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2.2 Figure adapted from Hočevar and Demšar [65], showing the relation-
ship between undirected orbit 10 and 13 from Figure 2.1. In Fig-
ure 2.2a, we see the graphlet being extended, containing nodes x, y

and z, whose edges are marked by a solid line. Each of wi is a candi-
date node for the extension as they are the nodes in the neighbourhood
of both y and z, their edges to these nodes exist by definition and are
represented through a dashed line. Finally, the dotted line is optional.
Its absence leads to a four node graphlet isomorphic to G6, as pictured
in Figure 2.2b. On the other hand, its existence leads to a four node
graphlet isomorphic to G7, as pictured in Figure 2.2c. . . . . . . . . . 47

2.3 Figure taken from Aparício et al. [7]. Shows the subgraph census
(counting the frequency of each subgraph) using a specific G-Trie.
Nodes in red mean that no candidate was found for that particular
graphlet and the dotted arrows represent the search path through the
G-Trie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Example to illustrate the usefulness of only using orbits that appear in
at least one of the networks being compared. Graphs G and H are the
example provided by Aparício et al. [7]; we adapt them to directed net-
works G′ and H ′, keeping the same number of orbits in each network.
We measure NetEmd(G′,H ′)= 5×10−5 and Weighted_NetEmd(G′,H ′)=

0.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13



3.2 Undirected networks - Task 1 . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Undirected networks - Task 2 . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Directed networks - Task 1 . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Directed networks - Task 2 . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Onnela et al. dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Real world directed networks dataset . . . . . . . . . . . . . . . . . . 74

4.1 User active times: distribution of how long each user remains active in
each forum, obtained by taking the time difference between the date of
their first and last posts. . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Thread active times: distribution of how long each thread remains ac-
tive in each forum, obtained by taking the time difference between the
date of their first and last posts. . . . . . . . . . . . . . . . . . . . . . 93

4.3 Number of users, threads and posts for different combinations of time
jump and time span to define the time granularity in the vaccine dataset. 94

4.4 Number of users, threads and posts for different combinations of time
jump and time span to define the time granularity in the COVID-19
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Heat map of network distances between each pair of networks in the
Mumsnet vaccine dataset. Distances are calculated using PCA_NetEmd

with size 4 graphlets and 90% explained variance. . . . . . . . . . . . 99

4.6 Heat map of network distances between each pair of networks in the
Mumsnet COVID-19 dataset. Distances are calculated using PCA_NetEmd

with size 4 graphlets and 90% explained variance. . . . . . . . . . . . 101

4.7 Number and proportion of threads of each sentiment label, for each
data slice in the vaccination dataset. . . . . . . . . . . . . . . . . . . 105

4.8 Number and proportion of posts in threads of each sentiment label, for
each data slice in the vaccination dataset. . . . . . . . . . . . . . . . . 106

4.9 Number and proportion of users in threads of all combinations of sen-
timent label, for each data slice in the vaccination dataset. . . . . . . . 107

4.10 Number and proportion of threads of each sentiment label, for each
data slice in the COVID-19 dataset. . . . . . . . . . . . . . . . . . . 111

4.11 Number and proportion of posts in threads of each sentiment label, for
each data slice in the COVID-19 dataset. . . . . . . . . . . . . . . . . 112

4.12 Number and proportion of users in threads of each sentiment label, for
each data slice in the COVID-19 dataset. . . . . . . . . . . . . . . . . 113

14



4.13 Percentage of posts of each sentiment label, inferred from the pro-
portion of posts of each sentiment in threads of each sentiment in the
labeled sample of the COVID-19 dataset, results shown for each data
slice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.14 Average discordance index per thread in the sampled subset of the
COVID-19 dataset over time, calculated as the average discordance
using windows with 2 to 5 posts. . . . . . . . . . . . . . . . . . . . . 118

4.15 Average discordance index per thread in the COVID-19 dataset over
time, calculated as the average discordance using windows with 2 to 5
posts. Values are inferred from the sample of sentiment labeled posts. 119

5.1 Comparison of asymptomatic testing strategies against reduction of
contacts for different growth rates and contact patterns. The x-axis
represents the size of the regular tester cohort for the simulations with
asymptomatic testing or the percentage of contacts removed from non-
household layers for the simulations with contact reduction. The y-axis
shows the total number of infections, averaged over 100 runs. . . . . . 135

5.2 Impact on person-days of isolation of increasing adherence to the dif-
ferent asymptomatic testing strategies, for different growth rates and
contact patterns. The x-axis represents the size of the regular tester co-
hort for the simulations with asymptomatic testing or the percentage of
contacts removed from non-household layers for the simulations with
contact reduction. The y-axis shows the mean number of person days
of isolation per population members over the 180 days of simulation,
averaged over 100 runs. These include days in isolation waiting for
test results (amongst true positives and true negatives); isolation days
amongst those testing positive who were true positive; and isolation
days among those testing positive who were false positives. The colour
of each marker indicates the percentage of days spent in isolation while
infected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

15



5.3 Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and Polymerase Chain Reaction (PCR) testing after
being traced as a contact of a positive case. Numbers shown are the
percentage decrease in the total number of infections, compared to 0%
uptake on these interventions, for 0.025 and 0.3 growth rates in POLY-
MOD contact pattern. The top line on the x axis represents the uptake
to testing after contact tracing, the bottom line represents the daily
probability to testing when symptomatic. The y axis represents uptake
to isolation on COVID or Influenza-like Illnesses (ILI) symptoms. . . 139

5.4 Comparison of Lateral Flow Device (LFD) against PCR tests for symp-
tomatic or contact traced individuals, for different values of asymp-
tomatic testing uptake and different growth rates, with contact patterns
obtained from POLYMOD. The y-axis shows the total number of in-
fections. The x-axis represents the size of the regular asymptomatic
tester cohort. Markers shown represent the median of 100 simulations
and the shaded area represents the interquartile range. Figure 5.4a cor-
responds to the twice weekly testing policy and Figure 5.4b to the test-
ing every two days policy. . . . . . . . . . . . . . . . . . . . . . . . 141

C.1 Organization of the Mumsnet forum, it is divided in broad categories
of topics that are expanded into multiple subcategories, each with their
own forum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.2 Examples of threads within the COVID-19 subforum of Mumsnet. In
this case, two threads are included in our analysis, the first and last on
the list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

C.3 Example of the organization of a thread within Mumsnet. The original

post is coloured green and the remaining posts are shown sequentially
according to the time they were posted in. . . . . . . . . . . . . . . . 198

C.4 Examples of controversial threads in the vaccination forum of Mum-
snet that may be connected to the network structure differences we
observe in the time frame when these threads were posted. . . . . . . 199

C.5 Examples of discussions about vaccination in the COVID-19 forum
of Mumsnet with representative topics that may be connected to the
network structure differences we observe in the time frame when these
threads were posted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

16



C.5 Continued - Examples of discussions about vaccination in the COVID-
19 forum of Mumsnet with representative topics that may be connected
to the network structure differences we observe in the time frame when
these threads were posted. . . . . . . . . . . . . . . . . . . . . . . . 201

D.1 Heat map of network distances between all networks in both the Mum-
snet vaccination and COVID-19 dataset. Distances are calculated us-
ing PCA_NetEmd with size 4 graphlets and 90% explained variance. . 204

D.2 Heat map of network distances between each pair of networks in the
Mumsnet vaccination dataset, for each orbit in graphlets of size up to
4. Distances are calculated using PCA_NetEmd with size 4 graphlets
and 90% explained variance. . . . . . . . . . . . . . . . . . . . . . . 205

D.3 Heat map of network distances between each pair of networks in the
Mumsnet COVID-19 dataset, for each orbit in graphlets of size up to
4. Distances are calculated using PCA_NetEmd with size 4 graphlets
and 90% explained variance. . . . . . . . . . . . . . . . . . . . . . . 206

D.4 Heat map of network distances between all networks in both the Mum-
snet vaccination and COVID-19 dataset, for each orbit in graphlets of
size up to 4. Distances are calculated using PCA_NetEmd with size 4
graphlets and 90% explained variance. . . . . . . . . . . . . . . . . . 207

D.5 Vaccination subforum - threads of each sentiment. . . . . . . . . . . . 208

D.6 Vaccination subforum - posts in threads of each sentiment. . . . . . . 209

D.7 Vaccination subforum - users in threads of each sentiment. . . . . . . 210

D.8 COVID-19 subforum - threads of each sentiment. . . . . . . . . . . . 211

D.9 COVID-19 subforum - posts in threads of each sentiment. . . . . . . . 212

D.10 COVID-19 subforum - users in threads of each sentiment. . . . . . . . 213

D.11 COVID-19 subforum - posts of each sentiment, inferred from the sam-
pled subset of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

E.1 Heat map of network distances between each pair of networks in the
Mumsnet vaccination dataset, using an alternative combination of win-
dow span and jump (6 months and 2 months). Distances are calculated
using PCA_NetEmd with size 4 graphlets and 90% explained variance. 217

E.2 Vaccination forum - threads of each sentiment - alternative data gran-
ularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

17



E.3 Vaccination forum - posts in threads of each sentiment - alternative
data granularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

E.4 Vaccination forum - users in threads of each sentiment - alternative
data granularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

E.5 Heat map of network distances between each pair of networks in the
Mumsnet COVID-19 dataset, using an alternative combination of win-
dow span and jump (2 weeks and 1 week). Distances are calculated
using PCA_NetEmd with size 4 graphlets and 90% explained variance. 221

E.6 COVID-19 forum - threads of each sentiment - alternative data granu-
larity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

E.7 COVID-19 forum - posts in threads of each sentiment - alternative data
granularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.8 COVID-19 subforum - users in threads of each sentiment - alternative
data granularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

G.1 Comparison of testing strategies against reduction of contacts for dif-
ferent growth rates with POLYMOD contact patterns. The x-axis rep-
resents the number of total infections, averaged over 100 runs. The
y-axis shows the maximum peak of new daily infections, averaged
over 100 runs. The colour of each marker indicates the size of the
regular tester cohort for the simulations with asymptomatic testing or
the percentage of contacts removed from non-household layers for the
simulations with contact reduction. . . . . . . . . . . . . . . . . . . . 234

G.2 Comparison of testing strategies against reduction of contacts for dif-
ferent growth rates with CoMix contact patterns. The x-axis represents
the number of total infections, averaged over 100 runs. The y-axis
shows the maximum peak of new daily infections, averaged over 100
runs. The colour of each marker indicates the size of the regular tester
cohort for the simulations with asymptomatic testing or the percentage
of contacts removed from non-household layers for the simulations
with contact reduction. . . . . . . . . . . . . . . . . . . . . . . . . . 235

18



G.3 Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and PCR testing after being traced as a contact of a
positive case. Numbers shown are the percentage decrease in the total
number of infections, compared to 0% uptake on these interventions,
for 0.05 and 0.1 growth rates in POLYMOD contact pattern. The top
line on the x axis represents the uptake to testing after contact tracing,
the bottom line represents the daily probability to testing when symp-
tomatic. The y axis represents uptake to isolation on COVID or ILI
symptoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

G.4 Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and PCR testing after being traced as a contact of a
positive case. Numbers shown are the percentage decrease in the total
number of infections, compared to 0% uptake on these interventions,
for 0.15 and 0.225 growth rates in POLYMOD contact pattern. The top
line on the x axis represents the uptake to testing after contact tracing,
the bottom line represents the daily probability to testing when symp-
tomatic. The y axis represents uptake to isolation on COVID or ILI
symptoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

G.5 Comparison of LFD against PCR tests for symptomatic or contact
traced individuals, for different values of asymptomatic testing uptake
and different growth rates, with contact patterns obtained from POLY-
MOD. The y-axis shows the total number of infections. The x-axis
represents the size of the regular asymptomatic tester cohort. Markers
shown represent the median of 100 simulations and the shaded area
represents the interquartile range. The policy used for the regular tester
group is testing once weekly. . . . . . . . . . . . . . . . . . . . . . . 238

19



G.6 Comparing LFD and PCR tests and the impact of increasing the uptake
of testing after being traced as a contact of a positive case and the
daily probability of testing if symptomatic, for growth rates of 0.025,
0.05 and 0.1 with contact patterns obtained from POLYMOD. The y-
axis shows the total number of infections. The bottom line on the x
axis represents the uptake to testing after contact tracing, the top line
represents the daily probability to testing when symptomatic. Color
indicates the type of test and the adherence to isolation on symptoms.
Markers shown represent the median of 100 simulations and the shaded
area represents the interquartile range. . . . . . . . . . . . . . . . . . 239

G.7 Comparing LFD and PCR tests and the impact of increasing the uptake
of testing after being traced as a contact of a positive case and the
daily probability of testing if symptomatic, for growth rates of 0.15,
0.225 and 0.3 with contact patterns obtained from POLYMOD. The
y-axis shows the total number of infections. The bottom line on the x
axis represents the uptake to testing after contact tracing, the top line
represents the daily probability to testing when symptomatic. Color
indicates the type of test and the adherence to isolation on symptoms.
Markers shown represent the median of 100 simulations and the shaded
area represents the interquartile range. . . . . . . . . . . . . . . . . . 240

G.8 Comparison of number of tests required per person when using LFD
or PCR tests for symptomatic or contact traced individuals, for 0.025,
0.05 and 0.15 growth rates, with contact patterns obtained from POLY-
MOD. The y-axis shows the mean number of tests per person, averaged
over 100 runs. The bottom line on the x axis represents the uptake to
testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. . . . . . . . . . . . . . . . . . . . . . . 241

G.9 Comparison of number of tests required per person when using LFD
or PCR tests for symptomatic or contact traced individuals, for 0.15,
0.225 and 0.3 growth rates, with contact patterns obtained from POLY-
MOD. The y-axis shows the mean number of tests per person, averaged
over 100 runs. The bottom line on the x axis represents the uptake to
testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. . . . . . . . . . . . . . . . . . . . . . . 242

20



G.10 Impact on person-days of isolation of increasing adherence to the dif-
ferent testing strategies, for different growth rates with contact pat-
terns from POLYMOD, when using PCR (Figure G.10a) or LFD (Fig-
ure G.10b) as the test for symptomatic or contact traced individuals.
The x-axis represents the size of the regular tester cohort for the sim-
ulations with asymptomatic testing or the percentage of contacts re-
moved from non-household layers for the simulations with contact re-
duction. The y-axis shows the mean number of person days of isola-
tion per population members over the 180 days of simulation, averaged
over 100 runs. These include days in isolation waiting for test results
(amongst true positives and true negatives); isolation days amongst
those testing positive who were true positive; and isolation days among
those testing positive who were false positives. The colour of each
marker indicates the percentage of days spent in isolation while infected.243

G.11 Impact on person-days of isolation of increasing adherence to isolation
on symptoms, daily probability of testing and adherence to testing af-
ter contact tracing, for 0.025, 0.05 and 0.1 growth rates with contact
patterns from POLYMOD, comparing the outcome when testing with
PCR or LFD. The bottom line on the x axis represents the uptake to
testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. The y-axis shows the mean number of
person days of isolation per population members over the 180 days of
simulation, averaged over 100 runs. These include days in isolation
waiting for test results (amongst true positives and true negatives); iso-
lation days amongst those testing positive who were true positive; and
isolation days among those testing positive who were false positives.
The colour of each marker indicates the percentage of days spent in
isolation while infected. . . . . . . . . . . . . . . . . . . . . . . . . . 244

21



G.12 Impact on person-days of isolation of increasing adherence to isolation
on symptoms, daily probability of testing and adherence to testing af-
ter contact tracing, for 0.15, 0.225 and 0.3 growth rates with contact
patterns from POLYMOD, comparing the outcome when testing with
PCR or LFD. The bottom line on the x axis represents the uptake to
testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. The y-axis shows the mean number of
person days of isolation per population members over the 180 days of
simulation, averaged over 100 runs. These include days in isolation
waiting for test results (amongst true positives and true negatives); iso-
lation days amongst those testing positive who were true positive; and
isolation days among those testing positive who were false positives.
The colour of each marker indicates the percentage of days spent in
isolation while infected. . . . . . . . . . . . . . . . . . . . . . . . . . 245

22



Abstract

Complex networks are topologically rich graphs, containing properties that are neither
regular nor purely random. Complex networks model real complex systems, so ana-
lyzing and extracting information from networks provides knowledge about the system
itself. Network comparison is a task within network analysis aimed at quantifying sim-
ilarities and differences between networks. Graphlets are small patterns of connections
whose distribution in the network has been shown to be one of the most informative
properties of the structural organization of the network, hence have recently been in-
creasingly adopted as features in network comparison algorithms and measures.

NetEmd is a network comparison measure that uses graphlets as features for com-
parison, being able to identify random networks generated from the same random
graph model or real networks from the same domain more accurately than previous
network comparison measures for undirected networks, even when their size differs by
multiple orders of magnitude. This thesis presents an extension of NetEmd to directed
networks and a framework of noise reduction in graphlet frequencies prior to the us-
ing the NetEmd measure. Extensive testing is carried out on the performance of the
extension and the noise reduction framework, showing the value of these techniques.

Network comparison based on graphlets has seen the majority of its use when ap-
plied to networks from the biology domain. From an application perspective, this thesis
aims to demonstrate how insights based on network comparison with graphlets can be
useful in other domains:

• Analysis of controversial discussion topics in online social networks often in-
cludes a component of sentiment labeling, detection or analysis. However, sen-
timent labeling is an expensive and labourious process, automatic sentiment de-
tection shows poor performance in some domains and sentiment analysis cannot
be performed without either of these. Considering vaccination discussions in
online social networks in particular, this thesis shows how differences in net-
work structure detected by network comparison are correlated with changes to
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the sentiment towards vaccination. Network comparison can be used as a tool to
guide when to perform sentiment analysis as well as a technique to enhance the
conclusions from sentiment analysis.

• During the SARS-CoV-2 pandemic, social mixing prevention policies intro-
duced changes in social contact networks in a way to prevent the spread of
the virus. By generating networks based on age-mixing matrices obtained from
social surveys representative of the UK population, this thesis performs an in-
vestigation of Test-Trace-Isolate strategies within an agent based model used to
inform government policy, under different assumptions of social contact network
structure.
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Chapter 1

Introduction

Real world systems are sets of entities that, through their interactions or relationships,
form a unified whole. These systems are often complex, in the sense that properties
emerge which would otherwise be unpredictable from the behaviour of each individ-
ual part. Interactions between entities of a complex system can be modeled through
graphs, giving rise to complex networks, graphs whose topological features are non-
trivial, being neither regular nor purely random. Complex networks are found in the
real world in a wide range of domains, such as brain networks [168], protein-protein
interaction networks [75, 156], scientific collaboration networks [92, 115], social net-
works [88, 198] or infrastructure networks [121].

Developing methodology to analyze and extract information from complex net-
works is crucial to understanding the phenomena that originate the complex system
they model. Thus, the study of complex networks has developed into an active area of
scientific research [3, 114], particularly in the past 25 years as a result of advances in
computing power and increased amount of data generation. The analysis of complex
networks employs a variety of techniques, such as community detection [43] or node
centrality [44]. A relatively new method for network analysis are network motifs [109],
defined as “patterns of interconnections occurring in complex networks at numbers
that are significantly higher than those in randomized networks” [109]. Network mo-
tifs make up a powerful tool for network analysis because they can be interpreted as
units of functional behaviour encoded in the network [102]. Network motifs have been
widely utilized in characterizing network from many domains [22, 175], but especially
in biology [158, 168, 194]. However, by their definition, the frequency of network
motifs is compared against a set of random networks generated by a random network
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model, which constitutes a null model to compare against in order to determine the sig-
nificance of a pattern, and different null models have been shown to produce different
motifs for the same network [154, 161].

One open problem in network science where network motifs have enjoyed partic-
ular success is network comparison. The network comparison problem arises from
the need to quantify differences and similarities between networks, particularly when
their sizes differ but the networks are hypothesized to be related. Applications of net-
work comparison include goodness of fit tests for random graph models of real world
networks [108, 133] or in biological networks [4, 7]. Measures of distance between
networks based on the distribution of graphlets [132] have risen to prominence re-
cently [7, 152, 180, 192], as graphlets carry the same functional properties of network
motifs, without the need to determine significance based on null models.

In this thesis, we advance network comparison methodology based on graphlets
and apply it in two areas relevant to the COVID-19 pandemic. In particular, we focus
on the applications of network comparison to the analysis of social networks, a domain
in which network comparison based on network motifs and graphlets has seen little use,
despite the advancements in biology networks.

Social networks are pervasive in modern society and thus have become fertile
ground for the spread of misinformation about a multitude of topics, one of which
is vaccination [13, 17]. The World Health Organization named ‘Vaccine hesitancy’,
i.e. the reluctance or refusal to vaccinate despite the availability of vaccines, as one of
the 10 major threats to global health in 2019 [187]. The issue of vaccine hesitancy has
become particularly timely during the SARS-CoV-2 global pandemic, the virus that
provokes the COVID-19 disease, where the vaccine has been instrumental in prevent-
ing deaths and hospitalizations due to the virus, in addition to ending “lockdown" style
policy measures that carry impacts beyond global health. In spite of this success, there
is still a high level of vaccine hesitancy within specific communities, such as minority
ethnic groups [146] and those from most deprived areas [24].

The majority of research directed towards vaccination discussions in online social
networks tends to focus on the most popular media, such as Facebook [66, 155] or
Twitter [1, 11, 98, 134]. However, it has been shown that online discussion boards are
used as sources of information about immunisation and parents who use these discus-
sions forums were more likely to question the decision to vaccinate than those who
use Facebook or Twitter [20], yet not as much research as been dedicated to studying
them. One popular online chat board is contained within the United Kingdom (UK)
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parenting website Mumsnet [145]. Mumsnet generates more discussion content and
with a greater variety of opinions regarding vaccination than other discussion boards
more focused exclusively on vaccination [165].

The most common way of analyzing vaccination discussions in online social net-
works is through sentiment analysis [112, 150, 166], which requires annotating discus-
sions according to their view on vaccination. This process is extremely laborious when
performed through manual annotation and automatic detection of sentiment does not
achieve adequate performance on Mumsnet data [166]. By representing user interac-
tions over time in Mumsnet through series of complex networks, we show how using
network comparison to detect differences in the structure of interactions can be a sign
of change in sentiment towards vaccination. As the differences in network structure
are identified as a result of the characteristics of graphlets, the units of functional be-
haviour, combining sentiment analysis with network comparison allows the generation
of hypothesis regarding changes to user behaviour when discussing vaccinations.

The SARS-CoV-2 pandemic, the virus responsible for the COVID-19 disease, has
been an extremely impactful event worldwide throughout 2020, 2021 and 2022. In
the UK, Government’s response to the pandemic has been advised by the Scientific
Advisory Group for Emergencies (SAGE) and sub-committees, such as the Scientific
Pandemic Influenza Group on Modelling (SPI-M). As part of Test, Trace and Isolate
COVID-19 rapid response modelling project which provided advice to SPI-M, another
application of network comparison we explore in this thesis is studying changes in
the structure of social contact networks due to the COVID-19 pandemic. In the ini-
tial phase of the COVID-19 pandemic, infection control to mitigate the impacts of the
disease was achieved by policy aimed at the reducing the amount of contact between
people. Social surveys aimed at understanding the impact of these measures on the
amount of daily contacts in the population show that, by 2022, the average number of
contacts still had not reached pre-pandemic levels [77, 78]. Mathematical modelling of
COVID-19 transmission and control measures has been an instrumental tool in advis-
ing governments about potential outcomes of policy changes [45, 120, 171]. Network
based models, those where infection spread is structured according to a network, need
to incorporate this change in contact patterns observed in the population, in order to
provide realistic outcomes of infection control measures.

One such model is Covasim [82], an agent based model with multiple layers of
social contact networks meant to mimic settings where transmission of COVID-19
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can occur, such as work places, schools or households. It has been used at differ-
ent points of the pandemic in the UK to evaluate the potential impact of policy pro-
posed by the government [122–125]. We extend the models for network generation
in Covasim by discriminating the number of contacts between people of different age
groups, through age-mixing matrices obtained from social contact surveys, namely
POLYMOD [111] and CoMix [78]. Using network comparison, we show how the
patterns of social contact change when generating networks based on age-mixing ma-
trices, which affect chains of transmission for the virus. We present an experimental
analysis of Test-Trace-Isolate (TTI) interventions using these networks generated from
age-mixing matrices, an analysis that was used as advice to the UK government on the
role of asymptomatic testing to mitigate transmission of COVID-19 and the impact of
the disease.

1.1 Thesis contributions

The aim of this thesis is to develop new techniques for comparing complex networks
using distributions of graphlets and show the applicability of this approach to new
domains. To this end, we propose a set of research questions and delineate the contri-
butions in this thesis to answer them:

Research Question (RQ) 1: Given a dataset of complex networks, how can
their differences and similarities be quantified?

The contributions in this thesis towards RQ1 are two fold. In the case where the
dataset is composed of directed networks, we extend NetEmd [180], a network com-
parison measure based on graphlet distributions in undirected networks, to support the
comparing directed networks. We also propose a pre-processing step to the comparison
where dimension reduction techniques are used as a denoising mechanism of the net-
work comparison features, showing that this pre-processing step helps distinguishing
both directed and undirected networks.

RQ2: What is the impact of COVID-19 on the structure of vaccination discus-
sions in online discussion boards?

We analyze the characteristics of online discussion forum Mumsnet, comparing
discussions before and after the COVID-19 pandemic. Through network comparison,
we demonstrate that user interactions in the two periods of time are characterized by
distinct patterns. We also find that significant deviations in network structure between
networks generated from temporally contiguous data occur in the same periods of time
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when there are changes in the sentiment towards vaccination.
RQ3: How do changes in the structure of social contact networks affect math-

ematical modeling of COVID-19 transmission?
We implement social contact networks generated from age-mixing matrices derived

from social surveys POLYMOD [111] and CoMix [78] in a previously published agent
based model for COVID-19 simulation, Covasim [82]. We observe that networks gen-
erated based on social contact during the pandemic are organized in a different manner
compared to those based on social contact before the pandemic. Using these networks
as the structure of contacts for COVID-19 transmission, we investigate different strate-
gies for regular asymptomatic testing, the efficacy of interventions such as contact
tracing and isolation in a scenario with no asymptomatic testing in the population and
the impact of swapping Polymerase Chain Reaction (PCR) testing for a single Lateral
Flow Test (LFT).

1.2 Thesis structure

The remainder of the thesis is divided into five chapters as follows:

• Chapter 2: an introduction to concepts and definitions related to network sci-
ence used throughout this dissertation.

• Chapter 3: presentation of an extension to the network comparison measure
NetEmd [180] to directed networks and a framework that uses dimension reduc-
tion methods as a way to denoise the features of NetEmd.

• Chapter 4: analysis of vaccination discussions in the Mumsnet forum. Us-
ing network comparison, the way users interact in these discussions threads are
shown to vary over time and the differences to be correlated with changes to the
sentiment towards vaccination.

• Chapter 5: evaluation of different asymptomatic testing strategies and the role
of adherence to symptomatic testing, contact tracing and isolation on symptoms
during an infection wave of COVID-19. This is done in an agent based model
with social contact networks, whose connections are informed by age-mixing
matrices in different transmission settings.

• Chapter 6: summary of findings from each chapter and potential directions for
future research.
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Chapter 2

Background

2.1 Network Terminology

This chapter serves as an introduction to network science related concepts and defini-
tions used throughout the remainder of the thesis.

Entities of a complex system are represented in a complex network by objects
called nodes (or vertices) and their interactions are represented through edges (or
connections). Examples of nodes and edges that we use in this work are users of an
online social network that are connected if they participate in the same discussion;
or people in a social contact network, whose connections signify the possibility of
COVID-19 transmission.

Graphs are mathematical objects used to represent a complex network. A graph
G = (V (G),E(G)) is composed of a set of nodes V (G) and a set of edges E(G) ⊆
V (G)×V (G), where each edge is represented by a pair (u,v) ∈ E(G) for u,v ∈V (G).
A graph can be either directed, when the order of the vertices in the pairs expresses
direction, meaning that (u,v)∈ E(G) does not imply that (v,u)∈ E(G), or undirected,
otherwise. Graphs are assumed to be labeled, all nodes are assigned consecutive in-
teger numbers starting from 0 and running to |V (G)| − 1. The size of a graph is the
number of vertices in the graph, written as |V (G)|. A size-k graph is a graph with
k vertices. The density of a graph is the portion of edges present in the graph over
the total potential ones. Calculated as |E(G)|/

(|V (G)|
2

)
in undirected networks and

|E(G)|/(|V (G)|2− |V (G)|) in directed networks. In directed networks, a reciprocal
edge is one such that (u,v) ∈ E(G)∧ (v,u) ∈ E(G). The reciprocity of a network is
the proportion of edges that are reciprocal.

Graphs can be classified into different types according to constraints or additions

39
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to the set of nodes and edges. A graph is called simple if it does not contain multi-
ple edges (two or more edges connecting the same pair of vertices) or self-loops (an
edge of the form (u,u) that connects a vertex to itself). In this work, we consider only
simple graphs. A graph is called connected if all nodes are reachable from each other.
A node v ∈ V (G) is reachable from a node u ∈ V (G) if (u,v) ∈ E(G) or if there is a
path between u and v, i.e., a sequence of edges of the form: (u, t1),(t1, t2), . . .(tn,v).
A bipartite graph is a graph whose vertices represent two disjoint groups of enti-
ties and there are no edges between members of the same group. Formally, G =

(V (G1)∪V (G2),E(G)), such that V (G1)∩V (G2) = /0 and E(G) ⊆ V (G1)×V (G2),
with each edge represented by a pair (u,v) ∈ E(G) for u ∈ V (G1) =⇒ v ∈ V (G2)

or u ∈ V (G2) =⇒ v ∈ V (G1). A weighted graph is a graph whose edges represent
additional information, a weight, about the relationship between vertices, beyond the
existence of that relationship. The most common example of an edge weight is a nu-
meral attribute representing, for instance, the frequency of the relationship. In the case
of a numerical attribute, the set of edges is defined as E(G) ⊆ V (G)×V (G)×R and
each edge is represented as a triple (u,v,w) ∈ E(G) for u,v ∈V (G) and w ∈ R.

The neighbourhood of a vertex u ∈V (G) is the set of nodes that u is connected to
and defined as N(u) = {v : (v,u)∈ E(G)∨(u,v)∈ E(G)}. The degree of a vertex is the
number of edges it participates in, which is equivalent to the size of the node’s neigh-
bourhood, |N(u)|. A node is called isolated if it has no connections, i.e., its degree
is 0. In directed networks, the degree of a vertex can be split into the in-degree and
out-degree, counting the number of incoming and outgoing edges, respectively, from
that node. In directed networks, the degree of a vertex is the sum of its in-degree and
out-degree. In undirected networks, there is no distinction between between in-degree
and out-degree, so the degree of a node u is simply |N(u)|. The degree sequence the
sequence of node degrees in a network. A sequence s is called a graphical sequence
if exists a graph whose degree sequence equals s. The weighted degree of a node
is the sum of weights of all edges the node participates in. In directed networks, the
weighted in-degree and weighted out-degree of a node are the sum of weights of all
incoming and outgoing edges, respectively, from that node.

A subgraph Gk of a graph G is a size-k graph such that V (Gk)⊆V (G) and E(G)⊇
E(Gk) ⊆ V (Gk)×V (Gk) and is called induced if ∀u,v ∈ V (Gk), (u,v) ∈ E(Gk)↔
(u,v) ∈ E(G). Two graphs G and H are isomorphic, written as G ∼ H, if there is a
bijection between V (G) and V (H) such that two vertices are adjacent in G if and only
if their correspondent vertices in H are adjacent. A match of a graph H in a larger
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graph G is a set of nodes that induce the respective subgraph H. In other words, it is a
subgraph Gk of G that is isomorphic to H. The frequency of a subgraph Gk is then the
number of different matches of Gk in G.

Orbits are unique positions of a graph, calculated by partitioning the set of vertices
into equivalence classes where two vertices belong to the same class if there is an
automorphism that maps one into the other [139]. Orbits represent the different roles
within a subgraph and encapsulate the idea that multiple nodes can perform the same
function within a subgraph. For instance, in undirected subgraph G1 of Figure 2.1,
there are two orbits, one belonging to the centre node and another orbit shared by the
extremity nodes. These two orbits have different roles within the subgraph in the sense
that the centre node is responsible for connecting the extremities, who in turn share
the role of supporting the centre node. This contrasts with undirected subgraph G2

where are all nodes have the same orbit, carrying the role of representing a transitive
relationship between the three nodes.

Graphlets are small, connected, non-isomorphic and induced subgraphs [132].
The smallest graphlet considered is a single edge, which can be seen as a size-2 sub-
graph. An undirected edge has a single orbit (three in the directed case) and the fre-
quency of a node in this orbit is equivalent to the degree of the node. Figure 2.1 shows
the graphlets of size 2, 3 and 4 in undirected networks and size 2 and 3 in directed
networks, alongside the respective orbits. The graphlet degree vector is an extension
of the definition of degree to size-k graphs, representing how many times a node occurs
in each orbit. The graphlet degree matrix is the collection of graphlet degree vectors
of each node in a graph.

A graph where all nodes are connected to each other is called a clique, or a com-
plete graph. In other words, it is a graph with density of 1. In Figure 2.1, corresponds
to undirected graphs G2 and G8 and directed graph G14. The clustering coefficient
of a graph is a measure of the amount of transitivity in the graph. It is calculated by
dividing the number of triangles (cliques of size 3, corresponding to the undirected
subgraph G2 in Figure 2.1) by the total number of triples a node participates in.

A connected component of a graph is a connected induced subgraph that is not
a part of another larger connected induced subgraph. In other words, it is a subgraph
where all nodes are reachable from each other and there are no edges to any node
outside this subgraph, therefore inducing a disjoint partition of the set of vertices. The
connected component with the highest number of nodes is called the largest connected
component or the giant component.
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Figure 2.1: Undirected graphlets of size 2, 3 and 4 and directed graphlets of size 2
and 3. Nodes are numbered according to their orbit, counted by type (directed or
undirected) from the size 2 graphlets, and nodes with the same number represent the
same orbit. The background colour and shape of node boundary further emphasizes
nodes belonging to the same orbit in the same graphlet.

Random graphs are graphs generated by a stochastic process. Different random
graph models produce graphs with different properties meant to mimic properties of
complex networks. A common model for generating random graphs is a prescribed
degree distribution is the configuration model. Taking a graphical sequence as input,
the model works by assigning each node a degree represented as a half-edge or a stub.
Pairs of half-edges as chosen uniformly at random and connected to form an edge,
iteratively until no stubs remain.

2.2 Network Comparison

Comparing different objects is a fundamental part of human cognition, therefore it is
only natural that analysis of complex networks encompasses a comparison element. It
is trivial to know if two networks are different, one needs only to look at the set of
nodes and edges that compose the networks and claim a difference if these sets do not
match. On the other hand, knowing if two networks are the same up to a relabeling
function on the node set is known as the graph isomorphism problem, which has been
shown to be in the NP complexity class [26]. Between these two extremes, network
comparison has been established as an area of study within network analysis that
combines network statistics and computable properties of a network to tell how similar
or dissimilar two networks are. Formally, we define network comparison as:
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Problem definition - Network Comparison. Given a set of networks G =

{G1,G2, . . . ,GN} and a set of features fi ∈ F , compute the distance d fi(G,H) =

d(p fi(G), p fi(H)) for every pair of networks G,H ∈ G and for every feature fi ∈ F ,

where p fi(G) is the distribution of feature fi in G.

Network comparison has been the subject of an increasing amount of research, see
for example [4, 5, 7, 8, 22, 84, 100, 108, 118, 132, 152, 169, 180, 190, 192]. A category
of methods for network comparison focuses on solving a sub-problem called network
alignment, where the goal is to create a mapping between the nodes of the networks
being compared [6, 41, 57, 86, 101, 107, 164].

In this work we focus only on alignment-free methods, that use global features of
the networks to determine similarity or dissimilarity. Among these, methods that use
graphlets have emerged as the state of the art in the area, in particular, we highlight
NetEmd [180], TriadEMD [190], Graphlet Degree Distribution Agreement (GDA) [7,
132] and Graphlet Correlation Degree (GCD) [152, 192].

2.2.1 NetEmd

NetEmd [180] is a network comparison measure that relies on structural features of
the network, mainly the distribution of orbit frequencies. The core idea is formalizing
the intuition that the shape of the degree distribution is indicative of the network’s
generation mechanisms, for instance, a network with a power law degree distribution
is generated by a process distinct from a network with a uniform degree distribution.
As the graphlet degree vector is a generalization of the degree distribution for graphlets
of size k ≥ 3, the shapes of the distributions of each orbit also carry information about
the topology of the network. Note that because the shape of a distribution is invariant
under linear transformations such as translations, using the shape as the focus of the
comparison is well-suited to comparing networks of different sizes and densities.

Wegner et al. [180] postulate that “any metric that aims to capture the similarity
of shapes should be invariant under linear transformations of its inputs." Thus, they
define a measure of similarity between distributions p and q, with non-zero and finite
variances, using the Earth Mover’s Distance (EMD) [149]:

EMD∗(p,q) = infc∈R(EMD(p̃(·+ c), q̃(·))),

where p̃ and q̃ are the distributions resulting of scaling p and q to variance 1. Any
distance metric d can be used to generate d∗; EMD was used by the authors as it has
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been shown to be an appropriate metric to compare shapes of distribution in domains
such as information retrieval and it produced better results than other distance metrics,
like the Kolmogorov or L1 distances.

Given two networks G and H and a set of m orbits O = {o1,o2, . . . ,om}, the NetEmd

measure is defined as:

NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(poi(G), poi(H)), (2.1)

where poi(G) and poi(H) are the distributions of orbit i in graphs G and H, respectively.
Note that O may be replaced by any set of network features; in this work we focus on
orbits only.

Xu and Reinert [190] present an extension of NetEmd to directed networks, keep-
ing Equation 2.1 the same and using orbits 3 to 32 from Figure 2.1 as the set of orbits
O.

2.2.2 GCD

Yaveroğlu et al. [192] note that orbit counts have dependencies between them, making
them redundant since they can be expressed as a linear combination of other orbits.
The authors identify 11 out of 15 orbits in graphlets of size up to 4 and 56 out of
73 orbits in graphlets of size up to 5 as non-redundant. The authors construct the
graphlet degree vector of each node in the network using this reduced number of orbits
(although the full set of orbits may also be used), making up a matrix where each row
is the graphlet degree vector of each node, and compute the Spearman’s correlation
coefficient between each pair of orbits, i.e., each pair of columns in this matrix. The
pairwise Spearman’s correlation coefficients are aggregated in a square m×m matrix
called the Graphlet Correlation Matrix (GCM), where m is the number of orbits used
(e.g., 11 if using non-redundant orbits of graphlets up to size 4).

To compare two networks, the authors propose the GCD, which is the Euclidean
distance between the upper triangle of the GCM of each network.

Sarajlić et al. [152] extend GCD to directed networks, finding 13 non-redundant
orbits in graphlets of size up to 3 and 129 in graphlets of size up to 4.
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2.2.3 GDA

Przulj et al. [132] introduced the Graphlet Degree Distribution (GDD), calculated as
follows. Let do

G(k) be the number of nodes of graph G that participate k times in orbit
o, i.e., do

G(k) is graphlet degree distribution of orbit o. The authors scale the distribu-
tion to decrease the contributions of larger orbits by calculating So

G(k) = do
G(k)/k and

then normalize the distribution as No
G(k) = So

G(k)/∑
∞
k=1 So

G(k). To compare the GDD
distributions of the same orbit in different networks G and H, the authors propose the
GDD-agreement (GDA) metric defined as:

Ao(G,H) = 1−

(
∞

∑
k=1

[No
G(k)−No

H(k)]
2

) 1
2

.

As a measure of agreement, the output of GDA is 1 if the distributions are iden-
tical, as opposed to NetEmd which is a measure of distance meaning it will output
0 for identical distributions. To aggregate the agreements of the multiple orbits, the
authors propose either an arithmetic or a geometric mean. We compare against the
implementation of Aparício et al. [7], which extended this idea to directed networks,
using the arithmetic mean as the aggregation function and is available at [138]. This
implementation uses the idea that if a graphlet has a frequency of 0 in both networks,
then the orbits from that graphlet are excluded from the arithmetic mean, for both in
the directed and undirected versions.

2.2.4 Applications of network comparison

Network comparison as a technique to analyze complex networks has been applied in
a wide variety of domains. The majority of its applications can be found in biology,
metabolic networks [157, 200], protein-protein interaction networks [59, 87] or gene
regulatory networks [15, 104] are examples of areas within biology that have benefited
from insights obtained by using network comparison.

But even outside of biology, network comparison has been widely applied. In one
of the seminal network motifs papers, Milo et al. [108] show how comparing networks
by their network motif signature leads to groups of networks that share a common do-
main. In economics, Sarajlić et al. [152] analyze the evolution of world trade networks
over time. In the social domain, Choobdar et al. [22] compare co-authorship networks
from different scientific fields to discover similar patterns of publication in scientific
fields that were not expected to be alike. Also in the social domain, McMillan and
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Felmlee [106] compare different types of social networks to uncover patterns that are
common to each type of social network.

2.3 Counting graphlets

In order to compare networks based on the distribution of graphlets, one needs to
compute the graphlet degree vectors, which involves determining the frequency of each
graphlet. This computational task is related to the subgraph isomorphism problem:
given two graphs G and H, determine if G contains a subgraph isomorphic to H. The
subgraph isomorphism problem is a known NP-complete, the proof that this problem
belongs to this complexity class was presented by Cook in his seminal paper [26].

Counting subgraphs has become a particularly active area of network science after
the introduction of network motifs in 2002 [109]. Ribeiro et al. [139] has recently
published a systematic review of algorithms proposed to efficiently determine the fre-
quency of subgraphs. The authors discriminate between algorithms that compute the
frequency solely of subgraph or “orbit-aware" methods that are able to orbit frequen-
cies for each node as well. We now give a brief overview of ORCA [65], the algorithm
employed by NetEmd [180] to obtain orbit counts that only works in undirected net-
works, and G-Tries [7, 140], a data structure that supports an algorithm of the same
name, which,to the best of our knowledge, shows the best performance in directed
networks.

2.3.1 ORCA

ORCA [65] is an analytical approach to counting undirected graphlets, in the sense
that it avoids enumerating explicitly sets of k nodes and performing an isomorphism
test to determine which subgraph the set is isomorphic to. This category of approaches
has been shown to compute subgraph frequencies orders of magnitude faster than enu-
meration approaches, as well as scaling up to larger graphs. ORCA is also considered
to be a matrix based method [139], as it builds a matrix of linear equations that re-
late the frequencies of each subgraph with other subgraphs of smaller or equal size.
In practice, ORCA achieves this by counting orbits instead of subgraphs directly, con-
structing the system of linear equation to have rank equal to the number of orbits minus
one. Then, by efficiently enumerating a single orbit (in the case of 4 nodes graphlets,
orbit 14 in Figure 2.1), the system can be solved from this single orbit. An important
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(a)

(b) (c)

Figure 2.2: Figure adapted from Hočevar and Demšar [65], showing the relationship
between undirected orbit 10 and 13 from Figure 2.1. In Figure 2.2a, we see the graphlet
being extended, containing nodes x, y and z, whose edges are marked by a solid line.
Each of wi is a candidate node for the extension as they are the nodes in the neighbour-
hood of both y and z, their edges to these nodes exist by definition and are represented
through a dashed line. Finally, the dotted line is optional. Its absence leads to a four
node graphlet isomorphic to G6, as pictured in Figure 2.2b. On the other hand, its
existence leads to a four node graphlet isomorphic to G7, as pictured in Figure 2.2c.

term in the equations of this system, that constitutes the right hand side of the equa-
tions, are terms computed from properties of the graph, like node degree. In particular,
for the examples we show in this section, let c(u,v) = |N(u)∩N(v)| denote the size of
the intersection between the neighbourhoods of two nodes, u and v, that is number of
common neighbours of the two nodes

The main idea behind ORCA when counting graphlets with 4 nodes (note that this
idea also holds for larger subgraphs) is that if a node participates in some graphlet Gi

with 4 nodes, then it also necessarily participates in a graphlet G j with 3 nodes. By
observing that all 4 node graphlets can be constructed by adding a node to a 3 node
graphlet, the authors show that to determine the orbit frequencies in 4 node graphlets of
a node, it is only necessary to enumerate size 3 graphlets and determine their possible
extensions.

To illustrate this idea, we show the example that Hočevar and Demšar [65] demon-
strate in their original work, relating the frequency of orbit 10 and 13 from Figure 2.1,
in Figure 2.2.

In this example, we consider the existence of a graphlet induced on nodes x, y and
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z which is isomorphic to G1. In this example, a proposed extension of this graphlet
is given via a node w connected to both y and z, of which there are c(y,z) candidates
(equal to 3 in Figure 2.2a). This extension leads to two possible four node graphlets,
depending on the existence of the edge (w,x). If the edge is present, then the graphlet is
isomorphic to G7 and x may be found in orbit 13; on the contrary, the resulting graphlet
is isomorphic to G6 and x belongs to orbit 10. As all the nodes in N(y)∩N(z) must
participate in G6 or G7, establishing x in orbit 10 or 13, one can write o10+o13 = c(y,z)

for this particular triplet x, y, z. This sum is then done over all 3 node paths (G1) starting
at node x, while taking symmetries into consideration as both G6 and G7 each appear
twice with z and w and y and w with roles reversed, respectively. The final equation
becomes:

2o10 +2o13 = ∑
y,z:x,z∈N(y)
G[x,y,z]∼G1

c(y,z),

where G[x,y,z] is the subgraph induced on x, y, z. The remaining 9 equations can be
found in the supplementary material of the original work by Hočevar and Demšar [65].

2.3.2 G-Tries

A G-Trie [140] is a data-structure to designed to efficiently count subgraphs. It is a
prefix tree (trie) for graphs, where the root holds a single node and each successor of
a node in the trie is obtained by adding a vertex to the graph represented in its par-
ent node. Unlike ORCA, the subgraph counting algorithm based on G-Tries (dubbed
GT-Scanner) is an enumeration approach, meaning that all subgraph occurrences are
generated and are categorized according to their isomorphism class. The G-Trie data
structure allows an efficient combination of these two steps to prevent repeated isomor-
phism tests, which achieved a speed up of up to two orders of magnitude over previous
approaches. Recently, Aparício et al. [7] extended G-Tries to encompass information
about orbits, demonstrating how to use this graphlet prefix tree to generate the graphlet
degree vector of a network. GT-Scanner can be seen as a depth-first search algorithm
that maps a graph onto the G-Trie.

Figure 2.3 shows an example of, given a small directed network, how GT-Scanner
is used to determine the frequency of five directed graphlets, two of size 3 and 3 of
size 4. We omit the creating process of the G-Trie, whose details can be found in [7],
assuming that graphlets D, E and G were inserted in the G-Trie in this order, creating



2.4. MATHEMATICAL MODELLING OF INFECTIOUS DISEASES 49

Figure 2.3: Figure taken from Aparício et al. [7]. Shows the subgraph census (counting
the frequency of each subgraph) using a specific G-Trie. Nodes in red mean that no
candidate was found for that particular graphlet and the dotted arrows represent the
search path through the G-Trie.

intermediate tree nodes A, B, C and F.

GT-Scanner works by initially assigning all vertices to the root of the G-Trie,
marked as A in Figure 2.3. Then, for each node, it traverses the G-Trie by generating
candidates based on the connections of the current set of nodes. Taking the example of
Figure 2.3, it starts by vertex a, whose only neighbour is vertex b, which matches the
graphlet on G-Trie node B, increasing the frequency of orbit a0 of vertex a and orbit
a1 of vertex b. In the next step of the algorithm, there is no valid vertex in the graph
that fits G-Trie node C, so the search tracks back and matches G-Trie node F instead,
by expanding the current set of vertices with vertex d. As this matches a graphlet in
the G-Trie, the frequency of orbits b2, b3 and b4 are increased for vertices a, b and d,
respectively. The traversal of the G-Trie continues, but there is no candidate vertex in
the graph that matches G-Trie node G, so the search tracks back. Similarly, in G-Trie
nodes F and B there are no alternative vertices in the graph to continue the search, so
the process is restarted with vertex b in the root of the G-Trie.

2.4 Mathematical modelling of infectious diseases

We now provide a brief overview of modelling methods for infectious diseases, as
background for Chapter 5. The models we focus on describing the dynamics of disease
transmission between hosts, ignoring or underplaying the importance of within-host
viral dynamics. The majority of this section was written using the book by Kiss et al.
[83].

Mathematical models for infectious diseases come in a spectrum that represents
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a trade-off between complexity and explainability for causality. Simple models, like
classical compartmental models, allow encoding the main mechanisms of transmission
that answer questions about the probable existence of an epidemic, as well as its size
and length, but this simplicity is often acquired at the cost of accuracy. On the other end
of the spectrum, complex agent-based models (ABMs) carry a greater predictive power
by including individual-level interactions, but it is harder to create a link between the
coded complex dynamics and the results observed. This section is organized through
this increase in complexity, we start by describing simple compartmental models, how
to increase their complexity by removing the assumption of a well-mixed population
and finalize with ABMs.

2.4.1 Compartmental based models

This category of models works by splitting the population in labeled compartments
that represent the status of each individual towards the disease in study. These models
are formulated as Markov chains, as the transition probability between compartments
depends only on the current compartment.

Deterministic compartmental models are described through ordinary differential
equations (ODEs), whose variables represent the size of each compartment and their
derivatives over time encode transmission properties of the disease.

2.4.1.1 Susceptible - Infected

We start by one of the most simple models, the SIS model. In this case, only two
compartments are represented, dividing the population into those who are susceptible

(S) or infected (I). Upon the end of an infection event, an individual returns to the
susceptible compartment. This model is used for diseases that do not provide long term
immunity after infection, like influenza, so individuals may become infected again.

The ODE system for this model is written as:

dS(t)
dt

= γI(t)−βI(t)
S(t)
N

,

dI(t)
dt

= βI(t)
S(t)
N
− γI(t),

where S(t) and I(t) denote the size of the susceptible and infected compartments at
time t, β and γ are positive constants that represent the infection and recovery rates and
N is the size of the population.
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The meaning of these equations is simple: the rate of change of individuals in sus-
ceptible status depends on the rate of recovery and the number of infected individuals
(γI) minus the total rate of infectious contacts (βI) but only a fraction of which are
susceptible individuals that can lead to a new infection (βIS/N); the rate of change of
individuals in the infected compartment is the opposite.

In systems of equations such as the one presented above, it is of interest to con-
sider the steady-state (or equilibria) of the system, that is the behaviour of the system
stabilizes. In this context, the steady states of interest are the disease free state I = 0
or when the disease becomes endemic (I = N(1− γ/β)), meaning that the disease will
keep propagating in the population without imported infections, which exists only if
β/γ > 1.

2.4.1.2 Susceptible - Infected - Removed

Another simple compartmental model, perhaps the most classic example thereof, is
the SIR model, which adds a new compartment to the above, representing the removed

individuals. These are individuals that were infected and recovered from the disease
or died. In the case where the model does not contain a transition from the removed
compartment to susceptible, it can be considered a case where the disease provides
long term immunity after infection. An alternative to this model is the SIRS model,
where individuals may become susceptible to infection after recovery.

For the SIR model, the ODE system is written as:

dS(t)
dt

=−βI(t)
S(t)
N

,

dI(t)
dt

= βI(t)
S(t)
N
− γI(t),

dR(t)
dt

= γI(t),

thus, the similarities with the SIS model are evident.

2.4.1.3 Susceptible - Exposed - Infected - Recovered

We end this short overview of compartmental models with the SEIR model, which in-
serts an intermediate status between susceptible and infected that represents a latency
period until an individual becomes infectious (the E stands for exposed). We highlight
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this model because Covasim’s model [82], albeit not a compartmental model, imple-
ments a similar disease progression scheme, where individuals go through an exposure
period before becoming infectious.

In the case of the SEIR model, the ODE system is written as:

dS(t)
dt

=−βI(t)
S(t)
N

,

dI(t)
dt

= βI(t)
S(t)
N
−αE(t),

dI(t)
dt

= αE(t)− γI(t),

dR(t)
dt

= γI(t),

where α−1 is the average latency period, assuming that the latency period is a random
variable with exponential distribution of parameter α.

2.4.1.4 Stochastic models

The deterministic models we presented in the previous sections rely on the assumption
that the size of each compartment is big enough that mixing in the population is ho-
mogeneous, i.e., members of each compartment interact equally with members of all
compartments. At the beginning of a disease outbreak, it is unlikely that this condition
is observed as the majority of the population starts as susceptible and the amount of
infected individuals is small. As we model under the assumption that all individuals
are capable of infecting one another (the underlying assumption is that the contact net-
work is complete, we show how including network structure changes our model in the
following section), a more realistic model needs to incorporate stochastic effects.

Taking the SIS model as an example, the stochastic formulation is achieved by
considering S(t) and I(t) as discrete random variables (note that because S(t) = N−
I(t), there is only one independent random variable). Infection is transmitted between
a pair of susceptible and infected individuals at a rate τ, such that τN equals β, and
each individual recovers at a rate γ independently from all other individuals. One
possible way to model this process is treating it as a continuous-time Markov chain
with transitions:

(S, I) τSI−−→ (S−1, I +1),

(S, I)
γI−→ (S+1, I−1).
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This process is usually described in terms of Kolmogorov equations, to obtain the
probability that j infected individuals are observed at time t as:

d p j(t)
dt

= τ( j−1)(N− j+1)p j−1− (τ j(N− j)+ γ j)p j + γ( j+1)p j+1.

Focusing on the initial stage of the epidemic, where we can assume that the number
of susceptible individuals can be approximated by N, the epidemic will become extinct
if the infection rate is smaller or equal to the recovery rate (the basic reproductive rate,
R0, is given by τN/γ≤ 1). On the other hand, if R0 > 1 and there are i0 initially infected
individuals, the probability of an epidemic is given by P(epidemic)' 1−(1/R0)

i0 and
the probability of no epidemic is, similarly, P(no epidemic) ' (1/R0)

i0 . The main
differences that emerge from this stochastic model compared to the deterministic one
are the possibility that R0 > 1 does not lead to an outbreak and the final size of the
epidemic is given by a distribution rather than a single value.

2.4.1.5 Network based models

In the previous sections, we have been assuming that any individual may infect any
other, implying the existence of a fully connected contact network between the indi-
viduals in the model. This is an unrealistic assumption, real-world data of contact
or social networks shows that these network have properties such as scale-free (high
variability in the number of contacts each individual makes), homophily (individuals
seek to connect with other individuals with similar properties as themselves) and local
clustering effects.

To address this weakness, models based on network structure have been developed,
by representing individuals as nodes in a network and edges connecting them as the
contact patterns between the individuals, vehicles for the spread of infection. Trans-
mission from an infected node to a susceptible across an edge occurs as a Poisson
process with rate τ (the transmission rate, that may vary per edge, which we represent
by τi j). As the transmission across multiple edges is considered to be independent, a
susceptible node with k infectious contacts becomes infected according to a Poisson
process with rate kτ. An infected node recovers independently of the remainder of the
network following a Poisson process with rate γ (the recovery rate), that may change
from node to node (in which case we represent as γi for node i).

We now show one way to describe an SIS model with network structure. Let 〈Si〉(t)
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denote the probability that node i is susceptible at time t and 〈Ii〉(t) denote the proba-
bility that node i is infected at time t. Further, consider the following notation 〈SiI j〉(t)
to denote the probability that node i is susceptible and node j is infected at time t. Also
let gi j = 1 represent the existence of an edge between nodes i and j. The equations that
describe an SIS model on a graph can then be written as:

d〈Ii〉(t)
dt

= τ

N

∑
j=1

gi j〈SiI j〉(t)− γi〈Ii〉(t),

d〈SiI j〉(t)
dt

= τ

N

∑
k=1,k 6=i

g jk〈SiS jIk〉(t)− τ

N

∑
k=1,k 6= j

gik〈IkSiI j〉(t)

− τgi j〈SiI j〉(t)− γ j〈SiI j〉(t)+ γi〈IiI j〉(t),

d〈IiI j〉(t)
dt

= τ

N

∑
k=1,k 6=i

g jk〈IiS jIk〉(t)+ τ

N

∑
k=1,k 6= j

gik〈IkSiI j〉(t)− (γi + γ j)〈IiI j〉(t)

+ τgi j〈SiI j〉(t)+ τg ji〈IiS j〉(t),

d〈SiS j〉(t)
dt

=−τ

N

∑
k=1,k 6= j

gik〈IkSiS j〉(t)− τ

N

∑
k=1,k 6=i

g jk〈SiS jIk〉(t),

recalling that 〈Si〉(t) = 1−〈Ii〉(t), so we do not need to write an equation for the rate
of change of 〈Si〉(t). The terms of each equation are simple to explain, for example,

the term τ
N
∑
j=1

gi j〈SiI j〉(t) means that the probability of node i being infected in time t

depends on the probability that the node is susceptible and the number of its neighbours
that are infected, times the transmission rate. Refer to the book by Kiss et al. [83] for
an illustrative example in a toy networks of 3 nodes for more intuition on the origin of
these equations.

2.4.1.6 Stochastic simulation

In order to solve system of equations as the presented above, stochastic simulation is
often used. To this end, the Gillespie algorithm [49, 50] is one of the most widely em-
ployed algorithms. Without going into great detail about the procedure, the algorithm
proceeds in the following iterative steps:

• Find the rate at which each infected node will recover and each susceptible node
may become infected and compute the total rate of change occurring,
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• Draw the waiting time until the next event from an exponential distribution
parametrized by this total rate of change,

• Select which event occurs, the probability of choosing an event is proportional to
the event’s rate (for example, if an infection event has a rate of β and a recovery
event has a rate of γ, such that β > γ, then the probability of the infection event
is higher than the recovery event),

• Update the rates based on the change of status of the nodes involved in the event
and repeat.

2.4.2 Agent-based models

Advances in data generation and computing power have led to the emergence of agent-
based models, focused on the interactions and behaviours of individuals within com-
plex systems. In ABMs, each agent has a set of defined simple rules, from which
emergent complex behaviour is observed at a macro level, thus it is said that ABMs
are a bottom-up approach to modelling [99].

There has been widespread adoption of ABMs in infectious disease modelling,
with approaches that vary based on the application of the model [172]. As such, the
literature is filled with examples of agent-based simulators for epidemiology (see, for
example, STDSIM [119], EpiSimdemics [10], FRED [56] or the systematic review by
Willem et al. [183]) that have been applied to numerous infectious diseases, such as
influenza [35], measles [96, 129] or Ebola [160].

In the context of COVID-19, ABMs have also been widely employed to in-
form government policy in regards to the impact of policy on disease transmis-
sion [124, 125]. Besides Covasim [82], other examples include a model by Wolfram
[186], OpenABM-Covid19 [63] or COVID-ABS [162].
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Chapter 3

Directed Network Comparison

3.1 Introduction

Undirected networks represent relationships between entities under the assumption
that the relationship is symmetrical. For example, a Facebook friendship is mutual
because both users mutually agree to become friends and thus there is no difference
between source and target in the friendship. This abstraction is often insufficient to
capture more nuanced relationships. For instance, in Twitter there is an asymmetry
in the follower-followed relationship because the action of following another user is
not necessarily reciprocated. Directed networks allow us to model such relationships,
but this increased wealth of information leads to greater complexity when analyzing
them. Such is the case when comparing directed networks, where network comparison
metrics designed for undirected networks have been shown to be unsuitable for the
task [7, 152].

The first contribution in this chapter is an extension of NetEmd to directed net-
works, using directed graphlets of size up to 4. As exposed in Chapter 2, Xu and
Reinert [190] have previously proposed a similar extension (named TriadEMD) but it
is limited to graphlets of size 3. The main obstacle when going from size 3 to size 4
graphlets in directed networks is the combinatorial explosion in number of orbits due
to edge direction, there are 33 orbits in graphlets of size up to 3 but 730 when including
size 4 as well. In the undirected case, scaling up from size 3 to size 4 is a comparatively
much smaller jump, from 4 to 15. We propose two methodologies for our extension to
size 4: the first is a simple extension, where all orbits are used in the NetEmd calcula-
tion; in the second, we adapt the idea of Aparício et al. [7] and use only orbits that have
non zero frequency in both networks for the comparison. We test systematically the
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performance difference between using size 3 and size 4 graphlets to understand under
which circumstances the added computational load of size 4 graphlets leads to gains
in comparison performance. It is also worth noting that other related methods that
use graphlets for comparing directed networks, namely Directed Graphlet Correlation
Degree (DGCD) [152] and Graphlet Degree Distribution Agreement (GDA) [7] (refer
to Section 2.2 for an overview of these methods), also use size 4 graphlets as input to
their comparison measures.

One more key difference between our work and TriadEMD is the inclusion of orbits
from size 2 graphlets in the comparison, which is tantamount to including a comparison
of the degree distribution in the network comparison measure. Degree distributions are
the most commonly studied property to measure the structure of networks and are able
to distinguish between networks created with different models [116, 133, 136], but
often they are insufficient as an heuristic for network comparison as it is possible to
craft networks with the same degree distribution but widely different structures [94,
133]. Finally, the inclusion of orbits from size 2 graphlets is also supported by the
undirected version of NetEmd, where these orbits are also included [180].

Complex networks are heterogeneous in the amount of data they represent, with
famous examples ranging from Zachary’s karate club [198] with only 34 individuals to
gigantic networks like the Friendster social network [191], which contains more than
one billion relationships between its users. Such disparity makes the task of compar-
ing networks even harder, as networks that differ in size by multiple orders of mag-
nitude may still be organized according to similar topography, for instance when they
are generated by the same process. Identifying such “common organizational prin-
ciples" [180] is the basis for the NetEmd comparison measure. However, networks
representing real world phenomena are often inaccurate representations of that phe-
nomena due to unseen data, measurement errors or simply because the systems they
represent are too complex to fully describe. These inaccuracies lead to noise in the
statistics used to describe the network and similar topographies become harder to rec-
ognize, especially when networks differ greatly in size.

The distributions of graphlets are not immune to these errors, so our second contri-
bution in this chapter is using denoising methods to reduce the impact of these errors
so that NetEmd is able to more accurately distinguish networks according to those
core structures that compose each network. To this end, we propose a framework that
employs Principal Component Analysis (PCA) [68] as a denoising method before com-
paring the graphlet distributions with Earth Mover’s Distance (EMD). PCA assumes
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that mean and variance are sufficient statistics of the distribution [159], but graphlet
degree distributions break this assumption as, although hard to characterize, they are
thought to be similar to degree distributions that approximately follow power law dis-
tributions in real world networks [9]. Therefore, we hypothesize that PCA struggles
to create an appropriate model for these distributions, which can make the denoising
process ineffective, so we also propose an alternative intermediate step that uses Inde-
pendent Component Analysis (ICA) [25] instead of PCA.

We test our contributions in clustering tasks involving synthetic and real world net-
works, following the same experimental procedure as the original NetEmd paper [180],
which adheres to the framework of graph comparison introduced by Yaveroğlu et al.
[193]. We find that our proposed method of denoising using component analysis tech-
niques is able to improve NetEmd’s performance on clustering tasks, both in undirected
and directed networks. This improvement is particularly significant when comparing
networks of different sizes and densities, where NetEmd is already the state of the art.

3.2 NetEmd with Directed Networks

Directed networks pose challenges unlike the ones observed in undirected networks,
due to the combinatorial explosion in number of orbits introduced by distinguishing
(u,v) and (v,u) as different edges between u and v. There are 730 orbits when con-
sidering directed graphlets of size up to 4, compared to 15 in the undirected case, and
scaling up to size 5 in directed networks becomes unfeasible as the number of orbits
rises to 45,637. This sharp increase makes the task of counting orbit frequencies for
each node even harder, with no known analytical approaches like ORCA [65] that rely
on crafting sets of equations that exploit combinatorial relationships between smaller
graphlets to compute orbit counts. Instead, enumeration based approaches are required
in the directed case, which are known to be at least an order of magnitude slower than
analytical approaches in undirected networks. In order to adapt NetEmd to directed
networks, we use the G-Trie [140] data structure and the counting algorithm proposed
by Aparício et al. [7], publicly available at [138], modified to return the graphlet degree
matrix instead of the graphlet degree distribution.

How to handle this increased number of orbits in the comparison is also a challeng-
ing problem, especially when comparing networks that contain only a small subset of
orbits and differences within those orbits can get diluted when taking the average over
the whole set. Aparício et al. [7] argue that the comparison should only be done over
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Figure 3.1: Example to illustrate the usefulness of only using orbits that appear in at
least one of the networks being compared. Graphs G and H are the example provided
by Aparício et al. [7]; we adapt them to directed networks G′ and H ′, keeping the
same number of orbits in each network. We measure NetEmd(G′,H ′) = 5×10−5 and
Weighted_NetEmd(G′,H ′) = 0.12.

the orbits present in at least one of the networks, using networks G and H in Figure 3.1
as an example. In this case, the authors show that using the original formulation of
the GDA (described in Section 2.2.3) inflates the similarity score between the two
networks far beyond what would be expected from two so distinct looking networks,
with an agreement score of 0.92 against 0.32 when using their modified version that
compares only orbits in at least one of the networks. This modification to GDA is well-
founded because GDA is a measure of agreement, bounded between 0 and 1 and meant
to be interpretable; a score close to 1 means that the networks are similar and a score
close to 0 the opposite, so the magnitude of the value that the measure outputs is of
interest. However, NetEmd is a measure of distance between networks and the relative
difference between distances is more informative than the absolute value of that dis-
tance, so including information that an orbit is missing in both networks improves our
ability to tell if they are less distant from each other when comparing against another
pair of networks.

With the above in mind, we propose two versions of directed NetEmd. Given two
networks G and H and a set of m orbits O = {o1,o2, . . . ,om}, the first uses all m orbits
in this set, which in practice are all the orbits in graphlets of size up to 3 or 4 and the
formulation is the same as the original NetEmd in Equation 2.1. The second is using
the same idea of Aparício et al. [7], which we refer to as weighted NetEmd, where
we restrict the set of orbits to those that occur in at least one of the networks G or H.
This leads to a new set of m′ orbits O ′ = {o′1,o′2, . . . ,o′m}, with m′ ≤ m. The average
in Equation 2.1 is done over this set O ′ instead of the original O, but the rest of the
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formula is the same:

Weighted_NetEmdO ′(G,H) =
1
m′

m′

∑
i=1

EMD∗(poi(G), poi(H)). (3.1)

Graphs G′ and H ′ in Figure 3.1 show an analogous example to the one shown
by Aparício et al. [7] to demonstrate the difference between weighted and original
NetEmd applied to directed networks. Although it is usually impractical to scale up to
size 5 in directed networks, in a small example like this one it becomes feasible to do
so. In this context, we calculate a distance of 5×10−5 using all orbits and 0.12 when
using the weighted version.

3.3 NetEmd with Dimension Reduction

3.3.1 Motivation

In this section, we describe how we couple dimensionality reduction techniques with
NetEmd, using them as noise reduction techniques. The rationale is that processes
that generate networks are inherently noisy due to the complexity of the systems they
represent. This is particularly evident when we consider random networks generated
by the same model; we expect them to have similar structure and that similarity to be
reflected in the distribution of subgraph and orbit frequencies, but the stochastic nature
of the generation process introduces noise in these distributions that makes them harder
to identify.

Considering the graphlets and orbits shown in Figure 2.1, it is clear that (for exam-
ple) directed graphlet G2 cannot exist if G0 does not, and similarly directed graphlet
G12 cannot exist if G1 does not. More generally, it is clear that the different orbits do
not represent independent degrees of freedom, and are expected to be constrained by
the requirement of combinatorial consistency of the underlying full graph G as well as
correlations induced by the generation process.

In practice, both combinatorial enumeration of graphlets and a priori determination
of statistical relationships between them (beyond comparison to simple random graphs
as in [108]) are computationally infeasible. While this does not matter in practice
for the undirected case, for directed graphs as we consider here, the relatively large
number and complexity of orbits makes these much more important. We therefore
seek an approach that can adjust for the non-independence of orbit counts.
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Proceeding somewhat formally, let FG denote the graphlet degree matrix of graph
G for a set of orbits O, a n×m matrix where n = |V (G)|, m = |O|, such that [FG]i, j

represent the frequency of orbit j for node i. Further, let fi be the vector of frequencies
of node i, i.e. (fi) j = [FG]i, j meaning fi is the i-th row of FG. Now note that we
are only interested into networks up to isomorphism; in fact, our distance measures
depend on empirical histograms of orbit counts, deriving the distribution poi in (2.1)
from histogram heights like

ho j,y =
1
n

n

∑
i=1

1{(fi) j=y}, (3.2)

which is the proportion of nodes with y counts of orbit o j, where 1 is an indicator
function taking the value 1 if its argument is true and the value 0 otherwise. The right-
hand side of (3.2) is a sum of random variables, one for each node, and from (2.1) we
will further sum over orbits for a function of two such histogram heights.

In general, we will expect a random graph model to assign a probability to each
graph in some finite set, and according to this measure we expect a probability distribu-
tion to be induced on hG = [ho j,y]. As discussed above, we expect both combinatorial
constraints and correlations between orbit counts, meaning that a sum over all elements
of hG as implied by (3.2) and (2.1) will inflate, due to the additivity of variances of ran-
dom variables, the amount of noise in EMD realisations compared to the amount that
is absolutely necessary under the random graph model.

Therefore, a natural approach is to denoise using techniques that do not require ex-
plicit solution of or simulation from random graph models. In particular, we will use
the linear techniques of principal component analysis (PCA) and independent com-
ponent analysis (ICA), noting their computational efficiency compared to potentially
more general nonlinear methods [64]. The main idea of our methodology is therefore
to project the orbit frequencies to a lower dimension, training the dimension reduction
model to lose minimal information while removing noise.

Since it is not guaranteed that each graph will dimensionally reduce to the same
size, the approaches we use allow for expansion of the dimensionally reduced features
back to the original (high) dimension. The NetEmd comparison from Equation 2.1 is
consequently applied to the reconstructed frequencies. By using the first L components
of the linear methods, which contain the most signal from the dataset, to reconstruct
the original counts, this can be intuitively understood as decreasing noise within the
orbit frequencies when we do not have a good model for that noise.
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3.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a technique for dimensionality reduction that
preserves as much variability of the data as possible, by computing principal compo-
nents of the data. Principal components are sequences of orthogonal unit vectors that
form an orthonormal basis, in which the original dimensions of the data are linearly un-
correlated. When projecting the data onto this new basis, these vectors can be seen as
the directions that maximize the variance of the projected data, with the first principal
component representing the maximum variance.

Let FG denote the graphlet degree matrix of graph G for a set of orbits O, a n×m

matrix where n= |V (G)|, m= |O| and FGi, j represents the frequency of orbit j for node
i. We assume that the frequencies have been normalized, a preprocessing step advised
before applying PCA (to prevent notation overload, we use the same FG to denote
the normalized version of the graphlet degree matrix). The principal components of
this matrix are defined by V = FGW, where W is a m×m matrix whose columns are
the eigenvectors of Fᵀ

GFG. To allow for only the first L components, the matrix W
can be truncated to WL, with dimensions m× L, leading to a transformation VL =

FGWL. This truncation is done such that the L eigenvectors chosen to correspond to
the largest eigenvalues of W. The original graphlet degree matrix can be reconstructed
as F̂G = VLWᵀ

L = FGWLWᵀ
L. The goal of PCA is to learn WL such that the variance

of the original data preserved is maximized, while also minimizing the total squared
reconstruction error ||FG− F̂G||22 = ||VWᵀ−VLWᵀ

L||22.
We use the reconstructed graphlet degree matrix to compare networks with

NetEmd, keeping Equation 2.1 virtually unchanged from the original formulation:

PCA_NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(p̂oi(G), p̂oi(H)), (3.3)

where p̂i(G) and p̂i(H) are obtained from F̂G and F̂H respectively, instead of FG and
FH .

3.3.2.1 Choosing the number of components.

Choosing an appropriate number of components to project the data down affects the
reconstruction error and therefore the amount of noise reduced. If we take L = m, then
clearly we are able to reconstruct the original frequencies perfectly and no noise has
been removed from the data. On the other hand, picking a value for L too low, leads
to foregoing descriptiveness of the data. A common strategy for picking the number
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of components is through the amount of variance explained by each component, a
strategy that allows us to adapt the number of components to suit the networks we are
comparing.

The sample covariance matrix of each orbit, i.e. FGi,1, FGi,2, . . . , FGi,m , is propor-
tional to Fᵀ

GFG (the derivation for this result can be found in [79], pp. 30-31) and
contains the variance of the frequency of each orbit in its diagonal. As a square ma-
trix, according to the spectral theorem, the covariance matrix can be diagonalized by
its eigenvectors and the values of the resulting diagonal matrix are the correspond-
ing eigenvalues. These eigenvalues represent variability of each axis in the projected
space. Therefore, by taking the sum of the L highest eigenvalues, the ones correspond-
ing to the first L components, we get the variance explained by the first L principal
components. The ratio ∑

L
1 λi/∑

m
1 λi, where λi is the eigenvalue corresponding to the

ith eigenvector, measures the proportion of variance explained by the first L principal
components. Finally, to condition the number of components on the proportion of vari-
ance explained, the smallest L is calculated such that ∑

L
1 λi/∑

m
1 λi ≥ r where r×100%

is the percentage of variance explained.

3.3.3 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical technique in which an observed
vector of random variables is thought to be the linear combination of unknown inde-
pendent components. These components are assumed to be mutually statistically in-
dependent and with zero mean. The classic example of an ICA application is a party
where a microphone is picking up multiple conversations and the goal is to separate
the source signal from each conversation from the mixed one picked up by the micro-
phone.

Transposing ICA to the domain of network comparison, we can draw an analogy
from the above application by considering that the voices in the conversation are the
nodes in the network and the orbit frequencies are the data points captured by the mi-
crophone. Our goal is then to search for the source signals, i.e., network characteristics
stemming from its generation mechanism that generate such frequency distribution.
We conjecture that by using these source signals to reduce noise in the orbit frequency
distributions, our network comparison measure becomes able to more accurately dis-
tinguish networks with different generation mechanisms.

As before, let FG denote the graphlet degree matrix of graph G for a set of orbits
O and let fi be the vector of frequencies of node i, i.e. fi, j = FGi, j . We can write fi
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as fi = Asi, where A is called the mixing matrix and si are the L independent compo-
nents. The goal of ICA is to estimate A and si from fi only. In practice, algorithms
to calculate independent components compute a weight matrix W, a pseudo-inverse
of A and obtain the independent components through si = Wfi. Using the FastICA
algorithm [72, 73], W is constructed iteratively by finding unit vectors w such that the
projection wᵀfi maximizes non-gaussianity, measured by the approximation of negen-
tropy J(wᵀfi) ∝ [E(G(wᵀfi))−E(G(ν))]2, where G(x) = logcoshx and ν is a standard
Gaussian random variable with mean 0 and variance 1. These unit vectors w are com-
bined into the weight matrix W and decorrelated to prevent convergence to the same
maxima by W = W/

√
‖WWᵀ‖ (the matrix norm is calculated using the l2 norm); this

procedure is then repeated with W = 3
2W− 1

2WWᵀW until convergence.

Upon obtaining the weight matrix, we calculate its pseudo-inverse to obtain the
mixing matrix A and calculate F̂G similarly to what was done with PCA: we pro-
ject FG to a lower dimensional space using W and apply the mixing matrix A to re-
trieve the original data. The final NetEmd formula then takes a similar form as for
PCA_NetEmd:

ICA_NetEmdO(G,H) =
1
m

m

∑
i=1

EMD∗(p̂oi(G), p̂oi(H)), (3.4)

with p̂i(G) and p̂i(H) obtained from F̂G and F̂H respectively, as before.

3.4 Experimental Setup

3.4.1 Measure of Cluster Performance

Given a set of networks G = {G1,G2, . . . ,GN}, divided in disjoint classes C = {c1,c2,

. . . ,cm}, we use the performance measure proposed by Wegner et al. [180] that captures
the idea that networks of the same class should be nearer to each other than to networks
of other classes. It is defined as an empirical probability P(G) = d(G,G1)< d(G,G2),
where G1 is a network selected randomly from the same class as G and G2 is randomly
selected from a different class, and d is the network comparison statistic. The perfor-
mance over the whole dataset is the average P(G) over all the networks in G , and we
write this as P = P(G) = 1

|G |∑G∈G P(G). In Appendix A, we present results using area
under precision-recall curve (AUPR) and adjusted Rand index (ARI).
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3.4.2 Synthetic datasets

We reproduce the experimental setup of Wegner et al. [180], testing our proposed mod-
ifications to NetEmd on the same eight random network models. These models are:

• Erdős-Rényi model [38]. A random graph with n is generated by picking m

unique edges chosen at random from the
(n

2

)
possible edges. m was chosen to

generate networks with the appropriate density.

• Barabasi-Albert preferential attachment model [9]. An initial graph is created
with m nodes and new nodes are added iteratively to the network, each new node
is connected to m existing nodes, picked randomly with probability proportional
to their degree. m was chosen to generate networks with the appropriate density.

• Geometric random graphs [48], using a 3-dimensional square (D = 3). Nodes
are randomly embedded in a D-dimensional space and are connected if the Eu-
clidean distance between them is smaller than a threshold r. This threshold pa-
rameter was determined by grid search to generate networks with the desired
number of edges.

• Geometric gene duplication model [62]. Starting with an initial network of 5
nodes embedded in a 3-dimensional space, on each iteration a node is chosen
randomly to be duplicated. The duplicated node is placed randomly in the 3-
dimensional space at an Euclidean distance of at most 2 from the original node.
This process is repeated until the desired number of nodes, and nodes at a dis-
tance of r or less at connected. This distance r is chosen to generate a network
with the appropriate number of edges.

• Duplication divergence model of Vázquez et al. [176]. The network grows in
two stages. In the first stage, a node v is chosen randomly to be duplicated into
a node v′, that keeps all the edges from v. The nodes v and v′ are connected
with probability 0.05. In the second stage, one of the duplicated edges ((v,u)
or (v′,u)) is chosen randomly and deleted with probability q. This process is
repeated until the network grows to the desired number of nodes and q is chosen
to generate networks with the appropriate density.

• Duplication divergence model of Ispolatov et al. [74]. Starting from a network
with a single edge, a node is chosen randomly and duplicated, with the new node
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keeping each of the original’s neighbours with probability p. This parameter is
chosen to generate networks with the desired number of edges.

• Configuration model, using the Duplication divergence model of Vazquez et
al. [176] as the generator for the graphical degree sequence.

• Watts-Strogatz model [179]. Nodes are placed in a ring and connected to their
k nearest neighbours in both sides of the ring. Each edge is then rewired with
probability 0.05 to a new node selected at random. The parameter q is chosen to
generate networks with the appropriate average degree.

We generate 10 networks per model per combination of number of nodes and av-
erage degree. The set of number of nodes used is N = {1250,2500,5000,10000} and
the set of average degrees is k = {10,20,40,80}. This leads to a total of 160 networks
per model and 1280 networks in total.

For the directed datasets, we add varying levels of reciprocity {0,25,50,75,100}.
To generate a directed network with reciprocity r, we take the undirected version, we
duplicate and invert all edges (if (u,v) is in the undirected network, we add (v,u) to
the directed version) and we then take (100− r)% of these pairs and choose randomly
a direction to remove (either (u,v) or (v,u)). This is done incrementally such that if
(u,v) is removed from the dataset with 75% reciprocity, then it is also removed from
the datasets with 50%, 25% and 0% reciprocity.

These datasets of synthetic networks give rise to two tasks aimed at gauging how
well a network comparison measure separates clusters according to their generation
mechanism, with the ground truth given by the random network model used to generate
the networks in each cluster. The first, more simple task is to separate networks with
the same number of nodes and the same density. To this end, we create 16 groups based
on the combinations of N and k, each group containing 10 realizations of each random
network model, for a total of 80 networks. This task is equivalent to RG1 in the original
NetEmd paper [180]. The second task, equivalent to RG3 in the original NetEmd
paper, is to compare all 1280 networks simultaneously, finding the 8 clusters of 160
networks. This task measures how sensitive the comparison measure is to differences
in an order of magnitude in number of nodes and edges, making the separation by
model type more difficult. In directed networks, we repeat Task 1 and 2 for each
level of reciprocity, determining how sensitive the network comparison is to this third
parameter that impacts the set of orbits available for comparison (the set of orbits with
0% reciprocity is disjoint from the set of orbits with 100% reciprocity).
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Onnela et al. Real directed

# Networks 151 1283

Number of Nodes

Min. 30 9

Median 918 160

Max 11586 62586

Number of Edges

Min. 62 21

Median 2436 2428

Max 232794 1614977

Density

Min. 4.26×10−5 3.78×10−5

Median 0.015 0.095

Max 0.499 0.75

Reciprocity

Min. - 0.0

Median - 0.533

Max - 1.0

Table 3.1: Summary statistics for the Onnela et al. and real world directed networks
datasets.

3.4.3 Real world datasets

We use the dataset of Onnela et al. [118] to validate our methodology on a mix of
real world and synthetic networks. The multiple sources that make up this dataset lead
to a heterogeneous set of networks; however, the ability to separate these networks
according to their domain is desired from a network comparison method. We were
unable to find sources for the original 746 networks, so we use the reduced set proposed
by Ali et al. [4] with 151 unweighted and undirected networks. There is no ground
truth for the true clusters in this dataset and the dendograms constructed through the
methods proposed by Onnela et al. [118] and Ali et al. [4] disagree on the composition
of each cluster. Therefore, we aim to reconstruct clusters according to the type of data,
which can be visualized in the supplementary material of Ali et al. [4].

For directed networks, we download four datasets from the Stanford Network Anal-
ysis Project (SNAP) library [93]: Gnutella peer-to-peer file sharing network from
August 2002 [92, 142] (9 networks with an average reciprocity of 0%), CAIDA au-
tonomous systems relationships datasets from January 2004 to November 2007 [91]
(122 networks with an average reciprocity of 100%), ego networks of circles from
Google+ [105] (132 networks with an average reciprocity of 28%) and ego networks
of lists from Twitter [105] (973 networks with an average reciprocity of 54%).

The summary statistics of the Onnela et al. [118] and the real world directed net-
works are given in Table 3.1.
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd G5 0.995 ± 0.003 0.918 0.890

PCA_NetEmd

50% Variance 0.98 ± 0.01 0.915 0.864

80% Variance 0.98 ± 0.01 0.918 0.893

90% Variance 0.995 ± 0.004 0.922 0.891

95% Variance 0.993 ± 0.004 0.919 0.892

99% Variance 0.995 ± 0.004 0.921 0.891

ICA_NetEmd

2 components 0.985 ± 0.002 0.926 0.869

10 components 0.994 ± 0.004 0.930 0.887

15 components 0.996 ± 0.003 0.929 0.890

GCD
11 orbits 0.99 ± 0.01 0.888 0.789

73 orbits 0.994 ± 0.008 0.885 0.819

GDA

G3 0.986 ± 0.003 0.868 0.876

G4 0.977 ± 0.007 0.886 0.855

G5 0.95 ± 0.01 - 0.832

Table 3.2: Results for Task 1, Task 2 and the Onnela et al. [118] datasets in undirected
networks. The metric used for Task 1 is the mean (and standard error of the mean) of
the 16 values for P in each combination of number of nodes with network density. The
metric used for Task 2 and Onnela et al. dataset is the sole value of P after comparing
the 1280 and 151 networks, respectively. The parameter column indicates: graphlet
size used in original NetEmd; percentage of variance explained to determine the num-
ber of components in PCA_NetEmd (using orbits in graphlets of size up to 5); the
number of components used in ICA_NetEmd, using orbits in graphlets of size up to 5;
the number of orbits used by Graphlet Correlation Degree (GCD); graphlet sizes used
in GDA. The bolded values are the maximum for each task. Italic values are within one
standard error of the maximum performance. Note that results for GDA with graphlet
size 5 took longer than a week to return results for Task 2, at which point we stopped
the computation.

3.5 Results

3.5.1 Undirected Results

We present the results for Tasks 1 and 2 in undirected networks and the results for the
Onnela et al. [118] dataset in Table 3.2. The results for Task 1 show the average and
standard error for the 16 values of P, one for each combination of N and k. The results
for Task 2 and Onnela et al. dataset show the single value of P after comparing the
1280 and 151 networks, respectively.

We find that our proposed modifications to NetEmd achieve an increase in perfor-
mance, with ICA_NetEmd outperforming original NetEmd in synthetic datasets and



70 CHAPTER 3. DIRECTED NETWORK COMPARISON

PCA_NetEmd in the Onnela et al. dataset. The performance gain in Task 1 is not
significant as the results are within a standard error of each other, but on Task 2, the
more difficult task, the difference is more pronounced. This performance improvement
in synthetic datasets is not reflected in the Onnela et al. dataset, where 15 components
are necessary to equalize the performance of original NetEmd. The best performance
in the Onnela et al. dataset is PCA_NetEmd with 80% explained variance, which con-
trasts with the results in the synthetic dataset, where 80% explained variance achieves
worse performances than the original NetEmd. Using higher values for explained vari-
ance in PCA_NetEmd also improves performance over original NetEmd in Task 2 and
Onnela et al. dataset, but not in Task 1.

3.5.2 Directed Results

We show the results for Task 1 in directed networks in Table B.1 and the results for
Task 2 and the dataset of real world directed networks in Table 3.3. The results for Task
1 show the average and standard error for the 16 values of P, one for each combination
of N and k, for each level of reciprocity. The results for Task 2 and real world directed
networks dataset show the single value of P after comparing the 1280, for each level
of reciprocity, and 1232 networks, respectively.

Similarly to the undirected case, we find that the results for each algorithm in Task
1 are similar across different levels of reciprocity, meaning that the various different
versions of NetEmd and DGCD are able to distinguish the generation mechanism re-
gardless of how many edges are reciprocated in a directed network. Results show
that DGCD with 129 orbits achieves best performance for 0%, 25%, 50% and 75%
and PCA_NetEmd with 90% explained variance for 100% reciprocity. We observe no
significant difference between using NetEmd with all orbits, with weighted orbits or
coupled with dimensionality reduction techniques. Results with TriadEMD are non-
significantly better than our NetEmd version with orbits from size 3 graphlets in this
task, indicating that using graphlets of size 2 for the comparison in this task does not
help differentiating between different models. This is likely due to the configuration
model, which shares the same degree distribution as the duplication divergence model
of Vazquez et al. [176].

In Task 2, our results show a noticeable gain in performance when using NetEmd
with ICA over other NetEmd versions and DGCD, in particular when using only 2
components and in reciprocity levels smaller than 100%. We find that using orbits in
graphlets of only size 2 and 3 orbits achieves better results for this task than using
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.923 0.905 0.907 0.905 0.915 0.864

G4D 0.908 0.879 0.881 0.878 0.927 0.813

Weighted
G3D 0.918 0.899 0.902 0.898 0.913 0.868

G4D 0.902 0.876 0.878 0.875 0.923 0.827

PCA

50% Variance 0.924 0.897 0.900 0.894 0.908 0.821

80% Variance 0.924 0.885 0.892 0.881 0.920 0.825

90% Variance 0.921 0.882 0.889 0.878 0.927 0.824

95% Variance 0.915 0.880 0.887 0.876 0.922 0.822

99% Variance 0.914 0.878 0.885 0.875 0.924 0.818

ICA

2 components 0.941 0.916 0.914 0.911 0.927 0.712

10 components 0.934 0.900 0.903 0.896 0.923 0.843

15 components 0.931 0.896 0.903 0.892 0.917 0.844

TriadEMD 0.926 0.903 0.906 0.906 0.916 0.859

DGCD
13 orbits 0.905 0.904 0.895 0.885 0.871 0.812

129 orbits 0.887 0.884 0.880 0.880 0.885 0.799

GDA
G3D 0.842 0.802 0.802 0.800 0.858 0.736

G4D - - - - 0.886 -

Table 3.3: Results for Task 2 in directed networks, for each level of reciprocity, and
for the real world networks dataset. The metric used for this task is the sole value of
P after comparing the 1280 and 1231 networks, respectively. The parameter column
indicates: graphlet size used in directed and weighted NetEmd; percentage of variance
explained to determine the number of components in PCA_NetEmd (using orbits in
graphlets of size up to 4); the number of components used in ICA_NetEmd, using
orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes
used in GDA. The bolded values are the maximum for each dataset. Note that results
for GDA with graphlet size 4 took longer than a week to return results for Task 2 and
in the real world networks dataset, at which point we stopped the computation.

ones with size up to 4, with the exception of the two extremities in reciprocity (0% and
100%), where having more available orbits for comparison helps performance. In this
task, we also find that using Weighted_NetEmd degrades performance compared to
using all orbits. Results also show that our versions of NetEmd perform very similarly
TriadEMD, with a slight advantage to TriadEMD at 0, 75% and 100% reciprocity,
which is expected again due to the configuration model adding a confounding factor
when using graphlets G0 and G1 from Figure 2.1 in the comparison.

On the other hand, Weighted_NetEmd reaches the best performance in the real
directed networks dataset, where, similarly to Task 2 in synthetic networks, using
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smaller graphlets yields better results. Table 3.3 shows that ICA_NetEmd with 10
and 15 components obtains better performance than NetEmd without dimensionality
reduction and with size 4 graphlets. This comparison is unfair to ICA_NetEmd, as
results suggest that when there is a large discrepancy between the sizes of the net-
works, using smaller graphlet sizes improves the performance of NetEmd. Therefore,
although Weighted_NetEmd achieves the best performance out of the parameters we
include in Table 3.3, the top performance in the real world directed networks dataset is
achieved by ICA_NetEmd with size 3 graphlets and 10 components. All four versions
of NetEmd that we propose achieve better results than DGCD and GDA in this dataset.
This is also true when comparing our versions with size 3 graphlets against TriadEMD,
showing that in real world networks the degree distribution is able to contribute in a
positive manner towards being able to discriminate networks of different sources

3.5.3 Performance by number of ICA components

We examine the impact on performance of varying the number of components used
for ICA_NetEmd, with the caveat that increasing the number of components leads to
a greater computational complexity as the FastICA algorithm takes more iterations to
converge. We also explore the performance of ICA_NetEmd under smaller graphlet
sizes, namely graphlets sizes 3 and 4 for undirected networks and size 3 for directed.
There are two different ways of using smaller graphlets on ICA_NetEmd, the more
natural way in which we compute the independent components using the set of orbits
related to the desired graphlet size, or an alternative way in which the components
are computed using a larger graphlet size and the reconstructed graphlet degree matrix
is posteriorly truncated to include only the orbits of the desired graphlet size. For
example, when calculating network distances using undirected graphlets of size up to
4, there are 15 orbits. In the first method, the graphlet degree matrix FG is a |V (G)|×15
matrix and we simply calculate F̂G as described in Section 3.3, constraining the number
of components used to a maximum of 14 components. In the second method, FG is a
|V (G)|×73 matrix, allowing a maximum of 72 components to compute F̂G, which is
then truncated to 15 columns.

Figures 3.2 to 3.7 show, in order, performance with varying number of components
in undirected networks Task 1, undirected networks Task 2, directed networks Task 1,
directed networks Task 2, the Onnela et al. dataset and directed real world networks.

We find that adding more components to ICA does not always translate to a better
performance, instead we find that there is a performance maximum obtained with a
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Figure 3.2: Undirected networks - Task 1

Figure 3.3: Undirected networks - Task 2

Figure 3.4: Directed networks - Task 1
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Figure 3.5: Directed networks - Task 2

Figure 3.6: Onnela et al. dataset

Figure 3.7: Real world directed networks dataset
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low number of components that depends on the task. Adding more components after
this maximum leads to a decline in performance, either an immediately visible decline
(Figures 3.3, 3.5 and 3.6) or after plateauing at that maximum value (Figures 3.2, 3.4
and 3.7). This behaviour indicates that our ICA algorithm is working as expected, as
we find a suitable number of components that maximizes the noise reduced in the orbit
frequency distributions, so adding more components reduces the difference between
FG and F̂G which negates the positive impact on that noise reduction.

Figures 3.4 and 3.5 show a sharp decline in performance when using graphlets of
size up to 3 with reciprocity 0% and 100%, after 13 and 4 components respectively.
This is caused by these extreme levels of reciprocity limiting the orbits that can occur
in the networks we compare. With 0% reciprocity, only graphlets with no reciprocal
edges can occur in these networks, so all orbits in graphlets with reciprocal edges
have a frequency of 0. As there are only 13 orbits belonging to graphlets with no
reciprocal edges, when we try to compute more than 13 independent components the
performance degrades as more components are added. With 100% reciprocity, we find
a similar situation but there are only 4 orbits in graphlets of size 2 and 3 for which all
edges are reciprocal (orbits 2, 27, 28 and 32 in Figure 2.1).

3.5.4 Discussion on the time complexity of NetEmd

Calculating the NetEmd measure is a process that can be separated in two phases: ac-
quiring the distributions of the network statistics of interest and comparing the statis-
tics using the EMD. In the case of the algorithm we propose in this work, obtaining the
distributions of network statistics involves calculating the graphlet degree matrix and
performing PCA or ICA on this matrix.

Obtaining the graphlet degree matrix is the most computationally expensive step
of this process, with a time complexity of O(Ndm−1), where N is the number of nodes
in the network, d the maximum degree of any node in the network and m the size
of the graphlets being enumerated. In undirected networks, we use the combinatorial
algorithm ORCA [65] that relies on an analytical approach to set up a system of lin-
ear equations that relates different orbit frequencies. In directed networks, no such
approaches are known [139], so we rely on G-Tries [7, 140], a data structure that sup-
ports a graphlet enumeration algorithm by representing subgraphs in a prefix tree, the
state of the art in enumerating directed graphlets, to our knowledge [7, 139].

The complexity of PCA is split in two parts, computing the covariance matrix is
O(N p2) and doing the eigenvalue decomposition is O(p3), where N is the number of
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nodes in the network and p the number of orbits being considered. This leads to an
overall complexity of O(N p2 + p3).

The complexity of ICA is harder to characterize. Firstly, the FastICA algorithm
assumes that the data has been centered and whitened [73]. The implementation we
use, from scikit-learn [127], uses PCA to do the whitening preprocessing, so its com-
plexity is at least as high as PCA. The iterative algorithm to find the weight matrix
W is repeated until the matrix has converged, but there is no prior assurance that the
algorithm converges or how many iterations it takes to do so. The scikit-learn im-
plementation defines a maximum number of iterations to stop execution, we set this
value to 1000. Each iteration involves calculating logcosh(wᵀfi) for each component
and each node, which the scikit-learn implementation does in O(Nc2), where c is the
number of components to be calculated, and the decorrelation step, which is done in
O(c2). The overall complexity of ICA then becomes O(N p2 + p3 + INc2), where I is
the number of iterations.

Wegner et al. [180] calculate the complexity of comparing two graphlet distribu-
tions using EMD∗ to be O(k(N +N′) log(N +N′)), where N and N′ are the number of
nodes of each network and k is the maximum number of function calls to the optimiza-
tion algorithm used to align the distributions.

3.5.5 Discussion on orbits from smaller graphlet sizes

Wegner et al. [180] have shown that reducing the graphlet size as input to NetEmd
can improve the quality of the clusters under certain conditions. A more common rea-
son to use smaller graphlets for comparison is a computational load argument, as we
show in Appendix 3.5.4, increasing the graphlet size leads to more computation time
in each step of the NetEmd framework. In the first step, computing orbit frequencies
of graphlets of size 4 in directed networks or size 5 in undirected networks can be
prohibitive for very large graphs. Another consideration is the time taken to compute
the EMD between orbit distributions, particularly in directed networks with graphlets
of size 4 requiring 22 times more calls to the EMD∗ function than using size 3. Fi-
nally, computing the principal or independent components also contain a complexity
component dependent on the number of orbits we consider as features to these meth-
ods, which also contribute to greater computational load when increasing the graphlet
sizes as input to NetEmd. Therefore, it is important to understand in which situations
decreasing the graphlet size as input to NetEmd leads to similar or better performance
to avoid paying the high computational cost.
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We previously presented the performance of ICA_NetEmd under smaller graphlet
sizes, for multiple components used, in Figures 3.2 to 3.7. The results for Task 1, both
in directed and undirected networks, demonstrate that when comparing networks of
similar sizes and densities using bigger graphlet sizes yields a more accurate compar-
ison. The same holds for Task 2 in the undirected case and in the extreme cases of
reciprocity (0% and 100%) in Task 2 of the directed experiments, where ICA achieves
the top performance with size 5 undirected and size 4 directed graphlets, respectively.
On the other hand, in the datasets of real world networks and in directed Task 2 with
reciprocity of 25%, 50% and 75%, size 5 graphlets in undirected networks and size 4
in directed networks perform worse than size 4 and size 3, respectively.

For the datasets of real networks in particular, this difference in performance can be
explained by noticing that these datasets contain very small networks such that some
graphlets have no matches in them. This issue is amplified the larger the graphlet size
considered is and it adds a confounding factor to the network comparison, similar to the
example of Figure 3.1. Incidentally, this is the only dataset where Weighted_NetEmd

achieves better performance than following the original formulation.

Figures 3.2 to 3.7 also show the performance results of using the full set of size k

orbits to denoise the distributions of k−1 or k−2 orbits. In this second way of using
ICA, the only time saved compared to using the full set of orbits is the time to compute
the EMD between orbit distributions and we find that in no case it leads to the best
clustering performance. However, Figure 3.3 shows a breakpoint at 30 components,
where the performance using size 3 and 4 orbits after denoising with size 5 succeeds
in performing better than size 5. The reason for this is that, as more components are
added, the smaller the reconstruction error ||FG− F̂G||2 is, so the performance with
those parameters tends to approximate the performance of the original NetEmd with
those graphlets sizes.

The performance of PCA_NetEmd under smaller graphlet sizes follows a similar
set of rules to ICA_NetEmd, with better performances in Task 1 measured when using
larger graphlets and in Task 2 and real world networks when using smaller graphlet
sizes. Tables B.2 to B.4 detail the results for multiple combinations of graphlet size
and percentage of variance explained. Unlike ICA_NetEmd, our experimental setup
does not allow us to claim that after a certain value of explained variance performance
degrades or stabilizes. Instead, results suggest that the optimal threshold depends on
both the dataset and the size of graphlet chosen. Like with ICA_NetEmd, choosing a
low value for percentage of explained variance for Task 2 in directed networks yields
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the best performance for 0, 25, 50 and 75% reciprocity, but otherwise choosing 90 or
95% explained variance seems to be a good rule of thumb for best performance with
PCA_NetEmd.

3.6 Conclusion

We presented two extensions of NetEmd to directed networks, one a direct extension
that uses all orbits of graphlets up to size 4 and another that compares networks based
only on the orbits that exist in at least one of the networks. We showed that our method-
ology achieves state of the art performance in large datasets of synthetic networks with
heterogeneous network sizes and in datasets of real world networks.

We also proposed to add dimensionality reduction techniques, namely PCA and
ICA, as a preprocessing step to the network comparison. The goal of this step is to
use dimensionality reduction as a process to attenuate noise within orbit frequencies,
that can be introduced by random number generation (in synthetic networks) or data
collection/representation (in real world networks). Results show that this preprocess-
ing improves the performance of NetEmd not only when comparing networks with the
same number of nodes and edges, but especially in large datasets containing networks
of different sizes.

From an end-user perspective, our extensive testing allows us to recommend guide-
lines for which version of NetEmd to use in which situation. If the set of networks is
homogeneous in number of nodes and average degree, using the largest graphlet size
available (size 5 in undirected, size 4 in directed) coupled with ICA (10 to 15 compo-
nents) leads to the best results. In the cases where there is a large variety in number of
nodes or average degree between the networks in the dataset, using smaller graphlets is
generally advised. The exception is in directed networks, if the connections within the
networks have no reciprocity, then using graphlets of size 4 (with ICA) is more likely
to yield a more accurate comparison, due to having a larger set of orbits with non-zero
frequency. On the other hand, if the average reciprocity allows using the whole range
of graphlets of size 3 and 4, then it is more likely that using graphlets of size 3 coupled
with ICA will lead to a more accurate distinction between networks. In this case, 2
components might be enough if the size of the networks are all within one order of
magnitude from each other but 5 to 10 components if there is a wider difference.



Chapter 4

Vaccination Discussions in Mumsnet

4.1 Introduction

Social networks are pervasive in modern society, with Facebook, Reddit, Twitter, In-
stagram and LinkedIn among the most visited sites worldwide. These forms of social
media generate immense amounts of data about the interactions of their users, which
can be used to inform models of human behaviour. However, the size of these net-
works generally means it is infeasible to study them in their entirety. For example, it is
estimated that over six thousand tweets are sent per second on Twitter. Another consid-
eration is that certain subnetworks—communities within these large networks—may
exhibit local behaviour that is different to the global behaviour of the network. As such,
it is important when developing models to be able to distinguish between patterns of
individual user behaviour and the aggregate statistical properties of such behaviours.

In this chapter, we apply the network comparison tools we developed and presented
in the previous chapter to study how people communicate online about vaccination.
The World Health Organization named ‘Vaccine hesitancy’, i.e. the reluctance or re-
fusal to vaccinate despite the availability of vaccines, as one of the 10 major threats
to global health in 2019 [187]. Vaccination is a fundamental tool in the prevention of
the spread of infectious diseases, and resistance to vaccination has led to outbreaks of
controlled diseases like measles [117], putting in danger people who, due to medical
conditions, rely on high levels of immunity to avoid contracting these infections. Since
vaccine “nonconformers” [17]—parents who do not vaccinate their children or do so
with a subset of the recommended vaccines—tend to be proximately located [17], the
refusal of vaccination in certain communities reaches values as high as 25% [117].

As might be expected for a health-related topic, vaccination gathers a great deal of
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traction in online discussions; it has historically been a controversial topic, and remains
a matter of considerable debate [13]. Brunson [17] studied the influence of social
and information networks on the vaccination decision and found that the influence
of family, friends and medical specialists outweighs that of information sources such
as the internet or mass media. However, they also found that “nonconformers” seek
these information sources significantly more than their “conformer” counterparts. A
study by Davies et al. [29] showed that when searching for keywords “vaccination”
and “immunisation”, almost half of the results in the most popular search engines are
anti-vaccination. This creates a feedback loop for “nonconformers”, who seek more
information, and thus encounter further information that is anti-vaccination.

The issue of vaccine hesitancy is particularly timely during the COVID-19 pan-
demic, as the pandemic remains not only a health threat but also a threat to social, eco-
nomic and general well-being worldwide. Despite evidence of the efficacy of the vac-
cines developed against the virus [47, 131, 163, 173], concerns rise about the safety of
a vaccine due to the hastened process of its development and testing [34], particularly
in light of reports regarding rare blood clots linked to the Astra Zeneca vaccine [184].
Although early studies demonstrated that a high percentage of the population was plan-
ning to refuse a vaccine against SARS-CoV-2 [128], rollout has been very successful
so far, particularly in the United Kingdom (UK), where it has been reported that nearly
50 million second doses and nearly 40 million boosters have been administered, cor-
responding to uptakes of 86% and 68% [54]. However, research suggests there is still
a high level of vaccine hesitancy within specific communities, such as minority ethnic
groups [146] and those from most deprived areas [24]. Qualitative studies are still be-
ing done to study barriers to the uptake of COVID-19 vaccines [33], but the motivations
for hesitancy are often complex and ever changing [137].

The topic of vaccination is, therefore, a source of significant and societal important
discussion and debate on social media. The bulk of research on vaccination discussions
online is focused on the most popular social media: Facebook [66, 155], Twitter [1, 11,
98, 134] and Reddit [76]. Online chat forums are an often overlooked social medium
for vaccination discussions, despite a study by Campbell et al. [20] showing that a
significant proportion of participants used discussions forums to find out more about
immunisation. The same study found that parents who searched information online
were significantly more likely to encounter information that would make them question
the decision to vaccinate their offspring, but this likelihood was higher among parents
who used discussions forums than those who used Facebook or Twitter. Finally, Rier
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[141] highlights the research potential of online support groups embedded internet
discussion forums, calling them “natural focus groups" that reflect “segments of public
opinion".

The focus of our analysis is on Mumsnet [145], a UK website “by parents for par-
ents". It acts primarily as a website where parents can seek advice on numerous topics,
with articles written by other parents, but it also offers a forum functionality that allows
users to discuss this same topics. Although there are other websites more focused on
vaccination, Mumsnet generates more discussion content regarding vaccination and is
more likely to contain a wider range of opinions [165]. The forum content in Mumsnet
is also public, anyone can register to comment on any discussion (which appears under
a “username", an alias to preserve anonymity) and an account is not required to read
or search for past discussions. Prior to July 2019, it contained a subforum dedicated
to discussing and asking advice about anything related to vaccination, after its closure
the posts within this subforum were merged to the general health subforum. With the
COVID-19 pandemic, a subforum dedicated to discussing the pandemic was created,
under which a substantial body of discussion about COVID-19 vaccines can be found.

One of the most prevalent techniques to examine vaccinations discussions in social
media is sentiment analysis, that is identifying and labeling the opinions of social me-
dia users towards vaccination and applying quantitative or qualitative methods in order
to extract knowledge about those discussions. It is a technique often applied to Twitter
data, references [11, 12, 21, 28, 31, 36, 110, 112, 113, 130, 147, 150, 151, 153, 170,
178, 196, 197] are examples but not an exhaustive list. Sentiment analysis has also
been applied to Mumsnet before [166].

The majority of approaches using sentiment analysis focus on hand labeling a sub-
set of data (tweets or posts) and building machine learning models to classify the re-
mainder of the data. This is the methodology of Skeppstedt et al. [166] and the author’s
major conclusion is that classification in that context is a very hard task, in part due to
their small training corpus. This highlights a major issue with the sentiment analysis
approach to studying vaccination discussions: obtaining sentiment labeled data is ex-
tremely costly, as it is either time consuming or expensive when using platforms such
as Amazon Mechanical Turk [19]. There is also a question of reliability of the perfor-
mance of automatic labeling methods on unseen data, especially when the context and
arguments used in the discussion change over time as in the case of COVID-19 vaccine
discussions when compared to other vaccines [112]. Finally, using models trained on
Twitter data to label non Twitter data is not advisable, as Skeppstedt et al. [166] point
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out, Twitter messages are limited to 280 characters so the goal of the message is more
easily parsed, which contrasts to the more complex discussions in Mumsnet posts that
are harder to interpret.

Given the issues afflicting analysis that rely on sentiment labeling, it is of interest to
develop methodologies that can provide as much insight as sentiment or act as a guide
to reduce the amount of sentiment labeling required. One such methodology is to con-
sider the interactions between users that are participating in the discussion, creating a
network where two users are connected if they interacted with each other according
to some criteria. This perspective on vaccination discussions opens up the opportu-
nity to use the wealth of research created in the area of network science to extract
knowledge from these discussions. It is even possible to combine the two method-
ologies, for example, Yuan et al. [197] combine community detection with sentiment
analysis. Network analysis has been applied to study the structure of online discussion
forums [148, 199], but Mumsnet has not been studied as a complex network before.

By representing vaccination discussions as a network of the actors contributing
to the discussion, we propose studying the structure of the network as a proxy for
sentiment analysis, leading to the two following research questions:

RQ1: What are the characteristic patterns of interactions between users in vacci-
nations discussions in Mumsnet and how do these differ between discussions of vacci-
nation in general or when discussing vaccination within the context of COVID-19?

RQ2: Over time, are differences in the network structure correlated to changes in
the sentiment about vaccines within Mumsnet?

To identify changes and differences in the structure of the network, we use NetEmd
[180] and compare distributions of graphlets. Similarly to motifs [109], graphlets can
be seen as units of functional behaviour encoded in the network, characterizing distinct
patterns of behaviour. In particular, when considering phenomena that spread—such
as viruses, ideas and behaviours—the detailed structure of graphlets of the network on
which spreading occurs has an important effect on the dynamics of the process [58, 69,
143, 144]. As such, when we observe patterns in the graphlets relating to interactions
in online discussions, this will be informative about the manner in which opinions are
spread and adopted. By using NetEmd, we can identify changes in the patterns causing
differences in the network structure and extract the graphlets responsible for these
changes, adding a layer of interpretability that allows the generation of hypothesis to
explain the differences in how users are behaving when discussing vaccination online.
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4.2 Background

The Mumsnet forum has been the subject of a number of vaccination studies [42, 166,
167] with the measles mumps rubella (MMR) vaccine being a particular focus [165,
181].

Skeppstedt et al. [166, 167] explored 5 threads about general vaccination of chil-
dren, manually labeling a dataset of 1190 posts as for, against or undecided towards
vaccination. Then the authors build a machine learning model to measure the perfor-
mance of an automatic classifier in this labeled dataset. The machine learning model
chosen was a linear support vector machine [27] and the training data was obtained by
preprocessing each post into a list of tokens and 2-, 3- and 4-grams. The authors found
among the manually annotated posts an even distribution of sentiment, with 38% for
and 41% against. The results from the machine learning experiment lead the authors
to conclude that their small training corpus makes classification a very hard task.

Ford and Alwan [42] used Mumsnet as a platform for a cross-sectional study of
influenza and pertussis vaccination uptake during pregnancy. The study’s objective
was to learn whether information obtained from online social networks (Facebook,
Twitter, etc.) influenced the decision to have these two particular vaccinations. They
found that women who use social networks to obtain information were less likely to
receive the pertussis vaccination, but this was not the case for the influenza vaccination.

Skea et al. [165] examined two threads about the MMR vaccine from the perspec-
tive of parental perception of herd immunity, and the duality between parents not want-
ing to harm their child versus wishing to avoid harm to others. The authors suggested
that vaccine promotional material should “include explanations of herd immunity” as
it may influence parents’ decisions. Weller and White [181] analyzed posts and threads
related to MMR, finding that by 2010 the majority of the forum was in favour of MMR
rather than against it.

4.3 Methods

4.3.1 Data Collection

The Mumsnet forum is organized in categories, which are further divided into more
specialized topics, called subforums, within those categories. Users create threads on
these subforums by typing a thread title and some text, called the original post. Ap-
pendix C shows an example of this organization. Other users can reply to the original
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post by typing in a text box; these replies, called posts, are displayed in chronological
order of submission. One of the categories of the forum is health and within it, there
was a subforum about vaccination, which was closed down in July 2019, and another
subforum about the COVID-19 pandemic, created in February 2020. We collect two
datasets from Mumsnet, one from each of these subforums.

Prior to the closure of the vaccination subforum, we deployed a web scraper to
acquire all threads and posts publicly available in the subforum, spanning back 10
years. This web scraper is simply a Python script that given the web page address
of a thread, returns all posts within that thread, along with the users, dates and each
post’s content. We got permission from Mumsnet to acquire this data and the study
was approved by the University of Manchester computer science department panel of
ethics, with reference 2020-8214-12903. Following the closure of the forum, we set
the start date for our data to 1 July 2009, with the last post on this forum dating 28 June
2019. In this time period, there were 1128 threads created, with a total of 31757 posts,
written by 5715 users. As a shorthand, this dataset will be referred to as the vaccine or
vaccination dataset.

The COVID-19 subforum contains threads about any topic related to the pandemic,
so we filter the threads to scrape according to their title. We include all titles that con-
tain keywords related to vaccination and immunization, as well as COVID-19 vaccine
specific terms, for instance, booster or the names of the vaccine manufacturers. There
were only 20 threads before 1 November 2020, compared to 81 in November 2020
alone, so we set this as the start date for data analysis. We finalized the data collec-
tion on 2 January 2022 and the final dataset only includes posts dated before 2022. In
this time period between 1 November 2020 and 31 December 2021, there were 4322
threads created, with a total of 223625 posts, written by 25989 users. Again as a short-
hand, we refer to this dataset as the COVID-19 dataset and every time we refer to the
COVID-19 forum, we mean vaccination discussions in particular within this forum.

4.3.2 Data Segmentation by Time

In order to study temporal effects on how discussions are carried out in Mumsnet, we
segment the datasets by time, creating new and smaller datasets that span a shorter
length of time. One way to accomplish this goal is to create disjoint time intervals
so that there is no overlap between the smaller datasets. This method of splitting the
datasets gives rise to a dilemma on how to consider which time slice a post belongs to.
Consider the follow situation: a thread is created on the 31st of January, half the posts
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within that thread are submitted on the 31st and the other half are posted throughout
February; assume that the time splicing occurs on the first day of each month. One
way to assign data to each time frame is by the date of the thread, but this means that
the February dataset does not encompass the discussion that took place in that thread
throughout February. Alternatively, half the posts within that thread are assigned to
the January dataset and the other half to February. In this case, we are separating
discussion that took place within a similar context by imposing an arbitrary boundary;
it could be argued that a post from 31st of January is more similar to a post from 1st of
February than to a post from 1st of January.

The solution to this issue is to create a rolling window of data, akin to a moving
average. This way, we assign posts to data slices according to their post date and ensure
that related posts on the edge of the time split are assigned to the same data slice at
least once. This method of splicing the data is controlled by two parameters, the time

span, i.e., how much time each window covers, and the time jump, i.e., the amount of
time between consecutive windows. The time overlap between consecutive windows,
i.e. the amount of time in common between consecutive windows, is calculated by
subtracting the time jump from the time span.

4.3.3 Network Creation

The way discussion is carried out in a forum is different from other social media plat-
forms like Facebook, Twitter or Reddit in the sense that users interact with threads and
messages appear sequentially ordered by time, regardless of relevance to the discussion
or user tagging features used. This structure lends itself to the creating of a bipartite
network, as two disjoint sets of entities naturally emerge: threads and users, with a
user u connected to a thread t if u wrote a post in t. A common technique for analyzing
bipartite networks is to create a projection of one of the partitions, for example when
one of the modes in the data holds particular interest over the other [14]. The most
common way to achieve this projection is assuming that if two nodes in one partition
are connected to the same node in the other partition, then they should be connected
in the projection. In our case, since we are interested in studying patterns of connec-
tions between users, we create a user projection network, where users are connected if
they posted in the same thread. Formally, let X be the bipartite adjacency matrix, with
users in the rows and threads in the columns, then the user projection network can be
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obtained by [14]:

ai j = ∑
t∈T

xitx jt , (4.1)

where T is the set of threads in the bipartite network and xit represents the number of
posts of user i in thread t. In matrix notation, this can be simplified as A = XXT . This
transformation produces a weighted undirected network but it is not representative of
the reality in forums, as it works under the assumption that all users in a thread read
each other’s posts. Inspired by Newman [115], we weight Eq. 4.1 to take into account
the number of users and number of posts in a thread, similar to collaboration networks
where a connection between two researchers is weaker when they publish a paper with
a lot of co-authors and stronger when they publish a paper together or with a small
number of other co-authors. The strength of the connection is also proportional to the
quantity of papers where the researchers are co-authors, with more papers indicating a
stronger connection. In our case, two users have a weak connection if they both post
in a thread with many posts and a strong one when they participate in multiple threads
together. The formula to calculate the projection network then becomes the following:

ai j = ∑
t∈T

xitx jt

(υt−1)φt
, (4.2)

where υt is the number of users in thread t and φt is the number of posts in thread t.
We define a minimum weight for connections between users, below which we assume
that the users had insignificant influence over each other. This threshold was chosen as
the maximum value that keeps the network connected, i.e., with no isolated nodes.

4.3.4 Network Comparison

The networks we craft from Mumsnet data are a means of representing user posting
behaviour and how users interact with each other within Mumsnet. Due to this encod-
ing of information within the network, we expect there to be a relation of equivalence
between changes in user behaviour and changes to the structure of the networks. There-
fore, analyzing network structure offers us the opportunity to study behaviour within
this forum from a different perspective to other approaches. By identifying differences
over time in the structure of the Mumsnet networks, differences in the user behaviour
can also be made clear.

As explain in detail in Chapter 3, one of the most effective ways to determine
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similarity between networks is by comparing them using NetEmd. Upon obtaining the
comparison, we can detect differences in the structure of network by looking at the
distance between networks from consecutive data slices. If this distance is larger than
the median distance between any pair of networks, then we consider that there is a
significant difference in the structure of the network. Due to overlapping time frames,
differences in the network structure may also take two or three time steps to become
apparent.

As graphlets can be seen as small units within a network whose patterns of connec-
tions encode real world functionality, we can extract another layer of interpretability
from the network comparison results by inspecting which orbits are responsible for the
largest difference.

4.3.5 Sentiment Labelling

We previously mention the work of Skeppstedt et al. [166] and their approach to auto-
matic labeling of Mumsnet posts according to their stance on vaccination. The authors
highlight the difficulty of this task, particularly in comparison to finding stance in
tweets, as posts are usually longer than tweets, given that they are not restricted to 280
characters, so they contain longer and more elaborate discussions. The approach taken
by the authors yielded a machine learning model that struggles to learn how to classify
such an elaborate corpus, achieving a F1 score of 0.44.

Starting from Skeppstedt et al.’s approach, we attempted to improve the classifica-
tion performance of a machine learning in the same labeled dataset, with the intent of
applying it to the larger corpus we consider in our work. We found that using a Ran-
dom Forest [16] improved the classification performance slightly (up to a F1 score of
0.52). Other approaches like Valance Aware Dictionary and Sentiment Reasoner [71],
the Naive Bayes classifier of Salathé and Khandelwal [150] and a FastText model [80]
trained on the Crowdbreaks platform [113] all performed worse than adapting the code
of Skeppstedt et al. to work with Random Forests.

The poor performance of automatic labeling of sentiment in the training dataset of
Mumsnet posts disqualifies this methodology from being applied to the larger corpus
of posts, as any analysis done supported on this labeling would have the caveat that the
labeling itself is unreliable. Another reason to avoid using a machine learning model
trained on Skeppstedt et al.’s data is a concept drift [182]. It captures the idea that
models trained on a snapshot of time may struggle to generalize for data outside of
that time period, particularly in language based models trained on internet data, where
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context changes over time. Müller and Salathé [113] showed the existence of such
concept drift in vaccination discussions by analyzing a Twitter dataset in the second
half of 2018 and at the beginning of the COVID-19 pandemic [112]. The issue of
concept drift is particularly relevant when comparing vaccination discussions before
and after the COVID-19 pandemic. Changes in the vocabulary, arguments, context
and the whole general discourse in these discussions leads to increasing difficulty for
a model trained on pre-pandemic data to accurately label a post-pandemic corpus.

The issues we identified with automatic labeling of Mumsnet posts led to the deci-
sion to manually label the two datasets we acquired from Mumsnet, to create a ground
truth against which we can compare the methodology we develop. It is unfeasible
to label each of the >250,000 posts in our dataset; instead, we label threads accord-
ing to the title and the original post. We classified threads in three labels: positive,
neutral or negative. We do not consider negative sentiment to be equivalent to an
anti-vaccination position, as it is possible to express negativity towards a vaccine or
a vaccination schedule while simultaneously adhering to the policy that recommends
taking it. An example of this is starting a discussion about suffering from side effects
of a vaccine, without asking for help on how to overcome them, expressing regret over
taking a vaccine or doubting the efficacy of a particular vaccine. The following is a
non-extensive list of common arguments we marked as negative towards vaccination:

• claims to have refused to be vaccinated and to not plan on being in future;

• wants to vaccinate on a different schedule, delaying recommended or mandatory
vaccines;

• shows lack of trust or avoids altogether vaccine cocktails (most commonly the
MMR cocktail);

• blames vaccine for illness or expresses regret for taking the vaccine;

• questions the efficacy of the vaccine or the safety of ingredients within the vac-
cine (excluding allergic reactions);

• supports known opponents of vaccination (e.g., Andrew Wakefield) or anti-
vaccination documentaries (e.g., “The Greater Good").

The neutral label captures two types of posts, ones asking for information with-
out expressing a judgment of value towards the vaccine itself or others with conflicting
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positive and negative views towards vaccination. Examples of the latter are asking how
to deal with side effects or if some side effects are normal, talking about a negative ex-
perience surrounding vaccination but not about the vaccine itself or planning to vaccine
on schedule but mentioning being afraid or anxious. Finally, we marked threads as pos-
itive if they contain arguments like encouraging discussion for more vaccines, details
consequences of the disease that can be prevented through vaccination or mentions
going out of their way to get a vaccine, for example privately.

The manual labeling process was done by two annotators, who split the annotation
load equally, with each annotating half the threads of each dataset. The threads were
assigned uniformly at random to each annotator. Prior to annotating, the two anno-
tators labeled 1% of the COVID-19 dataset together (40 threads, chosen uniformly at
random), showing high reliability with a Cohen’s Kappa score of 0.84 (90% agree-
ment). The annotators also discussed the results to settle discrepancies and agree on
the mutual strategy for the remainder of the data.

In order to study the distribution of sentiment within threads of the COVID-19
dataset, we sampled 129 threads (about 3.0% of the number of threads) which con-
tained 6898 posts (about 3.1% of the number of posts), chosen uniformly at random
such that they represent at least 1% of the threads and posts in each data slice. The
sentiment in all these 6898 posts was labeled using the same criteria used to label
threads.

4.3.6 Discordance Index

Under the hypothesis that the proportion of posts of each sentiment within a thread
is not sufficient to capture the volume of debate and disagreement, we propose an
alternative metric to measure this level of disagreement, which we call the discordance

index. The main idea behind this metric is to measure disagreement on a local level
by measuring how often sentiment changes in small groups of consecutive posts and
use the number of sentiment changes as a proxy for the level of discordance, weighing
changes from positive to negative (or vice-versa) more than changes involving neutral
sentiment.

An example that motivates this metric is the following: consider a thread with N

posts, where the first N/2 posts are of negative sentiment and the last N/2 are positive.
By considering only the proportion of positive to negative posts, this thread would ap-
pear to contain a large amount of disagreement between users as half the posts express
a diametrically opposed view of each other. However, by inspecting how the sentiment
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is distributed over the thread, we actually find that most users are agreeing with each
other, with the exception of the shifting point from negative to positive. On the other
hand, if a thread with N posts has N/2 negative posts interleaved with N/2 positive
posts, then it is much more likely that users are constantly disagreeing with each other
throughout the thread. In both cases the proportion of negative to positive posts is the
same, but the way discussion is being carried out is very different.

Our proposed metric discordance index attempts to capture this distinction of local
variety of sentiment within a single thread. The way it works is by considering all sets
of D consecutive posts, such that in a thread with N posts there are N−D+1 sets of D

posts. For each set, we compare every unique pair of posts within that set (leading to
D∗ (D−1)/2 comparisons), if one post is positive and the other is negative, we assign
a distance of 2; if a post is neutral and the other is positive or negative, we assign a
distance of 1; finally, if the posts are of the same sentiment, we assign a distance of
0. The discordance within a set of posts is the sum of distances between each pair of
posts; the discordance of a single thread is the sum of discordances of all sets, divided
by the maximum discordance for that set size. This maximum discordance of a set of
posts can be calculated by generating all the possible combinations of sentiment for a
fixed set size and comparing them to find the combination with highest discordance.
Finally, the discordance index of a thread is the average discordance across multiple
window lengths, which we vary between 2 and 5.

4.4 Results

4.4.1 Data Granularity

We start by identifying appropriate window overlaps to split each dataset over time.
Although answering the research questions we posed in the introduction to this chapter
should not depend on these parameters, they are responsible for controlling how much
change and variability are in each data slice. For instance, picking a window span too
long may lead to a uniform sentiment throughout the whole dataset, whereas a window
span too small can lead to too much variability between consecutive time windows
such that any difference becomes meaningless.

The first result we use to support the decision is looking at how long each user
spends on the forum (Figure 4.1) and how long each thread remains active (Figure 4.2).
These figures show that users behave differently in the two subforums. On the vaccine
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dataset, we find that 52% of users post only once and close to 10% of threads get no
replies. This contrasts with the COVID-19 dataset, where 37% of users only have one
post and 4% of threads did not get a single reply.

Looking at user active times, results show that users engage with the forum for a
shorter amount of time in the vaccine forum compared to the COVID-19 forum, 80%
of users in the vaccine forum are active for less than a week. On the other hand, in the
COVID-19 forum, if we exclude users with a single post, then it is more likely that a
user will be active longer than a week (42% of users) than shorter (20% of users). It
is expected that the COVID-19 forum shows more engagement as the pandemic was
an extremely disruptive event worldwide, whereas the issues brought up in the vaccine
subforum are more likely to be short lived. Despite this, results highlight that there is
a core group of users in the vaccine forum with long term engagement, 8% of users
were active on this forum for longer than a year and close to 3% were active for more
than 3 years.

Inspecting the thread active times in the COVID-19 forum highlights how fast in-
formation changes during a global pandemic, particularly in the modern age where
information is easily disseminated and accessible. Results show that 42% of threads
last less than 12 hours (46% if taking into account posts without replies); close to 28%
of threads last less than a week but longer than a day and only 11% of threads last
longer than a week. This is likely because as new information about the vaccines was
being released, older discussions lost their relevance quickly in favour of new facts.
This contrasts with how discussions were being held in the vaccine forum, with only
62% of threads lasting less than a week, with 1.1% of discussions even lasting longer
than 3 years, compared to only 1.3% of COVID-19 discussions lasting longer than 3
months.

These two sets of figures lead us to conclude that we should favour a longer time
span of each data slice from the vaccine dataset, because many users post for a short
amount of time but their influence can be long lasting due to a substantial amount of
discussions lasting multiple months. On the other hand, the time span of data slices
from the COVID-19 dataset should be smaller, as threads tend to last a small amount
of time and users showing signs of repeated engagement with the forum.

Based on these observations, we narrow down the candidates for window span and
window jump for each dataset and show how the number of users, threads and posts
evolves over time under each combination of span and jump in Figures 4.3 and 4.4, for
the vaccine and COVID-19 dataset, respectively.
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(a) Vaccination subforum

(b) COVID-19 subforum

Figure 4.1: User active times: distribution of how long each user remains active in
each forum, obtained by taking the time difference between the date of their first and
last posts.
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(a) Vaccination subforum

(b) COVID-19 subforum

Figure 4.2: Thread active times: distribution of how long each thread remains active in
each forum, obtained by taking the time difference between the date of their first and
last posts.
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Figure 4.3: Number of users, threads and posts for different combinations of time jump
and time span to define the time granularity in the vaccine dataset.
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Inspection of Figure 4.3 highlights the similarities between each combination of
parameters to split the vaccine dataset. We find the most appropriate window jump
value to be 2 months, achieving a balance between sufficiently small granularity that
minimizes extreme jumps in the values of these statistics, while enough difference can
be observed between consecutive time slices. The vaccine forum does not have enough
traffic that a 1 month or smaller jump leads to enough variability between consecutive
data slices; this is supported by noticing that peaks in each metric all contain several
data points in close proximity, so they could be interpreted as repeated data that makes
identifying differences over time harder. On the other hand, using a 3 month jump and
particularly with longer window spans, leads to the omission of more subtle differences
and hinders pinpointing with accuracy when changes has occurred, along with events
that led to the change.

Fixing the window jump narrows down the possibilities for the values of window
span. A span of two months leads to no overlap, so we can focus instead on values
longer than this. A span greater than 5 months leads to overlaps at least twice as big as
the time jump, which can make identifying differences between consecutive data slices
harder. Between 3, 4 and 5 month spans we do not observe significant dissimilarity
between the shapes of the curves for each statistic. We pick a 4 month span to ensure
that each month is equally represented in the dataset, which only happens if the time
span is a multiple of the time jump. For example, if the span is 3 months, odd num-
bered months are represented in two data slices but even numbered months are only
represented in one.

For the COVID-19 dataset (Figure 4.4), we want the data granularity to reflect
the fast pace of new information that users are exposed to, so small window overlaps
are desired. Recalling our previous remark that short window spans are a better fit
considering the distribution of thread active times, we can rule out window spans of
2 months or over; with these time spans, each data slice would represent over 10% of
the dataset. By desiring small window overlaps, we can also discard the 1 month span
combination with 1 week jump, as each consecutive data slice would share 75% of
the data. Finally, between the 1 month span combination with 2 weeks jump and the
2 weeks span combination with 1 week jump, we choose the former as it is closer to
the timescale of policy changes that may influence discussions. The monthly span also
makes it easier to reason about the time frame that each window spans, as we find it to
be more interpretable to separate results according to the month they take place in.

To summarize, for the vaccine dataset, we pick a 4 month span with 2 month time
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Figure 4.4: Number of users, threads and posts for different combinations of time jump
and time span to define the time granularity in the COVID-19 dataset.
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Vaccine COVID-19

# Networks 59 27

Number of Nodes

Min. 101 1873

Median 222 3855

Max 469 5743

Number of Edges

Min. 264 25000

Median 928 94750

Max 4616 219774

Density

Min. 0.015 9.14×10−3

Median 0.036 0.014

Max 0.052 0.027

Average Degree

Min. 4.6 25.7

Median 8.1 50.3

Max 19.7 84.8

Clustering Coefficient

Min. 0.40 0.71

Median 0.70 0.78

Max 0.93 0.83

Table 4.1: Summary statistics for the datasets of networks from the vaccination and
COVID-19 datasets.

jump, leading to a 2 month overlap between consecutive data slices. For the COVID-19
dataset, we pick a 1 month span with 2 weeks time jump, leading to a 2 week overlap
between consecutive data slices.

4.4.2 Temporal Network Comparison

Upon splitting the datasets and creating a network by the process described in Sec-
tion 4.3.3 for each time window, we obtain two datasets of networks, whose summary
statistics are shown in Table 4.1.

The networks in each dataset correspond to users connected through their interac-
tions in a medium that does not change and created using the same the methodology,
therefore it is reasonable to assume that all the networks have the same generation
mechanism. Then, this means that a network comparison method like NetEmd, that
can separate networks according to their generation mechanism and is made for iden-
tifying common organizational principles, should output that the networks within each
dataset are similar to each other. If the networks are dissimilar according to the net-
work comparison method, then the way that users are interacting within the forum is
also different.

Considering the disparity in number of nodes and average degree over time in both
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datasets, results from Chapter 3 indicate that the most suitable version of NetEmd is
PCA_NetEmd with size 4 graphlets and 90% explained variance, but we find a high
level of agreement between this parametrization and the original NetEmd formulation.
The symmetric distance matrix returned by NetEmd containing the distances between
each pair of networks can be visualized through a heat map. This visualization tech-
nique helps highlighting clusters of networks that are similar and quickly identifying
networks that differ substantially from their predecessors and successors. The heat
map for the vaccine dataset is shown in Figure 4.5 and for the COVID-19 dataset in
Figure 4.6. On the axis of each heat map, we include the start date of the time window
each network is built from. For example, on the vaccine dataset, the first network, la-
beled as “07-2009", has data spanning from 1 July 2009 until 31 October 2009; on the
COVID-19 dataset, the first network, labeled as “11-2020", has data from 1 November
2020 until 30 November 2020, the second network (not labeled) from 15 November
2020 until 15 December 2020, the third (labeled “12-2020") from 1 December 2020 to
31 December 2020 and so on.

4.4.2.1 Vaccination forum

Inspection of Figure 4.5 reveals two broad groups of networks, before and after May
2015. Prior to this date, the heat map shows two networks that are substantially
different compared to neighbouring time slices, one in March 2012 and the other in
September 2014; but the remaining networks before May 2015 possess a high degree
of similarity among them, as indicated by the darker hue. After May 2015, the net-
work structure changes more frequently, as can be noted by the lighter hue colouring
the distances between these networks. Although they are nonetheless more similar to
each than to networks before May 2015, the distances among elements of this post
May 2015 cluster are, on average, higher than between the networks that compose the
pre-May 2015 cluster. Also note that the transition between these clusters is gradual,
starting with the network from May 2014 until the network from March 2015, these
intermediate networks are similar to elements in both clusters.

Some of these differences in network structure occur simultaneously with contro-
versies surrounding vaccines. By inspecting post content in the data slice where we
detect network differences, we found evidence that these news stories and controver-
sies penetrate discussions in the forum. For instance, this is the case with the differ-
ences observed in the network starting in May 2014, that includes a study by Hooker
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Figure 4.5: Heat map of network distances between each pair of networks in the
Mumsnet vaccine dataset. Distances are calculated using PCA_NetEmd with size 4
graphlets and 90% explained variance.
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[67] where the connection between the MMR vaccine and autism is investigated. An-
other example is the network starting in May 2015, during which a child whose parents
opposed the vaccinations died of diphtheria in Spain. We show examples of threads
referring to these events in Appendix C. Other differences may not be related to world
events regarding vaccination, but instead with controversial topics started by users in
Mumsnet that generate a high volume of discussion, for example the difference be-
tween the networks of March 2012 and May 2012 could be related to a discussion
regarding the safety of aluminium in vaccines.

To quantify the changes we observe in the heatmap, we compare the distance value
between networks of consecutive time windows with the median of the values in the
upper triangle of the distance matrix. We also compare this median against the distance
value between networks from time windows that are 2 jumps apart, pairs of networks
with no overlapping data but spanning a continuous time frame. Our measure for
significance of difference between consecutive networks is if their distance is greater
than the median of distances between all pairs of networks. Prior to May 2015, we
only find significant differences in the same time windows we exposed before: March
2012 to May 2012 and May 2014 to September 2014. After May 2015, we detect 8
significant differences between networks from consecutive time slices and 11 when
comparing with 2 jumps apart.

The NetEmd measure between two networks is calculated using the average dis-
tance for each orbit, therefore it allows us to pinpoint which graphlets are driving
changes in the network structure by inspecting the distances between distributions of
each orbit. The heat maps of network distances for each individual orbit are shown in
Figure D.2. We focus on two time periods as an example:

• The difference between the networks starting in March and May 2012 is primar-
ily connected with the distributions of orbits 1, 6 and 9 (refer to Figure 2.1). The
common element between these 3 orbits is that within their graphlet, they are
connected to a node with no other connections.

• The distinction between the clusters before and after May 2015 is largely con-
nected with differences in orbits 0 (the degree distribution), 3 and 14, which are
all orbits part of cliques.
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Figure 4.6: Heat map of network distances between each pair of networks in the Mum-
snet COVID-19 dataset. Distances are calculated using PCA_NetEmd with size 4
graphlets and 90% explained variance.

4.4.2.2 COVID-19 forum

Comparing networks from the COVID-19 dataset yields an altogether different pattern
of similarities, as shown in Figure 4.6. The heat map of distances is dominated by
darker hues, meaning that the majority of networks are very similar. The most flagrant
exception to this high level of similarity is the first network, which spans the month of
November 2020 and is the only network in this dataset that precedes the announcement
of the first COVID-19 vaccine being approved. Recall that the first vaccine to be
approved in the UK was the Pfizer vaccine on 3 December 2020, so the second network
in this dataset, starting on 15 November 2020, already includes this period. This second
network also shows a high degree of dissimilarity when compared with the remaining
networks in this dataset, but not to the same extent of the first one.

Two other periods of time stand out when analyzing the heat map, the networks
starting in 1 June 2021 and 1 October 2021. The network starting in 1 June 2021
coincides with the Delta variant becoming the dominant strain of COVID-19 in the
UK, which was thought to be more resistant to COVID-19 vaccines than previous
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variants, in particular when only a single dose had been administered, at a time when
approximately 50% of the population had received the second dose. The network with
start date of October 2021 coincides with the beginning of the booster roll out in the
UK, which seems to be the leading topic of discussion during this time as “booster" was
the sixth most common word among all posts during October 2021 (when removing
stop words, after “COVID", “vaccine", “people", “think" and “vaccinated").

Applying the same analysis as before–comparing the distance between networks
from consecutive and 2 jumps apart time windows against the median distance between
all pairs of networks–reveals new points in time where there is a significant difference
in network structure. In addition to the previous three time windows, we also find
that the networks with start date 15 March 2021 and 1 April 2021 to be significantly
different from their neighbouring time periods. These two networks coincide with the
blood clots controversy surrounding the Astra Zeneca vaccine. Finally, we also find a
significant difference between the network starting in 1 November 2021 and the net-
work starting 1 December 2021. This difference is likely related to the emergence of
the omicron variant and the government’s push for more boosters to increase protec-
tion against the new variant. Examples of threads about these issues can be found in
Figure C.5 in Appendix C.

When inspecting the differences between distributions of each orbit, visualized in
Figure D.3, we find that the network of 1 November 2020 is significantly different
from the other networks according to every orbit except orbit 8, according to which
this network is similar to the following two networks (15 November and 1 December
2020). Similarly, the difference between networks of 15 May and 1 June 2021 is
significant according to all orbits. On the other hand, we find that the difference in the
network starting on 1 October 2021 is driven primarily by changes in the distributions
of cliques, through orbits 3 and 14, but we also observe smaller changes in orbits 0, 10
and 13.

We conclude this section with a final remark about the differences between the
vaccine and COVID-19 datasets, a comparison that we show in Figure D.1. We find
that there is a clear distinction between the two sets of networks in the way they are
organized, which indicates distinct user behaviours in each forum. This distinction
is more tenuous when comparing the first network from the COVID-19 dataset, that
shows a comparable value of dissimilarity with the networks from the vaccine dataset
as with the other networks from the COVID-19 dataset. This first network has an
average distance to other COVID-19 networks of 0.18 and to vaccine networks of
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0.21; the other COVID-19 networks have an average distance of 0.06 to COVID-19
networks and 0.20 to vaccine networks.

By analyzing the differences between the vaccine and COVID-19 datasets for each
individual orbit (Figure D.4), we find that in 6 of the 14 orbits the COVID-19 dataset is
more similar to the cluster of similar networks in the vaccine dataset before May 2015
than this cluster is similar to the networks of the vaccine dataset after May 2015. How-
ever, the opposite only happens in orbit 9. This highlights how fundamentally different
is the way that users behave before and after May 2015 in the vaccination forum, to
the point where networks whose size differs by more than an order of magnitude are
organize in a more similar way than networks of comparable size.

4.4.3 Sentiment Analysis

We turn our attention to exploring the sentiment of Mumsnet in regards to vaccination.
Our sentiment labeling methodology complicates defining what is the sentiment of a
social network like Mumsnet, as we only have access to the sentiment that seeded
each individual discussion thread. Therefore, we combine three metrics to summarize
sentiment in each time window:

• Number of threads: the most direct metric from our labeling process, we measure
the proportion of threads labeled with each sentiment.

• Number of posts in thread: compare how many posts are there in threads of
each label. It allows us to gauge how popular each type of thread is, to identify
cases where, for example, there are many threads of a sentiment label but each
thread has very few posts; or the opposite, where there are only a few threads of
a sentiment label but each thread receives a disproportionate number of replies.

• Number of users: we measure which types of threads attract more users and
how often users post in threads of different sentiment. This metric is useful
to understand how much information is flowing between threads of different
sentiments.

For each of these metrics, we measure how the proportion of positive to negative,
negative to positive and neutral to non-neutral changes over time.
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4.4.3.1 Vaccination forum

Starting by the vaccination subforum, we show how the number of threads of each
sentiment (Figure 4.7), the number posts in each type of thread (Figure 4.8) and how
many users post in threads across each combination of thread type (Figure 4.9) changes
over time.

We find that the most common sentiment when opening a new discussion thread
is neutral, with 58% of threads labeled this way. This is expected because one of the
primary uses of the Mumsnet forum is for parents to seek advice from other parents,
therefore many of these threads we marked as neutral are questions that do not incite
much discussion. Evidence that supports this is that neutral threads tend to have shorter
active times, with 70% lasting less than a week, against 56 and 52% for positive and
negative, respectively. The second most common sentiment is negative, with 29% of
discussions starting from a negative point of view towards vaccination. The proportion
of negative threads is particularly high before March 2013 and after November 2017,
respectively with 37% and 36% of negative threads during these time periods. The least
common type of thread is positive with 13% of all threads, which is not surprising
as those who are content with the status quo (high rates of vaccination) do not feel
compelled to support this status quo as much as those who have problems to expose
those problems.

Inspecting the number of posts in threads of each sentiment reveals that the major-
ity of posts were written as replies to negative threads, with 44% against 36% in neutral
threads and 20% in positive threads. In spite of this, positive and negative threads re-
ceive on average a similar amount of replies, 44 and 42 respectively, much higher than
the average 17 replies per neutral thread. The visualization of Figure 4.8 highlights
how there are time periods dominated by discussions of each sentiment, for example
from September 2017 to March 2018 78% of posts were replies in negative threads but
from May 2015 to May 2016 this proportion decreases to 28%.

Figure 4.9 shows that the majority of users post only in one type of thread, 89%
of users post only in negative or positive or neutral threads. The biggest crossover
between types of threads is neutral and negative, accruing an average of 6% users over
time, against 1% that post in both positive and negative, 2% in positive and neutral
and 2% in threads of all sentiments. We find that after July 2015, the proportion of
users that post in threads of all sentiments or in positive and negative threads decreases
significantly; prior to this date these percentages are 3.5% and 1.8% respectively, de-
creasing to 0.6% and 0.5% after July 2015.
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(a) Number of threads.

(b) Proportion of threads.

Figure 4.7: Number and proportion of threads of each sentiment label, for each data
slice in the vaccination dataset.
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(a) Number of posts.

(b) Proportion of posts.

Figure 4.8: Number and proportion of posts in threads of each sentiment label, for each
data slice in the vaccination dataset.
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(a) Number of users.

(b) Proportion of users.

Figure 4.9: Number and proportion of users in threads of all combinations of sentiment
label, for each data slice in the vaccination dataset.
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These numbers are biased by the majority of users who post in only one thread.
Across all data slices, on average only 15% of users post in multiple threads but these
users are responsible for 47% of posts. When we consider only these users that post on
multiple threads, the majority of them (69%) post in threads of different sentiments,
with 1% posting only in positive threads, 19% in negative and 11% in neutral. As
before, the most common combination is posting in negative and neutral threads, with
38% of users doing so, followed by posting in threads of all sentiments, with 14% of
users.

To summarize, even though Figure 4.9 shows that a small proportion of users post
in threads of different sentiments, when restricting the set of users to those that post in
more than one thread, they are more likely to post in thread of different sentiments. As
these users are responsible for nearly half of the posts on the board, it is reasonable to
assume that there is information flowing between threads of different sentiments.

We are interested in knowing if the shifts we observe in sentiment correlate with
differences in network structure. Thus, we need a systematic and quantifiable way
to detect that sentiment in a time window is significantly different from other time
windows. To achieve this, for each of the metrics above, we calculate the proportion
of positive to negative, negative to positive and neutral to non-neutral and Z-score
(subtract the mean and divide by the standard deviation) this proportion. When the
Z-scored proportion takes values above 1 or below -1, we consider the respective time
window to contain a significant change in sentiment. Figures D.5, D.6 and D.7 show
this Z-score over time for threads, posts and users, respectively. These figures also
contain all the network differences we mention in the previous section, marked as a
black dotted line on index i when the change occurs from index i to i+ 1 and a gray
dotted line when the change occurs from index i to i+2. In the cases when both black
and gray dotted lines ought to be present, we give precedence to the difference between
consecutive time windows and show only the black dotted line.

These figures show a total of 40 time windows that fit such definition of significant
change in sentiment, out of a total of 59. We narrow this number down by considering
only time slices that are marked as significant according to different metrics related
to the same sentiment, for example an increase in the proportion of neutral threads
and posts in neutral threads. This narrows down to 20 time windows with significant
change in sentiment, compared against 16 differences in network structure.

We separate the differences in network structure in 6 groups:

• The difference between the network starting in March 2012 and the network
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starting in May 2012 is correlated with a decrease in the proportion of neutral
threads (Figure D.5c) and an increase in the proportion of posts in neutral threads
(Figure D.6c). There is also a significant increase in the proportion of users that
post in multiple threads of different sentiments during this time (Figure D.7d).

• The differences between the networks of May 2014 to September 2014 and of
September 2014 to January 2015 do not seem to match with significant differ-
ences in sentiment during this period.

• The changes in network structure in March 2015 and May 2015 can be associated
to increases in the proportion of positive threads (Figure D.5a), posts in positive
threads (Figure D.6a) and users posting only in positive threads (Figure D.7a).

• The differences in March and May 2016 are correlated with increases in the pro-
portion of neutral threads (Figure D.5c), posts in neutral threads (Figure D.6c)
and users posting only in in neutral threads (Figure D.7c).

• Between November 2016 and July 2017, we record differences of network struc-
ture in 5 consecutive time windows and during this time we observe an increase
in the proportion of neutral threads (Figure D.5c), an increase in the proportion
of posts in negative threads (Figure D.6b), an increase in the proportion of users
posting only in negative threads (Figure D.7b) and a decrease in the proportion of
users posting in multiple threads of different sentiments (Figure D.7d). There is
also a significant shift from the time slice starting in November 2016 to January
2017 in the number of posts and users in neutral threads (Figures D.6c and D.7c),
from a proportion significantly higher than the average to significantly lower.

• The group of network differences starting on January 2018 until July 2018 is
related to an increase in the proportion of negative threads (Figure D.5b), posts
in negative threads (Figure D.6b) and users posting only in in negative threads
(Figure D.7b).

We also find periods of time where there is change in the sentiment that is not
reflected in differences to the network structure. In particular, we observe a high pro-
portion of positive threads (Figure D.5a), posts in positive threads (Figure D.6a) and
users posting only in positive threads (Figure D.7a) in January and March 2014. The
final time period that fits our definition of sentiment change but does not align with dif-
ferences in network structure is July and September 2011, where we detect an higher
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representation than usual of posts in positive threads (Figure D.6a), posts in neutral
threads (Figure D.6c) and users in neutral threads (Figure D.7c).

4.4.3.2 COVID-19 forum

Proceeding to the COVID-19 subforum, we show how the number of threads of each
sentiment (Figure 4.10), the number posts in each type of thread (Figure 4.11) and
how many users post in threads across each combination of thread type (Figure 4.12)
changes over time.

Similarly to the vaccination forum, the most common sentiment when starting a
thread about vaccination during COVID-19 is neutral with 69% of threads. A major
difference to the vaccination forum is that threads with neutral sentiment are the most
common in all data slices, whereas in the vaccination dataset there were time windows
with more negative threads than neutral. The reason for this prevalence of neutrality is
that many threads about vaccination during the pandemic are not discussing the actual
vaccine but instead issues surrounding the vaccination campaign, such as logistics or
rules for vaccinated people, so the original post of these threads does not contain any
judgement of value towards the vaccine, which we marked with neutral sentiment.

As before, the second most common sentiment is negative with 20% of threads.
The negative sentiment is particularly high between March and July 2021, mainly due
to the Astra Zeneca blood clot issue and users complaining about side effects of vac-
cines. Finally, the least common sentiment is positive with 11% of threads. However,
the first four time windows whose start date takes place in 2020 have a much higher
proportion of positive threads compared to the remainder of the dataset, with an aver-
age of 23% of threads over this time period.

In contrast to the small number of positive threads, we find that positive threads
attract the highest number of replies, averaging 70 replies per time window, against 60
in negative threads and 39 in neutral. Despite attracting more replies, the low amount of
positive threads means that posts in positive threads are nonetheless the minority of all
posts, averaging 17% of all posts over time, as pictured in Figure 4.11. The popularity
of individual positive threads can be explained by “positivity" threads, created to be a
safe space where users can feel good about the progress of the vaccination campaign.

The prevalence of neutral threads leads to posts in neutral constituting the majority
of posts in all time windows, with an average of 57% over time. Posts in negative
threads make up the remaining 26% and are the ones with the greatest variance in
proportion over time.
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(a) Number of threads.

(b) Proportion of threads.

Figure 4.10: Number and proportion of threads of each sentiment label, for each data
slice in the COVID-19 dataset.
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(a) Number of posts.

(b) Proportion of posts.

Figure 4.11: Number and proportion of posts in threads of each sentiment label, for
each data slice in the COVID-19 dataset.
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(a) Number of users.

(b) Proportion of users.

Figure 4.12: Number and proportion of users in threads of each sentiment label, for
each data slice in the COVID-19 dataset.
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In the continuation of the previous results, neutral threads are also the ones where
the greatest proportion of users are found, with 48% of users posting only in neutral
threads, 11% in negative and neutral, 6% in positive and neutral and also 6% in threads
of all sentiments.

Figure 4.12 exposes another difference of behaviour between users discussing vac-
cination in the COVID-19 subforum and in the defunct vaccination subforum. Whereas
in the latter we found that 89% of users restricted themselves to either positive, neu-
tral or negative threads, in the COVID-19 dataset this number decreases to 75%. This
is likely because the proportion of users that post in multiple threads is higher in the
COVID-19 dataset (35% against 15% in the vaccination dataset) and they make up a
larger proportion of the total number of posts (75% against 47%). In spite of this dif-
ference, when considering the users that post in multiple threads, the same percentage
(69%) of these post in threads of different sentiment in both datasets.

As with the vaccination dataset, we want to correlate differences in sentiment with
differences in the network structure. We previously saw that the majority of networks
in the COVID-19 dataset are very similar, which fits with the results we have just
exposed, as the prevailing sentiment throughout the 13 months of data is of neutrality.
Nonetheless, we observe both differences in network structure and in the proportion of
negative, positive and neutral threads and of posts and users therein. Using the same
methodology as before, we show how the proportion of negative to positive, positive
to negative and neutral to positive plus negative changes over time in regards to the
number of threads (in Figure D.8), posts (Figure D.9) and users (Figure D.10).

As before, we join the network differences in 4 groups:

• The first two networks are significantly different from the remaining networks in
the dataset and this difference is connected to an overrepresentation of positive
sentiment in all three metrics (Figures D.8a, D.9a and D.10a) and, conversely,
an underrepresentation of negative sentiment (Figures D.8b, D.9b and D.10b).

• The differences of networks starting in 15 March and 1 April 2021 are correlated
with a lower proportion of neutral threads (Figure D.8c), posts in neutral threads
(Figure D.9c) and users in neutral threads (Figure D.10c). The time window
starting on 15 March is also the time when there is the highest proportion of
users posting in multiple threads with different sentiments (Figure D.10d).

• The difference between the networks of 1 May and 1 June and between 15 May
and 1 June 2021 are both above the 80th percentile of network distances, but
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we find little evidence of sentiment change in these time periods, despite the
slight underrepresentation of posts and users in neutral threads (Figures D.9c
and D.10c) during the time window starting in 15 May. We also observe network
differences between the networks of 15 May and 15 June and between 1 June and
1 July 2021, which can be related to the high proportion of negative sentiment in
the data slices of 15 June and 1 July.

• The final networks of the COVID-19 dataset, after 1 September 2021, show a
low degree of similarity, either in consecutive networks (networks starting in 15
September, 15 October and 15 November 2021) or in networks two jumps apart
(networks starting 1 September, 1 October and 1 November 2021). These dif-
ferences are likely to be related to a high proportion of neutral sentiment during
this time, in particular the two time windows of 1 and 15 October 2021, or a low
proportion of users posting in multiple threads with different sentiments.

Although we find some overlap between differences in network structure and changes
in the sentiment of the forum, these do not correspond to a one to one match. For
instance, the highest proportion of posts and users in positive threads occurs in 1 De-
cember 2020, but there the network structure at that point is similar to the structure
of the networks that succeed it. Conversely, some network differences do not seem to
be connected with changes in sentiment, such as the difference between 15 May and 1
June 2021 that we mentioned previously or the difference between 15 November and
1 December 2021.

Due to these misalignments between differences in network structure and sentiment
variation, we decided to label all posts from a subset of threads from the COVID-19
forum. The threads were picked randomly, with equal proportion of positive, negative
and neutral threads. Some time windows were underrepresented in the initial sample,
so we re-sampled more threads from each time window that was underrepresented until
there was at least 1% of threads and posts from each time window in the sample. This
led to a total of 129 threads (about 3.0% of the number of threads) which contained
6898 posts (about 3.1% of the number of posts).

The posts in this dataset were labeled using the same rules as the ones we used
to label the original post of each thread. Upon labeling these posts, we calculate the
proportion of posts of each sentiment in threads of each sentiment. Table 4.2 shows this
average proportion for each combination in the threads that we labeled. The average
shown is the macro average, i.e., the average proportion of each thread; results do not
change substantially when using the micro average instead.
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Threads

Positive Neutral Negative
Po

st
s Positive 51.7% 19.0% 22.5%

Neutral 42.0% 76.9% 47.3%

Negative 6.3% 4.1% 30.2%

Table 4.2: Proportion of posts of positive, neutral or negative sentiment in threads of
positive, neutral or negative sentiment. The table is read as: posts of sentiment A
make up X% of the posts in threads of sentiment B. For example, posts of positive
sentiment make up 22.5% of the posts in threads of negative sentiment or posts of
negative sentiment make up 6.3% of the posts in threads of positive sentiment.

The results from Table 4.2 show that negative threads have the widest range of sen-
timents, as users with opinions favourable towards vaccination often challenge negative
views. On the other hand, despite their smaller frequency, positive threads are havens
for users who wish to shield themselves from negativity in the forum, as negative
threads are more frequent than positive ones. In positive threads, we find that the ma-
jority of posts are also positive towards vaccination, likely due to “positivity" threads
that celebrate events like new vaccines being approved or milestones in the number of
doses administered. Of all sentiments, neutral threads have the smallest proportion of
negative posts, perhaps because often they are either question and answer threads that
do not evolve into lengthy discussions and thus are not attractive to users who want to
spread an anti-vaccination agenda; or they turn into discussions about issues other than
vaccination, for example whether restrictions should be lifted.

Assuming that the proportions from Table 4.2 are representative for the whole pop-
ulation of threads in our dataset, we can infer the percentage of posts of each sentiment
over time, shown in Figure 4.13.

Even though there is an overall higher amount of posts in negative threads than
positive threads, a higher proportion of posts are expressing a positive sentiment than
negative. We find that 26% of posts convey a positive sentiment, which is substantially
greater than the 17% of posts written as replies to positive threads. Conversely, the
proportion of posts in negative threads was an overestimation of the total percentage
of negative posts in the dataset, which we calculate to be an average of 11% across all
time slices. The proportion of posts in neutral threads was also an underestimation for
the overall percentage of neutral posts, changing from 57% to 63%.

Employing the same methodology as before of Z-scoring the proportion of positive
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Figure 4.13: Percentage of posts of each sentiment label, inferred from the proportion
of posts of each sentiment in threads of each sentiment in the labeled sample of the
COVID-19 dataset, results shown for each data slice.

to negative, negative to positive and neutral to positive plus negative posts, we are able
to identify a possible reason for the network structure difference between the network
of 1 June 2021 to its neighbours. As can be seen in Figure D.11, in the data slices of 1
May, 15 May, 15 June and 1 July 2021 there is an underrepresentation of positive posts
and an overrepresentation of negative ones, which is not the case for the time window
starting in 1 June 2021. The same effect happens for the number of users in negative
threads (Figure D.10b), which are overrepresented in the four closest time windows to
1 June 2021, but not in the time window of 1 June 2021.

Finally, we explore the level of disagreement in each thread of the sampled subset
of the COVID-19 dataset over time, through the discordance index metric we propose.
Figure 4.14 shows the average discordance per thread over time, with the discordance
for each thread calculated as the average discordance using windows of 2 to 5 posts.

Results using the discordance index indicate that the network difference we observe
in 1 June 2021 may be connected with a period of a high degree of disagreement
within the forum. Another period of time that stands out is the particularly low level of
disagreement in the time window starting on 1 October 2021, which we also previous
highlight as it coincides with a significant difference in network structure. On the other
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Figure 4.14: Average discordance index per thread in the sampled subset of the
COVID-19 dataset over time, calculated as the average discordance using windows
with 2 to 5 posts.

hand, the discordance index suggests that during the time window of 1 July 2021 there
is a very low level of disagreement that is not picked up by the network comparison.

Assuming our sample is representative of the whole dataset, we can calculate the
average discordance value in threads of each sentiment type and use it to infer the
average discordance index for the whole dataset, which we show in Figure 4.15.

This methodology still emphasizes 1 June 2021 as a time of particularly high level
of disagreement in the forum. The results also uncover a possible explanation for the
network structure changes after September 2021, as the time windows starting in 1
September, 15 September and 1 October 2021 have the lowest levels of disagreement
of all time frames and they are followed by a rapid increase in the discordance index
in 15 October 2021.

4.5 Discussion

4.5.1 Summary of results

We have shown how user interactions with the Mumsnet forum can be represented
through complex networks. By splitting these interactions according to their date, we
are able to obtain snapshots of these interactions over a fixed length period of time. We
employed the technique of network comparison to observe differences between each
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Figure 4.15: Average discordance index per thread in the COVID-19 dataset over time,
calculated as the average discordance using windows with 2 to 5 posts. Values are
inferred from the sample of sentiment labeled posts.

snapshot of interactions, by measuring how the structure of the network obtained from
these interactions changes over time.

We found that differences in network structure often occur simultaneously to real
world events that affect discussions in Mumsnet. For instance, the three major dif-
ferences in the network structure of the COVID-19 forum coincide with the approval
of the Pfizer and Astra Zeneca vaccines, the emergence of the Delta variant and the
start of the vaccine booster program. Some of the differences in network structure we
identify can be traced to changes in the distribution of specific orbits, which form a
basis for the interpretation of the reasons for the differences in structure. An example
of a change in the distributions of a subset of orbits that leads to significant differences
in the structure of the whole network are the distributions of cliques in the vaccination
subforum; these orbits are the biggest contributors for the separation of the networks
in this dataset into two broad clusters, before and after May 2015.

By performing sentiment labeling and analysis on these datasets, we were also
able to uncover a link between differences in the network structure and changes to the
sentiment toward vaccination in the forum. Out of 10 groups of network changes, only
in one we do not find any connection to an over or underrepresentation of positive,
negative or neutral sentiment. Conversely, there are only two changes in sentiment that
are not reflected in differences of network structure and both occur in the vaccination
dataset.



120 CHAPTER 4. VACCINATION DISCUSSIONS IN MUMSNET

Through a sample of the COVID-19 dataset, we studied whether the distribution of
sentiment within the posts of a thread was a better indicator for differences in network
structure. The distribution of sentiment in a thread can be seen as a proxy for the
amount of disagreement within that discussion; although posts of the same sentiment
does not necessarily indicate agreement, posts of different sentiment are a reflection
of opposing views. By using this metric of disagreement, results show that the time
with most disagreement in our sample coincides with the second largest difference in
network structure.

Considering Mumsnet as a whole, our analysis unsurprisingly shows clear distinc-
tions between how users discuss vaccination in general and vaccination within the
context of COVID-19. This distinction starts in the way that discussions progress in
each thread, with the COVID-19 forum characterized by short-lived threads with a
high volume of replies that contrasts with the more drawn out threads, some that even
last multiple years, in the vaccination forum. There are also big differences between
the two forums in terms of the sentiment towards vaccination. Because the data for
the vaccination forum spans a much longer period of time, it is natural that it contains
greater shifts in sentiment over time. However, there is a much higher prevalence of
neutral sentiment in the COVID-19 forum, as neutrality is the dominant sentiment in
all time windows; the same does not happen in the vaccination forum, where there
are time periods dominated by negative sentiment. Another key difference between
the two forums is the amount of users posting in threads of different sentiments, which
can be seen as a proxy for the amount of information flowing between threads of differ-
ent types. The proportion of users posting in threads of all sentiments is significantly
higher in the COVID-19 forum than in the vaccination forum, which can be interpreted
as an indication that there is a wider variety of opinions in each thread of the COVID-
19 forum.

Underlying all these distinctions between the two forums, we find significant dif-
ferences between the network structure of their user interactions. Although the contrast
in network structure is to be expected for the reasons above, we observe unexpected
similarities in the distributions of certain orbits. These similarities highlight common
patterns of user interactions in Mumsnet as a whole and further accentuate the differ-
ence between the networks before and after May 2015, in the vaccination forum.
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4.5.2 The “so-what" factor

Sentiment labeling is a very laborious process that consumes a great deal of human
resources and does not scale to large datasets, as an increase in the quantity of data
requires a corresponding increase in the effort of labeling. Automatic methods have
been developed but the vast majority focuses on Twitter data and are unsuitable for
more nuanced arguments that do not fit the character limit of a tweet. Furthermore,
automatic methods require representative samples for training and pre-labeled data for
training is often inappropriate due to changes in the context in which the discussions
took place.

On the other hand, the network comparison methodology we use to analyze user
behaviour in vaccination discussions is easy to use as an out-of-the-box tool and scales
to large social networks. Through network comparison, we were able to identify pe-
riods of time with differences in user behaviour that correlated with changes to the
sentiment towards vaccination. Our methodology naturally does not replace sentiment
analysis, but instead can be used as a tool to guide when it is most useful to perform
sentiment analysis, possibly saving resources in the sentiment labeling.

Another strength of using our approach of network comparison is that we are able
to inspect which graphlets and orbits are responsible for the differences in network
structure. This knowledge can be used to compliment sentiment analysis to generate
hypothesis about differences in user behaviour.

4.5.3 Limitations

Although we are able to judge which graphlets are responsible for the changes in net-
work structure, we were unable to find whether there is a correspondence between
changes in certain graphlets and the prevalence of a specific sentiment. We tried alter-
native techniques, such as motif analysis through the comparison against a null model
or even simply inspecting the frequency of graphlets, but changes in network structure
are often quite subtle; it is not the prevalence of each subgraph that leads to the differ-
ences in network structure, but rather how they are distributed over the network. This
is what makes complex networks complex, characterizing their structure is often hard
so it is important to develop heuristics that can help identifying when the structure is
different compared to other networks that are hypothesized to be similar. Nevertheless,
the relationship between network structure and sentiment is still an open problem and
albeit there are other techniques we could use to uncover this relationship, we leave
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that for future work.

One of the biggest limitations to the analysis of the COVID-19 forum is the wide
criteria we used to include threads in our dataset, as all threads that included any key-
word related to vaccination was considered in the analysis. This lead to the inclusion
of threads where the discussion was not focused on the vaccines themselves but in-
stead related to the pandemic in general. This wide criteria was particularly evident
when labeling the sampled posts, where we identified discussions about lockdowns
and opening up the country after the vaccination campaign, about Brexit in the context
of Astra Zeneca vaccine distribution and other pandemic specific topics like modeling,
masking and testing. These discussions were labeled as neutral towards vaccination but
there was a large body of arguments in regard to each of these issues, with polarizing
opinions between users.

It was unclear how to deal with this issue. Even if on a thread level it was possible
to detect threads whose discussion was not aimed at the vaccines in particular when we
labeled each original post, we found that even in threads that started off as discussions
about the vaccine, the natural flow of discussion trended towards other issues. This was
especially common in threads with a large number of posts, where off-topic concerns
kept being brought up, usually as a reflection of the pandemic situation at the time.

These side discussions present a confounding factor to connect the structure of the
networks with the sentiment of the forum. The structure of the network carries infor-
mation about how the discussions are being carried out, regardless of their content,
whereas all the side discussions were grouped under the umbrella sentiment of neu-
trality. This affects all facets of our analysis but in particular the discordance index, as
we observed long sequences of neutral posts that hid a high level of disagreement.

Another issue that affects both COVID-19 and vaccination forums is moderation
by Mumsnet staff in an effort to remove blatant misinformation. This is reflected in
threads being deleted that we were unable to scrape or posts whose content was deleted,
as well as replies that quoted those deleted posts. Whereas the former only affects the
overall perception of how much negative sentiment is in the forum, as naturally only
threads negative towards vaccination were deleted, the deleted posts are still encoded
in the network structure and were marked as neutral sentiment. The reason to mark
deleted posts as neutral instead of negative is that they do not necessarily express anti-
vaccination views borne out of misinformation, but instead often they are unfruitful
discussions between users that involve personal attacks and thus violate the rules of
the forum.
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4.6 Conclusion

This chapter presents a novel approach on the analysis of vaccination discussions in
online social networks. In particular, we study how these discussions are carried out
in Mumsnet, a discussion board targeted towards parents. This medium is often over-
looked by researchers in favour of more popular social networks like Facebook or
Twitter, but studies have found that discussion boards such as Mumsnet have a greater
effect on vaccination decisions than Twitter and are a reflection of public opinion.

By recording user’s posting patterns in threads, we are able to construct networks of
user relationships, which represent how users behave and interact among themselves
in the forum, over fixed lengths of time. One way to measure how these relation-
ships change over time is by employing network comparison through distributions of
graphlets. The methods we use to compare these networks require little parametriza-
tion, making them usable as out-of-the-box tools, scale for social networks with mil-
lions of users and are interpretable by showing which functional structures are respon-
sible for the differences in structure.

We validate the output of the network comparison measure against indicators of
sentiment towards vaccination in the forum, after hand labeling the original post of
each thread related to vaccination. Results show that there is a correlation between
differences in the network structure of user interactions and changes to the sentiment.
Thus, network comparison can be used as a tool to reduce the effort of sentiment
labeling, a labour intensive and often expensive process, by hinting when sentiment is
changing and so when it might be more important to allocate resources to.

We conclude this chapter by revisiting the research questions we posed in the in-
troduction, shedding an alternative light on the contributions presented in this chapter:

RQ1: We have shown significant differences between how users interact in Mum-
snet about vaccinations in general and COVID-19 vaccinations in particular. These
differences are visible not only in how often users repeatedly engage with the forum
and the duration of discussion threads, but also in the sentiment towards vaccination.
We have shown that the network structure of these discussions varies over time, re-
flecting real world events that impact discussions on the forum, and that the network
structure of vaccination discussions are different from discussions about the COVID-
19 vaccines. Finally, we were unable to find a distinctive pattern that characterizes
either discussions about vaccination in general or COVID-19 vaccines in particular, al-
though we found that differences in network structure were often connected to changes
in the distributions of cliques.
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RQ2: We have found evidence in our datasets that changes in sentiment within
Mumsnet occurred at the same time as differences in network structure, both in discus-
sions about vaccination in general and COVID-19 vaccines in particular.



Chapter 5

Contact Tracing and Testing for
COVID-19

5.1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing
COVID-19, has continued to spread in the United Kingdom (UK) throughout 2020,
2021 and 2022 facilitated by the emergence and progressive dominance of new viral
lineages such as the Alpha, Delta and Omicron variants of concern [189]. At time
of writing, over 22 million confirmed cases and over 175 thousand deaths related to
COVID-19 have been reported in the UK [53].

Each wave of infection has posed questions about the appropriate interventions to
be made to mitigate the impacts of the disease. While the first two waves of infection
in the UK were mainly managed through ‘lockdown’ measures involving policies such
as mandated working from home and limits on out-of-household mixing, by 2021 vac-
cines had become available, with over 30 million first doses distributed by the end of
March 2021. At time of writing, over 53 million first, over 50 million second, and over
39 million third doses have been distributed in the UK [53].

As 2021 progressed, and even prior to the arrival of the Delta and Omicron variants,
there was a concern that a fast growth in cases – particularly driven by a variant either
evading immunity or with enhanced inherent transmissibility – might lead to large
absolute numbers of severe cases, putting pressure on an already stretched healthcare
system, and leading to a large number of deaths [37]. The major legal restrictions to
economic, educational and social activities that had been implemented as emergency
measures to disrupt transmission during the previous 18 months, which were believed
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to be of increasing harm [177] and decreasing efficacy over time [32], provided a strong
motivation in late 2021 to find ways of reducing SARS-CoV-2 transmission using other
methods.

An alternative targeted approach to ongoing lockdowns and restrictions on so-
cial gatherings, is seeking to identify those who are infectious and restricting isola-
tion to only those individuals. This is the goal of Test-Trace-Isolate (TTI) strategies,
but using TTI alone to control growth was found to be challenging early in the pan-
demic [30, 40, 46]. Identifying individuals who are infectious before they have the op-
portunity to make contacts is difficult because many cases are only mildly symptomatic
or asymptomatic, and presymptomatic transmission is common, making symptom-
based case ascertainment unreliable. In the UK, from the start of the pandemic, the
government invested heavily in Polymerase Chain Reaction (PCR) testing infrastruc-
ture, which was primarily used in the community to detect infections among individu-
als experiencing one of a set of symptoms. PCR testing involves taking samples with
swabs (of the naso-pharynx, as advised by test providers in the UK), and transporting
the samples to one of a network of laboratories where the sample is amplified to detect
any fragments of SARS-CoV-2 RNA. Later in the pandemic life cycle, an alternative
technology provided by Lateral Flow Tests (LFTs) – alternatively called Rapid Antigen
Tests (RATs) or Lateral Flow Device (LFD) tests – was widely deployed in the UK.
These tests are inexpensive cartridges that deliver results within 15-30 minutes, rather
than in 1-2 days for PCR tests, and do not require laboratories with their associated
staff or logistic networks.

While it is possible to deploy PCR at scale – as has been done most prominently
in China [95] – the speed and low cost of LFTs makes these more attractive for large
population testing programmes. Further, Larremore et al. [89] argue that the key crite-
rion for a test being useful for these purposes is sensitivity during the infectious period
rather than sensitivity to any level of detectable virus. According to this criterion, LFTs
are not expected to be substantially inferior to PCR [81]. In high prevalence settings
(≥ 5%), the World Health Organisation (WHO) recommends prioritisation of LFTs as
they can be quickly produced in large quantities and the results can be obtained rapidly
on site and without the need for a laboratory [188]. A positive LFT result will then
allow immediate isolation of suspected cases and timely contact tracing.

By providing a rapid result and reducing the need for resource-intensive labora-
tory and transport infrastructure subject to capacity limitations, LFTs offered the op-
portunity to expand case finding strategies to asymptomatic as well as symptomatic
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individuals on a wider community level. Mass use of single LFTs targeted to asymp-
tomatic individuals or regardless of symptoms had a significant impact when deployed
nationally in Slovakia [126] and locally in Liverpool [97], although these schemes
also required significant human resources in their delivery. Through the first half of
2021, the UK applied setting-specific asymptomatic testing programmes, such as in
care homes, healthcare settings, schools and workplaces and some evaluation of the
potential efficacy and effectiveness of these programmes has occurred [18, 90, 195].

At the start of Autumn 2021, in order to avoid both the direct harms of a large
Winter epidemic wave and implications for healthcare capacity, as well as the indi-
rect harms of restrictive lockdown measures and social contact restrictions, there was
a need to assess the potential effectiveness of a regular population-wide asymptomatic
screening programme using LFD tests. Our work aims to explore variations on such
a policy, against the background of the existing symptomatic testing and tracing pro-
gramme, using an adaptation of a published agent-based model (ABM) called Cov-

asim [82]. Covasim was previously used in the UK to evaluate the impact of differ-
ent TTI strategies when schools reopened after the first national lockdown [122], to
explore the impact of wearing face coverings in schools [123], to simulate different
lifting lockdown lifting strategies [124, 125], and as part of the UK Health Security
Agency’s epidemic nowcasting [52].

Covasim is a network based model, incorporating multiple networks that represent
settings where infection-transmitting contact can occur. The lockdowns introduced to
fight the spread of COVID-19 have had an impact on social contact patterns of the
whole population. Policies such as social distance, school closures and advice to work
from home led to cautious behaviour from the population in general and social contact
surveys show that, by March 2022, the average number of daily contacts still had not
reached the same values as before the start of the pandemic [77]. Using age-mixing
matrices from social contact surveys before [111] and during [78] the pandemic, we
extend Covasim to generate contact networks that reflect changes observed in these
surveys. By applying network comparison to the networks generated from the age-
mixing matrices, we can gain understanding about the different infection-spreading
patterns that emerge from the age-mixing patterns of different time periods.

Against this backdrop of different social contact patterns, this chapter extends ex-
isting Covasim studies to consider different asymptomatic testing regimes and choice
of testing technology for symptomatic testing, across a range of adherence levels and
epidemic growth rates. Specifically, we answer the following five questions:
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1. What is the effectiveness of regular LFD testing among asymptomatic individ-
uals in reducing the total number of infections and the size of the peak, when
combined with a moderate (40%) background PCR testing of symptomatic indi-
viduals combined with PCR contacts testing under scenarios:

• According to asymptomatic testing frequency

• For different levels of asymptomatic testing and isolation uptake

2. What percentage of non-household contact reduction would be required to obtain
equivalent effectiveness in reducing peak size/number of infections compared to
a regular asymptomatic testing policy?

3. If there is no asymptomatic testing, how does the effect on number of cases/peak
size of symptomatic isolation and testing, plus PCR testing of identified case
contacts, vary by uptake amongst those symptomatic and their traced contacts?

4. What are the implications for testing with a single LFD test compared to a single
PCR test when symptomatic?

5. For the range of testing policies, what are the associated ‘costs’ in terms of num-
bers of days people are asked to isolate at home and numbers of tests required?

5.2 Methods

5.2.1 Model Overview

For the purposes of this analysis we used a modified version of Covasim based on
release 3.0.2. The modified Covasim and the code for running all simulations contained
in this paper are available at https://github.com/TTI-modelling/covasim and
https://github.com/migueleps/RegularAsymptomaticTesting.

Treating each individual as an agent, Covasim incorporates individual transmission
variability, age-specific disease progression probabilities, immunity dynamics, and the
effect of various vaccination and non-pharmaceutical interventions. Each timestep
in the model represents one day and is split into three main phases: interventions,
immunity and transmission. Interventions include both non-pharmaceutical interven-
tions, like contact tracing, and pharmaceutical ones, like vaccination. Immunity in the
model is implemented through Neutralising Antibodies (NAbs) trajectories, which are
mapped to reductions in transmissibility, susceptibility and disease severity, a process

https://github.com/TTI-modelling/covasim
https://github.com/migueleps/RegularAsymptomaticTesting
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described in [23]. Transmission is calculated on a per connection basis, controlled by
a parameter β representing the transmission probability. Thus, each contact between
a susceptible and an infectious agent has an independent probability β of leading to a
transmission event. However, this parameter is governed by multiplicative factors that
affect the transmission probability, for example, the contact layer where the contact
occurred or other factors, such as age-based susceptibility. In our analysis, we used
the majority of default parameters regarding transmission and disease progression in
Covasim, while the parameters specific to our simulations and studied interventions
are documented in Appendix F. As suggested by Kerr et al. [82], we calibrate the
parameter β to produce epidemics with desired initial growth rates.

In addition to the transmission probability varying according to the contact layer
and other susceptibilities, we also vary the transmission probability per individual and
over time. Infectiousness of an individual is expected to be directly dependent on their
viral load. However, it is difficult to obtain data on the distribution of viral load trajec-
tories in general populations and the relationship between viral load and infectiousness
is not known. As such, we find it necessary to take the simplifying assumption that the
infectiousness of agents depends solely on their infectious age. We base our model of
infectiousness upon the shape of the generation time distribution, defined as the dis-
tribution of times from infection to transmission, estimated by Ferretti et al. [39] who
combined several different datasets of infector-contact pairs to produce an estimate for
the generation time distribution.

5.2.2 Contact Networks

We simulated a population representative of a UK town, which consists of 100,000
individual agents linked by a 4-layered contact network (household, school, work, and
community). The contact structure (i.e. the average number of contacts per person) and
the transmission probability per contact are different in each layer. In the household
layer, the average number of contacts per person is drawn from a Poisson distribution
with mean of 2.25, informed by the mean household size in the United Kingdom [174].
All members of a household are fully connected to the remaining members of that
household and disconnected in this layer from any person outside the household.

We parameterized the structure of the remaining 3 contact layers using age-de-
pendent contact matrices obtained from the social contact surveys CoMix [78] and
POLYMOD [111]. The UK CoMix survey is conducted bi-weekly in real time since
March 2020, which records the dynamics of individual’s contact behaviours alongside
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the pandemic, while POLYMOD is the first comprehensive contact survey in Euro-
pean countries in 2008, which represents pre-pandemic contact patterns. POLYMOD
contact matrices for the UK are available publicly online and we extracted contact ma-
trices from Rounds 22 to 27 (late August 2020 to September 2020) of CoMix survey as
they documented the highest average number of contacts since the start of COVID-19
pandemic, as of November 2021.

The CoMix surveys were designed to be consistent with POLYMOD, recording
age of the participant, age of contact and the setting the contact occurred in. The ages
of participants and individual contacts are split into 9 age bins: 0 to 4 years, 5 to 11
years, 12 to 17, 18 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69 and 70+ years. The
CoMix survey asks participants to make a distinction between individual contacts and
“group contacts" [51], a category for participants who are unable to recall details for all
individual contacts (for example, those working in public facing jobs). This category
is split into less fine-grained age divisions: 0 to 17, 18 to 64 and 65+ years. These
age bins are matched to the more detailed ones by sampling uniformly at random an
age bin in the appropriate range, for instance, to assign a contact from the 0 to 17
age bin, we sample uniformly at random from the 0 to 4, 5 to 11 and 12 to 17 age
bins. Following the analysis on the weekly CoMix reports, we truncate the maximum
number of contacts by each individual to 50 per day.

Using these age-mixing contact matrices, we generate each contact network layer
using a configuration model. The number of contacts of each individual to each age
bin is drawn from a negative binomial distribution.

Unlike the household, school and work layers, the community layer uses Covasim’s
dynamic layer setting [82], wherein contacts are regenerated after each timestep, while
preserving the number of edges between age bins.

5.2.3 Interventions

We modeled government policy in our simulation setup through the inclusion of four
interventions: vaccination; isolation on symptoms; testing; and contact tracing.

5.2.3.1 Vaccination

We assume a vaccination coverage scenario where 90% of people aged over 40 have
been vaccinated with 2 doses of the Astra Zeneca vaccine and 45% of people aged
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under 40 have been vaccinated with 2 doses of the Pfizer vaccine. This leads to ap-
proximately 67% of the population being vaccinated, which at the time we started this
work, was considered a high vaccination coverage scenario, but it is likely to be under-
estimating population coverage at the time of writing. We also assume that the whole
population is vaccinated from day 0, so the decaying vaccine efficacy resulting from
decaying neutralizing antibodies is the same for all age groups. Through previous
simulations, we measured that this vaccination scenario reduces the number of total
infections by 70% in an epidemic with growth rate 0.15, equivalent to a doubling time
of 5 days. This vaccination strategy is not meant to reflect the progression of the vac-
cination effort observed in the UK. Instead, it was chosen to consider the pre-existing
population immunity at the start of this work, following the questions posed to us by
SPI-M.

5.2.3.2 Isolation on symptoms

Until April 2021, UK government policy advised that, upon developing at least one of
three COVID symptoms (fever, new continuous cough or loss of smell or taste), people
should self-isolate and request a PCR test, remaining in isolation until either receiving
a negative result or for an isolation period following a positive test (which varied, but
was 10 days for the majority of pandemic during 2020-2021). However, there was
variation among the population in the ability to identify COVID symptoms correctly
or to isolate prior to receiving test results. To take this into account, we implement
isolation on symptoms with an adherence parameter, the probability that someone will
preemptively isolate when developing symptoms.

As a respiratory disease, COVID shares symptoms with Influenza-like Illnesses
(ILI), which can lead to people mistaking an ILI infection with COVID and pre-
emptively self-isolate while waiting for a test result, despite not being infected with
COVID. We model this scenario by picking randomly 1% of the population to be in-
fected with ILI symptoms every day and self-isolate with the same adherence proba-
bility.

Both groups of people isolating on symptoms are released from isolation if they
test negative at least one day after developing symptoms.

5.2.3.3 Testing

Testing interventions allow the identification of infected individuals within a simula-
tion. A diagnosed individual is put in isolation, which is implemented as a reduction to
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β by 90% in non-household contact layers. This isolation is always mandatory, regard-
less of the isolation on symptoms policy. Testing also unlocks contact tracing, which
is implemented as a separate intervention but requires testing interventions to work.

We model testing differently depending on symptomatic status. In the symptomatic
case, people with symptoms for COVID or ILI have a fixed probability of testing every
day. Those who test positive are placed in at-home isolation for 10 days, regardless of
their isolation status prior to the test.

In the asymptomatic case, we split the population in three groups: regular testers,
intermittent testers and anti testers. Regular testers are the ones that follow govern-
ment advice rigorously, testing at periodic intervals. The rest of the population is split
in 10% for the anti testers, who never test if they are asymptomatic, and the remaining
90% for intermittent testers, who test at a quarter of the rate of the regular testers. This
means that if 60% of the population is testing regularly twice per week, then 6% of
the population never test if they are asymptomatic and 34% of the population will test
on average once every two weeks (7% probability of testing per day). These param-
eters were chosen as a best guess following conversations with specialists, as specific
parameters for modelling are hard to estimate during an evolving pandemic [103].

As testing time is known as an important feature impacting the effectiveness of TTI
interventions, we added an extension to Covasim which incorporates time depended
individual PCR and LFD test sensitivity trajectories estimated from empirical regular
testing of healthcare workers data [60]. We also include a testing delay for PCR tests,
given by a Poisson distribution with mean 1.2, a swab error rate of 10% (tests that
return negative regardless of infection status) and a LFD test specificity of 99.7%.

5.2.3.4 Contact tracing

A positive test through a testing intervention triggers contact tracing. A proportion
of contacts of the diagnosed individual are notified as contacts. The proportion of
contacts and the time it takes to find them depends on the contact layer that the contact
occurred in: in the household layer, we assume that all contacts are found within the
same day of diagnosis; in the school and work layers, we assume that 45% of contacts
are found the day after the diagnosis; finally, in the community layer, we assume that
only 15% of contacts are found, taking 2 days from the case’s test result to do so.

We modified the default contact tracing interventions implemented in Covasim to
better reflect UK policy during Autumn 2021. Instead of asking contacts of a diagnosed
positive case to quarantine, they are asked to take a PCR test instead, which they do
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with probability controlled by an uptake parameter.

5.2.4 Outcomes

We focus the analysis of our model on the following outcomes:

• Number of infections - Total number of people who transition from a suscepti-
ble state to exposed, including reinfections.

• Height of new infections peak - Maximum number of new infections in a single
day.

• Number of tests - Average number of tests, either PCR or LFD, that each indi-
vidual in the simulation performs during the 180 days of simulation.

• Person days of isolation - Average number of days that each individual is in
isolation during the 180 days of simulation.

5.2.5 Summary of changes to Covasim

To highlight the contributions towards Covasim that underpins our experimental setup,
we provide here a summary of the changes we implemented in Covasim:

• Contact networks: we implemented a generation mechanism that takes as input
an age mixing matrix to generate networks with age contact patterns similar to
those observed in POLYMOD and CoMix.

• Interventions: we modified how testing works to include false positive tests and
bad swabs, as well as the testing scheme we discussed in Section 5.2.3.3; we re-
worked the implementation of test sensitivity, so that it is different for PCR and
LFD tests and depends on time since infection, instead of a constant probability
of a false negative; we introduced a new intervention to model isolation on symp-
toms and ILI infections, including an alteration in how isolation is processed;
and we changed contact tracing to no longer induce a period of quarantine but
instead to trigger a testing event.

• Analyzers: we added new analyzers to track person days of isolation for each
agent in the simulation.
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5.3 Results

We split our experiments into three sets of simulations, designed to answer the five
research questions we proposed. Each set of simulations was run with two contact
patterns, one obtained from POLYMOD and the other encompassing the CoMix survey
rounds 22 to 27, referring to late August 2020 and September 2020, the time period
when the number of average contacts was highest from the beginning of the pandemic
until November 2021, when the simulations were executed.

We also calibrate the β parameter per infectious contact to multiple growth rates,
for each of the contact patterns. The growth rates we use are 0.025, 0.05, 0.1, 0.15,
0.225 and 0.3, which correspond to approximate doubling times of 1 month, 2 weeks,
1 week, 5 days, 3.5 days and 2.5 days, respectively.

5.3.1 Asymptomatic testing and reducing number of contacts

To study the impact of increasing asymptomatic testing, we vary the percentage of
the population in the regular testing cohort from 0% to 100%, in intervals of 10%.
We also vary the frequency of testing, with the regular groups testing once per week,
twice per week or every two days. The intermittent testers have a daily probability of
testing of 1/28, 1/14 and 1/7, respectively, meaning that they will test on average once
a month, once every two weeks or once per week. In this set of simulations, we fix
the adherence to isolation on symptoms, the daily probability of testing if symptomatic
and the proportion of contacts that take up a PCR test to 40%.

Government policy such as social distancing and sector closure (’lockdowns’) were
introduced to prevent transmission of COVID by reducing the number of contacts each
person makes. To represent these interventions in Covasim, we randomly remove a
percentage of edges in the work, school and community layers of the contact network
(i.e. not the household network). We vary the percentage of edges we remove from the
network in increments of 5%, from 0% to 100%. For the simulations in this scenario,
we remove all asymptomatic testing and set adherence to isolation on symptoms, daily
probability of testing if symptomatic and the proportion of contacts that take up a PCR
all to the same value as before (40%), for a comparison of the impact of reducing
contacts against increasing asymptomatic testing.

We show the comparison between these two approaches through the number of
total infections after the 180 days of simulation, in Figure 5.1, and the number of
person days of isolation, in Figure 5.2. We also show the relationship between the
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(a) POLYMOD contact patterns (b) CoMix contact patterns

Figure 5.1: Comparison of asymptomatic testing strategies against reduction of con-
tacts for different growth rates and contact patterns. The x-axis represents the size of
the regular tester cohort for the simulations with asymptomatic testing or the percent-
age of contacts removed from non-household layers for the simulations with contact
reduction. The y-axis shows the total number of infections, averaged over 100 runs.

size of the peak in number of daily infections and the number of total infections, in
Appendix G (Figures G.1 and G.2).

For a twice weekly testing policy, which was the government advice for regular
asymptomatic testing during 2021, we find that at 100% adherence, the decrease in
total number of infections compared to 0% adherence to this policy is within the range
[6.6%, 44.6%] for POLYMOD contact patterns and [7.0%, 44.9%] for CoMix con-
tact patterns, across the different growth rates, Figure 5.1. The growth rates at which
these boundary values occur are 0.025 and 0.15 for both POLYMOD and CoMix. This
reduction in the number of total infections is similar to the impact of reducing the num-
ber of contacts by 25 to 30% across all growth rates, for both sets of contact patterns.
At 50% adherence, these intervals are reduced to [3.3%, 27.9%] for POLYMOD and
[4.1%, 26.0%] for CoMix.

For a once weekly testing policy, if 100% adherence, the decrease in total number
of infections ranges from 3.9% at 0.025 growth rate to 32.2% at 0.15 with POLYMOD
contact patterns, and from 3.9% at 0.025 growth rate to 32.9% at 0.15 with CoMix
contact patterns. The decline in the total number of infections is equivalent to reducing
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(a) POLYMOD contact patterns (b) CoMix contact patterns

Figure 5.2: Impact on person-days of isolation of increasing adherence to the different
asymptomatic testing strategies, for different growth rates and contact patterns. The
x-axis represents the size of the regular tester cohort for the simulations with asymp-
tomatic testing or the percentage of contacts removed from non-household layers for
the simulations with contact reduction. The y-axis shows the mean number of person
days of isolation per population members over the 180 days of simulation, averaged
over 100 runs. These include days in isolation waiting for test results (amongst true
positives and true negatives); isolation days amongst those testing positive who were
true positive; and isolation days among those testing positive who were false positives.
The colour of each marker indicates the percentage of days spent in isolation while
infected.
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the number of contacts by 15 to 20%, across all growth rates and for both sets of
contact patterns. At a lower level of adherence, 50%, this decrease is reduced to 1.6%
at 0.025 growth rate and 18.4% at 0.15 with POLYMOD contact patterns, and to 2.7%
at 0.05 growth rate and 19.9% at 0.15 with CoMix contact patterns.

For the most intensive asymptomatic testing policy, testing every 2 days, given
100% adherence, the decrease in total number of infections is within the range [8.6%,
71.0%] for POLYMOD contact patterns and [7.7%, 65.2%] for CoMix contact pat-
terns. The growth rates at which these boundary values occur are 0.025 and 0.15 for
both contact patterns. This reduction is equivalent to the impact of reducing the num-
ber of contacts by 40 to 45% for all growth rates, in both sets of contact patterns.
At 50% adherence, these intervals are reduced to [4.6%, 40.9%] for POLYMOD and
[4.0%, 37.9%] for CoMix.

We find that the impact of testing on the maximum number of infections per day
is approximately the same as the impact in number of total infections, when compared
to reducing the number of contacts (Figures G.1 and G.2). Results show that testing
every 2 days yields a peak height equivalent to reducing the number of contacts by 40
to 45%, testing twice per week is equivalent to reducing contacts by 20 to 25% and
testing once a week is equivalent to reducing contacts by 10 to 15%. These numbers
are consistent across multiple growth rates and contact patterns.

Analysis of person-days of isolation reveals similar behaviour when the growth rate
is less than or equal to 0.1, for both contact patterns, Figure 5.2. In these low prevalence
cases, increasing the adherence to the testing policy leads to a increase of 22.5% (0.6
days), 35% (1 day) and 60% (1.9 days) in number of person-days of isolation for the
weekly, twice weekly and testing every two days policies, respectively. The time spent
in isolation while positive accounts for less than 10% of the time in isolation, for 0.025,
0.05 and 0.1 growth rates.

For higher growth rates, increasing testing leads to a smaller increase in the number
of person-days of isolation, with the increase becoming smaller the higher the growth
rate is. For the testing every two days policy, increasing adherence to 100% leads to an
increase in number of person days of isolation of 51% (1.7 days), 17.7% (0.9 days) and
8.9% (0.6 days) for 0.15, 0.225 and 0.3 growth rates, respectively, when using POLY-
MOD contact patterns, and 47% (1.6 days), 16.6% (0.8 days) and 4.3% (0.4 days),
when using CoMix contact patterns. For the twice weekly testing policy, increasing
adherence to 100% leads to an increase in number of person days of isolation of 26%
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(0.8 days), 10.1% (0.4 days) and 8.8% (0.6 days) for the same growth rates, when us-
ing POLYMOD contact patterns, and 23.9% (0.8 days), 10.8% (0.5 days) and 6.5%
(0.5 days), when using CoMix contact patterns.

For all growth rates, this increase in isolation time is driven by an increase in people
isolating from false positive LFD tests. This is supported by inspecting the proportion
of time spent isolating while positive to COVID, which decreases as adherence to
testing increases, represented by the colour gradient in Figure 5.2. This effect is more
pronounced at high growth rates and higher rates of testing. For instance, at a growth
rate of 0.3 with POLYMOD contact patterns, for the testing every two days policy,
the time spent isolating while positive varies from 60% at 0% adherence to 42% at
100%, but for the twice weekly testing policy, these values change to 63% and 54%,
respectively.

5.3.2 Symptomatic testing

We also explore how sensitive our model is to changes in the parameters that control
adherence to isolation on symptoms, daily probability of testing if symptomatic and the
proportion of contacts that take up a PCR. We vary these parameters in increments of
20% from 0% to 100%. An uptake of 100% in these interventions means that all traced
contacts take a PCR test when they are traced and everyone that develops COVID or
ILI symptoms isolates and performs a PCR test the day after isolating, continuing to
isolate for a total of 10 days if the test is positive and being released from isolation if
the test is negative. These experiments are conducted solely on POLYMOD contact
patterns, for the multiple growth rates as above, due to the heavy computational load.
The impact of changing these uptake parameters in the total number of infections is
shown in Figure 5.3.

Results show that the most effective of three interventions at reducing transmission
is isolation on symptom onset, across all growth rates. This is a very intuitive result
and follows our expectation, as isolation naturally prevents most transmission. Perfect
adherence to isolation on symptoms with no contact tracing and no testing accounts
for a reduction in number of cases between 14.3% (at a 0.025 growth rate) and 66.9%
(at a growth rate of 0.15).

On the other hand, contact tracing and asking contacts to take a PCR test, isolating
only if positive, is the least effective of these interventions. With a 100% testing proba-
bility when symptomatic and no isolation on symptoms, the combination of parameters
that should favour contact tracing the most as contacts can only be traced when there
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(a) Growth rate = 0.025

(b) Growth rate = 0.3

Figure 5.3: Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and PCR testing after being traced as a contact of a positive case. Num-
bers shown are the percentage decrease in the total number of infections, compared to
0% uptake on these interventions, for 0.025 and 0.3 growth rates in POLYMOD con-
tact pattern. The top line on the x axis represents the uptake to testing after contact
tracing, the bottom line represents the daily probability to testing when symptomatic.
The y axis represents uptake to isolation on COVID or ILI symptoms.
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is testing, our results show that contact tracing reduces the number of cases between
1.9% (at a growth rate of 0.025) and 14.5% (at a growth rate of 0.225).

The impact of symptomatic and contact testing is harder to measure, as it interacts
with the effectiveness of the other two interventions. If we assume testing but no isola-
tion on symptoms (only after a positive test) and no contact tracing, testing can reduce
the number of cases from 10.6% (at a growth rate of 0.025) to 51.6% (at a growth
rate of 0.15). However, if we assume perfect adherence to isolation on symptoms, the
impact of testing depends on the adherence to testing after being contact traced. For
example, at a growth rate of 0.15, with no contact tracing, increasing the daily proba-
bility of testing from 0 to 100% leads to more cases, from an average of 5340 to 6235,
corresponding to a reduction of 66.9% to 61.3% when compared to no interventions.
But if we add contact tracing with perfect adherence, increasing the testing probability
leads to less cases, from an average of 5340 to 5036, corresponding to a reduction of
66.9% to 68.7% when compared to no interventions.

The value of 40% adherence to the 3 interventions we chose for the asymptomatic
experiments, correspond to a reduction in number of cases by 10.5%, 15.6%, 39.3%,
50.2%, 29.6% and 23.9%, for each growth rate, respectively. These figures also indi-
cate that testing is most effective when the epidemic is at a medium level of growth; if
the epidemic is at a very high rate of growth testing is not enough to curb transmission.

5.3.3 Comparing PCR and LFD tests

We now explore how changing all PCR tests - taken by symptomatic individuals and
by contacts of identified cases - for a single LFD test impacts the total number of
infections, visualized in Figures 5.4 and G.5 for the asymptomatic testing experiments
and in Figures G.6 and G.7 for the symptomatic testing experiments. These results all
use POLYMOD contact patterns.

While varying asymptomatic testing, we find that using a single LFD test in lieu of
a PCR test among symptomatic individuals and traced contacts yields a smaller total
number of infections, with particular significance at high growth rates of the epidemic.
For a testing every two days policy, the difference ranges from 1.6% (0.025 growth
rate) to 20% (0.225 growth rate) when the whole population is testing frequently and
from 1.9% (0.025 growth rate) to 19% (0.225 growth rate) when half the population
is the regular testing group. For a twice weekly testing policy, the difference ranges
from 1.9% (0.025 growth rate) to 25% (0.225 growth rate), when the whole population
is testing regularly, and from 1.7% to 16%, at the same growth rates, when half the
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(a) Asymptomatic testing twice per week (b) Asymptomatic testing every two days

Figure 5.4: Comparison of LFD against PCR tests for symptomatic or contact traced
individuals, for different values of asymptomatic testing uptake and different growth
rates, with contact patterns obtained from POLYMOD. The y-axis shows the total num-
ber of infections. The x-axis represents the size of the regular asymptomatic tester
cohort. Markers shown represent the median of 100 simulations and the shaded area
represents the interquartile range. Figure 5.4a corresponds to the twice weekly testing
policy and Figure 5.4b to the testing every two days policy.
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population is the regular testing cohort.

In the experiments with no asymptomatic testing, we find that at small growth
rates, there is no significant difference between using a PCR versus single LFD test for
symptomatic individuals and contacts. We find that at medium growth rates (0.1 and
0.15), across different values for adherence to isolation on symptom onset and daily
probability of testing, using LFD tests leads to a smaller number of infections if the
adherence to testing after contact tracing is less than 40%, after which PCR leads to
on average to lesser number of infections. Finally, results show that at high growth
rates (0.225 and 0.3), LFD tests consistently lead to a smaller number of infections, in
particular when the probability of testing if symptomatic is 100%, the average (across
the range of uptakes to testing after contact tracing) difference between PCR and LFD
tests is 7.6%, 6.6% and 5.0% with no isolation on symptoms, 40% adherence and
100% adherence, respectively.

Another metric of interest in this context is the number of tests required to im-
plement this increase in adherence to testing, symptomatic or asymptomatic. In the
asymptomatic case, we find no difference in the total number of tests required between
using PCR or LFD tests for symptomatic individuals and contacts, which is expected
because the majority of testing is done in asymptomatic individuals. Implementing the
asymptomatic strategies if the whole population took up asymptomatic testing requires
30.1, 49.2 and 91.9 tests per person for the weekly, twice weekly and testing every 2
days policies, respectively. These correspond to increases of 180% (19.4 extra tests),
201% (32.9 extra tests) and 235% (64.4 extra tests) over no one in the population taking
up the regular asymptomatic tests.

For the symptomatic experiments, we show the average number of tests per person
taken over the 180 days of simulation in Figures G.8 and G.9.

Results are in agreement across different growth rates that more LFD tests are used
on average per person. The exception lies when the growth rate is equal to 0.3, due to
the significantly greater number of infections when using PCR tests, more tests of this
type are required as more people get symptomatic and more people get contact traced.
This increased requirement for PCR tests is more noticeable at high rates of adherence
to testing after contact tracing: at 100% adherence to testing after contact tracing there
are on average 66.3% more PCR tests consumed per person, whereas at 0% adherence
there are on average 34.1% more LFD tests used per person.

Swapping PCR tests for LFD also impacts the amount of time each person spends
in isolation, according to the results presented in Figure G.10 for experiments with
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asymptomatic testing and Figure G.11 with symptomatic testing only.

In the asymptomatic case, we find that the difference between both tests is similar
for 0.025, 0.05, 0.1 and 0.15 growth rates; people isolate longer on average when LFD
tests are used, due to possibility of a false negative. In these growth rates, with 100%
adherence to the testing policy, people spend on average 17.9% (0.6 days), 14.0%
(0.5 days) and 7.8% (0.4 days) longer on isolation if LFD tests are used for the weekly,
twice weekly and testing every 2 days policies, respectively. This difference is reduced,
when the growth rate equals 0.225, to 2.9% (0.1 days), 2.4% (0.1 days) and 4.3% (0.2
days) and reversed when the growth rate is 0.3, leading to people isolating longer
when PCR tests are used by 6.6% (0.5 days), 5.9% (0.4 days) and 5.9% (0.4 days). For
the 0.3 growth rate, the longer isolation times when using PCR tests are caused by a
greater number of infections, with the difference being large enough to be reflected in
the number of person-days of isolation.

At higher levels of adherence to regular asymptomatic testing, the increase in the
number of person-days of isolation by using a LFD test instead of PCR is smaller than
at low levels of adherence. For example, for the twice weekly testing policy, in 0.025,
0.05, 0.1 and 0.15 growth rates, the average increase in isolation days when changing
the PCR tests for LFD is 21.7% (0.6 days) at 0% adherence and 17.4% (0.6 days) at
50% adherence. This is a consequence of the greater number of false positives due to
intensive asymptomatic testing at high adherence, with the majority of isolation time
being caused by asymptomatic testing so changing to LFD testing in symptomatic (ILI
or COVID) and contact traced individuals is less impactful in this metric.

Results also show that with LFD tests for symptomatic or contact traced individu-
als, the proportion of time spent isolating while infected with COVID is smaller across
all growth rates and testing strategies. Using the same example as before, at a growth
rate of 0.3 with POLYMOD contact patterns, for the testing every two days policy, the
time spent isolating while positive varies from 49% at 0% adherence to 31% at 100%,
and for the twice weekly testing policy, these values change to 51% and 44%, respec-
tively. This is likely to be caused by a combination of better infection control (less
infections leads to less time isolating while positive) and more false positives (which
leads to more time isolating while negative for COVID).

A similar behaviour is observed in the symptomatic experiments, where the dif-
ference in number of person-days in isolation between testing with PCR and LFD is
similar for 0.025, 0.05, 0.1 and 0.15 growth rates. We observe that contact tracing
only affects the number of person-days of isolation when the growth rate equals 0.3,
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where increasing adherence to testing after contact tracing using PCR tests leads to an
average of 0.8 extra person-days of isolation, against 0.2 days when using LFD tests
instead. This contrasts with the remaining growth rates, where increasing adherence
leads to less than 0.1 extra person-days of isolation.

Results also show that increasing adherence to isolation on symptoms increases the
difference in person-days of isolation between using PCR or LFD tests, as adherence
to this intervention increases, using LFD tests leads to more person-days of isolation
than when using PCR tests. For the 0.025, 0.05, 0.1 and 0.15 growth rates, people
spend on average of 0.1 extra days in isolation when using LFD instead of PCR when
adherence to isolation on symptoms is 0%, growing to 1.4 days when adherence is
100%. For the 0.225 and 0.3 growth rates, at low levels of adherence to isolation on
symptoms, people spend more time on isolation when PCR tests are used, 0.5 days at
0.225 growth rate and 1.5 days. As adherence to isolation on symptoms increases, this
value shifts so that using LFD tests leads to people spending more time on isolation,
1.0 extra days at 0.225 growth rate when adherence is 100% and 0.4 days at 0.3 growth
rate.

Over all, the greater the adherence to isolation on symptom onset, the less time
spent isolating while negative to COVID. This highlights how increasing adherence
to isolation on symptom onset achieves a high reduction in number of infections: by
preemptively isolating individuals with any symptoms that could be related to COVID,
many susceptible people are being removed from the contact networks and, therefore,
less likely to be infected.

Similarly to the asymptomatic experiments, when using LFD tests individuals
spend more time isolating while they are negative to COVID. Excluding when there is
no isolation on symptom onset, when using PCR tests individuals spent on average 5%
of their time on isolation positive to COVID, with a growth of 0.025, up to 56%, with
a growth rate of 0.3. When using LFD tests instead, these values are reduced to 3 and
47%, respectively.

5.4 Discussion

We looked at three different policies for asymptomatic testing, one based on UK gov-
ernment advice in Autumn 2021 that recommended LFD testing twice per week and
two alternatives that doubled and halved the frequency of testing compared to this rec-
ommendation. These asymptomatic testing policies are compared against a scenario
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of partial closure of schools and work places and reductions in community contacts,
which could be implemented through a dissuasion of activities that require indoor mix-
ing or placing limits on groups sizes in restaurants/pubs. These scenarios emulate lock-
down scenarios at different levels and are naturally very effective at infection control.
However, they carry a high cost in the form of economic recession and mental health
impact on citizens that we do not account for in the simulations and it is unrealistic to
consider that these measures of infection control could be maintained for as long as 6
months (the length of our simulations).

Even with an experimental setup that favours a reduction of contacts, we find that
with the twice weekly testing schedule, increasing the amount of people participating
in the regular asymptomatic testing can have as much impact as reducing the num-
ber of contacts by 30%. When halving/doubling the testing frequency this impact is
reduced/increased to up to 20% or 45%, respectively.

The asymptomatic testing strategies carry a cost that can be measured by the num-
ber of tests each person takes and by how long each person spends in isolation. Perfect
adherence to the twice weekly asymptomatic testing advice requires that on average
each person in the whole population take approximately 50 tests over a 180 days pe-
riod, the majority of which are LFD, and spend approximately 3.5 days isolating while
not infected with COVID-19. These days spent in isolation are, for the most part, a
consequence of preemptive isolation while waiting for a test result, due to developing
symptoms (COVID-19 or ILI). The increase in testing, which identifies more infec-
tions but also carries a risk of generating more false positives, is only responsible for
an increase of less than 1 person day of isolation.

We also explored the impact of different levels of adherence to infection control
policies in a scenario where there is no asymptomatic testing in the population. In this
context, we find that the most effective policy in decreasing the number of infections
is preemptive isolation on symptom onset, while waiting for a test result. This high-
lights the need for widespread education of which are the most common symptoms of
COVID, particularly if new variants emerge that show different profiles of symptoms,
and government’s support to facilitate this isolation period. It is also necessary to sup-
port high levels of testing to prevent long periods of isolation from people with ILI
symptoms that overlap with COVID.

However, in a time with little or no appetite to support preemptive isolation periods,
our experimental setup shows that high rates of symptomatic testing and adherence to
testing after contact tracing can achieve a similar reduction in the number of infections
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in the population. In fact, our assumptions of the percentage of contacts found through
contact tracing is conservative according to estimates from UK NHS Test and Trace
[55], so the effectiveness of the combination of symptomatic testing and contact trac-
ing could be higher than the results from our simulations, especially considering that
achieving higher adherences to these policies is easier than high adherence to preemp-
tive isolation.

Finally, we studied the effect of replacing PCR tests for LFD in symptomatic and
contact traced individuals and results show that in the majority of scenarios, this sub-
stitution leads to a smaller number of total infections. This difference is caused by the
testing delay associated with PCR tests, as the need to develop the test results in a lab-
oratory setting offsets the gain obtained by being more accurate at identifying positive
individuals. The greater sensitivity of PCR tests is even less important when we factor
in the ability to perform multiple LFD tests before learning the result of a PCR test,
especially because the majority of tests done in this context are due to symptomatic
individuals (more so than contact traced ones) so it becomes imperative to diagnose
and isolate these individuals when they are at the peak of their infectivity.

The reduction in number of infections by replacing PCR tests by LFD is achieved
by a trade-off that can be quantified through an increase in both the number of tests
done and the average number of person days of isolation; the latter caused by false
positive tests, leading to people spending a greater portion of their isolation periods
when not infected with COVID. The increase in number of tests when using LFD
instead of PCR is only noticeable in the experiments with no asymptomatic testing
and is a consequence of the lower test sensitivity; individuals are more likely to test
negative with a LFD test than with a PCR but, because they are symptomatic, they are
likely to take more tests during their symptomatic period. This increase in number of
tests is not enough to offset to cost disparity between PCR and LFD tests, as each LFD
test is much cheaper than a PCR test and requires less infrastructure.

Our analysis has a number of strengths. Our results are similar for different contact
patterns, implying that our conclusions do not require the assumption that average
number of contacts stays as low as during the pandemic. We examine a range of
growth rates to cover different scenarios of epidemic growth, allowing us to study the
cases where no interventions are needed (growth rates of 0.025 and 0.05), when testing
is most effective (growth rates of 0.1, 0.15 and 0.225) and when testing alone is not
sufficient (growth rate of 0.3).

Our work has some limitations. Firstly, Covasim is a stochastic model and the
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inherent stochasticity gives rise to uncertainty, which is compounded with uncertainty
arising from the model parameters. For the purposes of this analysis we ran 100 seeds
for each set of parameters, which gave enough robustness in generating central, low
and high outcomes across the scenarios.

Secondly, in this study and when using Covasim in general, while most of the
parameters are derived from the literature, there are gaps where we had made some
assumptions. For example, for the asymptomatic experiments, we have assumed 40%
background symptomatic testing, adherence to isolation on symptoms and adherence
to testing after contact tracing. Although this assumption is based on the results of
the symptomatic experiments, it is unclear the extent to which the amount of symp-
tomatic testing affects the efficacy of asymptomatic testing. Another assumption in
the asymptomatic experiments is how much asymptomatic testing people outside the
regular testing cohort should perform. A sensitivity analysis on the chosen parame-
ters (90/10% split for intermittent and anti testers) would be useful to understand their
impact on our results.

Similarly, while we have made an effort to quantify vaccine efficacy against on-
ward transmission of different variants and waning protection from both vaccination
and infection, current data is not certain on these. Specifically, the version of Cov-
asim used in this study assumed a single variant (albeit with different step-like change
in transmissibility) and a single antibody waning function for all individuals and all
types of immunity, with individual- and immune-level variation in the level of Neutral-
ising Antibodies (NAbs). Incorporating different – possibly competing variants – and
different NAbs trajectories was beyond the scope of this work.

5.5 Conclusion

In summary, we explored the impact of different testing strategies using the Covasim
ABM. Our results highlight that asymptomatic testing with LFTs is particularly ef-
fective when the growth rate corresponds to a weekly doubling in number of cases.
We also found that swapping PCR tests for LFD may help in epidemic control due to
the delay in returning test results to individuals, which seems to offset the loss in test
sensitivity in LFTs.

Overall our findings highlight that regular asymptomatic testing with LFTs can be
an impactful intervention to reduce COVID-19 burden and as an alternative to national
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lockdowns. Delivering a strategy of large scale testing with LFTs combined with im-
mediate self-quarantining and contact tracing of contacts will be crucial in dampening
transmission, reducing hospitalisations and deaths in any future COVID-19 outbreaks
and as countries move towards “living with COVID-19” strategy.



Chapter 6

Conclusion

6.1 Summary of results

Throughout this thesis, we explored how graphlets, small units of functional behaviour
in the network, are an useful topological component of complex networks for the task
of network comparison. Advances in algorithms and computational resources have
allowed the adoption of graphlets as a network analysis technique for large scale net-
works, but their usage has not yet been embraced by research domains that could ben-
efit from the insights graphlets provide.

From a methodology perspective, we proposed an extension of the network com-
parison measure based on graphlets to directed networks. The measure, NetEmd, had
been previous shown to be more accurate than other methods at separating networks
generated from different random graph models, even when they differ greatly in size,
as well as identifying real world networks from the same domain. The main challenge
of this extension is the combinatorial explosion in number of orbits due to edge direc-
tion. One way to deal with this issue is to include in the comparison only the set of
orbits that occur in either of the networks under comparison. An alternative method is
to consider dimensionality reduction techniques, such as Principal Component Analy-
sis (PCA) and Independent Component Analysis (ICA), as de-noising procedures in a
dataset where we do not have a good noise model.

We presented extensive experimental results that demonstrate the performance of
the extensions we propose. In particular when using ICA as the de-noising method,
results show significant improvements in the ability to identify networks generated
from the same random graph model, even when the networks differ in size by an order
of magnitude, for undirected networks and for different levels of reciprocity in directed
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networks. Our experimental setup also serves as a guide to which parametrization of
NetEmd performs best in each context and when the added computational load of larger
graphlets can be avoided in favour of using orbits from smaller graphlets only.

From an application perspective, we studied how vaccination discussions are con-
ducted in an online discussion board, emphasizing the difference between these discus-
sions in the context of COVID-19 against vaccination discussions before the pandemic.
We found that the structure of the network varies over time depending on real world
events that affect these discussions. We also found evidence of correlation between
differences in network structure and the sentiment towards vaccination. The link be-
tween these two different types of analysis can be a useful guide to more efficiently
allocate resources when performing sentiment labeling, an expensive and labourious
process.

Network comparison was also found to be useful when modeling the impact of
Test-Trace-Isolate (TTI) strategies for COVID-19, in support of policy for the United
Kingdom (UK) government. In this context, we implemented a generation mechanism
for social contact networks informed by age-mixing matrices, which are derived from
social contact surveys representative of the UK population that measure the average
number of social contacts of each participant depending on the transmission setting.
This network generation mechanism was included in Covasim, an agent based model
with multiple network layers that represent common places where transmission of the
virus can take place, namely households, work places, schools or general community
areas. Through network comparison, we showed the different patterns of contacts
that emerge from using age-mixing matrices as a generation mechanism and how the
average number of contacts affects the structure of those networks.

Using Covasim, we investigated different strategies for asymptomatic testing and
adherence to Test-Trace-Isolate (TTI) interventions, such as symptomatic testing, iso-
lation on symptoms or uptake of a test after contact tracing, measuring their impact on
COVID-19 outcomes. We found that intensive asymptomatic testing can have as much
impact as a lockdown scenario where people are asked to reduce their non-household
contacts by 45%. Another result from this analysis was the greater ability of Lat-
eral Flow Tests (LFTs) to control transmission of COVID-19 when compared to Poly-
merase Chain Reaction (PCR) tests, due to the delay in obtaining the test result when
using the latter.
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6.2 Discussion

The contributions of this thesis are split into three distinct areas, as delineated by the
research questions in the Introduction. These three areas can generally be described as:
methods to compare complex networks based on graphlet distributions, applications
of network comparison in social networks and agent-based simulation of COVID-19
epidemics.

In the methodology chapter, although we have shown how our proposed algorithms
improved upon the state of the art, it is remarkable how accurate previous methods are.
Particularly in differentiating random network models, our experiments indicate that
all the methods we analyze are able to distinguish correctly different random network
models when they are generated with the same number of nodes and edges. This shows
that graphlets are a powerful tool in characterizing networks and descriptive of their
organizational structure. But it also shows that the framework proposed by Yaveroğlu
et al. [193] has become more of a proof of concept rather than a proper way to evaluate
network comparison methods, highlighting the need to develop benchmarking datasets
for this task, as is common in graph learning or community detection tasks.

Still regarding methodology of network comparison, one important byproduct of
our experimental setup, in the systematic manner we acquire results using orbits from
multiple graphlet sizes, is the ability to tell whether scaling up to larger graphlets is
worth the added computational load. A surprising result, that matches the findings of
Wegner et al. [180], is that smaller graphlets are better at telling apart networks that
differ greatly in size. A possible reason for this is that the networks we compare in
our experimental analysis may be too small to obtain enough realizations from the
distribution of these larger graphlets, so the approximations we observe in the network
we generated are not in enough to fully characterize the distributions. This is also a
reason why we observe a large gain in performance from the denoising methods we
propose, by removing some of the variability introduced by the generation mechanism
it becomes easier to distinguish different distributions and identify similar ones.

In the application chapter, we must emphasize the connection we found between
differences in network structure to changes in sentiment towards vaccination, connect-
ing two distinct techniques of analyzing discussions in social networks. Much of the
work in analyzing vaccination discussions focuses in either the structure of discussions
or their content but, by showing that these two components are connected, our work
suggests that the two types of analysis can be used to complement each other. By
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looking at differences in how users are connected in these discussions, we can gener-
ate nuanced hypothesis as to why the content or sentiment of their conversations has
shifted. Conversely, by noting changes in sentiment, we can obtain context to the dif-
ferences in distributions of re-occurring patterns of connections between users. In sum,
our analysis of vaccination discussions within Mumsnet shows how network compar-
ison based on graphlets can be used as a tool to generate hypothesis about changes in
behaviour of users in a social network.

Our analysis of vaccination discussions in Mumsnet, split between pre and post
COVID-19, also shows the impact of the global pandemic on vaccination discourse
online. Whereas discussions about vaccination before COVID-19 were a niche topic in
Mumsnet, with a small but loyal subset of users that engaged in these discussions over
multiple years, discussions about COVID-19 vaccinations were more popular, with
users maintaining longer periods of engagement with the forum. This is likely due to
how disruptive the pandemic was worldwide, increasing the willingness to discuss the
topic online. Another key difference between the periods before and after COVID-19
is the volatility of sentiment towards vaccination, as before COVID-19 we observed
time periods where discussion was dominated by either negative or positive sentiments
towards vaccination, but after COVID-19, the most common sentiment was neutrality,
possibly due to our wide criteria for inclusion of discussions.

A limitation of our study was the inability to find a connection between specific
orbits or graphlets and prevalence of a particular sentiment. Although we were able to
detect differences in the structure of the user interaction networks, often these differ-
ences were tied to how the graphlets were spread over the network, which impacts the
orbit distributions in subtle ways that makes the hypothesis generation process more
difficult.

Finally, on the agent-based simulation of COVID-19, although we did not explore
in depth the impact of including social contact surveys like CoMix and POLYMOD
to inform the contact networks of the agents, the calibration of parameters epidemic
parameters suggests that the reduced number of contacts observed during the COVID-
19 pandemic requires a much higher rate of transmission between individuals to reach
the same final epidemic size. Although this finding seems obvious, it is important for
models to reflect reality when exploring strategies for mitigation and the impact of
possible policy.

The research questions about simulation of outcomes for COVID-19 in this thesis
were informed by policy makers in the UK government and posed to us by the scientific
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committees that inform these policy makers. Thus, the focus of the final research
chapter of this thesis is more centered on the effects of different testing and isolation
strategies on various outcomes, than on the impact of network structure in Covasim. In
this context, our findings highlight that background asymptomatic testing with Lateral
Flow Device (LFD) testing is a viable strategy to contain an epidemic as an alternative
for mass lockdowns, for which the public currently has little appetite for. It is also clear
from our results that the advantages of LFTs over PCR tests (immediate test results and
ease of repeated testing) overcome the lower test sensitivity in the ability to control a
COVID-19 epidemic.

6.3 Future work

The work we presented in each chapter has the potential to seed future lines of research,
some of which we propose below:

• When denoising orbit frequencies for NetEmd, we explored two linear models
of dimensionality reduction, PCA and ICA. However, graphs are notably a non-
linear data structure, so non-linearity is to be expected when considering orbit
frequencies. In particular, future work could explore using autoencoders [85] for
the denoising process, as they have been proposed as generalizations of PCA for
non-linear data.

• In Chapter 4, we mention the potential of combining the information contained
in which orbits are driving changes in the network structure with how the senti-
ment is changing in the forum to generate hypothesis about user behaviour. Fu-
ture work should approach this potential from a multi-disciplinary perspective,
encompassing the feedback from sociology experts to generate those hypothesis.

• The configuration model used to generate the network for Covasim is an imple-
mentation that does not guarantee known properties of real world networks, such
as scale-free [3] or small-world [179]. Both these properties potentially affect
how a virus can spread in a social contact network, for instance, in a scale-free
network, there is a small group of people that accrues a disproportionate num-
ber of connections. If one person in this group is infected, then they have a
large neighbourhood of people they can potentially spread the virus to, a “su-
per spreader" event. Future work should implement random graph models that
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better reflect how a social contact network grows, for example, a preferential
attachment model [9].
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Appendix A

NetEmd with different metrics

A.1 Area Under Precision-Recall (AUPR)

Sarajlić et al. [152] evaluate the performance of their graph comparison tool using the
area under precision-recall curve (AUPR), after the framework proposed by Yaveroğlu
et al. [193]. The metric is calculated as follows: for each value of a parameter ε≥ 0, if
the distance between two networks is less than ε, then the networks belong to the same
cluster. The parameter ε ranges from 0 to 1, with values incrementing by 5×10−3.
For each value of ε, we compute the number of true positives, false positives, true

negatives and false negatives. In this context, we define these concepts as:

• True Positive (TP): the distance between the networks is smaller than ε and they
were generated by the same random network model.

• False Positive (FP): the distance between the networks is smaller than ε but they
were generated by different random network models.

• True Negative (TN): the distance between the networks is greater than ε and they
were generated by different random network models.

• False Negative (FN): the distance between the networks is greater than ε but they
were generated by the same random network model.

From these quantities, we calculate precision as T P
T P+FP and recall as T P

T P+FN , ob-
taining 200 tuples of (precision, recall), from which we are able to plot the precision-
recall curve. The area under this curve is a metric relevant to our problem as it puts an
emphasis on the positive predictive value of the model, disregarding the true negatives
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that compose the majority of datasets with imbalanced labels such as this one (with 8
random network models, positive labels comprise only 12.5% of the dataset).

A.1.1 Undirected Results

Table B.5 shows the area under precision-recall curve (AUPR) for Task 1 and Task 2
in the undirected case and the Onnela et al. dataset.

In Task 1, according to AUPR, using Principal Component Analysis (PCA) or In-
dependent Component Analysis (ICA) does not lead to a gain in performance, unlike
what we observed when using P. This is not surprising as the improvement we dis-
played with P was within a standard error and both methodologies are able to separate
networks between these random models with a very high degree of accuracy. Task 1
serves as a proof of concept that our proposed measure is able to perform the most
simple task.

The results for Task 2 are aligned with what we observe when using P, coupling
ICA with NetEmd leads to the best separation between models when different network
sizes and densities are present. In the Onnela et al. dataset, the results with AUPR
also agree with P, both performance metrics consider the original NetEmd with size 4
orbits to be one of the top performers with this dataset. The difference between the two
metrics is that when measuring with P, we observe that using PCA with 90% explained
variance leads to similar performance (Table B.2), but the top performer in this dataset
according to AUPR is PCA with 99% explained variance, achieving an AUPR score of
0.791.

A.1.2 Directed Results

The results using AUPR for Task 1 in directed networks are shown in Table B.6 and
for Task 2 and the dataset of real world directed networks in Table B.7.

In Task 1, the main difference we find is that Graphlet Degree Distribution Agree-
ment (GDA) with size 3 orbits shows an improvement over the other algorithms, be-
coming the top performer with 25% (tied with Directed Graphlet Correlation Degree
(DGCD) with 129 orbits) and 75% reciprocity. DGCD with 129 orbits still shows the
best performance with 0% reciprocity, but PCA with 90, 95 and 99% explained vari-
ance is within one standard error, similarly to the results measured with P. At a 100%
reciprocity, NetEmd with size 4 orbits achieves the best performance, but PCA with
90, 95 and 99% explained variance and ICA with 2 components obtain similar AUPR
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scores. As before, we highlight that the high scores achieved by the 6 algorithms in
Table B.6 serve as a proof of concept that they are able to distinguish the random net-
work models for different levels of reciprocity, even if the AUPR score is not within a
standard error of the best score.

In Task 2, similarly to the undirected version, we find an agreement between the
AUPR score and P, with ICA with 2 components highlighted as the highest performing
algorithm for 0, 25, 50 and 75% reciprocity datasets and NetEmd with size 4 orbits for
100% reciprocity. The same agreement between AUPR and P is found on the dataset
of real world directed networks, with the top performer being ICA with 6 components
with an AUPR of 0.891 but not highlighted in Table B.7.

The conclusions regarding the difference between our proposed NetEmd methods
and TriadEMD also hold when using AUPR instead of P, in the synthetic datasets Tri-
adEMD achieves better AUPR scores that both NetEmd and Weighted_NetEmd with
orbits from size up to 3 graphlets, but worse results than NetEmd with size 4 graphlets.
In the real world directed networks dataset, both NetEmd and Weighted_NetEmd with
size 3 orbits obtain better AUPR score than TriadEMD.

A.2 Adjusted Rand Index

The adjusted Rand index (ARI) [70, 135] is a metric to evaluate the similarity of data
clusterings; a corrected for chance version of the Rand index [135] was proposed by
Hubert and Arabie [70]. Let G = {G1,G2, . . . ,GN} be the set of networks we wish to
partition into clusters. For the synthetic datasets, the ground truth partition of this set
is known, we have 8 models of random graphs and we evaluate a network comparison
method by its ability to reconstruct these groups. For the Onnela et al. [118] dataset,
the ground truth partition used is the one shown in the supplementary material of [4].
Let P ∗= {P∗1 ,P∗2 , . . . ,P∗c } be the ground truth partitions and P = {P1,P2, . . . ,Pc} be the
clusters produced by the network comparison algorithms. These clusters are generated
by applying a hierarchical clustering algorithm to the matrix of pair-wise distances
calculated by the network comparison; in our case we used the implementation by
scikit-learn [127], the AgglomerativeClustering class with complete linkage.

Given the two set of clusters, we define the following four quantities:

• a: the number of pairs of elements of G that are in the same cluster in P ∗ and in
the same cluster in P .
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• b: the number of pairs of elements of G that are in different clusters in P ∗ and
also in different clusters in P .

• c: the number of pairs of elements of G that are in the same cluster in P ∗ but in
different clusters in P .

• d: the number of pairs of elements of G that are in different clusters in P ∗ but in
the same cluster in P .

These quantities can be interpreted as the number of true positives, true negatives,
false negatives and false positives, respectively, if we consider the attribution of a pair
of networks to a cluster as a decision problem. The Rand index is then defined as:

RI =
a+b

a+b+ c+d
=

a+b(N
2

) .

The general form for correcting a index for chance is:

RI−E(RI)
max(RI)−E(RI)

.

Hubert and Arabie [70] show how to calculate E(RI), which we omit for brevity,
leading to the formula for the adjusted Rand index (assuming a maximum value of 1
for the Rand index when c and d are 0):

ARI =
∑i j
(ni j

2

)
− ∑i (

ai
2)∑ j (

b j
2 )

(N
2)

1
2

[
∑i
(ai

2

)
+∑ j

(b j
2

)]
− ∑i (

ai
2)∑ j (

b j
2 )

(N
2)

,

where ni j is the number of networks in common between P∗i and Pj, i.e., ni j = |P∗i ∩Pj|,
ai = ∑

c
j=1 ni j and b j = ∑

c
i=1 ni j.

A.2.1 Undirected Results

Table B.8 shows the adjusted Rand index (ARI) for Task 1, Task 2 and real world
networks in the undirected case.

As with AUPR, we find that using ARI as a performance metric does not change
the conclusions drawn from the results with P. Recalling that the ARI metric mea-
sures the quality of hierarchical clusters generated from a distance matrix, for Task 1,
the output of original NetEmd with size 5 orbits leads the best score using this metric.
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More evidence of the quality of the clusters produced by the original NetEmd with size
5 orbits is to notice that increasing the number of components in ICA or the percent-
age of variance explained in PCA (and therefore approximating the results of original
NetEmd) leads to higher ARI score.

For Task 2, the gain measured by P and AUPR when using ICA_NetEmd with
2 components is also reflected in the ARI score. For the Onnela et al. dataset, the
best performance we measure not included in Table B.8 is ICA_NetEmd with size 4
graphlets and 8 components, with the components calculated with size 5 graphlets,
with a score of 0.713.

A.2.2 Directed Results

The results using ARI for Task 1 in directed networks are shown in Table B.9 and for
Task 2 and the dataset of real world directed networks in Table B.10.

In Task 1, we find that, according to ARI, the performance of all NetEmd variants
is significantly below the performance of DGCD with 129 orbits for 0, 25 and 50%
reciprocity and of GDA with size 3 graphlets for 75% reciprocity. At 100% reciprocity,
NetEmd, PCA_NetEmd with 80% variance and GDA, all with size 4 graphlets, share
the top performance, but with a smaller difference to other algorithms and parameters.
These results are a stark contrast to the ones we observe using AUPR and P, where
scores for this task did not differ significantly between all the algorithms.

In Task 2, unlike in the other metrics, ICA_NetEmd with 2 components is no longer
considered the best performance for 0%, with TriadEMD achieving the best result in-
stead. On the other hand, according to ARI, ICA_NetEmd with 2 components is the top
performer for 100% reciprocity. For 25, 50 and 75% reciprocity, ICA_NetEmd with 2
components performs significantly worse when comparing to the results using AUPR
and P. ARI scores indicate that the best performers in these levels of reciprocity are
PCA_NetEmd with 99% variance, NetEmd with size 3 graphlets and PCA_NetEmd

with 95% variance. As we mention previously, using a smaller graphlet size usually
leads to better performance when different network sizes and densities are involved.
We find partial agreement to this claim when using ARI as the performance metric.
At 0% reciprocity, we find that ICA_NetEmd with 2 components and size 3 orbits
achieves an ARI of 0.509 (higher than the score of ICA_NetEmd with 2 components
and size 4 orbits in Table B.10, but lower than the score of TriadEMD); at 75% reci-
procity, PCA_NetEmd with 90% variance explained and size 3 orbits achieves an ARI
of 0.495 (higher than the score of PCA_NetEmd with 95% variance explained and size
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4 orbits in Table B.10).
For the dataset of real world directed networks, ARI disagrees with AUPR and P,

assigning the best performance to GDA with size 3 orbits. This task also favours using
smaller graphlets for the comparison, so the PCA_NetEmd and ICA_NetEmd results
are at a disadvantage compared to the other methods as we only report results with size
4 in Table B.10. For these two algorithms with size 3 graphlets, the best ARI scores
on this task are 0.524, when using PCA_NetEmd with 90% explained variance, and
0.489, when using ICA_NetEmd with 19 components.

On the overall, in spite of some agreements between ARI and AUPR or P, we
find ARI to be an unreliable metric to gauge the performance of network distance
measures, as it relies on an intermediate step of clustering that is unrelated to the
measures themselves. Using a different clustering method or even a different linkage
leads to disparate results compared to the ones we present in this section, which adds a
confounding factor when measuring the performance of the network comparison itself.
An example of this unreliability is the ARI score of 0 given to GDA with size 3 orbits
and to TriadEMD at 100% reciprocity, when the other metrics showed a performance
comparable to DGCD.
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Parameters
Synthetic Real

Task 1 Task 2 Onnela et al.

3 - 50% Variance 0.981 ± 0.004 0.912 0.872

3 - 80% Variance 0.980 ± 0.003 0.924 0.874

3 - 90% Variance 0.984 ± 0.002 0.929 0.881

3 - 95% Variance 0.982 ± 0.002 0.911 0.891

3 - 99% Variance 0.986 ± 0.002 0.928 0.889

4 - 50% Variance 0.986 ± 0.003 0.917 0.873

4 - 80% Variance 0.987 ± 0.003 0.926 0.885

4 - 90% Variance 0.992 ± 0.001 0.931 0.898

4 - 95% Variance 0.990 ± 0.001 0.921 0.897

4 - 99% Variance 0.991 ± 0.001 0.931 0.897

5 - 50% Variance 0.986 ± 0.003 0.915 0.863

5 - 80% Variance 0.985 ± 0.002 0.918 0.893

5 - 90% Variance 0.995 ± 0.001 0.922 0.891

5 - 95% Variance 0.993 ± 0.001 0.919 0.892

5 - 99% Variance 0.995 ± 0.001 0.921 0.891

Other best 0.996 ± 0.001 (ICA
G5 13 components)

0.933 (ICA G5 7
components)

0.898 (Original
NetEmd G4)

Table B.2: Results for PCA_NetEmd with different combinations of graphlet size and
percentage of variance explained in Task 1, Task 2 and the Onnela et al. dataset in
the undirected case. The metric used for Task 1 is the mean (and standard error of the
mean) of the 16 values for P in each combination of number of nodes with network
density. The metric used for Task 2 is the sole value of P after comparing the 1280
networks. The bolded values are the maximum in each task. Italic values are within
one standard error of the maximum performance.
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Parameter
Reciprocity

0% 25% 50% 75% 100%

3 - 50% Variance 0.984 ± 0.003 0.987 ± 0.003 0.985 ± 0.003 0.987 ± 0.003 0.928 ± 0.004

3 - 80% Variance 0.985 ± 0.003 0.991 ± 0.002 0.991 ± 0.002 0.992 ± 0.002 0.932 ± 0.004

3 - 90% Variance 0.989 ± 0.003 0.991 ± 0.002 0.991 ± 0.002 0.990 ± 0.002 0.929 ± 0.005

3 - 95% Variance 0.992 ± 0.002 0.992 ± 0.001 0.990 ± 0.002 0.992 ± 0.002 0.940 ± 0.003

3 - 99% Variance 0.990 ± 0.002 0.991 ± 0.001 0.990 ± 0.002 0.991 ± 0.002 0.938 ± 0.004

4 - 50% Variance 0.989 ± 0.003 0.993 ± 0.002 0.991 ± 0.002 0.993 ± 0.001 0.978 ± 0.004

4 - 80% Variance 0.990 ± 0.003 0.993 ± 0.001 0.990 ± 0.002 0.992 ± 0.001 0.982 ± 0.003

4 - 90% Variance 0.993 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.990 ± 0.002

4 - 95% Variance 0.992 ± 0.002 0.993 ± 0.001 0.992 ± 0.001 0.993 ± 0.001 0.988 ± 0.001

4 - 99% Variance 0.992 ± 0.002 0.992 ± 0.001 0.992 ± 0.001 0.992 ± 0.001 0.986 ± 0.002

Other best 0.995 ± 0.002
(DGCD129)

0.996 ± 0.001
(DGCD129)

0.995 ± 0.001
(DGCD129)

0.995 ± 0.002
(DGCD129)

0.989 ± 0.001
(Weighted G4D)

Table B.3: Results for PCA_NetEmd with different combinations of graphlet size and
percentage of variance explained in Task 1 of directed networks, for each level of
reciprocity. The metric used for evaluation is the mean (and standard error of the
mean) of the 16 values for P, in each combination of number of nodes, network density
and reciprocity. The bolded values are the maximum for each reciprocity level. Italic
values are within one standard error of the maximum performance.

Parameters

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

3 - 50% Variance 0.915 0.919 0.918 0.918 0.857 0.825

3 - 80% Variance 0.925 0.909 0.905 0.907 0.865 0.858

3 - 90% Variance 0.933 0.909 0.905 0.906 0.866 0.861

3 - 95% Variance 0.934 0.908 0.905 0.904 0.867 0.868

3 - 99% Variance 0.921 0.903 0.900 0.903 0.879 0.867

4 - 50% Variance 0.924 0.897 0.900 0.894 0.908 0.821

4 - 80% Variance 0.924 0.885 0.892 0.881 0.920 0.825

4 - 90% Variance 0.921 0.882 0.889 0.878 0.927 0.824

4 - 95% Variance 0.915 0.880 0.887 0.876 0.922 0.822

4 - 99% Variance 0.914 0.878 0.885 0.875 0.924 0.818

Other best
0.941 (ICA

G4D 2
comps)

0.926 (ICA
G3D 2
comps)

0.925 (ICA
G3D 2
comps)

0.928 (ICA
G3D 2
comps)

0.927 (ICA
G4D 4
comps)

0.870 (ICA
G3D 10
comps)

Table B.4: Results for PCA_NetEmd with different combinations of graphlet size and
percentage of variance explained in Task 2 in directed networks, for each level of
reciprocity, and for the real world networks dataset. The metric used for evaluation is
the mean (and standard error of the mean) of the 16 values for P, in each combination of
number of nodes, network density and reciprocity. The bolded values are the maximum
for each reciprocity level.
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd

G3 0.91 ± 0.01 0.670 0.762

G4 0.95 ± 0.01 0.705 0.790

G5 0.96 ± 0.01 0.712 0.761

PCA

50% Variance 0.93 ± 0.01 0.668 0.702

80% Variance 0.92 ± 0.01 0.701 0.759

90% Variance 0.96 ± 0.01 0.717 0.756

95% Variance 0.96 ± 0.01 0.716 0.760

99% Variance 0.96 ± 0.01 0.718 0.760

ICA

2 components 0.93 ± 0.01 0.742 0.717

10 components 0.94 ± 0.01 0.728 0.750

15 components 0.96 ± 0.01 0.729 0.754

GCD
11 orbits 0.89 ± 0.02 0.516 0.698

73 orbits 0.94 ± 0.02 0.600 0.747

GDA

G3 0.92 ± 0.02 0.605 0.783

G4 0.80 ± 0.04 0.535 0.692

G5 0.74 ± 0.04 - 0.638

Table B.5: Results for Task 1, Task 2 and the Onnela et al. [118] datasets in undi-
rected networks. The metric used for Task 1 is the mean (and standard error of the
mean) of the 16 values for area under precision-recall curve (AUPR) in each com-
bination of number of nodes with network density. The metric used for Task 2 and
Onnela et al. dataset is the sole value of AUPR after comparing the 1280 and 151
networks, respectively. The parameter column indicates: graphlet size used in original
NetEmd; percentage of variance explained to determine the number of components in
PCA_NetEmd (using orbits in graphlets of size up to 5); the number of components
used in ICA_NetEmd, using orbits in graphlets of size up to 5; the number of orbits
used by Graphlet Correlation Degree (GCD); graphlet sizes used in GDA. The bolded
values are the maximum for each task. Italic values are within one standard error of
the maximum performance. Note that results for GDA with graphlet size 5 took longer
than a week to return results for Task 2, at which point we stopped the computation.
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.644 0.594 0.583 0.598 0.721 0.883

G4D 0.702 0.630 0.632 0.628 0.953 0.820

Weighted
G3D 0.605 0.554 0.545 0.559 0.639 0.883

G4D 0.608 0.567 0.563 0.565 0.660 0.847

PCA

50% Variance 0.696 0.638 0.644 0.631 0.855 0.829

80% Variance 0.700 0.626 0.634 0.621 0.845 0.824

90% Variance 0.718 0.628 0.639 0.623 0.876 0.822

95% Variance 0.705 0.628 0.636 0.623 0.872 0.822

99% Variance 0.703 0.628 0.637 0.623 0.892 0.819

ICA

2 components 0.767 0.688 0.691 0.683 0.926 0.726

10 components 0.725 0.669 0.679 0.664 0.820 0.837

15 components 0.729 0.660 0.680 0.658 0.768 0.841

TriadEMD 0.664 0.629 0.623 0.629 0.738 0.881

DGCD
13 orbits 0.631 0.625 0.600 0.581 0.567 0.872

129 orbits 0.653 0.643 0.620 0.593 0.558 0.860

GDA
G3D 0.584 0.552 0.539 0.551 0.549 0.760

G4D - - - - 0.535 -

Table B.7: Results for Task 2 in directed networks, for each level of reciprocity, and
for the real world networks dataset. The metric used for this task is the sole value
of AUPR after comparing the 1280 and 1231 networks, respectively. The parameter
column indicates: graphlet size used in directed and weighted NetEmd; percentage of
variance explained to determine the number of components in PCA_NetEmd (using
orbits in graphlets of size up to 4); the number of components used in ICA_NetEmd,
using orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet
sizes used in GDA. The bolded values are the maximum for each dataset. Note that
results for GDA with graphlet size 4 took longer than a week to return results for Task
2 and in the real world networks dataset, at which point we stopped the computation.
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Algorithm Parameter
Synthetic Real

Task 1 Task 2 Onnela et al.

Original NetEmd

G3 0.63 ± 0.03 0.472 0.592

G4 0.69 ± 0.02 0.427 0.675

G5 0.81 ± 0.02 0.445 0.576

PCA

50% Variance 0.72 ± 0.03 0.439 0.558

80% Variance 0.71 ± 0.03 0.447 0.619

90% Variance 0.78 ± 0.02 0.436 0.612

95% Variance 0.80 ± 0.02 0.414 0.610

99% Variance 0.81 ± 0.02 0.396 0.587

ICA

2 components 0.67 ± 0.02 0.477 0.521

10 components 0.73 ± 0.03 0.452 0.593

15 components 0.76 ± 0.03 0.469 0.602

GCD
11 orbits 0.64 ± 0.07 0.309 0.435

73 orbits 0.77 ± 0.05 0.430 0.488

GDA

G3 0.74 ± 0.05 0.361 0.456

G4 0.62 ± 0.07 0.332 0.197

G5 0.41 ± 0.05 - 0.207

Table B.8: Results for Task 1, Task 2 and the Onnela et al. [118] datasets in undirected
networks. The metric used for Task 1 is the mean (and standard error of the mean)
of the 16 values for adjusted Rand index (ARI) in each combination of number of
nodes with network density. The metric used for Task 2 and Onnela et al. dataset
is the sole value of ARI after comparing the 1280 and 151 networks, respectively.
The parameter column indicates: graphlet size used in original NetEmd; percentage of
variance explained to determine the number of components in PCA_NetEmd (using
orbits in graphlets of size up to 5); the number of components used in ICA_NetEmd,
using orbits in graphlets of size up to 5; the number of orbits used by GCD; graphlet
sizes used in GDA. The bolded values are the maximum for each task. Italic values
are within one standard error of the maximum performance. Note that results for GDA
with graphlet size 5 took longer than a week to return results for Task 2, at which point
we stopped the computation.
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Algorithm Parameter

Synthetic
Real

NetworksReciprocity

0% 25% 50% 75% 100%

All
Orbits

G3D 0.432 0.423 0.464 0.387 0.188 0.167

G4D 0.395 0.409 0.348 0.433 0.439 0.308

Weighted
G3D 0.393 0.361 0.343 0.319 0.311 0.449

G4D 0.362 0.324 0.319 0.378 0.422 0.373

PCA

50% Variance 0.448 0.274 0.456 0.439 0.429 0.153

80% Variance 0.425 0.371 0.338 0.396 0.424 0.124

90% Variance 0.415 0.460 0.350 0.392 0.448 0.192

95% Variance 0.427 0.468 0.440 0.475 0.445 0.151

99% Variance 0.431 0.481 0.394 0.451 0.434 0.159

ICA

2 components 0.451 0.261 0.336 0.403 0.484 0.118

10 components 0.399 0.419 0.397 0.284 0.417 0.282

15 components 0.418 0.441 0.431 0.438 0.394 0.172

TriadEMD 0.539 0.467 0.436 0.392 0.001 0.297

DGCD
13 orbits 0.428 0.445 0.420 0.264 0.154 0.436

129 orbits 0.432 0.402 0.421 0.386 0.373 0.203

GDA
G3D 0.354 0.255 0.178 0.270 0.000 0.542

G4D - - - - 0.455 -

Table B.10: Results for Task 2 in directed networks, for each level of reciprocity, and
for the real world networks dataset. The metric used for this task is the sole value of
ARI after comparing the 1280 and 1231 networks, respectively. The parameter column
indicates: graphlet size used in directed and weighted NetEmd; percentage of variance
explained to determine the number of components in PCA_NetEmd (using orbits in
graphlets of size up to 4); the number of components used in ICA_NetEmd, using
orbits in graphlets of size up to 4; the number of orbits used by DGCD; graphlet sizes
used in GDA. The bolded values are the maximum for each dataset. Note that results
for GDA with graphlet size 4 took longer than a week to return results for Task 2 and
in the real world networks dataset, at which point we stopped the computation.
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(a) Examples of broad categories of topics within Mumsnet.

(b) The multiple subcategories of the Health topic within Mumsnet. Screenshot was taken after
the closure of the vaccination subcategories.

Figure C.1: Organization of the Mumsnet forum, it is divided in broad categories of
topics that are expanded into multiple subcategories, each with their own forum.
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Figure C.2: Examples of threads within the COVID-19 subforum of Mumsnet. In this
case, two threads are included in our analysis, the first and last on the list.
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Figure C.3: Example of the organization of a thread within Mumsnet. The original
post is coloured green and the remaining posts are shown sequentially according to the
time they were posted in.
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(a) Thread about a paper by Hooker [67] concerning a possible link between the measles
mumps rubella (MMR) vaccine and autism, that was later retracted. This thread was posted in
the time window spanning from the start of May 2014 to the end of August 2014, where we
observe a difference in network structure. This thread was assigned the sentiment of negative.

(b) Thread about the death of unvaccinated child due to diphtheria in Spain. This thread was
posted in the time window spanning from the start of May 2015 to the end of August 2015,
where we observe a difference in network structure. This thread was assigned the sentiment of
positive.

Figure C.4: Examples of controversial threads in the vaccination forum of Mumsnet
that may be connected to the network structure differences we observe in the time
frame when these threads were posted.
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(a) Thread about a link between blood clots and the Astra Zeneca vaccine. This thread was
posted in the time window spanning 15 March 2021 to 15 April 2021, where we observe a
difference in network structure. This thread was assigned the sentiment of negative.

(b) Thread about the booster vaccine in the context of the Omicron variant of COVID-19. This
thread was posted in the time window spanning 1 December 2021 to 1 January 2022, where we
observe a difference in network structure. This thread was assigned the sentiment of neutral.

Figure C.5: Examples of discussions about vaccination in the COVID-19 forum of
Mumsnet with representative topics that may be connected to the network structure
differences we observe in the time frame when these threads were posted.
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(c) Thread about the efficacy of vaccination against the Delta variant of COVID-19. This
thread was posted in the time window spanning 1 June 2021 to 1 July 2021, where we observe
a difference in network structure. This thread was assigned the sentiment of negative.

Figure C.5: Continued - Examples of discussions about vaccination in the COVID-19
forum of Mumsnet with representative topics that may be connected to the network
structure differences we observe in the time frame when these threads were posted.
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Figure D.1: Heat map of network distances between all networks in both the Mumsnet
vaccination and COVID-19 dataset. Distances are calculated using PCA_NetEmd with
size 4 graphlets and 90% explained variance.
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Figure D.2: Heat map of network distances between each pair of networks in the Mum-
snet vaccination dataset, for each orbit in graphlets of size up to 4. Distances are cal-
culated using PCA_NetEmd with size 4 graphlets and 90% explained variance.
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Figure D.3: Heat map of network distances between each pair of networks in the Mum-
snet COVID-19 dataset, for each orbit in graphlets of size up to 4. Distances are cal-
culated using PCA_NetEmd with size 4 graphlets and 90% explained variance.



207

Figure D.4: Heat map of network distances between all networks in both the Mum-
snet vaccination and COVID-19 dataset, for each orbit in graphlets of size up to 4.
Distances are calculated using PCA_NetEmd with size 4 graphlets and 90% explained
variance.



208 APPENDIX D. MUMSNET - SUPPORTING FIGURES

(a) Proportion of positive to negative threads.

(b) Proportion of negative to positive threads.

(c) Proportion of neutral to positive and negative threads.

Figure D.5: Vaccination subforum - threads of each sentiment.
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(a) Proportion of posts in positive threads to posts in negative threads.

(b) Proportion of posts in negative threads to posts in positive threads.

(c) Proportion of posts in neutral threads to posts in positive and negative threads.

Figure D.6: Vaccination subforum - posts in threads of each sentiment.
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(a) Proportion of users in positive threads to users in negative threads.

(b) Proportion of users in negative threads to users in positive threads.

(c) Proportion of users in neutral threads to users in positive and negative threads.

(d) Proportion of users that post in multiple threads with different sentiments to users only in
neutral, positive or negative threads.

Figure D.7: Vaccination subforum - users in threads of each sentiment.
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(a) Proportion of positive to negative threads.

(b) Proportion of negative to positive threads.

(c) Proportion of neutral to positive and negative threads.

Figure D.8: COVID-19 subforum - threads of each sentiment.
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(a) Proportion of posts in positive threads to posts in negative threads.

(b) Proportion of posts in negative threads to posts in positive threads.

(c) Proportion of posts in neutral threads to posts in positive and negative threads.

Figure D.9: COVID-19 subforum - posts in threads of each sentiment.
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(a) Proportion of users in positive threads to users in negative threads.

(b) Proportion of users in negative threads to users in positive threads.

(c) Proportion of users in neutral threads to users in positive and negative threads.

(d) Proportion of users that post in multiple threads with different sentiments to users only in
neutral, positive or negative threads.

Figure D.10: COVID-19 subforum - users in threads of each sentiment.
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(a) Proportion of positive to negative posts.

(b) Proportion of negative to positive posts.

(c) Proportion of neutral to positive and negative posts.

Figure D.11: COVID-19 subforum - posts of each sentiment, inferred from the sam-
pled subset of data.



Appendix E

Mumsnet - alternative data
granularity

In Section 4.4.1, we claim that our conclusions should not depend on the choice of
window span and jump. In this appendix, we show how using different values for
these parameters leads to similar final results.

E.1 Vaccination forum

The choice of window span and jump for the vaccination dataset was mostly sup-
ported on two observations: that a 2 month window jump leads to a good trade-off
between enough variability in consecutive data slices and not too much variability that
differences become meaningless; and, upon fixing the window jump, the window span
follows naturally under the assumption that consecutive data slices sharing more than
50% of date range leads to consecutive data slices that are too similar. In this section,
we challenge this assumption by keeping a window jump of two months and a window
span of 6 months, showing the impact of consecutive data slices sharing two thirds of
the date range.

Upon splitting the vaccination dataset in data slices starting on the first day of each
odd-numbered month with data spanning 6 months, we obtain 58 networks, whose
summary statistics are shown in Table E.1. The network comparison of these 58 net-
works is illustrated by the heatmap in Figure E.1. The Z-scored proportion of positive
to negative, negative to positive and neutral threads, posts and users are shown in Fig-
ure E.2, E.3 and E.4.

Using the previous parameters for data granularity, we observed 16 differences
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Vaccine COVID-19
# Networks 58 59

Number of Nodes
Min. 189 906

Median 339 2149
Max 579 4231

Number of Edges
Min. 514 6639

Median 1462 37719
Max 7070 117442

Density
Min. 1.31×10−2 9.57×10−3

Median 2.74×10−2 1.75×10−2

Max 4.32×10−2 3.51×10−2

Average Degree
Min. 5.1 14.5

Median 9.2 36.6
Max 24.7 70.3

Clustering Coefficient
Min. 0.45 0.58

Median 0.72 0.77
Max 0.92 0.87

Table E.1: Summary statistics for the datasets of networks from the vaccination and
COVID-19 datasets with alternative choices of window span and jump. The values
shown for the vaccination dataset correspond to a span of 6 months and jump of 2
months. For the COVID-19 dataset, the values of these two parameters are 2 weeks
and 1 week, respectively.

in network structure against 20 time windows with significant change in sentiment.
With the combination of window span and jump we show in this section, we obtain 18
differences in network structure, as we also consider differences from index i to i+ 3
(marked in the figures as a light gray dotted line) due to the necessity of comparing
networks with no overlapping data. On the other hand, we recognize a decrease in the
number of significant changes in sentiment to 18.

The change in data granularity further accentuates the disparity of network struc-
ture before and after 2015. Using either set of parameters, it is clear that the network
prior to 2015 are all very similar to each other and after 2015 there is a constant differ-
ence in the structure of temporally contiguous networks, with significant differences
detected in the majority of time slices. As no significant differences were detected
prior to 2015, there are changes in sentiment in 2011 and 2012 that are not reflected in
differences of network structure, which were captured when using the shorted window
span. On the other hand, with the shorter window span, we saw no changes in sen-
timent around September 2014, but using a longer window span shows that between
the windows starting in July 2014 and March 2015, there is an underrepresentation of
posts and users in neutral threads (Figures E.3c and E.4c). The remaining conclusions
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Figure E.1: Heat map of network distances between each pair of networks in the Mum-
snet vaccination dataset, using an alternative combination of window span and jump
(6 months and 2 months). Distances are calculated using PCA_NetEmd with size 4
graphlets and 90% explained variance.

using a shorter window span match those using the alternative longer window span.

E.2 COVID-19 forum

Unlike the vaccination forum, in the COVID-19 forum we identified two combinations
of window span and jump that equally fit the criteria for this dataset. Our choice landed
on the combination of one month span with a two week jump, as we argued that the
monthly span fit the timescale of policy changes better than the alternative we present
in this section, two week span with a one week jump.

By splitting the COVID-19 dataset in windows spanning two weeks for every week
in the dataset, we obtain 59 data slices, whose summary statistics are shown in Ta-
ble E.1. The network comparison of these 59 networks is illustrated by the heatmap in
Figure E.5. The Z-scored proportion of positive to negative, negative to positive and
neutral threads, posts and users are shown in Figure E.6, E.7 and E.8.
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(a) Proportion of positive to negative threads.

(b) Proportion of negative to positive threads.

(c) Proportion of neutral to positive and negative threads.

Figure E.2: Vaccination forum - threads of each sentiment - alternative data granularity.
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(a) Proportion of posts in positive threads to posts in negative threads.

(b) Proportion of posts in negative threads to posts in positive threads.

(c) Proportion of posts in neutral threads to posts in positive and negative threads.

Figure E.3: Vaccination forum - posts in threads of each sentiment - alternative data
granularity.
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(a) Proportion of users in positive threads to users in negative threads.

(b) Proportion of users in negative threads to users in positive threads.

(c) Proportion of users in neutral threads to users in positive and negative threads.

(d) Proportion of users that post in multiple threads with different sentiments to users only in
neutral, positive or negative threads.

Figure E.4: Vaccination forum - users in threads of each sentiment - alternative data
granularity.
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Figure E.5: Heat map of network distances between each pair of networks in the Mum-
snet COVID-19 dataset, using an alternative combination of window span and jump (2
weeks and 1 week). Distances are calculated using PCA_NetEmd with size 4 graphlets
and 90% explained variance.
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(a) Proportion of positive to negative threads.

(b) Proportion of negative to positive threads.

(c) Proportion of neutral to positive and negative threads.

Figure E.6: COVID-19 forum - threads of each sentiment - alternative data granularity.



E.2. COVID-19 FORUM 223

(a) Proportion of posts in positive threads to posts in negative threads.

(b) Proportion of posts in negative threads to posts in positive threads.

(c) Proportion of posts in neutral threads to posts in positive and negative threads.

Figure E.7: COVID-19 forum - posts in threads of each sentiment - alternative data
granularity.
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(a) Proportion of users in positive threads to users in negative threads.

(b) Proportion of users in negative threads to users in positive threads.

(c) Proportion of users in neutral threads to users in positive and negative threads.

(d) Proportion of users that post in multiple threads with different sentiments to users only in
neutral, positive or negative threads.

Figure E.8: COVID-19 subforum - users in threads of each sentiment - alternative data
granularity.
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Applying the same methodology to identify differences in network structure yields
four groups of differences, three of which that match differences in network struc-
ture using the previous combination of window jump and span. Using new values for
these parameters, differences emerge in the networks at the end of August, particu-
larly between the slices starting on 22 of August of 2021 and 5 of September 2021.
On the other hand, there are no differences in network structure highlighted in March
and April of 2021, as observed with the 1 month span and 2 week jump parameter
combination.

These groups of differences in network structure are related to changes in sentiment
in the following way:

• The first group, spanning networks starting in 1 of November 2020 until 13 of
December 2020, are related to an overrepresentation of positive sentiment (Fig-
ures E.6a, E.7a and E.8a) and underrepresentation of negative sentiment (Fig-
ures E.6b, E.7b and E.8b).

• The second group of differences in network structure, between 6 of June 2021
and 11 of July 2021, can be connected to an overrepresentation of negative sen-
timent in the data slices starting on 27 of June 2021 and 4 of July 2021.

• In the third group, the new group we identify with this set of parameters, we find
little evidence of change in sentiment during the time windows corresponding to
these networks.

• The final group, that starts at the beginning of October 2021 and stretches un-
til the end of November 2021, is connected to an overrepresentation of neutral
sentiment (Figures E.6c, E.7c and E.8c).

In summary, if we look at the groups of differences in network structure, we are
able to observe that the same differences correspond to the same changes in sentiment
toward vaccination. This further indicates that the relationship between differences
in network structure and changes to sentiment are properties of the system we are
studying rather than coincidental connections from emerging from a specific partition
of the dataset.
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E.3 Discussion

We have made an informal sensitivity analysis to the data granularity parameters used
to split our datasets. Deciding the temporal window to aggregate counts is an open
problem in time series analysis and the decision is often backed by subjective argu-
ments stemming from the domain the data is acquired from. Measures have been
proposed to automatize this choice, but they often rely on seasonality or stationarity
of the time series (see, for example, reference [2]), properties that the time series we
showed in Figures 4.3 and 4.4 do not possess.

We showed an alternative parametrization to split the data from the vaccination
forum where consecutive data slices shared a greater proportion of the data than the
previous parameters. We expected that this difference would increase the difficulty
to identify changes between data slices from consecutive time windows, however the
difference was not significant. We had previously observed a difference in networks
before and after 2015, which the new parametrization further emphasized. Perhaps
because the networks prior to 2015 were considered more similar to each other due
to sharing more data, we found more differences in network structure after 2015, as a
greater proportion of temporally contiguous data slices lead to networks whose com-
parison distance was greater than the median distance.

On the other hand, we observed more stability in the sentiment change, as ex-
pected. Even though the number of data slices with significant sentiment change only
decreased from 20 to 18, these data slices were harder to identify. For example, if
we consider changes to neutral sentiment with the new parameters, in any given data
slice there were only significantly different values in two of threads, posts or users,
whereas with the previous parameters we had some data slices where all three of these
presented significantly different values. In spite of this discrepancy between the two
parametrizations, we find the same correlation between changes to sentiment and dif-
ferences in network structure.

When deciding the parameters to split the COVID-19 dataset, we had the choice
of two equally plausible combinations of parameters. We opted for the combination
that would help with reasoning about results, with each data slice lasting a month. In
this appendix, we whether the results of our analysis would change if we had opted
for smaller data slices instead. With a smaller data granularity, we are able to observe
greater variability in network structure. Whereas before, all the networks seemed very
similar save for the networks corresponding to the period before COVID-19 vaccines
were approve, with the new granularity we are able to observe this initial difference but
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also bigger network differences after July 2021. However, even if the network distance
distribution is different, the periods of time when we observe distances between con-
secutive time windows greater than the median distance match between the two ways
to split the data.

The findings in this appendix indicate that the connection between differences in
network structure and change to sentiment are a property of the datasets we studied,
rather than a spurious correlation stemming from a fortunate choice of parameters to
split the dataset.
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Parameter
name Parameter description Value

Population size Number of agents in the simulation 100,000

Initial
infections The number of agents initially infected 100

Number of days Number of time steps, i.e., length of the simulation 180

Number of
imports

Number of daily new infections from a source outside the
population of study Pois(5)

Testing

LFT specificity Probability of a negative test given that the person is not
infected 99.7%[185]

Bad swab rate Proportion of PCR and LFD tests returning negative
regardless of infection status 10%

Test sensitivity Probability of a positive test given that the person is
infected

Test sensitivity
curves based

on [61]

PCR test delay Number of days for the test results to be known Pois(1.2)

Isolation

ILI prevalence
Percentage of the population infected with ILI symptoms
per day. These symptoms persist for Lognormal(6.0,2.0)

days
1%

Isolation period Number of days someone isolates after testing positive 10

Isolation factor Percentage reduction of transmission rate parameter per
layer while in isolation

Household: 0%,
School and
Work: 90%,
Community:

90%

Contact tracing

Contact tracing
probability Proportion of contacts traced per layer after a positive test

Household:
100%, School

and Work: 45%,
Community:

15%

Contact tracing
time Number of days for contacts to be traced

Household: 0,
School and
Work: 1,

Community: 2

Table F.1: Parameters modified from Covasim defaults.
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Parameter
name Parameter description Value

Asymptomatic testing

Testing
frequency How often people in the regular tester cohort test

Every 2 days;
twice per week;
once per week

Cohort size What percentage of the population is testing frequently on
LFD tests

Varies from 0 to
100% in jumps

of 10%

Anti testing
group size

What percentage of the population not in the regular testing
group that refuses to test without any symptoms 10%

Intermittent
testing group

size

What percentage of the population not in the regular testing
group that tests at a quarter of the rate of the regular testers 90%

Isolation on
symptom onset

Adherence to isolation when developing COVID-19 or ILI
symptoms 40%

Daily testing
probability if
symptomatic

Probability of taking up a test per day if symptomatic with
COVID-19 or ILI symptoms

40%; test is PCR
in Section 5.3.1

or LFD in
Section 5.3.3

Test uptake
after contact

tracing

Adherence to taking up a test when notified by tracing of a
positive contact

40%; test is PCR
in Section 5.3.1

or LFD in
Section 5.3.3

Reduction of number of contacts

Contact
reduction

Proportion of non-household contacts removed from the
contact networks

Varies from 0 to
100% in jumps

of 5%

Isolation on
symptom onset

Adherence to isolation when developing COVID-19 or ILI
symptoms 40%

Daily testing
probability if
symptomatic

Probability of taking up a PCR test per day if symptomatic
with COVID-19 or ILI symptoms 40%

Test uptake
after contact

tracing

Adherence to taking up a PCR test when notified by tracing
of a positive contact 40%

Table F.2: Range of values for parameters varied in the asymptomatic testing experi-
ment.
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Parameter
name Parameter description Value

Symptomatic testing

Isolation on
symptom onset

Adherence to isolation when developing COVID-19 or ILI
symptoms

Varies from 0 to
100% in jumps

of 20%

Daily testing
probability if
symptomatic

Probability of taking up a test per day if symptomatic with
COVID-19 or ILI symptoms

Varies from 0 to
100% in jumps
of 20%; test is

PCR in
Section 5.3.2 or

LFD in
Section 5.3.3

Test uptake
after contact

tracing

Adherence to taking up a test when notified by tracing of a
positive contact

Varies from 0 to
100% in jumps
of 20%; test is

PCR in
Section 5.3.2 or

LFD in
Section 5.3.3

Table F.3: Range of values for parameters varied in the symptomatic testing experi-
ment.
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Figure G.1: Comparison of testing strategies against reduction of contacts for different
growth rates with POLYMOD contact patterns. The x-axis represents the number of
total infections, averaged over 100 runs. The y-axis shows the maximum peak of new
daily infections, averaged over 100 runs. The colour of each marker indicates the
size of the regular tester cohort for the simulations with asymptomatic testing or the
percentage of contacts removed from non-household layers for the simulations with
contact reduction.
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Figure G.2: Comparison of testing strategies against reduction of contacts for different
growth rates with CoMix contact patterns. The x-axis represents the number of total
infections, averaged over 100 runs. The y-axis shows the maximum peak of new daily
infections, averaged over 100 runs. The colour of each marker indicates the size of
the regular tester cohort for the simulations with asymptomatic testing or the percent-
age of contacts removed from non-household layers for the simulations with contact
reduction.
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(a) Growth rate = 0.05

(b) Growth rate = 0.1

Figure G.3: Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and Polymerase Chain Reaction (PCR) testing after being traced as a
contact of a positive case. Numbers shown are the percentage decrease in the total
number of infections, compared to 0% uptake on these interventions, for 0.05 and 0.1
growth rates in POLYMOD contact pattern. The top line on the x axis represents the
uptake to testing after contact tracing, the bottom line represents the daily probability
to testing when symptomatic. The y axis represents uptake to isolation on COVID or
ILI symptoms.
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(a) Growth rate = 0.15

(b) Growth rate = 0.225

Figure G.4: Impact of increasing the uptake on isolation on symptoms, daily symp-
tomatic testing and PCR testing after being traced as a contact of a positive case. Num-
bers shown are the percentage decrease in the total number of infections, compared to
0% uptake on these interventions, for 0.15 and 0.225 growth rates in POLYMOD con-
tact pattern. The top line on the x axis represents the uptake to testing after contact
tracing, the bottom line represents the daily probability to testing when symptomatic.
The y axis represents uptake to isolation on COVID or ILI symptoms.
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Figure G.5: Comparison of Lateral Flow Device (LFD) against PCR tests for symp-
tomatic or contact traced individuals, for different values of asymptomatic testing up-
take and different growth rates, with contact patterns obtained from POLYMOD. The
y-axis shows the total number of infections. The x-axis represents the size of the
regular asymptomatic tester cohort. Markers shown represent the median of 100 sim-
ulations and the shaded area represents the interquartile range. The policy used for the
regular tester group is testing once weekly.



239

Figure G.6: Comparing LFD and PCR tests and the impact of increasing the uptake
of testing after being traced as a contact of a positive case and the daily probability of
testing if symptomatic, for growth rates of 0.025, 0.05 and 0.1 with contact patterns
obtained from POLYMOD. The y-axis shows the total number of infections. The bot-
tom line on the x axis represents the uptake to testing after contact tracing, the top
line represents the daily probability to testing when symptomatic. Color indicates the
type of test and the adherence to isolation on symptoms. Markers shown represent the
median of 100 simulations and the shaded area represents the interquartile range.
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Figure G.7: Comparing LFD and PCR tests and the impact of increasing the uptake
of testing after being traced as a contact of a positive case and the daily probability of
testing if symptomatic, for growth rates of 0.15, 0.225 and 0.3 with contact patterns
obtained from POLYMOD. The y-axis shows the total number of infections. The bot-
tom line on the x axis represents the uptake to testing after contact tracing, the top
line represents the daily probability to testing when symptomatic. Color indicates the
type of test and the adherence to isolation on symptoms. Markers shown represent the
median of 100 simulations and the shaded area represents the interquartile range.
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Figure G.8: Comparison of number of tests required per person when using LFD or
PCR tests for symptomatic or contact traced individuals, for 0.025, 0.05 and 0.15
growth rates, with contact patterns obtained from POLYMOD. The y-axis shows the
mean number of tests per person, averaged over 100 runs. The bottom line on the x
axis represents the uptake to testing after contact tracing, the top line represents the
adherence to isolation on symptom onset.
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Figure G.9: Comparison of number of tests required per person when using LFD or
PCR tests for symptomatic or contact traced individuals, for 0.15, 0.225 and 0.3 growth
rates, with contact patterns obtained from POLYMOD. The y-axis shows the mean
number of tests per person, averaged over 100 runs. The bottom line on the x axis rep-
resents the uptake to testing after contact tracing, the top line represents the adherence
to isolation on symptom onset.
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(a) PCR as the test for symptomatic or contact
traced individuals

(b) LFD as the test for symptomatic or contact
traced individuals

Figure G.10: Impact on person-days of isolation of increasing adherence to the differ-
ent testing strategies, for different growth rates with contact patterns from POLYMOD,
when using PCR (Figure G.10a) or LFD (Figure G.10b) as the test for symptomatic or
contact traced individuals. The x-axis represents the size of the regular tester cohort for
the simulations with asymptomatic testing or the percentage of contacts removed from
non-household layers for the simulations with contact reduction. The y-axis shows the
mean number of person days of isolation per population members over the 180 days of
simulation, averaged over 100 runs. These include days in isolation waiting for test re-
sults (amongst true positives and true negatives); isolation days amongst those testing
positive who were true positive; and isolation days among those testing positive who
were false positives. The colour of each marker indicates the percentage of days spent
in isolation while infected.
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Figure G.11: Impact on person-days of isolation of increasing adherence to isolation
on symptoms, daily probability of testing and adherence to testing after contact tracing,
for 0.025, 0.05 and 0.1 growth rates with contact patterns from POLYMOD, comparing
the outcome when testing with PCR or LFD. The bottom line on the x axis represents
the uptake to testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. The y-axis shows the mean number of person days of
isolation per population members over the 180 days of simulation, averaged over 100
runs. These include days in isolation waiting for test results (amongst true positives and
true negatives); isolation days amongst those testing positive who were true positive;
and isolation days among those testing positive who were false positives. The colour
of each marker indicates the percentage of days spent in isolation while infected.
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Figure G.12: Impact on person-days of isolation of increasing adherence to isolation
on symptoms, daily probability of testing and adherence to testing after contact tracing,
for 0.15, 0.225 and 0.3 growth rates with contact patterns from POLYMOD, comparing
the outcome when testing with PCR or LFD. The bottom line on the x axis represents
the uptake to testing after contact tracing, the top line represents the adherence to
isolation on symptom onset. The y-axis shows the mean number of person days of
isolation per population members over the 180 days of simulation, averaged over 100
runs. These include days in isolation waiting for test results (amongst true positives and
true negatives); isolation days amongst those testing positive who were true positive;
and isolation days among those testing positive who were false positives. The colour
of each marker indicates the percentage of days spent in isolation while infected.
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