of the PV plant (shown in Figure 3.7) maintains 

real and reactive power at the PV plant connection bus at their referent values by 

regulating the voltage of the static voltage source. The PV plant control system contains 

all controllers and protection mechanisms suggested in [22, 181] (the fault-ride-through 

capability, the reactive power injection for supporting the terminal voltage, the reactive 

current injection priority during faults, the limitation in terms of the rate of real current 

recovery after a fault, the total current limitation, the real power reduction in case of an 

over-frequency event, the over/under-voltage protection and the over/under-frequency 

protection). 

 

Figure 3.7 The schematic diagram of the PV plant control system (adopted from [182]) 
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The BESS is modelled as a voltage source equipped with the appropriate control system 

described in detail in [184], [185]. The voltage source model takes into account the 

battery state of charge and battery internal losses modelled by a constant resistance. The 

battery voltage varies linearly with the battery state of charge, and battery terminal 

voltage limits are taken into account as well. The battery control system contains a 

frequency controller (a proportional control with a dead band), which provides an 

additional input to a real power-voltage controller. Apart from the input signal generated 

by the frequency control, the real power-voltage controller has reference real power and 

terminal voltage values as inputs. The real power control is a PI controller, whereas the 

voltage control is a slow integrator. The battery control system also incorporates a charge 

controller with reactive current priority during a fault, and the state-of-charge, the total 

current and the apparent power limits. 

3.4 Case Studies 

A one-year historical HRES plant production dataset with a one-hour sampling rate was 

generated based on typical annual solar irradiation, wind speed, electricity price and 

demand profiles in the southern part of Greece [172]. At each time step, power outputs 

of individual technologies in the HRES plant were determined through an optimization 

procedure with the aim of maximizing demand provision while minimizing total plant 

costs. Thus, the number of rows in the historical HRES plant production dataset 

corresponds to the number of time steps in the investigated historical period, while the 

number of columns in the dataset is equal to the number of individual technologies in the 

HRES plant (i.e., each row in the dataset is a historical HRES plant composition). 

The first stage of the methodology involves the identification of characteristic annual 

HRES plant compositions on the basis of historical plant production data using the fuzzy 

c-means clustering algorithm. The change of the clustering evaluation indices MSE, CDI 

and MIA with the number of clusters, together with the indication of the optimal number 

of clusters, is shown in Figure 3.8. Given that the knee of the curve is not noticeable for 

any of the clustering indices, the two-tangent method presented in [160] is used for 

estimating the knee (as shown in Figure 3.8). The MSE, CDI and MIA indices suggest 

different number of clusters: 9, 5 and 11, respectively. Therefore, the fuzzy c-means 

method divides the historical dataset into nine groups. Nine typical annual plant 

compositions are given in Table 3.2. 



Probabilistic Analysis and Modelling of HRES Plant for System Stability Studies | 111 

 

 

   
(a) (b) (c) 

Figure 3.8 The change of the MSE (a), CDI (b) and MIA (c) with the number of clusters in the case of 

historical HRES plant production data clustering 

Table 3.2 Characteristic annual HRES plant compositions (base power is the rated power of the 

individual plant) 

Cluster 

number 

HRES plant composition 

WF 

(%) 

PV plant 

(%) 

HPP 

(%) 

Biomass 

plant (%) 

Biogas 

plant (%) 

BESS 

(%) 

1 7.1 1.5 0 84.2 75.8 0 

2 94.1 2.3 0 0 0 0 

3 45.9 4.5 0 62.6 18.3 1.4 

4 74.1 30.2 0 0 0 -10.9 

5 16.5 9.8 0 0 0 72.9 

6 87.1 72.5 0 0 0 -0.3 

7 11.8 49.8 0 0 0 -1.2 

8 14.1 1.5 43.6 0 0 0.1 

9 10.6 76.2 0 0 0 -44.3 

Probabilistic MC procedure involves generating a thousand MC simulations per 

characteristic annual HRES plant composition (the choice of the number of MC 

simulations is explained in Section 4.4). In each MC simulation, lengths of connecting 

lines (lines L 1 – L 6 in Figure 3.5) are sampled uniformly between 0.5 km and 5 km (in 

case of larger variation in line lengths it would be less probable for the individual plants 

to be connected to the same TN bus). The variation in the length of connecting lines of 

the PV plant and WF represents the variation in the distance of dominant (in terms of 

power production value) individual units in these plants from the PCC. Namely, the PV 

plant and WF are modelled as a single aggregated plant in the detailed HRES plant 

dynamic model, whereas in reality these plants consist of a large number of spatially 

distributed units. Depending on weather conditions (i.e., wind speed and solar irradiance 

intensity in the case of the WF and PV plant, respectively) it might occur that individual 

units located in a certain part of the plant have larger power output compared to the 

remaining units, which could then be represented in the AM of the PV plant and WF by 
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modifying the length of the respective connecting line to the PCC. Even though the 

remaining individual plants within the test HRES plant (i.e., the HPP, biomass and biogas 

plant, and BESS) do not contain spatially distributed individual units, the lengths of their 

connecting lines are varied in MC simulations as well, in order to investigate the 

influence of the lengths of connecting lines (i.e., the proximity of the relevant plant to 

the PCC) on the overall transient response of the HRES plant and ultimately on the 

stability performance of the system. 

As for uncertainties in short-term production forecast, in each set of 1,000 MC 

simulations, the power output of each individual plant is sampled uniformly in the range 

of ±5% around the corresponding value in the typical HRES plant composition. A single 

TN operation point is considered in all cases – the TN demand (represented by the load 

connected to Bus 17 in Figure 3.5) corresponds to an average annual HRES plant 

production of 155 MW. The set of 9,000 MC CSs is simulated for each of four types of 

system stability studies using the test system presented in Figure 3.5. The obtained 

system stability results as well as developed EMs are presented in the following sections. 

3.4.1 Small-disturbance Stability Study 

As mentioned in Section 3.2.4, the focus of small-disturbance stability analysis is on 

electromechanical modes. The least damped (the critical) electromechanical mode is 

defined for each MC simulation and shown in Figure 3.9 (a). Given that only three out 

of nine typical annual HRES plant compositions (i.e., compositions 1, 3, and 8) have at 

least one SG-based power plant in service, electromechanical modes are present only in 

the case of these three plant compositions. The results of small-disturbance stability 

analysis of the above-mentioned three HRES plant compositions can be divided into two 

groups as shown in Figure 3.9 (a). 

  
(a) (b) 

Figure 3.9 (a): Small-disturbance system stability results (CC: characteristic HRES plant composition); 

(b) The expected time of use of EMs during the year  
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Cluster 1 contains the results of the MC CSs based on compositions 1 and 3 that are 

characterized by two SGs (the biomass and biogas power plant) in operation. These two 

compositions result in the least damped and fastest electromechanical mode (on average, 

-0.72 1/s and 1.33 Hz, respectively) among the recorded critical electromechanical 

modes. The second cluster includes composition 8, i.e., the composition with the HPP as 

a single SG in service. Electromechanical modes produced by cluster 2 have frequency 

and damping of about 1.17 Hz and -1.16 1/s, respectively. Therefore, all analysed MC 

CSs can be divided into three groups (two groups of cases producing electromechanical 

modes and a group of cases without an SG-based power plant in service) based on their 

impact on small-disturbance stability of the system.  

Three clusters of MC cases indicate that three EMs are required for representing the 

considered HRES plant operating conditions in small-disturbance stability studies. The 

expected number of days per month covered by each of the equivalents is shown in Figure 

3.9 (b). Cluster/EM 3 and 1 represent around 60% and 30% of the historical dataset, 

respectively, while the remaining EM 2 covers less than 10% of the data. EM 3 is a 

dominant equivalent in each month, except during the winter period when both EM 1 

and EM 3 have similar time of use.  

The parameters of the representative electromechanical mode (given in Table 3.3) are 

used for specifying the complex poles of TFs for clusters 1 and 2, meaning EM 1 and 2 

are in the form of the second-order TF. In the case of EM 3, that is, HRES plant 

compositions without SGs in service, TF poles cannot be initialized in advance. In this 

case both TF numerator and denominator coefficients are estimated in the parameter 

estimation procedure.  

In order to estimate TF numerator for EM 1 and EM 2, and the whole TF structure for 

EM 3, time domain electromechanical simulations are performed for representative 

HRES plant compositions of the three clusters. Representative HRES plant composition 

for cluster 1 and 2 is a simulated HRES plant composition that results in the cluster 

medoid, i.e., the critical electromechanical mode that is the most similar to representative 

electromechanical mode for the given cluster. (Note: Identifying a representative HRES 

plant composition as an average of plant compositions associated with the analysed 

cluster (i.e., calculating the mean of real power outputs from the cluster per individual 
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technology) can result in a representative plant composition considerably different from 

the compositions in the cluster if these compositions are very diverse. As a result, due to 

the high sensitivity of the small-disturbance stability results to system operating point, 

the representative plant composition obtained in this way would be characterized by the 

critical electromechanical mode different from the representative mode of the given 

cluster. This was the case with cluster 1 containing plant compositions 1 and 3. Adopting 

the cluster medoid approach for defining the representative HRES plant composition 

solved the issue.) Table 3.3 shows the parameters of the cluster medoids for clusters 1 

and 2. Representative mode and cluster medoid for cluster 2 are identical, whereas the 

difference between the parameters of the representative mode and cluster medoid for 

cluster 1 is around 3% (only 0.02 1/s) and 0.8% for damping and frequency value, 

respectively. Small difference between the parameters of the representative cluster mode 

and cluster medoid justifies the use of the selected electromechanical simulations for 

specifying TF numerator. As aforementioned, a representative plant composition for a 

cluster of electromechanical modes is a simulated MC plant composition that results in 

the critical electromechanical mode corresponding to a cluster medoid. Given that plant 

compositions in cluster 3 do not produce electromechanical modes, the representative 

HRES plant composition for this cluster is defined as an average of HRES plant 

compositions assigned to this cluster.  

A small increase in the system load (represented by load connected to Bus 17 in Figure 

3.5) of 1% is used as a system disturbance in electromechanical simulations. The 

simulations last 10 seconds and the disturbance occurs at t=1 second. The lengths of all 

connecting lines (L 1- L 6 in Figure 3.5) are set at 2.75 km as it corresponds to the average 

of the line lengths simulated in the MC procedure. Deviation of real power response at 

the PCC from its pre-disturbance steady state value is shown in Figure 3.10 for all 

electromechanical simulations. 

Table 3.3 The representative critical electromechanical mode and cluster medoid for clusters 1 and 2 

 Representative mode Cluster medoid 

Cluster Damping (1/s) Frequency (Hz) Damping (1/s) Frequency (Hz) 

1 -0.72 1.33 -0.70 1.34 

2 -1.16 1.17 -1.16 1.17 
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Figure 3.10 Deviation of real power responses at the PCC (obtained in electromechanical simulations) 

from their pre-disturbance steady state values 

TF parameter estimation process (relying on power responses presented in Figure 3.10) 

terminates when the improvement in the RMSE value between two consecutive iterations 

becomes smaller than 0.01%. The obtained expressions for TFs for all three EMs are as 

follows: 

 𝑇𝐹𝐸𝑀 1 =
−2370𝑠2−857.5𝑠−446.4

𝑠2+1.44𝑠+70.3
, (3.21) 

 𝑇𝐹𝐸𝑀 2 =
−3621𝑠2+3414𝑠−1103

𝑠2+2.32𝑠+55.65
, (3.22) 

 𝑇𝐹𝐸𝑀 3 =
−420.1𝑠3+2.24∙104𝑠2+1.23∙105𝑠−1.61∙104

𝑠3+330.2𝑠2+1.15∙104𝑠+8295
. (3.23) 

EM 3 is characterized by three real poles: -290.86 1/s, -38.6 1/s, and -0.74 1/s. (Note: 

Given that the deviation of the real power response of the HRES plant from the pre-

disturbance value is insignificant for EM 3 (see Figure 3.10), and plant compositions 

associated with EM 3 do not produce electromechanical modes, another option for the 

HRES plant representation in the case of plant compositions with converter-connected 

technologies only is a negative constant power load model (instead of 𝑇𝐹𝐸𝑀 3).) 

MC CSs generated by plant compositions 1, 3 and 8 are simulated in 

DIgSILENT/PowerFactory using the corresponding EMs instead of the detailed HRES 

plant dynamic model. Figure 3.11 illustrates the error of EM 1 and EM 2 in terms of the 

damping and frequency of the critical electromechanical mode in the form of boxplots. 

Outliers are marked by red asterisks, whereas whiskers cover 99.3% of data in the case 

of normal distribution. The EM implemented in DIgSILENT/PowerFactory results in the 

representative critical electromechanical mode of the relevant cluster as EM parameters 
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do not depend on HRES plant power production, and thus, EM error is determined by 

the difference between the parameters of the representative mode and the actual critical 

electromechanical mode for a given MC CS. As seen in Figure 3.11, developed models 

have slightly higher accuracy in terms of the frequency of the critical electromechanical 

mode than in the case of damping value. The error in the damping value is between -4% 

and 4.5% for most of the cases represented by EM 1, whereas the error in the frequency 

value for EM 1 as well as the error in the damping and frequency for EM 2 is within (-1, 

1)% for almost all simulated cases.  

  
(a) (b) 

Figure 3.11 MC CSs used for model development: EM accuracy in terms of damping (a) and frequency 

(b) of the critical electromechanical mode  

3.4.2 Transient Stability Study 

In all MC CSs, a three-phase self-clearing short-circuit fault occurs at Bus 18 (see Figure 

3.5) at t=1 s and lasts for 100 ms. The total duration of simulations is 10 seconds. The 

obtained 9,000 HRES plant real power responses can be divided into four clusters 

according to similarity in time, meaning four DEMs are required for representing the 

considered HRES plant operating scenarios in transient stability simulations. Four 

clusters of power responses, together with cluster representative responses (shown in 

black), are presented in Figure 3.12.  

Power responses generated by HRES plant compositions with SGs in service are divided 

into two clusters: cluster 1 (responses from typical plant composition 1) and cluster 2 

(responses from typical plant compositions 3 and 8). Table 3.4 provides the information 

about the total HRES plant production, SG share and the type of SGs in operation for 

typical HRES plant compositions 1, 3 and 8. As can be seen, the clustering of power 

responses depends on SG share in plant composition and the type of SGs in service (the 

total HRES plant output is similar for all compositions). Namely, compositions 1 and 3 

contain the same two SGs in service (the biomass and biogas power plant), but the SG 

share in plant composition 3 is about a half of that in plant composition 1. On the other 
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hand, the participation of SGs in the HRES plant production for compositions 1 and 8 is 

similar, but plant composition 8 has the HPP as a single SG in operation. 

  
(a) (b) 

  
(c) (d) 

Figure 3.12 Simulated HRES plant real power responses (grey) and representative responses (black) ((a): 

Cluster 1; (b): Cluster 2; (c): Cluster 3; (d): Cluster 4)  

Table 3.4 Total HRES plant production, SG share and type of SGs in service for typical plant 

compositions containing SGs  

Cluster Composition HRES plant output (MW) SG share (%) SG in service 

1 1 138.4 88.4 
biomass and biogas 

power plant 

2 
3 153.6 40.3 

biomass and biogas 

power plant 

8 156.7 82.1 HPP 

MC real power responses produced by compositions containing converter-connected 

technologies only are divided into two clusters (cluster 3 and 4) mainly due to significant 

difference in the pre-disturbance HRES plant power output. Cluster 4 contains the 

responses from a single plant composition, composition 6, with the steady state HRES 

plant production of around 340 MW. On the other hand, the pre-disturbance HRES plant 

power output for compositions 2, 4, 5, 7, and 9 in cluster 3 is between 140 MW and 

190 MW. 

Figure 3.13 presents the expected time of use of EMs during the year, which was 

determined using the historical production dataset. EM 3 and EM 1 represent around a 
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half and quarter of the historical dataset, respectively, while EM 2 and EM 4 cover about 

15% and 5% of the data, respectively. EM 3 is a dominant model in each month, except 

in January, February and December when EM 1 and EM 3 are expected to be used similar 

number of days. 

 

Figure 3.13 The expected time of use of EMs for transient stability studies  

Clusters 1 and 2 are represented by an equivalent SG, while an equivalent WF is used for 

modelling responses from the remaining two clusters (compositions with converter-

connected technologies only). The ranges of values used for estimating the unknown 

equivalent SG parameters are: (1, 10) s for the inertia constant, and (1, 100) p.u. for the 

damping coefficient. When it comes to the equivalent WF model, it is assumed that the 

parameters of the two PI controllers in the outer control loop are the same (as 

recommended in [164]). The same assumption is adopted for the parameters of the PI 

controllers in the inner loop [164]. In the parameter estimation procedure, the 

proportional gain of the PI controllers in the outer loop was varied from 0.1 p.u. to 5 p.u., 

while the range of (0.01, 0.1) p.u. was used for the gain of the PI controllers in the inner 

loop. The range of (0.01, 0.1) s and (0.005, 0.05) s was adopted for the time constants of 

the PI controllers in the outer and inner loop, respectively. The minimum and maximum 

limits of the ranges used in the estimation process were established by the trial-and-error 

method. 

For each cluster, the representative HRES plant production (𝑃𝐻𝑅𝐸𝑆
𝑅𝐸𝑃 ), EM parameters as 

well as the accuracy of EM for the representative plant response (used for EM parameter 

estimation) are given in Table 3.5. EM 1 and 2 have similar inertia constant values, but 

the damping coefficient for EM 2 is considerably larger than for EM 1 (this is expected 

as oscillations in power responses from cluster 1 last about 8 seconds, while they 

disappear within 4 seconds in the case of cluster 2, as shown in Figure 3.12 (a) and (b)). 

For both equivalent WF models, the parameters of the PI controllers in the inner loop are 
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almost identical to the default values used for modelling the WF in the detailed HRES 

plant dynamic model. All four EMs are characterized by high accuracy for the 

representative case - the average deviation of EM real power responses from the 

representative cluster responses (i.e., 𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠 value) is between 0.21% (EM 3) and 

1.22% (EM 1). 

Table 3.5 Representative HRES plant production, EM parameters and EM accuracy for the representative 

case 

EM 
𝑃𝐻𝑅𝐸𝑆

𝑅𝐸𝑃  

(MW) 
H (s) 

KD 

(p.u.) 

kP, kQ 

(p.u.) 

TP, TQ 

(s) 

kd, kq 

(p.u.) 
Td, Tq 

(s) 
𝐸𝑀𝐸𝑟𝑟

𝑇𝑟𝑎𝑛𝑠 
(%) 

1 140 7.5 21.25 - - - - 1.22 

2 157 8 59.5 - - - - 1.00 

3 164 - - 2.6 0.07 0.05 0.01 0.21 

4 338 - - 0.8 0.03 0.05 0.01 0.29 

In order to further assess EM accuracy, all previously developed MC CSs were simulated 

using four EMs instead of the full-scale HRES plant dynamic model. Figure 3.14 shows 

the obtained 𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠 values for each EM in the form of boxplots. All EMs are capable 

of reproducing the real power response of the detailed HRES plant model with high 

accuracy. The median EM error for EM 1 and EM 2 is about 1.2%, whereas the 50th 

percentile of 𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠 values for EM 3 and EM 4 is 0.4% and 0.25%, respectively. 

Furthermore, the maximum 𝐸𝑀𝐸𝑟𝑟
𝑇𝑟𝑎𝑛𝑠 value for EM 1-4 is around 1.5%, 1.3%, 1.1% and 

0.6%, respectively.  

 

Figure 3.14 MC CSs used for model development: The accuracy of EMs of the HRES plant for transient 

stability studies  

3.4.3 Frequency Stability Study 

Figure 3.15 illustrates frequency nadir in the case of nine typical HRES plant 

compositions for an increase of 50% in the total system load (classified as a large 

contingency in [186]). As can be seen, there is no significant drop in the frequency 
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responses; the frequency nadir is between 49.64 Hz and 49.89 Hz (frequency is 

calculated in DIgSILENT/PowerFactory software package as a rate of change of the 

phase angle of the voltage at the PCC). In order to obtain more realistic system stability 

results with a mid-size system disturbance (about (10 - 20)% of the global load [186]), 

the external TN (External Grid in Figure 3.5) has to be represented by a SG with the rated 

capacity smaller than 400 MVA. Thus, in frequency stability studies, the external TN is 

represented by the SG with the installation capacity of 384 MVA as the parameters for 

this generator size are available in [173]. The standard sixth-order model is used for 

modelling the generator, whereas the IEEE DC1A exciter and IEEEG1 governor 

represent the SG control system [102]. 

 

Figure 3.15 Frequency nadir for typical HRES plant compositions in the case of a 50% load increase and 

the external TN represented by the infinite bus 

An increase of 10% in the total system load was used as a system disturbance in all MC 

CSs [186]. Frequency stability results (the maximum RoCoF and frequency nadir) for all 

analysed cases are presented in Figure 3.16 (a). As can be seen, the obtained results can 

be divided into three clusters/groups. Cluster 1 includes the results from HRES plant 

composition 8, which is the only plant composition with the HPP in service (the HPP is 

the only SG in operation). Cluster 2 contains MC CSs produced by plant compositions 1 

and 3 with two SGs in service (the biomass and biogas power plant), while all plant 

compositions consisting of converter-connected technologies only are allocated to cluster 

3. As expected, cluster 3 is characterized by the smallest frequency nadir and the largest 

RoCoF. The representative values of the maximum RoCoF and frequency nadir, together 

with the representative HRES plant production, are given in Table 3.6 for each cluster, 

and these values are used in the EM parameter estimation procedure. 

The expected time of use of the EMs during the year is shown in Figure 3.16 (b). EM 3 

represents around 60% of the historical data and is a dominant model in each month, 

except during the winter (the January-March and November-December periods) when 
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EM 2 is used a considerable number of days per month as well. EM 2 is an adequate 

equivalent for about 30% of the historical dataset, whereas EM 1 covers less than 10% 

of the data. 

  
(a) (b) 

Figure 3.16 (a): Frequency system stability results (CC: characteristic HRES plant composition); (b) The 

expected time of use of EMs during the year  

Table 3.6 The representatives of clusters of frequency stability results 

Cluster 𝑃𝐻𝑅𝐸𝑆
𝑅𝐸𝑃  (MW) Frequency nadir (Hz) RoCoF (Hz/s) 

1 157 49.84 -0.17 

2 146.1 49.80 -0.21 

3 194 49.76 -0.30 

The equivalent SG is developed for clusters 1 and 2, whereas the equivalent WF model 

is used for representing cluster 3. The ranges of values used for estimating the parameters 

of the equivalent SG model are the same as for transient stability study. As for the 

equivalent WF model, the gain of the PI controllers in the outer loop was varied between 

1 p.u. and 5 p.u., while the range of (0.005, 0.1) p.u. was adopted for the gain of the PI 

controllers in the inner loop. The range of (0.005, 0.05) s was used for the integral time 

constants of all PI controllers. EM parameters and accuracy for the representative CS are 

given in Table 3.7. The 𝐸𝑀𝐸𝑟𝑟
𝐹𝑟𝑒𝑞

 value is determined by the error in RoCoF value for all 

three equivalents as EMs provide frequency nadir values almost identical to the 

representative ones. Still, the RoCoF error is below 1% for all EMs. The RoCoF error in 

absolute units is between 0.3 mHz/s (EM 2) and 1.2 mHz/s (EM 1). 

Table 3.7 The parameters of EMs for frequency stability studies 

EM H (s) 
KD 

(p.u.) 

kP, kQ 

(p.u.) 

TP, TQ 

(s) 

kd, kq 

(p.u.) 

Td, Tq 

(s) 
𝐸𝑀𝐸𝑟𝑟

𝐹𝑟𝑒𝑞
 

(%) 

∆𝐹𝑛𝑎𝑑𝑖𝑟 
(%) 

∆𝑅𝑜𝐶𝑜𝐹 
(%) 

1 2.5 10.2 - - - - 0.7 0 -0.7 

2 1.7 5.1 - - - - 0.14 -0.01 -0.14 

3 - - 2.5 0.01 0.01 0.01 0.24 -0.01 -0.24 
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Figure 3.17 presents the results of EM validation for all MC CSs used for model 

development. The maximum frequency nadir error is 0.12%, whereas the maximum 

RoCoF error is around 5%. Still, the median RoCoF error for EM 1, EM 2 and EM 3 is -

0.18%, -1.07% and 1.3%, respectively. EM 1 has the highest accuracy, which is expected 

as it covers MC CSs produced by a single plant composition 8.  

  
(a) (b) 

Figure 3.17 MC CSs used for EM development: EM accuracy in terms of RoCoF (a) and frequency nadir 

(b) 

Figure 3.18 presents the RoCoF and frequency nadir error expressed in absolute units 

(i.e., in mHz/s and mHz, respectively) for all three EMs. In [187] the RoCoF error of 

0.1 Hz/s was stated as the maximum acceptable error from end-user’s side according to 

an extensive survey. As can be seen, all three equivalents satisfy the accuracy 

requirement. As for the frequency nadir error, unlike in the case of EM 1 and EM 2, the 

inaccuracy in frequency nadir value is larger than the maximum allowed frequency 

measurement error of 10 mHz ([167]) for almost all cases in cluster 3. Among cases 

represented by EM 3, MC CSs generated by plant composition 6 have the highest 

frequency nadir error; ∆𝐹𝑛𝑎𝑑𝑖𝑟 value for these cases is almost three times larger than the 

corresponding value for the remaining cases in cluster 3 (48 mHz compared to 17 mHz). 

This is due to characteristic plant composition 6 being characterized by significantly 

larger HRES plant power production compared to the representative HRES plant 

production and the power output of other plant compositions represented by EM 3. 

  
(a) (b) 

Figure 3.18 MC CSs used for EM development: EM accuracy in absolute units in terms of RoCoF (a) 

and frequency nadir (b)  
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3.4.4 Long-term Voltage Stability Study 

Long-term voltage stability results for all MC CSs, together with the indicated clusters, 

are shown in Figure 3.19 (a). Given that the minimum recorded critical bus voltage value 

over all MC simulations is about 0.5 p.u., it can be concluded that the test system is not 

prone to long-term voltage stability, as otherwise voltage collapse would have happened 

at much higher value of critical bus. In the case of long-term voltage stability analysis, 

MC CSs can be grouped into five clusters and the data about cluster representatives are 

given in Table 3.8. Clusters 1 and 5 consist of MC CSs produced by a single plant 

composition – composition 8 and 6, respectively. Characteristic HRES plant composition 

8 is the only composition with the HPP in service (the HPP is also the only SG in 

operation). Plant composition 6 has significantly larger total HRES plant output 

compared to other plant compositions, and the WF and PV plant provide the total plant 

production. Cluster 2 represents the remaining HRES plant compositions with SGs in 

service - compositions 1 and 3 (the biomass and biogas power plants are in operation). 

Clusters 3 and 4 are generated by typical plant compositions having only converter-

connected technologies in service: cluster 3 contains compositions 5, 7 and 9, while 

compositions 2 and 4 belong to cluster 4. Compositions belonging to cluster 4 are 

characterized by dominant production from the WF. On the other hand, the HRES plant 

production is mainly provided by the BESS in the case of plant composition 5, whereas 

compositions 7 and 9 are characterized by the dominant production from the PV plant. 

  
(a) (b) 

Figure 3.19 (a): Long-term voltage system stability results (CC: characteristic HRES plant composition); 

(b) The expected time of use of EMs during the year  

Duration of clusters per month, that is, the expected time of use of the EMs, is presented 

in Figure 3.19 (b). EM 2 – 4 are the most dominant models in almost every month during 

the year. EM 2 and EM 4 cover about 35% and 30% of the data, respectively, while 
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around a quarter of the historical production dataset is assigned to EM 3. The remaining 

two EMs represent around 5% of the data each. 

Table 3.8 The representatives of clusters of long-term voltage stability results 

Cluster Load margin (MW) Critical bus voltage (p.u.) 𝑃𝐻𝑅𝐸𝑆
𝑅𝐸𝑃  (MW) 

1 398 0.57 159.1 

2 307.2 0.54 148.2 

3 208.6 0.53 155.7 

4 171 0.61 181.1 

5 103.9 0.66 341.6 

The final step in the study involves EM development for each of the five previously 

defined clusters. The parameter Qmax was estimated from the range of (-0.9, 0.9) p.u. in 

the optimization process, the parameter uk was varied from 5% to 30%, while the shunt 

size was defined using the range of (0, 200) Mvar. The length of the line connecting the 

equivalent SG to the PCC is set at 2.75 km as it corresponds to the average of the line 

lengths simulated in the MC procedure. In the EM parameter estimation process, SG 

power output is equal to the representative HRES plant output for the particular cluster 

(given in Table 3.8). The parameters of all five EMs as well as the deviation of EM results 

from the representative long-term voltage stability results are given in Table 3.9. Lack of 

reactive power support in the case of converter-connected plants is reflected in the low 

value of parameter Qmax. Shunt inductor is required in the case of EM 1 and EM 2, 

whereas shunt capacitor is needed for EM 4 and EM 5. EM 3 does not require any shunt 

element. The difference between the load margin value and critical bus voltage obtained 

using the EMs and the corresponding representative values is on average 4% and 2.7%, 

respectively, while the maximum of both ∆𝐿𝑀 and ∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠 indices is around 5%. EM 2 is 

characterized by the lowest accuracy in terms of critical bus voltage, because cluster 2 is 

the most dispersed cluster in terms of critical bus voltage values.  

Table 3.9 The parameters of EMs for long-term voltage stability studies 

EM Qmax (p.u.) uk (%) 
Shunt size 

(Mvar) 
𝐸𝑀𝐸𝑟𝑟

𝑉𝑜𝑙𝑡 (%) ∆𝐿𝑀 (%) ∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠 (%) 

1 0.75 0.5 100 4.77 -4.27 -2.12 

2 0.25 3.5 20 6.24 -3.86 4.90 

3 -0.30 3.5 0 3.88 3.26 2.10 

4 -0.50 5 -90 5.83 4.68 -3.48 

5 -0.30 7 -80 4.07 3.95 0.98 

Model accuracy is further assessed using all 9,000 MC CSs. The errors in the values of 

load margin and critical bus voltage (i.e., the ∆𝐿𝑀 and ∆𝐶𝑟𝑖𝑡𝐵𝑢𝑠 indicators given by (3.12) 

and (3.13), respectively) are computed for each MC simulation and shown in Figure 3.20 
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in the form of boxplots. Figure 3.20 indicates that the developed EMs are sufficiently 

accurate. The deviation of the load margin and critical bus voltage values produced by 

EMs from the accurate values is below 5% for the majority of the analysed cases. EM 3 

is characterized by the lowest accuracy in terms of load margin, with the 95th percentile 

of the error being equal to 12.4%, while the remaining models have similar ∆𝐿𝑀 values 

(the 95th percentiles for these models are below 7%). This is expected as cluster 3 is the 

most dispersed cluster in terms of the load margin values of the allocated cases. When it 

comes to the critical bus voltage, around 75% of the simulated cases are characterized by 

the error within the range of (-5, 5)%. EM 2 has the highest error (as in the case of 

representative cases used for parameter estimation), with the 95th percentile of the error 

being equal to 13.6%.  

  
(a) (b) 

Figure 3.20 MC CSs used for EM development: EM accuracy in terms of load margin (a) and critical bus 

voltage (b)  

3.4.5 Discussion 

In each of the considered system stability study, the introduced uncertainties in the power 

output and location of the individual plants in the HRES plant do not have a considerable 

impact on power system stability performance. Table 3.10 summarizes EM 

characteristics and the clusters/groups of plant compositions represented by a common 

EM for all four types of system stability studies. In all four system stability analyses, 

plant compositions with converter-connected technologies only are not grouped together 

(i.e., cannot be represented by the same EM) with any plant composition having SGs in 

service. HRES plant compositions with the biomass and biogas power plant 

(compositions 1 and 3) are clustered together, and the composition with the HPP in 

operation (composition 8) represents a single cluster in all system stability studies except 
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in the case of transient stability study. In addition, the grouping of plant compositions for 

small-disturbance and frequency stability studies is the same.  

Table 3.10 EM characteristics and clusters of typical plant compositions for all four types of system 

stability studies  

Stability EM type 
No. of 

EMs 

Min EM 

order 

Max EM 

order 
Clusters of plant compositions 

Small-

disturbance 
black-box 3 2 3 (1, 3); (8); (2, 4-7, 9) 

Transient grey-box 4 2 17 (1); (3, 8); (2, 4, 5, 7, 9); (6) 

Frequency grey-box 3 2 17 (8); (1, 3); (2, 4-7, 9) 

Long-

term 
voltage 

grey-box 5 2 2 (8); (1, 3); (5, 7, 9); (2, 4); (6) 

Equivalent modelling of the test HRES plant provides a considerable simplification of 

the mathematical model of the plant. Namely, the detailed HRES plant dynamic model 

contains 78 differential equations, whereas EM order is between 2 and 17 (the equivalent 

WF model for transient and frequency stability simulations). The number of EMs 

required for representing the considered operating conditions of the test HRES plant in 

system stability simulations ranges from three (small-disturbance and frequency 

stability) to five (long-term voltage stability). It should be noted that EMs were 

developed on the basis of a single TN operating point. 

The EM structure for small-disturbance stability analysis corresponds to a black-box 

model, while EMs for the remaining three system stability studies are grey-box 

equivalents. The equivalent second-order SG and the equivalent WF (for plant 

compositions with converter-connected technologies only) were chosen as grey-box 

equivalents in transient and frequency stability studies, whereas only the equivalent SG 

was used in long-term voltage stability analysis. The equivalent SG could not represent 

HRES plant compositions without SGs in service in transient and frequency stability 

studies as it could not provide non-oscillatory real power responses and high RoCoF 

values, respectively, associated with the dynamic behaviour of converter-connected 

technologies. Unlike the grey-box equivalents for transient and frequency stability that 

are directly connected to the PCC, EM for long-term voltage stability studies is connected 

to the PCC in the same way as individual SG-based plants within the HRES plant, i.e., 

through a line and two transformers (see Figure 3.5). Introducing impedances between 

the equivalent SG and the PCC was necessary in order to obtain acceptable error values 
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in both load margin and critical bus voltage value, in particular in the case of HRES plant 

compositions comprising converter-connected technologies only. In the case of the 

equivalent SG directly connected to the PCC, large reduction in reactive power capability 

of the equivalent SG is needed in order to obtain low load margin in the case of HRES 

plant compositions without SG-based plants in service, which in turn results in a 

considerable reduction in pre-disturbance network voltage magnitudes, and consequently 

large error in critical bus voltage value (compared to the results obtained with the detailed 

HRES plant model). Increasing reactive power capability of the equivalent SG results in 

an increase in pre-disturbance network voltage magnitudes and a reduction in the error 

in critical bus voltage, but the error in load margin value significantly increases. The line 

between two transformers used in the EM configuration does not have a significant 

impact on EM accuracy due to its small length (2.75 km – the average of line lengths 

simulated in the MC procedure). However, the line was retained in the EM structure to 

preserve the way of connecting individual SG-based plants within the HRES plant to the 

PCC. In long-term voltage stability studies, the equivalent WF was not used for 

representing plant compositions with converter-connected technologies only (as it was 

the case with transient and frequency stability) as long-term voltage stability analysis is 

a static stability study, and generator dynamic parameters and control systems have no 

impact on long-term voltage stability results. 

In the case of small-disturbance stability studies a second-order TF was chosen for the 

simulation of the critical (least damped) electromechanical mode instead of a second-

order SG model due to the complexity of HRES plant configuration and high sensitivity 

of small-disturbance stability results to variations in operating point. Namely, given that 

HRES plant can contain a variety of synchronous and non-synchronous technologies, 

there is a possibility of HRES plant compositions with different total HRES plant 

production resulting in similar critical electromechanical mode, and thus, being allocated 

to a single cluster and represented by a common EM. In case an equivalent second-order 

SG is developed for such a cluster, the equivalent SG (with a single set of inertia constant 

and damping coefficient values) would have to produce similar electromechanical modes 

for potentially significantly different total HRES plant outputs (i.e., the equivalent SG 

production levels). On the other hand, the TF-based model parameters (i.e., TF 

coefficients) are constant and independent on the plant power output, meaning the TF-
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based EM produces the electromechanical mode corresponding to the cluster 

representative (for which the EM was developed) for all plant compositions within the 

relevant cluster regardless of differences in their total HRES plant production. 

Grey-box models are more physically intuitive than their black-box counterparts, but 

require more details about HRES plant configuration. In the case of transient and 

frequency stability studies, EM for HRES plant compositions without SGs in service is 

in the form of the equivalent WF, which corresponds to an appropriately scaled detailed 

dynamic model of the WF in the HRES plant, and thus needs the information about wind 

generator parameters as well as the structure and parameter values of its control system. 

The detailed dynamic data might be protected by data confidentiality laws, which in turn 

could limit the application of these models in practice in case the entity developing EM 

is not the entity having access to the full-scale dynamic HRES plant model. On the other 

hand, the black-box model for small-disturbance stability study relies on the 

measured/simulated plant responses only, which means that the eventual data 

confidentiality issue could be overcome by sharing only measurements or simulated plant 

responses between different entities. Furthermore, in the case of transient stability results, 

plant composition 6 had to be separated from the other plant compositions with 

converter-connected technologies only due to the difference in the pre-disturbance HRES 

plant production. In case the shape of the deviation of real power response at the PCC 

from the initial pre-disturbance value was analysed, that is, in case the shape of response 

in time domain was decoupled from HRES plant operating point, all compositions 

containing only converter-connected technologies could be allocated to a single cluster. 

Also, in the case of frequency stability studies, the accuracy of EM 3 for MC CSs 

generated by composition 6 is lower compared to the other cases from the same cluster. 

On the other hand, the TF-based structure used in small-disturbance stability studies has 

a potential to be suitable for a wider range of operating conditions compared to grey-box 

EMs, as its inputs and outputs are the deviations of voltage and real power responses at 

the PCC from their pre-disturbance values, respectively.  

3.5 Summary 

The chapter provided the procedure for identifying the influence of the HRES plant on 

power system stability performance during the year and presented the results of the 

exploratory study towards development of EMs of HRES plant for small-disturbance, 
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transient, frequency and long-term voltage stability studies. The test system contains the 

HRES plant comprising a range of RES and storage technologies, and connected to the 

external network through a single PCC.  

Identification of the annual impact of the HRES plant on the system stability is based on 

characteristic annual HRES plant compositions, which eliminates the issue of high 

computational time required for analysing all possible HRES plant operating points. 

Unsupervised clustering technique is used for determining typical plant compositions 

from the historical dataset. Probabilistic MC approach relying on characteristic plant 

compositions and a single TN operating point produced the results for investigated 

system stability problems (small-disturbance, transient, frequency and long-term voltage 

stability). The obtained system stability results were divided into groups according to 

similarity, and these groups provided the information about typical plant compositions 

having similar influence on the analysed category of power system stability. 

Development of the procedure for determining the typical annual impact of the HRES 

plant on power system stability represents the first original contribution of this thesis. 

Preliminary EMs of HRES plant for the considered types of system stability were 

developed for each group of system stability results. Results obtained with the test system 

indicate that the behaviour of the whole HRES plant in system stability studies can be 

represented by a few models throughout the year. The presented exploratory study paves 

the way towards development of robust EMs of HRES plants suitable for a wide range 

of HRES plant and TN operating conditions, and system disturbances. The guidelines for 

developing EMs of HRES plants for the afore-mentioned system stability simulations 

represent the second original contribution of this thesis. 

The following chapters of the thesis will focus on equivalent modelling of HRES plants 

for transient stability studies as the interest is in the overall system dynamic behaviour 

and stability following disturbances, as opposed to previous work on HRES plant where 

the focus was mainly on its economic/energy contributions to power system operation. 

It is assumed that all individual RES plants within the HRES plant are equipped with the 

fault ride through capability (a typical requirement for RESs these days [188]), and thus, 

do not trip during a fault in the system, which then places the focus of the research on 

system dynamic behaviour following the initial, small, period of fault duration. 
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Furthermore, DEMs for transient stability simulations have to take into consideration 

longer time period following a disturbance compared to equivalents for frequency 

stability studies typically designed to result in as accurate as possible frequency nadir 

and RoCoF values and often using simple/reduced order models of individual 

technologies, which in turn complicates the analysis of HRES plant contribution to the 

overall system dynamic behaviour. 
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4 Data-driven Equivalent Modelling of 

HRES Plant for Power System Transient 

Stability Studies 

 

 

 

 

4.1 Introduction 

This chapter presents the methodology for development of DEM of HRES plants, 

incorporating different renewable generation and storage technologies, suitable for 

reliable assessment of the overall transient stability of the realistic, large power systems. 

Given that the transient stability of a power system is determined by a complex 

interaction between all elements in the system, HRES plant power responses having 

different shape in time domain may result in very similar (if not the same) transient 

stability performance of the system. Therefore, developing equivalents from the 

perspective of the overall transient stability status is more important and more useful for 

practical large system studies than development of highly accurate dynamic models of 

HRES plant as seen from the PCC. In this modelling approach, HRES plant power 

responses associated with similar global transient stability behaviour are represented by 

a common DEM regardless of dissimilarities in shape. Transient stability index (TSI) is 

used for system stability assessment, and consequently for the evaluation of the model 

performance. The proposed DEM is in the form of a TF with voltage and real/reactive 

power at the PCC as an input and output, respectively. Separate TFs are developed for 
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real and reactive power responses. The methodology is illustrated on a number of CSs 

using two HRES plant configurations. 

4.2 Methodology and Model Development 

Figure 4.1 illustrates the flow chart of the methodology for developing DEMs of HRES 

plants for transient stability studies that should provide sufficiently accurate global 

system stability results. Inputs and outputs of different stages in the procedure are marked 

by dashed rectangles. The methodology relies on historical plant production data, 

statistical data about TN short-circuit fault performance and unsupervised data mining 

techniques (clustering methods). 

 

Figure 4.1 The flow chart of the methodology for developing TF-based DEMs of HRES plants for 

transient stability studies 

Firstly, a set of historical real power outputs of individual plants within the HRES plant 

is divided into groups according to similarity in operating conditions of the HRES plant, 

i.e., HRES plant compositions, using an unsupervised clustering technique (block {2} in 

Figure 4.1). In this way, characteristic HRES plant compositions (block {3} in Figure 

4.1) during the year, or any other pre-specified time period, are identified. The use of 

typical instead of all possible plant compositions results in low computational complexity 

of the equivalent modelling procedure.  

Realistic system stability CSs used for DEM development are generated in a probabilistic 

manner (block {6} in Figure 4.1) and provide the most probable annual HRES plant 

dynamic performance in transient stability analysis. Typical HRES plant compositions 

and TN short-circuit fault statistics, as well as uncertainties in production and location of 

individual plants in the HRES plant, represent a basis for defining CSs. System stability 
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simulations are carried out in DIgSILENT/PowerFactory environment using the detailed 

HRES plant and TN dynamic model (block {8} in Figure 4.1).  

Given that the aim is developing a DEM from the perspective of the overall system 

stability results, the influence of HRES plant power responses (obtained in the previously 

defined CSs) on transient stability of the power system is assessed on the basis of the 

value of TSI – a widely used global transient stability indicator (block {10} in Figure 

4.1). In order to define HRES plant responses resulting in similar transient stability 

performance of the system (that is, similar TSI values), groups/clusters of TSI values 

(block {11} in Figure 4.1) are identified through an unsupervised clustering process. The 

number of TSI clusters defines the number of DEMs required for representing the HRES 

plant in transient stability studies. HRES plant responses resulting in TSI values allocated 

to the same cluster (block {12} in Figure 4.1) are represented by a common DEM, 

regardless of their dissimilarities in shape. 

Prior to DEM development (block {13} in Figure 4.1), power responses are z-normalized 

as total HRES plant production varies across CSs. Separate parts of DEM are used for 

modelling real and reactive power responses of the HRES plant, but they have the same 

structure – two blocks connected in series. The first block produces z-normalized power 

response, which represents an input to the second block that performs inverse z-

normalization to obtain power response in absolute units. The block for simulating z-

normalized power response is characterized by a time-varying structure – its structure is 

different for pre-fault, fault and post-fault period. The DEM output is constant before 

and during the fault (DEM produces different power outputs during these time periods), 

while a TF is used for simulating power response following the fault clearance. Voltage 

and real/reactive power at the PCC are TF input and output signals, respectively. A 

representative system stability CS is defined for each group of HRES plant power 

responses. Voltage and power responses at the PCC obtained in corresponding dynamic 

simulation are used for estimating DEM parameters. 

Finally, DEM is integrated into the TN model in DIgSILENT/PowerFactory at the PCC 

(block {14} in Figure 4.1) and its accuracy is assessed on the basis of the difference 

between TSI values produced by the detailed and equivalent plant model for the same 

system operating conditions and disturbances (block {16} in Figure 4.1). The selection 
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of the adequate DEM that should be used in transient stability studies at a particular time 

of the year is performed on the basis of similarity between the forecasted operating 

condition of the HRES plant and characteristic HRES plant compositions (block {15} in 

Figure 4.1).  

The first stage in the equivalent modelling procedure that concerns the identification of 

characteristic annual HRES plant compositions (block {2} in Figure 4.1) is presented in 

Section 3.2.1, and thus, will not be described in this chapter. Detailed description of the 

remaining steps involved in the modelling procedure is given in the following sections. 

4.2.1 Development of Realistic System Stability Case Studies 

Given that the idea of the presented modelling methodology is to develop DEMs able to 

reflect realistic, the most probable HRES plant dynamic behaviour in transient stability 

analysis during a year, HRES plant power responses used for DEM development are 

generated on the basis of representative conditions in the system. The application of 

characteristic annual HRES plant compositions, along with TN short-circuit fault 

statistical data, provides the most likely annual HRES plant responses in transient 

stability studies.  

Uncertainties in production of individual plants and their location within the HRES plant 

(in terms of the distance from the PCC), as well as uncertainties in TN self-clearing short-

circuit faults and total system demand are modelled using probabilistic MC approach. In 

each MC CS, real power outputs of individual plants are sampled uniformly from the 

pre-specified ranges centred around their outputs in characteristic HRES plant 

compositions. Similarly, the uniform probability distribution is used for random 

sampling of the lengths of lines connecting individual plants to the PCC from the pre-

defined range of values. The historical system demand data are divided into clusters 

according to the clusters of historical plant production data and the time instance of the 

observations from the production and demand datasets. In each MC simulation, total 

system demand level is varied around the corresponding cluster centroid using the same 

range as in the case of typical annual plant compositions. 

As for TN disturbances, in each MC simulation, the location, type and impedance of TN 

short-circuit fault are selected in a probabilistic manner using TN fault statistics. The 

procedure is based on the methodology described in [189]. Fault location is chosen by 
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sampling a random number R uniformly from range [0, 1] and comparing it with the 

probabilities of a fault occurring at TN buses and lines (see Figure 4.2). The probability 

of fault occurrence at the i-th TN element is defined as follows [189]: 

 𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑀
𝑖=1

, (4.1) 

where fi is the annual fault rate of the i-th TN element and M is the number of TN buses 

and lines. The i-th TN element is chosen for fault location if the following is satisfied: 

 ∑ 𝑃𝑗
𝑖−1
𝑗=1 < 𝑅 ≤ ∑ 𝑃𝑗

𝑖
𝑗=1 . (4.2) 

In case a line fault is selected, the position of the fault along the line is defined according 

to the uniform probability distribution function.  

 

Figure 4.2 The illustration of fault location sampling (adapted from [189]) 

Fault type is chosen in a similar way as fault location, i.e., by comparing a random 

number with the probabilities of occurrence of four fault types (single-line-to-ground 

(LG), double line-to-ground (LLG), line-to-line (LL) and three-phase (LLL) fault) at the 

selected TN element. The selection of the i-th fault type is performed according to (4.1) 

and (4.2), but with Pi and fi representing the probability of occurrence and annual rate of 

the i-th fault type at the chosen TN element, respectively, and M equal to four (the total 

number of the considered fault types). Finally, fault impedance is sampled from the pre-

specified range ((0-20) Ω [190]) using the uniform probability distribution. 

Different fault locations along lines, all four fault types and non-zero fault impedance are 

simulated to ensure generation and analysis of realistic annual HRES plant power 

responses in transient stability studies. Using only LLL faults in the equivalent modelling 

process would result in DEM capable of representing the worst-case scenario in the 

network, i.e., the least probable plant performance in transient stability analyses. 

Asymmetrical short-circuit faults, i.e., LG, LL and LLG, which result in less severe 

system conditions compared to LLL faults, are much more likely to occur in real power 
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systems. Similarly, adopting a single fault location along a line and zero fault impedance 

would result in unrealistic system stability performance because all locations along a line 

are prone to short-circuit fault occurrence and short-circuit faults always occur with a 

certain value of fault impedance, respectively.  

4.2.2 Simulation of Case Studies in DIgSILENT/PowerFactory 

Transient stability analysis of MC CSs is performed in DIgSILENT/PowerFactory 

software package using the detailed dynamic model of the HRES plant and TN model. 

The full-scale dynamic model of the HRES plant contains detailed dynamic models of 

all individual technologies and their control systems, which take into account all relevant 

protection mechanisms. Real and reactive power responses of the HRES plant at the 

PCC, along with the rotor angles of all SGs in the system are recorded in the simulations.  

4.2.3 Assessment of the Hybrid Renewable Energy Source Plant Impact on 

Transient Stability of the System 

HRES plant power responses are analysed on the basis of their effect on the overall 

transient stability of the system. For that purpose, TSI (4.3) is calculated for each MC 

CS [182]: 

 𝑇𝑆𝐼 =
360°−𝛿𝑚𝑎𝑥

360°+𝛿𝑚𝑎𝑥
∙ 100%, (4.3) 

where δmax is the maximum difference between rotor angles of any two SGs in the system 

at the same time instance. In case δmax is larger than 360 degrees, the TSI is negative and 

the system is considered to be transiently unstable.  

The MC CSs that result in similar TSI values are grouped together and represented by a 

common DEM, meaning the number of resulting TSI clusters determines the number of 

DEMs. The Kernel Density Estimation (KDE) method identifies the groups of similar 

TSI values. The approach is based on the estimation of the probability density function 

(PDF) of TSI values using the kernel function (4.4) [140]: 

 𝑓ℎ(𝑥) =
1

𝑁ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑁

𝑖=1 =
1

𝑁
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑁
𝑖=1 , (4.4) 

where K() is the kernel function that models the contribution of the individual sample xi 

to the overall data density, h is the bandwidth (a positive smoothing parameter), N is the 
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number of samples in the considered dataset (the number of calculated TSI values in this 

analysis), and 𝐾ℎ(𝑡) = 𝐾(𝑡 ℎ⁄ ) ℎ⁄ . The kernel function has to satisfy the following 

conditions: 

 𝐾(𝑤) ≥ 0, ∀𝑤, (4.5) 

 𝐾(𝑤) = 𝐾(−𝑤), ∀𝑤, (4.6) 

 ∫ 𝐾(𝑤)𝑑𝑤 = 1
+∞

−∞
. (4.7) 

The standard Gaussian function with zero mean and standard variance of one is used in 

this analysis, as it is the most common choice for the kernel function [140, 191]. Thus, 

the expression for the kernel density estimator is: 

 𝑓ℎ(𝑥) =
1

𝑁ℎ

1

√2𝜋
∑ 𝑒−(𝑥−𝑥𝑖)

2 2ℎ2⁄𝑁
𝑖=1 . (4.8) 

Estimation of the optimal bandwidth of the kernel function represents the most critical 

step of the KDE application, as the bandwidth determines the shape of the estimated 

PDF. Very small values of the parameter h usually result in under-smoothed PDF 

estimates, whereas the kernel function overfits the underlying PDF in case of large 

bandwidths. The impact of the bandwidth value on the shape of the kernel function is 

illustrated in Figure 4.3. In this study, solve-the-equation plug-in method is used for 

automatic estimation of the optimal value of the parameter h (more details on the 

selection of the optimal bandwidth are provided in Section 4.2.3.1). 

 

Figure 4.3 The illustration of the impact of the bandwidth value on the shape of the kernel function 

(adopted from [192]) 

 



138 | Data-driven Equivalent Modelling of HRES Plant for Power System Transient 

Stability Studies 

Clusters of TSI values are determined based on the local maxima of the estimated PDF 

[140]. For each clustering object x (calculated TSI value), the nearest local maximum of 

the estimated PDF is determined through a step-wise hill-climbing procedure [140]. In 

the case of the Gaussian kernel function, the step-wise hill-climbing procedure is 

performed using (4.9)-(4.11):  

 𝑥0 = 𝑥, (4.9) 

 𝑥𝑗+1 = 𝑥𝑗 + 𝛿
∇�̂�ℎ(𝑥𝑗)

‖∇�̂�ℎ(𝑥𝑗)‖
, (4.10) 

 ∇𝑓ℎ(𝑥𝑗) =
1

𝑁ℎ3
∑

1

√2𝜋
𝑒−(𝑥𝑗−𝑥𝑖)

2
2ℎ2⁄𝑁

𝑖=1 (𝑥𝑖 − 𝑥𝑗), (4.11) 

where ∇𝑓ℎ(𝑥𝑗) and ‖∇𝑓ℎ(𝑥𝑗)‖ is the gradient and the magnitude of the gradient of the 

kernel density estimator at xj, respectively, and δ is a small positive number that controls 

the speed of convergence (the value of 0.1 is adopted). The procedure terminates when 

𝑓ℎ(𝑥𝑗+1) (calculated using (4.8)) becomes lower than 𝑓ℎ(𝑥𝑗), and 𝑥𝑗  then represents the 

nearest local maximum for the considered clustering object. TSI values having the same 

nearest local maximum are assigned to the same cluster. 

Unlike the fuzzy c-means clustering algorithm, which could have been equally used for 

this purpose, the KDE method does not require the number of clusters to be set in 

advance, it can identify arbitrary shaped clusters and has strong mathematical 

background. The drawback of the KDE approach is its computational complexity (due 

to the need for computing the density estimate and local maximum for each clustering 

object, and estimating the optimal bandwidth value [191]), and difficulty in obtaining a 

“reasonable nonparametric density estimation” in the multivariate settings (“the curse of 

dimensionality”) [157]. This, however, was not the case in this study nor it will be in the 

case of development of DEM of any practical HRES plant as the clustering dataset is 

one-dimensional and its size is determined by the number of typical HRES plant 

compositions that cannot be unreasonably large.  

4.2.3.1 The Estimation of the Optimal Bandwidth Value for the Kernel Function 

The adequacy of the bandwidth value for the considered dataset is commonly assessed 

using the asymptotic mean integrated squared error (AMISE), a criterion for measuring 

the accuracy of the kernel density estimator, due to its simple mathematical dependence 
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on the parameter h [157, 193]. The AMISE represents a large sample approximation to 

the mean integrated squared error (MISE), i.e., it is obtained by omitting higher order 

terms from the expression for the MISE as follows (more detailed derivation of the 

expression for the AMISE is given in Appendix A.1) [157, 193]: 

 

𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) = 𝐸 [𝐼𝑆𝐸 (𝑓ℎ(𝑥))] = 𝐸 [∫ (𝑓ℎ(𝑥) − 𝑓(𝑥))
2

𝑑𝑥] =

= ∫𝐸 [(𝑓ℎ(𝑥) − 𝑓(𝑥))
2

] 𝑑𝑥 = ∫𝑀𝑆𝐸 (𝑓ℎ(𝑥))  𝑑𝑥
, (4.12) 

 𝑀𝑆𝐸 (𝑓ℎ(𝑥)) = 𝑉𝑎𝑟 (𝑓ℎ(𝑥)) + (𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)))
2

, (4.13) 

 𝑉𝑎𝑟 (𝑓ℎ(𝑥)) =
𝑓(𝑥)𝑅(𝐾)

𝑁ℎ
+ 𝑜(

1

𝑁ℎ
), (4.14) 

 𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)) =
1

2
ℎ2𝜇2(𝐾)𝑓′′(𝑥) + 𝑜(ℎ2), (4.15) 

 𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) =
𝑅(𝐾)

𝑁ℎ
+

1

4
ℎ4(𝜇2(𝐾))

2
𝑅(𝑓′′(𝑥)) + 𝑜(

1

𝑁ℎ
+ ℎ4), (4.16) 

where 𝑓(𝑥) is the unknown true PDF, 𝐼𝑆𝐸 (𝑓ℎ(𝑥)), 𝑀𝑆𝐸 (𝑓ℎ(𝑥)), 𝑉𝑎𝑟 (𝑓ℎ(𝑥)) and 

𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)) is the integrated squared error, mean squared error, variance and bias of 

the estimated PDF, respectively, 𝑅(𝑔) is the roughness of function g defined as 𝑅(𝑔) =

∫(𝑔(𝑥))2𝑑𝑥, 𝜇2(𝑔) is the second moment of function g, 𝜇2(𝑔) = ∫𝑥2𝑔(𝑥)𝑑𝑥 < ∞. The 

o() stands for the little-o notation and is defined as: 

 𝑎𝑁 = 𝑜(𝑏𝑁) as 𝑁 → ∞, if and only if lim
𝑁→∞

|
𝑎𝑁

𝑏𝑁
| = 0, (4.17) 

where 𝑎𝑁 and 𝑏𝑁 are sequences of real numbers. 

Bases on the expression for the MISE (4.16), the AMISE criterion is defined as follows: 

 𝐴𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) =
𝑅(𝐾)

𝑁ℎ
+

1

4
ℎ4(𝜇2(𝐾))2𝑅(𝑓′′(𝑥)). (4.18) 

The optimal h value for the kernel function minimizes the value of the AMISE criterion: 
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𝜕

𝜕ℎ
𝐴𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) = 0 => ℎ𝑜𝑝𝑡 = (

𝑅(𝐾)

𝑁𝑅(𝑓′′)(𝜇2(𝐾))2
)
1/5

. (4.19) 

The previous expression (4.19) contains a single unknown parameter 𝑅(𝑓′′), and the 

solve-the-equation plug-in method is chosen to address this issue as it has demonstrated 

superior performance, both theoretically and empirically, over a number of other 

techniques [194]. The method is based on replacing 𝑅(𝑓′′) with an adequate estimate 

determined through an iterative procedure. Namely, the integrated squared density 

derivative functionals, R(f(s)), for even s can be written in the following form [191], [157]: 

 𝑅(𝑓(𝑠)) = ∫(𝑓(𝑠)(𝑥))
2
𝑑𝑥 = (−1)𝑠 ∫𝑓(2𝑠)(𝑥)𝑓(𝑥)𝑑𝑥, (4.20) 

 𝑟 = 2𝑠, (4.21) 

 𝛹𝑟 = ∫𝑓(𝑟)(𝑥)𝑓(𝑥)𝑑𝑥 = 𝐸[𝑓(𝑟)(𝑥)]. (4.22) 

An estimator for 𝛹𝑟, �̂�𝑟, is defined as follows [191], [157]: 

 �̂�𝑟 =
1

𝑁
∑ 𝑓ℎ

(𝑟)
(𝑥𝑖) =𝑁

𝑖=1
1

𝑁2𝑔𝑟
𝑟+1 ∑ ∑ 𝐾(𝑟)(

𝑥𝑖−𝑥𝑗

𝑔𝑟
)𝑁

𝑗=1
𝑁
𝑖=1 , (4.23) 

 𝑔𝑟 = [−
2𝐾(𝑟)(0)

𝜇2(𝐾)𝛹𝑟+2𝑁
]
1/(𝑟+3)

, (4.24) 

where 𝑓ℎ
(𝑟)

(𝑥𝑖) is the estimate of the r-th derivative of the PDF f(x) at x=xi, and 𝑔𝑟 is the 

optimal bandwidth for the �̂�𝑟 estimate. Expression (4.23) demonstrates that the estimator 

for 𝛹𝑟 recognizes that the PDF and density derivative functionals might require different 

optimal bandwidths [194]. The optimal gr value (4.24) corresponds to the value that 

eliminates the main bias term from the expression of the asymptotic mean squared error 

(AMSE) for 𝛹𝑟 estimation (detailed derivation of (4.24) is given in Appendix A.2). 

According to (4.19) – (4.22), the expression for the optimal bandwidth is: 

 ℎ𝑜𝑝𝑡 = (
𝑅(𝐾)

𝑁𝛹4(𝜇2(𝐾))2
)
1/5

, (4.25) 

while the expression for g4 according to (4.24) for r=4 is: 

 𝑔4 = [−
2𝐾(4)(0)

𝜇2(𝐾)𝛹6𝑁
]
1/7

. (4.26) 
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Combining (4.25) and (4.26), g4 can be expressed as a function of the hopt value: 

 𝑔4 = [−
2𝐾(4)(0)𝜇2(𝐾)𝛹4

𝑅(𝐾)𝛹6
]
1/7

ℎ𝑜𝑝𝑡
5/7

. (4.27) 

Finally, the solve-the-equation-plug-in method estimates the optimal bandwidth value 

using the following equation: 

 ℎ̂𝑜𝑝𝑡 = (
𝑅(𝐾)

𝑁�̂�4(�̃�4)𝜇2(𝐾)2
)
1/5

, (4.28) 

where �̂�4(�̃�4) is computed using (4.23) with the optimal bandwidth �̃�4 defined according 

to (4.27) as follows: 

 �̃�4 = [−
2𝐾(4)(0)𝜇2(𝐾)�̂�4

𝑅(𝐾)�̂�6
]
1/7

ℎ̂𝑜𝑝𝑡
5/7

, (4.29) 

with �̂�4 and �̂�6 computed using (4.23), and 𝑔4 and 𝑔6, respectively, that are specified by 

(4.24). Equation (4.28) can be solved using the Newton-Raphson method. 

As the estimates for �̂�4 and �̂�6 in (4.23) depend on a higher density derivative functional, 

iterative procedure is applied for their computation. A two-stage approach is most 

commonly used [191]. Density derivative functionals in the first iteration are calculated 

using the normal scale rule, which assumes that the underlying PDF (i.e., the unknown 

true PDF of the considered dataset) corresponds to the normal distribution with zero 

mean and variance equal to the variance of the analysed dataset (detailed derivation of 

(4.30) is provided in Appendix A.3) [157]: 

 �̂�𝑟 =
(−1)𝑟/2𝑟!

(2𝜎)𝑟+1(
𝑟

2
)!√𝜋

, (4.30) 

where σ is the standard deviation of the considered dataset. 

Therefore, the steps in the estimation of the optimal bandwidth for the PDF estimate 

using the two-stage solve-the-equation-plug-in method are as follows: 

1. Computation of the standard deviation of the analysed dataset, σ 
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2. Computation of the estimators of the density functionals �̂�6 and �̂�8 using the 

normal scale rule (4.30) 

3. Calculation of intermediate bandwidths 𝑔4 and 𝑔6 using (4.24) 

4. Computation of the estimators of the density functionals �̂�4 and �̂�6 using (4.23) 

5. Final optimal bandwidth is a solution of (4.28). 

The solve-the-equation-plug-in method is illustrated on a following simple example. Let 

assume that the original PDF is a combination of two normal PDFs: 

 𝑓(𝑥) = 0.5 ∙
1

𝜎1√2𝜋
𝑒

−
(𝑥−𝜇1)2

2𝜎1
2

+ 0.5 ∙
1

𝜎2√2𝜋
𝑒

−
(𝑥−𝜇2)2

2𝜎2
2

, (4.31) 

where 𝜇1 and 𝜇2 is the mean of the first and second normal PDF, respectively, and, 𝜎1 

and 𝜎2 is the standard deviation of the first and second normal PDF, respectively. The 

adopted parameters of the normal PDF are: 𝜇1 = 2, 𝜎1 = 2, and 𝜇2 = 20, 𝜎2 = 3. 

A set of N=1,000 random numbers is generated according to the previously specified mix 

of normal PDFs (i.e., the original PDF), and this dataset is used for estimating the PDF 

using the KDE approach. The two-stage solve-the-equation-plug-in method for 

computing the optimal bandwidth value is performed as follows: 

1. The standard deviation of the dataset is defined as follows:  

 𝜎 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑛)2𝑁

𝑖=1 = 9.36, (4.32) 

where 𝑥𝑖 is the i-th element of the dataset, and 𝑥𝑚𝑒𝑎𝑛 is the dataset average. 

2. The estimators of the density functionals �̂�6 and �̂�8 are computed using (4.30): 

 �̂�8 =
(−1)48!

(2𝜎)94!√𝜋
= 3.35 ∙ 10−9, (4.33) 

 �̂�6 =
(−1)36!

(2𝜎)73!√𝜋
= −8.40 ∙ 10−8. (4.34) 

3. Bandwidths 𝑔4 and 𝑔6 are computed using (4.24), and the values for �̂�6 and �̂�8 

obtained in the previous step of the procedure: 

 𝑔6 = [−
2𝐾(6)(0)

𝜇2(𝐾)�̂�8𝑁
]
1/9

= 5.35, (4.35) 
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 𝑔4 = [−
2𝐾(4)(0)

𝜇2(𝐾)�̂�6𝑁
]
1/7

= 4.33, (4.36) 

where: 

𝐾(𝑟)(𝑥) = (−1)𝑟𝐻𝑟(𝑥)𝐾(𝑥) = (−1)𝑟 [∑ (−1)𝑗 (2𝑗)!

2𝑗𝑗!

𝑟/2
𝑗=0 (

𝑟
2𝑗) 𝑥𝑟−2𝑗]

1

√2𝜋
𝑒−𝑥2/2, (4.37) 

 𝜇2(𝐾) = ∫𝑥2𝐾(𝑥)𝑑𝑥 = ∫𝑥2 1

√2𝜋
𝑒−𝑥2/2𝑑𝑥 = 1, (4.38) 

with 𝐻𝑟(𝑥) representing the r-th Hermite polynomial. 

4. The estimators of the density functionals �̂�4 and �̂�6 are computed using (4.23) 

and the values of 𝑔4 and 𝑔6 calculated in the previous step of the procedure: 

 �̂�6 =
1

𝑁2𝑔6
7 ∑ ∑ 𝐾(6)(

𝑥𝑖−𝑥𝑗

𝑔6
)𝑁

𝑗=1
𝑁
𝑖=1 = −8.48 ∙ 10−6, (4.39) 

 �̂�4 =
1

𝑁2𝑔4
5 ∑ ∑ 𝐾(4)(

𝑥𝑖−𝑥𝑗

𝑔4
)𝑁

𝑗=1
𝑁
𝑖=1 = 1.33 ∙ 10−4. (4.40) 

5. The optimal bandwidth is obtained from (4.28) using the values of �̂�4 and �̂�6 

calculated in the previous step of the procedure: 

 �̃�4 = [−
2𝐾(4)(0)𝜇2(𝐾)�̂�4

𝑅(𝐾)�̂�6
]
1/7

ℎ̂𝑜𝑝𝑡
5/7

= 2.01 ∙ ℎ̂𝑜𝑝𝑡
5/7

, (4.41) 

 ℎ̂𝑜𝑝𝑡 = (
𝑅(𝐾)

𝑁�̂�4(�̃�4)(𝜇2(𝐾))2
)
1/5

= (

1

√2𝜋

1000∙�̂�4(�̃�4)∙1
)

1/5

, (4.42) 

where:  

 𝑅(𝐾) = ∫(𝐾(𝑥))
2
𝑑𝑥 = ∫(

1

√2𝜋
𝑒−𝑥2/2)

2

𝑑𝑥 =
1

2√𝜋
. (4.43) 

Solving (4.42) using the Newton-Raphson method gives the optimal bandwidth 

value:  

 ℎ̂𝑜𝑝𝑡 = 0.77. (4.44) 
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4.2.4 Clustering of Power Responses at the Point of Common Coupling 

The clustering of calculated TSI values leads to groups/clusters of real and reactive 

power responses of the HRES plant that need to be represented by a common DEM. Prior 

to model development though, the power responses have to be normalized as HRES plant 

production varied from one simulation to the next. Z-normalization (4.45) is used for that 

purpose [195]: 

 𝑧(𝑡) =
𝑌(𝑡)−𝑌𝑚𝑒𝑎𝑛

𝑆𝐷_𝑌
, (4.45) 

 𝑌𝑚𝑒𝑎𝑛 =
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1 , (4.46) 

 𝑆𝐷_𝑌 = √
1

𝑛−1
∑ (𝑌𝑖 − 𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1 , (4.47) 

where z(t) is the z-standardized power response, Y(t) is power response in absolute units, 

Ymean is the average value of the overall power response in absolute units, SD_Y is the 

standard deviation of the power response in absolute units, n is the number of samples, 

and Yi is instantaneous value of power response in absolute units at the i-th time step. 

For each cluster of z-normalized power responses, a representative response is defined 

and used for estimating DEM parameters in the next stage of the equivalent modelling 

procedure. First, z-normalized real and reactive power responses obtained in the same 

MC CS are grouped into a single vector. Then, a vector characterized by the minimum 

sum of squared Euclidean distances from the other vectors in the cluster is determined 

and named a representative vector. Real and reactive power response from the 

representative vector are representative z-normalized real and reactive power response, 

respectively, whereas the MC case that results in the representative power response is a 

representative CS of the cluster. 

4.2.5 Derivation of the Overall Dynamic Equivalent Model Structure 

Block diagram of the DEM developed for each cluster of power responses is shown in 

Figure 4.4. The real and reactive power responses at the PCC are modelled by separate 

parts of the DEM though they have the same structure defined by (4.48) and (4.49): 
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 𝑧𝐸𝑄,𝑌(𝑡) = {

0,                                 𝑡 < 𝑡𝑓𝑎𝑢𝑙𝑡

𝑧𝐹𝑎𝑢𝑙𝑡,𝑌,         𝑡𝑓𝑎𝑢𝑙𝑡 ≤ 𝑡 ≤ 𝑡𝑐𝑙𝑒𝑎𝑟

𝑧𝑇𝐹,𝑌(𝑡),                        𝑡 > 𝑡𝑐𝑙𝑒𝑎𝑟

, (4.48) 

 𝑌𝐸𝑄(𝑡) = 𝑌𝑆𝑆 + 𝑧𝐸𝑄,𝑌(𝑡) ∙ 𝑆𝐷𝑌
𝑟𝑒𝑝

, (4.49) 

where zEQ,Y(t) is the z-normalized power response of the model, tfault is the moment of 

fault occurrence, tclear is the moment of fault clearing, zFault,Y is the value of z-normalized 

power response of the model during the fault, zTF,Y(t) is the z-normalized power response 

of the model after the fault clearance, YEQ(t) is the power response at the PCC in absolute 

units (after inverse z-transformation), YSS is the total power output of the plant before the 

disturbance, 𝑆𝐷𝑌
𝑟𝑒𝑝

 is the standard deviation of the representative power response in 

absolute units. 

Equation (4.48) corresponds to the simulation of z-normalized power response (marked 

by blue solid rectangles in Figure 4.4), whereas (4.49) represents the application of 

inverse normalization to obtain power response in absolute units (marked by blue dashed 

rectangles in Figure 4.4). The DEM part described by (4.48) is characterized by different 

structures for pre-fault, fault and post-fault time periods. It can be seen from (4.48) that 

the z-normalized power response before the disturbance is equal to zero as the system is 

in steady state before the fault occurrence. The z-normalized power response during the 

fault is assumed to be constant as fault duration is short compared to post-fault recovery 

period. The average of the representative z-normalized power response during the fault 

is adopted for modelling the response during this time period (zFault). 

 

Figure 4.4 Block diagram of TF-based DEM 
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The z-normalized power response after the fault clearing is produced by a TF with 

voltage at the PCC as an input. Different TFs are used for modelling real and reactive 

power response of the HRES plant. TF parameters are determined through an iterative 

optimization procedure using voltage and z-normalized power response at the PCC from 

the representative MC CS as TF input and output, respectively. The TF numerator and 

denominator order are gradually increased starting from the minimum first order. For 

each TF order, TF parameters are estimated in the same way as in the case of TF-based 

EM for small-disturbance stability studies presented in Chapter 3 (i.e., using the 

Levenberg-Marquardt algorithm). The objective of TF parameter estimation is to 

minimize the sum of squared differences between the representative z-normalized power 

response and TF output: 

 min
𝜃

휀(𝜃) =min
𝜃

∑ (𝑧𝑂𝑅𝐺
𝑟𝑒𝑝 (𝑡𝑘) − 𝑧𝐸𝑄

𝑟𝑒𝑝(𝑡𝑘))
2𝑛

𝑡=1 , (4.50) 

where θ is a set of TF parameters, n is the number of the considered time steps, 𝑧𝑂𝑅𝐺
𝑟𝑒𝑝 (𝑡𝑘) 

is the representative z-normalized power response at the k-th time step, and 𝑧𝐸𝑄
𝑟𝑒𝑝(𝑡𝑘) is 

the TF output for the representative CS at the k-th time step. The Levenberg-Marquardt 

optimization terminates when there is no considerable improvement in the value of 휀(𝜃) 

between two consecutive iterations (the value of 0.01% is adopted in this study). 

Following TF parameter estimation, the BFV is then calculated using (4.51) [19, 20]: 

 𝐵𝐹𝑉 (%) = 100 ∙ (1 −
‖𝑧𝑂𝑅𝐺

𝑟𝑒𝑝
(𝑡)−𝑧𝐸𝑄

𝑟𝑒𝑝
(𝑡)‖

‖𝑧𝑂𝑅𝐺
𝑟𝑒𝑝

(𝑡)−𝑧𝑂𝑅𝐺
𝑟𝑒𝑝

‖
), (4.51) 

where 𝑧𝑂𝑅𝐺
𝑟𝑒𝑝

 is the average of the representative z-normalized power response during the 

post-fault recovery period. The BFV value of 100% corresponds to the perfect match 

between the representative z-normalized response and TF output, whereas the zero value 

indicates that TF output signal is a constant signal corresponding to the average of the 

representative response. The parameter optimization process terminates, that is, the 

optimal TF order and TF parameters are determined, when the BFV becomes larger than 

a pre-specified threshold. The threshold of 80% is adopted in this methodology [19, 20]. 

Finally, for transformation of z-normalized response into power response in absolute 

units the mean value and standard deviation of the actual power response are needed (see 

(4.45)). However, this information cannot be known in advance for an arbitrary operating 
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condition and short-circuit fault without measuring or simulating HRES plant response. 

Therefore, HRES plant power output in steady state for a given forecasted plant 

composition and the standard deviation of the representative power response in absolute 

units (𝑆𝐷𝑌
𝑟𝑒𝑝

) are used instead of the mean value and standard deviation of the actual 

power response, respectively. 

4.2.6 Integration of Dynamic Equivalent Model into DIgSILENT/PowerFactory 

Built-in DSL is used for designing DEMs of the HRES plant in 

DIgSILENT/PowerFactory environment [164]. As in the case of the TF-based model for 

small-disturbance stability studies presented in Chapter 3, the TF-part of the DEM (4.48) 

has to be transformed into the control canonical state-space model due to DSL 

requirements. The approach given in Section 3.2.6 is used for transforming the TF-part 

of the model into the state-space model, and it will be repeated here for clarity: 

 𝑧𝑇𝐹,𝑌 (𝑠) =
𝑏0𝑠𝑛+𝑏1𝑠𝑛−1+⋯+𝑏𝑛−1𝑠+𝑏𝑛

𝑠𝑛+𝑎1𝑠𝑛−1+⋯+𝑎𝑛−1𝑠+𝑎𝑛
, (4.52) 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝐵𝑢𝑃𝐶𝐶(𝑡)

𝑧𝑇𝐹,𝑌 (𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢𝑃𝐶𝐶(𝑡)
, (4.53) 

 𝐴 =

[
 
 
 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1]
 
 
 
 

, 𝐵 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

, 𝐷 = 𝑏0 , (4.54) 

 𝐶 = [(𝑏𝑛 − 𝑎𝑛𝑏0) (𝑏𝑛−1 − 𝑎𝑛−1𝑏0) … (𝑏2 − 𝑎2𝑏0) (𝑏1 − 𝑎1𝑏0)], (4.55) 

where 𝑧𝑇𝐹,𝑌 (𝑠) is the TF-part of the DEM (obtained when estimating DEM structure) in 

s-domain, and A, B, C and D are state-space matrices. 

Similar to the equivalent for small-disturbance stability studies described in Chapter 3, 

the implementation of DEM in DIgSILENT/PowerFactory network model requires an 

interface in the form of a controllable, constant power load. The load is connected at the 

PCC and its real and reactive power responses during dynamic simulations are controlled 
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according to (4.48), (4.49) and (4.52) – (4.55). The illustration of the DEM concept in 

DIgSILENT/PowerFactory software is presented in Figure 4.5. 

 

Figure 4.5 Illustration of the concept of TF-based DEMs in DIgSILENT/PowerFactory 

Thus, dynamic model developed in DSL environment receives a signal from the network 

simulation model, voltage at the PCC (uPCC(t) in Figure 4.5), as an input, performs 

computations defined in (4.48), (4.49) and (4.52) – (4.55), and provides pre-specified 

output signals – reference real and reactive power of the load (PEQ(t) and QEQ(t) in Figure 

4.5, respectively). Real and reactive power injected at the PCC (PPCC(t) and QPCC(t) in 

Figure 4.5, respectively) correspond to the DEM outputs. The integration time step of 

the DSL computations is equal to the time step of dynamic network simulations. A set of 

DEMs, one per cluster of power responses, is created and stored in the software library. 

DIgSILENT/PowerFactory software provides a feature to automatically select the DEM 

from the set of available DEMs and assigned it to the load model in order to simulate 

HRES plant dynamic behaviour at the PCC in transient stability simulations. 

4.2.7 Selection of Dynamic Equivalent Model for an Arbitrary Hybrid 

Renewable Energy Source Plant Composition 

Clustering of MC CSs according to the similarity in their TSI values may divide power 

responses associated with a single characteristic HRES plant composition into different 

clusters. In order to perform selection of DEM at any time of the year knowing HRES 

plant composition only, the most adequate model for each characteristic plant 

composition is chosen as the model corresponding to the cluster containing the largest 

share of responses produced by this plant composition.  

When it comes to an arbitrary HRES plant operating condition, the corresponding DEM 

is the best model for the characteristic annual plant composition which is the most similar 

(composition) to the given plant composition (similarity between plant compositions is 

assessed based on their Euclidean distance). Figure 4.6 illustrates the procedure for 
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choosing the DEM for a new/arbitrary HRES plant composition (the inputs and outputs 

of the procedure are marked by dashed rectangles). First, the Euclidean distance between 

the new plant composition and each of the typical HRES plant compositions is calculated 

(block {1} in Figure 4.6), with 𝑃𝑗
𝑛𝑒𝑤, Pj

typ,i, 𝑁𝑖𝑛𝑑, and 𝑁𝑡𝑦𝑝 in Figure 4.6 corresponding 

to the power output of the j-th individual plant in the case of the new plant composition, 

the power output of j-th individual plant in the case of the i-th typical plant composition, 

the number of individual plants within the HRES plant, and the total number of typical 

plant compositions, respectively. Then, the minimum of the computed Euclidean 

distances is defined (block {2} in Figure 4.6), and the typical plant composition 

corresponding to the minimum Euclidean distance (Min_Typ in Figure 4.6) is the most 

similar to the investigated new plant composition. The adequate DEM for the new HRES 

plant composition is the best DEM for the typical Min_Typ plant composition.  

 

Figure 4.6 The illustration of the selection of the adequate DEM for an arbitrary HRES plant 

composition 

4.2.8 Validation of Dynamic Equivalent Model 

Evaluation of DEM performance is carried out in DIgSILENT/PowerFactory software 

package for a range of system operating conditions and TN short-circuit faults. Model 

accuracy is assessed from the point of view of the overall transient stability of the system, 

i.e., the error in TSI value: 

 𝑇𝑆𝐼𝐸𝑟𝑟(%) = |
𝑇𝑆𝐼𝑂𝑅𝐺−𝑇𝑆𝐼𝐸𝑄

𝑇𝑆𝐼𝑂𝑅𝐺
| ∙ 100%, (4.56) 



150 | Data-driven Equivalent Modelling of HRES Plant for Power System Transient 

Stability Studies 

where TSIORG and TSIEQ are TSI values obtained using the detailed dynamic model and 

DEM of the HRES plant, respectively. 

4.3 Test System 

The methodology is tested using two CSs involving HRES plant configurations shown 

in Figure 4.7. HRES plants are connected to the same TN represented by the standard 

IEEE 9-bus model [173]. The test systems are modelled in DIgSILENT/PowerFactory 

software package 2020 [164]. 

 

Figure 4.7 The schematic diagram of the test HRES plants and IEEE 9-bus network (G: generation 

technology; S: storage technology) 

The HRES plant in CS-I consists of three individual plants, namely a WF, a PV plant and 

a run-of-river HPP, whereas the HRES plant in CS-II includes, in addition to the above 

a biomass plant, biogas plant and BESS, i.e., six individual plants in total. Installation 

capacities and dynamic model order of individual plants in both HRES plants are given 

in Table 4.1. Models of individual plants include the dynamic model of a 

generation/storage technology and its corresponding control system. The HRES plant 

from CS-II corresponds to the HRES plant used in the CS presented in Chapter 3, and 

the dynamic modelling of this HRES plant is described in detail in Section 3.3.  

All individual plants in CS-I have the same rated capacity in order to prevent any single 

energy source dominating the dynamic behaviour of the HRES plant. The rated capacity 

of 210 MVA is chosen as it results in the median participation of the HRES plant in 
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supplying the total system demand (in the case of the data used in the study) of about 

25%, and, thus, provides similar participation of all four power plants in the test system 

(the HRES plant and three SGs in the test TN) in the total system production. As in the 

case of the HPP within the HRES plant from CS-II, the hydro generator in the HRES 

plant from CS-I has a rated power factor of 0.85, and is represented by the standard fifth-

order SG model, while IEEEG3 governor and IEEE DC1A exciter comprise the hydro 

generator control system. Modelling of the PV plant and WF in the HRES plant from 

CS-I is the same as for the relevant individual plants in the HRES plant from CS-II 

(detailed description is provided in Section 3.3). 

Table 4.1 Installation capacities and model order of the test HRES plants  

 CS-I CS-II 

 
AM of 

WF 

AM of 

PV 

plant 

HPP 
AM of 

WF 

AM of 

PV 

plant 

HPP 
Biomass 

plant 

Biogas 

plant 
BESS 

Rated 

capacity 

(MVA) 

210 210 210 170 265 295 76.5 76.5 125 

Model 

order 
17 14 13 17 14 13 14 11 9 

Overall 

model 

order 

44 78 

4.4 Case Studies 

The production data used in CS-I concern the total production of run-of-river HPPs, PV 

plants and WFs in Central-Northern Italy for the four-year period 2015-2018. The data 

with a one-hour sampling rate are available in [196]. As the missing values account for 

less than 1% of the dataset, no interpolation was conducted. Historical HRES plant 

production data were scaled so that the maximum production of each individual plant 

during the analysed period is equal to its rated power. When it comes to CS-II, the 

historical HRES plant production dataset is the same as the one used in Chapter 3. 

In CS-I historical demand data are obtained from the total demand in Central Italy during 

the four-year period 2015-2018 [196], while the demand data in CS-II correspond to the 

typical annual demand profile in the southern part of Greece [172]. In both CSs, historical 

demand data were scaled so that the maximum load level corresponds to the sum of rated 
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real powers of SGs in the TN and the maximum HRES plant production from the 

historical dataset. The scaled historical demand data are assigned to three loads in the TN 

model (see Figure 4.7). The production of SGs in the TN is defined using OPF. The OPF 

objective is to minimize the total generation cost of SGs in the TN (generation cost 

functions are adopted from [197]), while satisfying the specified total system load and 

considering the constraints in terms of real and reactive power outputs of SGs, bus 

voltage magnitude, line and transformer loadings. 

For each characteristic annual HRES plant composition, 1,000 MC simulations are 

performed. The number of MC simulations was chosen according to the following 

expression [198]: 

 휀𝑟 =
𝛷−1(1−

𝛿

2
)√

𝜎𝑆
2(𝑋)

𝑁𝐶𝐶∙𝑁𝑆

𝐸𝑆(𝑋)
, (4.57) 

where 휀𝑟 is the estimated error of the sample mean, 𝛷−1 is the inverse of the standard 

Gaussian function with zero mean and standard deviation of one, 𝛿 is the confidence 

level, 𝜎𝑆
2 is the sample variance, 𝑁𝐶𝐶 is the number of characteristic annual HRES plant 

compositions, 𝑁𝑆 is the number of MC simulations per each of the characteristic annual 

HRES plant compositions, 𝐸𝑆 is the sample mean, and X is the sampled random variable 

with (𝑁𝐶𝐶∙𝑁𝑆) samples, i.e., TSI values obtained from MC simulations. For 𝑁𝑆=1000, 

and a confidence level of 99% (𝛿=0.01), the 휀𝑟 value was around 0.1% for both CSs 

presented in this chapter, meaning the adopted number of MC simulations per 

characteristic annual HRES plant composition provides a satisfactory low error of the 

sample mean.  

As in the case of the CS presented in previous Chapter 3, in each set of 1,000 simulations, 

the lengths of lines connecting individual plants to the PCC (i.e., lines marked as “Lx” in 

Figure 4.7, where x is the number that goes from 1 to 3 and 6 in CS-I and CS-II, 

respectively) are sampled uniformly between 0.5 km and 5 km. The uncertainties in 

power outputs of individual technologies in the HRES plant are modelled by uniformly 

varying power output of each individual plant in the range of ±5% around the typical 

HRES plant composition. The same approach is applied to the centroids of historical 

demand clusters. Probabilistic fault simulation is carried out using TN fault statistics 

given in Table 4.2 [199, 200]. LG faults are applied on phase A, while LL and LLG faults 



Data-driven Equivalent Modelling of HRES Plant for Power System Transient Stability 

Studies | 153 

 

 

involve phases B and C. When it comes to the sampling of fault location along a line, it 

is assumed that all positions along the line have the same probability of being affected 

by the fault. The fault impedance is sampled uniformly from the range (0-20)Ω [190].  

The plant responses are simulated for 10 s with the sampling rate of 1 ms and with a fault 

occurring at 1 s. The same fault duration of 100 ms was used in all MC simulations. The 

simulations are performed in MATLAB and DIgSILENT/PowerFactory (system stability 

studies) environment. 

Table 4.2 Statistical data about TN fault performance (fault rate/year) [199, 200] 

230 kV Bus 

Fault type LG LLG LL LLL 

Fault distribution 0.73 0.17 0.06 0.04 

Fault rate 0.08 0.0584 0.0136 0.048 0.0032 

230 kV Line 

Fault type LG LLG LL LLL 

Fault distribution 0.76 0.14 0.06 0.04 

Fault rate 1.57 1.1932 0.2198 0.0942 0.0628 

4.4.1 Case Study - I 

4.4.1.1 Model Development 

The changes of the values of the MSE, CDI and MIA with the number of clusters in the 

case of historical data clustering are presented in Figure 4.8. Given that the knee of the 

curve is not noticeable for any of the clustering indices, the two-tangent method 

described in [160] is used for estimating the knee (as shown in Figure 4.8).  

   
(a) (b) (c) 

Figure 4.8 CS-I: The change of the MSE (a), CDI (b) and MIA (c) with the number of clusters in the case 

of historical HRES plant production data clustering 

The MSE, CDI and MIA indices suggest different optimal number of clusters to be used 

in the fuzzy c-means clustering, i.e., 9, 6 and 10, respectively (as shown in Figure 4.8). 

Thus, the median value is chosen and the production data set was divided into nine 
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clusters, which are presented in Figure 4.9 (a) in the form of boxplots. Outliers are 

marked by red asterisks, whereas whiskers cover 99.3% of data in the case of normal 

distribution. Also, nine clusters of total TN demand corresponding to nine clusters of 

plant compositions are defined according to the time instance of demand and production 

data samples (see Figure 4.9 (b)). Characteristic annual HRES plant compositions and 

total demand levels are defined by the respective cluster centroids and given in Table 

4.3. 

  
(a) (b) 

Figure 4.9 CS-I: Clusters of HRES plant compositions (a) and total demand levels (b) (base power for 

the production levels is the rated power, 210 MVA) 

Table 4.3 CS-I: Characteristic annual HRES plant compositions and total demand levels (base power for 

the production levels is the rated power, 210 MVA) 

Cluster number 
HRES plant composition 

Demand (MW) 
HPP (%) PV plant (%) WF (%) 

1 67.36 3.48 12.68 528 

2 21.34 2.07 7.89 415 

3 43.04 2.75 8.89 485 

4 33.63 29.98 10.44 534 

5 19.20 43.51 7.91 510 

6 16.35 2.55 39.81 403 

7 65.83 4.05 44.82 535 

8 0 1.16 7.75 365 

9 38.63 4.04 44.26 474 

Figure 4.10 (a) shows the PDF of TSI values estimated using the KDE approach (the 

optimal bandwidth of the kernel function is 0.33 according to the solve-the-equation 

plug-in method). A great majority of MC simulations is characterized by the TSI being 

within the range of 80-85, meaning there is no significant variation in transient stability 

status regardless of considerable variation in system operating conditions and 

disturbances. (Note: There have been no cases of slow-interaction converter-driven 

instability (this category of power system stability is related to the slow dynamic 
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interactions of the controllers of power electronic-based devices with the slow-response 

components in power systems such as the electromechanical dynamics of SGs and some 

generator controllers [169]).) Step-wise hill-climbing method identifies two local 

maxima corresponding to TSI values of 80.6 and 84.3. This means that two DEMs are 

required for representing the HRES plant in transient stability studies throughout the 

year. Two corresponding TSI clusters are shown in Figure 4.10 (b) in the form of 

boxplots.  

  
(a) (b) 

Figure 4.10 CS-I: Histogram-PDF of TSI values (a) and TSI clusters (b) 

The number of MC cases produced by the same typical plant composition is defined for 

each TSI cluster and given in Table 4.4. It can be seen that for each characteristic HRES 

plant composition, a great majority of (if not all) 1,000 MC simulations belong to the 

same TSI cluster, regardless of differences in location, type and resistance of short-circuit 

faults. Therefore, the value of TSI is predominantly determined by HRES plant operating 

condition, and thus, the selection of the adequate DEM at any time of the year can be 

performed on the basis of HRES plant composition only. The typical annual HRES plant 

compositions 6, 7 and 9 (the WF loading is about 40% in those compositions) belong to 

TSI cluster 2, i.e., they can be represented by DEM 2, whereas the remaining typical 

generation compositions, 1-5 and 8, are assigned to DEM 1 (about 73% of the historical 

data can be represented by DEM 1). The expected time of use of the corresponding DEMs 

(defined based on the historical production dataset) is shown in Figure 4.11. DEM 1 

could be confidently used in transient stability simulations pretty much throughout the 

whole year, except during the first three months of the year when both models cover 

approximately the same number of days and therefore are equally good for modelling the 

HRES plant in stability studies. 
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Table 4.4 CS-I: Number of MC CSs per TSI cluster 

 CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 

TSI cluster 1 890 1000 1000 1000 995 69 14 1000 37 

TSI cluster 2 110 0 0 0 5 931 986 0 963 

CC=characteristic HRES plant composition 

 

Figure 4.11 CS-I: The expected time of use of DEMs 

As described in Section 4.2.4, z-normalized real and reactive power responses at the PCC 

are divided into groups using the information about the allocation of MC simulations to 

the two TSI clusters. Clusters of z normalised power responses, along with representative 

z-normalised responses shown in black thick curve, are presented in Figure 4.12. As can 

be seen, responses of considerably different shape are grouped together and assigned to 

the same DEM, which indicates that focusing on highly accurate representation of HRES 

plant power responses in time domain is unnecessary from the perspective of obtaining 

reliable results about the most probable overall transient stability status of the system 

during a year. Table 4.5 provides the information about the parameters of the developed 

DEMs: TF order, the value of z-normalised power response during fault duration, as well 

as standard deviation of the representative power response. The proposed equivalent 

modelling yields significant simplification (from 44 to 11 states) in HRES plant 

modelling for transient stability assessment of the system with embedded HRES plant. 

The mathematical model for the dominant equivalent (i.e., the model that can be used 

most of the time during the year), DEM 1, is as follows (the mathematical model of DEM 

2 is given in Appendix B.1.1): 

 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃(𝑡) = −6.50; 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄(𝑡) = 9.59, (4.58) 

 𝑧𝑇𝐹,𝑃(𝑡) = ʆ−1 [
−7.4𝑠5−750.8𝑠4−1951𝑠3−1.8∙104𝑠2+8141𝑠+2122

𝑠5+182.1𝑠4+715.1𝑠3+1.1∙104𝑠2+2.8∙104𝑠+3.8∙104] 𝑢𝑃𝐶𝐶(𝑡), (4.59) 
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 𝑧𝑇𝐹,𝑄(𝑡) = ʆ−1 [
−0.2𝑠6+101𝑠5+298.7𝑠4+4782𝑠3−667.9𝑠2+1.1∙104𝑠−4492

𝑠6+71.9𝑠5+558.9𝑠4+5015𝑠3+2.4∙104𝑠2+4.2∙104𝑠+2.6∙104] 𝑢𝑃𝐶𝐶(𝑡), (4.60) 

 𝑃𝐸𝑄(𝑡) = 𝑃𝑆𝑠 + 2.04𝑧𝐸𝑄,𝑃(𝑡); 𝑄𝐸𝑄(𝑡) = 𝑄𝑆𝑠 + 3.49𝑧𝐸𝑄,𝑄(𝑡), (4.61) 

where ʆ−1 is inverse Laplace transformation and 𝑢𝑃𝐶𝐶(𝑡) is the magnitude of voltage at 

the PCC. 

  
(a) (b) 

  
(c) (d) 

Figure 4.12 CS-I: Z-normalized simulated responses (grey) and representative responses (black) ((a): 

DEM 1 - real power; (b): DEM 1 - reactive power; (c): DEM 2 - real power; (d): DEM 2 - reactive 

power)  

Table 4.5 CS-I: Parameters of the DEMs 

 Real power Reactive power 

 TF order 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃 𝑆𝐷𝑃
𝑟𝑒𝑝

 (MW) TF order 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄 𝑆𝐷𝑄
𝑟𝑒𝑝

 (Mvar) 

DEM 1 5 -6.50 2.04 6 9.59 3.49 

DEM 2 6 -8.51 2.19 4 9.66 3.90 

4.4.1.2 Assessment of Model Accuracy 

The first part of model accuracy assessment is based on MC CSs used for model 

development. All 9,000 previously defined MC cases are simulated using the equivalent 

instead of the detailed dynamic model of the HRES plant and the error in TSI value is 

computed for each MC simulation. The TSIErr indicator given by (4.56) is shown in 

Figure 4.13 (a) in the form of boxplots for all analysed cases (a boxplot per DEM). The 
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maximum TSIErr indicator is around 6% and the median TSIErr is below 0.5% for both 

DEMs, which demonstrates their high accuracy.  

  
(a) (b) 

Figure 4.13 CS-I: Error in TSI values for trained (a) and untrained (b) CSs  

In order to further test model robustness, the second part of model performance 

evaluation involves untrained CSs. Namely, the hourly data about the total production of 

HPPs, PV plants and WFs and total demand in the analysed region during the year of 

2019 are used for generating system operating scenarios. TN short-circuit faults are 

defined in the same way as in the case of initial MC simulations. Results of model testing 

are shown in Figure 4.13 (b). Model accuracy is slightly lower than in the case of trained 

CSs, as there are about 100 MC cases characterized by the TSIErr indicator being within 

the range of (10-30)%. Still, the median error in TSI values is around 1% for both DEMs. 

The accuracy of the DEMs is also compared to the case when the whole HRES plant is 

replaced by a “negative” constant power load model (NCPLM) as done in many system 

stability studies. The NCPLM accuracy is assessed using the MC CSs developed based 

on the data from the year of 2019 (i.e., untrained cases that were used for DEM 

validation). Figure 4.14 compares CDFs of the error in TSI values (TSIErr index) for the 

NCPLM and the developed DEMs. As illustrated in Figure 4.14, the use of the NCPLM 

doubles the median TSI error: it increases from 0.9% for the proposed DEMs to 2.5% for 

the NCPLM. In addition, TSIErr indicator is below 4% for 90% of the simulated transient 

stability simulations in the case of the NCPLM, whereas this number is below 1.6% for 

the developed DEMs. 
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Figure 4.14 CS-I: Test 2019 year: CDF of the error in TSI values for the NCPLM (red) and DEMs 

developed using the proposed methodology (blue)  

Additionally, though not necessarily required for the purpose that the DEM is developed 

for, the assessment of DEM accuracy is performed by comparing the time domain 

responses of the detailed dynamic model of the HRES plant and the responses of the 

equivalent model. The mismatch between the power responses produced by the detailed 

HRES plant dynamic model and DEM is investigated for MC CSs from the relevant TSI 

cluster (i.e., the training dataset used for DEM development) as well as for corresponding 

cases from the test year (2019) that can be represented by the given DEM. Given that the 

adopted fault duration is 100 ms in all simulations and the period after fault clearing is 

relevant for TSI calculation, only the period after fault clearing is analysed. 

The difference between power responses (in absolute units) produced by the detailed and 

equivalent model is calculated at each time step of the simulation using the following 

index: 

 ∆𝑌(𝑡𝑘) =
𝑌𝐸𝑄(𝑡𝑘)−𝑌𝑂𝑅𝐺(𝑡𝑘)

𝑌𝑂𝑅𝐺(𝑡𝑘)
∙ 100%, (4.62) 

where tk is the k-th time step of the simulation, YORG(tk) and YEQ(tk) is real/reactive power 

output of the detailed and equivalent model, respectively, at the k-th time step. 

The results of the analysis for the dominant model, DEM 1, are shown in Figure 4.15 and 

Figure 4.16, while the results for DEM 2 are illustrated in Appendix B.1.1 (Figure B.1 

and Figure B.2). Figure 4.15 and Figure 4.16 illustrate the values of index (4.62) 

calculated for each power response belonging to the training DEM 1 and for each power 
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response from the year 2019 that can be represented by DEM 1, respectively. The index 

is calculated for real and reactive power responses separately. The values of the index 

are shown in the form of boxplots at characteristic time steps of the simulations. In the 

case of the training dataset, the deviation of real power responses of DEM 1 from the 

original real power responses (i.e., responses produced by the detailed model) is between 

-1.9% and 2.4% at each time step for most of the cases. As for the reactive power 

responses from this dataset, DEM 1 accuracy is slightly lower; DEM 1 error at each time 

step is between -5.1% and 0.8% for most of the responses. However, in most of the cases 

with DEM 1 error for reactive power responses that is above ±10%, small reactive power 

output of the HRES plant in the pre-disturbance state (below 5 Mvar) is a cause of high 

values of index given by (4.62). When it comes to DEM 1 accuracy for the test year 

(2019), the maximum observed values of index (4.62) for real and reactive power 

responses are higher than in the case of the training data, however, the overall DEM 1 

accuracy is similar to the one obtained with the training DEM 1 dataset. For most of the 

responses in this case, the DEM 1 error at each time step after fault clearing is within the 

range [-1.9, 2.3]% and [-6, 2.1]% for real and reactive power responses, respectively. 

Similar to the training dataset, the DEM 1 accuracy for reactive power responses from 

the test dataset is lower compared to the real power responses from the same dataset 

mainly due to small values of the total reactive power output of the HRES plant in pre-

fault state resulting in high values of index (4.62). 

  
(a) (b) 

Figure 4.15 CS-I: Training DEM 1 dataset: Comparison between the power responses of the detailed 

model and DEM 1 ((a): real power, (b): reactive power) 
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(a) (b) 

Figure 4.16 CS-I: Test 2019 year: Comparison between the power responses of the detailed model and 

DEM 1 ((a): real power, (b): reactive power) 

When it comes to the training dataset for DEM 2, even though the maximum value of 

index given by (4.62) is about 15% and 50% in the case of real and reactive power 

responses, respectively, the error for most of the cases is below 2% and 8% for real and 

reactive power at each time step after fault clearing, respectively. The accuracy of DEM 2 

in terms of the shape of real power responses in time domain for the test year (2019) is 

similar to the accuracy for real power in the case of the training DEM 2 dataset. As for 

the reactive power responses from the test year, DEM 2 accuracy is lower compared to 

the training dataset, i.e., the value of index (4.62) is within the range [-22, 2.5]% for most 

of the cases at all time steps after the fault clearing. As in the case of DEM 1, low reactive 

power output of the HRES plant is the main reason for high values of index (4.62) in the 

case of reactive power responses. 

4.4.1.3 The Impact of Input Data on the Accuracy of Dynamic Equivalent Model 

4.4.1.3.1 The Impact of the Historical Period Duration 

In order to assess the effect of the size of historical HRES plant production dataset on 

DEM accuracy, DEMs of the considered HRES plant were developed on the basis of 

three shorter historical periods: six-month winter (Period I: 01/01/2017-15/03/2017; 

16/09/2017-31/1/2017), six-month summer (Period II: 16/03/2017 – 15/09/2017), and 

one-month period (Period III: March of 2017) that can be considered as the worst-case 

scenario in terms of historical data availability. The data from the year of 2017 are used 
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for DEM development as they are characterized by the most dissimilar HRES plant 

production profiles compared to the plant compositions used for DEM validation.  

The fuzzy c-means clustering algorithm identified six characteristic HRES plant 

compositions in Period I and four typical plant compositions in the remaining two 

periods. The plant compositions are given in Table 4.6, together with the compositions 

from the original four-year historical period. None of the sets of typical HRES plant 

compositions from the reduced historical periods contains the composition characterized 

by similar production of the HPP and WF of about 40% (original composition 9). 

Composition without the HPP in operation was identified in Period I only, while both 

six-month periods do not contain the composition characterized by similar production of 

the HPP and PV plant of about 30% (original composition 4). For each typical HRES 

plant composition in the considered reduced historical periods, the most similar plant 

composition from the original four year-period is given in Table 4.6 in bold. Similarity 

to original compositions 3 and 5, original composition 2, and original compositions 4 

and 7 in the case of the six-month winter, six-month summer, and one-month period, 

respectively, is limited as the maximum difference between the outputs of the individual 

technologies in the original and reduced historical periods is about 10%. 

A single eleventh-order DEM is sufficient for representing all compositions in Period I, 

while two DEMs are required for Period II and Period III. The orders of models in 

Period II are 11 and 8, while both equivalents developed based on one-month data are 

characterized by ten differential equations. 

Table 4.6 CS-I: Typical HRES plant compositions for different historical period duration 

Cluster 

number 

Original historical 

production dataset 
Period I Period II Period III 

HPP 

(%) 

WF 

(%) 

PV 

(%) 

HPP 

(%) 

WF 

(%) 

PV 

(%) 
 

HPP 

(%) 

WF 

(%) 

PV 

(%) 
 

HPP 

(%) 

WF 

(%) 

PV 

(%) 
 

1 67.4 13.3 3.8 66.7 17.1 4.3 1 18.2 9.8 43.4 5 67.3 14.1 4.7 1 

2 21.3 8.6 1.9 16.4 47.3 2.3 6 39.4 11.6 5.3 3 35.3 10.0 41.2 4 

3 43.0 9.5 2.9 0 9.4 1.4 8 20.7 42.7 8.2 6 26.9 14.2 2.0 2 

4 33.6 10.5 30.5 33.6 12.6 3.4 3 12.0 9 2.0 2 57.3 51.0 6.4 7 

5 19.2 8.6 43.8 56.6 53.8 3.5 7         

6 16.3 40.0 2.9 21.7 8.9 36.5 5         

7 65.8 44.8 4.8             

8 0 7.6 1.0             

9 38.6 44.8 3.8             

The accuracy of the new DEMs is evaluated using already defined MC CSs for the year 

of 2019. Figure 4.17 shows the CDFs of the TSI error for the DEMs derived on the basis 
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of the reduced historical periods as well as for the original DEMs. The 50th and 90th 

percentile of the CDFs of the TSI error for all DEMs developed based on the three 

reduced historical datasets are about 2.3% and 4%, respectively, which does not represent 

a considerable reduction in the overall model accuracy compared to the original DEMs 

derived using the whole four-year historical period (0.9% and 1.6% correspond to the 

50th and 90th percentile, respectively, of the CDF of TSIErr indicator for these DEMs). 

Given that the same level of model accuracy was achieved for all three reduced historical 

periods, the correlation between the duration of historical period and TSI error is not 

linear, i.e., larger historical dataset does not necessarily provide higher model accuracy. 

As the median TSI error of 2.3% was obtained for DEMs derived using only one-month 

recordings, this value can be considered as the maximum median TSI error for DEMs of 

the considered HRES plant developed on the basis of any historical period. 

 

Figure 4.17 CS-I: CDFs of TSI error for DEMs developed using four-year (blue), six-month winter (red), 

six-month summer (green), and one-month (black) period 

4.4.1.3.2 The Impact of the Sampling Rate of Historical Production Data  

The impact of data sampling rate on DEM accuracy is investigated for one-month 

historical period, the March of 2017, as a worst-case scenario. As the original historical 

data for the test HRES plant are available with a one-hour sampling rate, the data were 

resampled at six-hour time steps in order to perform this analysis. MC CSs for the year 

of 2019 (defined for the DEMs developed using the original historical dataset) are used 

for assessing DEM accuracy. Figure 4.18 illustrates CDFs of TSI error for DEMs derived 

on the basis of the one-month recordings with two different sampling rates. Very similar, 

almost identical values of TSIErr indicator were obtained for both sets of DEMs, meaning 
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historical data sampling rate does not have significant impact on the accuracy of TSI 

value. The reason for a high match between the two CDFs is the ability of the fuzzy c-

means clustering algorithm to identify almost identical typical monthly HRES plant 

compositions regardless of data sampling rate (characteristic plant compositions for the 

one-month period for one- and six-hour sampling rates are given in Table 4.7).  

 

Figure 4.18 CS-I: CDFs of TSI error for DEMs developed using the one-month data with one-hour (blue) 

and six-hour (red) sampling rate  

Table 4.7 CS-I: Typical HRES plant compositions for the one-month historical period with one- and six-

hour sampling rates 

Cluster number 
One-hour sampling rate Six-hour sampling rate 

HPP (%) WF (%) PV (%) HPP (%) WF (%) PV (%) 

1 67.3 14.1 4.7 70.4 14.5 4.8 

2 35.3 10.0 41.2 35.4 11.3 37.3 

3 26.9 14.2 2.0 23.4 13.2 2.7 

4 57.3 51.0 6.4 61.2 52.1 9.9 

4.4.1.3.3 The Impact of the Unavailability of Historical Production Data of Individual 

Plants 

In case historical data for a single individual plant in the HRES plant are not available 

but the real power output of the whole HRES plant was recorded, then the data for this 

plant can be obtained by simply subtracting the sum of real power outputs of the 

remaining individual technologies from the total HRES plant production. However, if 

production data of the whole HRES plant or more than one individual technology are not 

available, then artificial production data have to be generated. Artificial production 

dataset can be produced using one of the following approaches: 

 Production data of non-dispatchable RES plants, such as PV plants, WFs and run-

of-river HPPs, can be generated on the basis of measured solar irradiance, wind 

speed and streamflow at the plant location, respectively, and corresponding 
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equations for converting primary energy source into plant power output. In case 

measurements are not available, relevant PDFs can be used for modelling 

variation in solar irradiance, wind speed and streamflow.  

 Production data of dispatchable individual plants can be obtained as the outputs 

of the optimal economic dispatch of the HRES plant. The objective of the 

optimization process is to minimize the total plant costs while meeting the pre-

specified HRES plant production profile. 

In order to assess the impact of missing historical production data on DEM performance, 

two scenarios for generating artificial historical data are analysed:  

 Scenario I - assuming production data unavailability for a single plant, the WF in 

this example;  

 Scenario II - assuming production data unavailability for all individual plants in 

the HRES plant.  

Scenario II represents the worst-case scenario in terms of the unavailability of historical 

data of individual plants in the HRES plant. Still, it should be noted that it is highly 

unlikely that there would be absolutely no information about real power output of any 

individual technology in an operating HRES plant. 

Given that wind speed and solar irradiance measurements, as well as the relevant PDFs 

of wind speed and solar irradiance, for the considered region were not available, the 

artificial historical data for the considered scenarios were generated by varying the 

available data within the ±20% range, i.e., by multiplying the available historical data by 

a random number sampled uniformly from the range [0.8 – 1.2]. It is assumed that 

inaccuracies due to the conversion of wind speed and solar irradiance value into power 

plant output, availability/operation status of power plant, wake effect in the WF, shading 

effect on PV panels, etc., can be taken into account by adopting the maximum error of 

±20%.  

Following the generation of the artificial historical data, all steps in the proposed 

equivalent modelling procedure were performed. In the case of unavailability of 

historical production data of the WF, the number of characteristic annual HRES plant 
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compositions in the artificial historical dataset is six, while the number of typical plant 

compositions in Scenario II is seven. These compositions are given in Table 4.8, along 

with nine typical compositions identified in the original historical dataset. Typical plant 

compositions obtained from the artificial datasets are similar to the original ones to a 

great extent. However, unlike in the case of the original historical data, the sets of typical 

plant compositions in Scenario I and Scenario II do not contain the compositions with 

similar share of the HPP and PV plant/WF in the total HRES plant output (original 

compositions 4 and 9, respectively). In addition, characteristic plant compositions in 

Scenario I do not include a composition with converter-connected technologies only. 

Table 4.8 CS-I: Typical annual HRES plant compositions for original and artificial historical datasets  

Cluster 

number 

Original historical 

production dataset 
Scenario I Scenario II 

HPP 

(%) 

WF 

(%) 

PV 

(%) 

HPP 

(%) 

WF 

(%) 

PV 

(%) 

HPP 

(%) 

WF 

(%) 

PV 

(%) 

1 67.4 13.3 3.8 37.5 10.5 4.8 44.4 10.5 4.8 

2 21.3 8.6 1.9 13.0 8.6 2.9 24.6 10.5 4.8 

3 43.0 9.5 2.9 55.8 45.7 5.7 22.4 8.6 41.9 

4 33.6 10.5 30.5 20.2 41.0 3.8 56.0 46.7 5.7 

5 19.2 8.6 43.8 22.6 9.5 41.0 69.0 16.2 4.8 

6 16.3 40.0 2.9 64.0 14.3 4.8 0 9.5 2.9 

7 65.8 44.8 4.8    21.2 42.9 3.8 

8 0 7.6 1.0       

9 38.6 44.8 3.8       

As in the case of the original historical production dataset, in both scenarios, two DEMs 

are required for modelling the whole HRES plant during the year. Furthermore, there is 

no considerable difference in the order of the derived DEMs: in Scenario I the order of 

DEMs is 8 and 10, in Scenario II the order of DEMs is 10 and 12, while original DEMs 

(i.e., DEMs developed on the basis of the original historical data) are characterized by 

10 and 11 states. The accuracy of the DEMs developed using the artificial historical data 

is assessed on the basis of both sets of MS CSs used for the validation of the original 

DEMs. The results of the evaluation of the original DEMs and DEMs developed in 

Scenario I and II are compared in Figure 4.19 using the CDFs of the TSI error (a few 

values of TSI error in Scenario I and Scenario II between 30% and 50% are not shown 

in Figure 4.19 (a) to enable easier comparison between the results for the training data 

and the test 2019 year). Additionally, the values of the 50th and 90th percentile of TSI 

error for all three sets of DEMs are given in Table 4.9. It can be seen that the lack of 

historical data of individual plants has almost no effect on DEM accuracy. In the case of 
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9,000 MC CSs used for the development of the original DEMs, the median TSIErr is 

almost the same for all three sets of DEMs, while the 90th percentile of TSI error for 

DEMs from Scenario I and II is higher than the corresponding value for the original 

DEMs by only 0.04% and 0.02%, respectively. As for the test 2019 year, the median 

TSIErr of DEMs from Scenario I and II (0.88% and 0.84%, respectively) is insignificantly 

smaller than the median TSIErr value for the original DEMs (0.91%). The reason for this 

is slightly greater similarity of the data from the test 2019 year with the artificial HRES 

plant production profiles than with the original historical data (2015-2018). 

  
(a) (b) 

Figure 4.19 CS-I: CDFs of TSIErr indicator for the original DEMs (blue), DEMs from Scenario I (green) 

and DEMs from Scenario II (red) ((a): MC CSs used for the development of the original DEMs; (b): MC 

CSs from the test 2019 year)  

Table 4.9 CS-I: TSI error for original and artificial historical datasets  

 

MC CSs used for the original DEM 

development 
MC CSs from the year of 2019 

Original 

DEMs 
Scenario I Scenario II 

Original 

DEMs 
Scenario I Scenario II 

50th percentile 

of TSI error 
0.14% 0.15% 0.13% 0.91% 0.88% 0.84% 

90th percentile 

of TSI error 
0.38% 0.42% 0.40% 1.60% 1.54% 1.50% 

The issue of historical data unavailability may also arise in case of the integration of new 

individual plants into the existing HRES plant after developing DEMs for the initial 

HRES plant design. In this situation, the adequacy of the already developed DEMs for 

representing new HRES plant configuration can be assessed by comparing TSI values 

produced by these DEMs and the detailed dynamic model of the new HRES plant in 

probabilistic transient stability simulations. Given that historical datasets required for 

transient stability analysis cannot be available for new individual plants prior to their 
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commissioning, artificial historical data have to be generated as previously described. If, 

following the transient stability analysis, the use of the existing DEMs results in large 

errors in TSI values (see discussion in Section 4.4.3) then new set of DEMs has to be 

developed. The analysis in Section 4.4.1.3.1 has shown, however, that both one-month 

and six-month historical production data result in the same DEM accuracy. Therefore, 

the production of individual technologies recorded during the first month of operation of 

the new HRES plant can be used for the development of the new DEMs, and if necessary 

periodically updated as more data become available. 

4.4.2 Case Study - II 

4.4.2.1 Model Development 

The historical HRES plant production dataset used in this CS-II corresponds to the one 

used for the test HRES plant in Chapter 3, meaning the results of the clustering of 

historical production data using the fuzzy c-means algorithm are the same. Thus, the 

optimal number of clusters in the historical plant production dataset is nine (the change 

of the clustering indices MSE, CDI and MIA with the number of clusters is shown in 

Figure 3.8). Nine typical annual plant compositions and corresponding demand levels 

(identified as in CS-I) are given in Table 4.10 (characteristic plant compositions are the 

ones given in Table 3.2) and yield 9,000 MC simulations, i.e., 9,000 TSI values. Nine 

clusters of historical production and demand data are presented in Appendix B.2.1 in the 

form of boxplots (Figure B.3 and Figure B.4, respectively). 

Table 4.10 CS-II: Characteristic annual HRES plant compositions and total demand levels (base power 

for the production levels is the rated power of the individual plant) 

Cluster 

number 

HRES plant composition 
Demand 

(MW) 
WF 

(%) 

PV plant 

(%) 

HPP 

(%) 

Biomass 

plant (%) 

Biogas 

plant (%) 

BESS 

(%) 

1 7.1 1.5 0 84.2 75.8 0 378 

2 94.1 2.3 0 0 0 0 371 

3 45.9 4.5 0 62.6 18.3 1.4 367 

4 74.1 30.2 0 0 0 -10.9 446 

5 16.5 9.8 0 0 0 72.9 450 

6 87.1 72.5 0 0 0 -0.3 463 

7 11.8 49.8 0 0 0 -1.2 447 

8 14.1 1.5 43.6 0 0 0.1 370 

9 10.6 76.2 0 0 0 -44.3 451 

Figure 4.20 (a) shows the PDF of the TSI values estimated using the KDE approach (the 

optimal bandwidth of the kernel function is 0.13). Similar to CS-I, all MC cases result in 
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transiently stable behaviour of the system with small variation in the TSI values. (Note: 

As in the case of CS-I, there have been no cases of slow-interaction converter-driven 

instability.) The estimated PDF is characterized by three local maxima, corresponding to 

the TSI values of 78.3, 81.2 and 92.5, which means that three DEMs are required for 

modelling the annual performance of the considered HRES plant in transient stability 

studies. Three TSI clusters are presented in Figure 4.20 (b). 

  
(a) (b) 

Figure 4.20 CS-II: Histogram-PDF of TSI values (a) and TSI clusters (b) 

As in CS-I, majority of the responses resulting from modelling uncertainties associated 

with fault performance, total system demand and plant output for a given plant 

composition is clustered in one TSI cluster (the number of MC CSs from each typical 

plant composition per TSI cluster is given in Table 4.11). Thus, as in the previous CS, 

the choice of the DEM at any time of the year can be carried out having the information 

about the HRES plant composition only. DEM 1 is the most suitable for HRES plant 

compositions 1, 3 and 8 (compositions with at least one SG in service), while the sixth 

typical composition, characterized by high production from both the WF and PV plant, 

is represented by DEM 3. DEM 2 is the most adequate model for the remaining 

production profiles. 

Table 4.11 CS-II: Number of MC CSs per TSI cluster 

 CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 

TSI cluster 1 1000 119 991 10 196 0 99 991 91 

TSI cluster 2 0 881 9 990 804 0 901 9 909 

TSI cluster 3 0 0 0 0 0 1000 0 0 0 

CC=characteristic HRES plant composition 

Figure 4.21 shows the expected time of use of DEMs during the year. DEM 3 has the 

smallest data coverage and accounts for less than 5% of the historical dataset, whereas 

DEM 1 and 2 correspond to around 40% and 55% of the dataset, respectively. DEM 2 is 
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a dominant model in every month, except in winter when DEM 1 and 2 have similar time 

of use.  

 

Figure 4.21 CS-II: The expected time of use of DEMs 

Clusters of z-normalised power responses at the PCC are presented in Figure 4.22, with 

representative z-normalised power response shown in black thick curve.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.22 CS-II: Z-normalized simulated responses (grey) and representative responses (black) ((a): 

DEM 1 - real power; (b): DEM 1 - reactive power; (c): DEM 2 - real power; (d): DEM 2 - reactive 

power; (e): DEM 3 - real power; (f): DEM 3 - reactive power)  
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Table 4.12 provides the information about equivalent model parameters for both real and 

reactive power. The model order of DEMs 1, 2 and 3 is 11, 8, and 9, respectively, which 

is considerably smaller than the model order of the detailed HRES plant model (78 state 

variables). The full mathematical model of the dominant equivalent, DEM 2, is given by 

(4.63-4.66) (the mathematical models of the remaining equivalents are provided in 

Appendix B.2.2 and B.2.3): 

 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃(𝑡) = −9.69; 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄(𝑡) = −1.68, (4.63) 

𝑧𝑇𝐹,𝑃(𝑡) = ʆ−1 [
3.5𝑠6+3∙103𝑠5+1.2∙104𝑠4+4.3∙105𝑠3−4.9∙106𝑠2+1.5∙107𝑠+1.5∙106

𝑠6+581.7𝑠5+7.4∙104𝑠4+1.3∙106𝑠3+1.5∙107𝑠2+1∙108𝑠+2∙107 ] 𝑢𝑃𝐶𝐶(𝑡), (4.64) 

 𝑧𝑇𝐹,𝑄(𝑡) = ʆ−1 [
7.3𝑠2+157.3𝑠−14.2

𝑠2+11.5𝑠+141.7
] 𝑢𝑃𝐶𝐶(𝑡), (4.65) 

 𝑃𝐸𝑄(𝑡) = 𝑃𝑆𝑠 + 1.11𝑧𝐸𝑄,𝑃(𝑡); 𝑄𝐸𝑄(𝑡) = 𝑄𝑆𝑠 + 5.36𝑧𝐸𝑄,𝑄(𝑡). (4.66) 

Table 4.12 CS-II: Parameters of the DEMs 

 Real power Reactive power 

 TF order 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃 𝑆𝐷𝑃
𝑟𝑒𝑝

 (MW) TF order 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄 𝑆𝐷𝑄
𝑟𝑒𝑝

 (Mvar) 

DEM 1 5 -9.51 2.15 6 3.87 10.34 

DEM 2 6 -9.69 1.11 2 -1.68 5.36 

DEM 3 6 -8.87 4.52 3 1.51 4.96 

4.4.2.2 Assessment of Model Accuracy 

Model accuracy is tested by simulating 9,000 previously defined MC CSs with the 

developed DEMs and comparing TSI values obtained in the case of the detailed and 

equivalent plant model. Figure 4.23 (a) illustrates the error in TSI values for all three 

DEMs in the form of boxplots. The maximum error in TSI values is below 20% for all 

MC simulations. Furthermore, median TSIErr indicator (4.56) for all three DEMs is below 

1%, confirming that the equivalent modelling approach provides DEMs of high accuracy. 

As in CS-I, the suitability of the NCPLM for representing the whole HRES plant is 

analysed based on the MC CSs used for DEM evaluation. Figure 4.23 (b) compares CDFs 

of the error in TSI values for the NCPLM and developed models. As can be seen, the use 

of the NCPLM instead of the proposed DEMs results in larger TSI error in this CS as 

well. For the NCPLM, the 50th and 90th percentile of TSIErr indicator are 4% and 5.6%, 
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respectively. On the other hand, the developed DEMs are characterized by the 50th and 

90th percentile of TSI error of around 1% and 2.9%, respectively. 

  
(a) (b) 

Figure 4.23 CS-II: (a): Model accuracy; (b): CDF of the error in TSI values for the NCPLM (red) and 

DEMs developed using the proposed methodology (blue)  

The mismatch between the shape of time domain power responses (after the fault 

clearing) produced by the detailed and equivalent model is analysed as well (as in CS-I). 

For each DEM, the index given by (4.62) is calculated for all MC cases allocated to the 

relevant TSI cluster. The results for the dominant equivalent, DEM 2, are shown in this 

chapter (see Figure 4.24), whereas the results for DEM 1 and DEM 3 are given in 

Appendix B.2.2 and B.2.3, respectively (Figure B.5 and Figure B.6, respectively).  

As seen in Figure 4.24 (a), in the case of real power responses, DEM 2 error is between 

-2% and 2% at each time step of the simulation after the fault clearing for almost all MC 

cases, and the error reduces to almost zero after four seconds of the simulation. When it 

comes to reactive power, model accuracy is slightly lower. Though the maximum DEM 

2 error is around -21%, the value of index (4.62) is within the range [-2, 5]% at each time 

step after the fault clearing for most of the analysed cases. In addition, the highest median 

error for reactive power responses among all time steps in the post-fault period is 3.7%. 

  
(a) (b) 

Figure 4.24 CS-II: Training DEM 2 dataset: Comparison between the power responses of the detailed 

model and DEM 2 ((a): real power, (b): reactive power) 
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The accuracy of DEM 1 for real power responses is almost the same as in the case of 

DEM 2. When it comes to reactive power responses, the maximum DEM 1 error is 50%. 

However, for most of the cases in TSI cluster 1, the value of index given by (4.62) is 

within the range [-12, 7]% at each time step after the fault clearing. DEM 3 is 

characterized by the smallest error in terms of the shape of real and reactive power 

responses in time domain among all equivalents. The maximum value of index (4.62) is 

only 0.6% in the case of real power. The accuracy of DEM 3 in the case of reactive power 

responses is slightly lower, but the error is below 2% for most of the cases at each time 

step after the fault clearing. Still, it should be noted that TSI cluster 3 is the smallest 

cluster with only 1,000 MC CSs produced by characteristic HRES plant composition 6. 

4.4.3 Discussion 

The basic assumption of the proposed equivalent modelling procedure is model 

development on the basis of the most probable HRES plant dynamic behaviour/responses 

in annual transient stability studies of the system. The typical annual short-circuit faults 

are used for simulating the corresponding HRES plant power responses, which are then 

used for TF parameter estimation. Given that the procedure for DEM development is the 

same for any power system, cases resulting in lower TSI values will be used for model 

development only if they represent the most probable annual disturbances, i.e., if the 

typical global transient stability performance of the system during the year is 

characterized by TSI values closer to zero. Therefore, as the model development relies 

on highly probable disturbances, the accuracy of the DEM is expected to be lower in the 

case of low-probability disturbances (i.e., outliers) compared to the DEM performance 

for typical annual disturbances. This difference in the DEM performance for high- and 

low-probability disturbances will exist in any power system regardless of its typical 

annual transient stability status, i.e., whether the system is generally very stable, or less 

stable, during the year.  

Whether TSI error associated with the application of DEM can be considered sufficiently 

small or not depends on the desired accuracy in TSI value, which can be different 

depending on the original TSI value, i.e., TSI value obtained using the detailed HRES 

plant dynamic model and proximity to transient stability limit. Theoretically, the TSI 

values can be in the range from -100 to 100. The system is more stable if the TSI value 
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is closer to 100, while the system stability boundary corresponds to zero TSI value. In 

both CSs presented in this chapter, the simulated TSI values were far away from the 

transient stability limit (TSI values were in the range 70-95). Thus, even a considerable 

TSI error of 50%, calculated by (4.56), would not result in an inaccurate assessment of 

the transient stability status of the system. The actual errors in TSI value obtained when 

comparing performance of the detailed model and DEMs were within a few percent, 

which implies that the transient stability status of the system with DEMs remains 

practically the same as with the full-scale HRES plant dynamic model. Even if the 

original TSI values were much smaller, say about 5, the 50% error would give a range 

between 2.5 and 7.5, which still corresponds to the transient stability behaviour and status 

of the system with the detailed model. Based on the above, one could safely set a (very) 

conservative limit on the TSI error of 20% which would guarantee practically the same 

transient behaviour of the system. Furthermore, transient stability assessment of the 

system is typically carried out by checking only whether the calculated TSI is positive, 

i.e., whether the system is stable or not. Therefore, the least rigorous assessment of DEM 

accuracy would be according to transient stability status of the system indicated by the 

detailed and equivalent model. DEM certainly cannot be considered suitable for 

representing the HRES plant in transient stability studies if TSI values produced by the 

original model and DEM indicate opposite system stability status, that is, if TSI value 

obtained using the detailed model is positive and DEM results in negative TSI, or vice 

versa. 

Relative error (given by (4.62)) is used for assessing model accuracy in terms of the 

shape of time domain HRES plant power responses as it can present the model accuracy 

in a more identifiable way compared to the error in absolute units. Namely, defining a 

threshold for differentiating between the acceptable and non-acceptable model 

performance is more intuitive in the case of relative error than in the case of error in 

absolute units. For instance, the error of 20 MW cannot indicate whether the model 

performance is acceptable or not as this would depend on the size of the plant, i.e., its 

power output. On the other hand, the relative error, in case of previously mentioned 

absolute error of 20 MW and assumed base value of 200 MW (i.e., the denominator in 

(4.62)), would be 10%, which can be used as an indicator of satisfactory model accuracy. 

The only situation when the use of relative error can provide misleading results about 

model performance is in the case of small error in absolute units and small base value 
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(which was the case when the highest relative error values were observed for reactive 

power responses in CSs). In these cases, small error in absolute units that has no practical 

significance can result in large relative error. Given that the pre-disturbance real power 

output of the whole HRES plant is above 100 MW for more than 85% of the considered 

MC cases (all investigated cases in CS-I and CS-II), and the pre-disturbance reactive 

power output of the HRES plant is below 10 Mvar (relative reactive power error can have 

high value in the case of small reactive power production in absolute units and small 

reactive power error in absolute units, as explained above) for about 25% of all analysed 

MC cases in CS-I and CS-II, relative model error can be safely used for assessing the 

accuracy of the developed DEMs in terms of the shape of time domain HRES plant power 

responses. 

4.5 Summary 

This chapter presented the data-driven methodology for dynamic equivalent modelling 

of HRES plants for transient stability studies. The focus of the study was on the 

development of DEMs of HRES plant suitable for the sufficiently accurate assessment 

of the overall system transient stability as described by TSI value. The proposed 

equivalent modelling approach is based on typical annual HRES plant dynamic responses 

in transient stability simulations generated using historical plant production data and TN 

fault statistics. The dynamic model is in the form of two TFs with voltage, and real and 

reactive power at the PCC as the input and outputs, respectively. Developed data-driven 

methodology for equivalent dynamic modelling of HRES plant represents the third 

original contribution of this thesis. 

The methodology was tested on two HRES plant configurations connected to the same 

TN. In both CSs, a few low-order DEMs were required for representing the plant in 

system transient stability analyses throughout the year. The median error in transient 

stability assessment for a wide range of operating conditions and TN short-circuit faults 

was below 1% for all DEMs of the test HRES plants. In addition, the proposed DEMs 

outperformed a common model of RES power plants in system studies (the NCPLM 

representation) in terms of TSI accuracy. Even though the models were not developed 

with the aim of obtaining highly accurate HRES plant power responses in time domain, 
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the relative difference between the values of real and reactive power produced by the 

detailed and equivalent model was below about 2.5% and 12%, respectively, during the 

post-fault period for most of the analysed cases.  

The presented modelling approach is robust to the size of the historical dataset (in terms 

of the duration of the historical period), sampling rate and availability of data for 

individual technologies in the HRES plant. The procedures for generating artificial 

production datasets in case of historical data unavailability were also proposed. 

Furthermore, the required level of DEM accuracy for obtaining reliable overall transient 

stability results was discussed. 

Considering high accuracy of transient stability assessment and low order of the 

equivalent models, the proposed methodology can clearly provide computationally 

efficient and accurate large network transient stability analysis with embedded HRES 

plants. The proposed approach is highly suitable for practical applications as only the 

information about the forecasted HRES plant composition and typical HRES plant 

production profiles is needed for selecting the most appropriate DEM from the library of 

previously developed models at any time during the year. It should be noted that the 

network topology was assumed to be the same in all pre-disturbances operating 

conditions as well as following a fault disturbance (i.e., all simulated faults were self-

clearing faults). The number of models in the library is not critical from the perspective 

of computational time for performing dynamic security assessment as these models can 

be developed offline and stored in the library for future use. 

The DEMs presented in this chapter were developed from the perspective of the accuracy 

of the global transient stability status, which represents a departure from the typical 

approach in dynamic equivalent modelling of power plants and networks that requires 

highly accurate plant/network responses in time domain. In order to investigate whether 

focusing on the reproduction of time domain power responses of the detailed plant model 

can improve the accuracy of transient stability assessment of the system provided by the 

TF-based DEMs, the following Chapter 5 introduces the methodology for dynamic 

equivalent modelling of HRES plant for transient stability studies from the perspective 

of the shape of time domain HRES plant power responses at the PCC.  
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System Transient Stability Studies 

 

 

 

 

5.1 Introduction 

This chapter presents the methodology for developing DEM of HRES plant for transient 

stability studies that relies on deep learning method. The methodology represents a 

further assessment of the data-driven dynamic equivalent modelling of HRES plant 

described in previous Chapter 4. The principle difference between the data-driven and 

deep learning-based modelling procedures is that the accuracy of TF-based equivalents 

(presented in Chapter 4) was assessed on the basis of TSI value, while the error of DEM 

developed in this chapter is defined according to the dissimilarity between time domain 

responses of the detailed plant dynamic model and DEM. TF-based DEMs were derived 

from the perspective of the overall transient stability status described by TSI value, 

without paying attention to the shape of HRES plant power responses. The main focus 

of the deep learning-based methodology is on the reproduction of time domain HRES 

plant power responses obtained by the detailed dynamic plant model and the application 

of DEM at any time of the year based on the information about the forecasted HRES 

plant operating condition only. 
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5.2 Methodology and Model Development 

The deep learning-based methodology for equivalent modelling of HRES plants for 

system transient stability analysis is illustrated in Figure 5.1. Inputs and outputs of the 

various steps in the methodology are represented by dashed rectangles. As in the case of 

the data-driven equivalent modelling, the deep learning-based procedure generates 

realistic CSs used for model development through probabilistic MC simulations relying 

on characteristic annual HRES plant compositions (determined based on historical HRES 

plant production dataset) and TN short-circuit fault statistics. Clustering algorithm-based 

approach enables the identification of the groups/clusters of HRES plant power responses 

(obtained from realistic MC CSs) similar in time, and these clusters represent a basis for 

the development of a set of DEMs.  

 

Figure 5.1 The flow chart of the methodology for developing LSTM-based DEMs of HRES plants for 

transient stability studies 

A DEM is developed per group of similar HRES plant power responses in Matlab 

environment. As in the case of the TF-based models, the DEM comprises two blocks 

connected in series. The first block is an LSTM neural network with real and imaginary 

part of the positive sequence voltage, and z-normalized real and reactive power at the 

PCC as inputs and outputs, respectively. Z-normalized responses represent inputs to the 

second block that transforms normalized responses into power responses in absolute 

units. In order to reduce computational time, the LSTM network training is performed 

on a subset of power responses from the relevant cluster. The particle swarm optimization 

(PSO) algorithm is used for identifying the adequate LSTM network structure. The 

application of DEMs developed in this way depends on both HRES plant composition 

and characteristics of TN short-circuit fault as clustering of HRES plant power responses 
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may divide the responses produced by a single typical plant composition into different 

clusters. Therefore, a practical approach for identifying the most adequate DEM for each 

typical plant composition is proposed, which in turn enables the selection of DEM at any 

time of the year knowing only HRES plant operating scenario. 

Finally, DEM is integrated into the TN dynamic model in DIgSILENT/PowerFactory 

software and its accuracy is evaluated in terms of both, the shape of time domain HRES 

plant power responses and the global transient stability performance of the system using 

the TSI. The methodology is illustrated on the IEEE 9-bus network model with the HRES 

plant consisting of three non-dispatchable RESs (the WF, PV plant and HPP). The test 

system and data correspond to the ones used in CS-I in Chapter 4. 

The proposed deep learning-based methodology and the modelling procedure in [99] 

utilize the same deep learning architecture. The key novelties introduced by the approach 

presented in this thesis are: a structured identification of the optimal LSTM network 

topology (trail-and-error method was applied in [99]), comprehensive DEM evaluation 

and analysis of the impact of DEMs on system transient stability through the assessment 

of the DEM accuracy based on system TSI value. 

The first three stages of the modelling procedure, i.e., the identification of characteristic 

annual HRES plant compositions, development of realistic CSs and simulation of CSs in 

DIgSILENT/PowerFactory, are the same as in the data-driven equivalent modelling 

methodology (Section 3.2.1, Section 4.2.1, and Section 4.2.2), and thus will not be 

described in this chapter. The remaining steps in the deep learning-based methodology 

are explained in detail in the following sections. 

5.2.1 Clustering of Power Responses at the Point of Common Coupling 

As in the case of the data-driven equivalent modelling, the simulated HRES plant power 

responses had to be z-normalized (using (4.45)-(4.47)) first, as the pre-disturbance HRES 

plant power production was not the same in the analysed MC CSs. Real and reactive 

power responses at the PCC from the same MC CS are grouped into a single vector and 

these vectors are used in the clustering of HRES plant responses (block {9} in Figure 

5.1).  
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As mentioned in Chapter 2, partitioning, hierarchical and model-based clustering 

algorithms have been typically used for time series clustering. The agglomerative 

(bottom-up) HC algorithm with the unweighted average linkage is chosen in this study 

for grouping HRES plant power responses according to similarity in time. Unlike the 

partitioning algorithms, the HC is a deterministic algorithm (the dendrogram is always 

the same as it does not depend on the initial cluster centers) and does not require the 

number of clusters to be defined a priori [140]. Furthermore, the HC with the average 

linkage is not sensitive to noise and outliers [140]. As for model-based clustering, the 

structure of models and a criterion for assessing their similarity have to be specified in 

advance, and then another clustering algorithm (e.g. the partitioning or HC) has to be 

applied to the previously computed similarity measures. Even though the HC algorithm 

has quadratic computational complexity, computational time is not an issue when 

developing DEMs for any HRES plant as the clustering dataset size is defined by the 

number of typical plant compositions and MC CSs per composition, and these numbers 

cannot be unreasonably high. 

The unweighted average linkage is based on the average distance between all pairs of 

clusters’ objects and thus represents a compromise between two extremes, single and 

complete linkage (based on the distance between the two closest and furthest objects, 

respectively) [140, 160]. Unlike the weighted average linkage, the unweighted linkage 

takes into account the size of the clusters as well. When it comes to the distance measure, 

the standard Euclidean distance is chosen as it has been widely used for clustering time 

series data [133]. The optimal number of clusters, which has to be specified following 

the HC clustering procedure, is defined in the same way as in the case of the historical 

HRES plant production data clustering, that is, using the MSE, CDI and MIA clustering 

evaluation indices. 

5.2.2 Dynamic Equivalent Model Development 

5.2.2.1 The Structure of Long Short Term Memory-based Dynamic Equivalent 

Model 

A DEM is designed for each cluster of HRES plant power responses (block {11} in 

Figure 5.1). Block diagram of LSTM-based DEM is shown in Figure 5.2. The DEM 

consists of two blocks connected in series: an LSTM network and inverse z-

normalization part (marked by dashed rectangle in Figure 5.2). (Note: Given that NARX 
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and LSTM networks are less sensitive to the vanishing gradient problem compared to 

classical RNNs, and have been successfully applied in dynamic equivalent modelling of 

ADNs [95, 96, 99], these two ANN types were initial candidates for equivalent modelling 

of HRES plants. However, when applied to the data used in this study, NARX networks 

demonstrated worse generalization performance and longer training time compared to 

LSTM networks (on average, NARX-based models were characterized by about three 

times higher model error and four times longer time required for model development 

compared to LSTM-based equivalents). In addition, LSTM networks outperformed 

NARX networks in the modelling of dynamic systems in [99, 123].) 

The LSTM network in the proposed DEM structure has 10 inputs in total - normalized 

deviations of real and imaginary part of the positive sequence voltage at the PCC from 

their pre-disturbance values (normalization is performed using the rated voltage value) 

at the current time step and at four previous time steps [95, 96, 99]. (Note: Unlike in the 

case of the TF-based models with voltage magnitude as a single input signal, the real and 

imaginary part of voltage at the PCC were chosen as model inputs as they provided better 

LSTM network performance compared to voltage magnitude as the only model input.) 

Real and imaginary part of the positive sequence voltage at the PCC at time step t are 

denoted by 𝑢𝑃𝐶𝐶,1,𝑟[𝑡] and 𝑢𝑃𝐶𝐶,1,𝑖[𝑡], respectively, in Figure 5.2, while their pre-

disturbance values are denoted by 𝑢𝑃𝐶𝐶,1,𝑟_𝑠𝑠 and 𝑢𝑃𝐶𝐶,1,𝑖_𝑠𝑠, respectively. Z-normalized 

real and reactive power responses at the PCC are LSTM outputs. The LSTM network 

consists of LSTM and fully connected (FC) hidden layers. LSTM layers, as described in 

Section 2.4.1.3, contain recurrently connected LSTM memory cells with four 

multiplicative gates (the input, input modulation, output and forget gate) that minimize 

the possibility of the occurrence of the vanishing gradient problem by controlling the 

information content stored in and exported from the cell [117, 122]. On the other hand, 

FC layers contain ordinary neurons and at least one FC layer is usually stacked upon the 

last LSTM layer in the network in order to project the LSTM layer output into the 

dimensional space of the network output [99, 201].  
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Figure 5.2 Block diagram of LSTM-based DEM 

The LSTM network training involves the estimation of the elements of weight and bias 

matrices of LSTM and FC layers. The total number of estimable parameters in an LSTM 

layer is: 

 𝑁𝑜𝑃𝑎𝑟𝑎𝑚𝐿𝑆𝑇𝑀 = 4 ∙ 𝑁𝐿𝑆𝑇𝑀𝑐𝑒𝑙𝑙 ∙ 𝑁𝑃𝑟𝑒𝐿𝑎𝑦𝑒𝑟 + 4 ∙ 𝑁𝐿𝑆𝑇𝑀𝑐𝑒𝑙𝑙
2 + 4 ∙ 𝑁𝐿𝑆𝑇𝑀𝑐𝑒𝑙𝑙, (5.1) 

where 𝑁𝐿𝑆𝑇𝑀𝑐𝑒𝑙𝑙 is the number of LSTM cells in the LSTM layer, and 𝑁𝑃𝑟𝑒𝐿𝑎𝑦𝑒𝑟 is the 

size (the number of elements) in the previous network layer. In case the given LSTM 

layer is the first layer in the LSTM network, 𝑁𝑃𝑟𝑒𝐿𝑎𝑦𝑒𝑟 refers to the number of inputs of 

the LSTM network (10 in this case). The addends in expression (5.1) correspond to the 

number of elements of the weight matrices between the input and the forget, input, input 

modulation and output gate, the number of elements of the weight matrices between the 

last time step of the hidden state and the forget, input, input modulation and output gate, 

and the number of elements of bias vectors for all four gates.  

The number of estimable parameters in an FC layer is: 

 𝑁𝑜𝑃𝑎𝑟𝑎𝑚𝐹𝐶 = 𝑁𝐹𝐶𝑛𝑒𝑢𝑟𝑜𝑛 ∙ 𝑁𝑃𝑟𝑒𝐿𝑎𝑦𝑒𝑟 + 𝑁𝐹𝐶𝑛𝑒𝑢𝑟𝑜𝑛, (5.2) 

where 𝑁𝐹𝐶𝑛𝑒𝑢𝑟𝑜𝑛 is the number of neurons in the FC layer. The first addend in (5.2) 

represents the number of elements of the weight matrix between the FC layer and the 

previous layer in the network, while the second one is the size of the bias vector for the 

FC layer.  

An example of an LSTM network topology with 2 LSTM layers (each containing 2 

LSTM cells) and 2 FC layers (with 6 and 2 neurons each) is given in Figure 5.3. Circles 

in Figure 5.3 represent ordinary neurons in FC layers. As seen in Figure 5.3, the LSTM 

network is a fully-connected network, i.e., all elements of one layer are connected to all 
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elements in the next layer in the LSTM network structure. At each time step during the 

simulation, the values of LSTM network input signals, i.e., the real and imaginary part 

of positive sequence voltage at the PCC at the current and four previous time steps, are 

propagated through the LSTM network. The outputs of LSTM cells within each of the 

LSTM layers in the LSTM network are calculated according to (2.41) – (2.46), whereas 

the outputs of the regular neurons in FC layers are computed using (2.37) and (2.38). 

According to (5.1) and (5.2), the total number of estimable parameters in the given LSTM 

network is 176, whereas the number of estimable parameters per LSTM layer 1, LSTM 

layer 2, FC layer 1, FC layer 2 is 104, 40, 18, 14, respectively. 

 

Figure 5.3 The illustration of LSTM network structure 

As in the case of the TF-based DEMs, the inverse z-normalization part of DEM 

transforms z-normalized power responses into power responses in absolute units, which 

means that the information about the mean value and standard deviation of power 

response in absolute units is needed (see (4.45)). However, unlike in the data-driven 

modelling approach, the representative response/CS is not defined for a cluster of HRES 

plant power responses. Therefore, inverse z-normalization is performed using the power 

production of a given forecasted HRES plant composition at the pre-disturbance state 

and the mean value of the standard deviations of all power responses in the relevant 

cluster (so-called representative standard deviation), instead of the average and standard 

deviation of the actual power response in absolute units, respectively. 

The mathematical expression for real and reactive power output of DEM at each time 

step of simulation is given by (5.3): 
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 𝑌𝐷𝐸𝑀[𝑡] = 𝑧𝐿𝑆𝑇𝑀
𝑌 [𝑡] ∙ 𝑆𝐷𝑟𝑒𝑝

𝑌 + 𝑌𝑆𝑆, (5.3) 

where 𝑌𝐷𝐸𝑀[𝑡] is the DEM real/reactive power output at time step t, 𝑧𝐿𝑆𝑇𝑀
𝑌 [𝑡] is the z-

normalized real/reactive power output of the LSTM network at time step t, 𝑆𝐷𝑟𝑒𝑝
𝑌  is the 

representative standard deviation for real/reactive power responses from the 

corresponding cluster, and 𝑌𝑆𝑆 is the total HRES plant real/reactive power output at the 

pre-disturbance state for the analysed case. 

5.2.2.2 Estimation of Long Short-Term Memory Network Structure 

The procedure for defining the optimal LSTM network architecture (the number of 

hidden layers and LSTM cells/neurons per LSTM/FC hidden layer) is illustrated in 

Figure 5.4. The appropriate number of LSTM and FC hidden layers in the LSTM network 

is determined by iteratively increasing the number of layers until there is no significant 

improvement in the total DEM error for all responses in the cluster (the value of 1% is 

adopted as a threshold). (Note: The expression for the total DEM error is given later in 

this section.) For a specified number of hidden layers, the optimal number of LSTM 

cells/neurons per LSTM/FC layer is estimated using the PSO algorithm.  

 

Figure 5.4 Estimation of the optimal LSTM network architecture 

The PSO algorithm has proven to be suitable for complex non-convex optimization 

problems [202]. Small number of the PSO parameters as well as the adequacy of their 

default/recommended values for a wide range of optimization problems are one of the 

reasons for its popularity [203, 204]. Furthermore, the PSO algorithm is characterized by 

the computational complexity of O(nlogn), where n is the number of candidate solutions, 

which makes it less computationally demanding than another commonly used heuristic 
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optimization method - genetic algorithm (quadratic computational complexity), and is 

specified as one of the most suitable optimization techniques for deep learning tasks in 

[202]. 

The algorithm finds the optimal solution for the considered optimization task using a 

group of PSO potential solutions (particles) that form a population (so-called swarm) 

[203, 204]. Each PSO particle is described by two features: its position in the search 

space and its velocity. Both the position and velocity are vectors with the size determined 

by the number of the optimization variables. The algorithm choses the positions and 

velocities of the particles randomly in the first iteration, and then it dynamically updates 

the velocity, and consequently the position, of each PSO particle in the following 

iterations. The velocity update of a PSO particle is carried out taking into account the 

distance of the current position of the particle in the search space from its best previous 

position (the so-called local best) and from the best position of any particle in the whole 

swarm (the so-called global best). The global and local best positions are defined with 

respect to the PSO cost function values of the particles. The change in the velocity and 

position of the d-th component of the i-th PSO particle is performed as follows [205]: 

 𝑣𝑖,𝑘+1
𝑑 = 𝑤𝑣𝑖,𝑘

𝑑 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑘
𝑑 − 𝑥𝑖,𝑘

𝑑 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘
𝑑 − 𝑥𝑖,𝑘

𝑑 ), (5.4) 

 𝑥𝑖,𝑘+1
𝑑 = 𝑥𝑖,𝑘

𝑑 + 𝑣𝑖,𝑘+1
𝑑 , (5.5) 

where 𝑣𝑖,𝑘
𝑑  and 𝑥𝑖,𝑘

𝑑  are d-th component of the velocity and position vector of the i-th PSO 

particle at the k-th iteration, respectively, w is the inertia weight, 𝑐1 and 𝑐2 are the 

acceleration constants, 𝑝𝑏𝑒𝑠𝑡𝑖,𝑘
𝑑  is d-th component of the local best of the i-th PSO 

particle at the k-th iteration, 𝑔𝑏𝑒𝑠𝑡𝑘
𝑑  is d-th component of the global best at the k-th 

iteration, and 𝑟1 and 𝑟2 are random numbers chosen uniformly from the range (0, 1). 

The inertia weight provides a balance between the local and global exploration [204, 

205]. Higher inertia weight values facilitate the global search, while lower values 

encourage the local search. The inertia weight can have a constant value (the values of 

0.7 and 0.8 are recommended in [203]), vary randomly, or decrease from a relatively 

large value (a value close to one [204]) to a small value during the optimization process 

enabling the algorithm to perform the global search at the beginning and focus on the 
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small neighbourhood around the PSO particle at the end of the process [206, 207]. The 

movement of the PSO particle towards the local and global best is determined by the 

constants 𝑐1 and 𝑐2, respectively [203, 205]. The optimal values for these PSO 

parameters are between 1.5 and 1.7 [203]. When it comes to the swarm size, the typical 

values between 20 and 50 have provided a satisfactory performance of the PSO algorithm 

for various optimization problems [203-205, 207].  

In this study, the PSO particles correspond to the number of LSTM cells/neurons per 

LSTM/FC hidden layer and the LSTM network is trained for each PSO particle (i.e., 

LSTM network architecture). The adequacy of the LSTM network architecture for the 

considered cluster of power responses is assessed on the basis of DEM accuracy in terms 

of the shape of time domain HRES plant power responses for all MC CSs in the cluster. 

Alternatively, the number of hidden layers could have been estimated through the direct 

application of the PSO procedure. This would eliminate the iterative search, however, 

the computational time for identifying the optimal LSTM network structure would be 

higher (the LSTM network training would have to be carried out for unnecessary large 

number of layers), and it would ultimately provide the same result as the iterative search. 

Given that the PSO is designed for continuous variables and the number of LSTM 

cells/neurons per hidden layer is a discrete variable, each component of the PSO particle 

is replaced by the closest integer value following the position update [203]. 

The PSO cost function is based on the calculation of the difference between detailed and 

equivalent model power responses at each time step after fault clearing. The accuracy of 

DEM power responses after fault clearing is considered to be more important than that 

during the fault as: i) the post-fault responses are relevant for transient stability 

assessment of the system; ii) the fault duration is significantly shorter than the post-fault 

time period; iii) dynamic models used in transient stability simulations are not suitable 

for electromagnetic transients. The following DEM relative error is calculated for each 

MC real and reactive power response in the cluster and each time step after fault clearing: 

 𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟 =

𝑌𝐷𝐸𝑀 𝑖,𝑡−𝑌𝑂𝑅𝐺 𝑖,𝑡

𝑌𝑂𝑅𝐺 𝑖,𝑡
∙ 100%, (5.6) 

where 𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟 is DEM relative error for real/reactive power response, 𝑌𝑂𝑅𝐺 𝑖,𝑡 is the 

real/reactive power output of the detailed HRES plant dynamic model and 𝑌𝐷𝐸𝑀 𝑖,𝑡 is the 
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real/reactive power output of the DEM calculated using (5.3); all for the i-th MC CS and 

time step t. 

Following this, at each of the considered time steps, the 95th percentile of the computed 

𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟 values is calculated and the maximum of the obtained percentiles is defined: 

 95𝑃𝐶𝑇𝐿𝑌 = 𝑚𝑎𝑥
1+𝑁𝐹𝑙𝑡≤𝑡≤𝑁𝑇

95𝑃𝐶𝑇𝐿 ({|𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟|}

1≤𝑖≤𝑁𝑅𝑒𝑠𝑝
), (5.7) 

where 95PCTL stands for the 95th percentile, 𝑁𝑅𝑒𝑠𝑝 is the number of MC CSs in the 

relevant cluster, 𝑁𝐹𝑙𝑡 is the number of time steps during the fault duration, and 𝑁𝑇 is the 

total number of simulated time steps. 𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟 is calculated using (5.6). 

Finally, the PSO cost function is defined as a total DEM error for real and reactive power 

responses as follows: 

 𝑃𝑆𝑂𝐶𝑜𝑠𝑡 = 𝐷𝐸𝑀𝐸𝑟𝑟 = √(95𝑃𝐶𝑇𝐿𝑃)2 + (95𝑃𝐶𝑇𝐿𝑄)
2
, (5.8) 

where 𝐷𝐸𝑀𝐸𝑟𝑟 is the total DEM error, and 95𝑃𝐶𝑇𝐿𝑃 and 95𝑃𝐶𝑇𝐿𝑄 are computed using 

(5.7). 

In order to reduce computational burden, each LSTM network is trained on a subset of 

power responses from the corresponding cluster. The MC CSs used for the LSTM 

network training are chosen equidistantly from the range defined by the values of all 

cluster’s z-normalized power responses at the time of the first swing peak. Given that 

clusters are usually not perfectly compact, the time of the first swing peak was chosen as 

the most convenient, practical, time step in power responses for identifying a spread of 

responses within a cluster. Differences in the shape of responses allocated to a single 

cluster result in the time of the first swing peak not being the same for all cluster 

responses. Thus, the relevant time step used for specifying the range for selecting the 

responses corresponds to the time of the first swing peak for the majority of the responses 

in the cluster. Separate ranges are created for real and reactive power responses, and a 

half of the cases is chosen from each of them. Cases used for the LSTM network training 

include a training set (for estimating network parameters) and a validation set, and both 
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datasets are chosen as previously described. The ratio of the size of the training and 

validation dataset is 70/30 [96].  

Figure 5.5 illustrates the selection of five training/validation responses from a cluster of 

z-normalized real power responses (the total number of training/validation cases is ten in 

this example).  

 

Figure 5.5 Illustration of the selection of the training/validation cases from a cluster of z-normalized real 

power responses 

The time of the first swing peak for most of the responses is 1.61 s. Dashed black lines 

in the zoomed part of the figure indicate equidistant intervals from the range defined by 

the values of the responses at 1.61 s. A training/validation response corresponds to the 

response having the value at 1.61 s that is the closest to the one defined by a dashed line 

(the training/validation responses are shown in red in Figure 5.5). 

The LSTM network cost function is based on mean squared DEM error (averaging is 

performed across all time steps after fault occurrence and all training/validation 

responses): 

 𝐿𝑆𝑇𝑀𝐶𝑜𝑠𝑡 =
1

𝑁𝑆𝑢𝑏𝑅𝑒𝑠𝑝
∑

1

𝑁𝑇
(𝐷𝐸𝑀𝑖

𝑆𝑢𝑚𝐸𝑟𝑟,𝐹𝑙𝑡 + 𝐷𝐸𝑀𝑖
𝑆𝑢𝑚𝐸𝑟𝑟,𝐴𝑓𝑡𝐹𝑙𝑡

)
𝑁𝑆𝑢𝑏𝑅𝑒𝑠𝑝

𝑖=1
, (5.9) 

 𝐷𝐸𝑀𝑖
𝑆𝑢𝑚𝐸𝑟𝑟,𝐹𝑙𝑡 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝐹𝑎𝑐𝑡 ∙ ((

𝐷𝐸𝑀_𝑃𝑖,𝑡
𝐸𝑟𝑟

100
)
2

+ (
𝐷𝐸𝑀_𝑄𝑖,𝑡

𝐸𝑟𝑟

100
)
2

)
𝑁𝐹𝑙𝑡
𝑡=1 , (5.10) 

 𝐷𝐸𝑀𝑖
𝑆𝑢𝑚𝐸𝑟𝑟,𝐴𝑓𝑡𝐹𝑙𝑡

= ∑ ((
𝐷𝐸𝑀_𝑃𝑖,𝑡

𝐸𝑟𝑟

100
)
2

+ (
𝐷𝐸𝑀_𝑄𝑖,𝑡

𝐸𝑟𝑟

100
)
2

)
𝑁𝑇
𝑡=1+𝑁𝐹𝑙𝑡

, (5.11) 

where 𝑁𝑆𝑢𝑏𝑅𝑒𝑠𝑝 is the number of training/validation MC CSs, 𝐷𝐸𝑀𝑖
𝑆𝑢𝑚𝐸𝑟𝑟,𝐹𝑙𝑡

 and 

𝐷𝐸𝑀𝑖
𝑆𝑢𝑚𝐸𝑟𝑟,𝐴𝑓𝑡𝐹𝑙𝑡

 is the sum of the values of squared DEM relative error per each time 
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step during the fault duration and post-fault period for the i-th MC CS, respectively, and 

WeightFact is the weight factor (the value of 0.01 is adopted in this study). 

The LSTM network training process is focused on DEM outputs and not on LSTM 

outputs (z-normalized power responses) as power responses in absolute units are 

ultimately relevant for performing transient stability simulations. The weight factor 

WeightFact is introduced to reduce the impact of DEM error during the fault duration on 

the LSTM network training. Unlike in the case of the PSO cost function, time steps 

during the fault cannot be excluded from the LSTM cost function as DEM is to be used 

in simulations starting from fault occurrence and the LSTM learning algorithm calculates 

the gradient of the LSTM cost function with respect to trainable network parameters at 

each time step of the training responses. The BPTT in combination with the standard 

Adam optimizer with default hyper-parameter values are used for the LSTM network 

training [99]. The Adam optimizer is computationally efficient and utilizes the 

advantages of two other methods, AdaGrad and RMSProp (adequate for sparse gradients 

and non-stationary objective functions, respectively), and thus usually outperforms other 

optimization techniques [99, 112, 208]. Given that the LSTM cost function has to be 

differentiable due to the calculation of the gradient of the cost function with respect to 

estimable parameters (i.e., elements of weight and bias matrices), and the information 

about the LSTM error (i.e., the difference between the target outputs and actual LSTM 

outputs) has to be available at every time step, the PSO cost function based on the 95th 

percentile of DEM error (given by (5.8)) could not be chosen. Early stopping method is 

used for terminating the LSTM network training. In the initial iterations of the network 

training, both the training and validation error, i.e., the values of the LSTM cost function 

for the training and validation data, respectively, decrease. At a certain iteration of the 

training, the overfitting of the training data begins and the validation error begins to 

increase, while the training error continues to decrease. Early stopping method terminates 

the network training after a pre-defined number of consecutive iterations (six is adopted 

in this study [89]) during which there was an increase in the validation error, and LSTM 

network parameters are set to the values obtained in the iteration that is associated with 

the minimum validation error [89]. 
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The whole PSO procedure is carried out in Matlab environment, with the Matlab default 

values for the PSO acceleration coefficients – 1.5. When it comes to the inertia weight, 

Matlab adapts the parameter over PSO iterations according to the change in the global 

best PSO solution (the default range of values is [0.1, 1.1]). The PSO algorithm 

terminates when the cost function value has stabilized, i.e., when the maximum change 

in the global best PSO cost function value over 10 consecutive iterations is below 1%. 

The optimal swarm size and the number of training CSs for the LSTM network training 

are defined by developing DEM of the largest cluster for a range of their values and 

selecting the combination that provides the best balance between the total DEM error 

and computational burden.  

5.2.3 Selection of a Single Dynamic Equivalent Model for a Hybrid Renewable 

Energy Source Plant Composition  

The previous step in the equivalent modelling procedure provides an initial set of DEMs 

(block {12} in Figure 5.1). The allocation of MC CSs/responses to clusters depends on 

both HRES plant operating condition and characteristics of TN short-circuit fault 

(location, type and impedance). Clustering of z-normalized HRES plant power responses 

according to similarity in time divides MC power responses produced by a single 

characteristic HRES plant composition into different clusters, meaning there is a set of 

DEMs associated with each typical plant composition. In order to perform selection of 

DEM at any time of the year knowing only HRES plant operating scenario, the most 

adequate model for each characteristic plant composition is identified (block {13} in 

Figure 5.1). The suitability of the p-th initial DEM for the q-th typical plant composition 

is assessed on the basis of the accuracy of the p-th DEM for the q-th composition’s MC 

responses assigned to the p-th cluster and the number of these responses: 

 𝐼𝑑𝑥𝐷𝐸𝑀𝑝
𝑞(%) =

𝐷𝐸𝑀
𝐸𝑟𝑟,𝑅𝑒𝑠𝑝𝑅𝑒𝑙𝑝

𝑞

𝑁
𝑅𝑒𝑠𝑝𝑅𝑒𝑙𝑞

𝑝
, (5.12) 

where 𝐼𝑑𝑥𝐷𝐸𝑀𝑝
𝑞
 is the index calculated for the p–th DEM and q-th typical plant 

composition, 𝐷𝐸𝑀𝐸𝑟𝑟,𝑅𝑒𝑠𝑝𝑅𝑒𝑙𝑝
𝑞

 is the total DEM error calculated for the q-th 

composition’s MC responses in the p-th cluster (5.8), and 𝑁𝑅𝑒𝑠𝑝𝑅𝑒𝑙𝑞
𝑝 is the number of the 

q-th composition’s MC responses in the p-th cluster.  
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The index defined by (5.12) is calculated for each typical plant composition and its set 

of DEMs. The DEM having the lowest index value is the most suitable DEM for the 

particular plant composition. In this way, the final set of DEMs required for representing 

HRES plant dynamic performance in annual transient stability studies is obtained (block 

{14} in Figure 5.1). (Note: When selecting the best DEM for a typical plant composition, 

the data-driven methodology relies only on the number of responses per cluster from the 

considered plant composition. The main reason for not taking into account the TF-based 

model accuracy with respect to TSI value, in the data-driven approach, is that the TSI 

index is considered to be a robust index that can sufficiently well represent stability status 

of the system. Furthermore, the accuracy of the TF-based model with respect to TSI was 

not defined for a group of HRES plant responses in the model development procedure, 

and almost all (if not all) responses produced by a single typical plant composition were 

allocated to the same cluster in both CSs presented in Chapter 4. In the case of the deep 

learning-based methodology, the LSTM-based model accuracy in terms of the shape of 

plant real/reactive power responses was defined for a group of real/reactive power 

responses as the maximum 95th percentile of the error across all time steps after fault 

clearing (see (5.7)).) 

Finally, the DEM for an arbitrary HRES plant operating condition is the best DEM for 

the typical plant composition which is the most similar to the given plant composition. 

As in the case of the data-driven equivalent modelling, similarity between plant 

compositions is assessed according to their Euclidean distance (a composition is treated 

as a vector whose components are power outputs of individual RESs in the HRES plant). 

The diagram illustrating the process of selecting the adequate DEM for a new HRES 

plant operating point is shown in Figure 4.6, as the process is the same as in the case of 

the data-driven methodology.  

5.2.4 Integration of Dynamic Equivalent Model in DIgSILENT/PowerFactory 

A set of DEMs is developed in Matlab and stored in a user-defined folder in the form of 

Matlab mat-files. Transient stability studies are performed in DIgSILENT/PowerFactory 

environment and DIgSILENT/PowerFactory communicates with Matlab mat-files (i.e., 

DEMs) through a Matlab m-file interface. The interaction between 
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DIgSILENT/PowerFactory and Matlab during transient stability simulations is shown in 

Figure 5.6. At each time step of simulation:  

i) The Matlab m-file interface transfers the required DEM inputs (real and 

imaginary parts of the positive sequence voltage at the PCC at the current time 

step and four previous time steps - uPCC,1,r[t-4:t] and uPCC,1,i[t-4:t] in Figure 5.6, 

respectively) from DIgSILENT/PowerFactory environment to the adequate 

Matlab mat-file (DEM). DIgSILENT/PowerFactory calculates DEM input 

signals based on the magnitude and angle of the positive sequence voltage at the 

PCC (uPCC,1[t] and φPCC,1[t] in Figure 5.6, respectively) obtained by applying the 

method of symmetrical components on phase voltages at the PCC (uPCC,a[t], 

uPCC,b[t], and uPCC,c[t] in Figure 5.6);  

ii) The Matlab mat-file (DEM) is simulated in Matlab software and provides real 

and reactive power at the PCC at the current time step (PDEM[t] and QDEM[t] in 

Figure 5.6, respectively);  

iii) DEM outputs are sent to DIgSILENT/PowerFactory through the Matlab m-file 

interface;  

iv) DIgSILENT/PowerFactory assigns DEM outputs to the real and reactive power 

output of a controllable, constant power load connected at the PCC (the same 

approach is used as in the case of TF-based DEM implementation). The dynamic 

load response is controlled by the DEM, i.e., real and reactive power injected at 

the PCC (PPCC[t] and QPCC[t] in Figure 5.6, respectively) correspond to DEM 

output values. 

 

Figure 5.6 Illustration of DEM implementation in DIgSILENT/PowerFactory  
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5.2.5 Validation of Dynamic Equivalent Model 

DEM performance is validated in DIgSILENT/PowerFactory software for a large 

number of system operating points and disturbances. DEM accuracy for the i-th case in 

terms of the shape of time domain power response is assessed according to the maximum 

relative difference between the responses of the detailed and equivalent model over all 

time steps after fault clearing: 

 𝐷𝐸𝑀𝑖,𝑌
𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆

= 𝑚𝑎𝑥
1+𝑁𝐹𝑙𝑡≤𝑡≤𝑁𝑇

|𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟|, (5.13) 

 𝐷𝐸𝑀𝑖
𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆

= √(𝐷𝐸𝑀𝑖,𝑃
𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆

)
2
+ (𝐷𝐸𝑀𝑖,𝑄

𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆
)
2

, (5.14) 

where 𝐷𝐸𝑀𝑖,𝑌
𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆

 is the DEM relative error for a single i-th real/reactive power 

response, 𝐷𝐸𝑀𝑖
𝐸𝑟𝑟,𝑆𝑖𝑛𝑔𝑙𝑒𝐶𝑆

 is the total DEM error for a single i-th CS, and 𝐷𝐸𝑀_𝑌𝑖,𝑡
𝐸𝑟𝑟 is 

computed using (5.6). Equation (5.13) is in fact the expression (5.7) for a single transient 

stability simulation.  

DEM accuracy is further assessed from the perspective of the global transient stability 

status measured by TSI value. TSI error is calculated in the same way as in the data-

driven modelling procedure, that is, using (4.56).  

5.3 Case Study 

The methodology is illustrated on the test system presented in Figure 5.7. The test system 

consists of the HRES plant (the WF, PV plant and HPP) and the IEEE 9-bus network, 

and is the same as the test network model used in CS-I in Chapter 4. The detailed 

description of the models of individual plants in the HRES plant is given in Section 4.3. 

5.3.1 Model Development 

Given that the test system and data correspond to the ones used in CS-I in Chapter 4, the 

results of the fuzzy c-means clustering of the historical HRES plant production data (nine 

characteristic annual HRES plant compositions and system demand levels given in Table 

4.3) as well as simulated MC power responses at the PCC are the same as in CS-I in 



194 | Deep Learning-based Equivalent Modelling of HRES Plant for Power System 

Transient Stability Studies 

Chapter 4. However, unlike in the case of the data-driven equivalent modelling, in this 

CS HRES plant power responses are analysed from the perspective of their similarity in 

time using the HC algorithm.  

 

Figure 5.7 The schematic diagram of the test HRES plant and IEEE 9-bus network (G: generation 

technology)  

Given that the number of clusters produced by the HC algorithm corresponds to the 

number of DEMs of the HRES plant, the optimal number of clusters cannot be 

unreasonably large. Therefore, the clustering evaluation indices were calculated for the 

number of clusters from 2 to 30. The clustering process provides 12 clusters of z-

normalized HRES plant power responses as the application of the elbow method on the 

values of MSE, CDI and MIA indices in the considered range results in 8, 12, and 12 

clusters, respectively. The change of the values of the clustering indices with the number 

of clusters is presented in Figure 5.8.  

   
(a) (b) (c) 

Figure 5.8 The change of the MSE (a), CDI (b) and MIA (c) with the number of clusters in the case of 

the HC clustering of HRES plant power responses 

Table 5.1 shows the total number of responses as well as the number of MC CSs produced 

by each characteristic plant composition per cluster of z-normalized HRES plant power 

responses. About 90% of all 9,000 MC responses is allocated to seven clusters: cluster 

1, 3, 4, 6, 8-10, with clusters 1, 6, 8 and 10 containing more than 1,000 responses (the 

largest cluster is cluster 10 with 2,519 responses). According to (5.12), the selection of a 

certain DEM for the representation of all responses from a typical plant composition 
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depends on the ratio of the DEM accuracy for the responses produced by this plant 

composition that are allocated to the respective cluster (i.e., the cluster used for 

estimating the DEM structure) and the number of these responses. The lower the index 

(5.12) is, the more suitable DEM for representing all responses from the typical plant 

composition is. If the size of a cluster is considerably smaller than the size of the other 

obtained clusters (e.g., clusters 11 and 12 in this CS), for any typical plant composition, 

index given by (5.12) for this small cluster will certainly have much higher value 

compared to the indices calculated for the remaining clusters. As a result, the DEM 

developed on the basis of this cluster will not be used for representing the HRES plant in 

annual transient stability simulations. This, in turn, implies that there is no need for 

highly accurate identification of the optimal number of clusters of HRES plant power 

responses as very small clusters will not be included in the set of the best DEMs of the 

given HRES plant, and thus, will be eliminated from the equivalent modelling procedure. 

(Note: The computational time associated with the development of LSTM-based models 

could be reduced by not designing LSTM networks for very small clusters of HRES plant 

responses.)  

Table 5.1 Number of MC CSs per cluster of HRES plant power responses 

 
Total 

no. CSs 
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 

C 1 1673 85 2 46 69 10 19 191 1000 251 

C 2 372 6 4 29 87 83 81 23 0 59 

C 3 447 193 0 15 1 0 0 210 0 28 

C 4 203 68 0 0 0 0 1 102 0 32 

C 5 169 48 0 0 1 0 0 33 0 87 

C 6 1381 518 0 5 16 13 55 419 0 355 

C 7 105 0 0 57 16 23 9 0 0 0 

C 8 1645 51 22 412 451 328 318 0 0 63 

C 9 402 4 142 39 59 95 42 1 0 20 

C 10 2519 20 830 393 293 441 466 1 0 75 

C 11 18 0 0 4 7 7 0 0 0 0 

C 12 66 7 0 0 0 0 9 20 0 30 
CC=characteristic HRES plant composition 

C=cluster of z-normalized HRES plant power responses 

Figure 5.9 presents z-normalized real and reactive power responses allocated to cluster 1 

and cluster 9, which are the clusters with low and high compactness level, respectively 

(the remaining clusters are given in Appendix C). Cluster 1 consists of all responses 

produced by plant composition 8 that contains converter-connected technologies only 
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(these responses are shown in black in Figure 5.9 (a) and (b)) and certain number of 

responses from each of the remaining plant compositions with the HPP in operation (see 

Table 5.1), which in turn reduces its compactness level (for real power responses in 

particular). 

  
(a) (b) 

  
(c) (d) 

Figure 5.9 Clusters of z-normalized power responses ((a): Cluster 1 - real power; (b): Cluster 1 - reactive 

power; (c): Cluster 9 - real power; (d): Cluster 9 - reactive power) (black lines in (a) and (b) are 

responses produced by plant composition 8 without the HPP in service) 

In order to identify the optimal number of training responses for the LSTM network 

training and the optimal number of PSO particles, DEM of the largest cluster (cluster 10) 

is developed for 10, 50, 100, and 500 training cases, and 20, 30, 40 and 50 PSO particles. 

The model development (i.e., the PSO procedure) was conducted in Matlab environment 

of the Computational Shared Facility of the University of Manchester using an 8-core 

Intel Xeon E5-2650 v2 at 2.6 GHz and 64 GB of RAM, and one Nvidia v100 Volta GPU. 

For each of the considered combinations of the number of training responses and the 

PSO swarm size, the following index, based on the total DEM error and the 

computational burden associated with DEM development, is calculated: 

 𝑂𝑝𝑡𝐶𝑜𝑚𝑏 = 𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒 ∙ 𝐷𝐸𝑀𝐸𝑟𝑟, (5.15) 

where CompTime is the computational time of the PSO procedure expressed in hours and 

𝐷𝐸𝑀𝐸𝑟𝑟 is the DEM error defined by (5.8).  
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The OptComb values for all combinations are given in Table 5.2 and the minimum value 

of OptComb index, that is, the best trade-off between DEM accuracy and computational 

time, is obtained for 50 training cases and 30 PSO particles (the shaded cell in Table 5.2). 

Thus, the PSO swarm size of 30, and 50 training and 20 validation (the adopted ratio of 

the size of training and validation dataset is 70/30) responses are used in the LSTM 

network training. Clusters 11 and 12 contain 18 and 66 responses, respectively, and thus, 

50 training and 20 validation responses cannot be used for the training of LSTM networks 

for these two clusters. Therefore, the number of training and validation responses for 

these clusters is set at 70% and 30% of the total number of responses in the cluster, 

respectively (e.g., the number of training and validation responses for cluster 11 is 8 and 

3, respectively). 

Table 5.2 Identification of the optimal number of training cases and PSO particles 

PSO swarm size\No. training cases 10 50 100 500 

20 507 353 571 401 

30 388 323 578 504 

40 386 663 998 756 

50 864 470 1487 782 

An LSTM network is designed for each of the twelve clusters of z-normalized HRES 

plant power responses and computational time for identifying the optimal LSTM network 

topology varied from 6 h (DEM 1) to 48.5 h (DEM 3). DEMs for all clusters contain 

LSTM network with 2 FC layers. When it comes to the number of LSTM layers, DEMs 

for clusters 2, 5, 7 and 12 have only one layer, DEM for cluster 3 has 3 layers, while the 

remaining DEMs are characterized by 2 layers.  

The LSTM network topology (i.e., the number of LSTM cells/neurons per LSTM/FC 

layer) for clusters with more than 1,000 responses (i.e., clusters 1, 6, 8, and 10) is given 

in Table 5.3. In addition, the number of estimable parameters per LSTM and FC layer as 

well as for the whole LSTM network are also shown in Table 5.3. The data for the 

remaining clusters are given in Appendix C (Table C.1). The LSTM network for cluster 

6 contains the smallest number of estimable parameters (15,444) over all 12 LSTM 

network topologies. On the other hand, the LSTM network structure for cluster 9 (2 

LSTM layers with 231 and 300 LSTM cells each, and 2 FC layers with 188 and 2 neurons 

each) has the largest number of parameters that need to be estimated (918,974). 
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Table 5.3 The LSTM network structure and the number of LSTM network estimable parameters for 

selected clusters 

Cluster 
LSTM 

layers 
FC layers 

No. parameters 

per LSTM layer 

No. parameters 

per FC layer 

Total no. 

parameters 

C 1 (10; 161) (850; 2) (840; 110,768) (137,700; 1,702) 251,010 

C 6 (18; 10) (938; 2) (2,088; 1,160) (10,318; 1,878) 15,444 

C 8 (283; 12) (1000; 2) (332,808; 14,208) (13,000; 2,002) 362,018 

C 10 (10; 55) (150; 2) (840; 14,520) (8,400; 302) 24,062 

It should be noted that the estimation of the optimal LSTM network topology for each of 

the twelve clusters is carried out independently of the dynamic network simulations. 

Transient stability simulations are performed first, and their outputs, i.e., HRES plant 

power responses, are then clustered and used for defining LSTM network architecture 

per cluster. Performing the estimation of the optimal LSTM network topologies using a 

group of distributed computers (as it has been done in this research) can considerably 

reduce the computational time of the overall dynamic equivalent modelling process. 

The accuracy of the initial set of DEMs is assessed by simulating the developed models 

for all MC CSs in the corresponding cluster. These simulations were performed in 

Matlab, and DEM inputs correspond to real and imaginary part of the positive sequence 

voltage at the PCC from the relevant MC CS simulated in DIgSILENT/PowerFactory 

using the detailed HRES plant dynamic model. For each of the twelve DEMs, Figure 

5.10 (a) illustrates DEM error (calculated using (5.7) and (5.8)) for all responses in the 

relevant cluster. DEM error for real power responses (i.e., the largest 95th percentile of 

relative error values per time step after fault clearing) is below 5% for all clusters. For 

all DEMs, the accuracy for reactive power responses is lower compared to real power 

responses mainly due to small values of reactive power in absolute units (see (5.6)). The 

best model accuracy is obtained for DEM 11 (the total DEM error is 1.1%), but this 

cluster contains only 18 MC CSs. The highest DEM error for real and reactive power 

responses is 4.2% (DEM 10) and 11.7% (DEM 1), respectively. Low values of HRES 

plant reactive power output (the median of the pre-disturbance values is -3.7 Mvar) are 

the main cause of high DEM 1 error.  

The most suitable DEM is selected for each characteristic HRES plant composition 

according to the values shown in Figure 5.10 (b) (the values are computed using (5.12)). 

The coloured cell and bold font in the column indicates the best DEM for the particular 

typical plant composition. As can be seen in Figure 5.10 (b), the initial set of twelve 

models can be reduced to only four DEMs - DEM 1, 6, 8 and 10, with DEM 8 and DEM 
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6 representing 4 and 3 out of 9 typical plant compositions, respectively, i.e., 78% of all 

plant compositions. 

  
(a) (b) 

Figure 5.10 (a): Total DEM error (blue), DEM error for real (red) and reactive (green) power responses 

for all clusters; (b): The values of IdxDEM index for all plant compositions and DEMs (NaN: there are 

no MC CSs from the particular plant composition in the cluster)  

5.3.2 Assessment of Model Accuracy 

DEM validation is carried out using the same CSs as in the case of the TF-based models 

presented in Chapter 4: MC CSs utilized for DEM development and non-training CSs 

from the year of 2019. All cases are simulated in DIgSILENT/PowerFactory using the 

best DEM for each typical plant composition (i.e., using only DEMs 1, 6, 8 and 10) 

instead of the detailed HRES plant dynamic model. For each MC CS, both the error in 

terms of the shape of HRES plant power response (i.e., the maximum relative error across 

all time steps after the fault clearing) and TSI error are computed as specified in Section 

5.2.5.  

DEM error in reproducing time domain HRES plant real and reactive power responses 

for MC CSs used for DEM development is shown in Figure 5.11 (a) in the form of CDFs 

(solid lines). In the case of real power, the maximum difference between the detailed and 

equivalent model response over all time steps after fault clearing is below 1.4% and 5.8% 

for the 50% and 95% of the analysed 9,000 MC CSs, respectively. When it comes to the 

error in the shape of reactive power responses, the 50th and 95th percentile are equal to 

5.6% and 20.4%, respectively. However, the median and 95th percentile of reactive power 

errors expressed in absolute units is only 1.2 Mvar and 3.9 Mvar, respectively. In order 

to investigate the change in the accuracy of equivalent HRES plant representation due to 

the use of only four DEMs instead of initial twelve models, model error is calculated for 
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each individual real and reactive power response obtained using all twelve DEMs in 

simulations. The CDFs of the obtained values are shown in Figure 5.11 (a) as dashed 

lines. When all twelve models are used for modelling the HRES plant, the 50th percentile 

of the error for real and reactive power responses is 0.8% and 3.7%, respectively, while 

the corresponding 95th percentiles are 3.4% and 9.2%. Therefore, the use of a single DEM 

for all responses produced by a typical plant composition does not have a significant 

impact on the accuracy of real power responses – the increase in the 50th and 95th 

percentile of the error is 0.6% and 2.4%, respectively. However, when it comes to 

reactive power responses, the increase in the median error (the 50th percentile) due to the 

use of four instead of twelve DEMs is about 2%, while the 95th percentile of the error is 

more than twice as large as the corresponding value for initial twelve models (e.g., only 

4% of 9,000 MC CSs has error higher than 10% in the case of twelve models, while that 

percentage rises to 20% in the case of four DEMs used in simulations). 

  
(a) (b) 

Figure 5.11 (a): CDFs of DEM error for real and reactive power responses for the training CSs when four 

(solid lines) and twelve (dashed lines) are used in simulations; (b): CDFs of DEM error for real and 

reactive power responses for the test 2019 year 

Results of DEM accuracy assessment in terms of the shape of power responses for the 

non-training MC CS from the 2019 year are presented in Figure 5.11 (b) in the form of 

CDFs. As expected, DEM accuracy is slightly lower compared to the set of CSs used for 

model development. The median value of the maximum difference between detailed and 

equivalent model real and reactive power responses after fault clearing is 1.8% and 8.8%, 

respectively, while the corresponding 95th percentiles are 8.7% and 28.6%. As in the case 

of MC CSs used for DEM development, the 50th and 95th percentile of reactive power 

errors expressed in absolute units are 1.2 Mvar and 3 Mvar, respectively. In addition, 

Figure 5.12 illustrates the boxplots of 𝐷𝐸𝑀_𝑄𝐸𝑟𝑟 values at characteristic time steps after 

fault clearing for the dominant models DEM 6 (represents plant compositions 1, 7 and 9) 

and DEM 8 (represents plant compositions 3-6). Only three seconds after fault 

occurrence are shown in Figure 5.12 as model error reduces practically to zero at later 
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time steps for most of the MC CSs. Both DEMs have few cases (less than 10) with the 

maximum error higher than 80%. However, the relative difference between the responses 

of the detailed and equivalent model at each time step after fault clearing is below 9% 

and 5% for the majority of the cases represented by DEM 6 and DEM 8, respectively. 

  
(a) (b) 

Figure 5.12 Non-training MC CSs for 2019 year: boxplot of DEM 6 (a) and DEM 8 (b) error in terms of 

the shape of reactive power responses for characteristic time steps after fault clearing 

As afore-mentioned, the LSTM-based equivalents are evaluated in terms of the global 

transient stability status described by TSI value as well. Figure 5.13 presents the CDFs 

of TSI error for both MC CSs used for DEM development (training CSs) and non-training 

MC CSs from the test 2019 year. In the case of the 9,000 training cases, the 50th and 95th 

percentile of TSI error is 0.1% and 0.6%, respectively. When it comes to the non-training 

CSs, the accuracy of the models is slightly lower: the 50th and 95th percentile of the TSI 

error is about 0.7% and 3%, respectively.  

 

Figure 5.13 CDF of TSI error for the training (blue) and non-training (red) MC CSs 

5.3.2.1 Comparison of the Accuracy of Long Short-Term Memory Network-based 

and Transfer Function-based Dynamic Equivalent Models 

This section provides the analysis on the difference in the performance of DEMs 

developed using the data-driven and deep learning-based methodologies in terms of the 
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ability to reproduce HRES plant power responses in time domain obtained by the detailed 

plant dynamic model and accuracy of the overall transient stability results (TSI value). 

The comparison is carried out for the non-training MC CS from the test 2019 year.  

Figure 5.14 illustrates the CDFs of the error in terms of the shape of HRES plant power 

responses (calculated using (5.13)) for both types of models. As can be seen, both types 

of DEMs are characterized by similar levels of accuracy in the case of real power 

responses: the 50th and 95th percentiles of the error of the LSTM-based models are 

smaller than the corresponding values of the TF-based DEMs by only about 0.4% and 

1.3%, respectively. When it comes to reactive power, the median error of the TF-based 

models is 7.8%, which is smaller than the median error of the LSTM-based models by 

1%. However, the 95th percentile of the TF-based models is higher than the 

corresponding value for the LSTM-based equivalents by around 25%, meaning the 

LSTM-based models are characterized by smaller number of cases with high error (above 

20%). For both TF-based and LSTM-based models, the pre-disturbance reactive power 

output of the HRES plant was below 10 Mvar in about 50% of the cases when the error 

for reactive power was above 20%. Even though it was expected to obtain better accuracy 

in terms of the shape of time domain HRES plant power responses with LSTM-based 

models than with TF-based models, both types of DEMs resulted in a similar 

performance. It should be noted that the error of LSTM-based models is affected by the 

use of a single best DEM for all responses from a typical HRES plant composition 

(responses with significantly different shape in time domain are simulated using the same 

LSTM network).  

  
(a) (b) 

Figure 5.14 Non-training MC CSs for 2019 year: CDF of DEM error in terms of the shape of real (a) and 

reactive (b) power responses (blue: LSTM-based models, red: TF-based models) 

In order to further investigate the difference in the capability of reproducing HRES plant 

power responses in time domain and assess whether one type of DEMs outperforms the 

other during the certain period of the year, the relative error values of the LSTM-based 
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and TF-based models are compared for each month in the test 2019 year. Figure 5.15 

shows the 50th and 95th percentile of the 𝐷𝐸𝑀_𝑃𝐸𝑟𝑟and 𝐷𝐸𝑀_𝑄𝐸𝑟𝑟 values for the LSTM-

based and TF-based models for each month in the year. In the case of HRES plant real 

power responses, the LSTM-based and TF-based equivalents are characterized by similar 

monthly performance, with the LSTM-based models having slightly better performance 

in each month. For both types of DEMs, monthly median error values are similar to the 

overall median error (i.e., the error determined for the whole year - Figure 5.14 (a)). The 

difference between the median error of the TF-based and LSTM-based models per month 

varies from 0.2% to 1.3%, with the maximum difference observed in October. As for the 

95th percentiles of the error, the only months with the difference above 1% are April and 

September-December, with the maximum difference of 7.6% occurring in September. 

Both types of DEMs have the lowest error in November, while the worst performance of 

the LSTM-based and TF-based model is observed in January and October, respectively.  

  
(a) (b) 

Figure 5.15 Non-training MC CSs for 2019 year: the 50th and 95th percentile of the error in terms of the 

shape of real (a) and reactive (b) power responses per month for the LSTM-based and TF-based models  

In the case of reactive power responses, the LSTM-based models outperform the TF 

equivalents in February and March, whereas the opposite is true for November and 

December (see Figure 5.15 (b)). The overall performance of both types of equivalents is 

similar in the remaining period of the year, with the differences being mainly in the 

number of cases characterized by high model error (above 20%). The range of values for 

the median error per month is (6.3, 11.7)% and (5.7, 14.5)% for the LSTM-based and 

TF-based equivalents, respectively. In February, March, November and December, the 

difference between the 50th percentiles of the error of the TF-based and LSTM-based 

models is around 5%. When it comes to the 95th percentile of the error, the value for the 

TF-based models is larger by around 30% and smaller by about 20% than the 
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corresponding value for the LSTM-based equivalents in the February-March and 

November-December period, respectively. 

The main reason for lower accuracy of the TF-based models in February and March is 

that TF-based DEM 2, which has higher error in terms of the shape of reactive power 

responses compared to TF-based DEM 1 (see Section 4.4.1.2), covers a considerable 

number of days in this time period. On the other hand, in the test 2019 year, LSTM-based 

DEM 8 is a dominant model (i.e., a model used most of the days in a month) among deep 

learning-based equivalents, except during November and December when LSTM-based 

DEM 6 covers a considerable number of days per month as well. As shown in Figure 

5.12, LSTM-based DEM 6 is characterized by lower reactive power accuracy than 

LSTM-based DEM 8, which in turn deteriorates the performance of the LSTM-based 

models in the last two months of the year.  

As for the accuracy in the global transient stability status, Figure 5.16 (a) compares the 

CDFs of TSI error for the LSTM-based and TF-based equivalents. As can be seen, both 

types of equivalents have similar performance in terms of TSI values as well: the 50th 

and 95th percentile of TSI error for the LSTM-based models is only smaller by 0.2% and 

0.3%, respectively, than the corresponding values of the TF-based DEMs (0.9% and 

3.3%, respectively). Furthermore, as seen in Figure 5.16 (b), there is no significant 

variation in the performance of the models over months in the test 2019 year (the LSTM-

based models have slightly better performance than the TF-based equivalents in each 

month). For both types of DEMs, the median TSI error values per month are within the 

range of 0.05% around the corresponding overall median error, whereas the 95th 

percentiles of TSI error per month vary between about 1.5% and 5%. Still, the maximum 

difference between the 95th percentiles of the TSI error of the TF-based and LSTM-based 

models per month is only 1%.  

The previous analysis has shown that developing DEM of HRES plant on the basis of 

time domain plant power responses does not provide significant improvement in model 

accuracy in terms of both HRES plant power responses and the global transient stability 

status (in particular). Therefore, reliable transient stability assessment of the system can 

be provided by DEMs not taking into account the shape of power responses at the PCC 

and focusing only on the contribution of the HRES plant to the overall transient stability 

behaviour of the system. 
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(a) (b) 

Figure 5.16 Non-training MC CSs for 2019 year: (a) CDF of TSI error of the LSTM-based (blue) and 

TF-based (red) models; (b) the 50th and 95th percentile of TSI error per month for the LSTM-based and 

TF-based models 

5.4 Summary 

The chapter presented the procedure for dynamic equivalent modelling of HRES plant 

based on historical plant production data, clustering algorithms and deep learning 

technique. DEM of HRES plant was developed taking into consideration the shape of 

HRES plant power responses at the PCC in time domain. Deep learning-based 

methodology for dynamic equivalent modelling of HRES plants represents the fourth 

original contribution of the thesis. 

The methodology, illustrated on the HRES plant comprising three non-dispatchable 

RESs, results in a set of LSTM network-based DEMs capable of representing the HRES 

plant in system transient stability studies throughout the year. Furthermore, and possibly 

more importantly, the modelling procedure includes a practical approach for selecting a 

small number of the most appropriate DEMs that can be used in annual transient stability 

simulations knowing only HRES plant operating conditions (the power output of 

individual RESs). Only four DEMs were required for representing the test HRES plant 

in transient stability studies during the year with the median TSI error below 0.7%, and 

the median value of the maximum relative difference between detailed and equivalent 

model real and reactive power responses of 1.8% and 8.8%, respectively. 

The LSTM-based DEMs were compared with the TF-based models, derived based on 

the minimization of the TSI error only, to ascertain the level of detail and accuracy in 

DEM development necessary for system transient stability studies. Both types of DEMs 

resulted in a very similar error in terms of the reproduction of time domain real power 
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responses (within 1.3%) and TSI value (within 0.3%). When it comes to reactive power 

responses, the TF-based models are characterized by larger number of cases with model 

error above 20% (the difference between the 95th percentiles of the error of TF-based and 

LSTM-based models is around 25%). The comparative analysis of two types of 

equivalents demonstrated that taking into account the shape of time domain HRES plant 

power responses when performing dynamic equivalent modelling of HRES plant is not 

necessary for accurate assessment of the transient stability of the system. 
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6.1 Introduction 

Previous Chapters 3-5 presented the analysis of the impact of HRES plant with a single 

PCC on power system stability behaviour and described methodologies for developing 

EMs of HRES plant with a single PCC for system stability studies. The focus of this 

chapter is on HRES plants with multiple points of connection to the TN, that is, spatially 

widely distributed HRES plants at TN level. The chapter discusses the typical principles 

of operation of distributed HRES plants as well as the potential negative effect of this 

operation on power system dynamic performance. The influence of a common 

management of distributed HRES plant on transient stability of the system is analysed 

using a distributed HRES plant integrated into a simplified model of a large 

interconnected transmission system comprising four TNs. The distributed HRES plant 

consists of a number of WFs and PV plants spread across the transmission system. 
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6.2 The Concept of Operation of Spatially Distributed HRES Plant 

In order to obtain more stable and controllable power output from small RESs connected 

at the DN voltage level, the concept of a VPP was proposed [171]. In the literature the 

VPP commonly refers to an aggregation of geographically distributed devices, which can 

include small-scale generation sources as well as energy storage systems and controllable 

loads [171]. VPP components are connected to a number of buses in DN, and the whole 

VPP has a single point of connection to the TN (as illustrated in Figure 6.1). 

 

Figure 6.1 The illustration of the VPP concept (adopted from [171]) 

Unlike in the case of single small RES power plants, VPPs have the capacity and 

controllability to participate in markets and system management [171]. The participation 

of the VPP in markets is based on the single VPP operation profile obtained by 

aggregating/combining operation profiles of individual VPP components, meaning the 

whole VPP is seen as a single entity from the perspective of market operators. The 

dispatch of VPP components is then optimized by maximizing plant revenue while 

satisfying the total VPP power output specified by market-based transactions. Apart from 

taking part in market activities, VPPs can also contribute to local network management 

and provide balancing services to transmission system operator (TSO). A DN operator 

requires the information about the scheduled operating positions, response characteristics 

and cost data of all VPP components in order to include the VPP in local network 

management. On the other hand, the above-mentioned data together with the information 

about local network topology and constraints are needed for representing the whole VPP 

and local network by a single aggregation profile at the TN supply point, and thus making 

the VPP balancing capabilities available to TSO. 

In this thesis the spatially distributed HRES plant refers to an aggregation of RES plants 

(energy storage systems can be included as well) geographically spread across the TN. 

In other words, the distributed HRES plant corresponds to a VPP concept for TN voltage 
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level, meaning the principle of operation of both distributed HRES plants and VPPs is 

the same. In a great majority of papers on VPP operation and management, the optimal 

VPP dispatch is determined by maximising VPP revenue while satisfying the requested 

VPP power production [209]. The contribution of the optimal economic dispatch of VPPs 

to power system stability (in particular system dynamic performance) has been 

commonly neglected [209]. However, the location and power output of distributed HRES 

plant/VPP components at the given time period affect the optimal economic dispatch of 

the remaining generators in the system as well. Operating positions of system generators 

together with the system loading condition at the given time period define power flows 

in the network, and consequently the voltage profiles and line loadings in the whole 

system. Apart from influencing the static behaviour of the network, the power outputs of 

the system generators also affect the dynamic performance of the whole network.  

In future power systems with a considerable number of integrated RES plants and 

decommissioned conventional power plants, preserving power system stability will be 

more challenging, and thus, optimal economic dispatch of generation units may violate 

system dynamic limits. Certain distributed HRES plant/VPP composition can be the most 

optimal with respect to HRES plant/VPP revenues, but its dynamic characteristics in 

combination with the dynamic responses of the associated optimal economic schedule of 

the remaining system generators can have a detrimental effect on power system stability. 

Under such conditions, it might be necessary to make a shift from the traditional 

economic carbon reduction-driven dispatch of generation units only to the dispatch 

additionally governed by system dynamics/stability analysis. In other words, system 

dynamic stability may become a determining constraint when deciding on the dispatch 

of the spatially distributed HRES plant/VPP for a particular time period. This is similar 

to a concept of security constrained OPF or security constrained generator scheduling 

with the emphasis on renewable generation scheduling/utilisation. 

In order to investigate to what extent and under which conditions the selection of the 

operating schedule of distributed HRES plant components (i.e., spatial HRES plant 

composition) affects system dynamic performance, system-level dynamic studies have 

to be performed. Unlike in the case of HRES plants presented in Chapters 3-5, a DEM 

cannot be used for representing the distributed HRES plant in system stability 
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simulations due to its multiple points of connection to the TN. In case there are individual 

plants within the distributed HRES plant with a common point of connection to the TN, 

they can be represented by an EM; otherwise each HRES plant component has to be 

modelled separately. The following section provides the analysis on the differences in 

power system stability status due to variations in the dispatch of HRES plant components 

for the same total HRES plant output. The focus is on transient stability of the system. 

This is similar to generic studies of the effect of proliferation of RESs on system transient 

stability with a difference that in this case it is assumed that a single aggregator or a 

groups of aggregators are offering a “VPP type of service” to a TN. The aim is to 

demonstrate that by offering certain energy delivery to TN, the aggregators might be 

constrained in a way, as they would need to consider what effects their particular 

deployment of RESs (part of their portfolio) might have on the overall TN dynamic 

performance. If this planned deployment, based on available resources (wind and sun), 

could affect system transient stability (in this particular case) or other performance 

attributes of TN, the aggregator may not be able to deliver initially offered/promised 

service. This clearly could lead to either reduced profit for them or a need to re-negotiate 

the contracts. 

6.3 Analysing the Impact of Spatial HRES Plant Composition on 

Transient System Stability  

6.3.1 Test System 

The test system is a simplified, realistic representation of a 255-bus equivalent of four 

interconnected real TNs in Europe comprising 42 SGs and 178 loads. Figure 6.2 presents 

the schematic diagram of the test system, with SGs/loads connected to the same bus 

represented by a single SG/load symbol. The network structure consisting of 220 kV and 

400 kV levels is divided into four areas connected by 17 tie-lines (TLs). A less detailed 

diagram of the test network indicating TLs between the areas is shown in Figure 6.3. The 

6 out of 17 TLs are 400 kV lines (red lines in Figure 6.2 and Figure 6.3), while the 

remaining TLs are 220 kV lines (green lines in Figure 6.2 and Figure 6.3). The SGs in 

the test network represent thermal and hydro power plants, while the HRES plant in the 

test system consists of RESs (WFs and PV plants) that are spatially widely distributed in 

four areas. Figure 6.2 provides the information about the locations of RES power plants 

in the Current (blue wind turbine symbols) and Future (orange wind turbine and orange 
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PV panel symbols) RES state (detailed explanation of RES states is given in Section 

6.3.3). As in the case of SGs and system loads, RES plants of the same technology that 

are connected to the grid at the same bus are represented by a single symbol. 

 

Figure 6.2 The schematic diagram of the test system  

 

Figure 6.3 The less detailed schematic diagram of the test system indicating TLs between the areas 
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The test system is developed in DIgSILENT/PowerFactory software environment. The 

standard sixth- and fifth-order SG model is used for modelling thermal and hydro power 

plants, respectively, while the control systems of SGs include excitation systems and 

governors. The parameters of SG dynamic models and SG controllers were provided by 

the respective TSOs, whereas the SG cost functions were adopted from [210] according 

to the similarity in the plant type and rated capacity. Wind turbines and PV units are 

represented by DFIGs and FCC units, respectively. As in the case of the test systems 

presented in Chapters 3-5, RES power plants comprise a number of identical units 

connected in parallel. The number of units in operation is defined by the total power 

production of the RES power plant, as it is assumed that units in service operate at the 

rated real power output (2 MW). In this study, it is assumed that PV plants operate with 

a unity power factor, while a wind generator produces 0.25 Mvar [211]. The dynamic 

models of WFs and PV plants, and their control systems correspond to the ones used in 

the test networks in Chapters 3-5 (detailed description of the dynamic modelling of RES 

power plants is provided in Section 3.3). The loads in the test network are modelled using 

a constant impedance model. 

6.3.2 Methodology 

The procedure for assessing the influence of spatial HRES plant composition on transient 

system stability performance relies on the probabilistic modelling of power production 

of individual RESs in the HRES plant and probabilistic representation of the transient 

stability results (the flow chart is presented in Figure 6.4). Adequate PDFs are used for 

generating random power outputs of individual RES plants for the considered system 

loading conditions. A number of system disturbances at various locations in the network 

are simulated for each operating point, and TSI, a widely used index for transient stability 

assessment, is calculated for each simulation. The most probable (representative) TSI for 

the particular system operating condition is determined according to the PDF estimated 

using the obtained TSI values. The representative TSIs are then used for investigating 

the impact of spatial HRES plant composition on the overall transient stability behaviour 

of the system. (Note: Given that the spatially distributed HRES plant in the test system 

contains non-dispatchable RESs with the production determined by the weather 

conditions, the analysis presented in this chapter is also applicable to the case of a single 

owner of each individual RES plant in the test system.) The procedure comprises four 

parts: Part I, Part III, and Part IV, which are mainly focused on data analysis, are 
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performed in Matlab R2020a, while Part II (system stability analysis) is carried out in 

DIgSILENT/PowerFactory 2020 environment [164]. Following sections describe each 

part of the procedure in detail. 

 

Figure 6.4 The flow chart of the procedure for assessing the impact of spatial HRES plant composition 

on transient stability of the system 

6.3.2.1 Part I 

Part I of the procedure illustrated in Figure 6.4 provides the system load level and power 

production of all non-dispatchable RESs, i.e., PV plants and WFs, in the network. Firstly, 

a test scenario (TS) used for a 24-hour transient stability assessment of the system is 

chosen from a pre-defined set of TSs (block {1} in Figure 6.4). Each TS is associated 

with a particular daily system loading profile (block {2} in Figure 6.4), and the location 

and rated capacity values of RESs (so-called RES state, which is described in detail in 

Section 6.3.3). Then, for each hour in the chosen TS, the power outputs of RES plants 

within the HRES plants are defined in a probabilistic manner (block {3} in Figure 6.4) 

by sampling RES production from the predefined PDFs. In case historical RES plant 

production data or historical wind speed and solar irradiation measurements are 

available, these data can be used for defining hourly production profiles of RES power 

plants instead of the PDFs. 

In the case of WFs, it is assumed that the wind speed follows a Weibull distribution with 

a shape parameter of 2.2 and scale parameter of 11.1 [212]: 

 𝑓(𝑣)= {
𝑘

𝜑
(

𝑣

𝜑
)
𝑘−1

𝑒−(𝑣/𝜑)𝑘 𝑣 ≥ 0

0 𝑣 < 0
, (6.1) 
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where v is the wind speed, k is the shape parameter and φ is the scale parameter. The 

power production for the sampled wind speed is obtained from a typical wind turbine 

power curve presented in Figure 6.5 (a) [213].  

When it comes to PV plants, the daily PV production curve shown in Figure 6.5 (b) is 

used for defining plant power output [182, 214] (the normalization is carried out using 

the rated capacity of the PV plant). In order to take into account uncertainties in power 

production, for each PV plant, the value from the PV curve for the given hour is 

multiplied by a random factor generated using a beta distribution [214]: 

 𝑓(𝑥)=
𝛤(𝑎+𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1, 𝑥 ∈ [0, 1], (6.2) 

where 𝛤 stands for the gamma function, and a and b are the PDF parameters. In this study 

the following values are adopted for the beta distribution parameters: а=13.7 and b=1.3 

[182]. 

  

(a) (b) 

Figure 6.5 (a): Wind turbine power curve [213]; (b): Daily PV plant production curve [182, 214] (the 

base power is the rated PV plant capacity) 

The assumptions about wind and PV generation output presented above facilitate the 

generation of realistic daily power production profiles of RES power plants in the test 

system.  

6.3.2.2 Part II 

Part I of the procedure provides the dispatch of RES units in the system, while the pre-

disturbance power outputs of SGs in the network are defined by the OPF calculation 

performed in Part II.  

In order to take into consideration the reduction in the total system inertia level due to 

HRES plant integration, it is assumed that each SG in the test network is an equivalent 
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representation (an equivalent SG) of an SG power plant comprising four identical units. 

The rated capacity and power dispatch of the equivalent SG for an operating condition 

correspond to the sum of rated capacities and power outputs, respectively, of the 

individual units in the relevant SG plant that are in service in the case of the given 

operating condition (it is assumed that individual units in service have the same operating 

point): 

 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

= ∑ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

𝑗=1
= 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗, (6.3) 

 𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

= ∑ 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

𝑗=1
= 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , (6.4) 

where 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  is the number of units represented by the i-th equivalent SG (the equivalent 

SG of the i-th SG plant), that is, the number of units in service in the i-th SG plant, for 

the given operating condition (the maximum number of units in service is equal to four), 

𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

 and 𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

 is the rated capacity and real power output of the i-th equivalent SG 

representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  units, respectively, 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 and 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 is the rated capacity 

and real power output of the j-th individual unit in the i-th SG plant, respectively (all 

units in the plant are identical). The relation between the reactive power output of the i-th 

equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  units (𝑄𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

) and the reactive power of individual 

units in service in the i-th SG plant (𝑄
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗) is analogous to (6.4). 

In order to ensure the specified minimum operational reserve, the maximum real power 

limit of individual units in the i-th SG plant is defined as follows: 

 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 =𝑝

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑎𝑥 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , (6.5) 

 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 =(1 − 𝑅𝑒𝑠𝑒𝑟𝑣𝑒

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗) ∙ 𝑃𝐹

𝑛𝑜𝑚,𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗, (6.6) 

where 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥  and 𝑝

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑎𝑥  is the maximum real power limit in MW and p.u., 

respectively, 𝑅𝑒𝑠𝑒𝑟𝑣𝑒
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 is the spare reserve in p.u., and 𝑃𝐹
𝑛𝑜𝑚,𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗  is the 
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rated power factor; all for the j-th individual unit in the i-th SG plant. A fixed spare 

reserve of 15% is adopted in the study for all individual units in all SG plants [182]. 

The minimum real power limit and reactive power limits of individual units in the i-th 

SG plant are specified as follows: 

 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 =𝑝

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑖𝑛 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , (6.7) 

 𝑄
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 =𝑞

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑖𝑛 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗, (6.8) 

 𝑄
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 =𝑞

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑎𝑥 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗, (6.9) 

where 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛  and 𝑝

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑖𝑛  is the minimum real power limit in MW and p.u., 

respectively, 𝑄
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛  and 𝑞

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑖𝑛  is the minimum reactive power limit in Mvar 

and p.u., respectively, 𝑄
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥  and 𝑞

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗

𝑚𝑎𝑥  is the maximum reactive power limit 

in Mvar and p.u., respectively; all for the j-th individual unit in the i-th SG plant.  

The real and reactive power limits in MW and Mvar, respectively, of the i-th equivalent 

SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  units can be obtained based on (6.3) and (6.4):  

 

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

= 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑆

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗 =

= 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

                                                                   

, (6.10) 

where 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

 is the maximum real power limit in MW for the i-th equivalent SG 

representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  units. Analogous expressions can be obtained for the remaining real 

and reactive power limits in absolute units for the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  

units. 

When it comes to the real and reactive power limits in p.u. of the i-th equivalent SG, they 

are equal to the respective limits of individual units in the i-th SG plant according to 

(6.10): 

𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 = 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

⁄ = (𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

) 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

⁄ = 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 , (6.11) 
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where 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥  is the maximum real power limit in p.u. of the i-th equivalent SG. 

Analogous expressions can be obtained for the remaining real and reactive power limits 

in p.u. of the i-th equivalent SG. In this study, the adopted minimum and maximum 

reactive power limits in p.u. are -0.6 p.u. and 0.8 p.u., respectively [163, 211], whereas 

the minimum real power limit values are obtained from the respective TSOs.  

The determination of the optimal economic dispatch of SG plants in the network 

represents a mixed-integer optimization problem as power outputs of SG plants and the 

number of SG units in service in each plant (which define the rated capacity values of 

SG plants (see (6.3))) have to be defined. The given optimization task can be 

mathematically formulated as follows: 

𝑚𝑖𝑛 ∑ 𝐶𝑜𝑠𝑡𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺

𝑖=1
= 𝑚𝑖𝑛 ∑ (𝑎𝑖(𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 )
2
+ 𝑏𝑖𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 + 𝑐𝑖)
𝑁𝐸𝑞𝑆𝐺

𝑖=1

𝑃𝑘 − 𝑃𝑔𝑘 + 𝑃𝑑𝑘 = 0, 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑃𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 cos(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑄𝑘 − 𝑄𝑔𝑘 + 𝑄𝑑𝑘 = 0, 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑄𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 sin(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹 ≤ 𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 ≤ 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑂𝑃𝐹, 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹 = 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 ∙ 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹 = 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹 ≤ 𝑄𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 ≤ 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑂𝑃𝐹, 𝑖 = 1, … , 𝑁𝐸𝑞𝑆𝐺 ,

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹 = 𝑞
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 ∙ 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑂𝑃𝐹 = 𝑞
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , 𝑖 = 1, … , 𝑁𝐸𝑞𝑆𝐺 ,

√(𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 )
2
+ (𝑄𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 )
2

≤ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 , 𝑖 = 1, … ,𝑁𝐸𝑞𝑆𝐺 ,

0 ≤ 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ≤ 4, 𝑖 = 1, … ,𝑁𝐸𝑞𝑆𝐺 ,

𝑉𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑚𝑎𝑥 , 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚 ≤ 𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚
𝑚𝑎𝑥 , 𝑚 = 1,… ,𝑁𝑙𝑖𝑛𝑒 ,

𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛 ≤ 𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛
𝑚𝑎𝑥 , 𝑛 = 1,… ,𝑁𝑇𝑅 ,

, (6.12) 

where: 𝐶𝑜𝑠𝑡𝐸𝑞𝑆𝐺,𝑖 is the generation cost for the i-th equivalent SG, 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are the 

coefficients of the cost function for the i-th equivalent SG, 𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹  and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹  are the real 

and reactive power output values of the i-th equivalent SG that are obtained from the 

OPF, respectively, 𝑃𝑘 and 𝑄𝑘 is the net real and reactive power injection at the k-th bus, 
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respectively, 𝑃𝑔𝑘 and 𝑄𝑔𝑘 is the sum of real and reactive power outputs of the equivalent 

SGs and individual RES plants within the HRES plant that are connected to the k-th bus, 

respectively, 𝑃𝑑𝑘 and 𝑄𝑑𝑘 is the real and reactive power of the load connected to the k-th 

bus, respectively, 𝑉𝑘 is the voltage magnitude of the k-th bus, 𝑌𝑘𝑙 and 𝜓𝑘𝑙 is the magnitude 

and phase angle of the complex admittance matrix element at the position (k, l), 

respectively, 𝜃𝑘 is the phase angle of the voltage at the k-th bus, 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 (a discrete 

variable) is the number of units represented by the i-th equivalent SG that is obtained 

from the OPF, 𝑃𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹  and 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑂𝑃𝐹
 is the minimum and maximum real power limit 

in MW of the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units, 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑂𝑃𝐹
 and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑂𝑃𝐹
 is 

the minimum and maximum reactive power limits in Mvar of the i-th equivalent SG 

representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units, respectively, 𝑆𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹  is the rated capacity of the i-th 

equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units, 𝑉𝑘
𝑚𝑖𝑛 and 𝑉𝑘

𝑚𝑎𝑥 are the minimum and 

maximum voltage limits for the k-th bus, respectively, 𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚 is the loading of the 

m-th line, 𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚
𝑚𝑎𝑥  is the maximum loading of the m-th line, 𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛 is the 

loading of the n-th transformer, 𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛
𝑚𝑎𝑥  is the maximum loading of the n-th 

transformer, 𝑁𝐸𝑞𝑆𝐺, 𝑁𝑏𝑢𝑠, 𝑁𝑙𝑖𝑛𝑒, and 𝑁𝑇𝑅 are the number of equivalent SGs, buses, lines 

and transformers in the network, respectively. The constraints for all bus voltage 

magnitudes are 0.9 p.u. and 1.1 p.u., whereas the maximum allowed line and transformer 

loading is 100%. 

Given that the whole system is modelled in DIgSILENT/PowerFactory environment and 

this software package does not have a tool for solving the mixed-integer non-linear 

optimization task described by (6.12), the given optimization problem is divided into two 

parts, each of them representing a non-linear OPF with continuous variables. Thus, the 

OPF is conducted twice for each hour during the day in order to determine both the power 

dispatch of equivalent SGs as well as the required number of units represented by each 

equivalent SG (i.e., the required number of units in service in each SG plant). The first 

OPF gives the information about the rated capacity values and preliminary operating 

points of equivalent SGs, whereas the second OPF provides the final power dispatch of 

equivalent SGs according to the capacity values provided by the first OPF.  
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6.3.2.2.1 Two-step Optimal Power Flow Procedure 

The two-step OPF calculation is carried out in DIgSILENT/PowerFactory environment 

using the detailed network model. The logarithmic barrier interior point algorithm for 

nonlinear optimization based on the Newton method is used for solving the OPF problem 

[215] (the only available optimization algorithm for nonlinear optimization tasks in 

DIgSILENT/PowerFactory [164]). 

When performing the first OPF, all equivalent SGs are in operation and have the 

maximum rated capacity (𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  is equal to four, that is, it is assumed that all four 

individual units in each plant are in service). The objective of the first OPF is to minimize 

the total generation cost of SG plants while satisfying the specified total system load, and 

considering equivalent SG and network constraints. The first OPF problem can be 

formulated as follows: 

 

𝑚𝑖𝑛 ∑ 𝐶𝑜𝑠𝑡𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺

𝑖=1
= 𝑚𝑖𝑛 ∑ (𝑎𝑖(𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1)
2
+ 𝑏𝑖𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 + 𝑐𝑖)
𝑁𝐸𝑞𝑆𝐺

𝑖=1

𝑃𝑘 − 𝑃𝑔𝑘 + 𝑃𝑑𝑘 = 0, 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑃𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 cos(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑄𝑘 − 𝑄𝑔𝑘 + 𝑄𝑑𝑘 = 0, 𝑘 = 1, … , 𝑁𝑏𝑢𝑠,

𝑄𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 sin(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,4,𝑂𝑃𝐹 1 ≤ 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 ≤ 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4, 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,4 ≤ 𝑄𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 ≤ 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4, 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

√(𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1)
2

+ (𝑄𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1)
2

≤ 𝑆𝐸𝑞𝑆𝐺𝑖

4 , 𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺 ,

𝑉𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑚𝑎𝑥, 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚 ≤ 𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚
𝑚𝑎𝑥 , 𝑚 = 1,… ,𝑁𝑙𝑖𝑛𝑒 ,

𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛 ≤ 𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛
𝑚𝑎𝑥 , 𝑛 = 1, … ,𝑁𝑇𝑅 ,

, (6.13) 

where: 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 and 𝑄𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 are the real and reactive power output values of the i-th 

equivalent SG representing four units that are obtained from the first OPF, respectively, 

𝑃𝑘 and 𝑄𝑘 is the net real and reactive power injection at the k-th bus, respectively, 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4
 

is the maximum real power limit in MW of the i-th equivalent SG representing four units, 

𝑃𝑆𝐺𝑖

𝑚𝑖𝑛,4,𝑂𝑃𝐹 1
 is the minimum real power limit in MW of the i-th equivalent SG 

representing four units that is used in the first OPF calculation, 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,4
 and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4
 are 



220 | Limitations of the Reliance on Assessment of the Contribution of Spatially 

Distributed HRES Plant to Real System Operation 

the minimum and maximum reactive power limits in Mvar of the i-th equivalent SG 

representing four units, respectively, 𝑆𝐸𝑞𝑆𝐺𝑖

4  is the rated capacity of the i-th equivalent 

SG representing four units. The values of 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4
, 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,4
, and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,4
 are calculated using 

(6.10) for the number of units equal to four (𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 4), while the 𝑆𝐸𝑞𝑆𝐺𝑖

4  is defined 

based on (6.3) for four units in service. The constraints for all bus voltage magnitudes 

are 0.9 p.u. and 1.1 p.u., whereas the maximum allowed line and transformer loading is 

100%. 

In the first OPF calculation the actual minimum real power limits of individual units are 

not considered. Instead, the minimum real power limit for all individual units is set to 

zero. Consequently, the minimum real power limit of all equivalent SGs in the first OPF 

(𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,4,𝑂𝑃𝐹 1
 in (6.13)) is zero. Zero minimum real power limit is adopted to make 

possible the disconnection of an equivalent SG representing four units from the network 

(this corresponds to disconnecting the whole SG plant from the network). The minimum 

real power limit of zero value enables the dispatch of the i-th equivalent SG in the first 

OPF calculation to take any value between zero and the maximum real power limit of 

the i-th equivalent SG (calculated according to (6.10) for the number of units equal to 

four). In case the real power production of the i-th equivalent SG obtained from the first 

OPF (𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
) is below the actual minimum real power limit for a single unit in the i-th 

SG plant (𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛  in (6.7)), then not even a single unit in service can provide such a 

low power output, and the whole i-th equivalent SG representing four units (i.e., the 

whole i-th SG plant) is disconnected from the network. On the other hand, using the 

actual, non-zero, minimum real power limits of individual units in the first OPF 

calculation would result in non-zero minimum real power limits of equivalent SGs (4 ∙

𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛  according to (6.10), (𝑖 = 1,… ,𝑁𝐸𝑞𝑆𝐺)), and thus, the real power outputs of 

equivalent SGs obtained from the first OPF would be equal to at least the minimum real 

power output values of equivalent SGs. Given that the 4 ∙ 𝑃
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛  value is above the 

minimum real power output for an individual unit, at least one unit in the i-th SG plant 

would have to be in service, which means that none of the SG plants would be able to be 

disconnected from the network. 

For equivalent SGs with the first OPF dispatch above the minimum real power limit for 

a single unit (i.e., equivalent SGs not disconnected from the network), the procedure 
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shown in Figure 6.6 is carried out to identify the minimum required number of units in 

service in the plant that can produce the power output corresponding to the first OPF 

dispatch of the equivalent SG (𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
). Detailed description of each stage in the 

procedure (i.e., blocks in Figure 6.6) for the i-th equivalent SG is given below. 

 

Figure 6.6 The procedure for identifying the optimal number of units in service for each SG plant based 

on the first OPF results 

Block {1} in Figure 6.6: In the first stage of the procedure, the minimum operating 

capacity of the i-th equivalent SG that can produce the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 power output is calculated 

assuming that the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value corresponds to the maximum real power limit for this 

capacity value. According to (6.11): 

 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
=𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝  →  𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝 =
𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1

𝑝𝐸𝑞𝑆𝐺𝑖
𝑚𝑎𝑥 , (6.14) 

where 𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝 is the minimum operating capacity of the i-th equivalent SG that can 

produce the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 output value. 
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The theoretical number of units represented by the i-th equivalent SG with the minimum 

operating capacity, so-called the preliminary number of units in service in the i-th SG 

plant for the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 power output, is computed as follows: 

 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡=
𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝

𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺

𝑖
𝑗

, (6.15) 

where 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 is the preliminary number of units in service in the i-th SG plant for 

the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 power output, i.e., the preliminary number of units in service in the i-th SG 

plant for the given hour. 

Block {2} in Figure 6.6: At this stage of the procedure, it is assessed whether the 

𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 value is an integer. In case 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 is an integer value, then the 

preliminary number of units in service is actually the final number of units in service in 

the i-th SG plant (𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡) for the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 power output, i.e., for the given hour, and 

the procedure terminates; otherwise the procedure continues with the computations in 

the following stage. 

Block {3} in Figure 6.6: Let assume that the non-integer 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 value is a number 

between integer values k1 and k2 obtained by rounding down and up the 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 value 

to the nearest integer, respectively: 

 𝑘1 < 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 < 𝑘2, (6.16) 

 𝑘1=⌊𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡⌋, (6.17) 

 𝑘2=⌈𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡⌉, (6.18) 

where k1 and k2 are the nearest integers for the 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 value, ⌈𝑥⌉ and ⌊𝑥⌋ stands for 

rounding up and down number x to the nearest integer, respectively. 

These two integer values, k1 and k2, represent potential candidates for the final number 

of units in service in the i-th SG plant for the given hour. Based on (6.3), (6.10), (6.15), 

and (6.16), the following relation between the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value and the maximum real 

power limits of the equivalent SGs of the i-th SG plant with k1 and k2 number of units in 
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service (i.e., the i-th equivalent SGs representing k1 and k2 number of units) can be 

derived: 

 𝑘1 <
𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝

𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺

𝑖
𝑗

< 𝑘2, (6.19) 

 𝑘1 <
𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 𝑝𝐸𝑞𝑆𝐺𝑖
𝑚𝑎𝑥⁄

𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺

𝑖
𝑗

< 𝑘2, (6.20) 

 𝑘1 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 ∙ 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 < 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 < 𝑘2 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗 ∙ 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 , (6.21) 

 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑘1 < 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 < 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑘2 , (6.22) 

 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1 < 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 < 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘2, (6.23) 

where 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1 and 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘2 are the maximum real power limits in MW of the i-th 

equivalent SG representing k1 and k2 number of units, respectively, 𝑆𝐸𝑞𝑆𝐺𝑖

𝑘1  and 𝑆𝐸𝑞𝑆𝐺𝑖

𝑘2  is 

the rated capacity of the i-th equivalent SG representing k1 and k2 number of units, 

respectively. Therefore, the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is certainly between the values of the 

maximum real power limits in MW of the i-th equivalent SGs representing k1 and k2 

number of units. 

Depending on the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value and the minimum real power limit in p.u. for the i-th 

equivalent SG, two scenarios are possible: 

 Scenario 1: The 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is equal to or larger than the minimum real power 

limit of the i-th equivalent SG representing k2 number of units (see Figure 6.7 (a); 

blue bars denote the ranges of real power production for the i-th equivalent SGs 

representing k1 and k2 number of units, while the green dashed line indicates the 

𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value): 

 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
≥𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2 = 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛 ∙ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑘2 = 𝑝𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛 ∙ 𝑘2 ∙ 𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗   , (6.24) 
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where 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2 is the minimum real power limit in MW of the i-th equivalent SG 

representing 𝑘2 number of units. 

 Scenario 2: This scenario can only occur if there is no overlap between the ranges 

of real power output for the i-th equivalent SGs representing k1 and k2 number of 

units (see Figure 6.7 (b)). (Note: In the case of Scenario 1, it is irrelevant whether 

there is an overlap between the ranges). In this scenario, the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is 

between the maximum real power limit in MW of the i-th equivalent SG 

representing k1 number of units and the minimum real power limit in MW of the 

i-th equivalent SG representing k2 number of units: 

 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1 < 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1<𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2  . (6.25) 

  
(a) (b) 

Figure 6.7 The illustration of Scenario 1 (a) and Scenario 2 (b) 

Block {4} in Figure 6.6: The 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is compared with the minimum real power 

limit in MW of the i-th equivalent SG representing 𝑘2 number of units (𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2), i.e., 

Scenario 1 is considered. If the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value satisfies the Scenario 1 condition, then the 

𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is within the allowed range of real power output of the i-th equivalent SG 

representing 𝑘2 number of units (according to (6.23), the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value is below the 

maximum real power limit in MW of the i-th equivalent SG representing 𝑘2 number of 

units), and the final number of units in service in the i-th SG plant for the given hour is 

𝑘2; otherwise the following step of the procedure related to Scenario 2 is carried out. 

Block {5} in Figure 6.6: Given that the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value satisfies Scenario 2 condition, (i.e., 

expression (6.25)), it is necessary to calculate differences ∆𝑃𝑘1
 and ∆𝑃𝑘2

 shown in Figure 

6.7 (b) as follows: 
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 ∆𝑃𝑘1
=𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 − 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1, (6.26) 

 ∆𝑃𝑘2
=𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2 − 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
, (6.27) 

where ∆𝑃𝑘1
 and ∆𝑃𝑘2

 represent the deviations of the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value from the the 

maximum real power limit in MW of the i-th equivalent SG representing k1 number of 

units and the minimum real power limit in MW of the i-th equivalent SG representing k2 

number of units, respectively. 

Block {6} in Figure 6.6: The final stage of the procedure involves the comparison of 

∆𝑃𝑘1
 and ∆𝑃𝑘2

 values, and the determination of the final number of units in service in the 

i-th SG plant for the considered hour during the day as follows: 

 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡= {
𝑘1, ∆𝑃𝑘1

≤ ∆𝑃𝑘2

𝑘2, ∆𝑃𝑘1
> ∆𝑃𝑘2

. (6.28) 

Given that the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 output value is outside the ranges of real power production of the 

i-th equivalent SGs representing k1 and k2 units (as seen in Figure 6.7 (b)), adopting k1 or 

k2 number of units in service indicates that the i-th equivalent SG will not be able to 

produce the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 output value. The second OPF, which recalculates the power outputs 

of equivalent SGs according to the established capacity values, will force the power 

dispatch of the i-th equivalent SG to be within the real power limits for the chosen 

number of units in service, meaning the final dispatch of the i-th equivalent SG will be 

either reduced (in the case of the chosen k1 number of units) or increased (in the case of 

the chosen k2 number of units) compared to the 𝑃𝐸𝑞𝑆𝐺𝑖

𝑂𝑃𝐹 1 value. The final SG dispatch 

deviates from the actual optimal economic SG dispatch by making a choice between the 

closest higher or smaller integer number of units in (6.28) (i.e., by choosing between the 

k1 and k2 number of units). It should be noted that the procedure does not seek to provide 

the dispatch resulting in the absolute minimum of the total SG production cost but it uses 

engineering judgment to identify a generation schedule that is close to the true optimal 

economic SG dispatch. 

For clarity, a numerical example of selecting the number of units in service in the i-th 

SG plant is provided here. The parameters of individual units in the plant are: 
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𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗=120 MVA, 𝑅𝑒𝑠𝑒𝑟𝑣𝑒
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗=0.15 p.u., 𝑃𝐹
𝑛𝑜𝑚,𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗=0.9, and 

𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 =0.55 p.u.. According to (6.6), the maximum real power limit in p.u. for 

individual units is: 

 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 =(1 − 0.15) ∙ 0.9 = 0.76 p. u.. (6.29) 

The ranges of real power production in MW of the i-th equivalent SG for (1-4) number 

of units in service are calculated according to (6.10) and (6.11): 

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

= 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑖𝑛 ∙ 𝑆

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 0.55 ∙ 120 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 66, (6.30) 

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝑢𝑛𝑖𝑡

= 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖

𝑗
𝑚𝑎𝑥 ∙ 𝑆

𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
𝑗 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 0.76 ∙ 120 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 ∙ 91.2, (6.31) 

where 𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡  is varied from one to four, and the following values are obtained (blue bars 

in Figure 6.8 illustrate these ranges.): 

 

𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 1 → (66 − 91.2) MW

𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 2 → (132 − 182.4) MW

𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 3 → (198 − 273.6) MW

𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 4 → (264 − 364.8) MW

. (6.32) 

 

Figure 6.8 The illustration of the selection of the number of units in service in an SG plant 

Let assume that the power dispatch of the i-th equivalent SG obtained in the first OPF 

(the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value) is 100 MW marked by green dashed line in Figure 6.8. According to 

(6.14) and (6.15), the minimum operational capacity of the i-th equivalent SG and the 

preliminary number of units in service in the i-th SG plant are: 
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 𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝 =
𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1

𝑝𝐸𝑞𝑆𝐺𝑖
𝑚𝑎𝑥 =

𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1

𝑝
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺

𝑖
𝑗

𝑚𝑎𝑥 =
100

0.76
= 131.58 MVA, (6.33) 

 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡=
𝑆𝐸𝑞𝑆𝐺𝑖,𝑀𝑖𝑛𝑂𝑝

𝑆
𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺

𝑖
𝑗

=
131.58

120
= 1.1. (6.34) 

Given that the 𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡 is not an integer, k1 and k2 values have to be computed: 

 𝑘1=⌊𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡⌋=1, (6.35) 

 𝑘2=⌈𝑁𝐸𝑞𝑆𝐺𝑖

𝑃𝑟𝑒𝑙𝑖𝑚𝑈𝑛𝑖𝑡⌉=2. (6.36) 

Following this, Scenario 1 is considered, i.e., the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value, 100 MW, is compared 

with the minimum real power limit in MW of the i-th equivalent SG representing two 

(k2) units (𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2), which is equal to 132 MW (see (6.32)). Given that the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value 

(100 MW) is smaller than the 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2 value (132 MW), the 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1
 value satisfies 

Scenario 2 condition (6.25), and the differences ∆𝑃𝑘1
 and ∆𝑃𝑘2

 have to be calculated 

using (6.26) and (6.27): 

 ∆𝑃𝑘1
=𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 − 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1 = 100 − 91.2 = 8.8 MW, (6.37) 

 ∆𝑃𝑘2
=𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑘2 − 𝑃𝐸𝑞𝑆𝐺𝑖

4,𝑂𝑃𝐹 1 = 132 − 100 = 32 MW. (6.38) 

The 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑘1 value is the maximum real power limit in MW of the i-th equivalent SG 

representing a single unit and is equal to 91.2 MW according to (6.32). 

Given that ∆𝑃𝑘1
< ∆𝑃𝑘2

 holds, the final number of units in service in the i-th SG plant is 

one according to (6.28). This indicates that the final power output of the i-th equivalent 

SG defined by the second OPF will be limited to 91.2 MW (the maximum real power 

limit of the i-th equivalent SG representing a single unit), i.e., the i-th equivalent SG will 

not be able to provide the value of 100 MW obtained in the first OPF. 

As described, the first OPF defines the minimum required number of units in operation 

for each SG plant, which in turn provides new rated capacities for all equivalent SGs 
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(𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 ∙ 𝑆𝑢𝑛𝑖𝑡,𝐸𝑞𝑆𝐺𝑖
) in the test network. The second OPF then recalculates the power 

outputs of the equivalent SGs remained in service after the first OPF calculation, and 

provides the final dispatch of all equivalent SGs in the network. The mathematical 

formulation of the second OPF problem is analogous to (6.13), with the rated capacities 

of equivalent SGs defined based on the first OPF results and actual minimum real power 

limits of equivalent SGs: 

𝑚𝑖𝑛 ∑ 𝐶𝑜𝑠𝑡𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺

𝑖=1
= 𝑚𝑖𝑛 ∑ (𝑎𝑖 (𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

)

2

+ 𝑏𝑖𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

+ 𝑐𝑖)
𝑁𝐸𝑞𝑆𝐺

𝑖=1

𝑃𝑘 − 𝑃𝑔𝑘 + 𝑃𝑑𝑘 = 0, 𝑘 = 1,… ,𝑁𝑏𝑢𝑠,

𝑃𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 cos(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… , 𝑁𝑏𝑢𝑠,

𝑄𝑘 − 𝑄𝑔𝑘 + 𝑄𝑑𝑘 = 0, 𝑘 = 1,… , 𝑁𝑏𝑢𝑠,

𝑄𝑘 = 𝑉𝑘 ∑ 𝑉𝑙𝑌𝑘𝑙 sin(𝜃𝑘 − 𝜃𝑙 − 𝜓𝑘𝑙)
𝑁𝑏𝑢𝑠
𝑙=1 , 𝑘 = 1,… , 𝑁𝑏𝑢𝑠,

𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

≤ 𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

≤ 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

, 𝑖 = 1,… , 𝑁𝐸𝑞𝑆𝐺 ,

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

≤ 𝑄𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

≤ 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

, 𝑖 = 1, … , 𝑁𝐸𝑞𝑆𝐺 ,

√(𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

)
2

+ (𝑄𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

)
2

≤ 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

, 𝑖 = 1,… , 𝑁𝐸𝑞𝑆𝐺 ,

𝑉𝑘
𝑚𝑖𝑛 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑚𝑎𝑥 , 𝑘 = 1, … ,𝑁𝑏𝑢𝑠,

𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚 ≤ 𝐿𝑖𝑛𝑒𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑚
𝑚𝑎𝑥 ,𝑚 = 1,… ,𝑁𝑙𝑖𝑛𝑒,

𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛 ≤ 𝑇𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔,𝑛
𝑚𝑎𝑥 , 𝑛 = 1,… ,𝑁𝑇𝑅 ,

, (6.39) 

where: 𝑃𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

 and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡,𝑂𝑃𝐹 2

 are the real and reactive power output values 

of the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units that are obtained from the second 

OPF, respectively, 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 and 𝑃𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 is the minimum and maximum real 

power limit in MW of the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units, respectively, 

𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑖𝑛,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 and 𝑄𝐸𝑞𝑆𝐺𝑖

𝑚𝑎𝑥,𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 is the minimum and maximum reactive power limit in 

Mvar of the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units, respectively, 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 is the 

rated capacity of the i-th equivalent SG representing 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units. The values of real 

and reactive power limits are calculated using (6.5) – (6.11) for the 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 number of 

units (𝑁𝐸𝑞𝑆𝐺𝑖

𝑢𝑛𝑖𝑡 = 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡), while the 𝑆𝐸𝑞𝑆𝐺𝑖

𝑁𝐸𝑞𝑆𝐺𝑖
𝐹𝑖𝑛𝑈𝑛𝑖𝑡

 is defined based on (6.3) for 𝑁𝐸𝑞𝑆𝐺𝑖

𝐹𝑖𝑛𝑈𝑛𝑖𝑡 units 

in service. As in the case of the first OPF, the constraints for all bus voltage magnitudes 

are 0.9 p.u. and 1.1 p.u., and the maximum allowed line and transformer loading is 100%. 
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Following the two-step OPF calculation, the pre-disturbance operating conditions of all 

elements in the network are defined. Then, system stability simulations are performed in 

DIgSILENT/PowerFactory software. Transient system stability is assessed through 

electromechanical simulations (block {6} in Figure 6.4). Three-phase self-clearing short-

circuit faults at the middle of all transmission lines are simulated for each system 

operating point (i.e., each hour in the analysed TS). Three-phase faults are chosen as they 

usually result in the most severe system conditions [182]. A single type of short-circuit 

faults is considered as the objective of the study is to establish whether the variation in 

spatial HRES plant composition for the same total HRES plant power output affects 

transient stability performance of the system and the change in fault type should not have 

a significant influence on the results of the comparative analysis. The duration of all 

faults is 100 ms. For each transient system stability simulation, TSI value is calculated 

according to expression (4.3) given in Section 4.2.3, which is repeated below for clarity: 

 𝑇𝑆𝐼 =
360°−𝛿𝑚𝑎𝑥

360°+𝛿𝑚𝑎𝑥
∙ 100%, (6.40) 

where δmax is the maximum difference between rotor angles of any two SGs in the 

network at the same time instance. 

6.3.2.3 Part III 

The third part of the procedure involves statistical analysis of the obtained TSI values 

(block {9} in Figure 6.4). For each hour in the TS, the non-parametric kernel PDF is 

estimated on the basis of the TSI values for the given hour: 

 𝑓ℎ(𝑥)=
1

𝑁𝐹∙ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)

𝑁𝐹
𝑖=1 , (6.41) 

where 𝑓ℎ(𝑥) is the kernel density estimate of the unknown PDF f, x is a random variable 

(TSI), 𝑁𝐹 is the number of faults simulated for the given hour, K is the non-negative 

kernel function with the integral equal to one, xi is the TSI value for the i-th short-circuit 

fault, and h is a bandwidth. 

The normal distribution with zero mean and standard variance of one is adopted as a 

kernel function in the study as it is the most widely used [140]. When it comes to the 
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bandwidth, the optimal value of the parameter h is defined using the solve-the-equation 

plug-in method as it demonstrated the best performance among a range of bandwidth 

estimation techniques [194]. Detailed description of the solve-the-equation plug-in 

method is provided in Section 4.2.3.1. 

Given that a large number of three-phase short-circuit faults is simulated for each hour 

in the TS, the most probable TSI value (according to the estimated kernel PDF) is defined 

for each hour (block {10} in Figure 6.4), and then used as a representative TSI for the 

given hour in the further analysis. Defining the representative TSI for each hour in the 

TS results in a set of 24 representative TSIs that provides the information about hourly 

variation in the transient stability status of the system. 

6.3.2.4 Part IV 

The first three parts of the procedure are focused on generating system operating 

conditions and carrying out daily transient stability assessment of the system, while Part 

IV analyses the influence of RES power distribution across the network (i.e., spatial 

HRES plant composition) on the transient stability performance of the system. In order 

to investigate if, and under which conditions, the selection of spatial HRES plant 

composition for a particular total HRES plant power output becomes relevant for 

transient stability behaviour of the system, groups of system operating conditions 

characterized by similar total HRES plant production and total system demand are 

identified first (block {11} in Figure 6.4). Similarity in the total HRES plant power output 

and system load is necessary in order to decouple the impact of HRES plant production 

and system demand on TSI value from the influence of RES power distribution across 

the network. Following the identification of the relevant groups of operating points, 

representative TSI values for operating points in the same group are compared to assess 

the correlation between spatial HRES plant composition and transient stability status of 

the system (block {12} in Figure 6.4). 

6.3.3 Test Scenarios 

Three TSs involving different system loading levels and RES states are defined to reflect 

realistic system operation and shown in Table 6.1. The maximum and minimum system 

loading corresponds to a system operating condition in winter and summer of 2017, 

respectively, and the corresponding system loading curves are illustrated in Figure 6.9 
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[196]. Both RES states from Table 6.1 are designed according to the information about 

the location and rated capacity of existing and future RESs reported by the respective 

TSOs and their more detailed description is provided in Table 6.2.  

Table 6.1 Test scenarios 

Scenario number System loading level RES state 

TS 1 Maximum loading Current RES 

TS 2 Maximum loading Future RES 

TS 3 Minimum loading Future RES 

 

Figure 6.9 Maximum (blue solid) and minimum (red dashed) system loading curves 

Table 6.2 Detailed description of RES states 

RES state 
Number of 

WFs 

Total WF capacity 

(MW) 

Number of PV 

plants 

Total PV 

capacity (MW) 

Current 17 1,190 0 0 

Future 21 7,438 11 470 

RES plants included in the Current RES state are marked by blue wind turbine symbols 

in Figure 6.2, while WFs and PV plants planned to be installed in the future are 

represented by orange wind turbine and orange PV panel symbols, respectively, in Figure 

6.2. A less detailed diagram of the test system indicating spatial distribution of RES 

power plants over four areas in both Current and Future RES state is shown in Figure 

6.10 (RES plants are marked as “RESx”, where x is a number from 1 to 17 and from 1 to 

32 in the case of the Current and Future RES state, respectively).  

RES state at present, i.e., the Current RES state in Table 6.1 and Table 6.2, includes 17 

WFs (no PV plants among the installed RESs). The total installed WF capacity at present 

is 1,190 MW (Area 1: 168 MW, Area 2: 86 MW, Area 3: 374 MW, Area 4: 562 MW), 

which is 9.4% of the installed SG capacity. Considering future network development, the 

installation capacity of the existing WFs will increase, WFs at new locations will be 

installed, and a number of PV plants will be connected to the system. Therefore, the 
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Future RES state, as referred to in this study, will include 21 WFs and 11 PV plants, with 

the total installed capacity of 7,908 MW (62.4% of the installed SG capacity). The WF 

installation capacity in the Future RES state per area is: Area 1: 1,112 MW, Area 2: 

86 MW, Area 3: 5,192 MW, and Area 4: 1,048 MW. When it comes to PV plants, nine 

out of eleven PV plants are to be installed in Area 4 with the total capacity of 300 MW, 

while Area 1 and Area 3 are going to contain a 100 MW and a 70 MW PV plant, 

respectively.  

 

Figure 6.10 The less detailed schematic diagram of the test system indicating RESs per area (blue wind 

turbine symbols are RES plants at present; orange wind turbine and PV panel symbols are WFs and PV 

plants to be installed in the future, respectively) 

6.4 Results and Discussion 

At each hour of the three considered TSs, the power production of RES power plants was 

defined in a probabilistic manner as described in Section 6.3.2.1. RES penetration level 

at each hour of the TSs is calculated as follows: 

 𝑅𝐸𝑆𝐿𝑒𝑣𝑒𝑙,𝑖(%) = 100 ∙
𝑃𝐻𝑅𝐸𝑆𝑖

𝑃𝐿𝑜𝑎𝑑𝑖

, (6.42) 

where 𝑅𝐸𝑆𝐿𝑒𝑣𝑒𝑙,𝑖 is the RES penetration level at the i-th hour, 𝑃𝐻𝑅𝐸𝑆𝑖
 and 𝑃𝐿𝑜𝑎𝑑𝑖

 is the 

total HRES plant production and the total system load at the i-th hour, respectively. RES 

penetration level per hour for the analysed TSs is presented in Figure 6.11. As can be 

seen, the average RES penetration level for TS 1-3 is about 10%, 30%, and 60%, 

respectively. 
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Figure 6.11 RES penetration level per hour in TS 1 (blue), TS 2 (green) and TS 3 (red) 

The two-step OPF procedure described in Section 6.3.2.2.1 is conducted at each hour 

during the day for all three TSs. Table D.1 – Table D.3 given in Appendix D provide the 

information about the number of SG units in service per hour in all three TSs (assuming 

that each of 42 SG plants in the test system contains four identical units). Table 6.3 gives 

an overview of these data in terms of the range of the number of SG units in operation 

during the day for the whole test system and each of the four individual areas. As 

expected, the number of units in service in TS 3 is the smallest over all TSs. For most of 

the hours during the day, the number of units in service in the whole system in TS 3 is 

around a half of the corresponding value in TS 1. When it comes to the individual areas 

in the system, the ratio of the number of units in operation in TS 3 and TS 1 is about 

25%, 50%, 50%, and 35% for Area 1, Area 2, Area 3, and Area 4, respectively. 

Table 6.3 The range of the number of units in service during the day for all three TSs 

Scenario The whole system Area 1 Area 2 Area 3 Area 4 

TS 1 (106 - 144) (13 - 16) (27 - 43) (37 - 51) (29 - 34) 

TS 2 (95 - 126) (10 - 14) (25 -38) (39 - 49) (21 - 27) 

TS 3 (48 - 66) (3 - 5) (13 - 19) (21 - 31) (4 - 11) 

Following probabilistic determination of the power outputs of RES plants and equivalent 

SGs in the test network, 24-hour transient system stability assessment is performed for 

each of the three TSs. The kernel PDF is estimated using the obtained TSIs (200 TSI 

values per hour), and the most probable TSI value is defined for each hour in the TSs. 

Figure 6.12 shows the change of TSI during the day for three TSs in order to show the 

overall transient system behaviour. In order to simplify the representation of the results, 

TSI values presented in Figure 6.12 are the most probable (representative) TSI values for 

each hour in the TSs. All simulated cases were transiently stable, and no cases of slow-

interaction converter-driven instability were identified. According to Figure 6.12, the TSI 
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calculated under TS 1 and TS 2 remains high and reasonable constant during the day 

(over 70 most of the time), while TSI exhibits greater variations in TS 3 with the largest 

drop in TSI value observed at hours 4:00, 19:00 and 21:00 (at these hours RES energy 

injected into the system from Area 3 is at least seven times larger than RES production 

in Area 1, and RES13 in Area 3 has the largest power output (see Figure 6.13 for the 

location of RES13 in the test system)).  

 

Figure 6.12 Representative TSI values for each hour in the TSs 

 

Figure 6.13 The schematic diagram of the test system with the specified locations of relevant SGs and 

RESs 
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In order to investigate the influence of spatial HRES plant composition on transient 

system stability performance, in each TS, hours with similar total HRES plant production 

and total system demand are identified using visual inspection and representative TSIs 

for hours in the same group are compared. Groups of operating points characterized by 

similar total HRES plant power output and system demand in TS 1, TS 2 and TS 3 are 

given in Table 6.4, Table 6.5 and Table 6.6, respectively. (Note: In Table 6.4 - Table 6.6, 

“Share_x” represents the participation of RES production in Area x in the total HRES 

plant power output (∑ 𝑆ℎ𝑎𝑟𝑒_𝑥4
𝑥=1 = 100%), while the TSI values correspond to the 

most probable TSI values for the chosen hours). Given that there is a single RES plant in 

Area 2 in both RES states, the participation of Area 2 in the total HRES plant production 

is significantly smaller compared to the other three areas. The maximum Share_2 value 

for the selected operating points from TS 1 is 12.5%, whereas no more than 3.3% of the 

total HRES plant output is produced in Area 2 at the selected hours in TS 2 and TS 3. 

RES penetration level for all selected operating conditions in Table 6.4, Table 6.5 and 

Table 6.6 is around 10%, 30%, and 60%, respectively. 

Table 6.4 Selected operating points from TS 1 

Group Hour TSI 
PHRES 

(MW) 

PLOAD 

(MW) 

Share_1 

(%) 

Share_2 

(%) 

Share_3 

(%) 

Share_4 

(%) 

1 
9:00 73.5 976 8776 8.4 4.3 34.0 53.3 

10:00 73.5 948 8797 12.9 1 32.5 53.6 

2 
11:00 73.1 610 8792 19.0 2.7 36.7 41.6 

12:00 73.1 570 8712 19.6 9.2 31.9 39.3 

3 

14:00 73.7 792 8518 13.6 9.9 32.8 43.7 

15:00 73.6 814 8530 16.5 2 28.7 52.8 

22:00 73.7 832 8556 7.9 11.5 37.4 43.2 

4 
17:00 72.4 676 9266 21.9 12.4 24.3 41.4 

18:00 72.4 686 9197 9.6 12.6 26.8 51.0 

Table 6.5 Selected operating points from TS 2 

Group Hour TSI 
PHRES 

(MW) 

PLOAD 

(MW) 

Share_1 

(%) 

Share_2 

(%) 

Share_3 

(%) 

Share_4 

(%) 

1 
9:00 71 2448 8776 10.0 3 61.8 25.2 

16:00 72.7 2472 8759 14.6 1.6 69.2 14.6 

2 
11:00 69 2832 8792 34.1 3 40.3 22.6 

12:00 71 2868 8712 10.8 3 50.3 35.9 

3 
17:00 69.5 2516 9266 32.4 2 47.1 18.5 

18:00 70.5 2598 9197 13.8 2.9 60.4 22.9 
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As seen in Table 6.4 and Table 6.5, there is basically no difference between the 

representative TSI values for hours within the same group for TS 1 and TS 2. This is 

expected given that the maximum variation in representative TSI values over the whole 

day is only 6 in TS 1 (the difference between TSI values at 22:00 h and 4:00 h (Figure 

6.12)) and 7 in TS 2 (the difference between TSI values at 4:00 h and 8:00 h (Figure 

6.12)). 

When it comes to RES distribution across the network, the operating points within Group 

3 and 4 in TS 1, and Group 2 and 3 in TS 2 are characterized by more considerable 

differences in spatial HRES plant composition compared to the remaining groups from 

the relevant TS. Namely, in Group 3 in TS 1, the amount of RES power produced in 

Area 3 is around 5 times larger than the RES production in Area 1 at 22:00 h, whereas 

this ratio reduces to 2.4 and 1.7 at 14:00 h and 15:00 h, respectively. Similarly, in Group 

4 in TS 1, the RES production in Area 4 is almost twice the production in Area 1 at 

17:00 h, and the ratio increases to around five at 18:00 h, while the RES shares of Area 2 

and 3 are almost identical at both hours in Group 4. Given that RES penetration level is 

around 10% for the selected hours from TS 1, change in RES power distribution across 

the network has negligible effect on the optimal economic dispatch of SGs. The 

maximum difference between SG power outputs for the hours within any group is below 

1% of the total SG production. 

When it comes to Groups 2 and 3 in TS 2, similar amount of RES power is produced in 

Areas 1 and 3 at 11:00 h and 17:00 h from Group 2 and Group 3, respectively, while RES 

power in Area 1 corresponds to about 20% of RES power in Area 3 at the other operating 

point form the relevant group. In addition, the ratio of the RES share of Area 4 and Area 

1 at 11:00 h (Group 2) and 17:00 h (Group 3) is about 5 and 3 times smaller, respectively, 

than at the other hour from the same group.  

Unlike in TS 1, larger differences in the SG dispatch at hours in the same group can be 

observed. The maximum difference in the rated capacity values of SGs in service for 

hours in the same group corresponds to around 3.5%, 2.6% and 8.5% of the total capacity 

of the committed SGs for Group 1, 2, and 3, respectively. When it comes to the real 

power production of individual SGs, the maximum difference for Group 1, 2 and 3 is 

about 3.3%, 1.9%, and 8.5%, respectively, of the total SG production in the network. 

Still, the maximum rotor angle difference occurs between the same SGs (G7 in Area 4 
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and G21 in Area 3 (see Figure 6.13 for the locations of G7 and G21 in the test system)) 

for all selected operating points in Table 6.5. The rated capacity values of G7 and G21 

are the same for all hours given in Table 6.5. 

Finally, three groups with three time samples can be used for analysing the impact of 

spatial HRES plant composition on the global transient system stability status in TS 3 

(see Table 6.6).  

Table 6.6 Selected operating points from TS 3 

Group Hour TSI 
PHRES 

(MW) 

PLOAD 

(MW) 

Share_1 

(%) 

Share_2 

(%) 

Share_3 

(%) 

Share_4 

(%) 

1 

10:00 73.2 2594 4496 30.8 0.2 48.7 20.3 

15:00 72.7 2608 4469 25.9 1.3 46.0 26.8 

20:00 70.9 2620 4504 26.4 0.2 55.8 17.6 

2 

11:00 71 2832 4684 34.1 3 40.3 22.6 

12:00 62.3 2868 4750 10.8 3 50.3 35.9 

21:00 60.4 2858 4745 6.5 2.3 62.9 28.3 

3 

16:00 62.7 2472 4359 14.6 1.6 69.2 14.6 

17:00 72.5 2516 4319 32.4 2 47.1 18.5 

19:00 59 2508 4363 9.3 3.3 68.1 19.3 

Hours from Group 1 (10:00, 15:00, and 20:00) result in similar representative TSI. As 

for RES distribution across the network at these hours, the maximum difference between 

the RES shares of Area 1, Area 3 and Area 4 is approximately 5%, 10%, and 9%, 

respectively. Furthermore, the RES power plant with the largest power production is in 

Area 1 at hours 10:00 and 20:00 (RES18 and RES1, respectively, which are 

geographically close to each other), while the “dominant” RES (RES2) is located in Area 

4 at 15:00 h (see Figure 6.13 for the locations of RES18, RES1 and RES2 in the test 

system). However, the RES plant with the second largest power output at 15:00 h 

(RES18) is located in Area 1, and the difference between the top two RES outputs at this 

hour is only 38 MW (approximately 1.5% of the total HRES plant production at 15:00 h). 

The optimal economic dispatch of SGs at 10:00 h and 20:00 h is almost identical (the 

maximum difference between real power outputs of SGs is around 3 MW). The only 

difference in the sets of SGs in service at these two hours and at 15:00 h is in a single SG 

plant (G19) in Area 3 (see Figure 6.13 for the location of G19 in the test system) with 

the rated capacity of 40 MVA, which is not in operation at 15:00 h. Still, the real power 
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production for other SGs in service (i.e., all SGs except G19) is similar with the 

maximum difference of about 3.5 MW.  

On the other hand, the impact of spatial HRES plant composition on the most probable 

TSI values can be observed for operating conditions from Groups 2 and 3. Hours 11:00 

(Group 2) and 17:00 (Group 3) with the transient stability status different from other 

operating points in the relevant group are shaded in Table 6.6. These hours are associated 

with higher TSI value (71 and 72.5 at 11:00 h and 17:00 h, respectively) compared to 

other hours within their respective groups (the representative TSI value for these 

operating conditions is about 60). When it comes to HRES plant composition, the main 

differences are in RES distribution across Area 1 and Area 3. Namely, the ratio of RES 

power provided by Area 3 and Area 1 is 1.2 at 11:00 h (Group 2) and 1.4 at 17:00 h 

(Group 3), whereas the Share_3 value is at least 4.5 times larger than the Share_1 value 

in the case of other operating points from Groups 2 and 3. Spatial HRES plant 

compositions for characteristic hours (i.e., a pair of hours characterized by different 

representative TSI values) from Groups 2 and 3 are illustrated in Figure 6.14 using dots 

of different colours and sizes. Hours 11:00 and 21:00 from Group 2 are shown in Figure 

6.14 (a), whereas Figure 6.14 (b) presents hours 17:00 and 19:00 from Group 3. The sizes 

of the dots in Figure 6.14 reflect the RES share of individual areas in the total HRES 

plant production. In addition, the RES plant with the highest power output (RES1) is 

located in Area 1 at 11:00 h (Group 2) and 17:00 h (Group 3), whereas the highest 

individual RES plant production comes from Area 3 in the case of the remaining hours 

in Group 2 and 3 (the relevant plants are RES11, RES13, RES14 and RES15, all of them 

located in a geographically small region). Figure 6.13 provides the locations of RES1, 

RES11, RES13-15 in the test system. 

  

(a) (b) 

Figure 6.14 Illustration of spatial HRES plant compositions for characteristic hours from TS 3: (a): 

Group 2: 11:00 h (red) and 21:00 h (blue); (b): Group 3: 17:00 h (red) and 19:00 h (blue) 
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When it comes to the optimal economic dispatch of SGs at hours within Group 2, there 

is no significant difference in the SG commitment. The rated capacities of SGs in 

operation at 11:00 h and 12:00 h are the same, while the maximum difference between 

their real power outputs is below 5 MW. In addition, the maximum rotor angle difference 

occurs between the same generators: G7 in Area 4 and G23 in Area 3 (see Figure 6.13 

for the locations of G7 and G23 in the test system). The main reason for better transient 

stability performance of the system at 11:00 h compared to the status at 12:00 h is highly 

underexcited operating mode of G7 at 12:00 h, which in turn results in high rotor angle 

value for this generator. 

In the case of operating points in Group 3, the number of SGs with different rated 

capacity at 16:00 h and 17:00 h, 16:00 h and 19:00 h, 17:00 h and 19:00 h, is 7, 3, and 4, 

respectively. Even though the rated capacity of committed SGs at hours with similar 

representative TSI (i.e., 16:00 h and 19:00 h) is different for three generators, the 

difference in the real power output of these SGs is between 15 MW and 20 MW, that is, 

0.8% and 1% of the total production of all SGs. The maximum difference between the 

real power production of the remaining SGs is below 7 MW. In addition, the maximum 

rotor angle difference at 16:00 h and 19:00 h occurs between the same pair of generators 

(G21 and G23, both in Area 3). On the other hand, the major difference between SG unit 

commitment at 17:00 h and the other two hours is in the capacity of G23 in Area 3. At 

17:00 h G23 with two units in service (the total capacity of 410 MVA) is the largest SG 

in the network, whereas only one unit in G23 is in operation at 16:00 h and 19:00 h. 

Therefore, the previous analysis demonstrated that the spatial HRES plant composition 

does not influence system transient stability in the case of low RES penetration levels 

(below 30% in analysed cases), however, in the case of higher penetration level of about 

60% this impact becomes much more prominent. It can be concluded that the location 

and number of SGs in operation, as well as their power outputs, influenced by the location 

and output of RESs (i.e., spatial HRES plant composition) and total system demand, 

affect the transient stability of the power system with a high RES penetration level. The 

extent of this effect will depend on network and generation characteristics, generation 

location (both SGs and RESs), and most certainly on the level of penetration of RESs. 
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6.5 Summary 

This chapter presented the analysis of the contribution of the geographically distributed 

HRES plant to the transient stability of a large interconnected TN. Three representative 

operation scenarios involving different combinations of the system loading and RES 

states were simulated over a 24-hour time period.  

The RES distribution across the network (i.e., spatial HRES plant composition) does not 

influence the optimal economic SG dispatch, and consequently system transient stability 

in the case of low RES penetration levels. However, in the case of higher RES penetration 

level of about 60%, the transient stability status of the system becomes affected by the 

chosen HRES plant composition. Thus, it can be concluded that for any network there is 

a critical RES penetration level above which different spatial HRES plant compositions 

with the same total power output can result in different transient stability performance of 

the system, and in the cases of RES penetration above the critical value, the deployment 

of individual RES plants within the spatially distributed HRES plant should be decided 

after assessing overall system transient (and other) stability performance. The analysis 

on the impact of the selection of the spatially distributed HRES plant composition on the 

transient stability status of the system represents the fifth original contribution of the 

thesis. 

Therefore, offering a service of controllable and stable power production to TSO may be 

very complicated if aggregator’s portfolio includes RES plants that are widely 

geographically distributed. This may not be a problem from the perspective of transient 

stability of the system, as demonstrated, in case of low RES penetration, however, 

beyond certain “critical” level transient stability of the system might become a limiting 

factor and the conventional economic dispatch in these cases might lead to inadequate 

system dynamic performance. This implies that in cases of higher RES penetration the 

scheduling of individual HRES plant components would have to be carried out in a 

coordinated manner with the TSO as the information about the influence of HRES plant 

composition on the overall system stability would have to be considered. Given that is 

not likely that all RESs integrated into the TN belong to a single aggregator (as it was 

the case in the CS presented in this chapter), one would assume that several HRES plant 

aggregators at TN level would be present in the future. All aggregators will then be 

offering a VPP type of service to the TSO, and thus, will have to coordinate their 
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scheduling with the TSO. The required level of coordination between the system operator 

and aggregators will depend on the capacities of individual plants within HRES plants as 

well as their location in the system (i.e., whether they are located in a part of the network 

that is critical from the perspective of system dynamic performance). Including system 

stability limits in everyday management of a single spatially distributed HRES plant in 

the TN is already a considerable departure from the current economy-driven dispatch of 

generation units, and the increase in the number of HRES plants at TN level will only 

introduce additional complexities in the coordinated operation of the TSO and 

geographically widely distributed aggregators.  
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7.1 Major Conclusions 

The thesis has presented the results of the research carried out in the area of dynamic 

equivalent modelling of HRES plants and the area of geographically distributed HRES 

plant operation. The research aims involved the development of DEMs of HRES plant 

for annual transient stability studies from the perspective of the global transient stability 

status and the shape of plant power responses in time domain, as well as the exploratory 

analysis on the impact of geographically distributed HRES plant on the transient stability 

of the TN. 

The following sections provide the main conclusions of the research presented in each of 

the chapters of this thesis. 

7.1.1 Chapter 1 Introduction 

The chapter presented the main research areas of the thesis, together with the critical 

overview of the relevant past work. The need for dynamic equivalent modelling of HRES 

plants, which represent a promising option for overcoming the issue of variability in 

power production of RESs, was discussed. The typical principles of HRES plant design 

and operation were presented. Different approaches for dynamic equivalent modelling of 

power plants and networks were analysed. Furthermore, the need for taking into account 

system dynamic performance when deciding on the dispatch of individual plants within 

a geographically widely distributed HRES plant was introduced. Finally, the main aims 



Conclusions and Further Work | 243 

 

 

and objectives as well as the contributions of the research presented in the thesis were 

specified. 

7.1.2 Chapter 2 Techniques for Dynamic Equivalent Modelling of Power Plants 

and Networks 

This chapter provided a comprehensive overview of the techniques for developing DEMs 

of power systems. Modal analysis-, coherency- and system identification-based methods 

represent the main approaches for dynamic equivalent modelling of power plants and 

networks. System identification-based methods were found to be the most adequate for 

equivalent modelling of modern plants/networks as they rely on the measured or 

simulated system responses, and thus, are not technology-dependent.  

Due to ever growing proliferation of measurement devices in power systems, the need 

for the application of data analytics techniques in power system operation and control 

has arisen. The chapter presented a review of clustering algorithms, which represent one 

of the most widely used unsupervised data mining methods. The main stages in the 

clustering process, together with the main characteristics of five major categories of 

clustering algorithms, were described. The suitability of each type of clustering methods 

for clustering static and time series data as well as large datasets was discussed. In 

addition, the chapter addressed common challenges in performing data clustering (the 

choice of the number of clusters and distance metric, high dimensionality of time series 

data). 

7.1.3 Chapter 3 Probabilistic Analysis and Modelling of HRES Plant for System 

Stability Studies 

The third chapter of the thesis introduced the computationally efficient procedure for 

determining the most probable impact of HRES plant on power system stability 

throughout the year. The procedure relies on the identification of typical annual HRES 

plant compositions on the basis of historical plant production dataset and the clustering 

algorithm. System stability results, produced by probabilistic MC approach based on 

characteristic annual plant compositions, are divided into groups according to similarity, 

and these groups represent the outputs of the procedure. The groups of system stability 

results provide the information about the most probable influence of the HRES plant on 
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power system stability during the year, and enable the identification of HRES plant 

compositions characterized by similar performance in system stability studies. The 

methodology was tested on the HRES plant with six generation and storage technologies 

and connected to the external grid represented by an infinite bus (small-disturbance, 

transient and long-term voltage stability) or a single SG (frequency stability). 

Development of the methodology for identifying typical annual impact of HRES plant on 

power system stability performance represents the first original contribution of the 

thesis. 

The chapter also provided procedures for developing preliminary EMs of HRES plant 

for small-disturbance, transient, frequency and long-term voltage stability studies. EM 

development relies on the information about the typical annual performance of the HRES 

plant in the given system stability studies. EM for small-disturbance stability is in the 

form of a TF (a black-box model), whereas EMs for the remaining three stability studies 

are in the form of an equivalent SG or WF (a grey-box model). The results obtained in 

the CS (the same CS as the one used for demonstrating the procedure for identifying 

typical annual HRES plant performance in system stability simulations) are promising in 

terms of the model order and number of equivalents required for representing the HRES 

plant behaviour in system stability analysis throughout the year. The procedures for 

developing preliminary EMs of HRES plant for small-disturbance, transient, frequency 

and long-term voltage stability studies represent the second original contribution of the 

thesis. 

7.1.4 Chapter 4 Data-driven Equivalent Modelling of HRES Plant for Power 

System Transient Stability Studies 

In this chapter the methodology for dynamic equivalent modelling of HRES plants for 

transient stability studies from the perspective of the overall transient stability status was 

developed. The TSI value was chosen for describing the global transient stability 

performance of the system, and consequently for assessing model accuracy. The DEM 

structure corresponds to a low-order TF with voltage magnitude and power at the PCC 

as input and output, respectively (separate TFs were developed for real and reactive 

power responses). The methodology for developing DEMs of HRES plants for transient 

stability studies from the perspective of the overall transient stability assessment 

represents the third original contribution of the thesis. 
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The proposed methodology is based on characteristic annual HRES plant compositions 

and TN short-circuit fault statistical data, which in turn provides a set of models capable 

of representing the most probable dynamic HRES plant behaviour in annual transient 

stability simulations. In addition, these key features of the proposed methodology are the 

reason for the low computational burden of transient stability analysis when applying 

developed DEM. HRES plant power responses resulting in similar TSI were simulated 

by a common model regardless of dissimilarities in their shape in time domain. The 

presented DEMs are attractive for practical application as the choice of the model from 

the previously defined set of equivalents at any time of the year is determined only by 

HRES plant operating scenario. It was found that the duration of historical data recording 

period, the sampling rate of the historical production dataset and missing production data 

of individual plants within the HRES plant do not have a significant effect on DEM 

performance. The chapter also proposed the technique for overcoming the unavailability 

of historical data of individual technologies. 

In both CSs presented in the chapter, small number of equivalents were required for 

modelling the whole HRES plant in annual transient stability studies, and they resulted 

in low TSI error when tested on a wide range of system operating conditions and TN 

short-circuit faults. A comparative analysis showed that the developed DEMs are 

characterized by higher TSI accuracy than the “negative” constant power load model 

commonly used for representing RESs in dynamic simulations. Furthermore, the DEMs 

demonstrated satisfactory performance in terms of the accuracy of the shape of real and 

reactive power responses at the PCC in time domain, even though the focus of model 

development was not on obtaining accurate HRES plant power responses.  

7.1.5 Chapter 5 Deep Learning-based Equivalent Modelling of HRES Plant for 

Power System Transient Stability Studies 

This chapter represents a further evaluation of the models described in Chapter 4. It 

presented the methodology for dynamic equivalent modelling of HRES plants for 

transient stability studies with the focus on the shape of time domain HRES plant power 

responses. The proposed DEM is in the form of LSTM network (a deep ANN) with real 

and imaginary part of the positive sequence voltage at the PCC, and real and reactive 

power at the PCC as inputs and outputs, respectively. As in the case of the methodology 
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described in Chapter 4, the historical HRES plant production dataset, TN short-circuit 

fault statistics, and the clustering algorithms are the main characteristics of the modelling 

procedure.  

The most probable HRES plant power responses in annual transient stability simulations 

were clustered according to their similarity in time, and an LSTM network was designed 

for each cluster. Automatic identification of the optimal LSTM network structure and 

efficient training of LSTM network on a large cluster of responses ensure a 

computationally efficient modelling procedure. The presented methodology results in 

few models suitable for representing the whole HRES plant in transient stability studies 

throughout the year. The methodology also incorporates the procedure that enables the 

selection of the most adequate DEM at any time of the year using the information about 

HRES plant operating scenario only, which makes the proposed methodology suitable 

for practical applications.  

The methodology was tested on the HRES plant consisting of three non-dispatchable 

RESs, and the developed DEMs demonstrated satisfactory performance in both the shape 

of power responses at the PCC and TSI value (used for describing the global transient 

stability status of the system). The LSTM-based models were also compared with the 

TF-based models developed in Chapter 4 for a number of system operating points and 

TN short-circuit faults, which can be seen as a further assessment of TF-based model 

accuracy. The obtained results demonstrated that focusing on reproducing time domain 

power responses at the PCC is not needed for reliable assessment of the overall transient 

stability of the system, meaning TF-based DEMs from Chapter 4 can be confidently used 

for representing the HRES plant in transient stability simulations. Deep learning-based 

methodology for dynamic equivalent modelling of HRES plant for transient stability 

studies from the perspective of the shape of time domain HRES plant power responses 

represents the fourth original contribution of the thesis. 

In this and previous two chapters of the thesis, three different clustering algorithms were 

used: the fuzzy c-means clustering method, the KDE method and the agglomerative HC 

method, as these three methods were found to be the most suitable for tasks in hand. The 

fuzzy c-means clustering algorithm was used for clustering historical HRES plant 

production data, i.e., determining typical annual HRES plant compositions. Each 

clustering object in the historical production dataset consists of real power outputs of 
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individual technologies within the HRES plant at a specific time interval in the 

considered historical period, whereas the number of clustering objects corresponds to the 

total number of time intervals in the historical period. The main attributes of the fuzzy c-

means clustering algorithm that make it suitable for clustering large historical plant 

production dataset are: low computational complexity ((O(N), where N is the number of 

clustering objects)), the ability to perform “soft” clustering, which is especially useful in 

case of clusters not being well separated [132], and the proven efficiency in application 

in similar clustering tasks in the past [70, 161, 162]. Given that the number of clusters 

has to be specified in advance, the combination of three widely applied clustering 

indicators, MSE, CDI, and MIA, was used to estimate the optimal number of clusters in 

the investigated dataset. 

When it comes to the clustering of TSI values in the data-driven methodology, the KDE 

method was chosen over the fuzzy c-means clustering algorithm in order to avoid 

defining the optimal number of clusters a priori. Furthermore, the KDE method can 

identify arbitrary shaped clusters and has strong mathematical background. The 

drawback of the KDE approach is its computational complexity (due to the need for 

computing the density estimate and local maximum for each clustering object, and 

estimating the optimal bandwidth value [191]), and difficulty in obtaining a “reasonable 

nonparametric density estimation” in the multivariate settings (“the curse of 

dimensionality”) [157]. This, however, was not the case in this study nor it will be in the 

case of development of DEM of any practical HRES plant as the clustering dataset is 

one-dimensional and its size is determined by the number of typical HRES plant 

compositions that cannot be unreasonably large. 

Finally, in deep learning-based methodology, time domain HRES plant power responses 

were divided into groups according to similarity in time using the agglomerative HC 

algorithm with the unweighted average linkage. As mentioned in Chapter 2, partitioning, 

hierarchical and model-based clustering algorithms have been typically used for time 

series clustering. Unlike the partitioning algorithms, the HC is a deterministic algorithm 

(the dendrogram is always the same as it does not depend on the initial cluster centres) 

and does not require the number of clusters to be specified in advance [140]. 

Furthermore, the HC algorithm with the unweighted average linkage is not sensitive to 
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noise and outliers, and takes into consideration the number of elements in clusters when 

deciding on their merging [140]. As for the model-based clustering, the structure of 

models and a criterion for assessing their similarity have to be defined in advance, and 

then another clustering algorithm (e.g., the partitioning or HC) has to be applied to the 

previously computed similarity measures. Even though the HC algorithm has quadratic 

computational complexity, computational time is not an issue when developing DEMs 

for any HRES plant as the clustering dataset size is defined by the number of typical 

plant compositions and MC CSs per composition, and these numbers cannot be 

unreasonably high. 

7.1.6 Chapter 6 Limitations of the Reliance on Assessment of the Contribution of 

Spatially Distributed HRES Plant to Real System Operation 

The chapter discussed the principle of the operation of VPPs at DN level, which can be 

adopted for the concept of geographically widely distributed HRES plant at TN level, 

and presented the preliminary analysis on the influence of the selection of distributed 

HRES plant composition on transient system stability performance. The location and 

output of individual RESs in the HRES plant affect the location and number of SGs (in 

the rest of the system) in operation, and consequently their rotor angle responses to 

system disturbances, meaning different spatial HRES plant compositions producing the 

same total power production may result in significantly different transient stability 

behaviour of the system. The CS involving simplified representations of four real TNs, 

and the HRES plant consisting of PV plants and WFs spatially distributed across the 

system was used in the analysis performed in a probabilistic manner. Three 

representative 24-hour TSs involving different TN loading and RES production levels 

were considered. TSI index was chosen for describing the transient stability status of the 

system. It was found that the impact of the spatial HRES plant composition on transient 

stability of the TN depends on RES penetration level. Its influence was more prominent 

when RES penetration reached a relatively high value of around 60%. The results 

obtained with the test system showed that the deployment of individual RES plants 

within geographically distributed HRES plant in cases of higher penetration of RESs in 

the system should be decided after assessing overall system transient stability 

performance, as the conventional economic dispatch of generation units may lead to 

inadequate system dynamic behaviour. Exploratory study on the impact of 
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geographically distributed HRES plant on transient stability of the TN represents the 

fifth original contribution of the thesis. 

7.2 Further Work 

The work presented in the thesis has achieved all the aims of the research specified in 

Chapter 1. Still, there are a number of potential extensions and improvements of the 

research that are described below. 

 All presented equivalent modelling procedures should be further evaluated on a 

more realistic TN model as the largest TN model used in the part of the research 

on equivalent modelling of HRES plants consists of 3 SGs (the IEEE 9-bus 

network). Though not significantly different, or different at all, results are 

expected, this would be worthwhile further testing of developed models and 

methodologies. Furthermore, in order to assess the maximum possible reduction 

in the computational time required for performing power system stability 

simulations due to the use of the DEM instead of the detailed HRES plant 

dynamic model, individual units in the WF and PV plant should be represented 

separately in the detailed HRES plant dynamic model (aggregate models of the 

WF and PV plant were used in the test systems in this thesis). 

 Apart from larger TN model, further extensions of preliminary methodologies for 

developing EMs of HRES plants for small-disturbance, frequency and long-term 

voltage stability simulations include the following: 

- The modelling procedures for all three aforementioned system stability 

studies should take into consideration the variation of TN operating 

conditions during the year (a single TN operating point was analysed in 

Chapter 3) and introduce a parameter optimization procedure more efficient 

than the used iterative search (e.g., an evolutionary algorithm). The clusters 

of system stability results were identified by visual inspection, which was 

possible due to clear separation of clusters. However, this cannot be 

guaranteed for any HRES plant and TN model, and adequate unsupervised 

data mining methods (clustering algorithms) should be applied.  
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- Modes produced by converter controllers that are within the frequency range 

characteristic for electromechanical modes could be included in small-

disturbance stability analysis. These modes could then be used for developing 

EM structure for HRES plant compositions without SGs in service. 

- In the case of frequency stability study, more representative system 

disturbances defined using statistical or historical data (following the 

approach for short-circuit fault statistics in the data-driven and deep learning-

based methodologies) should be included in frequency stability simulations. 

When it comes to EM for HRES plant compositions comprising converter-

connected technologies only, more strict assessment of the influential 

parameters estimated in the optimization procedure is needed. Sensitivity 

analysis techniques (e.g., the Morris screening method) could be used for that 

purpose.  

- In the case of long-term voltage stability study, the preliminary equivalent is 

characterized by a single maximum reactive power limit, which is then used 

for all HRES plant operating points allocated to the given EM. Defining the 

maximum reactive power capability as a function of the total HRES plant real 

power output and voltage at the PCC should be investigated. Furthermore, the 

location of the critical bus could be introduced as additional factor for 

differentiating the impact of HRES plant compositions on long-term voltage 

stability, and consequently assessing EM accuracy. Also, replacing the 

infinite bus in the test system used in Chapter 3 with a Thevenin equivalent 

could potentially result in a system with long-term voltage stability issues. 

 In this thesis, all methodologies for developing EMs of HRES plant rely on a 

certain level of uncertainty in HRES plant operating scenario (±5% around the 

typical annual plant composition) and location of individual plants within the 

HRES plant ((0-5) km) when performing system stability simulations with the 

detailed plant model. Future studies should explore the influence of the adopted 

uncertainty level on HRES plant behaviour in system stability simulations, and 

consequently on the number, structure and parameter values of EMs. Similarly, 

as mentioned above, sensitivity analysis could be used for this purpose to 

determine the most influential parameters/uncertainties affecting the results.  
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  All performed transient stability simulations assumed self-clearing faults and the 

same fault duration for all short-circuit faults. Future work should investigate the 

influence of the change in the network topology due to fault clearing by opening 

a transmission line and different fault durations on the TSI values of the system 

as well as the shape of time domain HRES plant power responses. Thus, the MC 

approach for defining cases used in DEM development should include the 

probabilistic variations in fault duration and the way of fault clearing (i.e., 

choosing between the self-clearing and opening of the faulted line). Another 

extension of the work on dynamic equivalent modelling of HRES plant for system 

transient stability studies should involve the simulation of different network 

topologies for the same pre-disturbance HRES plant operating condition, and 

analysing how this affects the power flows in the network and the transient 

stability performance of the system. Taking into consideration the pre-

disturbance network configuration state might result in a need to have different 

DEMs for different combinations of a single typical annual HRES plant 

composition and pre-disturbance network topologies. 

 Both data-driven and deep learning-based methodologies for dynamic equivalent 

modelling of HRES plant for transient system stability studies are based on the 

most probable HRES plant responses in annual transient stability simulations. 

The research presented in the thesis, thus, has not considered the tripping of 

individual converter-based technologies in the HRES plant (as it is assumed that 

these plants are equipped with fault-through-ride capability and do not trip after 

a fault), as well as the loss of synchronism of individual SG-based plants in the 

HRES plant. Future work should include the analysis on DEM performance in 

the case of these extreme events. The reduction in TF-based DEM accuracy for 

these disturbances compared to the accuracy for the most probable disturbances 

will depend on the significance of these disturbances for the global transient 

stability behaviour described by TSI value. When it comes to LSTM-based 

models, these extreme disturbances will result in HRES plant power responses 

considerably different from the ones simulated in the thesis (in terms of the shape 

in time domain), which implies that a single LSTM network will not be able to 

reproduce both types of the plant responses with the same, high accuracy. 
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 The data-driven equivalent modelling methodology relies on TSI for describing 

the global transient stability status, and evaluating model accuracy. Even though 

the TSI represents a widely used index for assessing transient stability of the 

system, the use of a combination of several transient stability indices instead of a 

single one (TSI) should be investigated. Potential additional indices include the 

transient rotor angle severity index, the critical fault clearing time, the maximum 

rotor angle deviation, speed deviation and acceleration of individual generators 

in the system, etc. Using multiple indices for describing the overall transient 

stability performance of the system should result in more comprehensive transient 

stability assessment, and DEM validation on the basis of several indices would 

provide a higher confidence in the ability of the developed model to reliably 

represent the HRES plant in transient stability simulations throughout the year. 

Given that voltage magnitude is the only input signal, TF-based models cannot 

take into account the change in the phase angle of the voltage at the PCC. In order 

to make TF-based models suitable for representing HRES plant responses to 

phase jumps, their inputs signals should be the same as for LSTM-based DEMs - 

the real and imaginary parts of the positive sequence voltage at the PCC. Thus, 

TF-based model would need to have a multiple-input-single-output model 

structure as opposed to the single-input-single-output structure used in the thesis. 

 When it comes to LSTM-based models, potential increase in the accuracy of 

model power responses in time domain by using a variant of the standard LSTM 

network (a comprehensive list is given in [125]) and/or different network training 

algorithm as it influences network generalization ability (metaheuristic 

algorithms have shown to have a potential to outperform the backpropagation-

based learning [124]) should be analysed. Another area for potential 

improvement is the process of selecting LSTM network training data. In this 

thesis, the set of training responses from a cluster was created by uniformly 

sampling the values of cluster responses at the time of the first swing peak. 

However, given that clusters are usually not perfectly compact, it might be the 

case that cluster responses are grouped in few narrow distinctive ranges. The 

selection process of the training data that takes into account the distribution of 

responses within the cluster should result in a more representative training dataset 

compared to the uniform sampling.  
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 In order to comprehensively investigate the influence of geographically 

distributed HRES plant on transient stability of the system, the analysis should be 

carried out for larger number of scenarios. Performing transient stability 

assessment for larger number of TN loading and total HRES plant production 

levels as well as higher number of spatial HRES plant compositions associated 

with the same total HRES plant production and TN loading level is needed. More 

extensive simulations will provide more reliable conclusions on conditions under 

which the choice of the dispatch of the distributed HRES plant becomes relevant 

for transient stability performance of the system as well as on the level of the 

contribution of HRES plant to system stability. At this stage, the minimum run 

time and downtime of SGs were not taken into account when performing hourly 

OPF calculations per day. As these times can influence the set of SGs that can be 

disconnected from the network at consecutive hours during the day, these 

constraints should be included in future analysis. Finally, performing this type of 

study for other types of system stability should be a part of the further work in 

this area as well. 
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Appendix A: Kernel Density Estimation 

Approach 

A.1: Derivation of the Expression for the AMISE Criterion  

Bias and variance of the kernel density estimate can be computed as follows [157]: 

 𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)) = 𝐸[𝑓ℎ(𝑥)] − 𝑓(𝑥) = 𝐸[𝐾ℎ(𝑥)] − 𝑓(𝑥), (A.1) 

 𝑉𝑎𝑟 (𝑓ℎ(𝑥)) =
1

𝑁
𝑉𝑎𝑟(𝐾ℎ(𝑥)), (A.2) 

 𝑉𝑎𝑟(𝐾ℎ(𝑥)) = 𝐸 [(𝐾ℎ(𝑥))
2
] − (𝐸[𝐾ℎ(𝑥)])2. (A.3) 

The formula for 𝐸[𝐾ℎ(𝑥)] is: 

 𝐸[𝐾ℎ(𝑥)] = ∫
1

ℎ
𝐾 (

𝑥−𝑡

ℎ
) 𝑓(𝑡)𝑑𝑡. (A.4) 

Applying a change of variables (𝑥 − 𝑡) ℎ⁄ = 𝑤, (A.4) can be expressed as follows: 

 𝐸[𝐾ℎ(𝑥)] = ∫𝐾(𝑤)𝑓(𝑥 − ℎ𝑤)𝑑𝑤. (A.5) 

Expanding 𝑓(𝑥 − ℎ𝑤) in a Taylor series about x results in the following expression: 

 𝐸[𝐾ℎ(𝑥)] = ∫𝐾(𝑤) [𝑓(𝑥) − ℎ𝑤𝑓′(𝑥) +
1

2
ℎ2𝑤2𝑓′′(𝑥) + ⋯ ]𝑑𝑤. (A.6) 

Given that the following holds: 

 ∫𝐾(𝑤)𝑑𝑤 = 1, ∫𝑤𝐾(𝑤)𝑑𝑤 = 0, 𝜇2(𝐾) = ∫𝑤2𝐾(𝑤)𝑑𝑤 < ∞, (A.7) 

(A.6) can be presented in the following simplified form: 

 𝐸[𝐾ℎ(𝑥)] = 𝑓(𝑥) +
1

2
ℎ2𝑓′′(𝑥)𝜇2(𝐾) + 𝑜(ℎ2). (A.8) 

The expression for 𝐸 [(𝐾ℎ(𝑥))
2
], required for the computation of the variance of the 

kernel density estimate, can be derived similarly to 𝐸[𝐾ℎ(𝑥)]: 
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 𝐸 [(𝐾ℎ(𝑥))
2
] = ∫ (

1

ℎ
𝐾 (

𝑥−𝑡

ℎ
))

2

𝑓(𝑡)𝑑𝑡 =
1

ℎ
∫(𝐾(𝑤))2𝑓(𝑥 − ℎ𝑤)𝑑𝑤, (A.9) 

 𝐸 [(𝐾ℎ(𝑥))
2
] =

1

ℎ
𝑓(𝑥) ∫(𝐾(𝑤))

2
𝑑𝑤 + 𝑜(

1

ℎ
), (A.10) 

 𝐸 [(𝐾ℎ(𝑥))
2
] =

1

ℎ
𝑓(𝑥)𝑅(𝐾) + 𝑜(

1

ℎ
). (A.11) 

Finally, the expressions for the bias, variance and MSE of the kernel density estimate are 

as follows: 

 𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)) =
1

2
ℎ2𝑓′′(𝑥)𝜇2(𝐾) + 𝑜(ℎ2), (A.12) 

𝑉𝑎𝑟 (𝑓ℎ(𝑥)) =
1

𝑁
[
1

ℎ
𝑓(𝑥)𝑅(𝐾) + 𝑜 (

1

ℎ
) − (𝑓(𝑥) + 𝑜(1))2] =

𝑓(𝑥)𝑅(𝐾)

𝑁ℎ
+ 𝑜 (

1

𝑁ℎ
), (A.13) 

 𝑀𝑆𝐸 (𝑓ℎ(𝑥)) = 𝑉𝑎𝑟 (𝑓ℎ(𝑥)) + (𝐵𝑖𝑎𝑠 (𝑓ℎ(𝑥)))
2

, (A.14) 

 𝑀𝑆𝐸 (𝑓ℎ(𝑥)) =
𝑓(𝑥)𝑅(𝐾)

𝑁ℎ
+

1

4
ℎ4(𝜇2(𝐾))

2
(𝑓′′(𝑥))

2
+ 𝑜 (

1

𝑁ℎ
+ ℎ4). (A.15) 

Integrating (A.15), the expression for the MISE criterion can be obtained: 

 𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) =
𝑅(𝐾)

𝑁ℎ
+

1

4
ℎ4(𝜇2(𝐾))

2
𝑅(𝑓′′(𝑥)) + 𝑜 (

1

𝑁ℎ
+ ℎ4). (A.16) 

Finally, the AMISE criterion can be defined as follows: 

 𝐴𝑀𝐼𝑆𝐸 (𝑓ℎ(𝑥)) =
𝑅(𝐾)

𝑁ℎ
+

1

4
(𝜇2(𝐾))2ℎ4𝑅(𝑓′′(𝑥)). (A.17) 

A.2: The Optimal Bandwidth for the Estimator of the Integrated 

Squared Density Functionals 

The �̂�𝑟 estimator can be expressed as follows [157]: 

 �̂�𝑟 =
1

𝑁
∑ 𝑓ℎ

(𝑟)
(𝑥𝑖) =𝑁

𝑖=1
1

𝑁2𝑔𝑟
𝑟+1 ∑ ∑ 𝐾(𝑟)(

𝑥𝑖−𝑥𝑗

𝑔𝑟
)𝑁

𝑗=1
𝑁
𝑖=1 , (A.18) 

 �̂�𝑟 =
1

𝑁𝑔𝑟
𝑟+1 𝐾(𝑟)(0) +

1

𝑁2𝑔𝑟
𝑟+1 ∑ ∑ 𝐾(𝑟)(

𝑥𝑖−𝑥𝑗

𝑔𝑟
)𝑁

𝑗=1
𝑗≠𝑖

𝑁
𝑖=1 . (A.19) 
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The bias of the estimate of the 𝛹𝑟 functional is: 

 𝐵𝑖𝑎𝑠(�̂�𝑟) = 𝐸(�̂�𝑟) − 𝛹𝑟. (A.20) 

The expected value of the �̂�𝑟 estimator can be computed as follows: 

 𝐸(�̂�𝑟) =
1

𝑁𝑔𝑟
𝑟+1 𝐾(𝑟)(0) +

𝑁(𝑁−1)

𝑁2 𝐸 (
1

𝑔𝑟
𝑟+1 𝐾(𝑟) (

𝑥1−𝑥2

𝑔𝑟
)), (A.21) 

 𝐸 (
1

𝑔𝑟
𝑟+1 𝐾(𝑟) (

𝑥1−𝑥2

𝑔𝑟
)) = ∬

1

𝑔𝑟
𝑟+1 𝐾(𝑟) (

𝑥−𝑦

𝑔𝑟
) 𝑓(𝑥)𝑓(𝑦)𝑑𝑥𝑑𝑦. (A.22) 

Using the integration by parts and the change of variables (
𝑥−𝑦

𝑔𝑟
= 𝑤), (A.22) can be 

expressed as follows: 

 𝐸 (
1

𝑔𝑟
𝑟+1 𝐾(𝑟) (

𝑥1−𝑥2

𝑔𝑟
)) = ∬𝐾(𝑤)𝑓(𝑦 + 𝑔𝑟𝑤)𝑓(𝑟)(𝑦)𝑑𝑤𝑑𝑦, (A.23) 

and expanding 𝑓(𝑦 + 𝑔𝑟𝑤) in a Taylor series about y results in the following expression: 

 𝐸 (
1

𝑔𝑟
𝑟+1 𝐾(𝑟) (

𝑥1−𝑥2

𝑔𝑟
)) = 𝛹𝑟 +

1

2
𝑔𝑟

2𝜇2(𝐾)𝛹𝑟+2 + 𝑜(𝑔𝑟
2). (A.24) 

The expression for the bias then equals: 

 𝐵𝑖𝑎𝑠(�̂�𝑟) =
1

𝑁𝑔𝑟
𝑟+1 𝐾(𝑟)(0) +

1

2
𝑔𝑟

2𝜇2(𝐾)𝛹𝑟+2 + 𝑜(𝑔𝑟
2). (A.25) 

Finally, the optimal bandwidth value for the �̂�𝑟 estimate is: 

 𝑔𝑟 = [−
2𝐾(𝑟)(0)

𝜇2(𝐾)𝛹𝑟+2𝑁
]
1/(𝑟+3)

. (A.26) 

A.3: The Normal Scale Rule 

The standard density function of zero mean and unit variance is [157]: 

 𝛷(𝑥) =
1

√2𝜋
𝑒−𝑥2 2⁄ . (A.27) 

Assuming that the underlying PDF is a normal density with zero mean and variance 𝜎2, 

the underlying PDF can be expressed as follows [157]: 
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 𝛷𝜎(𝑥) =
1

𝜎√2𝜋
𝑒−𝑥2 2𝜎2⁄ =

1

𝜎
𝛷(

𝑥

𝜎
). (A.28) 

The r-th derivative of the underlying PDF is [157]: 

 𝛷𝜎
(𝑟)(𝑥) =

𝜕𝑟

𝜕𝑥𝑟 𝛷𝜎(𝑥) =
𝜕𝑟

𝜕𝑥𝑟 (
1

𝜎
𝛷(

𝑥

𝜎
)) =

1

𝜎𝑟+1 𝛷(𝑟)(
𝑥

𝜎
), (A.29) 

 𝛷(𝑟)(𝑥) = (−1)𝑟𝐻𝑟(𝑥)𝛷(𝑥), (A.30) 

 𝐻𝑟(𝑥) = ∑ (−1)𝑗𝑂𝐹(2𝑗) (
𝑟
2𝑗)

𝑟/2
𝑗=0 𝑥𝑟−2𝑗, (A.31) 

 𝑂𝐹(2𝑗) = (2𝑗 − 1)(2𝑗 − 3)…1 =
(2𝑗)!

2𝑗𝑗!
, (A.32) 

where 𝐻𝑟 is the r-th Hermite polynomial and OF is the “Odd Factorial”. 

Given that the underlying PDF is known (A.28), density functionals can be computed 

exactly:  

 𝛹𝑟 = ∫𝛷𝜎
(𝑟)(𝑥)𝛷𝜎(𝑥)𝑑𝑥 = ∫

1

𝜎𝑟+1 𝛷(𝑟) (
𝑥

𝜎
)

1

𝜎
𝛷(

𝑥

𝜎
)𝑑𝑥, (A.33) 

 𝛹𝑟 =
(−1)𝑟

𝜎𝑟+2 ∫𝐻𝑟 (
𝑥

𝜎
) (𝛷(

𝑥

𝜎
))

2

𝑑𝑥 =
(−1)𝑟

𝜎𝑟+2 ∫𝐻𝑟 (
𝑥

𝜎
)

1

2𝜋
𝑒−𝑥2/𝜎2

𝑑𝑥, (A.34) 

 𝛹𝑟 =
(−1)𝑟

2𝜋𝜎𝑟+2
∑ (−1)𝑗𝑂𝐹(2𝑗) (

𝑟
2𝑗) ∫ (

𝑥

𝜎
)
𝑟−2𝑗

𝑒−𝑥2/𝜎2
𝑑𝑥

𝑟/2
𝑗=0 . (A.35) 

Knowing that ∫ 𝑒−𝑥2
𝑑𝑥 = √𝜋, and ∫𝑥𝑗𝑒−𝑥2

𝑑𝑥 = 0 for odd j, the following expression 

for the 𝛹𝑟 functional can be obtained: 

 𝛹𝑟 =
(−1)𝑟

2𝜋𝜎𝑟+2
∙
(−1)𝑟/2√𝜋𝜎𝑟!

2𝑟(
𝑟

2
)!

. (A.36) 

Given that r is even, the final expression for the 𝛹𝑟 functional is: 

 𝛹𝑟 =
(−1)𝑟/2𝑟!

(2𝜎)𝑟+1(
𝑟

2
)!√𝜋

. (A.37)  



272 | Appendix B: The Parameters and Accuracy of Transfer Function-Based Dynamic 

Equivalent Models 

 

Appendix B: The Parameters and Accuracy 

of Transfer Function-Based Dynamic 

Equivalent Models 

B.1: Case Study - I 

B.1.1: Dynamic Equivalent Model 2 

The mathematical model of DEM 2 is: 

 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃(𝑡) = −8.51; 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄(𝑡) = 9.66, (B.1) 

 𝑧𝑇𝐹,𝑃(𝑡) = ʆ−1 [
−5.2𝑠6−311𝑠5+602.2𝑠4−7339𝑠3+1.1∙104𝑠2+6031𝑠+2760

𝑠6+158.4𝑠5+1226𝑠4+2.5∙104𝑠3+9.6∙104𝑠2+2.7∙104𝑠+2.9∙104] 𝑢𝑃𝐶𝐶(𝑡), (B.2) 

 𝑧𝑇𝐹,𝑄(𝑡) = ʆ−1 [
3.9𝑠4+135.5𝑠3+418.4𝑠2+2125𝑠−301.5

𝑠4+12.4𝑠3+156.2𝑠2+402.5𝑠+1727
] 𝑢𝑃𝐶𝐶(𝑡), (B.3) 

 𝑃𝐸𝑄(𝑡) = 𝑃𝑆𝑠 + 2.19𝑧𝐸𝑄,𝑃(𝑡); 𝑄𝐸𝑄(𝑡) = 𝑄𝑆𝑠 + 3.9𝑧𝐸𝑄,𝑄(𝑡), (B.4) 

The accuracy of DEM 2 in terms of the shape of HRES plant power responses in time 

domain is presented in Figure B.1 for the DEM 2 training dataset and in Figure B.2 for 

the test 2019 year. 

  
(a) (b) 

Figure B.1 CS-I: Training DEM 2 dataset: Comparison between the power responses of the detailed 

model and DEM 2 ((a): real power, (b): reactive power) 
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(a) (b) 

Figure B.2 CS-I: Test 2019 year: Comparison between the power responses of the detailed model and 

DEM 2 ((a): real power, (b): reactive power) 

B.2: Case Study - II 

B.2.1: Clusters of historical plant production and system demand data 

  
(a) (b) 

 
(c) 

Figure B.3 CS-II: Clusters of HRES plant compositions (base power of the production levels is the rated 

power of the individual plant) 
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Figure B.4 CS-II: Clusters of historical total demand levels 

B.2.2: Dynamic Equivalent Model 1 

The mathematical model of DEM 1 is: 

 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃(𝑡) = −9.51; 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄(𝑡) = 3.87, (B.5) 

 𝑧𝑇𝐹,𝑃(𝑡) = ʆ−1 [
−3.8𝑠5−140.2−918.2𝑠3−9031𝑠2+5145𝑠+828.4

𝑠5+25𝑠4+282.1𝑠3+1630𝑠2+1∙104𝑠+1∙104 ] 𝑢𝑃𝐶𝐶(𝑡), (B.6) 

𝑧𝑇𝐹,𝑄(𝑡) = ʆ−1 [
1.4𝑠6+410.6𝑠5+2.5∙104𝑠4+1.6∙104𝑠3+3.9∙105𝑠2−1.5∙105𝑠−2.4∙104

𝑠6+170.2𝑠5+1.2∙104𝑠4+5.3∙104𝑠3+3.8∙105𝑠2+4.4∙105𝑠+3.7∙105 ] 𝑢𝑃𝐶𝐶(𝑡), (B.7) 

 𝑃𝐸𝑄(𝑡) = 𝑃𝑆𝑠 + 2.15𝑧𝐸𝑄,𝑃(𝑡); 𝑄𝐸𝑄(𝑡) = 𝑄𝑆𝑠 + 10.34𝑧𝐸𝑄,𝑄(𝑡). (B.8) 

The accuracy of DEM 1 in terms of the shape of HRES plant real and power responses 

in time domain is presented in Figure B.5 (a) and Figure B.5 (b) for the DEM 1 training 

dataset, respectively. 

  
(a) (b) 

Figure B.5 CS-II: Training DEM 1 dataset: Comparison between the power responses of the detailed 

model and DEM 1 ((a): real power, (b): reactive power) 
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B.2.3: Dynamic Equivalent Model 3 

The mathematical model of DEM 3 is: 

 𝑧𝐹𝑎𝑢𝑙𝑡,𝑃(𝑡) = −8.87; 𝑧𝐹𝑎𝑢𝑙𝑡,𝑄(𝑡) = 1.51, (B.9) 

𝑧𝑇𝐹,𝑃(𝑡) = ʆ−1 [
−1.7𝑠6+365𝑠5−1488𝑠4+6.8∙104𝑠3−5.6∙105𝑠2+1.2∙106𝑠−5∙104

𝑠6+423𝑠5+8214𝑠4+1.3∙105𝑠3+1.3∙106𝑠2+6.8∙106𝑠+2.6∙105
] 𝑢𝑃𝐶𝐶(𝑡), (B.10) 

 𝑧𝑇𝐹,𝑄(𝑡) = ʆ−1 [
5.4𝑠3+2170𝑠2+5∙104𝑠−5816

𝑠3+323.7𝑠2+3735𝑠+5.1∙104 ] 𝑢𝑃𝐶𝐶(𝑡), (B.11) 

 𝑃𝐸𝑄(𝑡) = 𝑃𝑆𝑠 + 4.52𝑧𝐸𝑄,𝑃(𝑡); 𝑄𝐸𝑄(𝑡) = 𝑄𝑆𝑠 + 4.96𝑧𝐸𝑄,𝑄(𝑡). (B.12) 

The accuracy of DEM 3 in terms of the shape of HRES plant real and power responses 

in time domain is presented in Figure B.6 (a) and Figure B.6 (b) for the DEM 3 training 

dataset, respectively. 

  
(a) (b) 

Figure B.6 CS-II: Training DEM 3 dataset: Comparison between the power responses of the detailed 

model and DEM 3 ((a): real power, (b): reactive power) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure C.1 Clusters of z-normalized power responses ((a): Cluster 2 - real power; (b): Cluster 2 - reactive 

power; (c): Cluster 3 - real power; (d): Cluster 3 - reactive power; (e): Cluster 4 - real power; (f): Cluster 

4 - reactive power)  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure C.2 Clusters of z-normalized power responses ((a): Cluster 5 - real power; (b): Cluster 5 - reactive 

power; (c): Cluster 6 - real power; (d): Cluster 6 - reactive power; (e): Cluster 7 - real power; (f): Cluster 

7 - reactive power; (g): Cluster 8 - real power; (h): Cluster 8 - reactive power)  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure C.3 Clusters of z-normalized power responses ((a): Cluster 10 - real power; (b): Cluster 10 - 

reactive power; (c): Cluster 11 - real power; (d): Cluster 11 - reactive power; (e): Cluster 12 - real power; 

(f): Cluster 12 - reactive power  

 

Table C.1 The LSTM network structure and the number of LSTM network estimable parameters for 

clusters 2-5, 7, 9, 11, 12 

Cluster 
LSTM 

layers 
FC layers 

No. parameters 

per LSTM layer 

No. parameters 

per FC layer 

Total no. 

parameters 

C 2 (189) (301; 2) (151,200) (57,190; 604) 208,994 

C 3 (138; 67; 72) (1000; 2) 
(82,248; 55,208; 

165,120) 
(173,000; 2,002) 477,578 

C 4 (300; 10) (1000; 2) (373,200; 12,440) (11,000; 2,002) 398,462 

C 5 (200) (73; 2) (168,800) (14,673; 148) 183,621 

C 7 (76) (759; 2) (26,448) (58,443; 1,520) 86,411 

C 9 (231; 300) (188; 2) 
(223,608; 

638,400) 
(56,588; 378) 918,974 

C 11 (155; 143) (470; 2) 
(102,920; 

171,028) 
(67,680; 942) 342,570 

C 12 (185) (1000; 2) (145,040) (186,000; 2,002) 333,042 
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Appendix D: The Number of SG Units in 

Service for All Three TSs 

Table D.1 TS 1: The number of SG units in service per hour in each SG plant, each area and the whole 

test system 

Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G1 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 

G2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 2 2 

G3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 1 1 1 0 0 0 0 

G5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

G6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G8 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 

G9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G13 2 2 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 

G14 1 1 1 1 1 1 2 2 2 2 3 2 2 2 2 2 3 3 3 3 2 2 2 1 

G15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

G16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G21 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G22 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G23 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G24 0 0 0 0 0 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 0 

G25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G27 2 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G28 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G29 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G31 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G32 3 3 1 0 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G33 0 0 0 0 0 0 0 2 0 0 3 3 0 0 0 2 3 3 3 3 3 0 0 0 

G34 0 0 0 0 0 1 3 4 4 4 4 4 4 3 3 4 4 4 4 4 4 4 3 3 
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Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G35 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

G36 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G37 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G38 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Area 1 13 13 13 13 13 13 13 14 15 15 15 15 15 15 15 15 16 16 15 15 15 15 13 13 

Area 2 30 30 28 27 30 33 39 42 40 40 43 43 40 39 39 42 43 43 43 43 43 40 39 38 

Area 3 39 38 37 37 38 42 46 49 49 49 50 49 49 49 49 49 51 51 50 50 49 49 48 43 

Area 4 29 29 29 29 29 29 29 31 31 31 33 33 31 31 31 31 34 33 33 33 31 31 30 30 

System 111 110 107 106 110 117 127 136 135 135 141 140 135 134 134 137 144 143 141 141 138 135 130 124 

 

Table D.2 TS 2: The number of SG units in service per hour in each SG plant, each area and the whole 

test system 

Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 

G2 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 0 2 3 2 2 2 2 2 

G3 3 3 3 3 3 4 4 4 4 4 3 3 4 4 3 4 4 4 4 4 4 3 3 3 

G4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 

G5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 

G6 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 

G7 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 

G8 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

G9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G12 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

G13 2 2 2 2 2 2 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 

G14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G15 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1 1 

G16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G19 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G21 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G22 2 2 2 1 2 2 2 3 2 3 2 2 2 3 2 2 4 4 4 4 2 2 2 2 

G23 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 3 4 4 4 4 4 

G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 

G25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G27 0 0 0 0 0 1 3 4 4 4 2 3 2 4 2 4 4 4 4 4 3 1 1 0 

G28 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G29 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
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Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G31 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G32 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 

G33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G34 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 

G35 0 0 0 0 2 3 4 4 4 4 4 3 4 4 3 4 4 4 4 4 4 3 3 3 

G36 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G37 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G38 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G41 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 3 2 2 2 2 2 

G42 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Area 1 10 10 10 10 10 13 13 13 13 13 13 13 13 13 13 10 11 13 14 13 13 13 13 13 

Area 2 27 27 28 25 29 32 33 35 33 33 33 32 33 33 32 33 34 37 38 33 33 32 32 32 

Area 3 40 40 41 39 41 43 46 48 40 48 45 46 45 48 45 47 49 48 47 49 46 42 42 41 

Area 4 22 21 22 21 22 26 26 26 26 26 25 25 26 22 21 26 27 26 27 26 26 25 24 23 

System 99 98 101 95 102 114 118 122 112 120 116 116 117 116 111 116 121 124 126 121 118 112 111 109 

 

Table D.3 TS 3: The number of SG units in service per hour in each SG plant, each area and the whole 

test system 

Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 

G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 1 2 2 2 

G4 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 

G5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G6 0 0 0 1 1 0 1 0 0 0 1 1 2 2 0 2 2 0 2 0 2 2 2 0 

G7 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 

G8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

G9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

G12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 

G14 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 

G15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G17 2 2 2 2 3 2 3 2 3 3 3 3 3 4 3 3 2 0 3 3 3 3 3 3 

G18 3 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 

G19 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 

G20 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 2 2 2 2 2 2 

G21 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 4 2 2 2 2 3 2 

G22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 

G23 2 2 3 0 0 2 0 2 2 3 3 3 4 4 3 1 2 0 1 3 3 3 4 4 
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Plant\Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G29 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 

G30 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 

G31 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

G32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G36 3 2 2 3 3 2 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 

G37 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 

G38 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

G39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 4 4 4 4 4 

G41 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G42 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Area 1 3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 5 3 4 3 3 3 3 4 3 

Area 2 19 18 18 19 16 18 18 18 18 19 19 19 19 19 19 19 19 13 19 19 19 19 19 19 

Area 3 23 24 25 21 23 24 23 23 25 26 26 26 27 31 22 25 23 27 24 26 26 26 28 27 

Area 4 7 7 7 9 9 7 9 6 7 7 9 9 11 11 7 11 10 4 11 7 10 11 11 8 

System 52 52 53 52 51 52 53 50 53 55 57 57 60 66 51 60 55 48 57 55 58 59 62 57 
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